@fugood/llama.node 0.3.17 → 0.4.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (193) hide show
  1. package/CMakeLists.txt +3 -1
  2. package/bin/darwin/arm64/llama-node.node +0 -0
  3. package/bin/darwin/x64/llama-node.node +0 -0
  4. package/bin/linux/arm64/llama-node.node +0 -0
  5. package/bin/linux/x64/llama-node.node +0 -0
  6. package/bin/linux-cuda/arm64/llama-node.node +0 -0
  7. package/bin/linux-cuda/x64/llama-node.node +0 -0
  8. package/bin/linux-vulkan/arm64/llama-node.node +0 -0
  9. package/bin/linux-vulkan/x64/llama-node.node +0 -0
  10. package/bin/win32/arm64/llama-node.node +0 -0
  11. package/bin/win32/arm64/node.lib +0 -0
  12. package/bin/win32/x64/llama-node.node +0 -0
  13. package/bin/win32/x64/node.lib +0 -0
  14. package/bin/win32-vulkan/arm64/llama-node.node +0 -0
  15. package/bin/win32-vulkan/arm64/node.lib +0 -0
  16. package/bin/win32-vulkan/x64/llama-node.node +0 -0
  17. package/bin/win32-vulkan/x64/node.lib +0 -0
  18. package/lib/binding.ts +39 -2
  19. package/lib/index.js +132 -1
  20. package/lib/index.ts +203 -3
  21. package/package.json +2 -1
  22. package/src/EmbeddingWorker.cpp +1 -1
  23. package/src/LlamaCompletionWorker.cpp +366 -19
  24. package/src/LlamaCompletionWorker.h +30 -10
  25. package/src/LlamaContext.cpp +213 -5
  26. package/src/LlamaContext.h +12 -0
  27. package/src/common.hpp +15 -0
  28. package/src/llama.cpp/.github/workflows/build-linux-cross.yml +133 -24
  29. package/src/llama.cpp/.github/workflows/build.yml +41 -762
  30. package/src/llama.cpp/.github/workflows/docker.yml +5 -2
  31. package/src/llama.cpp/.github/workflows/release.yml +716 -0
  32. package/src/llama.cpp/.github/workflows/server.yml +12 -12
  33. package/src/llama.cpp/CMakeLists.txt +5 -17
  34. package/src/llama.cpp/cmake/build-info.cmake +8 -2
  35. package/src/llama.cpp/cmake/x64-windows-llvm.cmake +0 -6
  36. package/src/llama.cpp/common/CMakeLists.txt +31 -3
  37. package/src/llama.cpp/common/arg.cpp +48 -29
  38. package/src/llama.cpp/common/chat.cpp +128 -106
  39. package/src/llama.cpp/common/chat.h +2 -0
  40. package/src/llama.cpp/common/common.cpp +37 -1
  41. package/src/llama.cpp/common/common.h +18 -9
  42. package/src/llama.cpp/common/llguidance.cpp +1 -0
  43. package/src/llama.cpp/common/minja/chat-template.hpp +9 -5
  44. package/src/llama.cpp/common/minja/minja.hpp +69 -36
  45. package/src/llama.cpp/common/regex-partial.cpp +204 -0
  46. package/src/llama.cpp/common/regex-partial.h +56 -0
  47. package/src/llama.cpp/common/sampling.cpp +57 -50
  48. package/src/llama.cpp/examples/CMakeLists.txt +2 -23
  49. package/src/llama.cpp/examples/embedding/embedding.cpp +2 -11
  50. package/src/llama.cpp/examples/parallel/parallel.cpp +86 -14
  51. package/src/llama.cpp/examples/training/CMakeLists.txt +5 -0
  52. package/src/llama.cpp/examples/training/finetune.cpp +96 -0
  53. package/src/llama.cpp/ggml/CMakeLists.txt +27 -0
  54. package/src/llama.cpp/ggml/include/ggml-backend.h +4 -4
  55. package/src/llama.cpp/ggml/include/ggml-cpp.h +1 -1
  56. package/src/llama.cpp/ggml/include/ggml-opt.h +47 -28
  57. package/src/llama.cpp/ggml/include/ggml.h +10 -7
  58. package/src/llama.cpp/ggml/src/CMakeLists.txt +1 -1
  59. package/src/llama.cpp/ggml/src/ggml-alloc.c +4 -1
  60. package/src/llama.cpp/ggml/src/ggml-backend.cpp +9 -5
  61. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +20 -13
  62. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +0 -2
  63. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-quants.c +306 -6
  64. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +4 -13
  65. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.cpp +29 -16
  66. package/src/llama.cpp/ggml/src/ggml-cpu/kleidiai/kernels.cpp +88 -5
  67. package/src/llama.cpp/ggml/src/ggml-cpu/kleidiai/kernels.h +47 -12
  68. package/src/llama.cpp/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +264 -69
  69. package/src/llama.cpp/ggml/src/ggml-cpu/llamafile/sgemm.cpp +501 -0
  70. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +0 -13
  71. package/src/llama.cpp/ggml/src/ggml-cpu/vec.cpp +0 -6
  72. package/src/llama.cpp/ggml/src/ggml-cuda/CMakeLists.txt +23 -4
  73. package/src/llama.cpp/ggml/src/ggml-metal/ggml-metal-impl.h +36 -11
  74. package/src/llama.cpp/ggml/src/ggml-opencl/ggml-opencl.cpp +0 -2
  75. package/src/llama.cpp/ggml/src/ggml-opt.cpp +368 -190
  76. package/src/llama.cpp/ggml/src/ggml-quants.c +0 -6
  77. package/src/llama.cpp/ggml/src/ggml-rpc/ggml-rpc.cpp +41 -27
  78. package/src/llama.cpp/ggml/src/ggml-sycl/CMakeLists.txt +29 -23
  79. package/src/llama.cpp/ggml/src/ggml-sycl/backend.hpp +9 -8
  80. package/src/llama.cpp/ggml/src/ggml-sycl/binbcast.cpp +121 -232
  81. package/src/llama.cpp/ggml/src/ggml-sycl/common.hpp +7 -15
  82. package/src/llama.cpp/ggml/src/ggml-sycl/convert.cpp +72 -25
  83. package/src/llama.cpp/ggml/src/ggml-sycl/convert.hpp +14 -7
  84. package/src/llama.cpp/ggml/src/ggml-sycl/dequantize.hpp +59 -21
  85. package/src/llama.cpp/ggml/src/ggml-sycl/dmmv.cpp +7 -1
  86. package/src/llama.cpp/ggml/src/ggml-sycl/element_wise.cpp +0 -23
  87. package/src/llama.cpp/ggml/src/ggml-sycl/gemm.hpp +37 -8
  88. package/src/llama.cpp/ggml/src/ggml-sycl/ggml-sycl.cpp +338 -166
  89. package/src/llama.cpp/ggml/src/ggml-sycl/mmvq.cpp +185 -89
  90. package/src/llama.cpp/ggml/src/ggml-sycl/quants.hpp +83 -0
  91. package/src/llama.cpp/ggml/src/ggml-sycl/vecdotq.hpp +128 -53
  92. package/src/llama.cpp/ggml/src/ggml-vulkan/CMakeLists.txt +81 -70
  93. package/src/llama.cpp/ggml/src/ggml-vulkan/ggml-vulkan.cpp +657 -193
  94. package/src/llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt +20 -0
  95. package/src/llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +123 -29
  96. package/src/llama.cpp/ggml/src/ggml.c +29 -20
  97. package/src/llama.cpp/ggml/src/gguf.cpp +33 -33
  98. package/src/llama.cpp/include/llama.h +52 -11
  99. package/src/llama.cpp/requirements/requirements-all.txt +3 -3
  100. package/src/llama.cpp/scripts/xxd.cmake +1 -1
  101. package/src/llama.cpp/src/CMakeLists.txt +1 -0
  102. package/src/llama.cpp/src/llama-adapter.cpp +6 -0
  103. package/src/llama.cpp/src/llama-arch.cpp +3 -0
  104. package/src/llama.cpp/src/llama-batch.cpp +5 -1
  105. package/src/llama.cpp/src/llama-batch.h +2 -1
  106. package/src/llama.cpp/src/llama-chat.cpp +17 -7
  107. package/src/llama.cpp/src/llama-chat.h +1 -0
  108. package/src/llama.cpp/src/llama-context.cpp +389 -501
  109. package/src/llama.cpp/src/llama-context.h +44 -32
  110. package/src/llama.cpp/src/llama-cparams.h +1 -0
  111. package/src/llama.cpp/src/llama-graph.cpp +20 -38
  112. package/src/llama.cpp/src/llama-graph.h +12 -8
  113. package/src/llama.cpp/src/llama-kv-cache.cpp +1503 -389
  114. package/src/llama.cpp/src/llama-kv-cache.h +271 -85
  115. package/src/llama.cpp/src/llama-memory.h +11 -1
  116. package/src/llama.cpp/src/llama-model-loader.cpp +24 -15
  117. package/src/llama.cpp/src/llama-model-saver.cpp +281 -0
  118. package/src/llama.cpp/src/llama-model-saver.h +37 -0
  119. package/src/llama.cpp/src/llama-model.cpp +316 -69
  120. package/src/llama.cpp/src/llama-model.h +8 -1
  121. package/src/llama.cpp/src/llama-quant.cpp +15 -13
  122. package/src/llama.cpp/src/llama-sampling.cpp +18 -6
  123. package/src/llama.cpp/src/llama-vocab.cpp +42 -4
  124. package/src/llama.cpp/src/llama-vocab.h +6 -0
  125. package/src/llama.cpp/src/llama.cpp +14 -0
  126. package/src/llama.cpp/tests/CMakeLists.txt +10 -2
  127. package/src/llama.cpp/tests/test-backend-ops.cpp +107 -47
  128. package/src/llama.cpp/tests/test-chat-template.cpp +10 -11
  129. package/src/llama.cpp/tests/test-chat.cpp +3 -1
  130. package/src/llama.cpp/tests/test-mtmd-c-api.c +63 -0
  131. package/src/llama.cpp/tests/test-opt.cpp +33 -21
  132. package/src/llama.cpp/tests/test-regex-partial.cpp +288 -0
  133. package/src/llama.cpp/tests/test-sampling.cpp +1 -1
  134. package/src/llama.cpp/tools/CMakeLists.txt +39 -0
  135. package/src/llama.cpp/{examples → tools}/batched-bench/batched-bench.cpp +2 -2
  136. package/src/llama.cpp/{examples → tools}/imatrix/imatrix.cpp +11 -9
  137. package/src/llama.cpp/{examples → tools}/llama-bench/llama-bench.cpp +495 -348
  138. package/src/llama.cpp/{examples → tools}/main/main.cpp +6 -9
  139. package/src/llama.cpp/{examples/llava → tools/mtmd}/CMakeLists.txt +1 -35
  140. package/src/llama.cpp/{examples/llava → tools/mtmd}/clip-impl.h +25 -5
  141. package/src/llama.cpp/{examples/llava → tools/mtmd}/clip.cpp +1440 -1349
  142. package/src/llama.cpp/tools/mtmd/clip.h +99 -0
  143. package/src/llama.cpp/{examples/llava → tools/mtmd}/mtmd-cli.cpp +70 -44
  144. package/src/llama.cpp/tools/mtmd/mtmd-helper.cpp +310 -0
  145. package/src/llama.cpp/{examples/llava → tools/mtmd}/mtmd.cpp +251 -281
  146. package/src/llama.cpp/tools/mtmd/mtmd.h +331 -0
  147. package/src/llama.cpp/{examples → tools}/perplexity/perplexity.cpp +4 -2
  148. package/src/llama.cpp/{examples → tools}/quantize/quantize.cpp +13 -76
  149. package/src/llama.cpp/{examples → tools}/rpc/rpc-server.cpp +70 -74
  150. package/src/llama.cpp/{examples → tools}/run/run.cpp +18 -4
  151. package/src/llama.cpp/{examples → tools}/server/CMakeLists.txt +2 -1
  152. package/src/llama.cpp/{examples → tools}/server/server.cpp +291 -76
  153. package/src/llama.cpp/{examples → tools}/server/utils.hpp +377 -5
  154. package/src/llama.cpp/cmake/arm64-windows-msvc.cmake +0 -6
  155. package/src/llama.cpp/examples/infill/CMakeLists.txt +0 -5
  156. package/src/llama.cpp/examples/infill/infill.cpp +0 -590
  157. package/src/llama.cpp/examples/llava/android/build_64.sh +0 -8
  158. package/src/llama.cpp/examples/llava/clip-quantize-cli.cpp +0 -59
  159. package/src/llama.cpp/examples/llava/clip.h +0 -135
  160. package/src/llama.cpp/examples/llava/llava.cpp +0 -586
  161. package/src/llama.cpp/examples/llava/llava.h +0 -49
  162. package/src/llama.cpp/examples/llava/mtmd.h +0 -168
  163. package/src/llama.cpp/examples/llava/qwen2vl-test.cpp +0 -636
  164. /package/src/llama.cpp/{examples → tools}/batched-bench/CMakeLists.txt +0 -0
  165. /package/src/llama.cpp/{examples → tools}/cvector-generator/CMakeLists.txt +0 -0
  166. /package/src/llama.cpp/{examples → tools}/cvector-generator/completions.txt +0 -0
  167. /package/src/llama.cpp/{examples → tools}/cvector-generator/cvector-generator.cpp +0 -0
  168. /package/src/llama.cpp/{examples → tools}/cvector-generator/mean.hpp +0 -0
  169. /package/src/llama.cpp/{examples → tools}/cvector-generator/negative.txt +0 -0
  170. /package/src/llama.cpp/{examples → tools}/cvector-generator/pca.hpp +0 -0
  171. /package/src/llama.cpp/{examples → tools}/cvector-generator/positive.txt +0 -0
  172. /package/src/llama.cpp/{examples → tools}/export-lora/CMakeLists.txt +0 -0
  173. /package/src/llama.cpp/{examples → tools}/export-lora/export-lora.cpp +0 -0
  174. /package/src/llama.cpp/{examples → tools}/gguf-split/CMakeLists.txt +0 -0
  175. /package/src/llama.cpp/{examples → tools}/gguf-split/gguf-split.cpp +0 -0
  176. /package/src/llama.cpp/{examples → tools}/imatrix/CMakeLists.txt +0 -0
  177. /package/src/llama.cpp/{examples → tools}/llama-bench/CMakeLists.txt +0 -0
  178. /package/src/llama.cpp/{examples → tools}/main/CMakeLists.txt +0 -0
  179. /package/src/llama.cpp/{examples/llava → tools/mtmd}/deprecation-warning.cpp +0 -0
  180. /package/src/llama.cpp/{examples/llava → tools/mtmd}/requirements.txt +0 -0
  181. /package/src/llama.cpp/{examples → tools}/perplexity/CMakeLists.txt +0 -0
  182. /package/src/llama.cpp/{examples → tools}/quantize/CMakeLists.txt +0 -0
  183. /package/src/llama.cpp/{examples → tools}/rpc/CMakeLists.txt +0 -0
  184. /package/src/llama.cpp/{examples → tools}/run/CMakeLists.txt +0 -0
  185. /package/src/llama.cpp/{examples → tools}/run/linenoise.cpp/linenoise.cpp +0 -0
  186. /package/src/llama.cpp/{examples → tools}/run/linenoise.cpp/linenoise.h +0 -0
  187. /package/src/llama.cpp/{examples → tools}/server/bench/requirements.txt +0 -0
  188. /package/src/llama.cpp/{examples → tools}/server/httplib.h +0 -0
  189. /package/src/llama.cpp/{examples → tools}/server/tests/requirements.txt +0 -0
  190. /package/src/llama.cpp/{examples → tools}/tokenize/CMakeLists.txt +0 -0
  191. /package/src/llama.cpp/{examples → tools}/tokenize/tokenize.cpp +0 -0
  192. /package/src/llama.cpp/{examples → tools}/tts/CMakeLists.txt +0 -0
  193. /package/src/llama.cpp/{examples → tools}/tts/tts.cpp +0 -0
@@ -19,12 +19,6 @@
19
19
  #define GROUP_MAX_EPS_IQ1_M 1e-7f
20
20
  #define GROUP_MAX_EPS_IQ1_S 1e-12f
21
21
 
22
- #if defined(_MSC_VER)
23
- // disable "possible loss of data" to avoid warnings for hundreds of casts
24
- // we should just be careful :)
25
- #pragma warning(disable: 4244 4267)
26
- #endif
27
-
28
22
  #define UNUSED GGML_UNUSED
29
23
 
30
24
  // reference implementation for deterministic creation of model files
@@ -151,6 +151,12 @@ struct rpc_msg_buffer_clear_req {
151
151
  uint8_t value;
152
152
  };
153
153
 
154
+ struct rpc_msg_set_tensor_hash_req {
155
+ rpc_tensor tensor;
156
+ uint64_t offset;
157
+ uint64_t hash;
158
+ };
159
+
154
160
  struct rpc_msg_set_tensor_hash_rsp {
155
161
  uint8_t result;
156
162
  };
@@ -518,6 +524,11 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
518
524
  result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
519
525
  result.view_offs = tensor->view_offs;
520
526
  result.data = reinterpret_cast<uint64_t>(tensor->data);
527
+
528
+ // Avoid sending uninitialized data over the wire
529
+ memset(result.name, 0, sizeof(result.name));
530
+ memset(result.padding, 0, sizeof(result.padding));
531
+
521
532
  snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
522
533
  return result;
523
534
  }
@@ -543,15 +554,12 @@ static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggm
543
554
  ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
544
555
  rpc_tensor rpc_tensor = serialize_tensor(tensor);
545
556
  if (size > HASH_THRESHOLD) {
546
- // input serialization format: | rpc_tensor | offset (8 bytes) | hash (8 bytes)
547
- size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + sizeof(uint64_t);
548
- std::vector<uint8_t> input(input_size, 0);
549
- uint64_t hash = fnv_hash((const uint8_t*)data, size);
550
- memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
551
- memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
552
- memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &hash, sizeof(hash));
557
+ rpc_msg_set_tensor_hash_req request;
558
+ request.tensor = rpc_tensor;
559
+ request.offset = offset;
560
+ request.hash = fnv_hash((const uint8_t*)data, size);
553
561
  rpc_msg_set_tensor_hash_rsp response;
554
- bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR_HASH, input.data(), input.size(), &response, sizeof(response));
562
+ bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR_HASH, &request, sizeof(request), &response, sizeof(response));
555
563
  GGML_ASSERT(status);
556
564
  if (response.result) {
557
565
  // the server has the same data, no need to send it
@@ -859,7 +867,7 @@ public:
859
867
  bool free_buffer(const rpc_msg_free_buffer_req & request);
860
868
  bool buffer_clear(const rpc_msg_buffer_clear_req & request);
861
869
  bool set_tensor(const std::vector<uint8_t> & input);
862
- bool set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set_tensor_hash_rsp & response);
870
+ bool set_tensor_hash(const rpc_msg_set_tensor_hash_req & request, rpc_msg_set_tensor_hash_rsp & response);
863
871
  bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
864
872
  bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
865
873
  bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
@@ -1096,18 +1104,10 @@ bool rpc_server::get_cached_file(uint64_t hash, std::vector<uint8_t> & data) {
1096
1104
  return true;
1097
1105
  }
1098
1106
 
1099
- bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set_tensor_hash_rsp & response)
1107
+ bool rpc_server::set_tensor_hash(const rpc_msg_set_tensor_hash_req & request, rpc_msg_set_tensor_hash_rsp & response)
1100
1108
  {
1101
- // serialization format: | rpc_tensor | offset (8 bytes) | hash (8 bytes) |
1102
- if (input.size() != sizeof(rpc_tensor) + 16) {
1103
- return false;
1104
- }
1105
- const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
1106
- uint64_t offset;
1107
- memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
1108
- const uint64_t * hash = (const uint64_t *)(input.data() + sizeof(rpc_tensor) + sizeof(offset));
1109
1109
  std::vector<uint8_t> cached_file;
1110
- if (!get_cached_file(*hash, cached_file)) {
1110
+ if (!get_cached_file(request.hash, cached_file)) {
1111
1111
  response.result = 0;
1112
1112
  return true;
1113
1113
  }
@@ -1120,25 +1120,28 @@ bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set
1120
1120
  ggml_context_ptr ctx_ptr { ggml_init(params) };
1121
1121
  GGML_ASSERT(ctx_ptr != nullptr);
1122
1122
  ggml_context * ctx = ctx_ptr.get();
1123
- ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
1123
+ ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
1124
1124
  if (tensor == nullptr) {
1125
1125
  GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
1126
1126
  return false;
1127
1127
  }
1128
- GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu, hash: %" PRIx64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size, *hash);
1128
+ GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu, hash: %" PRIx64 "\n",
1129
+ __func__, (void*)tensor->buffer, tensor->data, request.offset, size, request.hash);
1129
1130
 
1130
1131
  // sanitize tensor->data
1131
1132
  {
1132
1133
  const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
1133
1134
  const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
1134
1135
 
1135
- if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
1136
+ if (request.tensor.data + request.offset < p0
1137
+ || request.tensor.data + request.offset >= p1
1138
+ || size > (p1 - request.tensor.data - request.offset)) {
1136
1139
  GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu, hash=0x%" PRIx64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
1137
- __func__, in_tensor->data, offset, size, *hash, p0, p1);
1140
+ __func__, request.tensor.data, request.offset, size, request.hash, p0, p1);
1138
1141
  return false;
1139
1142
  }
1140
1143
  }
1141
- ggml_backend_tensor_set(tensor, cached_file.data(), offset, size);
1144
+ ggml_backend_tensor_set(tensor, cached_file.data(), request.offset, size);
1142
1145
  response.result = 1;
1143
1146
  return true;
1144
1147
  }
@@ -1498,12 +1501,12 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
1498
1501
  break;
1499
1502
  }
1500
1503
  case RPC_CMD_SET_TENSOR_HASH: {
1501
- std::vector<uint8_t> input;
1502
- if (!recv_msg(sockfd, input)) {
1504
+ rpc_msg_set_tensor_hash_req request;
1505
+ if (!recv_msg(sockfd, &request, sizeof(request))) {
1503
1506
  return;
1504
1507
  }
1505
1508
  rpc_msg_set_tensor_hash_rsp response;
1506
- if (!server.set_tensor_hash(input, response)) {
1509
+ if (!server.set_tensor_hash(request, response)) {
1507
1510
  return;
1508
1511
  }
1509
1512
  if (!send_msg(sockfd, &response, sizeof(response))) {
@@ -1589,6 +1592,14 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
1589
1592
  void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
1590
1593
  const char * cache_dir,
1591
1594
  size_t free_mem, size_t total_mem) {
1595
+ printf("Starting RPC server v%d.%d.%d\n",
1596
+ RPC_PROTO_MAJOR_VERSION,
1597
+ RPC_PROTO_MINOR_VERSION,
1598
+ RPC_PROTO_PATCH_VERSION);
1599
+ printf(" endpoint : %s\n", endpoint);
1600
+ printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
1601
+ printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
1602
+
1592
1603
  std::string host;
1593
1604
  int port;
1594
1605
  if (!parse_endpoint(endpoint, host, port)) {
@@ -1748,6 +1759,9 @@ static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const ch
1748
1759
  if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
1749
1760
  return (void *)ggml_backend_rpc_add_device;
1750
1761
  }
1762
+ if (std::strcmp(name, "ggml_backend_rpc_start_server") == 0) {
1763
+ return (void *)ggml_backend_rpc_start_server;
1764
+ }
1751
1765
  return NULL;
1752
1766
 
1753
1767
  GGML_UNUSED(reg);
@@ -49,35 +49,38 @@ endif()
49
49
  target_compile_options(ggml-sycl PRIVATE "-Wno-narrowing")
50
50
 
51
51
  # Link against oneDNN
52
- find_package(DNNL)
53
52
  set(GGML_SYCL_DNNL 0)
54
- if(DNNL_FOUND)
55
- if (DEFINED ENV{ONEAPI_ROOT} AND NOT DEFINED DNNL_GPU_VENDOR)
56
- # Assuming oneDNN packaged with oneapi release is used which
57
- # supports only intel target
58
- set(DNNL_GPU_VENDOR "INTEL")
59
- if(NOT "${GGML_SYCL_TARGET}" STREQUAL "INTEL")
60
- message(WARNING "oneDNN builds bundled with oneapi release only support INTEL target")
53
+ if(GGML_SYCL_DNN)
54
+ find_package(DNNL)
55
+ if(DNNL_FOUND)
56
+ if (NOT DEFINED DNNL_GPU_VENDOR)
57
+ # default to intel target
58
+ set(DNNL_GPU_VENDOR "INTEL")
59
+ if(NOT "${GGML_SYCL_TARGET}" STREQUAL "INTEL")
60
+ message(WARNING "oneDNN builds bundled with oneapi release only support INTEL target")
61
+ endif()
61
62
  endif()
62
- endif()
63
63
 
64
- # Verify oneDNN was compiled for the same target as llama
65
- if("${GGML_SYCL_TARGET}" STREQUAL "${DNNL_GPU_VENDOR}")
66
- target_link_libraries(ggml-sycl PRIVATE DNNL::dnnl)
67
- set(GGML_SYCL_DNNL 1)
68
- get_target_property(CONFIGS DNNL::dnnl IMPORTED_CONFIGURATIONS)
69
- foreach(CONFIG ${CONFIGS})
70
- get_target_property(DNNL_LIB DNNL::dnnl IMPORTED_LOCATION_${CONFIG})
71
- message(STATUS "Found oneDNN: ${DNNL_LIB}")
72
- endforeach()
64
+ # Verify oneDNN was compiled for the same target as llama
65
+ if("${GGML_SYCL_TARGET}" STREQUAL "${DNNL_GPU_VENDOR}")
66
+ target_link_libraries(ggml-sycl PRIVATE DNNL::dnnl)
67
+ set(GGML_SYCL_DNNL 1)
68
+ get_target_property(CONFIGS DNNL::dnnl IMPORTED_CONFIGURATIONS)
69
+ foreach(CONFIG ${CONFIGS})
70
+ get_target_property(DNNL_LIB DNNL::dnnl IMPORTED_LOCATION_${CONFIG})
71
+ message(STATUS "Found oneDNN: ${DNNL_LIB}")
72
+ endforeach()
73
+ else()
74
+ message(WARNING
75
+ "oneDNN must be compiled for the same target as llama.cpp.
76
+ llama.cpp: ${GGML_SYCL_TARGET}, oneDNN: ${DNNL_GPU_VENDOR}.
77
+ Disabling oneDNN support.")
78
+ endif()
73
79
  else()
74
- message(WARNING
75
- "oneDNN must be compiled for the same target as llama.cpp.
76
- llama.cpp: ${GGML_SYCL_TARGET}, oneDNN: ${DNNL_GPU_VENDOR}.
77
- Disabling oneDNN support.")
80
+ message(STATUS "oneDNN not found, disabling oneDNN support")
78
81
  endif()
79
82
  else()
80
- message(STATUS "oneDNN not found, disabling oneDNN support")
83
+ message(STATUS "oneDNN support disabled by the user")
81
84
  endif()
82
85
  target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_DNNL=${GGML_SYCL_DNNL})
83
86
 
@@ -108,6 +111,9 @@ endif()
108
111
  if (GGML_SYCL_TARGET STREQUAL "INTEL")
109
112
  # Intel devices use Intel oneMKL directly instead of oneMath to avoid the limitation of linking Intel oneMKL statically
110
113
  # See https://github.com/uxlfoundation/oneMath/issues/654
114
+ if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
115
+ set(SYCL_COMPILER ON)
116
+ endif()
111
117
  find_package(MKL REQUIRED)
112
118
  target_link_libraries(ggml-sycl PRIVATE MKL::MKL_SYCL::BLAS)
113
119
  target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_USE_INTEL_ONEMKL)
@@ -14,23 +14,24 @@
14
14
  #define GGML_SYCL_BACKEND_HPP
15
15
 
16
16
  #include "binbcast.hpp"
17
- #include "concat.hpp"
18
17
  #include "common.hpp"
18
+ #include "concat.hpp"
19
19
  #include "conv.hpp"
20
20
  #include "convert.hpp"
21
+ #include "cpy.hpp"
21
22
  #include "dequantize.hpp"
22
23
  #include "dmmv.hpp"
24
+ #include "element_wise.hpp"
25
+ #include "gla.hpp"
26
+ #include "im2col.hpp"
23
27
  #include "mmq.hpp"
24
28
  #include "mmvq.hpp"
25
- #include "rope.hpp"
26
29
  #include "norm.hpp"
30
+ #include "outprod.hpp"
31
+ #include "quants.hpp"
32
+ #include "rope.hpp"
27
33
  #include "softmax.hpp"
28
34
  #include "tsembd.hpp"
29
- #include "im2col.hpp"
30
35
  #include "wkv.hpp"
31
- #include "outprod.hpp"
32
- #include "element_wise.hpp"
33
- #include "cpy.hpp"
34
- #include "gla.hpp"
35
36
 
36
- #endif // GGML_SYCL_BACKEND_HPP
37
+ #endif // GGML_SYCL_BACKEND_HPP
@@ -1,93 +1,74 @@
1
1
  #include "binbcast.hpp"
2
2
 
3
+ #include <array>
3
4
  #include <cstddef>
4
5
  #include <cstdint>
5
6
  #include <sycl/sycl.hpp>
6
7
 
8
+ #include "dpct/helper.hpp"
7
9
  #include "ggml.h"
8
10
 
9
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
10
- static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
11
- int ne0, int ne1, int ne2, int ne3,
12
- int ne10, int ne11, int ne12, int ne13,
13
- /*int s0, */ int s1, int s2, int s3,
14
- /*int s00,*/ int s01, int s02, int s03,
15
- /*int s10,*/ int s11, int s12, int s13,
16
- const sycl::nd_item<3> &item_ct1) {
17
- const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
18
- item_ct1.get_local_id(2);
19
- const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
20
- item_ct1.get_local_id(1));
21
- const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
22
- item_ct1.get_local_id(0)) /
23
- ne3;
24
- const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
25
- item_ct1.get_local_id(0)) %
26
- ne3;
27
-
28
- if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
29
- return;
30
- }
31
-
32
- const int i11 = i1 % ne11;
33
- const int i12 = i2 % ne12;
34
- const int i13 = i3 % ne13;
35
-
36
- const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
37
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
38
- const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
39
-
40
- const src0_t * src0_row = src0 + i_src0;
41
- const src1_t * src1_row = src1 + i_src1;
42
- dst_t * dst_row = dst + i_dst;
43
-
44
- for (int i0 = i0s; i0 < ne0;
45
- i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
46
- const int i10 = i0 % ne10;
47
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
11
+ template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
12
+ static __dpct_inline__ void k_bin_bcast_contiguous(const src0_t * __restrict__ src0, const src1_t * __restrict__ src1,
13
+ dst_t * dst, std::size_t num_elements, const sycl::nd_item<1> & it) {
14
+ auto element_id = it.get_global_id(0);
15
+ auto global_range = it.get_global_range(0);
16
+ for (; element_id < num_elements; element_id += global_range) {
17
+ auto src0_float_val = sycl::vec(src0[element_id]).template convert<float, sycl::rounding_mode::rte>();
18
+ auto src1_float_val = sycl::vec(src1[element_id]).template convert<float, sycl::rounding_mode::rte>();
19
+ float dst_val = bin_op(src0_float_val[0], src1_float_val[0]);
20
+ auto val_to_store = sycl::vec(dst_val).template convert<dst_t, sycl::rounding_mode::rte>();
21
+ dst[element_id] = val_to_store;
48
22
  }
49
23
  }
50
24
 
51
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
52
- static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
53
- int ne0, int ne1, int ne2, int ne3,
54
- int ne10, int ne11, int ne12, int ne13,
55
- /*int s0, */ int s1, int s2, int s3,
56
- /*int s00,*/ int s01, int s02, int s03,
57
- /*int s10,*/ int s11, int s12, int s13,
58
- const sycl::nd_item<3> &item_ct1) {
59
-
60
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
61
- item_ct1.get_local_id(2);
62
-
63
- const int i3 = i/(ne2*ne1*ne0);
64
- const int i2 = (i/(ne1*ne0)) % ne2;
65
- const int i1 = (i/ne0) % ne1;
66
- const int i0 = i % ne0;
67
-
68
- if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
69
- return;
25
+ template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
26
+ static __dpct_inline__ void k_bin_bcast(const src0_t * __restrict__ src0, const src1_t * __restrict__ src1, dst_t * dst,
27
+ int ne0, int ne1, int ne2, int ne3, int ne10, int ne11, int ne12, int ne13,
28
+ int s0, int s1, int s2, int s3, int s00, int s01, int s02, int s03, int s10,
29
+ int s11, int s12, int s13, std::size_t num_dst_elements,
30
+ const sycl::nd_item<1> & item_ct1) {
31
+ auto calculate_logical_index =
32
+ [](const std::array<int, 4> & dims, std::size_t element_id) __attribute__((always_inline))->std::array<int, 4> {
33
+ std::array<int, 4> logical_index;
34
+ #pragma unroll(4)
35
+ for (int i = 3; i >= 0; i--) {
36
+ logical_index[i] = element_id % dims[i];
37
+ element_id /= dims[i];
38
+ }
39
+ return logical_index;
40
+ };
41
+
42
+ auto calculate_index = [](const std::array<int, 4> & dims, const std::array<int, 4> & strides,
43
+ const std::array<int, 4> & indices) __attribute__((always_inline))
44
+ ->std::size_t {
45
+ std::size_t index = 0;
46
+ #pragma unroll(4)
47
+ for (int i = 0; i < 4; i++) {
48
+ auto index_i = indices[i];
49
+ if (indices[i] >= dims[i]) {
50
+ index_i = indices[i] % dims[i];
51
+ }
52
+ index += strides[i] * index_i;
53
+ }
54
+ return index;
55
+ };
56
+
57
+ auto element_id = item_ct1.get_global_id(0);
58
+ for (; element_id < num_dst_elements; element_id += item_ct1.get_global_range(0)) {
59
+ auto logical_index = calculate_logical_index({ ne3, ne2, ne1, ne0 }, element_id);
60
+ auto src_0_index = calculate_index({ ne3, ne2, ne1, ne0 }, { s03, s02, s01, s00 }, logical_index);
61
+ auto src_1_index = calculate_index({ ne13, ne12, ne11, ne10 }, { s13, s12, s11, s10 }, logical_index);
62
+ auto dst_index = calculate_index({ ne3, ne2, ne1, ne0 }, { s3, s2, s1, s0 }, logical_index);
63
+ auto src0_float_val = sycl::vec(src0[src_0_index]).template convert<float, sycl::rounding_mode::rte>();
64
+ auto src1_float_val = sycl::vec(src1[src_1_index]).template convert<float, sycl::rounding_mode::rte>();
65
+ float dst_val = bin_op(src0_float_val[0], src1_float_val[0]);
66
+ auto val_to_store = sycl::vec(dst_val).template convert<dst_t, sycl::rounding_mode::rte>();
67
+ dst[dst_index] = val_to_store;
70
68
  }
71
-
72
- const int i11 = i1 % ne11;
73
- const int i12 = i2 % ne12;
74
- const int i13 = i3 % ne13;
75
-
76
- const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
77
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
78
- const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
79
-
80
- const src0_t * src0_row = src0 + i_src0;
81
- const src1_t * src1_row = src1 + i_src1;
82
- dst_t * dst_row = dst + i_dst;
83
-
84
- const int i10 = i0 % ne10;
85
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
86
69
  }
87
70
 
88
-
89
- template<float (*bin_op)(const float, const float)>
90
- struct bin_bcast_sycl {
71
+ template <float (*bin_op)(const float, const float)> struct bin_bcast_sycl {
91
72
  template <typename src0_t, typename src1_t, typename dst_t>
92
73
  void operator()(const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, const int64_t ne00,
93
74
  const int64_t ne01, const int64_t ne02, const int64_t ne03, const int64_t ne10, const int64_t ne11,
@@ -96,165 +77,73 @@ struct bin_bcast_sycl {
96
77
  const size_t nb10, const size_t nb11, const size_t nb12, const size_t nb13, const size_t nb0,
97
78
  const size_t nb1, const size_t nb2, const size_t nb3, const bool src0_is_contiguous,
98
79
  const bool src1_is_contiguous, const bool dst_is_contiguous, queue_ptr stream) {
99
- int nr0 = ne10 / ne0;
100
- int nr1 = ne11/ne1;
101
- int nr2 = ne12/ne2;
102
- int nr3 = ne13/ne3;
103
-
104
- int nr[4] = { nr0, nr1, nr2, nr3 };
105
-
106
- // collapse dimensions until first broadcast dimension
107
- int64_t cne[] = {ne0, ne1, ne2, ne3};
108
- int64_t cne0[] = {ne00, ne01, ne02, ne03};
109
- int64_t cne1[] = {ne10, ne11, ne12, ne13};
110
- size_t cnb[] = {nb0, nb1, nb2, nb3};
111
- size_t cnb0[] = {nb00, nb01, nb02, nb03};
112
- size_t cnb1[] = {nb10, nb11, nb12, nb13};
113
- auto collapse = [](int64_t cne[]) {
114
- cne[0] *= cne[1];
115
- cne[1] = cne[2];
116
- cne[2] = cne[3];
117
- cne[3] = 1;
118
- };
119
-
120
- auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
121
- cnb[1] *= cne[1];
122
- cnb[2] *= cne[2];
123
- cnb[3] *= cne[3];
124
- };
125
-
126
- if (src0_is_contiguous && src1_is_contiguous && dst_is_contiguous) {
80
+ auto check_bcast_required = [](const std::array<int64_t, 4> & src_dims,
81
+ const std::array<int64_t, 4> & dst_dims) -> bool {
127
82
  for (int i = 0; i < 4; i++) {
128
- if (nr[i] != 1) {
129
- break;
130
- }
131
- if (i > 0) {
132
- collapse_nb(cnb, cne);
133
- collapse_nb(cnb0, cne0);
134
- collapse_nb(cnb1, cne1);
135
- collapse(cne);
136
- collapse(cne0);
137
- collapse(cne1);
83
+ if (dst_dims[i] > src_dims[i]) {
84
+ return true;
138
85
  }
139
86
  }
140
- }
141
- {
142
- int64_t ne0 = cne[0];
143
- int64_t ne1 = cne[1];
144
- int64_t ne2 = cne[2];
145
- int64_t ne3 = cne[3];
146
-
147
- int64_t ne10 = cne1[0];
148
- int64_t ne11 = cne1[1];
149
- int64_t ne12 = cne1[2];
150
- int64_t ne13 = cne1[3];
151
-
152
- size_t nb0 = cnb[0];
153
- size_t nb1 = cnb[1];
154
- size_t nb2 = cnb[2];
155
- size_t nb3 = cnb[3];
156
-
157
- size_t nb00 = cnb0[0];
158
- size_t nb01 = cnb0[1];
159
- size_t nb02 = cnb0[2];
160
- size_t nb03 = cnb0[3];
161
-
162
- size_t nb10 = cnb1[0];
163
- size_t nb11 = cnb1[1];
164
- size_t nb12 = cnb1[2];
165
- size_t nb13 = cnb1[3];
166
-
167
- size_t s0 = nb0 / sizeof(dst_t);
168
- size_t s1 = nb1 / sizeof(dst_t);
169
- size_t s2 = nb2 / sizeof(dst_t);
170
- size_t s3 = nb3 / sizeof(dst_t);
171
-
172
- size_t s10 = nb10 / sizeof(src1_t);
173
- size_t s11 = nb11 / sizeof(src1_t);
174
- size_t s12 = nb12 / sizeof(src1_t);
175
- size_t s13 = nb13 / sizeof(src1_t);
176
-
177
- size_t s00 = nb00 / sizeof(src0_t);
178
- size_t s01 = nb01 / sizeof(src0_t);
179
- size_t s02 = nb02 / sizeof(src0_t);
180
- size_t s03 = nb03 / sizeof(src0_t);
181
-
182
- GGML_UNUSED(s00);
183
-
184
- GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
185
- GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
186
- GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
187
- GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
188
-
189
- GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
190
- GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
191
- GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
192
- GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
193
-
194
- GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
195
- GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
196
- GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
197
- GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
198
-
199
- GGML_ASSERT(s0 == 1);
200
- GGML_ASSERT(s10 == 1);
201
-
202
- const int block_size = 128;
203
-
204
- int64_t hne0 = std::max(ne0/2LL, 1LL);
205
-
206
- sycl::range<3> block_dims(1, 1, 1);
207
- block_dims[2] = std::min<unsigned int>(hne0, block_size);
208
- block_dims[1] = std::min<unsigned int>(
209
- ne1, block_size / (unsigned int)block_dims[2]);
210
- block_dims[0] = std::min(
211
- std::min<unsigned int>(
212
- ne2 * ne3, block_size / (unsigned int)block_dims[2] /
213
- (unsigned int)block_dims[1]),
214
- 64U);
215
-
216
- sycl::range<3> block_nums(
217
- (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
218
- (ne1 + block_dims[1] - 1) / block_dims[1],
219
- (hne0 + block_dims[2] - 1) / block_dims[2]);
220
-
221
- if (block_nums[0] > 65535) {
222
- // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
223
- int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
224
- {
225
- dpct::has_capability_or_fail(stream->get_device(),
226
- {sycl::aspect::fp16});
227
-
228
- stream->parallel_for(
229
- sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
230
- sycl::range<3>(1, 1, block_size),
231
- sycl::range<3>(1, 1, block_size)),
232
- [=](sycl::nd_item<3> item_ct1) {
233
- k_bin_bcast_unravel<bin_op>(
234
- src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
235
- ne10, ne11, ne12, ne13, s1, s2, s3, s01, s02,
236
- s03, s11, s12, s13, item_ct1);
237
- });
238
- }
239
- } else {
240
- /*
241
- DPCT1049:16: The work-group size passed to the SYCL kernel may
242
- exceed the limit. To get the device limit, query
243
- info::device::max_work_group_size. Adjust the work-group size if
244
- needed.
245
- */
246
- dpct::has_capability_or_fail(stream->get_device(),
247
- {sycl::aspect::fp16});
248
-
249
- stream->parallel_for(
250
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
251
- [=](sycl::nd_item<3> item_ct1) {
252
- k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
253
- ne2, ne3, ne10, ne11, ne12, ne13,
254
- s1, s2, s3, s01, s02, s03, s11, s12, s13,
255
- item_ct1);
256
- });
257
- }
87
+ return false;
88
+ };
89
+
90
+ dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
91
+
92
+ GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
93
+ GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
94
+ GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
95
+ GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
96
+
97
+ GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
98
+ GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
99
+ GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
100
+ GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
101
+
102
+ GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
103
+ GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
104
+ GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
105
+ GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
106
+
107
+ // dst strides in number of elements
108
+ size_t s0 = nb0 / sizeof(dst_t);
109
+ size_t s1 = nb1 / sizeof(dst_t);
110
+ size_t s2 = nb2 / sizeof(dst_t);
111
+ size_t s3 = nb3 / sizeof(dst_t);
112
+
113
+ // src1 strides in number of elements
114
+ size_t s10 = nb10 / sizeof(src0_t);
115
+ size_t s11 = nb11 / sizeof(src1_t);
116
+ size_t s12 = nb12 / sizeof(src1_t);
117
+ size_t s13 = nb13 / sizeof(src1_t);
118
+
119
+ // src0 strides in number of elements
120
+ size_t s00 = nb00 / sizeof(src0_t);
121
+ size_t s01 = nb01 / sizeof(src0_t);
122
+ size_t s02 = nb02 / sizeof(src0_t);
123
+ size_t s03 = nb03 / sizeof(src0_t);
124
+
125
+ std::size_t num_dst_elements = static_cast<std::size_t>(ne0) * static_cast<std::size_t>(ne1) *
126
+ static_cast<std::size_t>(ne2) * static_cast<std::size_t>(ne3);
127
+ std::size_t local_range = 256;
128
+ std::size_t global_range = ceil_div(num_dst_elements, local_range) * local_range;
129
+
130
+ bool needs_broadcasting = check_bcast_required({ ne00, ne01, ne02, ne03 }, { ne0, ne1, ne2, ne3 }) ||
131
+ check_bcast_required({ ne10, ne11, ne12, ne13 }, { ne0, ne1, ne2, ne3 });
132
+ bool all_contiguous = src0_is_contiguous && src1_is_contiguous && dst_is_contiguous;
133
+
134
+ if (! needs_broadcasting && all_contiguous) {
135
+ stream->submit([&](sycl::handler & cgh) {
136
+ cgh.parallel_for(sycl::nd_range<1>({ global_range }, { local_range }), [=](sycl::nd_item<1> it) {
137
+ k_bin_bcast_contiguous<bin_op>(src0_dd, src1_dd, dst_dd, num_dst_elements, it);
138
+ });
139
+ });
140
+ } else {
141
+ stream->submit([&](sycl::handler & cgh) {
142
+ cgh.parallel_for(sycl::nd_range<1>({ global_range }, { local_range }), [=](sycl::nd_item<1> it) {
143
+ k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3, ne10, ne11, ne12, ne13, s0, s1,
144
+ s2, s3, s00, s01, s02, s03, s10, s11, s12, s13, num_dst_elements, it);
145
+ });
146
+ });
258
147
  }
259
148
  }
260
149
  };