@fileverse-dev/formulajs 4.4.11-mod-4 → 4.4.11-mod-6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/lib/cjs/index.cjs CHANGED
@@ -3,26 +3,6 @@
3
3
  var jStat = require('jstat');
4
4
  var bessel = require('bessel');
5
5
 
6
- function _interopNamespaceDefault(e) {
7
- var n = Object.create(null);
8
- if (e) {
9
- Object.keys(e).forEach(function (k) {
10
- if (k !== 'default') {
11
- var d = Object.getOwnPropertyDescriptor(e, k);
12
- Object.defineProperty(n, k, d.get ? d : {
13
- enumerable: true,
14
- get: function () { return e[k]; }
15
- });
16
- }
17
- });
18
- }
19
- n.default = e;
20
- return Object.freeze(n);
21
- }
22
-
23
- var jStat__namespace = /*#__PURE__*/_interopNamespaceDefault(jStat);
24
- var bessel__namespace = /*#__PURE__*/_interopNamespaceDefault(bessel);
25
-
26
6
  const nil = new Error('#NULL!');
27
7
  const div0 = new Error('#DIV/0!');
28
8
  const value = new Error('#VALUE!');
@@ -1064,7 +1044,7 @@ function COLUMN(reference, index) {
1064
1044
  return undefined
1065
1045
  }
1066
1046
 
1067
- return jStat__namespace.col(reference, index)
1047
+ return jStat.col(reference, index)
1068
1048
  }
1069
1049
 
1070
1050
  /**
@@ -1088,7 +1068,7 @@ function COLUMNS(array) {
1088
1068
  return 0
1089
1069
  }
1090
1070
 
1091
- return jStat__namespace.cols(array)
1071
+ return jStat.cols(array)
1092
1072
  }
1093
1073
 
1094
1074
  /**
@@ -1294,7 +1274,7 @@ function ROWS(array) {
1294
1274
  return 0
1295
1275
  }
1296
1276
 
1297
- return jStat__namespace.rows(array)
1277
+ return jStat.rows(array)
1298
1278
  }
1299
1279
  /**
1300
1280
  * Returns a sorted array of the elements in an array. The returned array is the same shape as the provided array argument.
@@ -2251,7 +2231,7 @@ function AVEDEV() {
2251
2231
  return range
2252
2232
  }
2253
2233
 
2254
- return jStat__namespace.sum(jStat__namespace(range).subtract(jStat__namespace.mean(range)).abs()[0]) / range.length
2234
+ return jStat.sum(jStat(range).subtract(jStat.mean(range)).abs()[0]) / range.length
2255
2235
  }
2256
2236
 
2257
2237
  /**
@@ -2456,7 +2436,7 @@ BETA.DIST = function (x, alpha, beta, cumulative, a, b) {
2456
2436
 
2457
2437
  x = (x - a) / (b - a);
2458
2438
 
2459
- return cumulative ? jStat__namespace.beta.cdf(x, alpha, beta) : jStat__namespace.beta.pdf(x, alpha, beta)
2439
+ return cumulative ? jStat.beta.cdf(x, alpha, beta) : jStat.beta.pdf(x, alpha, beta)
2460
2440
  };
2461
2441
 
2462
2442
  /**
@@ -2484,7 +2464,7 @@ BETA.INV = (probability, alpha, beta, a, b) => {
2484
2464
  return value
2485
2465
  }
2486
2466
 
2487
- return jStat__namespace.beta.inv(probability, alpha, beta) * (b - a) + a
2467
+ return jStat.beta.inv(probability, alpha, beta) * (b - a) + a
2488
2468
  };
2489
2469
 
2490
2470
  const BINOM = {};
@@ -2511,8 +2491,8 @@ BINOM.DIST = (number_s, trials, probability_s, cumulative) => {
2511
2491
  }
2512
2492
 
2513
2493
  return cumulative
2514
- ? jStat__namespace.binomial.cdf(number_s, trials, probability_s)
2515
- : jStat__namespace.binomial.pdf(number_s, trials, probability_s)
2494
+ ? jStat.binomial.cdf(number_s, trials, probability_s)
2495
+ : jStat.binomial.pdf(number_s, trials, probability_s)
2516
2496
  };
2517
2497
 
2518
2498
  /**
@@ -2569,7 +2549,7 @@ BINOM.INV = (trials, probability_s, alpha) => {
2569
2549
  let x = 0;
2570
2550
 
2571
2551
  while (x <= trials) {
2572
- if (jStat__namespace.binomial.cdf(x, trials, probability_s) >= alpha) {
2552
+ if (jStat.binomial.cdf(x, trials, probability_s) >= alpha) {
2573
2553
  return x
2574
2554
  }
2575
2555
 
@@ -2597,7 +2577,7 @@ CHISQ.DIST = (x, deg_freedom, cumulative) => {
2597
2577
  return value
2598
2578
  }
2599
2579
 
2600
- return cumulative ? jStat__namespace.chisquare.cdf(x, deg_freedom) : jStat__namespace.chisquare.pdf(x, deg_freedom)
2580
+ return cumulative ? jStat.chisquare.cdf(x, deg_freedom) : jStat.chisquare.pdf(x, deg_freedom)
2601
2581
  };
2602
2582
 
2603
2583
  /**
@@ -2622,7 +2602,7 @@ CHISQ.DIST.RT = (x, deg_freedom) => {
2622
2602
  return value
2623
2603
  }
2624
2604
 
2625
- return 1 - jStat__namespace.chisquare.cdf(x, deg_freedom)
2605
+ return 1 - jStat.chisquare.cdf(x, deg_freedom)
2626
2606
  };
2627
2607
 
2628
2608
  /**
@@ -2642,7 +2622,7 @@ CHISQ.INV = (probability, deg_freedom) => {
2642
2622
  return value
2643
2623
  }
2644
2624
 
2645
- return jStat__namespace.chisquare.inv(probability, deg_freedom)
2625
+ return jStat.chisquare.inv(probability, deg_freedom)
2646
2626
  };
2647
2627
 
2648
2628
  /**
@@ -2667,7 +2647,7 @@ CHISQ.INV.RT = (probability, deg_freedom) => {
2667
2647
  return value
2668
2648
  }
2669
2649
 
2670
- return jStat__namespace.chisquare.inv(1.0 - probability, deg_freedom)
2650
+ return jStat.chisquare.inv(1.0 - probability, deg_freedom)
2671
2651
  };
2672
2652
 
2673
2653
  /**
@@ -2782,7 +2762,7 @@ CONFIDENCE.NORM = (alpha, standard_dev, size) => {
2782
2762
  return value
2783
2763
  }
2784
2764
 
2785
- return jStat__namespace.normalci(1, alpha, standard_dev, size)[1] - 1
2765
+ return jStat.normalci(1, alpha, standard_dev, size)[1] - 1
2786
2766
  };
2787
2767
 
2788
2768
  /**
@@ -2804,7 +2784,7 @@ CONFIDENCE.T = (alpha, standard_dev, size) => {
2804
2784
  return value
2805
2785
  }
2806
2786
 
2807
- return jStat__namespace.tci(1, alpha, standard_dev, size)[1] - 1
2787
+ return jStat.tci(1, alpha, standard_dev, size)[1] - 1
2808
2788
  };
2809
2789
 
2810
2790
  /**
@@ -2824,7 +2804,7 @@ function CORREL(array1, array2) {
2824
2804
  return value
2825
2805
  }
2826
2806
 
2827
- return jStat__namespace.corrcoeff(array1, array2)
2807
+ return jStat.corrcoeff(array1, array2)
2828
2808
  }
2829
2809
 
2830
2810
  /**
@@ -2975,8 +2955,8 @@ COVARIANCE.P = (array1, array2) => {
2975
2955
  return value
2976
2956
  }
2977
2957
 
2978
- const mean1 = jStat__namespace.mean(array1);
2979
- const mean2 = jStat__namespace.mean(array2);
2958
+ const mean1 = jStat.mean(array1);
2959
+ const mean2 = jStat.mean(array2);
2980
2960
 
2981
2961
  let result = 0;
2982
2962
 
@@ -3006,7 +2986,7 @@ COVARIANCE.S = (array1, array2) => {
3006
2986
  return value
3007
2987
  }
3008
2988
 
3009
- return jStat__namespace.covariance(array1, array2)
2989
+ return jStat.covariance(array1, array2)
3010
2990
  };
3011
2991
 
3012
2992
  /**
@@ -3024,7 +3004,7 @@ function DEVSQ() {
3024
3004
  return range
3025
3005
  }
3026
3006
 
3027
- const mean = jStat__namespace.mean(range);
3007
+ const mean = jStat.mean(range);
3028
3008
 
3029
3009
  let result = 0;
3030
3010
 
@@ -3055,7 +3035,7 @@ EXPON.DIST = (x, lambda, cumulative) => {
3055
3035
  return value
3056
3036
  }
3057
3037
 
3058
- return cumulative ? jStat__namespace.exponential.cdf(x, lambda) : jStat__namespace.exponential.pdf(x, lambda)
3038
+ return cumulative ? jStat.exponential.cdf(x, lambda) : jStat.exponential.pdf(x, lambda)
3059
3039
  };
3060
3040
 
3061
3041
  const F = {};
@@ -3081,8 +3061,8 @@ F.DIST = (x, deg_freedom1, deg_freedom2, cumulative) => {
3081
3061
  }
3082
3062
 
3083
3063
  return cumulative
3084
- ? jStat__namespace.centralF.cdf(x, deg_freedom1, deg_freedom2)
3085
- : jStat__namespace.centralF.pdf(x, deg_freedom1, deg_freedom2)
3064
+ ? jStat.centralF.cdf(x, deg_freedom1, deg_freedom2)
3065
+ : jStat.centralF.pdf(x, deg_freedom1, deg_freedom2)
3086
3066
  };
3087
3067
 
3088
3068
  /**
@@ -3108,7 +3088,7 @@ F.DIST.RT = function (x, deg_freedom1, deg_freedom2) {
3108
3088
  return value
3109
3089
  }
3110
3090
 
3111
- return 1 - jStat__namespace.centralF.cdf(x, deg_freedom1, deg_freedom2)
3091
+ return 1 - jStat.centralF.cdf(x, deg_freedom1, deg_freedom2)
3112
3092
  };
3113
3093
 
3114
3094
  /**
@@ -3134,7 +3114,7 @@ F.INV = (probability, deg_freedom1, deg_freedom2) => {
3134
3114
  return num
3135
3115
  }
3136
3116
 
3137
- return jStat__namespace.centralF.inv(probability, deg_freedom1, deg_freedom2)
3117
+ return jStat.centralF.inv(probability, deg_freedom1, deg_freedom2)
3138
3118
  };
3139
3119
 
3140
3120
  /**
@@ -3167,7 +3147,7 @@ F.INV.RT = function (probability, deg_freedom1, deg_freedom2) {
3167
3147
  return value
3168
3148
  }
3169
3149
 
3170
- return jStat__namespace.centralF.inv(1.0 - probability, deg_freedom1, deg_freedom2)
3150
+ return jStat.centralF.inv(1.0 - probability, deg_freedom1, deg_freedom2)
3171
3151
  };
3172
3152
 
3173
3153
  /**
@@ -3267,8 +3247,8 @@ function FORECAST(x, known_ys, known_xs) {
3267
3247
  return value
3268
3248
  }
3269
3249
 
3270
- const xmean = jStat__namespace.mean(known_xs);
3271
- const ymean = jStat__namespace.mean(known_ys);
3250
+ const xmean = jStat.mean(known_xs);
3251
+ const ymean = jStat.mean(known_ys);
3272
3252
 
3273
3253
  const n = known_xs.length;
3274
3254
 
@@ -3353,7 +3333,7 @@ function GAMMA(number) {
3353
3333
  return num
3354
3334
  }
3355
3335
 
3356
- return jStat__namespace.gammafn(number)
3336
+ return jStat.gammafn(number)
3357
3337
  }
3358
3338
 
3359
3339
  /**
@@ -3380,7 +3360,7 @@ GAMMA.DIST = function (value$1, alpha, beta, cumulative) {
3380
3360
  return value
3381
3361
  }
3382
3362
 
3383
- return cumulative ? jStat__namespace.gamma.cdf(value$1, alpha, beta, true) : jStat__namespace.gamma.pdf(value$1, alpha, beta, false)
3363
+ return cumulative ? jStat.gamma.cdf(value$1, alpha, beta, true) : jStat.gamma.pdf(value$1, alpha, beta, false)
3384
3364
  };
3385
3365
 
3386
3366
  /**
@@ -3406,7 +3386,7 @@ GAMMA.INV = function (probability, alpha, beta) {
3406
3386
  return value
3407
3387
  }
3408
3388
 
3409
- return jStat__namespace.gamma.inv(probability, alpha, beta)
3389
+ return jStat.gamma.inv(probability, alpha, beta)
3410
3390
  };
3411
3391
 
3412
3392
  /**
@@ -3424,7 +3404,7 @@ function GAMMALN(x) {
3424
3404
  return x
3425
3405
  }
3426
3406
 
3427
- return jStat__namespace.gammaln(x)
3407
+ return jStat.gammaln(x)
3428
3408
  }
3429
3409
 
3430
3410
  /**
@@ -3448,7 +3428,7 @@ GAMMALN.PRECISE = function (x) {
3448
3428
  return value
3449
3429
  }
3450
3430
 
3451
- return jStat__namespace.gammaln(x)
3431
+ return jStat.gammaln(x)
3452
3432
  };
3453
3433
 
3454
3434
  /**
@@ -3466,7 +3446,7 @@ function GAUSS(z) {
3466
3446
  return z
3467
3447
  }
3468
3448
 
3469
- return jStat__namespace.normal.cdf(z, 0, 1) - 0.5
3449
+ return jStat.normal.cdf(z, 0, 1) - 0.5
3470
3450
  }
3471
3451
 
3472
3452
  /**
@@ -3484,7 +3464,7 @@ function GEOMEAN() {
3484
3464
  return args
3485
3465
  }
3486
3466
 
3487
- return jStat__namespace.geomean(args)
3467
+ return jStat.geomean(args)
3488
3468
  }
3489
3469
 
3490
3470
  /**
@@ -3695,7 +3675,7 @@ function KURT() {
3695
3675
  return range
3696
3676
  }
3697
3677
 
3698
- const mean = jStat__namespace.mean(range);
3678
+ const mean = jStat.mean(range);
3699
3679
  const n = range.length;
3700
3680
 
3701
3681
  let sigma = 0;
@@ -3704,7 +3684,7 @@ function KURT() {
3704
3684
  sigma += Math.pow(range[i] - mean, 4);
3705
3685
  }
3706
3686
 
3707
- sigma = sigma / Math.pow(jStat__namespace.stdev(range, true), 4);
3687
+ sigma = sigma / Math.pow(jStat.stdev(range, true), 4);
3708
3688
 
3709
3689
  return ((n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3))) * sigma - (3 * (n - 1) * (n - 1)) / ((n - 2) * (n - 3))
3710
3690
  }
@@ -3760,8 +3740,8 @@ function LINEST(known_y, known_x) {
3760
3740
  return value
3761
3741
  }
3762
3742
 
3763
- const ymean = jStat__namespace.mean(known_y);
3764
- const xmean = jStat__namespace.mean(known_x);
3743
+ const ymean = jStat.mean(known_y);
3744
+ const xmean = jStat.mean(known_x);
3765
3745
  const n = known_x.length;
3766
3746
 
3767
3747
  let num = 0;
@@ -3841,7 +3821,7 @@ LOGNORM.DIST = (x, mean, standard_dev, cumulative) => {
3841
3821
  return value
3842
3822
  }
3843
3823
 
3844
- return cumulative ? jStat__namespace.lognormal.cdf(x, mean, standard_dev) : jStat__namespace.lognormal.pdf(x, mean, standard_dev)
3824
+ return cumulative ? jStat.lognormal.cdf(x, mean, standard_dev) : jStat.lognormal.pdf(x, mean, standard_dev)
3845
3825
  };
3846
3826
 
3847
3827
  /**
@@ -3863,7 +3843,7 @@ LOGNORM.INV = (probability, mean, standard_dev) => {
3863
3843
  return value
3864
3844
  }
3865
3845
 
3866
- return jStat__namespace.lognormal.inv(probability, mean, standard_dev)
3846
+ return jStat.lognormal.inv(probability, mean, standard_dev)
3867
3847
  };
3868
3848
 
3869
3849
  /**
@@ -3941,7 +3921,7 @@ function MEDIAN() {
3941
3921
 
3942
3922
  const range = arrayValuesToNumbers(flatArguments);
3943
3923
 
3944
- let result = jStat__namespace.median(range);
3924
+ let result = jStat.median(range);
3945
3925
 
3946
3926
  if (isNaN(result)) {
3947
3927
  result = num;
@@ -4090,8 +4070,8 @@ NEGBINOM.DIST = (number_f, number_s, probability_s, cumulative) => {
4090
4070
  }
4091
4071
 
4092
4072
  return cumulative
4093
- ? jStat__namespace.negbin.cdf(number_f, number_s, probability_s)
4094
- : jStat__namespace.negbin.pdf(number_f, number_s, probability_s)
4073
+ ? jStat.negbin.cdf(number_f, number_s, probability_s)
4074
+ : jStat.negbin.pdf(number_f, number_s, probability_s)
4095
4075
  };
4096
4076
 
4097
4077
  const NORM = {};
@@ -4121,7 +4101,7 @@ NORM.DIST = (x, mean, standard_dev, cumulative) => {
4121
4101
  }
4122
4102
 
4123
4103
  // Return normal distribution computed by jStat [http://jstat.org]
4124
- return cumulative ? jStat__namespace.normal.cdf(x, mean, standard_dev) : jStat__namespace.normal.pdf(x, mean, standard_dev)
4104
+ return cumulative ? jStat.normal.cdf(x, mean, standard_dev) : jStat.normal.pdf(x, mean, standard_dev)
4125
4105
  };
4126
4106
 
4127
4107
  /**
@@ -4143,7 +4123,7 @@ NORM.INV = (probability, mean, standard_dev) => {
4143
4123
  return value
4144
4124
  }
4145
4125
 
4146
- return jStat__namespace.normal.inv(probability, mean, standard_dev)
4126
+ return jStat.normal.inv(probability, mean, standard_dev)
4147
4127
  };
4148
4128
 
4149
4129
  NORM.S = {};
@@ -4164,7 +4144,7 @@ NORM.S.DIST = (z, cumulative) => {
4164
4144
  return value
4165
4145
  }
4166
4146
 
4167
- return cumulative ? jStat__namespace.normal.cdf(z, 0, 1) : jStat__namespace.normal.pdf(z, 0, 1)
4147
+ return cumulative ? jStat.normal.cdf(z, 0, 1) : jStat.normal.pdf(z, 0, 1)
4168
4148
  };
4169
4149
 
4170
4150
  /**
@@ -4182,7 +4162,7 @@ NORM.S.INV = (probability) => {
4182
4162
  return value
4183
4163
  }
4184
4164
 
4185
- return jStat__namespace.normal.inv(probability, 0, 1)
4165
+ return jStat.normal.inv(probability, 0, 1)
4186
4166
  };
4187
4167
 
4188
4168
  /**
@@ -4202,8 +4182,8 @@ function PEARSON(array1, array2) {
4202
4182
  return value
4203
4183
  }
4204
4184
 
4205
- const xmean = jStat__namespace.mean(array1);
4206
- const ymean = jStat__namespace.mean(array2);
4185
+ const xmean = jStat.mean(array1);
4186
+ const ymean = jStat.mean(array2);
4207
4187
  const n = array1.length;
4208
4188
 
4209
4189
  let num = 0;
@@ -4448,7 +4428,7 @@ POISSON.DIST = (x, mean, cumulative) => {
4448
4428
  return value
4449
4429
  }
4450
4430
 
4451
- return cumulative ? jStat__namespace.poisson.cdf(x, mean) : jStat__namespace.poisson.pdf(x, mean)
4431
+ return cumulative ? jStat.poisson.cdf(x, mean) : jStat.poisson.pdf(x, mean)
4452
4432
  };
4453
4433
 
4454
4434
  /**
@@ -4649,7 +4629,7 @@ function ROW(reference, index) {
4649
4629
  return undefined
4650
4630
  }
4651
4631
 
4652
- return jStat__namespace.row(reference, index)
4632
+ return jStat.row(reference, index)
4653
4633
  }
4654
4634
 
4655
4635
  /**
@@ -4688,7 +4668,7 @@ function SKEW() {
4688
4668
  return range
4689
4669
  }
4690
4670
 
4691
- const mean = jStat__namespace.mean(range);
4671
+ const mean = jStat.mean(range);
4692
4672
  const n = range.length;
4693
4673
 
4694
4674
  let sigma = 0;
@@ -4697,7 +4677,7 @@ function SKEW() {
4697
4677
  sigma += Math.pow(range[i] - mean, 3);
4698
4678
  }
4699
4679
 
4700
- return (n * sigma) / ((n - 1) * (n - 2) * Math.pow(jStat__namespace.stdev(range, true), 3))
4680
+ return (n * sigma) / ((n - 1) * (n - 2) * Math.pow(jStat.stdev(range, true), 3))
4701
4681
  }
4702
4682
 
4703
4683
  /**
@@ -4714,7 +4694,7 @@ SKEW.P = function () {
4714
4694
  return range
4715
4695
  }
4716
4696
 
4717
- const mean = jStat__namespace.mean(range);
4697
+ const mean = jStat.mean(range);
4718
4698
  const n = range.length;
4719
4699
 
4720
4700
  let m2 = 0;
@@ -4748,8 +4728,8 @@ function SLOPE(known_y, known_x) {
4748
4728
  return value
4749
4729
  }
4750
4730
 
4751
- const xmean = jStat__namespace.mean(known_x);
4752
- const ymean = jStat__namespace.mean(known_y);
4731
+ const xmean = jStat.mean(known_x);
4732
+ const ymean = jStat.mean(known_y);
4753
4733
  const n = known_x.length;
4754
4734
 
4755
4735
  let num = 0;
@@ -4894,8 +4874,8 @@ function STEYX(known_y, known_x) {
4894
4874
  return value
4895
4875
  }
4896
4876
 
4897
- const xmean = jStat__namespace.mean(known_x);
4898
- const ymean = jStat__namespace.mean(known_y);
4877
+ const xmean = jStat.mean(known_x);
4878
+ const ymean = jStat.mean(known_y);
4899
4879
  const n = known_x.length;
4900
4880
 
4901
4881
  let lft = 0;
@@ -4951,7 +4931,7 @@ T.DIST['2T'] = function (x, deg_freedom) {
4951
4931
  return value
4952
4932
  }
4953
4933
 
4954
- return (1 - jStat__namespace.studentt.cdf(x, deg_freedom)) * 2
4934
+ return (1 - jStat.studentt.cdf(x, deg_freedom)) * 2
4955
4935
  };
4956
4936
 
4957
4937
  /**
@@ -4976,7 +4956,7 @@ T.DIST.RT = function (x, deg_freedom) {
4976
4956
  return value
4977
4957
  }
4978
4958
 
4979
- return 1 - jStat__namespace.studentt.cdf(x, deg_freedom)
4959
+ return 1 - jStat.studentt.cdf(x, deg_freedom)
4980
4960
  };
4981
4961
 
4982
4962
  /**
@@ -4996,7 +4976,7 @@ T.INV = (probability, deg_freedom) => {
4996
4976
  return value
4997
4977
  }
4998
4978
 
4999
- return jStat__namespace.studentt.inv(probability, deg_freedom)
4979
+ return jStat.studentt.inv(probability, deg_freedom)
5000
4980
  };
5001
4981
 
5002
4982
  /**
@@ -5020,7 +5000,7 @@ T.INV['2T'] = (probability, deg_freedom) => {
5020
5000
  return value
5021
5001
  }
5022
5002
 
5023
- return Math.abs(jStat__namespace.studentt.inv(probability / 2, deg_freedom))
5003
+ return Math.abs(jStat.studentt.inv(probability / 2, deg_freedom))
5024
5004
  };
5025
5005
 
5026
5006
  // The algorithm can be found here:
@@ -5042,8 +5022,8 @@ T.TEST = (array1, array2) => {
5042
5022
  return value
5043
5023
  }
5044
5024
 
5045
- const mean_x = jStat__namespace.mean(array1);
5046
- const mean_y = jStat__namespace.mean(array2);
5025
+ const mean_x = jStat.mean(array1);
5026
+ const mean_y = jStat.mean(array2);
5047
5027
 
5048
5028
  let s_x = 0;
5049
5029
  let s_y = 0;
@@ -5115,7 +5095,7 @@ function TRIMMEAN(range, percent) {
5115
5095
 
5116
5096
  const trim = FLOOR(range.length * percent, 2) / 2;
5117
5097
 
5118
- return jStat__namespace.mean(
5098
+ return jStat.mean(
5119
5099
  initial(
5120
5100
  rest(
5121
5101
  range.sort((a, b) => a - b),
@@ -8589,7 +8569,7 @@ function BESSELI(x, n) {
8589
8569
  return value
8590
8570
  }
8591
8571
 
8592
- return bessel__namespace.besseli(x, n)
8572
+ return bessel.besseli(x, n)
8593
8573
  }
8594
8574
 
8595
8575
  /**
@@ -8609,7 +8589,7 @@ function BESSELJ(x, n) {
8609
8589
  return value
8610
8590
  }
8611
8591
 
8612
- return bessel__namespace.besselj(x, n)
8592
+ return bessel.besselj(x, n)
8613
8593
  }
8614
8594
 
8615
8595
  /**
@@ -8629,7 +8609,7 @@ function BESSELK(x, n) {
8629
8609
  return value
8630
8610
  }
8631
8611
 
8632
- return bessel__namespace.besselk(x, n)
8612
+ return bessel.besselk(x, n)
8633
8613
  }
8634
8614
 
8635
8615
  /**
@@ -8649,7 +8629,7 @@ function BESSELY(x, n) {
8649
8629
  return value
8650
8630
  }
8651
8631
 
8652
- return bessel__namespace.bessely(x, n)
8632
+ return bessel.bessely(x, n)
8653
8633
  }
8654
8634
 
8655
8635
  /**
@@ -9500,7 +9480,7 @@ function ERF(lower_limit, upper_limit) {
9500
9480
  return value
9501
9481
  }
9502
9482
 
9503
- return jStat__namespace.erf(lower_limit)
9483
+ return jStat.erf(lower_limit)
9504
9484
  }
9505
9485
 
9506
9486
  // TODO
@@ -9533,7 +9513,7 @@ function ERFC(x) {
9533
9513
  return value
9534
9514
  }
9535
9515
 
9536
- return jStat__namespace.erfc(x)
9516
+ return jStat.erfc(x)
9537
9517
  }
9538
9518
 
9539
9519
  // TODO
@@ -13564,40 +13544,6 @@ const SERVICE_API_KEY = {
13564
13544
  Etherscan: "ETHERSCAN_API_KEY"
13565
13545
  };
13566
13546
 
13567
- const FUNCTION_LOCALE = [
13568
- {
13569
- n: "GETTXLIST",
13570
- t: 20,
13571
- d: "Returns the list of transactions performed by an address, with optional pagination.",
13572
- a: "Returns the list of transactions performed by an address, with optional pagination.",
13573
- p: [
13574
- {
13575
- name: "value1",
13576
- detail:
13577
- "The address string representing the addresses to check for balance",
13578
- example: `"0xc5102fE9359FD9a28f877a67E36B0F050d81a3CC"`,
13579
- require: "m",
13580
- },
13581
- {
13582
- name: "value2",
13583
- detail: "Page number.",
13584
- example: "1",
13585
- require: "o",
13586
- repeat: "n",
13587
- type: "rangenumber",
13588
- },
13589
- {
13590
- name: "value3",
13591
- detail: "Page size(offset).",
13592
- example: "100",
13593
- require: "o",
13594
- repeat: "n",
13595
- type: "rangenumber",
13596
- },
13597
- ],
13598
- }
13599
- ];
13600
-
13601
13547
  async function GETTXLIST(address, page, offset) {
13602
13548
  const API_KEY = window.localStorage.getItem('ETHERSCAN_API_KEY');
13603
13549
  console.log("FORMULA JS API KEY ETHERSCAN NOT FOUND", API_KEY);
@@ -13776,7 +13722,6 @@ exports.FLOORPRECISE = FLOORPRECISE;
13776
13722
  exports.FORECAST = FORECAST;
13777
13723
  exports.FREQUENCY = FREQUENCY;
13778
13724
  exports.FTEST = FTEST;
13779
- exports.FUNCTION_LOCALE = FUNCTION_LOCALE;
13780
13725
  exports.FV = FV;
13781
13726
  exports.FVSCHEDULE = FVSCHEDULE;
13782
13727
  exports.GAMMA = GAMMA;
@@ -13965,7 +13910,6 @@ exports.SEC = SEC;
13965
13910
  exports.SECH = SECH;
13966
13911
  exports.SECOND = SECOND;
13967
13912
  exports.SERIESSUM = SERIESSUM;
13968
- exports.SERVICE_API_KEY = SERVICE_API_KEY;
13969
13913
  exports.SHEET = SHEET;
13970
13914
  exports.SHEETS = SHEETS;
13971
13915
  exports.SIGN = SIGN;
@@ -0,0 +1,40 @@
1
+ // src/crypto-constants.js
2
+ var SERVICE_API_KEY = {
3
+ Etherscan: "ETHERSCAN_API_KEY"
4
+ };
5
+ var FUNCTION_LOCALE = [
6
+ {
7
+ n: "GETTXLIST",
8
+ t: 20,
9
+ d: "Returns the list of transactions performed by an address, with optional pagination.",
10
+ a: "Returns the list of transactions performed by an address, with optional pagination.",
11
+ p: [
12
+ {
13
+ name: "value1",
14
+ detail: "The address string representing the addresses to check for balance",
15
+ example: `"0xc5102fE9359FD9a28f877a67E36B0F050d81a3CC"`,
16
+ require: "m"
17
+ },
18
+ {
19
+ name: "value2",
20
+ detail: "Page number.",
21
+ example: "1",
22
+ require: "o",
23
+ repeat: "n",
24
+ type: "rangenumber"
25
+ },
26
+ {
27
+ name: "value3",
28
+ detail: "Page size(offset).",
29
+ example: "100",
30
+ require: "o",
31
+ repeat: "n",
32
+ type: "rangenumber"
33
+ }
34
+ ]
35
+ }
36
+ ];
37
+ export {
38
+ FUNCTION_LOCALE,
39
+ SERVICE_API_KEY
40
+ };