@fugood/llama.node 0.6.2 → 1.0.0-beta.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (378) hide show
  1. package/CMakeLists.txt +40 -30
  2. package/README.md +4 -1
  3. package/lib/binding.js +41 -29
  4. package/lib/binding.ts +26 -25
  5. package/package.json +45 -10
  6. package/scripts/build.js +47 -0
  7. package/scripts/llama.cpp.patch +109 -0
  8. package/src/anyascii.c +22223 -0
  9. package/src/anyascii.h +42 -0
  10. package/src/tts_utils.cpp +20 -7
  11. package/src/tts_utils.h +2 -0
  12. package/bin/darwin/arm64/llama-node.node +0 -0
  13. package/bin/darwin/x64/llama-node.node +0 -0
  14. package/bin/linux/arm64/llama-node.node +0 -0
  15. package/bin/linux/x64/llama-node.node +0 -0
  16. package/bin/linux-cuda/arm64/llama-node.node +0 -0
  17. package/bin/linux-cuda/x64/llama-node.node +0 -0
  18. package/bin/linux-vulkan/arm64/llama-node.node +0 -0
  19. package/bin/linux-vulkan/x64/llama-node.node +0 -0
  20. package/bin/win32/x64/llama-node.node +0 -0
  21. package/bin/win32/x64/node.lib +0 -0
  22. package/bin/win32-vulkan/arm64/llama-node.node +0 -0
  23. package/bin/win32-vulkan/arm64/node.lib +0 -0
  24. package/bin/win32-vulkan/x64/llama-node.node +0 -0
  25. package/bin/win32-vulkan/x64/node.lib +0 -0
  26. package/patches/node-api-headers+1.1.0.patch +0 -26
  27. package/src/llama.cpp/.github/workflows/build-linux-cross.yml +0 -233
  28. package/src/llama.cpp/.github/workflows/build.yml +0 -1078
  29. package/src/llama.cpp/.github/workflows/close-issue.yml +0 -28
  30. package/src/llama.cpp/.github/workflows/docker.yml +0 -178
  31. package/src/llama.cpp/.github/workflows/editorconfig.yml +0 -29
  32. package/src/llama.cpp/.github/workflows/gguf-publish.yml +0 -44
  33. package/src/llama.cpp/.github/workflows/labeler.yml +0 -17
  34. package/src/llama.cpp/.github/workflows/python-check-requirements.yml +0 -33
  35. package/src/llama.cpp/.github/workflows/python-lint.yml +0 -30
  36. package/src/llama.cpp/.github/workflows/python-type-check.yml +0 -40
  37. package/src/llama.cpp/.github/workflows/release.yml +0 -739
  38. package/src/llama.cpp/.github/workflows/server.yml +0 -237
  39. package/src/llama.cpp/.github/workflows/winget.yml +0 -42
  40. package/src/llama.cpp/cmake/arm64-apple-clang.cmake +0 -16
  41. package/src/llama.cpp/cmake/arm64-windows-llvm.cmake +0 -16
  42. package/src/llama.cpp/cmake/build-info.cmake +0 -64
  43. package/src/llama.cpp/cmake/common.cmake +0 -35
  44. package/src/llama.cpp/cmake/git-vars.cmake +0 -22
  45. package/src/llama.cpp/cmake/x64-windows-llvm.cmake +0 -5
  46. package/src/llama.cpp/common/build-info.cpp.in +0 -4
  47. package/src/llama.cpp/docs/build.md +0 -561
  48. package/src/llama.cpp/examples/CMakeLists.txt +0 -43
  49. package/src/llama.cpp/examples/batched/CMakeLists.txt +0 -5
  50. package/src/llama.cpp/examples/batched/batched.cpp +0 -246
  51. package/src/llama.cpp/examples/chat-13B.bat +0 -57
  52. package/src/llama.cpp/examples/convert-llama2c-to-ggml/CMakeLists.txt +0 -5
  53. package/src/llama.cpp/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +0 -941
  54. package/src/llama.cpp/examples/deprecation-warning/deprecation-warning.cpp +0 -35
  55. package/src/llama.cpp/examples/embedding/CMakeLists.txt +0 -5
  56. package/src/llama.cpp/examples/embedding/embedding.cpp +0 -323
  57. package/src/llama.cpp/examples/eval-callback/CMakeLists.txt +0 -10
  58. package/src/llama.cpp/examples/eval-callback/eval-callback.cpp +0 -194
  59. package/src/llama.cpp/examples/gen-docs/CMakeLists.txt +0 -5
  60. package/src/llama.cpp/examples/gen-docs/gen-docs.cpp +0 -83
  61. package/src/llama.cpp/examples/gguf/CMakeLists.txt +0 -5
  62. package/src/llama.cpp/examples/gguf/gguf.cpp +0 -265
  63. package/src/llama.cpp/examples/gguf-hash/CMakeLists.txt +0 -22
  64. package/src/llama.cpp/examples/gguf-hash/deps/rotate-bits/rotate-bits.h +0 -46
  65. package/src/llama.cpp/examples/gguf-hash/deps/sha1/sha1.c +0 -295
  66. package/src/llama.cpp/examples/gguf-hash/deps/sha1/sha1.h +0 -52
  67. package/src/llama.cpp/examples/gguf-hash/deps/sha256/sha256.c +0 -221
  68. package/src/llama.cpp/examples/gguf-hash/deps/sha256/sha256.h +0 -24
  69. package/src/llama.cpp/examples/gguf-hash/deps/xxhash/xxhash.c +0 -42
  70. package/src/llama.cpp/examples/gguf-hash/deps/xxhash/xxhash.h +0 -7093
  71. package/src/llama.cpp/examples/gguf-hash/gguf-hash.cpp +0 -694
  72. package/src/llama.cpp/examples/gritlm/CMakeLists.txt +0 -5
  73. package/src/llama.cpp/examples/gritlm/gritlm.cpp +0 -229
  74. package/src/llama.cpp/examples/jeopardy/questions.txt +0 -100
  75. package/src/llama.cpp/examples/llama.android/app/build.gradle.kts +0 -65
  76. package/src/llama.cpp/examples/llama.android/build.gradle.kts +0 -6
  77. package/src/llama.cpp/examples/llama.android/llama/build.gradle.kts +0 -71
  78. package/src/llama.cpp/examples/llama.android/llama/src/main/cpp/CMakeLists.txt +0 -53
  79. package/src/llama.cpp/examples/llama.android/llama/src/main/cpp/llama-android.cpp +0 -452
  80. package/src/llama.cpp/examples/llama.android/settings.gradle.kts +0 -18
  81. package/src/llama.cpp/examples/lookahead/CMakeLists.txt +0 -5
  82. package/src/llama.cpp/examples/lookahead/lookahead.cpp +0 -472
  83. package/src/llama.cpp/examples/lookup/CMakeLists.txt +0 -23
  84. package/src/llama.cpp/examples/lookup/lookup-create.cpp +0 -40
  85. package/src/llama.cpp/examples/lookup/lookup-merge.cpp +0 -47
  86. package/src/llama.cpp/examples/lookup/lookup-stats.cpp +0 -157
  87. package/src/llama.cpp/examples/lookup/lookup.cpp +0 -242
  88. package/src/llama.cpp/examples/parallel/CMakeLists.txt +0 -5
  89. package/src/llama.cpp/examples/parallel/parallel.cpp +0 -492
  90. package/src/llama.cpp/examples/passkey/CMakeLists.txt +0 -5
  91. package/src/llama.cpp/examples/passkey/passkey.cpp +0 -277
  92. package/src/llama.cpp/examples/retrieval/CMakeLists.txt +0 -5
  93. package/src/llama.cpp/examples/retrieval/retrieval.cpp +0 -304
  94. package/src/llama.cpp/examples/save-load-state/CMakeLists.txt +0 -5
  95. package/src/llama.cpp/examples/save-load-state/save-load-state.cpp +0 -246
  96. package/src/llama.cpp/examples/simple/CMakeLists.txt +0 -5
  97. package/src/llama.cpp/examples/simple/simple.cpp +0 -206
  98. package/src/llama.cpp/examples/simple-chat/CMakeLists.txt +0 -5
  99. package/src/llama.cpp/examples/simple-chat/simple-chat.cpp +0 -206
  100. package/src/llama.cpp/examples/simple-cmake-pkg/CMakeLists.txt +0 -11
  101. package/src/llama.cpp/examples/speculative/CMakeLists.txt +0 -5
  102. package/src/llama.cpp/examples/speculative/speculative.cpp +0 -644
  103. package/src/llama.cpp/examples/speculative-simple/CMakeLists.txt +0 -5
  104. package/src/llama.cpp/examples/speculative-simple/speculative-simple.cpp +0 -261
  105. package/src/llama.cpp/examples/sycl/CMakeLists.txt +0 -9
  106. package/src/llama.cpp/examples/sycl/build.sh +0 -23
  107. package/src/llama.cpp/examples/sycl/ls-sycl-device.cpp +0 -13
  108. package/src/llama.cpp/examples/sycl/run-llama2.sh +0 -27
  109. package/src/llama.cpp/examples/sycl/run-llama3.sh +0 -28
  110. package/src/llama.cpp/examples/sycl/win-build-sycl.bat +0 -33
  111. package/src/llama.cpp/examples/sycl/win-run-llama2.bat +0 -9
  112. package/src/llama.cpp/examples/sycl/win-run-llama3.bat +0 -9
  113. package/src/llama.cpp/examples/training/CMakeLists.txt +0 -5
  114. package/src/llama.cpp/examples/training/finetune.cpp +0 -96
  115. package/src/llama.cpp/ggml/cmake/GitVars.cmake +0 -22
  116. package/src/llama.cpp/ggml/cmake/common.cmake +0 -26
  117. package/src/llama.cpp/ggml/src/ggml-alloc.c +0 -1042
  118. package/src/llama.cpp/ggml/src/ggml-backend-impl.h +0 -255
  119. package/src/llama.cpp/ggml/src/ggml-backend-reg.cpp +0 -586
  120. package/src/llama.cpp/ggml/src/ggml-backend.cpp +0 -2008
  121. package/src/llama.cpp/ggml/src/ggml-blas/CMakeLists.txt +0 -87
  122. package/src/llama.cpp/ggml/src/ggml-blas/ggml-blas.cpp +0 -517
  123. package/src/llama.cpp/ggml/src/ggml-cann/CMakeLists.txt +0 -74
  124. package/src/llama.cpp/ggml/src/ggml-cann/acl_tensor.cpp +0 -179
  125. package/src/llama.cpp/ggml/src/ggml-cann/acl_tensor.h +0 -258
  126. package/src/llama.cpp/ggml/src/ggml-cann/aclnn_ops.cpp +0 -2863
  127. package/src/llama.cpp/ggml/src/ggml-cann/aclnn_ops.h +0 -1110
  128. package/src/llama.cpp/ggml/src/ggml-cann/common.h +0 -420
  129. package/src/llama.cpp/ggml/src/ggml-cann/ggml-cann.cpp +0 -2570
  130. package/src/llama.cpp/ggml/src/ggml-common.h +0 -1857
  131. package/src/llama.cpp/ggml/src/ggml-cpu/cmake/FindSIMD.cmake +0 -100
  132. package/src/llama.cpp/ggml/src/ggml-cuda/CMakeLists.txt +0 -184
  133. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/cuda.h +0 -15
  134. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/hip.h +0 -243
  135. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/musa.h +0 -140
  136. package/src/llama.cpp/ggml/src/ggml-hip/CMakeLists.txt +0 -131
  137. package/src/llama.cpp/ggml/src/ggml-impl.h +0 -601
  138. package/src/llama.cpp/ggml/src/ggml-kompute/CMakeLists.txt +0 -166
  139. package/src/llama.cpp/ggml/src/ggml-kompute/ggml-kompute.cpp +0 -2251
  140. package/src/llama.cpp/ggml/src/ggml-metal/CMakeLists.txt +0 -120
  141. package/src/llama.cpp/ggml/src/ggml-metal/ggml-metal-impl.h +0 -622
  142. package/src/llama.cpp/ggml/src/ggml-musa/CMakeLists.txt +0 -113
  143. package/src/llama.cpp/ggml/src/ggml-opencl/CMakeLists.txt +0 -96
  144. package/src/llama.cpp/ggml/src/ggml-opencl/ggml-opencl.cpp +0 -5124
  145. package/src/llama.cpp/ggml/src/ggml-opt.cpp +0 -1037
  146. package/src/llama.cpp/ggml/src/ggml-quants.c +0 -5232
  147. package/src/llama.cpp/ggml/src/ggml-quants.h +0 -100
  148. package/src/llama.cpp/ggml/src/ggml-rpc/CMakeLists.txt +0 -9
  149. package/src/llama.cpp/ggml/src/ggml-rpc/ggml-rpc.cpp +0 -1813
  150. package/src/llama.cpp/ggml/src/ggml-sycl/CMakeLists.txt +0 -189
  151. package/src/llama.cpp/ggml/src/ggml-sycl/backend.hpp +0 -37
  152. package/src/llama.cpp/ggml/src/ggml-sycl/binbcast.cpp +0 -239
  153. package/src/llama.cpp/ggml/src/ggml-sycl/binbcast.hpp +0 -39
  154. package/src/llama.cpp/ggml/src/ggml-sycl/common.cpp +0 -83
  155. package/src/llama.cpp/ggml/src/ggml-sycl/common.hpp +0 -493
  156. package/src/llama.cpp/ggml/src/ggml-sycl/concat.cpp +0 -197
  157. package/src/llama.cpp/ggml/src/ggml-sycl/concat.hpp +0 -20
  158. package/src/llama.cpp/ggml/src/ggml-sycl/conv.cpp +0 -100
  159. package/src/llama.cpp/ggml/src/ggml-sycl/conv.hpp +0 -20
  160. package/src/llama.cpp/ggml/src/ggml-sycl/convert.cpp +0 -623
  161. package/src/llama.cpp/ggml/src/ggml-sycl/convert.hpp +0 -34
  162. package/src/llama.cpp/ggml/src/ggml-sycl/cpy.cpp +0 -701
  163. package/src/llama.cpp/ggml/src/ggml-sycl/cpy.hpp +0 -11
  164. package/src/llama.cpp/ggml/src/ggml-sycl/dequantize.hpp +0 -791
  165. package/src/llama.cpp/ggml/src/ggml-sycl/dmmv.cpp +0 -1160
  166. package/src/llama.cpp/ggml/src/ggml-sycl/dmmv.hpp +0 -27
  167. package/src/llama.cpp/ggml/src/ggml-sycl/dpct/helper.hpp +0 -2957
  168. package/src/llama.cpp/ggml/src/ggml-sycl/element_wise.cpp +0 -1536
  169. package/src/llama.cpp/ggml/src/ggml-sycl/element_wise.hpp +0 -75
  170. package/src/llama.cpp/ggml/src/ggml-sycl/gemm.hpp +0 -99
  171. package/src/llama.cpp/ggml/src/ggml-sycl/getrows.cpp +0 -311
  172. package/src/llama.cpp/ggml/src/ggml-sycl/getrows.hpp +0 -20
  173. package/src/llama.cpp/ggml/src/ggml-sycl/ggml-sycl.cpp +0 -4443
  174. package/src/llama.cpp/ggml/src/ggml-sycl/gla.cpp +0 -105
  175. package/src/llama.cpp/ggml/src/ggml-sycl/gla.hpp +0 -8
  176. package/src/llama.cpp/ggml/src/ggml-sycl/im2col.cpp +0 -136
  177. package/src/llama.cpp/ggml/src/ggml-sycl/im2col.hpp +0 -21
  178. package/src/llama.cpp/ggml/src/ggml-sycl/mmq.cpp +0 -3030
  179. package/src/llama.cpp/ggml/src/ggml-sycl/mmq.hpp +0 -33
  180. package/src/llama.cpp/ggml/src/ggml-sycl/mmvq.cpp +0 -1108
  181. package/src/llama.cpp/ggml/src/ggml-sycl/mmvq.hpp +0 -27
  182. package/src/llama.cpp/ggml/src/ggml-sycl/norm.cpp +0 -474
  183. package/src/llama.cpp/ggml/src/ggml-sycl/norm.hpp +0 -26
  184. package/src/llama.cpp/ggml/src/ggml-sycl/outprod.cpp +0 -46
  185. package/src/llama.cpp/ggml/src/ggml-sycl/outprod.hpp +0 -10
  186. package/src/llama.cpp/ggml/src/ggml-sycl/presets.hpp +0 -74
  187. package/src/llama.cpp/ggml/src/ggml-sycl/quants.hpp +0 -83
  188. package/src/llama.cpp/ggml/src/ggml-sycl/rope.cpp +0 -362
  189. package/src/llama.cpp/ggml/src/ggml-sycl/rope.hpp +0 -20
  190. package/src/llama.cpp/ggml/src/ggml-sycl/softmax.cpp +0 -264
  191. package/src/llama.cpp/ggml/src/ggml-sycl/softmax.hpp +0 -20
  192. package/src/llama.cpp/ggml/src/ggml-sycl/sycl_hw.cpp +0 -13
  193. package/src/llama.cpp/ggml/src/ggml-sycl/sycl_hw.hpp +0 -23
  194. package/src/llama.cpp/ggml/src/ggml-sycl/tsembd.cpp +0 -73
  195. package/src/llama.cpp/ggml/src/ggml-sycl/tsembd.hpp +0 -20
  196. package/src/llama.cpp/ggml/src/ggml-sycl/vecdotq.hpp +0 -1215
  197. package/src/llama.cpp/ggml/src/ggml-sycl/wkv.cpp +0 -305
  198. package/src/llama.cpp/ggml/src/ggml-sycl/wkv.hpp +0 -10
  199. package/src/llama.cpp/ggml/src/ggml-threading.cpp +0 -12
  200. package/src/llama.cpp/ggml/src/ggml-threading.h +0 -14
  201. package/src/llama.cpp/ggml/src/ggml-vulkan/CMakeLists.txt +0 -196
  202. package/src/llama.cpp/ggml/src/ggml-vulkan/ggml-vulkan.cpp +0 -10699
  203. package/src/llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt +0 -39
  204. package/src/llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +0 -751
  205. package/src/llama.cpp/ggml/src/ggml.c +0 -6550
  206. package/src/llama.cpp/ggml/src/gguf.cpp +0 -1330
  207. package/src/llama.cpp/models/.editorconfig +0 -1
  208. package/src/llama.cpp/models/ggml-vocab-aquila.gguf +0 -0
  209. package/src/llama.cpp/models/ggml-vocab-baichuan.gguf +0 -0
  210. package/src/llama.cpp/models/ggml-vocab-bert-bge.gguf +0 -0
  211. package/src/llama.cpp/models/ggml-vocab-bert-bge.gguf.inp +0 -112
  212. package/src/llama.cpp/models/ggml-vocab-bert-bge.gguf.out +0 -46
  213. package/src/llama.cpp/models/ggml-vocab-chameleon.gguf.inp +0 -112
  214. package/src/llama.cpp/models/ggml-vocab-chameleon.gguf.out +0 -46
  215. package/src/llama.cpp/models/ggml-vocab-command-r.gguf +0 -0
  216. package/src/llama.cpp/models/ggml-vocab-command-r.gguf.inp +0 -112
  217. package/src/llama.cpp/models/ggml-vocab-command-r.gguf.out +0 -46
  218. package/src/llama.cpp/models/ggml-vocab-deepseek-coder.gguf +0 -0
  219. package/src/llama.cpp/models/ggml-vocab-deepseek-coder.gguf.inp +0 -112
  220. package/src/llama.cpp/models/ggml-vocab-deepseek-coder.gguf.out +0 -46
  221. package/src/llama.cpp/models/ggml-vocab-deepseek-llm.gguf +0 -0
  222. package/src/llama.cpp/models/ggml-vocab-deepseek-llm.gguf.inp +0 -112
  223. package/src/llama.cpp/models/ggml-vocab-deepseek-llm.gguf.out +0 -46
  224. package/src/llama.cpp/models/ggml-vocab-deepseek-r1-qwen.gguf.inp +0 -112
  225. package/src/llama.cpp/models/ggml-vocab-deepseek-r1-qwen.gguf.out +0 -46
  226. package/src/llama.cpp/models/ggml-vocab-falcon.gguf +0 -0
  227. package/src/llama.cpp/models/ggml-vocab-falcon.gguf.inp +0 -112
  228. package/src/llama.cpp/models/ggml-vocab-falcon.gguf.out +0 -46
  229. package/src/llama.cpp/models/ggml-vocab-gpt-2.gguf +0 -0
  230. package/src/llama.cpp/models/ggml-vocab-gpt-2.gguf.inp +0 -112
  231. package/src/llama.cpp/models/ggml-vocab-gpt-2.gguf.out +0 -46
  232. package/src/llama.cpp/models/ggml-vocab-gpt-4o.gguf.inp +0 -112
  233. package/src/llama.cpp/models/ggml-vocab-gpt-4o.gguf.out +0 -46
  234. package/src/llama.cpp/models/ggml-vocab-gpt-neox.gguf +0 -0
  235. package/src/llama.cpp/models/ggml-vocab-llama-bpe.gguf +0 -0
  236. package/src/llama.cpp/models/ggml-vocab-llama-bpe.gguf.inp +0 -112
  237. package/src/llama.cpp/models/ggml-vocab-llama-bpe.gguf.out +0 -46
  238. package/src/llama.cpp/models/ggml-vocab-llama-spm.gguf +0 -0
  239. package/src/llama.cpp/models/ggml-vocab-llama-spm.gguf.inp +0 -112
  240. package/src/llama.cpp/models/ggml-vocab-llama-spm.gguf.out +0 -46
  241. package/src/llama.cpp/models/ggml-vocab-llama4.gguf.inp +0 -112
  242. package/src/llama.cpp/models/ggml-vocab-llama4.gguf.out +0 -46
  243. package/src/llama.cpp/models/ggml-vocab-mpt.gguf +0 -0
  244. package/src/llama.cpp/models/ggml-vocab-mpt.gguf.inp +0 -112
  245. package/src/llama.cpp/models/ggml-vocab-mpt.gguf.out +0 -46
  246. package/src/llama.cpp/models/ggml-vocab-phi-3.gguf +0 -0
  247. package/src/llama.cpp/models/ggml-vocab-phi-3.gguf.inp +0 -112
  248. package/src/llama.cpp/models/ggml-vocab-phi-3.gguf.out +0 -46
  249. package/src/llama.cpp/models/ggml-vocab-pixtral.gguf.inp +0 -112
  250. package/src/llama.cpp/models/ggml-vocab-pixtral.gguf.out +0 -46
  251. package/src/llama.cpp/models/ggml-vocab-qwen2.gguf +0 -0
  252. package/src/llama.cpp/models/ggml-vocab-qwen2.gguf.inp +0 -112
  253. package/src/llama.cpp/models/ggml-vocab-qwen2.gguf.out +0 -46
  254. package/src/llama.cpp/models/ggml-vocab-refact.gguf +0 -0
  255. package/src/llama.cpp/models/ggml-vocab-refact.gguf.inp +0 -112
  256. package/src/llama.cpp/models/ggml-vocab-refact.gguf.out +0 -46
  257. package/src/llama.cpp/models/ggml-vocab-roberta-bpe.gguf.inp +0 -112
  258. package/src/llama.cpp/models/ggml-vocab-roberta-bpe.gguf.out +0 -46
  259. package/src/llama.cpp/models/ggml-vocab-starcoder.gguf +0 -0
  260. package/src/llama.cpp/models/ggml-vocab-starcoder.gguf.inp +0 -112
  261. package/src/llama.cpp/models/ggml-vocab-starcoder.gguf.out +0 -46
  262. package/src/llama.cpp/pocs/CMakeLists.txt +0 -14
  263. package/src/llama.cpp/pocs/vdot/CMakeLists.txt +0 -9
  264. package/src/llama.cpp/pocs/vdot/q8dot.cpp +0 -173
  265. package/src/llama.cpp/pocs/vdot/vdot.cpp +0 -311
  266. package/src/llama.cpp/prompts/LLM-questions.txt +0 -49
  267. package/src/llama.cpp/prompts/alpaca.txt +0 -1
  268. package/src/llama.cpp/prompts/assistant.txt +0 -31
  269. package/src/llama.cpp/prompts/chat-with-baichuan.txt +0 -4
  270. package/src/llama.cpp/prompts/chat-with-bob.txt +0 -7
  271. package/src/llama.cpp/prompts/chat-with-qwen.txt +0 -1
  272. package/src/llama.cpp/prompts/chat-with-vicuna-v0.txt +0 -7
  273. package/src/llama.cpp/prompts/chat-with-vicuna-v1.txt +0 -7
  274. package/src/llama.cpp/prompts/chat.txt +0 -28
  275. package/src/llama.cpp/prompts/dan-modified.txt +0 -1
  276. package/src/llama.cpp/prompts/dan.txt +0 -1
  277. package/src/llama.cpp/prompts/mnemonics.txt +0 -93
  278. package/src/llama.cpp/prompts/parallel-questions.txt +0 -43
  279. package/src/llama.cpp/prompts/reason-act.txt +0 -18
  280. package/src/llama.cpp/requirements/requirements-all.txt +0 -15
  281. package/src/llama.cpp/requirements/requirements-compare-llama-bench.txt +0 -2
  282. package/src/llama.cpp/requirements/requirements-convert_hf_to_gguf.txt +0 -7
  283. package/src/llama.cpp/requirements/requirements-convert_hf_to_gguf_update.txt +0 -7
  284. package/src/llama.cpp/requirements/requirements-convert_legacy_llama.txt +0 -5
  285. package/src/llama.cpp/requirements/requirements-convert_llama_ggml_to_gguf.txt +0 -1
  286. package/src/llama.cpp/requirements/requirements-convert_lora_to_gguf.txt +0 -4
  287. package/src/llama.cpp/requirements/requirements-gguf_editor_gui.txt +0 -3
  288. package/src/llama.cpp/requirements/requirements-pydantic.txt +0 -3
  289. package/src/llama.cpp/requirements/requirements-test-tokenizer-random.txt +0 -1
  290. package/src/llama.cpp/requirements/requirements-tool_bench.txt +0 -12
  291. package/src/llama.cpp/requirements.txt +0 -13
  292. package/src/llama.cpp/scripts/build-info.sh +0 -30
  293. package/src/llama.cpp/scripts/install-oneapi.bat +0 -19
  294. package/src/llama.cpp/scripts/xxd.cmake +0 -16
  295. package/src/llama.cpp/tests/CMakeLists.txt +0 -177
  296. package/src/llama.cpp/tests/get-model.cpp +0 -21
  297. package/src/llama.cpp/tests/get-model.h +0 -2
  298. package/src/llama.cpp/tests/test-arg-parser.cpp +0 -178
  299. package/src/llama.cpp/tests/test-autorelease.cpp +0 -24
  300. package/src/llama.cpp/tests/test-backend-ops.cpp +0 -4793
  301. package/src/llama.cpp/tests/test-barrier.cpp +0 -94
  302. package/src/llama.cpp/tests/test-c.c +0 -7
  303. package/src/llama.cpp/tests/test-chat-template.cpp +0 -417
  304. package/src/llama.cpp/tests/test-chat.cpp +0 -985
  305. package/src/llama.cpp/tests/test-double-float.cpp +0 -57
  306. package/src/llama.cpp/tests/test-gbnf-validator.cpp +0 -109
  307. package/src/llama.cpp/tests/test-gguf.cpp +0 -1338
  308. package/src/llama.cpp/tests/test-grammar-integration.cpp +0 -1308
  309. package/src/llama.cpp/tests/test-grammar-llguidance.cpp +0 -1201
  310. package/src/llama.cpp/tests/test-grammar-parser.cpp +0 -519
  311. package/src/llama.cpp/tests/test-json-schema-to-grammar.cpp +0 -1304
  312. package/src/llama.cpp/tests/test-llama-grammar.cpp +0 -408
  313. package/src/llama.cpp/tests/test-log.cpp +0 -39
  314. package/src/llama.cpp/tests/test-model-load-cancel.cpp +0 -27
  315. package/src/llama.cpp/tests/test-mtmd-c-api.c +0 -63
  316. package/src/llama.cpp/tests/test-opt.cpp +0 -904
  317. package/src/llama.cpp/tests/test-quantize-fns.cpp +0 -186
  318. package/src/llama.cpp/tests/test-quantize-perf.cpp +0 -365
  319. package/src/llama.cpp/tests/test-quantize-stats.cpp +0 -424
  320. package/src/llama.cpp/tests/test-regex-partial.cpp +0 -288
  321. package/src/llama.cpp/tests/test-rope.cpp +0 -262
  322. package/src/llama.cpp/tests/test-sampling.cpp +0 -399
  323. package/src/llama.cpp/tests/test-tokenizer-0.cpp +0 -312
  324. package/src/llama.cpp/tests/test-tokenizer-1-bpe.cpp +0 -155
  325. package/src/llama.cpp/tests/test-tokenizer-1-spm.cpp +0 -125
  326. package/src/llama.cpp/tools/CMakeLists.txt +0 -39
  327. package/src/llama.cpp/tools/batched-bench/CMakeLists.txt +0 -5
  328. package/src/llama.cpp/tools/batched-bench/batched-bench.cpp +0 -204
  329. package/src/llama.cpp/tools/cvector-generator/CMakeLists.txt +0 -5
  330. package/src/llama.cpp/tools/cvector-generator/completions.txt +0 -582
  331. package/src/llama.cpp/tools/cvector-generator/cvector-generator.cpp +0 -508
  332. package/src/llama.cpp/tools/cvector-generator/mean.hpp +0 -48
  333. package/src/llama.cpp/tools/cvector-generator/negative.txt +0 -4
  334. package/src/llama.cpp/tools/cvector-generator/pca.hpp +0 -315
  335. package/src/llama.cpp/tools/cvector-generator/positive.txt +0 -4
  336. package/src/llama.cpp/tools/export-lora/CMakeLists.txt +0 -5
  337. package/src/llama.cpp/tools/export-lora/export-lora.cpp +0 -434
  338. package/src/llama.cpp/tools/gguf-split/CMakeLists.txt +0 -5
  339. package/src/llama.cpp/tools/gguf-split/gguf-split.cpp +0 -583
  340. package/src/llama.cpp/tools/imatrix/CMakeLists.txt +0 -5
  341. package/src/llama.cpp/tools/imatrix/imatrix.cpp +0 -667
  342. package/src/llama.cpp/tools/llama-bench/CMakeLists.txt +0 -5
  343. package/src/llama.cpp/tools/llama-bench/llama-bench.cpp +0 -2024
  344. package/src/llama.cpp/tools/main/CMakeLists.txt +0 -5
  345. package/src/llama.cpp/tools/main/main.cpp +0 -977
  346. package/src/llama.cpp/tools/mtmd/CMakeLists.txt +0 -58
  347. package/src/llama.cpp/tools/mtmd/clip-impl.h +0 -462
  348. package/src/llama.cpp/tools/mtmd/clip.cpp +0 -4024
  349. package/src/llama.cpp/tools/mtmd/clip.h +0 -101
  350. package/src/llama.cpp/tools/mtmd/deprecation-warning.cpp +0 -22
  351. package/src/llama.cpp/tools/mtmd/miniaudio.h +0 -93468
  352. package/src/llama.cpp/tools/mtmd/mtmd-audio.cpp +0 -855
  353. package/src/llama.cpp/tools/mtmd/mtmd-audio.h +0 -62
  354. package/src/llama.cpp/tools/mtmd/mtmd-cli.cpp +0 -377
  355. package/src/llama.cpp/tools/mtmd/mtmd-helper.cpp +0 -297
  356. package/src/llama.cpp/tools/mtmd/mtmd.cpp +0 -942
  357. package/src/llama.cpp/tools/mtmd/mtmd.h +0 -362
  358. package/src/llama.cpp/tools/mtmd/requirements.txt +0 -5
  359. package/src/llama.cpp/tools/perplexity/CMakeLists.txt +0 -5
  360. package/src/llama.cpp/tools/perplexity/perplexity.cpp +0 -2063
  361. package/src/llama.cpp/tools/quantize/CMakeLists.txt +0 -6
  362. package/src/llama.cpp/tools/quantize/quantize.cpp +0 -519
  363. package/src/llama.cpp/tools/rpc/CMakeLists.txt +0 -4
  364. package/src/llama.cpp/tools/rpc/rpc-server.cpp +0 -322
  365. package/src/llama.cpp/tools/run/CMakeLists.txt +0 -16
  366. package/src/llama.cpp/tools/run/linenoise.cpp/linenoise.cpp +0 -1995
  367. package/src/llama.cpp/tools/run/linenoise.cpp/linenoise.h +0 -137
  368. package/src/llama.cpp/tools/run/run.cpp +0 -1261
  369. package/src/llama.cpp/tools/server/CMakeLists.txt +0 -51
  370. package/src/llama.cpp/tools/server/bench/requirements.txt +0 -2
  371. package/src/llama.cpp/tools/server/httplib.h +0 -10506
  372. package/src/llama.cpp/tools/server/server.cpp +0 -4966
  373. package/src/llama.cpp/tools/server/tests/requirements.txt +0 -8
  374. package/src/llama.cpp/tools/server/utils.hpp +0 -1337
  375. package/src/llama.cpp/tools/tokenize/CMakeLists.txt +0 -5
  376. package/src/llama.cpp/tools/tokenize/tokenize.cpp +0 -416
  377. package/src/llama.cpp/tools/tts/CMakeLists.txt +0 -5
  378. package/src/llama.cpp/tools/tts/tts.cpp +0 -1092
@@ -1,941 +0,0 @@
1
- #include "ggml.h"
2
- #include "gguf.h"
3
-
4
- #include "llama.h"
5
- #include "common.h"
6
- #include "log.h"
7
-
8
- #include <unordered_map>
9
- #include <vector>
10
- #include <cassert>
11
- #include <climits>
12
- #include <cstring>
13
- #include <cstdarg>
14
- #include <cinttypes>
15
- #include <ctime>
16
- #include <random>
17
- #include <stdexcept>
18
- #include <sstream>
19
- #include <algorithm>
20
- #include <string>
21
-
22
- // GGUF keys & tensor names.
23
-
24
- #define KV_GENERAL_ARCHITECTURE "general.architecture"
25
- #define KV_GENERAL_NAME "general.name"
26
-
27
- #define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
28
- #define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
29
- #define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
30
- #define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
31
- #define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
32
- #define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
33
- #define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
34
- #define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
35
- #define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
36
- #define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
37
-
38
- #define KV_CONTEXT_LENGTH "llama.context_length"
39
- #define KV_EMBEDDING_LENGTH "llama.embedding_length"
40
- #define KV_BLOCK_COUNT "llama.block_count"
41
- #define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
42
- #define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
43
- #define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
44
- #define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
45
- #define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
46
-
47
- #define TN_TOKEN_EMBD "token_embd.weight"
48
- #define TN_OUTPUT_NORM "output_norm.weight"
49
- #define TN_OUTPUT "output.weight"
50
- #define TN_ATTN_NORM "blk.%d.attn_norm.weight"
51
- #define TN_ATTN_Q "blk.%d.attn_q.weight"
52
- #define TN_ATTN_K "blk.%d.attn_k.weight"
53
- #define TN_ATTN_V "blk.%d.attn_v.weight"
54
- #define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
55
- #define TN_FFN_NORM "blk.%d.ffn_norm.weight"
56
- #define TN_FFN_GATE "blk.%d.ffn_gate.weight"
57
- #define TN_FFN_DOWN "blk.%d.ffn_down.weight"
58
- #define TN_FFN_UP "blk.%d.ffn_up.weight"
59
-
60
- #if defined(_MSC_VER)
61
- #pragma warning(disable: 4244 4267) // possible loss of data
62
- #endif
63
-
64
- #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
65
- #define LLAMA_FILE_VERSION_GGJT_V3 3
66
-
67
- #define TOKENIZER_NAME "llama"
68
- #define UNKNOWN_TOKEN_ID 0
69
- #define BOS_TOKEN_ID 1
70
- #define EOS_TOKEN_ID 2
71
-
72
- //////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
73
- typedef struct {
74
- int dim; // transformer dimension
75
- int hidden_dim; // for ffn layers
76
- int n_layers; // number of layers
77
- int n_heads; // number of query heads
78
- int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
79
- int vocab_size; // vocabulary size, usually 256 (byte-level)
80
- int seq_len; // max sequence length
81
- } Config;
82
-
83
- struct TransformerWeights {
84
- // token embedding table
85
- std::vector<float> token_embedding_table; // (vocab_size, dim)
86
- // weights for rmsnorms
87
- std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
88
- std::vector<float> rms_ffn_weight; // (layer, dim)
89
- // weights for matmuls
90
- std::vector<float> wq; // (layer, dim, dim)
91
- std::vector<float> wk; // (layer, dim, dim)
92
- std::vector<float> wv; // (layer, dim, dim)
93
- std::vector<float> wo; // (layer, dim, dim)
94
- // weights for ffn
95
- std::vector<float> w1; // (layer, hidden_dim, dim)
96
- std::vector<float> w2; // (layer, dim, hidden_dim)
97
- std::vector<float> w3; // (layer, hidden_dim, dim)
98
- // final rmsnorm
99
- std::vector<float> rms_final_weight; // (dim,)
100
- // freq_cis for RoPE relatively positional embeddings
101
- // std::vector<float> freq_cis_real; // (seq_len, dim/2)
102
- // std::vector<float> freq_cis_imag; // (seq_len, dim/2)
103
- // (optional) classifier weights for the logits, on the last layer
104
- std::vector<float> wcls;
105
- };
106
-
107
- static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
108
- const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
109
- try {
110
- w->token_embedding_table.resize(p->vocab_size * p->dim);
111
- LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
112
-
113
- w->rms_att_weight.resize(p->n_layers * p->dim);
114
- LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
115
-
116
- w->rms_ffn_weight.resize(p->n_layers * p->dim);
117
- LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
118
-
119
- w->wq.resize(p->n_layers * p->dim * p->dim);
120
- LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
121
-
122
- w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
123
- LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
124
-
125
- w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
126
- LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
127
-
128
- w->wo.resize(p->n_layers * p->dim * p->dim);
129
- LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
130
-
131
- w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
132
- LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
133
-
134
- w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
135
- LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
136
-
137
- w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
138
- LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
139
-
140
- w->rms_final_weight.resize(p->dim);
141
- LOG_INF("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
142
-
143
- if (shared_weights) {
144
- w->wcls = {};
145
- } else {
146
- w->wcls.resize(p->vocab_size * p->dim);
147
- LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
148
- }
149
- }
150
- catch (std::length_error &) {
151
- die("Invalid configuration. Failed to allocate memory for weights");
152
- }
153
- }
154
-
155
- static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
156
- if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
157
- if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
158
- if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
159
- if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
160
- if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
161
- if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
162
- if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
163
- if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
164
- if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
165
- if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
166
- if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
167
-
168
- // Skip freq_cis_real & freq_cis_imag
169
- int head_size = p->dim / p->n_heads;
170
- fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
171
-
172
- if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
173
-
174
- // Check we didn't forget to read anything
175
- auto curr = ftell(f);
176
- fseek(f, 0, SEEK_END);
177
- auto end = ftell(f);
178
- if (curr != end) {
179
- LOG_ERR("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
180
- return 1;
181
- }
182
-
183
- return 0;
184
- }
185
-
186
- static void print_sample_weights(TransformerWeights *w){
187
- LOG_INF("----- Quick print of first of the weight vales of all the variables\n");
188
- LOG_INF("%f\n", w->token_embedding_table[0]);
189
- LOG_INF("%f\n", w->rms_att_weight[0]);
190
- LOG_INF("%f\n", w->rms_ffn_weight[0]);
191
-
192
- LOG_INF("%f\n", w->wq[0]);
193
- LOG_INF("%f\n", w->wk[0]);
194
- LOG_INF("%f\n", w->wv[0]);
195
- LOG_INF("%f\n", w->wo[0]);
196
- LOG_INF("%f\n", w->w1[0]);
197
- LOG_INF("%f\n", w->w2[0]);
198
- LOG_INF("%f\n", w->w3[0]);
199
- LOG_INF("%f\n", w->rms_att_weight[0]);
200
- if (!w->wcls.empty()) LOG_INF("%f\n", w->wcls[0]);
201
- }
202
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////
203
-
204
- //////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
205
-
206
- struct my_llama_vocab {
207
- using id = int32_t;
208
- using token = std::string;
209
- using ttype = llama_token_type;
210
-
211
- struct token_data {
212
- token text;
213
- float score;
214
- ttype type;
215
- };
216
-
217
- std::unordered_map<token, id> token_to_id;
218
- std::vector<token_data> id_to_token;
219
- };
220
-
221
- struct my_llama_hparams {
222
- uint32_t n_vocab = 32000;
223
- uint32_t n_ctx = 512; // this is provided as user input?
224
- uint32_t n_embd = 4096;
225
- uint32_t n_ff = 11008;
226
- uint32_t n_mult = 4;
227
- uint32_t n_head = 32;
228
- uint32_t n_head_kv = 32;
229
- uint32_t n_layer = 32;
230
- uint32_t n_rot = 64;
231
-
232
- bool operator!=(const my_llama_hparams& other) const {
233
- return memcmp(this, &other, sizeof(my_llama_hparams));
234
- }
235
- };
236
-
237
- struct my_llama_layer {
238
- // normalization
239
- struct ggml_tensor * attention_norm;
240
-
241
- // attention
242
- struct ggml_tensor * wq;
243
- struct ggml_tensor * wk;
244
- struct ggml_tensor * wv;
245
- struct ggml_tensor * wo;
246
-
247
- // normalization
248
- struct ggml_tensor * ffn_norm;
249
-
250
- // ff
251
- struct ggml_tensor * w1;
252
- struct ggml_tensor * w2;
253
- struct ggml_tensor * w3;
254
- };
255
-
256
- struct my_llama_model {
257
- struct ggml_context * ctx = NULL;
258
-
259
- std::string name;
260
-
261
- my_llama_hparams hparams;
262
-
263
- struct ggml_tensor * tok_embeddings;
264
-
265
- struct ggml_tensor * norm;
266
- struct ggml_tensor * output;
267
-
268
- std::vector<my_llama_layer> layers;
269
-
270
- uint32_t train_its = 0;
271
- uint32_t train_samples = 0;
272
- uint32_t train_tokens = 0;
273
- };
274
-
275
- struct train_params {
276
- const char * fn_vocab_model;
277
- const char * fn_llama2c_model;
278
- const char * fn_llama2c_output_model;
279
- const char * fn_train_data;
280
- const char * fn_checkpoint_in;
281
- const char * fn_checkpoint_out;
282
- const char * fn_model_out;
283
-
284
- uint32_t seed;
285
-
286
- int n_ctx;
287
- int n_embd;
288
- int n_mult;
289
- int n_head;
290
- int n_layer;
291
- int n_rotmax;
292
-
293
- int n_threads;
294
- int n_batch;
295
- int n_examples;
296
- int n_predict;
297
-
298
- int print_info_interval;
299
- int print_details_interval;
300
-
301
- bool samples_start_after_nl;
302
- bool use_adam;
303
- bool use_flash;
304
- bool use_scratch;
305
-
306
- // only adam
307
- int warmup;
308
- int cos_decay_steps;
309
- float cos_decay_restart;
310
- float cos_decay_alpha;
311
-
312
- int lbfgs_n_iter;
313
- int adam_n_iter;
314
- float adam_alpha;
315
- float adam_decay;
316
-
317
- int mem_model_gb;
318
- int mem_compute_gb;
319
- int mem_compute0_gb;
320
- int mem_compute1_gb;
321
- };
322
-
323
- static void print_params(struct my_llama_hparams * params) {
324
- LOG_INF("%s: n_vocab: %u\n", __func__, params->n_vocab);
325
- LOG_INF("%s: n_ctx: %u\n", __func__, params->n_ctx);
326
- LOG_INF("%s: n_embd: %u\n", __func__, params->n_embd);
327
- LOG_INF("%s: n_mult: %u\n", __func__, params->n_mult);
328
- LOG_INF("%s: n_head: %u\n", __func__, params->n_head);
329
- LOG_INF("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
330
- LOG_INF("%s: n_ff: %u\n", __func__, params->n_ff);
331
- LOG_INF("%s: n_layer: %u\n", __func__, params->n_layer);
332
- LOG_INF("%s: n_rot: %u\n", __func__, params->n_rot);
333
- }
334
-
335
- static void print_tensor_info(const struct ggml_context * ctx) {
336
- for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
337
- LOG_INF("%s: Allocating ", __func__);
338
- int64_t total = 1;
339
- int i = 0;
340
- for (; i < ggml_n_dims(t); ++i) {
341
- if (i > 0) LOG("x ");
342
- LOG("[%" PRId64 "] ", t->ne[i]);
343
- total *= t->ne[i];
344
- }
345
- if (i > 1) LOG("= [%" PRId64 "] ", total);
346
- LOG("float space for %s\n", ggml_get_name(t));
347
- }
348
- }
349
-
350
- static void init_model(struct my_llama_model * model) {
351
- const auto & hparams = model->hparams;
352
-
353
- const uint32_t n_embd = hparams.n_embd;
354
- const uint32_t n_layer = hparams.n_layer;
355
- const uint32_t n_vocab = hparams.n_vocab;
356
-
357
- const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
358
-
359
- const uint32_t n_ff = hparams.n_ff;
360
- struct ggml_context * ctx = model->ctx;
361
-
362
- model->train_its = 0;
363
- model->train_samples = 0;
364
- model->train_tokens = 0;
365
-
366
- model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
367
- model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
368
- model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
369
-
370
- ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
371
- ggml_set_name(model->norm, "norm.weight");
372
- ggml_set_name(model->output, "output.weight");
373
-
374
- model->layers.resize(n_layer);
375
- for (uint32_t i = 0; i < n_layer; ++i) {
376
- auto & layer = model->layers[i];
377
-
378
- std::string layers_i = "layers." + std::to_string(i);
379
-
380
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
381
-
382
- layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
383
- layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
384
- layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
385
- layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
386
-
387
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
388
-
389
- layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
390
- layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
391
- layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
392
-
393
- ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
394
-
395
- ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
396
- ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
397
- ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
398
- ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
399
-
400
- ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
401
-
402
- ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
403
- ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
404
- ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
405
- }
406
-
407
- print_tensor_info(ctx);
408
- }
409
-
410
- static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
411
- float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
412
- return *ptr;
413
- }
414
-
415
- static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
416
- int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
417
- return *ptr;
418
- }
419
-
420
- static void print_row(struct ggml_tensor * probs, int i) {
421
- for (int k = 0; k < probs->ne[0]; ++k) {
422
- float p = get_f32_2d(probs, k, i);
423
- LOG(" %f", p);
424
- }
425
- LOG("\n");
426
- }
427
-
428
- static void print_matrix(struct ggml_tensor * probs) {
429
- assert(ggml_is_matrix(probs));
430
- for (int i = 0; i < probs->ne[1]; ++i) {
431
- for (int k = 0; k < probs->ne[0]; ++k) {
432
- float p = get_f32_2d(probs, k, i);
433
- LOG(" %.2f", p);
434
- }
435
- LOG("\n");
436
- }
437
- }
438
-
439
- struct my_llama_file {
440
- // use FILE * so we don't have to re-open the file to mmap
441
- FILE * fp;
442
- size_t size;
443
-
444
- my_llama_file(const char * fname, const char * mode) {
445
- fp = std::fopen(fname, mode);
446
- if (fp == NULL) {
447
- size = 0;
448
- } else {
449
- seek(0, SEEK_END);
450
- size = tell();
451
- seek(0, SEEK_SET);
452
- }
453
- }
454
-
455
- size_t tell() const {
456
- #ifdef _WIN32
457
- __int64 ret = _ftelli64(fp);
458
- #else
459
- long ret = std::ftell(fp);
460
- #endif
461
- GGML_ASSERT(ret != -1); // this really shouldn't fail
462
- return (size_t) ret;
463
- }
464
-
465
- void seek(size_t offset, int whence) {
466
- #ifdef _WIN32
467
- int ret = _fseeki64(fp, (__int64) offset, whence);
468
- #else
469
- int ret = std::fseek(fp, (long) offset, whence);
470
- #endif
471
- GGML_ASSERT(ret == 0); // same
472
- }
473
-
474
- void read_raw(void * ptr, size_t size) {
475
- if (size == 0) {
476
- return;
477
- }
478
- errno = 0;
479
- std::size_t ret = std::fread(ptr, size, 1, fp);
480
- if (ferror(fp)) {
481
- die_fmt("fread failed: %s", strerror(errno));
482
- }
483
- if (ret != 1) {
484
- die("unexpectedly reached end of file");
485
- }
486
- }
487
-
488
- std::uint32_t read_u32() {
489
- std::uint32_t ret;
490
- read_raw(&ret, sizeof(ret));
491
- return ret;
492
- }
493
- std::float_t read_f32() {
494
- std::float_t ret;
495
- read_raw(&ret, sizeof(ret));
496
- return ret;
497
- }
498
-
499
- std::string read_string(std::uint32_t len) {
500
- std::vector<char> chars(len);
501
- read_raw(chars.data(), len);
502
- return std::string(chars.data(), len);
503
- }
504
-
505
- ~my_llama_file() {
506
- if (fp) {
507
- std::fclose(fp);
508
- }
509
- }
510
- };
511
-
512
- static bool is_ggml_file(const char * filename) {
513
- my_llama_file file(filename, "rb");
514
- if (file.size < 4) {
515
- return false;
516
- }
517
- std::string magic = file.read_string(4);
518
- return magic == GGUF_MAGIC;
519
- }
520
-
521
- static std::string llama_escape_whitespaces(const std::string & text) {
522
- std::ostringstream out;
523
- for (char c : text) {
524
- if (c == ' ') out << "\xe2\x96\x81";
525
- else out << c;
526
- }
527
- return out.str();
528
- }
529
-
530
- static void load_vocab(const char * filename, const Config * config, struct my_llama_vocab * vocab) {
531
- if (is_ggml_file(filename)) {
532
- LOG_INF("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
533
- struct ggml_context * ctx_data = NULL;
534
-
535
- struct gguf_init_params params = {
536
- /*.no_alloc = */ false,
537
- /*.ctx = */ &ctx_data,
538
- };
539
-
540
- struct gguf_context * ctx = gguf_init_from_file(filename, params);
541
- GGML_ASSERT(ctx != NULL);
542
-
543
- const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
544
- GGML_ASSERT(model_idx >= 0);
545
- std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
546
- GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
547
-
548
- const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
549
- GGML_ASSERT(token_idx >= 0);
550
-
551
- const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
552
- GGML_ASSERT(score_idx >= 0);
553
- const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
554
-
555
- const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
556
- GGML_ASSERT(toktype_idx >= 0);
557
- const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
558
-
559
- const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
560
- if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
561
- die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
562
- }
563
-
564
- vocab->id_to_token.resize(n_vocab);
565
-
566
- for (uint32_t i = 0; i < n_vocab; i++) {
567
- std::string word = gguf_get_arr_str(ctx, token_idx, i);
568
-
569
- vocab->token_to_id[word] = i;
570
-
571
- auto & token_data = vocab->id_to_token[i];
572
- token_data.text = std::move(word);
573
- token_data.score = scores[i];
574
- token_data.type = (llama_token_type) toktypes[i];
575
- }
576
- ggml_free(ctx_data);
577
- gguf_free(ctx);
578
- } else {
579
- // assume llama2.c vocabulary
580
- LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
581
- my_llama_file file(filename, "rb");
582
- if (!file.fp) {
583
- die_fmt("%s: %s", strerror(errno), filename);
584
- }
585
- const int n_vocab = config->vocab_size;
586
- /* uint32_t max_token_length = */ file.read_u32(); // unused
587
- vocab->id_to_token.resize(n_vocab);
588
- for (my_llama_vocab::id id=0; id<n_vocab; ++id) {
589
- float_t score = file.read_f32();
590
- uint32_t len = file.read_u32();
591
- std::string text = file.read_string(len);
592
-
593
- unsigned char byte_val;
594
- my_llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
595
- if (id == UNKNOWN_TOKEN_ID) {
596
- text = "<unk>";
597
- type = LLAMA_TOKEN_TYPE_UNKNOWN;
598
- } else if (id == BOS_TOKEN_ID) {
599
- text = "<s>";
600
- type = LLAMA_TOKEN_TYPE_CONTROL;
601
- } else if (id == EOS_TOKEN_ID) {
602
- text = "</s>";
603
- type = LLAMA_TOKEN_TYPE_CONTROL;
604
- } else if (text.empty()) {
605
- type = LLAMA_TOKEN_TYPE_CONTROL;
606
- } else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
607
- // Text of byte tokens is already in the expected format.
608
- type = LLAMA_TOKEN_TYPE_BYTE;
609
- } else {
610
- type = LLAMA_TOKEN_TYPE_NORMAL;
611
- }
612
- text = llama_escape_whitespaces(text);
613
-
614
- vocab->id_to_token[id].text = text;
615
- vocab->id_to_token[id].score = score;
616
- vocab->id_to_token[id].type = type;
617
- vocab->token_to_id.emplace(text, id);
618
- }
619
- }
620
- }
621
-
622
- static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
623
- int size = 1;
624
- for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
625
- size *= gg_weights->ne[dim];
626
- }
627
- for (int ct = 0; ct < size; ++ct) {
628
- int64_t i0 = 0; int64_t i1 = 0;
629
- int64_t i2 = 0; int64_t i3 = 0;
630
- ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
631
- ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
632
- }
633
- }
634
-
635
- static void save_as_llama_model(
636
- struct my_llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename
637
- ) {
638
- // convert AK weights into GG weights one by one.
639
- // w->token_embedding_table -> model->tok_embeddings
640
- // float* -> struct ggml_tensor
641
- convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
642
- convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
643
-
644
- convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
645
- //print_row(model->norm, 0);
646
-
647
- // for rms-att-weight
648
- int row_length = model->hparams.n_embd;
649
- int n_ff = model->hparams.n_ff;
650
-
651
- const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
652
-
653
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
654
- auto & layer = model->layers[i];
655
- // 1d
656
- convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
657
- convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
658
-
659
- // from 3d matrix layer x dim x dim to 2d matrix dim x dim
660
- convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
661
- convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
662
- // from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
663
- convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]);
664
- convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]);
665
-
666
- convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
667
- convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
668
- convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
669
- }
670
-
671
- struct gguf_context * ctx = gguf_init_empty();
672
-
673
- std::vector<const char*> tokens;
674
- std::vector<float> scores;
675
- std::vector<llama_token_type> token_types;
676
- for (const my_llama_vocab::token_data & token_data : vocab->id_to_token) {
677
- tokens.push_back(token_data.text.c_str());
678
- scores.push_back(token_data.score);
679
- token_types.push_back(token_data.type);
680
- }
681
- gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
682
- gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
683
- gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
684
-
685
- gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
686
-
687
- gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
688
- gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
689
-
690
- // special tokens
691
- gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
692
- gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
693
- gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
694
- gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, LLAMA_TOKEN_NULL);
695
- gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, LLAMA_TOKEN_NULL);
696
-
697
- gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
698
- gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
699
- gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
700
- gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
701
- gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
702
- gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
703
- gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
704
- gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
705
- gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
706
-
707
- // write tensors
708
- ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
709
- gguf_add_tensor(ctx, model->tok_embeddings);
710
-
711
- ggml_set_name(model->norm, TN_OUTPUT_NORM);
712
- gguf_add_tensor(ctx, model->norm);
713
-
714
- ggml_set_name(model->output, TN_OUTPUT);
715
- gguf_add_tensor(ctx, model->output);
716
-
717
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
718
- auto & layer = model->layers[i];
719
-
720
- ggml_format_name(layer.wq, TN_ATTN_Q, i);
721
- gguf_add_tensor(ctx, layer.wq);
722
-
723
- ggml_format_name(layer.wk, TN_ATTN_K, i);
724
- gguf_add_tensor(ctx, layer.wk);
725
-
726
- ggml_format_name(layer.wv, TN_ATTN_V, i);
727
- gguf_add_tensor(ctx, layer.wv);
728
-
729
- ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
730
- gguf_add_tensor(ctx, layer.wo);
731
-
732
- ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
733
- gguf_add_tensor(ctx, layer.attention_norm);
734
-
735
- ggml_format_name(layer.w1, TN_FFN_GATE, i);
736
- gguf_add_tensor(ctx, layer.w1);
737
-
738
- ggml_format_name(layer.w2, TN_FFN_DOWN, i);
739
- gguf_add_tensor(ctx, layer.w2);
740
-
741
- ggml_format_name(layer.w3, TN_FFN_UP, i);
742
- gguf_add_tensor(ctx, layer.w3);
743
-
744
- ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
745
- gguf_add_tensor(ctx, layer.ffn_norm);
746
- }
747
-
748
- gguf_write_to_file(ctx, filename, false);
749
- gguf_free(ctx);
750
- }
751
-
752
- static struct train_params get_default_train_params() {
753
- struct train_params params;
754
- params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
755
- params.fn_llama2c_output_model = "ak_llama_model.bin";
756
- params.fn_train_data = "shakespeare.txt";
757
- params.fn_checkpoint_in = "checkpoint.bin";
758
- params.fn_checkpoint_out = "checkpoint.bin";
759
- params.fn_model_out = "ggml-checkpoint-f32.bin";
760
-
761
- params.seed = -1;
762
-
763
- params.n_ctx = 128;
764
- params.n_embd = 256;
765
- params.n_mult = 256;
766
- params.n_head = 8;
767
- params.n_layer = 16;
768
- params.n_rotmax = 64;
769
-
770
- params.n_threads = 6;
771
- params.n_batch = 8;
772
- params.n_examples = 8;
773
- params.n_predict = 1024;
774
-
775
- params.print_info_interval = 1;
776
- params.print_details_interval = 2;
777
-
778
- params.samples_start_after_nl = false;
779
- params.use_adam = true;
780
- params.use_flash = false;
781
- params.use_scratch = true;
782
-
783
- // only adam
784
- params.warmup = 100;
785
- params.cos_decay_steps = 1000;
786
- params.cos_decay_restart = 1.1f;
787
- params.cos_decay_alpha = 0.0f;
788
-
789
- params.lbfgs_n_iter = 16;
790
- params.adam_n_iter = 16;
791
- params.adam_alpha = 1e-3f;
792
- params.adam_decay = 1e-3f;
793
-
794
- params.mem_model_gb = 2;
795
- params.mem_compute_gb = 24;
796
- params.mem_compute0_gb = 8;
797
- params.mem_compute1_gb = 2;
798
-
799
- return params;
800
- }
801
-
802
- static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
803
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
804
- fprintf(stderr, "\n");
805
- fprintf(stderr, "options:\n");
806
- fprintf(stderr, " -h, --help show this help message and exit\n");
807
- fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
808
- fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
809
- fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
810
- fprintf(stderr, "\n");
811
- }
812
-
813
- static bool params_parse(int argc, char ** argv, struct train_params * params) {
814
- bool invalid_param = false;
815
- bool reqd_param_found = false;
816
- std::string arg;
817
- struct train_params default_params = get_default_train_params();
818
- const std::string arg_prefix = "--";
819
-
820
- for (int i = 1; i < argc; i++) {
821
- arg = argv[i];
822
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
823
- std::replace(arg.begin(), arg.end(), '_', '-');
824
- }
825
-
826
- if (arg == "--copy-vocab-from-model") {
827
- if (++i >= argc) {
828
- invalid_param = true;
829
- break;
830
- }
831
- params->fn_vocab_model = argv[i];
832
- } else if (arg == "--llama2c-model") {
833
- if (++i >= argc) {
834
- invalid_param = true;
835
- break;
836
- }
837
- reqd_param_found = true;
838
- params->fn_llama2c_model = argv[i];
839
- } else if (arg == "--llama2c-output-model") {
840
- if (++i >= argc) {
841
- invalid_param = true;
842
- break;
843
- }
844
- params->fn_llama2c_output_model = argv[i];
845
- } else if (arg == "-h" || arg == "--help") {
846
- print_usage(argc, argv, &default_params);
847
- exit(0);
848
- } else {
849
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
850
- print_usage(argc, argv, &default_params);
851
- exit(1);
852
- }
853
- }
854
- if (invalid_param) {
855
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
856
- print_usage(argc, argv, &default_params);
857
- exit(1);
858
- }
859
- if (!reqd_param_found){
860
- fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
861
- print_usage(argc, argv, &default_params);
862
- exit(1);
863
- }
864
-
865
- return true;
866
- }
867
-
868
- static std::string basename(const std::string &path) {
869
- size_t pos = path.find_last_of("/\\");
870
- if (pos == std::string::npos) {
871
- return path;
872
- }
873
- return path.substr(pos + 1);
874
- }
875
-
876
- int main(int argc, char ** argv) {
877
- common_init();
878
-
879
- struct train_params params = get_default_train_params();
880
- if (!params_parse(argc, argv, &params)) {
881
- return 1;
882
- }
883
-
884
- Config config;
885
- TransformerWeights weights = {};
886
- {
887
- LOG_INF("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
888
- FILE * file = fopen(params.fn_llama2c_model, "rb");
889
- if (!file) {
890
- LOG_ERR("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
891
- return 1;
892
- }
893
- // read in the config header
894
- if (fread(&config, sizeof(Config), 1, file) != 1) {
895
- LOG_ERR("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
896
- return 1;
897
- }
898
- auto shared_weights = config.vocab_size > 0;
899
- config.vocab_size = abs(config.vocab_size);
900
-
901
- // read in the Transformer weights
902
- alloc_weights(&weights, &config, shared_weights);
903
- if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
904
- LOG_ERR("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
905
- return 1;
906
- }
907
- fclose(file);
908
- }
909
-
910
- struct my_llama_vocab vocab;
911
- load_vocab(params.fn_vocab_model, &config, &vocab);
912
-
913
- struct my_llama_model model;
914
- model.hparams.n_vocab = config.vocab_size; //llama_vocab_n_vocab(lctx);
915
- model.hparams.n_ctx = params.n_ctx;
916
- model.hparams.n_embd = config.dim; //params.n_embd;
917
- model.hparams.n_ff = config.hidden_dim;
918
- model.hparams.n_mult = 32;//params.n_mult;
919
- model.hparams.n_head = config.n_heads; //params.n_head;
920
- model.hparams.n_head_kv = config.n_kv_heads;
921
- model.hparams.n_layer = config.n_layers; //params.n_layer;
922
- model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
923
-
924
- print_params(&model.hparams);
925
-
926
- struct ggml_init_params lcparams;
927
- lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
928
- lcparams.mem_buffer = NULL;
929
- lcparams.no_alloc = false;
930
-
931
- model.ctx = ggml_init(lcparams);
932
-
933
- init_model(&model);
934
- model.name = basename(params.fn_llama2c_model);
935
- save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
936
-
937
- LOG_INF("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
938
-
939
- ggml_free(model.ctx);
940
- return 0;
941
- }