@fugood/llama.node 0.4.7 → 0.5.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/bin/darwin/arm64/llama-node.node +0 -0
- package/bin/darwin/x64/llama-node.node +0 -0
- package/bin/linux/arm64/llama-node.node +0 -0
- package/bin/linux/x64/llama-node.node +0 -0
- package/bin/linux-cuda/arm64/llama-node.node +0 -0
- package/bin/linux-cuda/x64/llama-node.node +0 -0
- package/bin/linux-vulkan/arm64/llama-node.node +0 -0
- package/bin/linux-vulkan/x64/llama-node.node +0 -0
- package/bin/win32/arm64/llama-node.node +0 -0
- package/bin/win32/arm64/node.lib +0 -0
- package/bin/win32/x64/llama-node.node +0 -0
- package/bin/win32/x64/node.lib +0 -0
- package/bin/win32-vulkan/arm64/llama-node.node +0 -0
- package/bin/win32-vulkan/arm64/node.lib +0 -0
- package/bin/win32-vulkan/x64/llama-node.node +0 -0
- package/bin/win32-vulkan/x64/node.lib +0 -0
- package/lib/binding.ts +20 -6
- package/lib/index.js +41 -17
- package/lib/index.ts +50 -23
- package/package.json +1 -1
- package/src/LlamaCompletionWorker.cpp +9 -9
- package/src/LlamaCompletionWorker.h +2 -2
- package/src/LlamaContext.cpp +37 -18
- package/src/LlamaContext.h +1 -0
- package/src/TokenizeWorker.cpp +16 -12
- package/src/TokenizeWorker.h +2 -2
- package/src/common.hpp +54 -50
- package/src/llama.cpp/.github/workflows/build.yml +2 -2
- package/src/llama.cpp/.github/workflows/release.yml +152 -129
- package/src/llama.cpp/.github/workflows/winget.yml +42 -0
- package/src/llama.cpp/common/arg.cpp +14 -13
- package/src/llama.cpp/common/common.cpp +4 -75
- package/src/llama.cpp/common/common.h +7 -12
- package/src/llama.cpp/examples/lookahead/lookahead.cpp +0 -13
- package/src/llama.cpp/examples/lookup/lookup.cpp +0 -11
- package/src/llama.cpp/examples/parallel/parallel.cpp +0 -9
- package/src/llama.cpp/examples/retrieval/retrieval.cpp +6 -6
- package/src/llama.cpp/examples/simple/simple.cpp +1 -1
- package/src/llama.cpp/examples/simple-chat/simple-chat.cpp +2 -2
- package/src/llama.cpp/examples/sycl/run-llama2.sh +4 -4
- package/src/llama.cpp/examples/sycl/run-llama3.sh +28 -0
- package/src/llama.cpp/examples/sycl/win-run-llama2.bat +1 -1
- package/src/llama.cpp/examples/sycl/win-run-llama3.bat +9 -0
- package/src/llama.cpp/ggml/include/ggml-opt.h +2 -0
- package/src/llama.cpp/ggml/include/ggml.h +11 -0
- package/src/llama.cpp/ggml/src/ggml-cann/aclnn_ops.cpp +274 -0
- package/src/llama.cpp/ggml/src/ggml-cann/aclnn_ops.h +27 -0
- package/src/llama.cpp/ggml/src/ggml-cann/ggml-cann.cpp +18 -2
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +1 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +107 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/vec.h +16 -0
- package/src/llama.cpp/ggml/src/ggml-musa/CMakeLists.txt +8 -2
- package/src/llama.cpp/ggml/src/ggml-opencl/ggml-opencl.cpp +315 -155
- package/src/llama.cpp/ggml/src/ggml-opt.cpp +5 -0
- package/src/llama.cpp/ggml/src/ggml-sycl/ggml-sycl.cpp +43 -12
- package/src/llama.cpp/ggml/src/ggml-vulkan/ggml-vulkan.cpp +171 -112
- package/src/llama.cpp/ggml/src/ggml.c +64 -18
- package/src/llama.cpp/include/llama.h +24 -124
- package/src/llama.cpp/requirements/requirements-convert_hf_to_gguf.txt +5 -1
- package/src/llama.cpp/requirements/requirements-convert_hf_to_gguf_update.txt +5 -1
- package/src/llama.cpp/requirements/requirements-convert_lora_to_gguf.txt +2 -0
- package/src/llama.cpp/src/llama-batch.cpp +3 -1
- package/src/llama.cpp/src/llama-context.cpp +60 -110
- package/src/llama.cpp/src/llama-graph.cpp +137 -233
- package/src/llama.cpp/src/llama-graph.h +49 -7
- package/src/llama.cpp/src/llama-hparams.cpp +17 -1
- package/src/llama.cpp/src/llama-hparams.h +34 -5
- package/src/llama.cpp/src/llama-kv-cache.cpp +654 -321
- package/src/llama.cpp/src/llama-kv-cache.h +201 -85
- package/src/llama.cpp/src/llama-memory.h +3 -2
- package/src/llama.cpp/src/llama-model.cpp +273 -94
- package/src/llama.cpp/src/llama-model.h +4 -1
- package/src/llama.cpp/tests/test-arg-parser.cpp +1 -1
- package/src/llama.cpp/tools/llama-bench/llama-bench.cpp +1 -0
- package/src/llama.cpp/tools/mtmd/CMakeLists.txt +13 -2
- package/src/llama.cpp/tools/mtmd/clip-impl.h +108 -11
- package/src/llama.cpp/tools/mtmd/clip.cpp +466 -88
- package/src/llama.cpp/tools/mtmd/clip.h +6 -4
- package/src/llama.cpp/tools/mtmd/miniaudio.h +93468 -0
- package/src/llama.cpp/tools/mtmd/mtmd-audio.cpp +855 -0
- package/src/llama.cpp/tools/mtmd/mtmd-audio.h +62 -0
- package/src/llama.cpp/tools/mtmd/mtmd-cli.cpp +21 -14
- package/src/llama.cpp/tools/mtmd/mtmd-helper.cpp +36 -49
- package/src/llama.cpp/tools/mtmd/mtmd.cpp +362 -98
- package/src/llama.cpp/tools/mtmd/mtmd.h +52 -21
- package/src/llama.cpp/tools/run/run.cpp +2 -2
- package/src/llama.cpp/tools/server/server.cpp +158 -47
- package/src/llama.cpp/tools/server/utils.hpp +71 -43
- package/src/llama.cpp/tools/tts/tts.cpp +4 -2
|
@@ -0,0 +1,855 @@
|
|
|
1
|
+
// fix problem with std::min and std::max
|
|
2
|
+
#if defined(_WIN32)
|
|
3
|
+
#define WIN32_LEAN_AND_MEAN
|
|
4
|
+
#ifndef NOMINMAX
|
|
5
|
+
# define NOMINMAX
|
|
6
|
+
#endif
|
|
7
|
+
#include <windows.h>
|
|
8
|
+
#endif
|
|
9
|
+
|
|
10
|
+
#include "mtmd-audio.h"
|
|
11
|
+
|
|
12
|
+
//#define MTMD_AUDIO_DEBUG
|
|
13
|
+
|
|
14
|
+
#define MINIAUDIO_IMPLEMENTATION
|
|
15
|
+
#ifndef MTMD_AUDIO_DEBUG
|
|
16
|
+
# define MA_NO_ENCODING
|
|
17
|
+
#endif
|
|
18
|
+
#define MA_NO_DEVICE_IO
|
|
19
|
+
#define MA_NO_RESOURCE_MANAGER
|
|
20
|
+
#define MA_NO_NODE_GRAPH
|
|
21
|
+
#define MA_NO_ENGINE
|
|
22
|
+
#define MA_NO_GENERATION
|
|
23
|
+
#define MA_API static
|
|
24
|
+
#include "miniaudio.h"
|
|
25
|
+
|
|
26
|
+
#define _USE_MATH_DEFINES // for M_PI
|
|
27
|
+
#include <cmath>
|
|
28
|
+
#include <cstdint>
|
|
29
|
+
#include <cstring>
|
|
30
|
+
#include <thread>
|
|
31
|
+
#include <vector>
|
|
32
|
+
#include <fstream>
|
|
33
|
+
#include <algorithm>
|
|
34
|
+
|
|
35
|
+
// most of the code here is copied from whisper.cpp
|
|
36
|
+
|
|
37
|
+
// align x to upper multiple of n
|
|
38
|
+
#define _ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
|
|
39
|
+
|
|
40
|
+
namespace whisper_preprocessor {
|
|
41
|
+
|
|
42
|
+
#define SIN_COS_N_COUNT WHISPER_N_FFT
|
|
43
|
+
namespace {
|
|
44
|
+
struct whisper_global_cache {
|
|
45
|
+
// In FFT, we frequently use sine and cosine operations with the same values.
|
|
46
|
+
// We can use precalculated values to speed up the process.
|
|
47
|
+
float sin_vals[SIN_COS_N_COUNT];
|
|
48
|
+
float cos_vals[SIN_COS_N_COUNT];
|
|
49
|
+
|
|
50
|
+
// Hann window (Use cosf to eliminate difference)
|
|
51
|
+
// ref: https://pytorch.org/docs/stable/generated/torch.hann_window.html
|
|
52
|
+
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L147
|
|
53
|
+
float hann_window[WHISPER_N_FFT];
|
|
54
|
+
|
|
55
|
+
whisper_global_cache() {
|
|
56
|
+
fill_sin_cos_table();
|
|
57
|
+
fill_hann_window(sizeof(hann_window)/sizeof(hann_window[0]), true, hann_window);
|
|
58
|
+
}
|
|
59
|
+
|
|
60
|
+
void fill_sin_cos_table() {
|
|
61
|
+
for (int i = 0; i < SIN_COS_N_COUNT; i++) {
|
|
62
|
+
double theta = (2 * M_PI * i) / SIN_COS_N_COUNT;
|
|
63
|
+
sin_vals[i] = sinf(theta);
|
|
64
|
+
cos_vals[i] = cosf(theta);
|
|
65
|
+
}
|
|
66
|
+
}
|
|
67
|
+
|
|
68
|
+
void fill_hann_window(int length, bool periodic, float * output) {
|
|
69
|
+
int offset = -1;
|
|
70
|
+
if (periodic) {
|
|
71
|
+
offset = 0;
|
|
72
|
+
}
|
|
73
|
+
for (int i = 0; i < length; i++) {
|
|
74
|
+
output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
|
|
75
|
+
}
|
|
76
|
+
}
|
|
77
|
+
} global_cache;
|
|
78
|
+
}
|
|
79
|
+
|
|
80
|
+
// naive Discrete Fourier Transform
|
|
81
|
+
// input is real-valued
|
|
82
|
+
// output is complex-valued
|
|
83
|
+
static void dft(const float* in, int N, float* out) {
|
|
84
|
+
const int sin_cos_step = SIN_COS_N_COUNT / N;
|
|
85
|
+
|
|
86
|
+
for (int k = 0; k < N; k++) {
|
|
87
|
+
float re = 0;
|
|
88
|
+
float im = 0;
|
|
89
|
+
|
|
90
|
+
for (int n = 0; n < N; n++) {
|
|
91
|
+
int idx = (k * n * sin_cos_step) % (SIN_COS_N_COUNT); // t = 2*M_PI*k*n/N
|
|
92
|
+
re += in[n]*global_cache.cos_vals[idx]; // cos(t)
|
|
93
|
+
im -= in[n]*global_cache.sin_vals[idx]; // sin(t)
|
|
94
|
+
}
|
|
95
|
+
|
|
96
|
+
out[k*2 + 0] = re;
|
|
97
|
+
out[k*2 + 1] = im;
|
|
98
|
+
}
|
|
99
|
+
}
|
|
100
|
+
|
|
101
|
+
// Cooley-Tukey FFT
|
|
102
|
+
// poor man's implementation - use something better
|
|
103
|
+
// input is real-valued
|
|
104
|
+
// output is complex-valued
|
|
105
|
+
static void fft(float* in, int N, float* out) {
|
|
106
|
+
if (N == 1) {
|
|
107
|
+
out[0] = in[0];
|
|
108
|
+
out[1] = 0;
|
|
109
|
+
return;
|
|
110
|
+
}
|
|
111
|
+
|
|
112
|
+
const int half_N = N / 2;
|
|
113
|
+
if (N - half_N*2 == 1) {
|
|
114
|
+
dft(in, N, out);
|
|
115
|
+
return;
|
|
116
|
+
}
|
|
117
|
+
|
|
118
|
+
float* even = in + N;
|
|
119
|
+
for (int i = 0; i < half_N; ++i) {
|
|
120
|
+
even[i]= in[2*i];
|
|
121
|
+
}
|
|
122
|
+
float* even_fft = out + 2 * N;
|
|
123
|
+
fft(even, half_N, even_fft);
|
|
124
|
+
|
|
125
|
+
float* odd = even;
|
|
126
|
+
for (int i = 0; i < half_N; ++i) {
|
|
127
|
+
odd[i] = in[2*i + 1];
|
|
128
|
+
}
|
|
129
|
+
float* odd_fft = even_fft + N;
|
|
130
|
+
fft(odd, half_N, odd_fft);
|
|
131
|
+
|
|
132
|
+
const int sin_cos_step = SIN_COS_N_COUNT / N;
|
|
133
|
+
for (int k = 0; k < half_N; k++) {
|
|
134
|
+
int idx = k * sin_cos_step; // t = 2*M_PI*k/N
|
|
135
|
+
float re = global_cache.cos_vals[idx]; // cos(t)
|
|
136
|
+
float im = -global_cache.sin_vals[idx]; // sin(t)
|
|
137
|
+
|
|
138
|
+
float re_odd = odd_fft[2*k + 0];
|
|
139
|
+
float im_odd = odd_fft[2*k + 1];
|
|
140
|
+
|
|
141
|
+
out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
|
|
142
|
+
out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
|
|
143
|
+
|
|
144
|
+
out[2*(k + half_N) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
|
|
145
|
+
out[2*(k + half_N) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
|
|
146
|
+
}
|
|
147
|
+
}
|
|
148
|
+
|
|
149
|
+
static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
|
|
150
|
+
int n_samples, int frame_size, int frame_step, int n_threads,
|
|
151
|
+
const whisper_filters & filters, whisper_mel & mel) {
|
|
152
|
+
std::vector<float> fft_in(frame_size * 2, 0.0);
|
|
153
|
+
std::vector<float> fft_out(frame_size * 2 * 2 * 2);
|
|
154
|
+
|
|
155
|
+
int n_fft = filters.n_fft;
|
|
156
|
+
int i = ith;
|
|
157
|
+
|
|
158
|
+
// make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
|
|
159
|
+
WHISPER_ASSERT(n_fft == 1 + (frame_size / 2));
|
|
160
|
+
|
|
161
|
+
// calculate FFT only when fft_in are not all zero
|
|
162
|
+
for (; i < std::min(n_samples / frame_step + 1, mel.n_len); i += n_threads) {
|
|
163
|
+
const int offset = i * frame_step;
|
|
164
|
+
|
|
165
|
+
// apply Hann window (~10% faster)
|
|
166
|
+
for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) {
|
|
167
|
+
fft_in[j] = hann[j] * samples[offset + j];
|
|
168
|
+
}
|
|
169
|
+
|
|
170
|
+
// fill the rest with zeros
|
|
171
|
+
if (n_samples - offset < frame_size) {
|
|
172
|
+
std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0);
|
|
173
|
+
}
|
|
174
|
+
|
|
175
|
+
// FFT
|
|
176
|
+
fft(fft_in.data(), frame_size, fft_out.data());
|
|
177
|
+
|
|
178
|
+
// Calculate modulus^2 of complex numbers
|
|
179
|
+
// Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
|
|
180
|
+
for (int j = 0; j < n_fft; j++) {
|
|
181
|
+
fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
|
|
182
|
+
}
|
|
183
|
+
|
|
184
|
+
// mel spectrogram
|
|
185
|
+
for (int j = 0; j < mel.n_mel; j++) {
|
|
186
|
+
double sum = 0.0;
|
|
187
|
+
// unroll loop (suggested by GH user @lunixbochs)
|
|
188
|
+
int k = 0;
|
|
189
|
+
for (k = 0; k < n_fft - 3; k += 4) {
|
|
190
|
+
sum +=
|
|
191
|
+
fft_out[k + 0] * filters.data[j * n_fft + k + 0] +
|
|
192
|
+
fft_out[k + 1] * filters.data[j * n_fft + k + 1] +
|
|
193
|
+
fft_out[k + 2] * filters.data[j * n_fft + k + 2] +
|
|
194
|
+
fft_out[k + 3] * filters.data[j * n_fft + k + 3];
|
|
195
|
+
}
|
|
196
|
+
// handle n_fft remainder
|
|
197
|
+
for (; k < n_fft; k++) {
|
|
198
|
+
sum += fft_out[k] * filters.data[j * n_fft + k];
|
|
199
|
+
}
|
|
200
|
+
sum = log10(std::max(sum, 1e-10));
|
|
201
|
+
mel.data[j * mel.n_len + i] = sum;
|
|
202
|
+
}
|
|
203
|
+
}
|
|
204
|
+
|
|
205
|
+
// Otherwise fft_out are all zero
|
|
206
|
+
double sum = log10(1e-10);
|
|
207
|
+
for (; i < mel.n_len; i += n_threads) {
|
|
208
|
+
for (int j = 0; j < mel.n_mel; j++) {
|
|
209
|
+
mel.data[j * mel.n_len + i] = sum;
|
|
210
|
+
}
|
|
211
|
+
}
|
|
212
|
+
}
|
|
213
|
+
|
|
214
|
+
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
|
|
215
|
+
static bool log_mel_spectrogram(
|
|
216
|
+
const float * samples,
|
|
217
|
+
const int n_samples,
|
|
218
|
+
const int /*sample_rate*/,
|
|
219
|
+
const int frame_size,
|
|
220
|
+
const int frame_step,
|
|
221
|
+
const int n_mel,
|
|
222
|
+
const int n_threads,
|
|
223
|
+
const whisper_filters & filters,
|
|
224
|
+
const bool debug,
|
|
225
|
+
whisper_mel & mel) {
|
|
226
|
+
//const int64_t t_start_us = ggml_time_us();
|
|
227
|
+
|
|
228
|
+
// Hann window
|
|
229
|
+
WHISPER_ASSERT(frame_size == WHISPER_N_FFT && "Unsupported frame_size");
|
|
230
|
+
const float * hann = global_cache.hann_window;
|
|
231
|
+
|
|
232
|
+
// Calculate the length of padding
|
|
233
|
+
int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30;
|
|
234
|
+
int64_t stage_2_pad = frame_size / 2;
|
|
235
|
+
|
|
236
|
+
// Initialize a vector and copy data from C array to it.
|
|
237
|
+
std::vector<float> samples_padded;
|
|
238
|
+
samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
|
|
239
|
+
std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
|
|
240
|
+
|
|
241
|
+
// pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
|
|
242
|
+
std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
|
|
243
|
+
|
|
244
|
+
// reflective pad 200 samples at the beginning of audio
|
|
245
|
+
std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
|
|
246
|
+
|
|
247
|
+
mel.n_mel = n_mel;
|
|
248
|
+
// https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
|
|
249
|
+
// Calculate number of frames + remove the last frame
|
|
250
|
+
mel.n_len = (samples_padded.size() - frame_size) / frame_step;
|
|
251
|
+
// Calculate semi-padded sample length to ensure compatibility
|
|
252
|
+
mel.n_len_org = 1 + (n_samples + stage_2_pad - frame_size) / frame_step;
|
|
253
|
+
mel.data.resize(mel.n_mel * mel.n_len);
|
|
254
|
+
|
|
255
|
+
{
|
|
256
|
+
std::vector<std::thread> workers(n_threads - 1);
|
|
257
|
+
for (int iw = 0; iw < n_threads - 1; ++iw) {
|
|
258
|
+
workers[iw] = std::thread(
|
|
259
|
+
log_mel_spectrogram_worker_thread, iw + 1, hann, std::cref(samples_padded),
|
|
260
|
+
n_samples + stage_2_pad, frame_size, frame_step, n_threads,
|
|
261
|
+
std::cref(filters), std::ref(mel));
|
|
262
|
+
}
|
|
263
|
+
|
|
264
|
+
// main thread
|
|
265
|
+
log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, frame_size, frame_step, n_threads, filters, mel);
|
|
266
|
+
|
|
267
|
+
for (int iw = 0; iw < n_threads - 1; ++iw) {
|
|
268
|
+
workers[iw].join();
|
|
269
|
+
}
|
|
270
|
+
}
|
|
271
|
+
|
|
272
|
+
// clamping and normalization
|
|
273
|
+
double mmax = -1e20;
|
|
274
|
+
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
|
275
|
+
if (mel.data[i] > mmax) {
|
|
276
|
+
mmax = mel.data[i];
|
|
277
|
+
}
|
|
278
|
+
}
|
|
279
|
+
|
|
280
|
+
mmax -= 8.0;
|
|
281
|
+
|
|
282
|
+
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
|
283
|
+
if (mel.data[i] < mmax) {
|
|
284
|
+
mel.data[i] = mmax;
|
|
285
|
+
}
|
|
286
|
+
|
|
287
|
+
mel.data[i] = (mel.data[i] + 4.0)/4.0;
|
|
288
|
+
}
|
|
289
|
+
|
|
290
|
+
// Dump log_mel_spectrogram
|
|
291
|
+
if (debug) {
|
|
292
|
+
std::ofstream outFile("log_mel_spectrogram.json");
|
|
293
|
+
outFile << "[";
|
|
294
|
+
for (uint64_t i = 0; i < mel.data.size() - 1; i++) {
|
|
295
|
+
outFile << mel.data[i] << ", ";
|
|
296
|
+
}
|
|
297
|
+
outFile << mel.data[mel.data.size() - 1] << "]";
|
|
298
|
+
outFile.close();
|
|
299
|
+
}
|
|
300
|
+
|
|
301
|
+
return true;
|
|
302
|
+
}
|
|
303
|
+
|
|
304
|
+
bool preprocess_audio(
|
|
305
|
+
const float * samples,
|
|
306
|
+
size_t n_samples,
|
|
307
|
+
const whisper_filters & filters,
|
|
308
|
+
std::vector<whisper_mel> & output) {
|
|
309
|
+
|
|
310
|
+
if (n_samples == 0) {
|
|
311
|
+
// empty audio
|
|
312
|
+
return false;
|
|
313
|
+
}
|
|
314
|
+
|
|
315
|
+
whisper_mel out_full;
|
|
316
|
+
bool ok = log_mel_spectrogram(
|
|
317
|
+
samples,
|
|
318
|
+
n_samples,
|
|
319
|
+
COMMON_SAMPLE_RATE,
|
|
320
|
+
WHISPER_N_FFT,
|
|
321
|
+
WHISPER_HOP_LENGTH,
|
|
322
|
+
filters.n_mel,
|
|
323
|
+
4, // n_threads
|
|
324
|
+
filters,
|
|
325
|
+
false, // debug
|
|
326
|
+
out_full);
|
|
327
|
+
if (!ok) {
|
|
328
|
+
return false;
|
|
329
|
+
}
|
|
330
|
+
|
|
331
|
+
// because the cgraph in clip.cpp only accepts 3000 frames each, we need to split the mel
|
|
332
|
+
// we always expect the mel to have 3000 silent frames at the end
|
|
333
|
+
// printf("n_len %d\n", out_full.n_len);
|
|
334
|
+
const size_t frames_per_chunk = 3000;
|
|
335
|
+
GGML_ASSERT((size_t)out_full.n_len > frames_per_chunk);
|
|
336
|
+
for (size_t off = 0; off < (size_t)out_full.n_len; off += frames_per_chunk) {
|
|
337
|
+
int n_len = std::min(frames_per_chunk, (size_t)out_full.n_len - off);
|
|
338
|
+
if ((size_t)n_len < frames_per_chunk) {
|
|
339
|
+
break; // last uncomplete chunk will always be a padded chunk, safe to ignore
|
|
340
|
+
}
|
|
341
|
+
|
|
342
|
+
whisper_mel out_chunk;
|
|
343
|
+
out_chunk.n_len = n_len;
|
|
344
|
+
out_chunk.n_mel = out_full.n_mel;
|
|
345
|
+
out_chunk.n_len_org = out_full.n_mel; // unused
|
|
346
|
+
out_chunk.data.reserve(out_chunk.n_mel * out_chunk.n_len);
|
|
347
|
+
|
|
348
|
+
for (int i = 0; i < out_full.n_mel; i++) {
|
|
349
|
+
auto src = out_full.data.begin() + i*out_full.n_len + off;
|
|
350
|
+
out_chunk.data.insert(out_chunk.data.end(), src, src + frames_per_chunk);
|
|
351
|
+
}
|
|
352
|
+
|
|
353
|
+
output.push_back(std::move(out_chunk));
|
|
354
|
+
}
|
|
355
|
+
|
|
356
|
+
return true;
|
|
357
|
+
}
|
|
358
|
+
|
|
359
|
+
} // namespace whisper_preprocessor
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
namespace audio_helpers {
|
|
363
|
+
|
|
364
|
+
bool is_audio_file(const char * buf, size_t len) {
|
|
365
|
+
if (len < 12) {
|
|
366
|
+
return false;
|
|
367
|
+
}
|
|
368
|
+
|
|
369
|
+
// RIFF ref: https://en.wikipedia.org/wiki/Resource_Interchange_File_Format
|
|
370
|
+
// WAV ref: https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
|
|
371
|
+
bool is_wav = memcmp(buf, "RIFF", 4) == 0 && memcmp(buf + 8, "WAVE", 4) == 0;
|
|
372
|
+
bool is_mp3 = len >= 3 && (
|
|
373
|
+
memcmp(buf, "ID3", 3) == 0 ||
|
|
374
|
+
// Check for MPEG sync word (simplified check)
|
|
375
|
+
((unsigned char)buf[0] == 0xFF && ((unsigned char)buf[1] & 0xE0) == 0xE0)
|
|
376
|
+
);
|
|
377
|
+
bool is_flac = memcmp(buf, "fLaC", 4) == 0;
|
|
378
|
+
|
|
379
|
+
return is_wav || is_mp3 || is_flac;
|
|
380
|
+
}
|
|
381
|
+
|
|
382
|
+
// returns true if the buffer is a valid audio file
|
|
383
|
+
bool decode_audio_from_buf(const unsigned char * buf_in, size_t len, int target_sampler_rate, std::vector<float> & pcmf32_mono) {
|
|
384
|
+
ma_result result;
|
|
385
|
+
const int channels = 1;
|
|
386
|
+
ma_decoder_config decoder_config = ma_decoder_config_init(ma_format_f32, channels, target_sampler_rate);
|
|
387
|
+
ma_decoder decoder;
|
|
388
|
+
|
|
389
|
+
result = ma_decoder_init_memory(buf_in, len, &decoder_config, &decoder);
|
|
390
|
+
if (result != MA_SUCCESS) {
|
|
391
|
+
return false;
|
|
392
|
+
}
|
|
393
|
+
|
|
394
|
+
ma_uint64 frame_count;
|
|
395
|
+
ma_uint64 frames_read;
|
|
396
|
+
result = ma_decoder_get_length_in_pcm_frames(&decoder, &frame_count);
|
|
397
|
+
if (result != MA_SUCCESS) {
|
|
398
|
+
ma_decoder_uninit(&decoder);
|
|
399
|
+
return false;
|
|
400
|
+
}
|
|
401
|
+
|
|
402
|
+
pcmf32_mono.resize(frame_count);
|
|
403
|
+
result = ma_decoder_read_pcm_frames(&decoder, pcmf32_mono.data(), frame_count, &frames_read);
|
|
404
|
+
if (result != MA_SUCCESS) {
|
|
405
|
+
ma_decoder_uninit(&decoder);
|
|
406
|
+
return false;
|
|
407
|
+
}
|
|
408
|
+
|
|
409
|
+
#ifdef MTMD_AUDIO_DEBUG
|
|
410
|
+
// save audio to wav file
|
|
411
|
+
ma_encoder_config config = ma_encoder_config_init(ma_encoding_format_wav, ma_format_f32, 1, target_sampler_rate);
|
|
412
|
+
ma_encoder encoder;
|
|
413
|
+
ma_encoder_init_file("output.wav", &config, &encoder);
|
|
414
|
+
ma_encoder_write_pcm_frames(&encoder, pcmf32_mono.data(), pcmf32_mono.size(), &frames_read);
|
|
415
|
+
ma_encoder_uninit(&encoder);
|
|
416
|
+
#endif
|
|
417
|
+
|
|
418
|
+
ma_decoder_uninit(&decoder);
|
|
419
|
+
return true;
|
|
420
|
+
}
|
|
421
|
+
|
|
422
|
+
} // namespace wav_utils
|
|
423
|
+
|
|
424
|
+
|
|
425
|
+
// precalculated mel filter banks
|
|
426
|
+
// values are multiplied by 1000.0 to save space, and will be divided by 1000.0 in the end of the function
|
|
427
|
+
//
|
|
428
|
+
// generated from python code:
|
|
429
|
+
//
|
|
430
|
+
// from numpy import load
|
|
431
|
+
// data = load('mel_filters.npz')
|
|
432
|
+
// lst = data.files
|
|
433
|
+
// for item in lst:
|
|
434
|
+
// print(item)
|
|
435
|
+
// print(data[item].shape)
|
|
436
|
+
// n_mel = data[item].shape[0]
|
|
437
|
+
// n_fft = data[item].shape[1]
|
|
438
|
+
// for i, row in enumerate(data[item]):
|
|
439
|
+
// for j, val in enumerate(row):
|
|
440
|
+
// val = val * 1000.0
|
|
441
|
+
// if val != 0:
|
|
442
|
+
// print(f"data[{i*n_fft + j}] = {val:.6f};")
|
|
443
|
+
|
|
444
|
+
namespace whisper_precalc_filters {
|
|
445
|
+
|
|
446
|
+
whisper_preprocessor::whisper_filters get_128_bins() {
|
|
447
|
+
whisper_preprocessor::whisper_filters filters;
|
|
448
|
+
filters.n_mel = 128;
|
|
449
|
+
filters.n_fft = 201;
|
|
450
|
+
std::vector data(filters.n_mel * filters.n_fft, 0.0f);
|
|
451
|
+
|
|
452
|
+
data[1] = 12.37398665;
|
|
453
|
+
data[202] = 30.39256483;
|
|
454
|
+
data[404] = 24.74797331;
|
|
455
|
+
data[605] = 18.01857911;
|
|
456
|
+
data[807] = 37.12195903;
|
|
457
|
+
data[1008] = 5.64459199;
|
|
458
|
+
data[1009] = 6.72939420;
|
|
459
|
+
data[1210] = 36.03715822;
|
|
460
|
+
data[1412] = 19.10337992;
|
|
461
|
+
data[1613] = 23.66316877;
|
|
462
|
+
data[1815] = 31.47736564;
|
|
463
|
+
data[2016] = 11.28918398;
|
|
464
|
+
data[2017] = 1.08480197;
|
|
465
|
+
data[2218] = 41.68175161;
|
|
466
|
+
data[2420] = 13.45878839;
|
|
467
|
+
data[2621] = 29.30776216;
|
|
468
|
+
data[2823] = 25.83277412;
|
|
469
|
+
data[3024] = 16.93377644;
|
|
470
|
+
data[3226] = 38.20675984;
|
|
471
|
+
data[3427] = 4.55979025;
|
|
472
|
+
data[3428] = 7.81419594;
|
|
473
|
+
data[3629] = 34.95235741;
|
|
474
|
+
data[3831] = 20.18818259;
|
|
475
|
+
data[4032] = 22.57836796;
|
|
476
|
+
data[4234] = 32.56217018;
|
|
477
|
+
data[4435] = 10.20438317;
|
|
478
|
+
data[4436] = 2.16960395;
|
|
479
|
+
data[4637] = 40.59694707;
|
|
480
|
+
data[4839] = 14.54358920;
|
|
481
|
+
data[5040] = 28.22295949;
|
|
482
|
+
data[5242] = 26.91757679;
|
|
483
|
+
data[5443] = 15.84897563;
|
|
484
|
+
data[5645] = 39.29156065;
|
|
485
|
+
data[5846] = 3.47498828;
|
|
486
|
+
data[5847] = 8.89899861;
|
|
487
|
+
data[6048] = 33.86755288;
|
|
488
|
+
data[6250] = 21.27298526;
|
|
489
|
+
data[6451] = 21.49356715;
|
|
490
|
+
data[6653] = 33.64697099;
|
|
491
|
+
data[6854] = 9.11958050;
|
|
492
|
+
data[6855] = 3.25440569;
|
|
493
|
+
data[7056] = 39.51214626;
|
|
494
|
+
data[7258] = 15.62839188;
|
|
495
|
+
data[7459] = 27.13815868;
|
|
496
|
+
data[7661] = 28.00237760;
|
|
497
|
+
data[7862] = 14.76417296;
|
|
498
|
+
data[8064] = 40.37636518;
|
|
499
|
+
data[8265] = 2.38068704;
|
|
500
|
+
data[8266] = 10.20263787;
|
|
501
|
+
data[8467] = 31.61146119;
|
|
502
|
+
data[8669] = 24.54700135;
|
|
503
|
+
data[8870] = 15.32919332;
|
|
504
|
+
data[8871] = 1.66583748;
|
|
505
|
+
data[9072] = 36.72905266;
|
|
506
|
+
data[9274] = 20.09709924;
|
|
507
|
+
data[9475] = 16.93102531;
|
|
508
|
+
data[9476] = 2.90265540;
|
|
509
|
+
data[9677] = 32.84499049;
|
|
510
|
+
data[9879] = 23.52004871;
|
|
511
|
+
data[10080] = 11.03894413;
|
|
512
|
+
data[10081] = 10.72582975;
|
|
513
|
+
data[10282] = 22.71829173;
|
|
514
|
+
data[10484] = 32.27872774;
|
|
515
|
+
data[10685] = 0.11626833;
|
|
516
|
+
data[10686] = 22.85348251;
|
|
517
|
+
data[10887] = 8.56344029;
|
|
518
|
+
data[10888] = 14.97978810;
|
|
519
|
+
data[11089] = 15.51398356;
|
|
520
|
+
data[11090] = 8.51490628;
|
|
521
|
+
data[11291] = 21.10680379;
|
|
522
|
+
data[11292] = 3.32652032;
|
|
523
|
+
data[11493] = 25.47064796;
|
|
524
|
+
data[11695] = 27.35907957;
|
|
525
|
+
data[11896] = 0.65853616;
|
|
526
|
+
data[11897] = 23.83812517;
|
|
527
|
+
data[12098] = 3.44359246;
|
|
528
|
+
data[12099] = 21.22455277;
|
|
529
|
+
data[12300] = 5.35842171;
|
|
530
|
+
data[12301] = 19.42555793;
|
|
531
|
+
data[12502] = 6.49324711;
|
|
532
|
+
data[12503] = 18.35542172;
|
|
533
|
+
data[12704] = 6.93138083;
|
|
534
|
+
data[12705] = 17.93504693;
|
|
535
|
+
data[12906] = 6.74968259;
|
|
536
|
+
data[12907] = 18.09151843;
|
|
537
|
+
data[13108] = 6.01899112;
|
|
538
|
+
data[13109] = 18.75767298;
|
|
539
|
+
data[13310] = 4.80452832;
|
|
540
|
+
data[13311] = 19.87172849;
|
|
541
|
+
data[13512] = 3.16627859;
|
|
542
|
+
data[13513] = 21.37690969;
|
|
543
|
+
data[13514] = 1.25317345;
|
|
544
|
+
data[13714] = 1.15934468;
|
|
545
|
+
data[13715] = 20.80361731;
|
|
546
|
+
data[13716] = 4.04486805;
|
|
547
|
+
data[13917] = 17.55363122;
|
|
548
|
+
data[13918] = 7.08320038;
|
|
549
|
+
data[14119] = 14.07538634;
|
|
550
|
+
data[14120] = 10.32655034;
|
|
551
|
+
data[14321] = 10.40921453;
|
|
552
|
+
data[14322] = 13.73696327;
|
|
553
|
+
data[14523] = 6.59187697;
|
|
554
|
+
data[14524] = 17.27988198;
|
|
555
|
+
data[14525] = 1.46804214;
|
|
556
|
+
data[14725] = 2.65681883;
|
|
557
|
+
data[14726] = 18.09193194;
|
|
558
|
+
data[14727] = 5.85655728;
|
|
559
|
+
data[14928] = 13.34277913;
|
|
560
|
+
data[14929] = 10.28267574;
|
|
561
|
+
data[15130] = 8.56800377;
|
|
562
|
+
data[15131] = 14.72230814;
|
|
563
|
+
data[15132] = 1.04039861;
|
|
564
|
+
data[15332] = 3.79085587;
|
|
565
|
+
data[15333] = 17.14678481;
|
|
566
|
+
data[15334] = 6.11609267;
|
|
567
|
+
data[15535] = 11.75929047;
|
|
568
|
+
data[15536] = 11.13393717;
|
|
569
|
+
data[15737] = 6.43857848;
|
|
570
|
+
data[15738] = 16.07806236;
|
|
571
|
+
data[15739] = 4.23917221;
|
|
572
|
+
data[15939] = 1.19989377;
|
|
573
|
+
data[15940] = 12.75671553;
|
|
574
|
+
data[15941] = 9.65298992;
|
|
575
|
+
data[16142] = 7.06935255;
|
|
576
|
+
data[16143] = 14.94054683;
|
|
577
|
+
data[16144] = 4.19024844;
|
|
578
|
+
data[16344] = 1.51483389;
|
|
579
|
+
data[16345] = 12.00899947;
|
|
580
|
+
data[16346] = 9.84823331;
|
|
581
|
+
data[16547] = 6.10224018;
|
|
582
|
+
data[16548] = 15.33857174;
|
|
583
|
+
data[16549] = 5.57676842;
|
|
584
|
+
data[16749] = 0.36827257;
|
|
585
|
+
data[16750] = 9.89749376;
|
|
586
|
+
data[16751] = 11.35340426;
|
|
587
|
+
data[16752] = 2.05122307;
|
|
588
|
+
data[16952] = 3.89297144;
|
|
589
|
+
data[16953] = 12.97352277;
|
|
590
|
+
data[16954] = 8.06631614;
|
|
591
|
+
data[17155] = 6.74493238;
|
|
592
|
+
data[17156] = 13.85874674;
|
|
593
|
+
data[17157] = 5.41190524;
|
|
594
|
+
data[17357] = 0.74220158;
|
|
595
|
+
data[17358] = 8.98779090;
|
|
596
|
+
data[17359] = 11.37871388;
|
|
597
|
+
data[17360] = 3.32958088;
|
|
598
|
+
data[17560] = 2.82313535;
|
|
599
|
+
data[17561] = 10.68049297;
|
|
600
|
+
data[17562] = 9.43340641;
|
|
601
|
+
data[17563] = 1.76325557;
|
|
602
|
+
data[17763] = 4.39018616;
|
|
603
|
+
data[17764] = 11.87758986;
|
|
604
|
+
data[17765] = 7.97005836;
|
|
605
|
+
data[17766] = 0.66104700;
|
|
606
|
+
data[17966] = 5.49466675;
|
|
607
|
+
data[17967] = 12.62953598;
|
|
608
|
+
data[17968] = 6.93987962;
|
|
609
|
+
data[18169] = 6.18401915;
|
|
610
|
+
data[18170] = 12.93473132;
|
|
611
|
+
data[18171] = 6.29778765;
|
|
612
|
+
data[18371] = 0.02325210;
|
|
613
|
+
data[18372] = 6.50206627;
|
|
614
|
+
data[18373] = 12.32661773;
|
|
615
|
+
data[18374] = 6.00216538;
|
|
616
|
+
data[18574] = 0.31548753;
|
|
617
|
+
data[18575] = 6.48925547;
|
|
618
|
+
data[18576] = 12.04130240;
|
|
619
|
+
data[18577] = 6.01462880;
|
|
620
|
+
data[18777] = 0.29979556;
|
|
621
|
+
data[18778] = 6.18288014;
|
|
622
|
+
data[18779] = 12.04272825;
|
|
623
|
+
data[18780] = 6.29981188;
|
|
624
|
+
data[18781] = 0.55689598;
|
|
625
|
+
data[18980] = 0.01120471;
|
|
626
|
+
data[18981] = 5.61729167;
|
|
627
|
+
data[18982] = 11.22337859;
|
|
628
|
+
data[18983] = 6.82516303;
|
|
629
|
+
data[18984] = 1.35264499;
|
|
630
|
+
data[19184] = 4.82410006;
|
|
631
|
+
data[19185] = 10.16623247;
|
|
632
|
+
data[19186] = 7.56075513;
|
|
633
|
+
data[19187] = 2.34590308;
|
|
634
|
+
data[19387] = 3.83235747;
|
|
635
|
+
data[19388] = 8.92296247;
|
|
636
|
+
data[19389] = 8.47910438;
|
|
637
|
+
data[19390] = 3.50978645;
|
|
638
|
+
data[19590] = 2.66873185;
|
|
639
|
+
data[19591] = 7.51965167;
|
|
640
|
+
data[19592] = 9.55500547;
|
|
641
|
+
data[19593] = 4.81966138;
|
|
642
|
+
data[19594] = 0.08431751;
|
|
643
|
+
data[19793] = 1.35767367;
|
|
644
|
+
data[19794] = 5.98019501;
|
|
645
|
+
data[19795] = 10.60271543;
|
|
646
|
+
data[19796] = 6.25298498;
|
|
647
|
+
data[19797] = 1.74059917;
|
|
648
|
+
data[19997] = 4.32644226;
|
|
649
|
+
data[19998] = 8.73131864;
|
|
650
|
+
data[19999] = 7.78916525;
|
|
651
|
+
data[20000] = 3.48923868;
|
|
652
|
+
data[20200] = 2.57835095;
|
|
653
|
+
data[20201] = 6.77582854;
|
|
654
|
+
data[20202] = 9.40941647;
|
|
655
|
+
data[20203] = 5.31194592;
|
|
656
|
+
data[20204] = 1.21447595;
|
|
657
|
+
data[20403] = 0.75411191;
|
|
658
|
+
data[20404] = 4.75395704;
|
|
659
|
+
data[20405] = 8.75380263;
|
|
660
|
+
data[20406] = 7.19209015;
|
|
661
|
+
data[20407] = 3.28754401;
|
|
662
|
+
data[20607] = 2.68179690;
|
|
663
|
+
data[20608] = 6.49331464;
|
|
664
|
+
data[20609] = 9.11457930;
|
|
665
|
+
data[20610] = 5.39387390;
|
|
666
|
+
data[20611] = 1.67316827;
|
|
667
|
+
data[20810] = 0.57394296;
|
|
668
|
+
data[20811] = 4.20600036;
|
|
669
|
+
data[20812] = 7.83805829;
|
|
670
|
+
data[20813] = 7.52023002;
|
|
671
|
+
data[20814] = 3.97470826;
|
|
672
|
+
data[20815] = 0.42918732;
|
|
673
|
+
data[21014] = 1.90464477;
|
|
674
|
+
data[21015] = 5.36569161;
|
|
675
|
+
data[21016] = 8.82673822;
|
|
676
|
+
data[21017] = 6.27609482;
|
|
677
|
+
data[21018] = 2.89750961;
|
|
678
|
+
data[21218] = 2.89885257;
|
|
679
|
+
data[21219] = 6.19694078;
|
|
680
|
+
data[21220] = 8.56699049;
|
|
681
|
+
data[21221] = 5.34748193;
|
|
682
|
+
data[21222] = 2.12797290;
|
|
683
|
+
data[21421] = 0.44750227;
|
|
684
|
+
data[21422] = 3.59030394;
|
|
685
|
+
data[21423] = 6.73310598;
|
|
686
|
+
data[21424] = 7.77023612;
|
|
687
|
+
data[21425] = 4.70231380;
|
|
688
|
+
data[21426] = 1.63439126;
|
|
689
|
+
data[21625] = 1.01536023;
|
|
690
|
+
data[21626] = 4.01018746;
|
|
691
|
+
data[21627] = 7.00501446;
|
|
692
|
+
data[21628] = 7.23442994;
|
|
693
|
+
data[21629] = 4.31095669;
|
|
694
|
+
data[21630] = 1.38748321;
|
|
695
|
+
data[21829] = 1.33348850;
|
|
696
|
+
data[21830] = 4.18730825;
|
|
697
|
+
data[21831] = 7.04112789;
|
|
698
|
+
data[21832] = 6.93188375;
|
|
699
|
+
data[21833] = 4.14605811;
|
|
700
|
+
data[21834] = 1.36023236;
|
|
701
|
+
data[22033] = 1.42879714;
|
|
702
|
+
data[22034] = 4.14824858;
|
|
703
|
+
data[22035] = 6.86769979;
|
|
704
|
+
data[22036] = 6.83705276;
|
|
705
|
+
data[22037] = 4.18239459;
|
|
706
|
+
data[22038] = 1.52773573;
|
|
707
|
+
data[22237] = 1.32610439;
|
|
708
|
+
data[22238] = 3.91751388;
|
|
709
|
+
data[22239] = 6.50892360;
|
|
710
|
+
data[22240] = 6.92639686;
|
|
711
|
+
data[22241] = 4.39672917;
|
|
712
|
+
data[22242] = 1.86706171;
|
|
713
|
+
data[22441] = 1.04827771;
|
|
714
|
+
data[22442] = 3.51767405;
|
|
715
|
+
data[22443] = 5.98707050;
|
|
716
|
+
data[22444] = 7.17824046;
|
|
717
|
+
data[22445] = 4.76767914;
|
|
718
|
+
data[22446] = 2.35711760;
|
|
719
|
+
data[22645] = 0.61636406;
|
|
720
|
+
data[22646] = 2.96949223;
|
|
721
|
+
data[22647] = 5.32262027;
|
|
722
|
+
data[22648] = 7.57265091;
|
|
723
|
+
data[22649] = 5.27558755;
|
|
724
|
+
data[22650] = 2.97852419;
|
|
725
|
+
data[22651] = 0.68146095;
|
|
726
|
+
data[22849] = 0.04971400;
|
|
727
|
+
data[22850] = 2.29204819;
|
|
728
|
+
data[22851] = 4.53438237;
|
|
729
|
+
data[22852] = 6.77671656;
|
|
730
|
+
data[22853] = 5.90240723;
|
|
731
|
+
data[22854] = 3.71349836;
|
|
732
|
+
data[22855] = 1.52458926;
|
|
733
|
+
data[23054] = 1.50285335;
|
|
734
|
+
data[23055] = 3.63961048;
|
|
735
|
+
data[23056] = 5.77636715;
|
|
736
|
+
data[23057] = 6.63159089;
|
|
737
|
+
data[23058] = 4.54574358;
|
|
738
|
+
data[23059] = 2.45989650;
|
|
739
|
+
data[23060] = 0.37404924;
|
|
740
|
+
data[23258] = 0.61795861;
|
|
741
|
+
data[23259] = 2.65410915;
|
|
742
|
+
data[23260] = 4.69025923;
|
|
743
|
+
data[23261] = 6.72641024;
|
|
744
|
+
data[23262] = 5.46034705;
|
|
745
|
+
data[23263] = 3.47270933;
|
|
746
|
+
data[23264] = 1.48507138;
|
|
747
|
+
data[23463] = 1.59233576;
|
|
748
|
+
data[23464] = 3.53261665;
|
|
749
|
+
data[23465] = 5.47289755;
|
|
750
|
+
data[23466] = 6.44368259;
|
|
751
|
+
data[23467] = 4.54962999;
|
|
752
|
+
data[23468] = 2.65557761;
|
|
753
|
+
data[23469] = 0.76152512;
|
|
754
|
+
data[23667] = 0.46749352;
|
|
755
|
+
data[23668] = 2.31641904;
|
|
756
|
+
data[23669] = 4.16534441;
|
|
757
|
+
data[23670] = 6.01426978;
|
|
758
|
+
data[23671] = 5.67844696;
|
|
759
|
+
data[23672] = 3.87357362;
|
|
760
|
+
data[23673] = 2.06870004;
|
|
761
|
+
data[23674] = 0.26382666;
|
|
762
|
+
data[23872] = 1.05349103;
|
|
763
|
+
data[23873] = 2.81536230;
|
|
764
|
+
data[23874] = 4.57723346;
|
|
765
|
+
data[23875] = 6.33910485;
|
|
766
|
+
data[23876] = 5.12815686;
|
|
767
|
+
data[23877] = 3.40826320;
|
|
768
|
+
data[23878] = 1.68837002;
|
|
769
|
+
data[24077] = 1.43350090;
|
|
770
|
+
data[24078] = 3.11241671;
|
|
771
|
+
data[24079] = 4.79133241;
|
|
772
|
+
data[24080] = 6.40943693;
|
|
773
|
+
data[24081] = 4.77052201;
|
|
774
|
+
data[24082] = 3.13160778;
|
|
775
|
+
data[24083] = 1.49269309;
|
|
776
|
+
data[24281] = 0.02932359;
|
|
777
|
+
data[24282] = 1.62918994;
|
|
778
|
+
data[24283] = 3.22905602;
|
|
779
|
+
data[24284] = 4.82892245;
|
|
780
|
+
data[24285] = 6.14671456;
|
|
781
|
+
data[24286] = 4.58496623;
|
|
782
|
+
data[24287] = 3.02321767;
|
|
783
|
+
data[24288] = 1.46146910;
|
|
784
|
+
data[24486] = 0.13601698;
|
|
785
|
+
data[24487] = 1.66055572;
|
|
786
|
+
data[24488] = 3.18509457;
|
|
787
|
+
data[24489] = 4.70963307;
|
|
788
|
+
data[24490] = 6.04072399;
|
|
789
|
+
data[24491] = 4.55250870;
|
|
790
|
+
data[24492] = 3.06429295;
|
|
791
|
+
data[24493] = 1.57607743;
|
|
792
|
+
data[24494] = 0.08786193;
|
|
793
|
+
data[24691] = 0.09328097;
|
|
794
|
+
data[24692] = 1.54603878;
|
|
795
|
+
data[24693] = 2.99879676;
|
|
796
|
+
data[24694] = 4.45155473;
|
|
797
|
+
data[24695] = 5.90431225;
|
|
798
|
+
data[24696] = 4.65566106;
|
|
799
|
+
data[24697] = 3.23751615;
|
|
800
|
+
data[24698] = 1.81937125;
|
|
801
|
+
data[24699] = 0.40122634;
|
|
802
|
+
data[24897] = 1.30262633;
|
|
803
|
+
data[24898] = 2.68698297;
|
|
804
|
+
data[24899] = 4.07133950;
|
|
805
|
+
data[24900] = 5.45569602;
|
|
806
|
+
data[24901] = 4.87832492;
|
|
807
|
+
data[24902] = 3.52695142;
|
|
808
|
+
data[24903] = 2.17557792;
|
|
809
|
+
data[24904] = 0.82420459;
|
|
810
|
+
data[25102] = 0.94595028;
|
|
811
|
+
data[25103] = 2.26512621;
|
|
812
|
+
data[25104] = 3.58430226;
|
|
813
|
+
data[25105] = 4.90347855;
|
|
814
|
+
data[25106] = 5.20569785;
|
|
815
|
+
data[25107] = 3.91795207;
|
|
816
|
+
data[25108] = 2.63020652;
|
|
817
|
+
data[25109] = 1.34246063;
|
|
818
|
+
data[25110] = 0.05471494;
|
|
819
|
+
data[25307] = 0.49037894;
|
|
820
|
+
data[25308] = 1.74744334;
|
|
821
|
+
data[25309] = 3.00450763;
|
|
822
|
+
data[25310] = 4.26157191;
|
|
823
|
+
data[25311] = 5.51863620;
|
|
824
|
+
data[25312] = 4.39707236;
|
|
825
|
+
data[25313] = 3.16995848;
|
|
826
|
+
data[25314] = 1.94284460;
|
|
827
|
+
data[25315] = 0.71573065;
|
|
828
|
+
data[25513] = 1.14698056;
|
|
829
|
+
data[25514] = 2.34485767;
|
|
830
|
+
data[25515] = 3.54273478;
|
|
831
|
+
data[25516] = 4.74061165;
|
|
832
|
+
data[25517] = 4.95198462;
|
|
833
|
+
data[25518] = 3.78264743;
|
|
834
|
+
data[25519] = 2.61331047;
|
|
835
|
+
data[25520] = 1.44397374;
|
|
836
|
+
data[25521] = 0.27463681;
|
|
837
|
+
data[25718] = 0.47569509;
|
|
838
|
+
data[25719] = 1.61717169;
|
|
839
|
+
data[25720] = 2.75864848;
|
|
840
|
+
data[25721] = 3.90012516;
|
|
841
|
+
data[25722] = 5.04160160;
|
|
842
|
+
data[25723] = 4.45712078;
|
|
843
|
+
data[25724] = 3.34284059;
|
|
844
|
+
data[25725] = 2.22856039;
|
|
845
|
+
data[25726] = 1.11428020;
|
|
846
|
+
|
|
847
|
+
for (auto & val : data) {
|
|
848
|
+
val /= 1000.0f;
|
|
849
|
+
}
|
|
850
|
+
|
|
851
|
+
filters.data = std::move(data);
|
|
852
|
+
return filters;
|
|
853
|
+
}
|
|
854
|
+
|
|
855
|
+
} // namespace whisper_precalc_filters
|