@fugood/llama.node 1.0.0-beta.5 → 1.0.0-beta.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (110) hide show
  1. package/lib/binding.ts +1 -1
  2. package/package.json +14 -14
  3. package/scripts/llama.cpp.patch +27 -26
  4. package/src/LlamaCompletionWorker.cpp +21 -4
  5. package/src/LlamaCompletionWorker.h +2 -0
  6. package/src/LlamaContext.cpp +3 -12
  7. package/src/common.hpp +6 -5
  8. package/src/llama.cpp/CMakeLists.txt +15 -4
  9. package/src/llama.cpp/common/CMakeLists.txt +15 -24
  10. package/src/llama.cpp/common/arg.cpp +172 -110
  11. package/src/llama.cpp/common/chat-parser.cpp +385 -0
  12. package/src/llama.cpp/common/chat-parser.h +120 -0
  13. package/src/llama.cpp/common/chat.cpp +726 -596
  14. package/src/llama.cpp/common/chat.h +74 -8
  15. package/src/llama.cpp/common/common.cpp +56 -38
  16. package/src/llama.cpp/common/common.h +9 -3
  17. package/src/llama.cpp/common/json-partial.cpp +256 -0
  18. package/src/llama.cpp/common/json-partial.h +38 -0
  19. package/src/llama.cpp/common/json-schema-to-grammar.cpp +2 -1
  20. package/src/llama.cpp/common/json-schema-to-grammar.h +4 -4
  21. package/src/llama.cpp/common/sampling.cpp +7 -8
  22. package/src/llama.cpp/common/speculative.cpp +6 -4
  23. package/src/llama.cpp/ggml/CMakeLists.txt +48 -3
  24. package/src/llama.cpp/ggml/include/ggml.h +22 -3
  25. package/src/llama.cpp/ggml/src/CMakeLists.txt +81 -22
  26. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +131 -49
  27. package/src/llama.cpp/ggml/src/ggml-cpu/amx/amx.cpp +1 -1
  28. package/src/llama.cpp/ggml/src/ggml-cpu/amx/mmq.cpp +1 -1
  29. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp +94 -0
  30. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +4113 -0
  31. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/repack.cpp +2162 -0
  32. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +2638 -0
  33. package/src/llama.cpp/ggml/src/ggml-cpu/arch/powerpc/cpu-feats.cpp +82 -0
  34. package/src/llama.cpp/ggml/src/ggml-cpu/arch/powerpc/quants.c +2731 -0
  35. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +2068 -0
  36. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/repack.cpp +396 -0
  37. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/quants.c +1299 -0
  38. package/src/llama.cpp/ggml/src/ggml-cpu/arch/wasm/quants.c +1480 -0
  39. package/src/llama.cpp/ggml/src/ggml-cpu/arch/x86/quants.c +4310 -0
  40. package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-aarch64.cpp → arch/x86/repack.cpp} +59 -3206
  41. package/src/llama.cpp/ggml/src/ggml-cpu/arch-fallback.h +184 -0
  42. package/src/llama.cpp/ggml/src/ggml-cpu/common.h +1 -1
  43. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +12 -13
  44. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +64 -88
  45. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.cpp +8 -8
  46. package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-hbm.cpp → hbm.cpp} +1 -1
  47. package/src/llama.cpp/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +1 -1
  48. package/src/llama.cpp/ggml/src/ggml-cpu/llamafile/sgemm.cpp +56 -7
  49. package/src/llama.cpp/ggml/src/ggml-cpu/llamafile/sgemm.h +5 -0
  50. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +282 -100
  51. package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +1 -0
  52. package/src/llama.cpp/ggml/src/ggml-cpu/quants.c +1157 -0
  53. package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-quants.h → quants.h} +26 -0
  54. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +1570 -0
  55. package/src/llama.cpp/ggml/src/ggml-cpu/repack.h +98 -0
  56. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +119 -5
  57. package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-traits.cpp → traits.cpp} +1 -1
  58. package/src/llama.cpp/ggml/src/ggml-cpu/vec.cpp +85 -16
  59. package/src/llama.cpp/ggml/src/ggml-cpu/vec.h +204 -49
  60. package/src/llama.cpp/include/llama.h +145 -40
  61. package/src/llama.cpp/src/CMakeLists.txt +5 -1
  62. package/src/llama.cpp/src/llama-arch.cpp +99 -3
  63. package/src/llama.cpp/src/llama-arch.h +10 -1
  64. package/src/llama.cpp/src/llama-batch.cpp +728 -272
  65. package/src/llama.cpp/src/llama-batch.h +112 -54
  66. package/src/llama.cpp/src/llama-chat.cpp +19 -2
  67. package/src/llama.cpp/src/llama-chat.h +1 -0
  68. package/src/llama.cpp/src/llama-context.cpp +525 -339
  69. package/src/llama.cpp/src/llama-context.h +38 -17
  70. package/src/llama.cpp/src/llama-cparams.cpp +4 -0
  71. package/src/llama.cpp/src/llama-cparams.h +2 -0
  72. package/src/llama.cpp/src/llama-grammar.cpp +12 -2
  73. package/src/llama.cpp/src/llama-graph.cpp +413 -353
  74. package/src/llama.cpp/src/llama-graph.h +112 -56
  75. package/src/llama.cpp/src/llama-hparams.cpp +10 -2
  76. package/src/llama.cpp/src/llama-hparams.h +13 -2
  77. package/src/llama.cpp/src/llama-kv-cache-unified-iswa.cpp +279 -0
  78. package/src/llama.cpp/src/llama-kv-cache-unified-iswa.h +128 -0
  79. package/src/llama.cpp/src/llama-kv-cache-unified.cpp +1815 -0
  80. package/src/llama.cpp/src/llama-kv-cache-unified.h +303 -0
  81. package/src/llama.cpp/src/llama-kv-cells.h +415 -0
  82. package/src/llama.cpp/src/llama-memory-hybrid.cpp +246 -0
  83. package/src/llama.cpp/src/llama-memory-hybrid.h +138 -0
  84. package/src/llama.cpp/src/llama-memory-recurrent.cpp +1112 -0
  85. package/src/llama.cpp/src/llama-memory-recurrent.h +183 -0
  86. package/src/llama.cpp/src/llama-memory.cpp +41 -0
  87. package/src/llama.cpp/src/llama-memory.h +86 -5
  88. package/src/llama.cpp/src/llama-mmap.cpp +1 -1
  89. package/src/llama.cpp/src/llama-model-loader.cpp +42 -17
  90. package/src/llama.cpp/src/llama-model-saver.cpp +1 -0
  91. package/src/llama.cpp/src/llama-model.cpp +1137 -528
  92. package/src/llama.cpp/src/llama-model.h +4 -0
  93. package/src/llama.cpp/src/llama-quant.cpp +2 -1
  94. package/src/llama.cpp/src/llama-sampling.cpp +2 -2
  95. package/src/llama.cpp/src/llama-vocab.cpp +69 -32
  96. package/src/llama.cpp/src/llama-vocab.h +1 -0
  97. package/src/llama.cpp/src/llama.cpp +11 -7
  98. package/src/llama.cpp/src/unicode.cpp +5 -0
  99. package/src/tts_utils.h +1 -1
  100. package/src/llama.cpp/common/json.hpp +0 -24766
  101. package/src/llama.cpp/common/minja/chat-template.hpp +0 -541
  102. package/src/llama.cpp/common/minja/minja.hpp +0 -2974
  103. package/src/llama.cpp/common/stb_image.h +0 -7988
  104. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +0 -8
  105. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-quants.c +0 -13326
  106. package/src/llama.cpp/src/llama-kv-cache.cpp +0 -2827
  107. package/src/llama.cpp/src/llama-kv-cache.h +0 -515
  108. /package/src/llama.cpp/ggml/src/ggml-cpu/{cpu-feats-x86.cpp → arch/x86/cpu-feats.cpp} +0 -0
  109. /package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-hbm.h → hbm.h} +0 -0
  110. /package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-traits.h → traits.h} +0 -0
@@ -73,6 +73,7 @@ enum llm_type {
73
73
  LLM_TYPE_40B,
74
74
  LLM_TYPE_65B,
75
75
  LLM_TYPE_70B,
76
+ LLM_TYPE_142B,
76
77
  LLM_TYPE_236B,
77
78
  LLM_TYPE_290B,
78
79
  LLM_TYPE_314B,
@@ -329,6 +330,9 @@ struct llama_model {
329
330
  llama_hparams hparams = {};
330
331
  llama_vocab vocab;
331
332
 
333
+ // for classifier models
334
+ std::vector<std::string> classifier_labels;
335
+
332
336
  struct ggml_tensor * tok_embd = nullptr;
333
337
  struct ggml_tensor * type_embd = nullptr;
334
338
  struct ggml_tensor * pos_embd = nullptr;
@@ -585,7 +585,8 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
585
585
  if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
586
586
  gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
587
587
  } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
588
- gguf_set_val_i32(ctx_out.get(), o.key, o.val_i64);
588
+ // Setting type to UINT32. See https://github.com/ggml-org/llama.cpp/pull/14182 for context
589
+ gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)abs(o.val_i64));
589
590
  } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
590
591
  gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
591
592
  } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
@@ -798,7 +798,7 @@ static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_d
798
798
  }
799
799
 
800
800
  // if we have enough values the operation was a success
801
- if (filtered_tokens.size() >= ctx->min_keep) {
801
+ if (!filtered_tokens.empty() && filtered_tokens.size() >= ctx->min_keep) {
802
802
  memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
803
803
  cur_p->size = filtered_tokens.size();
804
804
  min_p_applied = true;
@@ -909,7 +909,7 @@ static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token
909
909
  cum_sum += cur_p->data[idx].p;
910
910
 
911
911
  // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
912
- if (cum_sum > ctx->p && i >= ctx->min_keep - 1) {
912
+ if (cum_sum > ctx->p && (ctx->min_keep == 0 || i >= ctx->min_keep - 1)) {
913
913
  last_idx = i + 1;
914
914
  break;
915
915
  }
@@ -9,16 +9,16 @@
9
9
 
10
10
  #include <algorithm>
11
11
  #include <cassert>
12
+ #include <cctype>
12
13
  #include <cfloat>
13
- #include <climits>
14
14
  #include <cstdarg>
15
15
  #include <cstring>
16
16
  #include <forward_list>
17
+ #include <limits>
17
18
  #include <map>
18
19
  #include <queue>
19
20
  #include <set>
20
21
  #include <unordered_map>
21
- #include <cctype>
22
22
 
23
23
  //
24
24
  // helpers
@@ -835,7 +835,7 @@ struct llm_tokenizer_ugm_session {
835
835
  }
836
836
 
837
837
  // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
838
- std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.token_unk(), 0, -FLT_MAX});
838
+ std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.token_unk(), 0, -DBL_MAX});
839
839
  // at the beginning tokenization score is zero
840
840
  tokenization_results[0] = { vocab.token_unk(), 0, 0 };
841
841
 
@@ -867,7 +867,7 @@ struct llm_tokenizer_ugm_session {
867
867
  const double challenger_score = current_best.score_sum + token_score;
868
868
  struct best_tokenization & current_champ = tokenization_results[prefix_offset];
869
869
  if (challenger_score > current_champ.score_sum) {
870
- struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
870
+ struct best_tokenization challenger = { token_id, input_offset, challenger_score };
871
871
  current_champ = challenger;
872
872
  }
873
873
  }
@@ -881,7 +881,7 @@ struct llm_tokenizer_ugm_session {
881
881
  prefix_offset = input_offset + n_utf8_code_units;
882
882
  struct best_tokenization & current_champ = tokenization_results[prefix_offset];
883
883
  if (challenger_score > current_champ.score_sum) {
884
- struct best_tokenization challenger = { vocab.token_unk(), input_offset, (float) challenger_score };
884
+ struct best_tokenization challenger = { vocab.token_unk(), input_offset, challenger_score };
885
885
  current_champ = challenger;
886
886
  }
887
887
  }
@@ -1007,7 +1007,7 @@ private:
1007
1007
  struct best_tokenization {
1008
1008
  llama_token token_id;
1009
1009
  size_t input_offset;
1010
- float score_sum;
1010
+ double score_sum;
1011
1011
  };
1012
1012
 
1013
1013
  struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
@@ -1269,6 +1269,7 @@ struct llama_vocab::impl {
1269
1269
  bool add_space_prefix = false;
1270
1270
  bool add_bos = false;
1271
1271
  bool add_eos = false;
1272
+ bool add_sep = false;
1272
1273
  bool ignore_merges = false;
1273
1274
  bool clean_spaces = false; // clean_up_tokenization_spaces
1274
1275
  bool remove_extra_whitespaces = false;
@@ -1421,6 +1422,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
1421
1422
  special_sep_id = 102;
1422
1423
  special_pad_id = 0;
1423
1424
  special_mask_id = 103;
1425
+
1426
+ add_sep = true;
1424
1427
  } else if (tokenizer_model == "gpt2") {
1425
1428
  type = LLAMA_VOCAB_TYPE_BPE;
1426
1429
 
@@ -1550,12 +1553,15 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
1550
1553
  tokenizer_pre == "jina-es" ||
1551
1554
  tokenizer_pre == "jina-de" ||
1552
1555
  tokenizer_pre == "gigachat" ||
1553
- tokenizer_pre == "jina-v1-en" ||
1554
1556
  tokenizer_pre == "jina-v2-es" ||
1555
- tokenizer_pre == "jina-v2-de" ||
1557
+ tokenizer_pre == "jina-v2-de") {
1558
+ pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
1559
+ } else if (
1560
+ tokenizer_pre == "jina-v1-en" ||
1556
1561
  tokenizer_pre == "jina-v2-code" ||
1557
1562
  tokenizer_pre == "roberta-bpe") {
1558
1563
  pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
1564
+ add_sep = true;
1559
1565
  } else if (
1560
1566
  tokenizer_pre == "refact") {
1561
1567
  pre_type = LLAMA_VOCAB_PRE_TYPE_REFACT;
@@ -1665,6 +1671,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
1665
1671
  clean_spaces = true;
1666
1672
  add_bos = true;
1667
1673
  add_eos = false;
1674
+ add_sep = true;
1668
1675
  } else if (type == LLAMA_VOCAB_TYPE_UGM) {
1669
1676
  pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
1670
1677
  add_bos = false;
@@ -1801,7 +1808,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
1801
1808
  }
1802
1809
  }
1803
1810
 
1804
- // Handle add_bos and add_eos
1811
+ // Handle add_bos, add_eos and add_sep
1805
1812
  {
1806
1813
  bool temp = true;
1807
1814
 
@@ -1811,6 +1818,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
1811
1818
  if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
1812
1819
  add_eos = temp;
1813
1820
  }
1821
+ if (ml.get_key(LLM_KV_TOKENIZER_ADD_SEP, temp, false)) {
1822
+ add_sep = temp;
1823
+ }
1814
1824
  }
1815
1825
 
1816
1826
  // auto-detect special tokens by text
@@ -1987,6 +1997,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
1987
1997
  || t.first == "<|eom_id|>"
1988
1998
  || t.first == "<EOT>"
1989
1999
  || t.first == "_<EOT>"
2000
+ || t.first == "<|end_of_text|>"
1990
2001
  ) {
1991
2002
  special_eog_ids.insert(t.second);
1992
2003
  if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
@@ -2059,9 +2070,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
2059
2070
  //NOTE: Per token attributes are missing from the GGUF file.
2060
2071
  //TODO: Extract attributes from GGUF file.
2061
2072
  {
2062
- auto _contains_any = [] (const std::string & str, const std::vector<std::string> & substrs) -> bool {
2073
+ auto _contains_any = [] (const std::string & str, const std::vector<std::string_view> & substrs) -> bool {
2063
2074
  for (const auto & substr : substrs) {
2064
- if (str.find(substr) < std::string::npos) {
2075
+ if (str.find(substr) != std::string::npos) {
2065
2076
  return true;
2066
2077
  }
2067
2078
  }
@@ -2080,9 +2091,11 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
2080
2091
 
2081
2092
  std::string model_name;
2082
2093
  std::string tokenizer_pre;
2094
+ std::string general_arch;
2083
2095
 
2084
2096
  ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
2085
2097
  ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
2098
+ ml.get_key(LLM_KV_GENERAL_ARCHITECTURE, general_arch, false);
2086
2099
 
2087
2100
  // model name to lowercase
2088
2101
  std::transform(model_name.begin(), model_name.end(), model_name.begin(),
@@ -2091,9 +2104,16 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
2091
2104
  }
2092
2105
  );
2093
2106
 
2094
- // set attributes by model/tokenizer name
2095
- if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
2096
- _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
2107
+ // set attributes by model/tokenizer/architecture name
2108
+ if (false
2109
+ || _contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})
2110
+ || _contains_any(general_arch, {"nomic-bert-moe"})
2111
+ ) {
2112
+ if (token_to_id.count("<mask>") == 0) {
2113
+ LLAMA_LOG_WARN("%s: Mask token is missing in vocab, please reconvert model!\n", __func__);
2114
+ } else {
2115
+ _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
2116
+ }
2097
2117
  } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
2098
2118
  for (auto id : cache_special_tokens) {
2099
2119
  _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
@@ -2563,6 +2583,10 @@ int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t
2563
2583
  // copy piece chars to output text buffer
2564
2584
  // skip up to 'lstrip' leading spaces before copying
2565
2585
  auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
2586
+ if (size >= static_cast<size_t>(std::numeric_limits<int32_t>::max())) {
2587
+ GGML_ABORT("invalid token size: %zu exceeds int32_t limit", size);
2588
+ }
2589
+
2566
2590
  for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
2567
2591
  token++;
2568
2592
  size--;
@@ -2759,26 +2783,26 @@ void llama_vocab::impl::print_info() const {
2759
2783
  LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (uint32_t) bpe_ranks.size());
2760
2784
 
2761
2785
  // special tokens
2762
- if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token[special_bos_id].text.c_str() ); }
2763
- if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token[special_eos_id].text.c_str() ); }
2764
- if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token[special_eot_id].text.c_str() ); }
2765
- if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token[special_eom_id].text.c_str() ); }
2766
- if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token[special_unk_id].text.c_str() ); }
2767
- if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token[special_sep_id].text.c_str() ); }
2768
- if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token[special_pad_id].text.c_str() ); }
2769
- if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token[special_mask_id].text.c_str() ); }
2770
-
2771
- if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token[linefeed_id].text.c_str() ); }
2772
-
2773
- if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token[special_fim_pre_id].text.c_str() ); }
2774
- if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token[special_fim_suf_id].text.c_str() ); }
2775
- if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token[special_fim_mid_id].text.c_str() ); }
2776
- if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token[special_fim_pad_id].text.c_str() ); }
2777
- if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token[special_fim_rep_id].text.c_str() ); }
2778
- if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token[special_fim_sep_id].text.c_str() ); }
2786
+ if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token.at(special_bos_id).text.c_str() ); }
2787
+ if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token.at(special_eos_id).text.c_str() ); }
2788
+ if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token.at(special_eot_id).text.c_str() ); }
2789
+ if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token.at(special_eom_id).text.c_str() ); }
2790
+ if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token.at(special_unk_id).text.c_str() ); }
2791
+ if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token.at(special_sep_id).text.c_str() ); }
2792
+ if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token.at(special_pad_id).text.c_str() ); }
2793
+ if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token.at(special_mask_id).text.c_str() ); }
2794
+
2795
+ if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token.at(linefeed_id).text.c_str() ); }
2796
+
2797
+ if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token.at(special_fim_pre_id).text.c_str() ); }
2798
+ if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token.at(special_fim_suf_id).text.c_str() ); }
2799
+ if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token.at(special_fim_mid_id).text.c_str() ); }
2800
+ if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token.at(special_fim_pad_id).text.c_str() ); }
2801
+ if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token.at(special_fim_rep_id).text.c_str() ); }
2802
+ if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token.at(special_fim_sep_id).text.c_str() ); }
2779
2803
 
2780
2804
  for (const auto & id : special_eog_ids) {
2781
- LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token[id].text.c_str() );
2805
+ LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token.at(id).text.c_str() );
2782
2806
  }
2783
2807
 
2784
2808
  LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len);
@@ -2986,6 +3010,10 @@ bool llama_vocab::get_add_eos() const {
2986
3010
  return pimpl->add_eos;
2987
3011
  }
2988
3012
 
3013
+ bool llama_vocab::get_add_sep() const {
3014
+ return pimpl->add_sep;
3015
+ }
3016
+
2989
3017
  bool llama_vocab::get_ignore_merges() const {
2990
3018
  return pimpl->ignore_merges;
2991
3019
  }
@@ -3046,6 +3074,11 @@ int32_t llama_vocab::tokenize(
3046
3074
  bool add_special,
3047
3075
  bool parse_special) const {
3048
3076
  auto res = tokenize(std::string(text, text_len), add_special, parse_special);
3077
+ if (res.size() >= static_cast<size_t>(std::numeric_limits<int32_t>::max())) {
3078
+ LLAMA_LOG_ERROR("%s: tokenization result size %zu exceeds int32_t limit\n", __func__, res.size());
3079
+ return std::numeric_limits<int32_t>::min();
3080
+ }
3081
+
3049
3082
  if (n_tokens_max < (int) res.size()) {
3050
3083
  // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
3051
3084
  return -((int) res.size());
@@ -3177,6 +3210,10 @@ bool llama_vocab_get_add_eos(const struct llama_vocab * vocab) {
3177
3210
  return vocab->get_add_eos();
3178
3211
  }
3179
3212
 
3213
+ bool llama_vocab_get_add_sep(const struct llama_vocab * vocab) {
3214
+ return vocab->get_add_sep();
3215
+ }
3216
+
3180
3217
  llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab) {
3181
3218
  return vocab->token_fim_pre();
3182
3219
  }
@@ -74,6 +74,7 @@ struct llama_vocab {
74
74
  bool get_add_space_prefix () const;
75
75
  bool get_add_bos () const;
76
76
  bool get_add_eos () const;
77
+ bool get_add_sep () const;
77
78
  bool get_ignore_merges () const;
78
79
  bool get_clean_spaces () const;
79
80
  bool get_remove_extra_whitespaces () const;
@@ -198,14 +198,18 @@ static struct llama_model * llama_model_load_from_file_impl(
198
198
 
199
199
  // if using single GPU mode, remove all except the main GPU
200
200
  if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
201
- if (params.main_gpu < 0 || params.main_gpu >= (int)model->devices.size()) {
202
- LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %d)\n", __func__, params.main_gpu, (int)model->devices.size());
203
- llama_model_free(model);
204
- return nullptr;
201
+ if (params.main_gpu < 0) {
202
+ model->devices.clear();
203
+ } else {
204
+ if (params.main_gpu >= (int)model->devices.size()) {
205
+ LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %zu)\n", __func__, params.main_gpu, model->devices.size());
206
+ llama_model_free(model);
207
+ return nullptr;
208
+ }
209
+ ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
210
+ model->devices.clear();
211
+ model->devices.push_back(main_gpu);
205
212
  }
206
- ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
207
- model->devices.clear();
208
- model->devices.push_back(main_gpu);
209
213
  }
210
214
 
211
215
  for (auto * dev : model->devices) {
@@ -204,12 +204,17 @@ static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
204
204
  // disable C++17 deprecation warning for std::codecvt_utf8
205
205
  # pragma clang diagnostic push
206
206
  # pragma clang diagnostic ignored "-Wdeprecated-declarations"
207
+ #elif defined(__GNUC__)
208
+ # pragma GCC diagnostic push
209
+ # pragma GCC diagnostic ignored "-Wdeprecated-declarations"
207
210
  #endif
208
211
 
209
212
  std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
210
213
 
211
214
  #if defined(__clang__)
212
215
  # pragma clang diagnostic pop
216
+ #elif defined(__GNUC__)
217
+ # pragma GCC diagnostic pop
213
218
  #endif
214
219
 
215
220
  return conv.from_bytes(s);
package/src/tts_utils.h CHANGED
@@ -6,7 +6,7 @@
6
6
  #include <thread>
7
7
  #include <vector>
8
8
 
9
- #include "json.hpp"
9
+ #include <nlohmann/json.hpp>
10
10
 
11
11
  enum tts_type { UNKNOWN = -1, OUTETTS_V0_2 = 1, OUTETTS_V0_3 = 2 };
12
12