@fideus-labs/ngff-zarr 0.2.0 → 0.2.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,462 @@
1
+ // SPDX-FileCopyrightText: Copyright (c) Fideus Labs LLC
2
+ // SPDX-License-Identifier: MIT
3
+ /**
4
+ * Node-compatible ITK-Wasm downsampling support
5
+ * Uses native WASM implementations from @itk-wasm/downsample
6
+ */
7
+ import { downsampleBinShrinkNode as downsampleBinShrink, downsampleLabelImageNode as downsampleLabelImage, downsampleNode as downsample, } from "@itk-wasm/downsample";
8
+ import * as zarr from "zarrita";
9
+ import { NgffImage } from "../types/ngff_image.js";
10
+ import { dimScaleFactors, itkImageToZarr, nextScaleMetadata, SPATIAL_DIMS, updatePreviousDimFactors, zarrToItkImage, } from "./itkwasm-shared.js";
11
+ /**
12
+ * Perform Gaussian downsampling using ITK-Wasm (browser version)
13
+ */
14
+ async function downsampleGaussian(image, dimFactors, spatialDims) {
15
+ // Handle time dimension by processing each time slice independently
16
+ if (image.dims.includes("t")) {
17
+ const tDimIndex = image.dims.indexOf("t");
18
+ const tSize = image.data.shape[tDimIndex];
19
+ const newDims = image.dims.filter((dim) => dim !== "t");
20
+ // Downsample each time slice
21
+ const downsampledSlices = [];
22
+ for (let t = 0; t < tSize; t++) {
23
+ // Extract time slice
24
+ const selection = new Array(image.data.shape.length).fill(null);
25
+ selection[tDimIndex] = t;
26
+ const sliceData = await zarr.get(image.data, selection);
27
+ // Create temporary zarr array for this slice
28
+ const sliceStore = new Map();
29
+ const sliceRoot = zarr.root(sliceStore);
30
+ const sliceShape = image.data.shape.filter((_, i) => i !== tDimIndex);
31
+ const sliceChunkShape = sliceShape.map((s) => Math.min(s, 256));
32
+ const sliceArray = await zarr.create(sliceRoot.resolve("slice"), {
33
+ shape: sliceShape,
34
+ chunk_shape: sliceChunkShape,
35
+ data_type: image.data.dtype,
36
+ fill_value: 0,
37
+ });
38
+ const fullSelection = new Array(sliceShape.length).fill(null);
39
+ await zarr.set(sliceArray, fullSelection, sliceData);
40
+ // Create NgffImage for this slice (without 't' dimension)
41
+ const sliceImage = new NgffImage({
42
+ data: sliceArray,
43
+ dims: newDims,
44
+ scale: Object.fromEntries(Object.entries(image.scale).filter(([dim]) => dim !== "t")),
45
+ translation: Object.fromEntries(Object.entries(image.translation).filter(([dim]) => dim !== "t")),
46
+ name: image.name,
47
+ axesUnits: image.axesUnits
48
+ ? Object.fromEntries(Object.entries(image.axesUnits).filter(([dim]) => dim !== "t"))
49
+ : undefined,
50
+ computedCallbacks: image.computedCallbacks,
51
+ });
52
+ // Recursively downsample this slice (without 't', so no infinite loop)
53
+ const downsampledSlice = await downsampleGaussian(sliceImage, dimFactors, spatialDims);
54
+ downsampledSlices.push(downsampledSlice.data);
55
+ }
56
+ // Combine downsampled slices back into a single array with 't' dimension
57
+ const firstSlice = downsampledSlices[0];
58
+ const combinedShape = [...image.data.shape];
59
+ combinedShape[tDimIndex] = tSize;
60
+ // Update spatial dimensions based on downsampled size
61
+ for (let i = 0; i < image.dims.length; i++) {
62
+ if (i !== tDimIndex) {
63
+ const sliceIndex = i < tDimIndex ? i : i - 1;
64
+ combinedShape[i] = firstSlice.shape[sliceIndex];
65
+ }
66
+ }
67
+ // Create combined array
68
+ const combinedStore = new Map();
69
+ const combinedRoot = zarr.root(combinedStore);
70
+ const combinedArray = await zarr.create(combinedRoot.resolve("combined"), {
71
+ shape: combinedShape,
72
+ chunk_shape: combinedShape.map((s) => Math.min(s, 256)),
73
+ data_type: image.data.dtype,
74
+ fill_value: 0,
75
+ });
76
+ // Copy each downsampled slice into the combined array
77
+ for (let t = 0; t < tSize; t++) {
78
+ const sliceData = await zarr.get(downsampledSlices[t]);
79
+ const targetSelection = new Array(combinedShape.length).fill(null);
80
+ targetSelection[tDimIndex] = t;
81
+ await zarr.set(combinedArray, targetSelection, sliceData);
82
+ }
83
+ // Compute new metadata (time dimension unchanged, spatial dimensions downsampled)
84
+ const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
85
+ return new NgffImage({
86
+ data: combinedArray,
87
+ dims: image.dims,
88
+ scale: { ...image.scale, ...scale },
89
+ translation: { ...image.translation, ...translation },
90
+ name: image.name,
91
+ axesUnits: image.axesUnits,
92
+ computedCallbacks: image.computedCallbacks,
93
+ });
94
+ }
95
+ const isVector = image.dims.includes("c");
96
+ // Convert to ITK-Wasm format
97
+ const itkImage = await zarrToItkImage(image.data, image.dims, isVector);
98
+ // Prepare shrink factors - need to be for ALL dimensions in ITK order (reversed)
99
+ const shrinkFactors = [];
100
+ for (let i = image.dims.length - 1; i >= 0; i--) {
101
+ const dim = image.dims[i];
102
+ if (SPATIAL_DIMS.includes(dim)) {
103
+ shrinkFactors.push(dimFactors[dim] || 1);
104
+ }
105
+ }
106
+ // Use all zeros for cropRadius
107
+ const cropRadius = new Array(shrinkFactors.length).fill(0);
108
+ // Perform downsampling using browser-compatible function
109
+ const { downsampled } = await downsample(itkImage, {
110
+ shrinkFactors,
111
+ cropRadius: cropRadius,
112
+ });
113
+ // Compute new metadata
114
+ const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
115
+ // Convert back to zarr array in a new in-memory store
116
+ const store = new Map();
117
+ const chunkShape = downsampled.size.map((s) => Math.min(s, 256)).reverse();
118
+ const array = await itkImageToZarr(downsampled, store, "image", chunkShape, image.dims);
119
+ return new NgffImage({
120
+ data: array,
121
+ dims: image.dims,
122
+ scale,
123
+ translation,
124
+ name: image.name,
125
+ axesUnits: image.axesUnits,
126
+ computedCallbacks: image.computedCallbacks,
127
+ });
128
+ }
129
+ /**
130
+ * Perform bin shrink downsampling using ITK-Wasm (browser version)
131
+ */
132
+ async function downsampleBinShrinkImpl(image, dimFactors, spatialDims) {
133
+ // Handle time dimension by processing each time slice independently
134
+ if (image.dims.includes("t")) {
135
+ const tDimIndex = image.dims.indexOf("t");
136
+ const tSize = image.data.shape[tDimIndex];
137
+ const newDims = image.dims.filter((dim) => dim !== "t");
138
+ // Downsample each time slice
139
+ const downsampledSlices = [];
140
+ for (let t = 0; t < tSize; t++) {
141
+ // Extract time slice
142
+ const selection = new Array(image.data.shape.length).fill(null);
143
+ selection[tDimIndex] = t;
144
+ const sliceData = await zarr.get(image.data, selection);
145
+ // Create temporary zarr array for this slice
146
+ const sliceStore = new Map();
147
+ const sliceRoot = zarr.root(sliceStore);
148
+ const sliceShape = image.data.shape.filter((_, i) => i !== tDimIndex);
149
+ const sliceChunkShape = sliceShape.map((s) => Math.min(s, 256));
150
+ const sliceArray = await zarr.create(sliceRoot.resolve("slice"), {
151
+ shape: sliceShape,
152
+ chunk_shape: sliceChunkShape,
153
+ data_type: image.data.dtype,
154
+ fill_value: 0,
155
+ });
156
+ const fullSelection = new Array(sliceShape.length).fill(null);
157
+ await zarr.set(sliceArray, fullSelection, sliceData);
158
+ // Create NgffImage for this slice (without 't' dimension)
159
+ const sliceImage = new NgffImage({
160
+ data: sliceArray,
161
+ dims: newDims,
162
+ scale: Object.fromEntries(Object.entries(image.scale).filter(([dim]) => dim !== "t")),
163
+ translation: Object.fromEntries(Object.entries(image.translation).filter(([dim]) => dim !== "t")),
164
+ name: image.name,
165
+ axesUnits: image.axesUnits
166
+ ? Object.fromEntries(Object.entries(image.axesUnits).filter(([dim]) => dim !== "t"))
167
+ : undefined,
168
+ computedCallbacks: image.computedCallbacks,
169
+ });
170
+ // Recursively downsample this slice
171
+ const downsampledSlice = await downsampleBinShrinkImpl(sliceImage, dimFactors, spatialDims);
172
+ downsampledSlices.push(downsampledSlice.data);
173
+ }
174
+ // Combine downsampled slices back into a single array with 't' dimension
175
+ const firstSlice = downsampledSlices[0];
176
+ const combinedShape = [...image.data.shape];
177
+ combinedShape[tDimIndex] = tSize;
178
+ // Update spatial dimensions based on downsampled size
179
+ for (let i = 0; i < image.dims.length; i++) {
180
+ if (i !== tDimIndex) {
181
+ const sliceIndex = i < tDimIndex ? i : i - 1;
182
+ combinedShape[i] = firstSlice.shape[sliceIndex];
183
+ }
184
+ }
185
+ // Create combined array
186
+ const combinedStore = new Map();
187
+ const combinedRoot = zarr.root(combinedStore);
188
+ const combinedArray = await zarr.create(combinedRoot.resolve("combined"), {
189
+ shape: combinedShape,
190
+ chunk_shape: combinedShape.map((s) => Math.min(s, 256)),
191
+ data_type: image.data.dtype,
192
+ fill_value: 0,
193
+ });
194
+ // Copy each downsampled slice into the combined array
195
+ for (let t = 0; t < tSize; t++) {
196
+ const sliceData = await zarr.get(downsampledSlices[t]);
197
+ const targetSelection = new Array(combinedShape.length).fill(null);
198
+ targetSelection[tDimIndex] = t;
199
+ await zarr.set(combinedArray, targetSelection, sliceData);
200
+ }
201
+ // Compute new metadata
202
+ const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
203
+ return new NgffImage({
204
+ data: combinedArray,
205
+ dims: image.dims,
206
+ scale: { ...image.scale, ...scale },
207
+ translation: { ...image.translation, ...translation },
208
+ name: image.name,
209
+ axesUnits: image.axesUnits,
210
+ computedCallbacks: image.computedCallbacks,
211
+ });
212
+ }
213
+ const isVector = image.dims.includes("c");
214
+ // Convert to ITK-Wasm format
215
+ const itkImage = await zarrToItkImage(image.data, image.dims, isVector);
216
+ // Prepare shrink factors - only for spatial dimensions in ITK order (reversed)
217
+ const shrinkFactors = [];
218
+ for (let i = image.dims.length - 1; i >= 0; i--) {
219
+ const dim = image.dims[i];
220
+ if (SPATIAL_DIMS.includes(dim)) {
221
+ shrinkFactors.push(dimFactors[dim] || 1);
222
+ }
223
+ }
224
+ // Perform downsampling using browser-compatible function
225
+ const { downsampled } = await downsampleBinShrink(itkImage, {
226
+ shrinkFactors,
227
+ });
228
+ // Compute new metadata
229
+ const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
230
+ // Convert back to zarr array in a new in-memory store
231
+ const store = new Map();
232
+ const chunkShape = downsampled.size.map((s) => Math.min(s, 256)).reverse();
233
+ const array = await itkImageToZarr(downsampled, store, "image", chunkShape, image.dims);
234
+ return new NgffImage({
235
+ data: array,
236
+ dims: image.dims,
237
+ scale,
238
+ translation,
239
+ name: image.name,
240
+ axesUnits: image.axesUnits,
241
+ computedCallbacks: image.computedCallbacks,
242
+ });
243
+ }
244
+ /**
245
+ * Perform label image downsampling using ITK-Wasm (browser version)
246
+ */
247
+ async function downsampleLabelImageImpl(image, dimFactors, spatialDims) {
248
+ // Handle time dimension by processing each time slice independently
249
+ if (image.dims.includes("t")) {
250
+ const tDimIndex = image.dims.indexOf("t");
251
+ const tSize = image.data.shape[tDimIndex];
252
+ const newDims = image.dims.filter((dim) => dim !== "t");
253
+ // Downsample each time slice
254
+ const downsampledSlices = [];
255
+ for (let t = 0; t < tSize; t++) {
256
+ // Extract time slice
257
+ const selection = new Array(image.data.shape.length).fill(null);
258
+ selection[tDimIndex] = t;
259
+ const sliceData = await zarr.get(image.data, selection);
260
+ // Create temporary zarr array for this slice
261
+ const sliceStore = new Map();
262
+ const sliceRoot = zarr.root(sliceStore);
263
+ const sliceShape = image.data.shape.filter((_, i) => i !== tDimIndex);
264
+ const sliceChunkShape = sliceShape.map((s) => Math.min(s, 256));
265
+ const sliceArray = await zarr.create(sliceRoot.resolve("slice"), {
266
+ shape: sliceShape,
267
+ chunk_shape: sliceChunkShape,
268
+ data_type: image.data.dtype,
269
+ fill_value: 0,
270
+ });
271
+ const fullSelection = new Array(sliceShape.length).fill(null);
272
+ await zarr.set(sliceArray, fullSelection, sliceData);
273
+ // Create NgffImage for this slice (without 't' dimension)
274
+ const sliceImage = new NgffImage({
275
+ data: sliceArray,
276
+ dims: newDims,
277
+ scale: Object.fromEntries(Object.entries(image.scale).filter(([dim]) => dim !== "t")),
278
+ translation: Object.fromEntries(Object.entries(image.translation).filter(([dim]) => dim !== "t")),
279
+ name: image.name,
280
+ axesUnits: image.axesUnits
281
+ ? Object.fromEntries(Object.entries(image.axesUnits).filter(([dim]) => dim !== "t"))
282
+ : undefined,
283
+ computedCallbacks: image.computedCallbacks,
284
+ });
285
+ // Recursively downsample this slice
286
+ const downsampledSlice = await downsampleLabelImageImpl(sliceImage, dimFactors, spatialDims);
287
+ downsampledSlices.push(downsampledSlice.data);
288
+ }
289
+ // Combine downsampled slices back into a single array with 't' dimension
290
+ const firstSlice = downsampledSlices[0];
291
+ const combinedShape = [...image.data.shape];
292
+ combinedShape[tDimIndex] = tSize;
293
+ // Update spatial dimensions based on downsampled size
294
+ for (let i = 0; i < image.dims.length; i++) {
295
+ if (i !== tDimIndex) {
296
+ const sliceIndex = i < tDimIndex ? i : i - 1;
297
+ combinedShape[i] = firstSlice.shape[sliceIndex];
298
+ }
299
+ }
300
+ // Create combined array
301
+ const combinedStore = new Map();
302
+ const combinedRoot = zarr.root(combinedStore);
303
+ const combinedArray = await zarr.create(combinedRoot.resolve("combined"), {
304
+ shape: combinedShape,
305
+ chunk_shape: combinedShape.map((s) => Math.min(s, 256)),
306
+ data_type: image.data.dtype,
307
+ fill_value: 0,
308
+ });
309
+ // Copy each downsampled slice into the combined array
310
+ for (let t = 0; t < tSize; t++) {
311
+ const sliceData = await zarr.get(downsampledSlices[t]);
312
+ const targetSelection = new Array(combinedShape.length).fill(null);
313
+ targetSelection[tDimIndex] = t;
314
+ await zarr.set(combinedArray, targetSelection, sliceData);
315
+ }
316
+ // Compute new metadata
317
+ const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
318
+ return new NgffImage({
319
+ data: combinedArray,
320
+ dims: image.dims,
321
+ scale: { ...image.scale, ...scale },
322
+ translation: { ...image.translation, ...translation },
323
+ name: image.name,
324
+ axesUnits: image.axesUnits,
325
+ computedCallbacks: image.computedCallbacks,
326
+ });
327
+ }
328
+ const isVector = image.dims.includes("c");
329
+ // Convert to ITK-Wasm format
330
+ const itkImage = await zarrToItkImage(image.data, image.dims, isVector);
331
+ // Prepare shrink factors - need to be for ALL dimensions in ITK order (reversed)
332
+ const shrinkFactors = [];
333
+ for (let i = image.dims.length - 1; i >= 0; i--) {
334
+ const dim = image.dims[i];
335
+ if (SPATIAL_DIMS.includes(dim)) {
336
+ shrinkFactors.push(dimFactors[dim] || 1);
337
+ }
338
+ else {
339
+ shrinkFactors.push(1); // Non-spatial dimensions don't shrink
340
+ }
341
+ }
342
+ // Use all zeros for cropRadius
343
+ const cropRadius = new Array(shrinkFactors.length).fill(0);
344
+ // Perform downsampling using browser-compatible function
345
+ const { downsampled } = await downsampleLabelImage(itkImage, {
346
+ shrinkFactors,
347
+ cropRadius: cropRadius,
348
+ });
349
+ // Compute new metadata
350
+ const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
351
+ // Convert back to zarr array in a new in-memory store
352
+ const store = new Map();
353
+ const chunkShape = downsampled.size.map((s) => Math.min(s, 256)).reverse();
354
+ const array = await itkImageToZarr(downsampled, store, "image", chunkShape, image.dims);
355
+ return new NgffImage({
356
+ data: array,
357
+ dims: image.dims,
358
+ scale,
359
+ translation,
360
+ name: image.name,
361
+ axesUnits: image.axesUnits,
362
+ computedCallbacks: image.computedCallbacks,
363
+ });
364
+ }
365
+ /**
366
+ * Main downsampling function for ITK-Wasm (browser version)
367
+ */
368
+ export async function downsampleItkWasm(ngffImage, scaleFactors, smoothing) {
369
+ const multiscales = [ngffImage];
370
+ const dims = ngffImage.dims;
371
+ const spatialDims = dims.filter((dim) => SPATIAL_DIMS.includes(dim));
372
+ let previousImage = ngffImage;
373
+ let previousDimFactors = {};
374
+ for (const dim of dims)
375
+ previousDimFactors[dim] = 1;
376
+ for (let i = 0; i < scaleFactors.length; i++) {
377
+ const scaleFactor = scaleFactors[i];
378
+ let sourceImage;
379
+ let sourceDimFactors;
380
+ if (smoothing === "bin_shrink") {
381
+ // Purely incremental: scaleFactor is the shrink for this step
382
+ sourceImage = previousImage;
383
+ sourceDimFactors = {};
384
+ if (typeof scaleFactor === "number") {
385
+ for (const dim of spatialDims)
386
+ sourceDimFactors[dim] = scaleFactor;
387
+ }
388
+ else {
389
+ for (const dim of spatialDims) {
390
+ sourceDimFactors[dim] = scaleFactor[dim] || 1;
391
+ }
392
+ }
393
+ for (const dim of dims) {
394
+ if (!(dim in sourceDimFactors))
395
+ sourceDimFactors[dim] = 1;
396
+ }
397
+ }
398
+ else {
399
+ // Hybrid absolute strategy
400
+ const dimFactors = dimScaleFactors(dims, scaleFactor, previousDimFactors, ngffImage, previousImage);
401
+ let canDownsampleIncrementally = true;
402
+ for (const dim of Object.keys(dimFactors)) {
403
+ const dimIndex = ngffImage.dims.indexOf(dim);
404
+ if (dimIndex >= 0) {
405
+ const originalSize = ngffImage.data.shape[dimIndex];
406
+ const targetSize = Math.floor(originalSize /
407
+ (typeof scaleFactor === "number"
408
+ ? scaleFactor
409
+ : scaleFactor[dim]));
410
+ const prevDimIndex = previousImage.dims.indexOf(dim);
411
+ const previousSize = previousImage.data.shape[prevDimIndex];
412
+ if (Math.floor(previousSize / dimFactors[dim]) !== targetSize) {
413
+ canDownsampleIncrementally = false;
414
+ break;
415
+ }
416
+ }
417
+ }
418
+ if (canDownsampleIncrementally) {
419
+ sourceImage = previousImage;
420
+ sourceDimFactors = dimFactors;
421
+ }
422
+ else {
423
+ sourceImage = ngffImage;
424
+ const originalDimFactors = {};
425
+ for (const dim of dims)
426
+ originalDimFactors[dim] = 1;
427
+ sourceDimFactors = dimScaleFactors(dims, scaleFactor, originalDimFactors);
428
+ }
429
+ }
430
+ let downsampled;
431
+ if (smoothing === "gaussian") {
432
+ downsampled = await downsampleGaussian(sourceImage, sourceDimFactors, spatialDims);
433
+ }
434
+ else if (smoothing === "bin_shrink") {
435
+ downsampled = await downsampleBinShrinkImpl(sourceImage, sourceDimFactors, spatialDims);
436
+ }
437
+ else if (smoothing === "label_image") {
438
+ downsampled = await downsampleLabelImageImpl(sourceImage, sourceDimFactors, spatialDims);
439
+ }
440
+ else {
441
+ throw new Error(`Unknown smoothing method: ${smoothing}`);
442
+ }
443
+ multiscales.push(downsampled);
444
+ previousImage = downsampled;
445
+ if (smoothing === "bin_shrink") {
446
+ if (typeof scaleFactor === "number") {
447
+ for (const dim of spatialDims) {
448
+ previousDimFactors[dim] *= scaleFactor;
449
+ }
450
+ }
451
+ else {
452
+ for (const dim of spatialDims) {
453
+ previousDimFactors[dim] *= scaleFactor[dim] || 1;
454
+ }
455
+ }
456
+ }
457
+ else {
458
+ previousDimFactors = updatePreviousDimFactors(scaleFactor, spatialDims, previousDimFactors);
459
+ }
460
+ }
461
+ return multiscales;
462
+ }
@@ -0,0 +1,68 @@
1
+ /**
2
+ * Shared helper functions for ITK-Wasm downsampling
3
+ * Used by both browser and Node implementations
4
+ */
5
+ import type { Image } from "itk-wasm";
6
+ import * as zarr from "zarrita";
7
+ import { NgffImage } from "../types/ngff_image.js";
8
+ export declare const SPATIAL_DIMS: string[];
9
+ export interface DimFactors {
10
+ [key: string]: number;
11
+ }
12
+ /**
13
+ * Calculate the incremental factor needed to reach the target size from the previous size.
14
+ * This ensures exact target sizes when downsampling incrementally.
15
+ */
16
+ export declare function calculateIncrementalFactor(previousSize: number, targetSize: number): number;
17
+ /**
18
+ * Convert dimension scale factors to ITK-Wasm format
19
+ * This computes the incremental scale factor relative to the previous scale,
20
+ * not the absolute scale factor from the original image.
21
+ *
22
+ * When originalImage and previousImage are provided, calculates the exact
23
+ * incremental factor needed to reach the target size from the previous size.
24
+ * This ensures we get exact 1x, 2x, 3x, 4x sizes even with incremental downsampling.
25
+ */
26
+ export declare function dimScaleFactors(dims: string[], scaleFactor: Record<string, number> | number, previousDimFactors: DimFactors, originalImage?: NgffImage, previousImage?: NgffImage): DimFactors;
27
+ /**
28
+ * Update previous dimension factors
29
+ */
30
+ export declare function updatePreviousDimFactors(scaleFactor: Record<string, number> | number, spatialDims: string[], previousDimFactors: DimFactors): DimFactors;
31
+ /**
32
+ * Compute next scale metadata
33
+ */
34
+ export declare function nextScaleMetadata(image: NgffImage, dimFactors: DimFactors, spatialDims: string[]): [Record<string, number>, Record<string, number>];
35
+ /**
36
+ * Get ITK component type from typed array
37
+ */
38
+ export declare function getItkComponentType(data: unknown): "uint8" | "int8" | "uint16" | "int16" | "uint32" | "int32" | "float32" | "float64";
39
+ /**
40
+ * Create identity matrix for ITK direction
41
+ */
42
+ export declare function createIdentityMatrix(dimension: number): Float64Array;
43
+ /**
44
+ * Transpose array data according to permutation
45
+ */
46
+ export declare function transposeArray(data: unknown, shape: number[], permutation: number[], componentType: "uint8" | "int8" | "uint16" | "int16" | "uint32" | "int32" | "float32" | "float64"): Float32Array | Float64Array | Uint8Array | Int8Array | Uint16Array | Int16Array | Uint32Array | Int32Array;
47
+ /**
48
+ * Convert zarr array to ITK-Wasm Image format
49
+ * If isVector is true, ensures "c" dimension is last by transposing if needed
50
+ */
51
+ export declare function zarrToItkImage(array: zarr.Array<zarr.DataType, zarr.Readable>, dims: string[], isVector?: boolean): Promise<Image>;
52
+ /**
53
+ * Convert ITK-Wasm Image back to zarr array
54
+ * Uses the provided store instead of creating a new one
55
+ *
56
+ * Important: ITK-Wasm stores size in physical space order [x, y, z], but data in
57
+ * column-major order (x contiguous). This column-major layout with size [x, y, z]
58
+ * is equivalent to C-order (row-major) with shape [z, y, x]. We reverse the size
59
+ * to get the zarr shape and use C-order strides for that reversed shape.
60
+ *
61
+ * @param itkImage - The ITK-Wasm image to convert
62
+ * @param store - The zarr store to write to
63
+ * @param path - The path within the store
64
+ * @param chunkShape - The chunk shape (in spatial dimension order, will be adjusted for components)
65
+ * @param targetDims - The target dimension order (e.g., ["c", "z", "y", "x"])
66
+ */
67
+ export declare function itkImageToZarr(itkImage: Image, store: Map<string, Uint8Array>, path: string, chunkShape: number[], targetDims?: string[]): Promise<zarr.Array<zarr.DataType, zarr.Readable>>;
68
+ //# sourceMappingURL=itkwasm-shared.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"itkwasm-shared.d.ts","sourceRoot":"","sources":["../../src/methods/itkwasm-shared.ts"],"names":[],"mappings":"AAGA;;;GAGG;AAEH,OAAO,KAAK,EAAE,KAAK,EAAE,MAAM,UAAU,CAAC;AACtC,OAAO,KAAK,IAAI,MAAM,SAAS,CAAC;AAChC,OAAO,EAAE,SAAS,EAAE,MAAM,wBAAwB,CAAC;AAEnD,eAAO,MAAM,YAAY,UAAkB,CAAC;AAE5C,MAAM,WAAW,UAAU;IACzB,CAAC,GAAG,EAAE,MAAM,GAAG,MAAM,CAAC;CACvB;AAED;;;GAGG;AACH,wBAAgB,0BAA0B,CACxC,YAAY,EAAE,MAAM,EACpB,UAAU,EAAE,MAAM,GACjB,MAAM,CAsBR;AAED;;;;;;;;GAQG;AACH,wBAAgB,eAAe,CAC7B,IAAI,EAAE,MAAM,EAAE,EACd,WAAW,EAAE,MAAM,CAAC,MAAM,EAAE,MAAM,CAAC,GAAG,MAAM,EAC5C,kBAAkB,EAAE,UAAU,EAC9B,aAAa,CAAC,EAAE,SAAS,EACzB,aAAa,CAAC,EAAE,SAAS,GACxB,UAAU,CAqEZ;AAED;;GAEG;AACH,wBAAgB,wBAAwB,CACtC,WAAW,EAAE,MAAM,CAAC,MAAM,EAAE,MAAM,CAAC,GAAG,MAAM,EAC5C,WAAW,EAAE,MAAM,EAAE,EACrB,kBAAkB,EAAE,UAAU,GAC7B,UAAU,CAcZ;AAED;;GAEG;AACH,wBAAgB,iBAAiB,CAC/B,KAAK,EAAE,SAAS,EAChB,UAAU,EAAE,UAAU,EACtB,WAAW,EAAE,MAAM,EAAE,GACpB,CAAC,MAAM,CAAC,MAAM,EAAE,MAAM,CAAC,EAAE,MAAM,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC,CAkBlD;AAsCD;;GAEG;AACH,wBAAgB,mBAAmB,CACjC,IAAI,EAAE,OAAO,GAEX,OAAO,GACP,MAAM,GACN,QAAQ,GACR,OAAO,GACP,QAAQ,GACR,OAAO,GACP,SAAS,GACT,SAAS,CASZ;AAED;;GAEG;AACH,wBAAgB,oBAAoB,CAAC,SAAS,EAAE,MAAM,GAAG,YAAY,CAMpE;AAcD;;GAEG;AACH,wBAAgB,cAAc,CAC5B,IAAI,EAAE,OAAO,EACb,KAAK,EAAE,MAAM,EAAE,EACf,WAAW,EAAE,MAAM,EAAE,EACrB,aAAa,EACT,OAAO,GACP,MAAM,GACN,QAAQ,GACR,OAAO,GACP,QAAQ,GACR,OAAO,GACP,SAAS,GACT,SAAS,GAEX,YAAY,GACZ,YAAY,GACZ,UAAU,GACV,SAAS,GACT,WAAW,GACX,UAAU,GACV,WAAW,GACX,UAAU,CAqFb;AAED;;;GAGG;AACH,wBAAsB,cAAc,CAClC,KAAK,EAAE,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,QAAQ,CAAC,EAC/C,IAAI,EAAE,MAAM,EAAE,EACd,QAAQ,UAAQ,GACf,OAAO,CAAC,KAAK,CAAC,CAqFhB;AAED;;;;;;;;;;;;;;GAcG;AACH,wBAAsB,cAAc,CAClC,QAAQ,EAAE,KAAK,EACf,KAAK,EAAE,GAAG,CAAC,MAAM,EAAE,UAAU,CAAC,EAC9B,IAAI,EAAE,MAAM,EACZ,UAAU,EAAE,MAAM,EAAE,EACpB,UAAU,CAAC,EAAE,MAAM,EAAE,GACpB,OAAO,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,QAAQ,CAAC,CAAC,CAoJnD"}