@fileverse-dev/formulajs 4.4.11-mod-3 → 4.4.11-mod-5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/lib/cjs/index.cjs CHANGED
@@ -1,8 +1,28 @@
1
1
  'use strict';
2
2
 
3
- require('jstat');
3
+ var jStat = require('jstat');
4
4
  var bessel = require('bessel');
5
5
 
6
+ function _interopNamespaceDefault(e) {
7
+ var n = Object.create(null);
8
+ if (e) {
9
+ Object.keys(e).forEach(function (k) {
10
+ if (k !== 'default') {
11
+ var d = Object.getOwnPropertyDescriptor(e, k);
12
+ Object.defineProperty(n, k, d.get ? d : {
13
+ enumerable: true,
14
+ get: function () { return e[k]; }
15
+ });
16
+ }
17
+ });
18
+ }
19
+ n.default = e;
20
+ return Object.freeze(n);
21
+ }
22
+
23
+ var jStat__namespace = /*#__PURE__*/_interopNamespaceDefault(jStat);
24
+ var bessel__namespace = /*#__PURE__*/_interopNamespaceDefault(bessel);
25
+
6
26
  const nil = new Error('#NULL!');
7
27
  const div0 = new Error('#DIV/0!');
8
28
  const value = new Error('#VALUE!');
@@ -1044,7 +1064,7 @@ function COLUMN(reference, index) {
1044
1064
  return undefined
1045
1065
  }
1046
1066
 
1047
- return jStat.col(reference, index)
1067
+ return jStat__namespace.col(reference, index)
1048
1068
  }
1049
1069
 
1050
1070
  /**
@@ -1068,7 +1088,7 @@ function COLUMNS(array) {
1068
1088
  return 0
1069
1089
  }
1070
1090
 
1071
- return jStat.cols(array)
1091
+ return jStat__namespace.cols(array)
1072
1092
  }
1073
1093
 
1074
1094
  /**
@@ -1274,7 +1294,7 @@ function ROWS(array) {
1274
1294
  return 0
1275
1295
  }
1276
1296
 
1277
- return jStat.rows(array)
1297
+ return jStat__namespace.rows(array)
1278
1298
  }
1279
1299
  /**
1280
1300
  * Returns a sorted array of the elements in an array. The returned array is the same shape as the provided array argument.
@@ -2231,7 +2251,7 @@ function AVEDEV() {
2231
2251
  return range
2232
2252
  }
2233
2253
 
2234
- return jStat.sum(jStat(range).subtract(jStat.mean(range)).abs()[0]) / range.length
2254
+ return jStat__namespace.sum(jStat__namespace(range).subtract(jStat__namespace.mean(range)).abs()[0]) / range.length
2235
2255
  }
2236
2256
 
2237
2257
  /**
@@ -2436,7 +2456,7 @@ BETA.DIST = function (x, alpha, beta, cumulative, a, b) {
2436
2456
 
2437
2457
  x = (x - a) / (b - a);
2438
2458
 
2439
- return cumulative ? jStat.beta.cdf(x, alpha, beta) : jStat.beta.pdf(x, alpha, beta)
2459
+ return cumulative ? jStat__namespace.beta.cdf(x, alpha, beta) : jStat__namespace.beta.pdf(x, alpha, beta)
2440
2460
  };
2441
2461
 
2442
2462
  /**
@@ -2464,7 +2484,7 @@ BETA.INV = (probability, alpha, beta, a, b) => {
2464
2484
  return value
2465
2485
  }
2466
2486
 
2467
- return jStat.beta.inv(probability, alpha, beta) * (b - a) + a
2487
+ return jStat__namespace.beta.inv(probability, alpha, beta) * (b - a) + a
2468
2488
  };
2469
2489
 
2470
2490
  const BINOM = {};
@@ -2491,8 +2511,8 @@ BINOM.DIST = (number_s, trials, probability_s, cumulative) => {
2491
2511
  }
2492
2512
 
2493
2513
  return cumulative
2494
- ? jStat.binomial.cdf(number_s, trials, probability_s)
2495
- : jStat.binomial.pdf(number_s, trials, probability_s)
2514
+ ? jStat__namespace.binomial.cdf(number_s, trials, probability_s)
2515
+ : jStat__namespace.binomial.pdf(number_s, trials, probability_s)
2496
2516
  };
2497
2517
 
2498
2518
  /**
@@ -2549,7 +2569,7 @@ BINOM.INV = (trials, probability_s, alpha) => {
2549
2569
  let x = 0;
2550
2570
 
2551
2571
  while (x <= trials) {
2552
- if (jStat.binomial.cdf(x, trials, probability_s) >= alpha) {
2572
+ if (jStat__namespace.binomial.cdf(x, trials, probability_s) >= alpha) {
2553
2573
  return x
2554
2574
  }
2555
2575
 
@@ -2577,7 +2597,7 @@ CHISQ.DIST = (x, deg_freedom, cumulative) => {
2577
2597
  return value
2578
2598
  }
2579
2599
 
2580
- return cumulative ? jStat.chisquare.cdf(x, deg_freedom) : jStat.chisquare.pdf(x, deg_freedom)
2600
+ return cumulative ? jStat__namespace.chisquare.cdf(x, deg_freedom) : jStat__namespace.chisquare.pdf(x, deg_freedom)
2581
2601
  };
2582
2602
 
2583
2603
  /**
@@ -2602,7 +2622,7 @@ CHISQ.DIST.RT = (x, deg_freedom) => {
2602
2622
  return value
2603
2623
  }
2604
2624
 
2605
- return 1 - jStat.chisquare.cdf(x, deg_freedom)
2625
+ return 1 - jStat__namespace.chisquare.cdf(x, deg_freedom)
2606
2626
  };
2607
2627
 
2608
2628
  /**
@@ -2622,7 +2642,7 @@ CHISQ.INV = (probability, deg_freedom) => {
2622
2642
  return value
2623
2643
  }
2624
2644
 
2625
- return jStat.chisquare.inv(probability, deg_freedom)
2645
+ return jStat__namespace.chisquare.inv(probability, deg_freedom)
2626
2646
  };
2627
2647
 
2628
2648
  /**
@@ -2647,7 +2667,7 @@ CHISQ.INV.RT = (probability, deg_freedom) => {
2647
2667
  return value
2648
2668
  }
2649
2669
 
2650
- return jStat.chisquare.inv(1.0 - probability, deg_freedom)
2670
+ return jStat__namespace.chisquare.inv(1.0 - probability, deg_freedom)
2651
2671
  };
2652
2672
 
2653
2673
  /**
@@ -2762,7 +2782,7 @@ CONFIDENCE.NORM = (alpha, standard_dev, size) => {
2762
2782
  return value
2763
2783
  }
2764
2784
 
2765
- return jStat.normalci(1, alpha, standard_dev, size)[1] - 1
2785
+ return jStat__namespace.normalci(1, alpha, standard_dev, size)[1] - 1
2766
2786
  };
2767
2787
 
2768
2788
  /**
@@ -2784,7 +2804,7 @@ CONFIDENCE.T = (alpha, standard_dev, size) => {
2784
2804
  return value
2785
2805
  }
2786
2806
 
2787
- return jStat.tci(1, alpha, standard_dev, size)[1] - 1
2807
+ return jStat__namespace.tci(1, alpha, standard_dev, size)[1] - 1
2788
2808
  };
2789
2809
 
2790
2810
  /**
@@ -2804,7 +2824,7 @@ function CORREL(array1, array2) {
2804
2824
  return value
2805
2825
  }
2806
2826
 
2807
- return jStat.corrcoeff(array1, array2)
2827
+ return jStat__namespace.corrcoeff(array1, array2)
2808
2828
  }
2809
2829
 
2810
2830
  /**
@@ -2955,8 +2975,8 @@ COVARIANCE.P = (array1, array2) => {
2955
2975
  return value
2956
2976
  }
2957
2977
 
2958
- const mean1 = jStat.mean(array1);
2959
- const mean2 = jStat.mean(array2);
2978
+ const mean1 = jStat__namespace.mean(array1);
2979
+ const mean2 = jStat__namespace.mean(array2);
2960
2980
 
2961
2981
  let result = 0;
2962
2982
 
@@ -2986,7 +3006,7 @@ COVARIANCE.S = (array1, array2) => {
2986
3006
  return value
2987
3007
  }
2988
3008
 
2989
- return jStat.covariance(array1, array2)
3009
+ return jStat__namespace.covariance(array1, array2)
2990
3010
  };
2991
3011
 
2992
3012
  /**
@@ -3004,7 +3024,7 @@ function DEVSQ() {
3004
3024
  return range
3005
3025
  }
3006
3026
 
3007
- const mean = jStat.mean(range);
3027
+ const mean = jStat__namespace.mean(range);
3008
3028
 
3009
3029
  let result = 0;
3010
3030
 
@@ -3035,7 +3055,7 @@ EXPON.DIST = (x, lambda, cumulative) => {
3035
3055
  return value
3036
3056
  }
3037
3057
 
3038
- return cumulative ? jStat.exponential.cdf(x, lambda) : jStat.exponential.pdf(x, lambda)
3058
+ return cumulative ? jStat__namespace.exponential.cdf(x, lambda) : jStat__namespace.exponential.pdf(x, lambda)
3039
3059
  };
3040
3060
 
3041
3061
  const F = {};
@@ -3061,8 +3081,8 @@ F.DIST = (x, deg_freedom1, deg_freedom2, cumulative) => {
3061
3081
  }
3062
3082
 
3063
3083
  return cumulative
3064
- ? jStat.centralF.cdf(x, deg_freedom1, deg_freedom2)
3065
- : jStat.centralF.pdf(x, deg_freedom1, deg_freedom2)
3084
+ ? jStat__namespace.centralF.cdf(x, deg_freedom1, deg_freedom2)
3085
+ : jStat__namespace.centralF.pdf(x, deg_freedom1, deg_freedom2)
3066
3086
  };
3067
3087
 
3068
3088
  /**
@@ -3088,7 +3108,7 @@ F.DIST.RT = function (x, deg_freedom1, deg_freedom2) {
3088
3108
  return value
3089
3109
  }
3090
3110
 
3091
- return 1 - jStat.centralF.cdf(x, deg_freedom1, deg_freedom2)
3111
+ return 1 - jStat__namespace.centralF.cdf(x, deg_freedom1, deg_freedom2)
3092
3112
  };
3093
3113
 
3094
3114
  /**
@@ -3114,7 +3134,7 @@ F.INV = (probability, deg_freedom1, deg_freedom2) => {
3114
3134
  return num
3115
3135
  }
3116
3136
 
3117
- return jStat.centralF.inv(probability, deg_freedom1, deg_freedom2)
3137
+ return jStat__namespace.centralF.inv(probability, deg_freedom1, deg_freedom2)
3118
3138
  };
3119
3139
 
3120
3140
  /**
@@ -3147,7 +3167,7 @@ F.INV.RT = function (probability, deg_freedom1, deg_freedom2) {
3147
3167
  return value
3148
3168
  }
3149
3169
 
3150
- return jStat.centralF.inv(1.0 - probability, deg_freedom1, deg_freedom2)
3170
+ return jStat__namespace.centralF.inv(1.0 - probability, deg_freedom1, deg_freedom2)
3151
3171
  };
3152
3172
 
3153
3173
  /**
@@ -3247,8 +3267,8 @@ function FORECAST(x, known_ys, known_xs) {
3247
3267
  return value
3248
3268
  }
3249
3269
 
3250
- const xmean = jStat.mean(known_xs);
3251
- const ymean = jStat.mean(known_ys);
3270
+ const xmean = jStat__namespace.mean(known_xs);
3271
+ const ymean = jStat__namespace.mean(known_ys);
3252
3272
 
3253
3273
  const n = known_xs.length;
3254
3274
 
@@ -3333,7 +3353,7 @@ function GAMMA(number) {
3333
3353
  return num
3334
3354
  }
3335
3355
 
3336
- return jStat.gammafn(number)
3356
+ return jStat__namespace.gammafn(number)
3337
3357
  }
3338
3358
 
3339
3359
  /**
@@ -3360,7 +3380,7 @@ GAMMA.DIST = function (value$1, alpha, beta, cumulative) {
3360
3380
  return value
3361
3381
  }
3362
3382
 
3363
- return cumulative ? jStat.gamma.cdf(value$1, alpha, beta, true) : jStat.gamma.pdf(value$1, alpha, beta, false)
3383
+ return cumulative ? jStat__namespace.gamma.cdf(value$1, alpha, beta, true) : jStat__namespace.gamma.pdf(value$1, alpha, beta, false)
3364
3384
  };
3365
3385
 
3366
3386
  /**
@@ -3386,7 +3406,7 @@ GAMMA.INV = function (probability, alpha, beta) {
3386
3406
  return value
3387
3407
  }
3388
3408
 
3389
- return jStat.gamma.inv(probability, alpha, beta)
3409
+ return jStat__namespace.gamma.inv(probability, alpha, beta)
3390
3410
  };
3391
3411
 
3392
3412
  /**
@@ -3404,7 +3424,7 @@ function GAMMALN(x) {
3404
3424
  return x
3405
3425
  }
3406
3426
 
3407
- return jStat.gammaln(x)
3427
+ return jStat__namespace.gammaln(x)
3408
3428
  }
3409
3429
 
3410
3430
  /**
@@ -3428,7 +3448,7 @@ GAMMALN.PRECISE = function (x) {
3428
3448
  return value
3429
3449
  }
3430
3450
 
3431
- return jStat.gammaln(x)
3451
+ return jStat__namespace.gammaln(x)
3432
3452
  };
3433
3453
 
3434
3454
  /**
@@ -3446,7 +3466,7 @@ function GAUSS(z) {
3446
3466
  return z
3447
3467
  }
3448
3468
 
3449
- return jStat.normal.cdf(z, 0, 1) - 0.5
3469
+ return jStat__namespace.normal.cdf(z, 0, 1) - 0.5
3450
3470
  }
3451
3471
 
3452
3472
  /**
@@ -3464,7 +3484,7 @@ function GEOMEAN() {
3464
3484
  return args
3465
3485
  }
3466
3486
 
3467
- return jStat.geomean(args)
3487
+ return jStat__namespace.geomean(args)
3468
3488
  }
3469
3489
 
3470
3490
  /**
@@ -3675,7 +3695,7 @@ function KURT() {
3675
3695
  return range
3676
3696
  }
3677
3697
 
3678
- const mean = jStat.mean(range);
3698
+ const mean = jStat__namespace.mean(range);
3679
3699
  const n = range.length;
3680
3700
 
3681
3701
  let sigma = 0;
@@ -3684,7 +3704,7 @@ function KURT() {
3684
3704
  sigma += Math.pow(range[i] - mean, 4);
3685
3705
  }
3686
3706
 
3687
- sigma = sigma / Math.pow(jStat.stdev(range, true), 4);
3707
+ sigma = sigma / Math.pow(jStat__namespace.stdev(range, true), 4);
3688
3708
 
3689
3709
  return ((n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3))) * sigma - (3 * (n - 1) * (n - 1)) / ((n - 2) * (n - 3))
3690
3710
  }
@@ -3740,8 +3760,8 @@ function LINEST(known_y, known_x) {
3740
3760
  return value
3741
3761
  }
3742
3762
 
3743
- const ymean = jStat.mean(known_y);
3744
- const xmean = jStat.mean(known_x);
3763
+ const ymean = jStat__namespace.mean(known_y);
3764
+ const xmean = jStat__namespace.mean(known_x);
3745
3765
  const n = known_x.length;
3746
3766
 
3747
3767
  let num = 0;
@@ -3821,7 +3841,7 @@ LOGNORM.DIST = (x, mean, standard_dev, cumulative) => {
3821
3841
  return value
3822
3842
  }
3823
3843
 
3824
- return cumulative ? jStat.lognormal.cdf(x, mean, standard_dev) : jStat.lognormal.pdf(x, mean, standard_dev)
3844
+ return cumulative ? jStat__namespace.lognormal.cdf(x, mean, standard_dev) : jStat__namespace.lognormal.pdf(x, mean, standard_dev)
3825
3845
  };
3826
3846
 
3827
3847
  /**
@@ -3843,7 +3863,7 @@ LOGNORM.INV = (probability, mean, standard_dev) => {
3843
3863
  return value
3844
3864
  }
3845
3865
 
3846
- return jStat.lognormal.inv(probability, mean, standard_dev)
3866
+ return jStat__namespace.lognormal.inv(probability, mean, standard_dev)
3847
3867
  };
3848
3868
 
3849
3869
  /**
@@ -3921,7 +3941,7 @@ function MEDIAN() {
3921
3941
 
3922
3942
  const range = arrayValuesToNumbers(flatArguments);
3923
3943
 
3924
- let result = jStat.median(range);
3944
+ let result = jStat__namespace.median(range);
3925
3945
 
3926
3946
  if (isNaN(result)) {
3927
3947
  result = num;
@@ -4070,8 +4090,8 @@ NEGBINOM.DIST = (number_f, number_s, probability_s, cumulative) => {
4070
4090
  }
4071
4091
 
4072
4092
  return cumulative
4073
- ? jStat.negbin.cdf(number_f, number_s, probability_s)
4074
- : jStat.negbin.pdf(number_f, number_s, probability_s)
4093
+ ? jStat__namespace.negbin.cdf(number_f, number_s, probability_s)
4094
+ : jStat__namespace.negbin.pdf(number_f, number_s, probability_s)
4075
4095
  };
4076
4096
 
4077
4097
  const NORM = {};
@@ -4101,7 +4121,7 @@ NORM.DIST = (x, mean, standard_dev, cumulative) => {
4101
4121
  }
4102
4122
 
4103
4123
  // Return normal distribution computed by jStat [http://jstat.org]
4104
- return cumulative ? jStat.normal.cdf(x, mean, standard_dev) : jStat.normal.pdf(x, mean, standard_dev)
4124
+ return cumulative ? jStat__namespace.normal.cdf(x, mean, standard_dev) : jStat__namespace.normal.pdf(x, mean, standard_dev)
4105
4125
  };
4106
4126
 
4107
4127
  /**
@@ -4123,7 +4143,7 @@ NORM.INV = (probability, mean, standard_dev) => {
4123
4143
  return value
4124
4144
  }
4125
4145
 
4126
- return jStat.normal.inv(probability, mean, standard_dev)
4146
+ return jStat__namespace.normal.inv(probability, mean, standard_dev)
4127
4147
  };
4128
4148
 
4129
4149
  NORM.S = {};
@@ -4144,7 +4164,7 @@ NORM.S.DIST = (z, cumulative) => {
4144
4164
  return value
4145
4165
  }
4146
4166
 
4147
- return cumulative ? jStat.normal.cdf(z, 0, 1) : jStat.normal.pdf(z, 0, 1)
4167
+ return cumulative ? jStat__namespace.normal.cdf(z, 0, 1) : jStat__namespace.normal.pdf(z, 0, 1)
4148
4168
  };
4149
4169
 
4150
4170
  /**
@@ -4162,7 +4182,7 @@ NORM.S.INV = (probability) => {
4162
4182
  return value
4163
4183
  }
4164
4184
 
4165
- return jStat.normal.inv(probability, 0, 1)
4185
+ return jStat__namespace.normal.inv(probability, 0, 1)
4166
4186
  };
4167
4187
 
4168
4188
  /**
@@ -4182,8 +4202,8 @@ function PEARSON(array1, array2) {
4182
4202
  return value
4183
4203
  }
4184
4204
 
4185
- const xmean = jStat.mean(array1);
4186
- const ymean = jStat.mean(array2);
4205
+ const xmean = jStat__namespace.mean(array1);
4206
+ const ymean = jStat__namespace.mean(array2);
4187
4207
  const n = array1.length;
4188
4208
 
4189
4209
  let num = 0;
@@ -4428,7 +4448,7 @@ POISSON.DIST = (x, mean, cumulative) => {
4428
4448
  return value
4429
4449
  }
4430
4450
 
4431
- return cumulative ? jStat.poisson.cdf(x, mean) : jStat.poisson.pdf(x, mean)
4451
+ return cumulative ? jStat__namespace.poisson.cdf(x, mean) : jStat__namespace.poisson.pdf(x, mean)
4432
4452
  };
4433
4453
 
4434
4454
  /**
@@ -4629,7 +4649,7 @@ function ROW(reference, index) {
4629
4649
  return undefined
4630
4650
  }
4631
4651
 
4632
- return jStat.row(reference, index)
4652
+ return jStat__namespace.row(reference, index)
4633
4653
  }
4634
4654
 
4635
4655
  /**
@@ -4668,7 +4688,7 @@ function SKEW() {
4668
4688
  return range
4669
4689
  }
4670
4690
 
4671
- const mean = jStat.mean(range);
4691
+ const mean = jStat__namespace.mean(range);
4672
4692
  const n = range.length;
4673
4693
 
4674
4694
  let sigma = 0;
@@ -4677,7 +4697,7 @@ function SKEW() {
4677
4697
  sigma += Math.pow(range[i] - mean, 3);
4678
4698
  }
4679
4699
 
4680
- return (n * sigma) / ((n - 1) * (n - 2) * Math.pow(jStat.stdev(range, true), 3))
4700
+ return (n * sigma) / ((n - 1) * (n - 2) * Math.pow(jStat__namespace.stdev(range, true), 3))
4681
4701
  }
4682
4702
 
4683
4703
  /**
@@ -4694,7 +4714,7 @@ SKEW.P = function () {
4694
4714
  return range
4695
4715
  }
4696
4716
 
4697
- const mean = jStat.mean(range);
4717
+ const mean = jStat__namespace.mean(range);
4698
4718
  const n = range.length;
4699
4719
 
4700
4720
  let m2 = 0;
@@ -4728,8 +4748,8 @@ function SLOPE(known_y, known_x) {
4728
4748
  return value
4729
4749
  }
4730
4750
 
4731
- const xmean = jStat.mean(known_x);
4732
- const ymean = jStat.mean(known_y);
4751
+ const xmean = jStat__namespace.mean(known_x);
4752
+ const ymean = jStat__namespace.mean(known_y);
4733
4753
  const n = known_x.length;
4734
4754
 
4735
4755
  let num = 0;
@@ -4874,8 +4894,8 @@ function STEYX(known_y, known_x) {
4874
4894
  return value
4875
4895
  }
4876
4896
 
4877
- const xmean = jStat.mean(known_x);
4878
- const ymean = jStat.mean(known_y);
4897
+ const xmean = jStat__namespace.mean(known_x);
4898
+ const ymean = jStat__namespace.mean(known_y);
4879
4899
  const n = known_x.length;
4880
4900
 
4881
4901
  let lft = 0;
@@ -4931,7 +4951,7 @@ T.DIST['2T'] = function (x, deg_freedom) {
4931
4951
  return value
4932
4952
  }
4933
4953
 
4934
- return (1 - jStat.studentt.cdf(x, deg_freedom)) * 2
4954
+ return (1 - jStat__namespace.studentt.cdf(x, deg_freedom)) * 2
4935
4955
  };
4936
4956
 
4937
4957
  /**
@@ -4956,7 +4976,7 @@ T.DIST.RT = function (x, deg_freedom) {
4956
4976
  return value
4957
4977
  }
4958
4978
 
4959
- return 1 - jStat.studentt.cdf(x, deg_freedom)
4979
+ return 1 - jStat__namespace.studentt.cdf(x, deg_freedom)
4960
4980
  };
4961
4981
 
4962
4982
  /**
@@ -4976,7 +4996,7 @@ T.INV = (probability, deg_freedom) => {
4976
4996
  return value
4977
4997
  }
4978
4998
 
4979
- return jStat.studentt.inv(probability, deg_freedom)
4999
+ return jStat__namespace.studentt.inv(probability, deg_freedom)
4980
5000
  };
4981
5001
 
4982
5002
  /**
@@ -5000,7 +5020,7 @@ T.INV['2T'] = (probability, deg_freedom) => {
5000
5020
  return value
5001
5021
  }
5002
5022
 
5003
- return Math.abs(jStat.studentt.inv(probability / 2, deg_freedom))
5023
+ return Math.abs(jStat__namespace.studentt.inv(probability / 2, deg_freedom))
5004
5024
  };
5005
5025
 
5006
5026
  // The algorithm can be found here:
@@ -5022,8 +5042,8 @@ T.TEST = (array1, array2) => {
5022
5042
  return value
5023
5043
  }
5024
5044
 
5025
- const mean_x = jStat.mean(array1);
5026
- const mean_y = jStat.mean(array2);
5045
+ const mean_x = jStat__namespace.mean(array1);
5046
+ const mean_y = jStat__namespace.mean(array2);
5027
5047
 
5028
5048
  let s_x = 0;
5029
5049
  let s_y = 0;
@@ -5095,7 +5115,7 @@ function TRIMMEAN(range, percent) {
5095
5115
 
5096
5116
  const trim = FLOOR(range.length * percent, 2) / 2;
5097
5117
 
5098
- return jStat.mean(
5118
+ return jStat__namespace.mean(
5099
5119
  initial(
5100
5120
  rest(
5101
5121
  range.sort((a, b) => a - b),
@@ -8569,7 +8589,7 @@ function BESSELI(x, n) {
8569
8589
  return value
8570
8590
  }
8571
8591
 
8572
- return bessel.besseli(x, n)
8592
+ return bessel__namespace.besseli(x, n)
8573
8593
  }
8574
8594
 
8575
8595
  /**
@@ -8589,7 +8609,7 @@ function BESSELJ(x, n) {
8589
8609
  return value
8590
8610
  }
8591
8611
 
8592
- return bessel.besselj(x, n)
8612
+ return bessel__namespace.besselj(x, n)
8593
8613
  }
8594
8614
 
8595
8615
  /**
@@ -8609,7 +8629,7 @@ function BESSELK(x, n) {
8609
8629
  return value
8610
8630
  }
8611
8631
 
8612
- return bessel.besselk(x, n)
8632
+ return bessel__namespace.besselk(x, n)
8613
8633
  }
8614
8634
 
8615
8635
  /**
@@ -8629,7 +8649,7 @@ function BESSELY(x, n) {
8629
8649
  return value
8630
8650
  }
8631
8651
 
8632
- return bessel.bessely(x, n)
8652
+ return bessel__namespace.bessely(x, n)
8633
8653
  }
8634
8654
 
8635
8655
  /**
@@ -9480,7 +9500,7 @@ function ERF(lower_limit, upper_limit) {
9480
9500
  return value
9481
9501
  }
9482
9502
 
9483
- return jStat.erf(lower_limit)
9503
+ return jStat__namespace.erf(lower_limit)
9484
9504
  }
9485
9505
 
9486
9506
  // TODO
@@ -9513,7 +9533,7 @@ function ERFC(x) {
9513
9533
  return value
9514
9534
  }
9515
9535
 
9516
- return jStat.erfc(x)
9536
+ return jStat__namespace.erfc(x)
9517
9537
  }
9518
9538
 
9519
9539
  // TODO
@@ -0,0 +1,40 @@
1
+ // src/crypto-constants.js
2
+ var SERVICE_API_KEY = {
3
+ Etherscan: "ETHERSCAN_API_KEY"
4
+ };
5
+ var FUNCTION_LOCALE = [
6
+ {
7
+ n: "GETTXLIST",
8
+ t: 20,
9
+ d: "Returns the list of transactions performed by an address, with optional pagination.",
10
+ a: "Returns the list of transactions performed by an address, with optional pagination.",
11
+ p: [
12
+ {
13
+ name: "value1",
14
+ detail: "The address string representing the addresses to check for balance",
15
+ example: `"0xc5102fE9359FD9a28f877a67E36B0F050d81a3CC"`,
16
+ require: "m"
17
+ },
18
+ {
19
+ name: "value2",
20
+ detail: "Page number.",
21
+ example: "1",
22
+ require: "o",
23
+ repeat: "n",
24
+ type: "rangenumber"
25
+ },
26
+ {
27
+ name: "value3",
28
+ detail: "Page size(offset).",
29
+ example: "100",
30
+ require: "o",
31
+ repeat: "n",
32
+ type: "rangenumber"
33
+ }
34
+ ]
35
+ }
36
+ ];
37
+ export {
38
+ FUNCTION_LOCALE,
39
+ SERVICE_API_KEY
40
+ };
package/lib/esm/index.mjs CHANGED
@@ -1,5 +1,5 @@
1
- import 'jstat';
2
- import bessel from 'bessel';
1
+ import * as jStat from 'jstat';
2
+ import * as bessel from 'bessel';
3
3
 
4
4
  const nil = new Error('#NULL!');
5
5
  const div0 = new Error('#DIV/0!');
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@fileverse-dev/formulajs",
3
- "version": "4.4.11-mod-3",
3
+ "version": "4.4.11-mod-5",
4
4
  "description": "JavaScript implementation of most Microsoft Excel formula functions",
5
5
  "author": "Formulajs",
6
6
  "publishConfig": {
@@ -24,6 +24,7 @@
24
24
  "unpkg": "./lib/browser/formula.min.js",
25
25
  "jsdelivr": "./lib/browser/formula.min.js",
26
26
  "exports": {
27
+ "./crypto-constants": "./lib/esm/crypto-constants.mjs",
27
28
  ".": {
28
29
  "import": {
29
30
  "types": "./types/esm/index.d.mts",
@@ -43,7 +44,8 @@
43
44
  "types"
44
45
  ],
45
46
  "scripts": {
46
- "build": "rollup -c && npm run types",
47
+ "build:crypto-constants": "esbuild src/crypto-constants.js --bundle --outfile=lib/esm/crypto-constants.mjs --format=esm",
48
+ "build": "rollup -c && npm run types && npm run build:crypto-constants",
47
49
  "format": "npm run prettier:fix && npm run lint:fix",
48
50
  "lint": "eslint .",
49
51
  "lint:fix": "eslint --fix .",
@@ -70,6 +72,7 @@
70
72
  "c8": "^10.1.3",
71
73
  "chai": "^5.2.0",
72
74
  "cli-table3": "^0.6.5",
75
+ "esbuild": "^0.25.4",
73
76
  "eslint": "^9.20.1",
74
77
  "globals": "^15.15.0",
75
78
  "mocha": "^11.1.0",