@fideus-labs/ngff-zarr 0.1.0 → 0.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -0
- package/esm/io/itk_image_to_ngff_image.d.ts +5 -0
- package/esm/io/itk_image_to_ngff_image.d.ts.map +1 -1
- package/esm/io/itk_image_to_ngff_image.js +20 -20
- package/esm/io/ngff_image_to_itk_image.d.ts.map +1 -1
- package/esm/io/ngff_image_to_itk_image.js +2 -0
- package/esm/io/to_multiscales.js +1 -1
- package/esm/io/to_ngff_zarr.js +16 -0
- package/esm/methods/itkwasm.d.ts.map +1 -1
- package/esm/methods/itkwasm.js +568 -426
- package/esm/schemas/coordinate_systems.d.ts +159 -552
- package/esm/schemas/coordinate_systems.d.ts.map +1 -1
- package/esm/schemas/coordinate_systems.js +0 -1
- package/esm/schemas/ome_zarr.d.ts +105 -69
- package/esm/schemas/ome_zarr.d.ts.map +1 -1
- package/esm/schemas/rfc4.d.ts +26 -131
- package/esm/schemas/rfc4.d.ts.map +1 -1
- package/esm/schemas/units.d.ts +70 -5
- package/esm/schemas/units.d.ts.map +1 -1
- package/esm/schemas/units.js +2 -15
- package/esm/schemas/zarr_metadata.d.ts +13 -300
- package/esm/schemas/zarr_metadata.d.ts.map +1 -1
- package/package.json +1 -1
- package/script/io/itk_image_to_ngff_image.d.ts +5 -0
- package/script/io/itk_image_to_ngff_image.d.ts.map +1 -1
- package/script/io/itk_image_to_ngff_image.js +20 -20
- package/script/io/ngff_image_to_itk_image.d.ts.map +1 -1
- package/script/io/ngff_image_to_itk_image.js +2 -0
- package/script/io/to_multiscales.js +1 -1
- package/script/io/to_ngff_zarr.js +16 -0
- package/script/methods/itkwasm.d.ts.map +1 -1
- package/script/methods/itkwasm.js +567 -425
- package/script/schemas/coordinate_systems.d.ts +159 -552
- package/script/schemas/coordinate_systems.d.ts.map +1 -1
- package/script/schemas/coordinate_systems.js +0 -1
- package/script/schemas/ome_zarr.d.ts +105 -69
- package/script/schemas/ome_zarr.d.ts.map +1 -1
- package/script/schemas/rfc4.d.ts +26 -131
- package/script/schemas/rfc4.d.ts.map +1 -1
- package/script/schemas/units.d.ts +70 -5
- package/script/schemas/units.d.ts.map +1 -1
- package/script/schemas/units.js +2 -15
- package/script/schemas/zarr_metadata.d.ts +13 -300
- package/script/schemas/zarr_metadata.d.ts.map +1 -1
package/esm/methods/itkwasm.js
CHANGED
|
@@ -1,31 +1,102 @@
|
|
|
1
1
|
// SPDX-FileCopyrightText: Copyright (c) Fideus Labs LLC
|
|
2
2
|
// SPDX-License-Identifier: MIT
|
|
3
|
-
import { downsampleBinShrinkNode as downsampleBinShrink, downsampleLabelImageNode as downsampleLabelImage, downsampleNode as downsample,
|
|
3
|
+
import { downsampleBinShrinkNode as downsampleBinShrink, downsampleLabelImageNode as downsampleLabelImage, downsampleNode as downsample, } from "@itk-wasm/downsample";
|
|
4
4
|
import * as zarr from "zarrita";
|
|
5
5
|
import { NgffImage } from "../types/ngff_image.js";
|
|
6
6
|
const SPATIAL_DIMS = ["x", "y", "z"];
|
|
7
|
+
/**
|
|
8
|
+
* Calculate the incremental factor needed to reach the target size from the previous size.
|
|
9
|
+
* This ensures exact target sizes when downsampling incrementally.
|
|
10
|
+
*/
|
|
11
|
+
function calculateIncrementalFactor(previousSize, targetSize) {
|
|
12
|
+
if (targetSize <= 0) {
|
|
13
|
+
return 1;
|
|
14
|
+
}
|
|
15
|
+
// Start with the theoretical factor
|
|
16
|
+
let factor = Math.floor(Math.ceil(previousSize / (targetSize + 0.5)));
|
|
17
|
+
// Verify this gives us the right size
|
|
18
|
+
let actualSize = Math.floor(previousSize / factor);
|
|
19
|
+
if (actualSize !== targetSize) {
|
|
20
|
+
// Adjust factor to get exact target
|
|
21
|
+
factor = Math.max(1, Math.floor(previousSize / targetSize));
|
|
22
|
+
actualSize = Math.floor(previousSize / factor);
|
|
23
|
+
// If still not exact, try ceil
|
|
24
|
+
if (actualSize !== targetSize) {
|
|
25
|
+
factor = Math.max(1, Math.ceil(previousSize / targetSize));
|
|
26
|
+
}
|
|
27
|
+
}
|
|
28
|
+
return Math.max(1, factor);
|
|
29
|
+
}
|
|
7
30
|
/**
|
|
8
31
|
* Convert dimension scale factors to ITK-Wasm format
|
|
32
|
+
* This computes the incremental scale factor relative to the previous scale,
|
|
33
|
+
* not the absolute scale factor from the original image.
|
|
34
|
+
*
|
|
35
|
+
* When originalImage and previousImage are provided, calculates the exact
|
|
36
|
+
* incremental factor needed to reach the target size from the previous size.
|
|
37
|
+
* This ensures we get exact 1x, 2x, 3x, 4x sizes even with incremental downsampling.
|
|
9
38
|
*/
|
|
10
|
-
function dimScaleFactors(dims, scaleFactor, previousDimFactors) {
|
|
39
|
+
function dimScaleFactors(dims, scaleFactor, previousDimFactors, originalImage, previousImage) {
|
|
11
40
|
const dimFactors = {};
|
|
12
41
|
if (typeof scaleFactor === "number") {
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
42
|
+
if (originalImage !== undefined && previousImage !== undefined) {
|
|
43
|
+
// Calculate target size: floor(original_size / scale_factor)
|
|
44
|
+
// Then calculate incremental factor from previous size to target size
|
|
45
|
+
for (const dim of dims) {
|
|
46
|
+
if (SPATIAL_DIMS.includes(dim)) {
|
|
47
|
+
const dimIndex = originalImage.dims.indexOf(dim);
|
|
48
|
+
const originalSize = originalImage.data.shape[dimIndex];
|
|
49
|
+
const targetSize = Math.floor(originalSize / scaleFactor);
|
|
50
|
+
const prevDimIndex = previousImage.dims.indexOf(dim);
|
|
51
|
+
const previousSize = previousImage.data.shape[prevDimIndex];
|
|
52
|
+
dimFactors[dim] = calculateIncrementalFactor(previousSize, targetSize);
|
|
53
|
+
}
|
|
54
|
+
else {
|
|
55
|
+
dimFactors[dim] = 1;
|
|
56
|
+
}
|
|
16
57
|
}
|
|
17
|
-
|
|
18
|
-
|
|
58
|
+
}
|
|
59
|
+
else {
|
|
60
|
+
// Fallback to old behavior when images not provided
|
|
61
|
+
for (const dim of dims) {
|
|
62
|
+
if (SPATIAL_DIMS.includes(dim)) {
|
|
63
|
+
// Divide by previous factor to get incremental scaling
|
|
64
|
+
// Use Math.floor to truncate (matching Python's int() behavior)
|
|
65
|
+
const incrementalFactor = scaleFactor /
|
|
66
|
+
(previousDimFactors[dim] || 1);
|
|
67
|
+
dimFactors[dim] = Math.max(1, Math.floor(incrementalFactor));
|
|
68
|
+
}
|
|
69
|
+
else {
|
|
70
|
+
dimFactors[dim] = previousDimFactors[dim] || 1;
|
|
71
|
+
}
|
|
19
72
|
}
|
|
20
73
|
}
|
|
21
74
|
}
|
|
22
75
|
else {
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
76
|
+
if (originalImage !== undefined && previousImage !== undefined) {
|
|
77
|
+
for (const dim in scaleFactor) {
|
|
78
|
+
const dimIndex = originalImage.dims.indexOf(dim);
|
|
79
|
+
const originalSize = originalImage.data.shape[dimIndex];
|
|
80
|
+
const targetSize = Math.floor(originalSize / scaleFactor[dim]);
|
|
81
|
+
const prevDimIndex = previousImage.dims.indexOf(dim);
|
|
82
|
+
const previousSize = previousImage.data.shape[prevDimIndex];
|
|
83
|
+
dimFactors[dim] = calculateIncrementalFactor(previousSize, targetSize);
|
|
26
84
|
}
|
|
27
|
-
|
|
28
|
-
|
|
85
|
+
}
|
|
86
|
+
else {
|
|
87
|
+
// Fallback to old behavior when images not provided
|
|
88
|
+
for (const dim in scaleFactor) {
|
|
89
|
+
// Divide by previous factor to get incremental scaling
|
|
90
|
+
// Use Math.floor to truncate (matching Python's int() behavior)
|
|
91
|
+
const incrementalFactor = scaleFactor[dim] /
|
|
92
|
+
(previousDimFactors[dim] || 1);
|
|
93
|
+
dimFactors[dim] = Math.max(1, Math.floor(incrementalFactor));
|
|
94
|
+
}
|
|
95
|
+
}
|
|
96
|
+
// Add dims not in scale_factor with factor of 1
|
|
97
|
+
for (const dim of dims) {
|
|
98
|
+
if (!(dim in dimFactors)) {
|
|
99
|
+
dimFactors[dim] = 1;
|
|
29
100
|
}
|
|
30
101
|
}
|
|
31
102
|
}
|
|
@@ -42,10 +113,8 @@ function updatePreviousDimFactors(scaleFactor, spatialDims, previousDimFactors)
|
|
|
42
113
|
}
|
|
43
114
|
}
|
|
44
115
|
else {
|
|
45
|
-
for (const dim
|
|
46
|
-
|
|
47
|
-
updated[dim] = scaleFactor[dim];
|
|
48
|
-
}
|
|
116
|
+
for (const dim in scaleFactor) {
|
|
117
|
+
updated[dim] = scaleFactor[dim];
|
|
49
118
|
}
|
|
50
119
|
}
|
|
51
120
|
return updated;
|
|
@@ -60,38 +129,17 @@ function nextScaleMetadata(image, dimFactors, spatialDims) {
|
|
|
60
129
|
if (spatialDims.includes(dim)) {
|
|
61
130
|
const factor = dimFactors[dim];
|
|
62
131
|
scale[dim] = image.scale[dim] * factor;
|
|
132
|
+
// Add offset to account for pixel center shift when downsampling
|
|
63
133
|
translation[dim] = image.translation[dim] +
|
|
64
134
|
0.5 * (factor - 1) * image.scale[dim];
|
|
65
135
|
}
|
|
66
136
|
else {
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
scale[dim] = image.scale[dim];
|
|
70
|
-
}
|
|
71
|
-
if (dim in image.translation) {
|
|
72
|
-
translation[dim] = image.translation[dim];
|
|
73
|
-
}
|
|
137
|
+
scale[dim] = image.scale[dim];
|
|
138
|
+
translation[dim] = image.translation[dim];
|
|
74
139
|
}
|
|
75
140
|
}
|
|
76
141
|
return [translation, scale];
|
|
77
142
|
}
|
|
78
|
-
/**
|
|
79
|
-
* Compute Gaussian kernel sigma values in pixel units for downsampling.
|
|
80
|
-
*
|
|
81
|
-
* Formula: sigma = sqrt((k^2 - 1^2)/(2*sqrt(2*ln(2)))^2)
|
|
82
|
-
*
|
|
83
|
-
* Reference:
|
|
84
|
-
* - https://discourse.itk.org/t/resampling-to-isotropic-signal-processing-theory/1403/16
|
|
85
|
-
* - https://doi.org/10.1007/978-3-319-24571-3_81
|
|
86
|
-
* - http://discovery.ucl.ac.uk/1469251/1/scale-factor-point-5.pdf
|
|
87
|
-
*
|
|
88
|
-
* @param shrinkFactors - Shrink ratio along each axis
|
|
89
|
-
* @returns Standard deviation of Gaussian kernel along each axis
|
|
90
|
-
*/
|
|
91
|
-
function computeSigma(shrinkFactors) {
|
|
92
|
-
const denominator = Math.pow(2 * Math.sqrt(2 * Math.log(2)), 2);
|
|
93
|
-
return shrinkFactors.map((factor) => Math.sqrt((factor * factor - 1) / denominator));
|
|
94
|
-
}
|
|
95
143
|
/**
|
|
96
144
|
* Convert zarr array to ITK-Wasm Image format
|
|
97
145
|
* If isVector is true, ensures "c" dimension is last by transposing if needed
|
|
@@ -132,6 +180,9 @@ async function zarrToItkImage(array, dims, isVector = false) {
|
|
|
132
180
|
// For vector images, the last dimension is the component count, not a spatial dimension
|
|
133
181
|
const spatialShape = isVector ? shape.slice(0, -1) : shape;
|
|
134
182
|
const components = isVector ? shape[shape.length - 1] : 1;
|
|
183
|
+
// ITK expects size in physical space order [x, y, z], but spatialShape is in array order [z, y, x]
|
|
184
|
+
// So we need to reverse it
|
|
185
|
+
const itkSize = [...spatialShape].reverse();
|
|
135
186
|
// Create ITK-Wasm image
|
|
136
187
|
const itkImage = {
|
|
137
188
|
imageType: {
|
|
@@ -144,8 +195,8 @@ async function zarrToItkImage(array, dims, isVector = false) {
|
|
|
144
195
|
origin: spatialShape.map(() => 0),
|
|
145
196
|
spacing: spatialShape.map(() => 1),
|
|
146
197
|
direction: createIdentityMatrix(spatialShape.length),
|
|
147
|
-
size:
|
|
148
|
-
data,
|
|
198
|
+
size: itkSize,
|
|
199
|
+
data: data,
|
|
149
200
|
metadata: new Map(),
|
|
150
201
|
};
|
|
151
202
|
return itkImage;
|
|
@@ -178,12 +229,6 @@ function copyTypedArray(data) {
|
|
|
178
229
|
else if (data instanceof Int32Array) {
|
|
179
230
|
return new Int32Array(data);
|
|
180
231
|
}
|
|
181
|
-
else if (data instanceof BigInt64Array) {
|
|
182
|
-
return new BigInt64Array(data);
|
|
183
|
-
}
|
|
184
|
-
else if (data instanceof BigUint64Array) {
|
|
185
|
-
return new BigUint64Array(data);
|
|
186
|
-
}
|
|
187
232
|
else {
|
|
188
233
|
// Convert to Float32Array as fallback
|
|
189
234
|
return new Float32Array(data);
|
|
@@ -204,23 +249,17 @@ function transposeArray(data, shape, permutation, componentType) {
|
|
|
204
249
|
case "int8":
|
|
205
250
|
output = new Int8Array(totalSize);
|
|
206
251
|
break;
|
|
207
|
-
case "int16":
|
|
208
|
-
output = new Int16Array(totalSize);
|
|
209
|
-
break;
|
|
210
252
|
case "uint16":
|
|
211
253
|
output = new Uint16Array(totalSize);
|
|
212
254
|
break;
|
|
213
|
-
case "
|
|
214
|
-
output = new
|
|
255
|
+
case "int16":
|
|
256
|
+
output = new Int16Array(totalSize);
|
|
215
257
|
break;
|
|
216
258
|
case "uint32":
|
|
217
259
|
output = new Uint32Array(totalSize);
|
|
218
260
|
break;
|
|
219
|
-
case "
|
|
220
|
-
output = new
|
|
221
|
-
break;
|
|
222
|
-
case "uint64":
|
|
223
|
-
output = new BigUint64Array(totalSize);
|
|
261
|
+
case "int32":
|
|
262
|
+
output = new Int32Array(totalSize);
|
|
224
263
|
break;
|
|
225
264
|
case "float64":
|
|
226
265
|
output = new Float64Array(totalSize);
|
|
@@ -275,10 +314,6 @@ function getItkComponentType(data) {
|
|
|
275
314
|
return "uint32";
|
|
276
315
|
if (data instanceof Int32Array)
|
|
277
316
|
return "int32";
|
|
278
|
-
if (data instanceof BigUint64Array)
|
|
279
|
-
return "uint64";
|
|
280
|
-
if (data instanceof BigInt64Array)
|
|
281
|
-
return "int64";
|
|
282
317
|
if (data instanceof Float64Array)
|
|
283
318
|
return "float64";
|
|
284
319
|
return "float32";
|
|
@@ -295,12 +330,25 @@ function createIdentityMatrix(dimension) {
|
|
|
295
330
|
}
|
|
296
331
|
/**
|
|
297
332
|
* Convert ITK-Wasm Image back to zarr array
|
|
333
|
+
* Uses the provided store instead of creating a new one
|
|
334
|
+
*
|
|
335
|
+
* Important: ITK-Wasm stores size in physical space order [x, y, z], but data in
|
|
336
|
+
* column-major order (x contiguous). This column-major layout with size [x, y, z]
|
|
337
|
+
* is equivalent to C-order (row-major) with shape [z, y, x]. We reverse the size
|
|
338
|
+
* to get the zarr shape and use C-order strides for that reversed shape.
|
|
339
|
+
*
|
|
340
|
+
* @param itkImage - The ITK-Wasm image to convert
|
|
341
|
+
* @param store - The zarr store to write to
|
|
342
|
+
* @param path - The path within the store
|
|
343
|
+
* @param chunkShape - The chunk shape (in spatial dimension order, will be adjusted for components)
|
|
344
|
+
* @param targetDims - The target dimension order (e.g., ["c", "z", "y", "x"])
|
|
298
345
|
*/
|
|
299
|
-
async function itkImageToZarr(itkImage, path, chunkShape) {
|
|
300
|
-
// Use in-memory store
|
|
301
|
-
const store = new Map();
|
|
346
|
+
async function itkImageToZarr(itkImage, store, path, chunkShape, targetDims) {
|
|
302
347
|
const root = zarr.root(store);
|
|
303
|
-
|
|
348
|
+
if (!itkImage.data) {
|
|
349
|
+
throw new Error("ITK image data is null or undefined");
|
|
350
|
+
}
|
|
351
|
+
// Determine data type - support all ITK TypedArray types
|
|
304
352
|
let dataType;
|
|
305
353
|
if (itkImage.data instanceof Uint8Array) {
|
|
306
354
|
dataType = "uint8";
|
|
@@ -308,44 +356,125 @@ async function itkImageToZarr(itkImage, path, chunkShape) {
|
|
|
308
356
|
else if (itkImage.data instanceof Int8Array) {
|
|
309
357
|
dataType = "int8";
|
|
310
358
|
}
|
|
311
|
-
else if (itkImage.data instanceof Int16Array) {
|
|
312
|
-
dataType = "int16";
|
|
313
|
-
}
|
|
314
359
|
else if (itkImage.data instanceof Uint16Array) {
|
|
315
360
|
dataType = "uint16";
|
|
316
361
|
}
|
|
317
|
-
else if (itkImage.data instanceof
|
|
318
|
-
dataType = "
|
|
362
|
+
else if (itkImage.data instanceof Int16Array) {
|
|
363
|
+
dataType = "int16";
|
|
319
364
|
}
|
|
320
365
|
else if (itkImage.data instanceof Uint32Array) {
|
|
321
366
|
dataType = "uint32";
|
|
322
367
|
}
|
|
323
|
-
else if (itkImage.data instanceof
|
|
324
|
-
dataType = "
|
|
368
|
+
else if (itkImage.data instanceof Int32Array) {
|
|
369
|
+
dataType = "int32";
|
|
325
370
|
}
|
|
326
|
-
else if (itkImage.data instanceof
|
|
327
|
-
dataType = "
|
|
371
|
+
else if (itkImage.data instanceof Float32Array) {
|
|
372
|
+
dataType = "float32";
|
|
328
373
|
}
|
|
329
374
|
else if (itkImage.data instanceof Float64Array) {
|
|
330
375
|
dataType = "float64";
|
|
331
376
|
}
|
|
332
|
-
else
|
|
333
|
-
|
|
377
|
+
else {
|
|
378
|
+
throw new Error(`Unsupported data type: ${itkImage.data.constructor.name}`);
|
|
379
|
+
}
|
|
380
|
+
// ITK stores size/spacing/origin in physical space order [x, y, z],
|
|
381
|
+
// but the data buffer is in C-order (row-major) which means [z, y, x] indexing.
|
|
382
|
+
// We need to reverse the size to match the data layout, just like we do for spacing/origin.
|
|
383
|
+
const shape = [...itkImage.size].reverse();
|
|
384
|
+
// For vector images, the components are stored in the data but not in the size
|
|
385
|
+
// The actual data length includes components
|
|
386
|
+
const components = itkImage.imageType.components || 1;
|
|
387
|
+
const isVector = components > 1;
|
|
388
|
+
// Validate data length matches expected shape (including components for vector images)
|
|
389
|
+
const spatialElements = shape.reduce((a, b) => a * b, 1);
|
|
390
|
+
const expectedLength = spatialElements * components;
|
|
391
|
+
if (itkImage.data.length !== expectedLength) {
|
|
392
|
+
console.error(`[ERROR] Data length mismatch in itkImageToZarr:`);
|
|
393
|
+
console.error(` ITK image size (physical order):`, itkImage.size);
|
|
394
|
+
console.error(` Shape (reversed):`, shape);
|
|
395
|
+
console.error(` Components:`, components);
|
|
396
|
+
console.error(` Expected data length:`, expectedLength);
|
|
397
|
+
console.error(` Actual data length:`, itkImage.data.length);
|
|
398
|
+
throw new Error(`Data length (${itkImage.data.length}) doesn't match expected shape ${shape} with ${components} components (${expectedLength} elements)`);
|
|
399
|
+
}
|
|
400
|
+
// Determine the final shape and whether we need to transpose
|
|
401
|
+
// ITK image data has shape [...spatialDimsReversed, components] (with c at end)
|
|
402
|
+
// If targetDims is provided, we need to match that order
|
|
403
|
+
let zarrShape;
|
|
404
|
+
let zarrChunkShape;
|
|
405
|
+
let finalData = itkImage.data;
|
|
406
|
+
if (isVector && targetDims) {
|
|
407
|
+
// Find where "c" should be in targetDims
|
|
408
|
+
const cIndex = targetDims.indexOf("c");
|
|
409
|
+
if (cIndex === -1) {
|
|
410
|
+
throw new Error("Vector image but 'c' not found in targetDims");
|
|
411
|
+
}
|
|
412
|
+
// Current shape is [z, y, x, c] (spatial reversed + c at end)
|
|
413
|
+
// Target shape should match targetDims order
|
|
414
|
+
const currentShape = [...shape, components];
|
|
415
|
+
// Build target shape based on targetDims
|
|
416
|
+
zarrShape = new Array(targetDims.length);
|
|
417
|
+
const spatialDims = shape.slice(); // [z, y, x]
|
|
418
|
+
let spatialIdx = 0;
|
|
419
|
+
for (let i = 0; i < targetDims.length; i++) {
|
|
420
|
+
if (targetDims[i] === "c") {
|
|
421
|
+
zarrShape[i] = components;
|
|
422
|
+
}
|
|
423
|
+
else {
|
|
424
|
+
zarrShape[i] = spatialDims[spatialIdx++];
|
|
425
|
+
}
|
|
426
|
+
}
|
|
427
|
+
// If c is not at the end, we need to transpose
|
|
428
|
+
if (cIndex !== targetDims.length - 1) {
|
|
429
|
+
// Build permutation: where does each target dim come from in current shape?
|
|
430
|
+
const permutation = [];
|
|
431
|
+
spatialIdx = 0;
|
|
432
|
+
for (let i = 0; i < targetDims.length; i++) {
|
|
433
|
+
if (targetDims[i] === "c") {
|
|
434
|
+
permutation.push(currentShape.length - 1); // c is at end of current
|
|
435
|
+
}
|
|
436
|
+
else {
|
|
437
|
+
permutation.push(spatialIdx++);
|
|
438
|
+
}
|
|
439
|
+
}
|
|
440
|
+
// Transpose the data
|
|
441
|
+
finalData = transposeArray(itkImage.data, currentShape, permutation, getItkComponentType(itkImage.data));
|
|
442
|
+
}
|
|
443
|
+
// Chunk shape should match zarrShape
|
|
444
|
+
zarrChunkShape = new Array(zarrShape.length);
|
|
445
|
+
spatialIdx = 0;
|
|
446
|
+
for (let i = 0; i < targetDims.length; i++) {
|
|
447
|
+
if (targetDims[i] === "c") {
|
|
448
|
+
zarrChunkShape[i] = components;
|
|
449
|
+
}
|
|
450
|
+
else {
|
|
451
|
+
zarrChunkShape[i] = chunkShape[spatialIdx++];
|
|
452
|
+
}
|
|
453
|
+
}
|
|
334
454
|
}
|
|
335
455
|
else {
|
|
336
|
-
|
|
456
|
+
// No targetDims or not a vector - use default behavior
|
|
457
|
+
zarrShape = isVector ? [...shape, components] : shape;
|
|
458
|
+
zarrChunkShape = isVector ? [...chunkShape, components] : chunkShape;
|
|
459
|
+
}
|
|
460
|
+
// Chunk shape should match the dimensionality of zarrShape
|
|
461
|
+
if (zarrChunkShape.length !== zarrShape.length) {
|
|
462
|
+
throw new Error(`chunkShape length (${zarrChunkShape.length}) must match shape length (${zarrShape.length})`);
|
|
337
463
|
}
|
|
338
464
|
const array = await zarr.create(root.resolve(path), {
|
|
339
|
-
shape:
|
|
340
|
-
chunk_shape:
|
|
465
|
+
shape: zarrShape,
|
|
466
|
+
chunk_shape: zarrChunkShape,
|
|
341
467
|
data_type: dataType,
|
|
342
468
|
fill_value: 0,
|
|
343
469
|
});
|
|
344
|
-
// Write data
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
470
|
+
// Write data - preserve the actual data type, don't cast to Float32Array
|
|
471
|
+
// Shape and stride should match the ITK image size order
|
|
472
|
+
// Use null for each dimension to select the entire array
|
|
473
|
+
const selection = zarrShape.map(() => null);
|
|
474
|
+
await zarr.set(array, selection, {
|
|
475
|
+
data: finalData,
|
|
476
|
+
shape: zarrShape,
|
|
477
|
+
stride: calculateStride(zarrShape),
|
|
349
478
|
});
|
|
350
479
|
return array;
|
|
351
480
|
}
|
|
@@ -361,316 +490,115 @@ function calculateStride(shape) {
|
|
|
361
490
|
return stride;
|
|
362
491
|
}
|
|
363
492
|
/**
|
|
364
|
-
*
|
|
493
|
+
* Perform Gaussian downsampling using ITK-Wasm
|
|
365
494
|
*/
|
|
366
|
-
async function
|
|
367
|
-
//
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
data: channelSlice,
|
|
390
|
-
shape: channelShape,
|
|
391
|
-
stride: calculateStride(channelShape),
|
|
392
|
-
});
|
|
393
|
-
// Create NgffImage for this channel (unused but kept for potential future use)
|
|
394
|
-
// const _channelImage = new NgffImage({
|
|
395
|
-
// data: channelArray,
|
|
396
|
-
// dims: channelDims,
|
|
397
|
-
// scale: Object.fromEntries(
|
|
398
|
-
// Object.entries(image.scale).filter(([k]) => k !== "c")
|
|
399
|
-
// ),
|
|
400
|
-
// translation: Object.fromEntries(
|
|
401
|
-
// Object.entries(image.translation).filter(([k]) => k !== "c")
|
|
402
|
-
// ),
|
|
403
|
-
// name: image.name,
|
|
404
|
-
// axesUnits: image.axesUnits,
|
|
405
|
-
// computedCallbacks: image.computedCallbacks,
|
|
406
|
-
// });
|
|
407
|
-
// Downsample this channel
|
|
408
|
-
const itkImage = await zarrToItkImage(channelArray, channelDims, false);
|
|
409
|
-
const shrinkFactors = [];
|
|
410
|
-
for (let i = 0; i < channelDims.length; i++) {
|
|
411
|
-
const dim = channelDims[i];
|
|
412
|
-
if (SPATIAL_DIMS.includes(dim)) {
|
|
413
|
-
shrinkFactors.push(dimFactors[dim] || 1);
|
|
414
|
-
}
|
|
415
|
-
else {
|
|
416
|
-
shrinkFactors.push(1); // Non-spatial dimensions don't shrink
|
|
417
|
-
}
|
|
418
|
-
}
|
|
419
|
-
let downsampled;
|
|
420
|
-
if (smoothing === "gaussian") {
|
|
421
|
-
const blockSize = itkImage.size.slice().reverse();
|
|
422
|
-
const sigma = computeSigma(shrinkFactors);
|
|
423
|
-
const { radius: _radius } = await gaussianKernelRadius({
|
|
424
|
-
size: blockSize,
|
|
425
|
-
sigma,
|
|
426
|
-
});
|
|
427
|
-
const result = await downsample(itkImage, {
|
|
428
|
-
shrinkFactors,
|
|
429
|
-
cropRadius: shrinkFactors.map(() => 0),
|
|
430
|
-
});
|
|
431
|
-
downsampled = result.downsampled;
|
|
432
|
-
}
|
|
433
|
-
else if (smoothing === "bin_shrink") {
|
|
434
|
-
const result = await downsampleBinShrink(itkImage, {
|
|
435
|
-
shrinkFactors,
|
|
436
|
-
});
|
|
437
|
-
downsampled = result.downsampled;
|
|
438
|
-
}
|
|
439
|
-
else if (smoothing === "label_image") {
|
|
440
|
-
const blockSize = itkImage.size.slice().reverse();
|
|
441
|
-
const sigma = computeSigma(shrinkFactors);
|
|
442
|
-
const { radius: _radius } = await gaussianKernelRadius({
|
|
443
|
-
size: blockSize,
|
|
444
|
-
sigma,
|
|
495
|
+
async function downsampleGaussian(image, dimFactors, spatialDims) {
|
|
496
|
+
// Handle time dimension by processing each time slice independently
|
|
497
|
+
if (image.dims.includes("t")) {
|
|
498
|
+
const tDimIndex = image.dims.indexOf("t");
|
|
499
|
+
const tSize = image.data.shape[tDimIndex];
|
|
500
|
+
const newDims = image.dims.filter((dim) => dim !== "t");
|
|
501
|
+
// Downsample each time slice
|
|
502
|
+
const downsampledSlices = [];
|
|
503
|
+
for (let t = 0; t < tSize; t++) {
|
|
504
|
+
// Extract time slice
|
|
505
|
+
const selection = new Array(image.data.shape.length).fill(null);
|
|
506
|
+
selection[tDimIndex] = t;
|
|
507
|
+
const sliceData = await zarr.get(image.data, selection);
|
|
508
|
+
// Create temporary zarr array for this slice
|
|
509
|
+
const sliceStore = new Map();
|
|
510
|
+
const sliceRoot = zarr.root(sliceStore);
|
|
511
|
+
const sliceShape = image.data.shape.filter((_, i) => i !== tDimIndex);
|
|
512
|
+
const sliceChunkShape = sliceShape.map((s) => Math.min(s, 256));
|
|
513
|
+
const sliceArray = await zarr.create(sliceRoot.resolve("slice"), {
|
|
514
|
+
shape: sliceShape,
|
|
515
|
+
chunk_shape: sliceChunkShape,
|
|
516
|
+
data_type: image.data.dtype,
|
|
517
|
+
fill_value: 0,
|
|
445
518
|
});
|
|
446
|
-
const
|
|
447
|
-
|
|
448
|
-
|
|
519
|
+
const fullSelection = new Array(sliceShape.length).fill(null);
|
|
520
|
+
await zarr.set(sliceArray, fullSelection, sliceData);
|
|
521
|
+
// Create NgffImage for this slice (without 't' dimension)
|
|
522
|
+
const sliceImage = new NgffImage({
|
|
523
|
+
data: sliceArray,
|
|
524
|
+
dims: newDims,
|
|
525
|
+
scale: Object.fromEntries(Object.entries(image.scale).filter(([dim]) => dim !== "t")),
|
|
526
|
+
translation: Object.fromEntries(Object.entries(image.translation).filter(([dim]) => dim !== "t")),
|
|
527
|
+
name: image.name,
|
|
528
|
+
axesUnits: image.axesUnits
|
|
529
|
+
? Object.fromEntries(Object.entries(image.axesUnits).filter(([dim]) => dim !== "t"))
|
|
530
|
+
: undefined,
|
|
531
|
+
computedCallbacks: image.computedCallbacks,
|
|
449
532
|
});
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
throw new Error(`Unknown smoothing method: ${smoothing}`);
|
|
533
|
+
// Recursively downsample this slice (without 't', so no infinite loop)
|
|
534
|
+
const downsampledSlice = await downsampleGaussian(sliceImage, dimFactors, spatialDims);
|
|
535
|
+
downsampledSlices.push(downsampledSlice.data);
|
|
454
536
|
}
|
|
455
|
-
//
|
|
456
|
-
const
|
|
457
|
-
const
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
return new NgffImage({
|
|
465
|
-
data: combinedArray,
|
|
466
|
-
dims: image.dims,
|
|
467
|
-
scale,
|
|
468
|
-
translation,
|
|
469
|
-
name: image.name,
|
|
470
|
-
axesUnits: image.axesUnits,
|
|
471
|
-
computedCallbacks: image.computedCallbacks,
|
|
472
|
-
});
|
|
473
|
-
}
|
|
474
|
-
/**
|
|
475
|
-
* Extract a single channel from the data
|
|
476
|
-
*/
|
|
477
|
-
function extractChannel(result, cIndex, channelIdx) {
|
|
478
|
-
const typedData = result.data;
|
|
479
|
-
const shape = result.shape;
|
|
480
|
-
// Calculate output size (all dims except channel)
|
|
481
|
-
const outputSize = shape.reduce((acc, s, i) => (i === cIndex ? acc : acc * s), 1);
|
|
482
|
-
let output;
|
|
483
|
-
if (typedData instanceof Uint8Array) {
|
|
484
|
-
output = new Uint8Array(outputSize);
|
|
485
|
-
}
|
|
486
|
-
else if (typedData instanceof Int8Array) {
|
|
487
|
-
output = new Int8Array(outputSize);
|
|
488
|
-
}
|
|
489
|
-
else if (typedData instanceof Int16Array) {
|
|
490
|
-
output = new Int16Array(outputSize);
|
|
491
|
-
}
|
|
492
|
-
else if (typedData instanceof Uint16Array) {
|
|
493
|
-
output = new Uint16Array(outputSize);
|
|
494
|
-
}
|
|
495
|
-
else if (typedData instanceof Int32Array) {
|
|
496
|
-
output = new Int32Array(outputSize);
|
|
497
|
-
}
|
|
498
|
-
else if (typedData instanceof Uint32Array) {
|
|
499
|
-
output = new Uint32Array(outputSize);
|
|
500
|
-
}
|
|
501
|
-
else if (typedData instanceof BigInt64Array) {
|
|
502
|
-
output = new BigInt64Array(outputSize);
|
|
503
|
-
}
|
|
504
|
-
else if (typedData instanceof BigUint64Array) {
|
|
505
|
-
output = new BigUint64Array(outputSize);
|
|
506
|
-
}
|
|
507
|
-
else if (typedData instanceof Float64Array) {
|
|
508
|
-
output = new Float64Array(outputSize);
|
|
509
|
-
}
|
|
510
|
-
else {
|
|
511
|
-
output = new Float32Array(outputSize);
|
|
512
|
-
}
|
|
513
|
-
// Calculate strides
|
|
514
|
-
const stride = calculateStride(shape);
|
|
515
|
-
const outputShape = shape.filter((_, i) => i !== cIndex);
|
|
516
|
-
const _outputStride = calculateStride(outputShape);
|
|
517
|
-
// Extract channel
|
|
518
|
-
const indices = new Array(shape.length).fill(0);
|
|
519
|
-
let outputIdx = 0;
|
|
520
|
-
for (let i = 0; i < outputSize; i++) {
|
|
521
|
-
// Set channel index
|
|
522
|
-
indices[cIndex] = channelIdx;
|
|
523
|
-
// Calculate source index
|
|
524
|
-
let sourceIdx = 0;
|
|
525
|
-
for (let j = 0; j < shape.length; j++) {
|
|
526
|
-
sourceIdx += indices[j] * stride[j];
|
|
527
|
-
}
|
|
528
|
-
output[outputIdx++] = typedData[sourceIdx];
|
|
529
|
-
// Increment indices (skip channel dimension)
|
|
530
|
-
for (let j = shape.length - 1; j >= 0; j--) {
|
|
531
|
-
if (j === cIndex)
|
|
532
|
-
continue;
|
|
533
|
-
indices[j]++;
|
|
534
|
-
if (indices[j] < shape[j])
|
|
535
|
-
break;
|
|
536
|
-
indices[j] = 0;
|
|
537
|
-
}
|
|
538
|
-
}
|
|
539
|
-
return output;
|
|
540
|
-
}
|
|
541
|
-
/**
|
|
542
|
-
* Combine multiple channel arrays back into a single multi-channel array
|
|
543
|
-
*/
|
|
544
|
-
async function combineChannels(channels, cIndex, _originalDims) {
|
|
545
|
-
// Read all channel data
|
|
546
|
-
const channelData = await Promise.all(channels.map((c) => zarr.get(c)));
|
|
547
|
-
// Determine combined shape
|
|
548
|
-
const firstChannel = channelData[0];
|
|
549
|
-
const channelShape = firstChannel.shape;
|
|
550
|
-
const combinedShape = [...channelShape];
|
|
551
|
-
combinedShape.splice(cIndex, 0, channels.length);
|
|
552
|
-
// Create combined array
|
|
553
|
-
const store = new Map();
|
|
554
|
-
const root = zarr.root(store);
|
|
555
|
-
const chunkShape = combinedShape.map((s) => Math.min(s, 256));
|
|
556
|
-
const dataType = getItkComponentType(firstChannel.data);
|
|
557
|
-
const combinedArray = await zarr.create(root.resolve("combined"), {
|
|
558
|
-
shape: combinedShape,
|
|
559
|
-
chunk_shape: chunkShape,
|
|
560
|
-
data_type: dataType,
|
|
561
|
-
fill_value: 0,
|
|
562
|
-
});
|
|
563
|
-
// Combine all channels
|
|
564
|
-
const totalSize = combinedShape.reduce((acc, s) => acc * s, 1);
|
|
565
|
-
let combined;
|
|
566
|
-
if (dataType === "uint8") {
|
|
567
|
-
combined = new Uint8Array(totalSize);
|
|
568
|
-
}
|
|
569
|
-
else if (dataType === "int8") {
|
|
570
|
-
combined = new Int8Array(totalSize);
|
|
571
|
-
}
|
|
572
|
-
else if (dataType === "int16") {
|
|
573
|
-
combined = new Int16Array(totalSize);
|
|
574
|
-
}
|
|
575
|
-
else if (dataType === "uint16") {
|
|
576
|
-
combined = new Uint16Array(totalSize);
|
|
577
|
-
}
|
|
578
|
-
else if (dataType === "int32") {
|
|
579
|
-
combined = new Int32Array(totalSize);
|
|
580
|
-
}
|
|
581
|
-
else if (dataType === "uint32") {
|
|
582
|
-
combined = new Uint32Array(totalSize);
|
|
583
|
-
}
|
|
584
|
-
else if (dataType === "int64") {
|
|
585
|
-
combined = new BigInt64Array(totalSize);
|
|
586
|
-
}
|
|
587
|
-
else if (dataType === "uint64") {
|
|
588
|
-
combined = new BigUint64Array(totalSize);
|
|
589
|
-
}
|
|
590
|
-
else if (dataType === "float64") {
|
|
591
|
-
combined = new Float64Array(totalSize);
|
|
592
|
-
}
|
|
593
|
-
else {
|
|
594
|
-
combined = new Float32Array(totalSize);
|
|
595
|
-
}
|
|
596
|
-
const stride = calculateStride(combinedShape);
|
|
597
|
-
const _channelStride = calculateStride(channelShape);
|
|
598
|
-
// Copy each channel's data
|
|
599
|
-
for (let c = 0; c < channels.length; c++) {
|
|
600
|
-
const channelTypedData = channelData[c].data;
|
|
601
|
-
const indices = new Array(combinedShape.length).fill(0);
|
|
602
|
-
for (let i = 0; i < channelTypedData.length; i++) {
|
|
603
|
-
// Set channel index
|
|
604
|
-
indices[cIndex] = c;
|
|
605
|
-
// Calculate target index in combined array
|
|
606
|
-
let targetIdx = 0;
|
|
607
|
-
for (let j = 0; j < combinedShape.length; j++) {
|
|
608
|
-
targetIdx += indices[j] * stride[j];
|
|
609
|
-
}
|
|
610
|
-
combined[targetIdx] = channelTypedData[i];
|
|
611
|
-
// Increment indices (skip channel dimension)
|
|
612
|
-
for (let j = combinedShape.length - 1; j >= 0; j--) {
|
|
613
|
-
if (j === cIndex)
|
|
614
|
-
continue;
|
|
615
|
-
indices[j]++;
|
|
616
|
-
if (indices[j] < combinedShape[j])
|
|
617
|
-
break;
|
|
618
|
-
indices[j] = 0;
|
|
537
|
+
// Combine downsampled slices back into a single array with 't' dimension
|
|
538
|
+
const firstSlice = downsampledSlices[0];
|
|
539
|
+
const combinedShape = [...image.data.shape];
|
|
540
|
+
combinedShape[tDimIndex] = tSize;
|
|
541
|
+
// Update spatial dimensions based on downsampled size
|
|
542
|
+
for (let i = 0; i < image.dims.length; i++) {
|
|
543
|
+
if (i !== tDimIndex) {
|
|
544
|
+
const sliceIndex = i < tDimIndex ? i : i - 1;
|
|
545
|
+
combinedShape[i] = firstSlice.shape[sliceIndex];
|
|
619
546
|
}
|
|
620
547
|
}
|
|
548
|
+
// Create combined array
|
|
549
|
+
const combinedStore = new Map();
|
|
550
|
+
const combinedRoot = zarr.root(combinedStore);
|
|
551
|
+
const combinedArray = await zarr.create(combinedRoot.resolve("combined"), {
|
|
552
|
+
shape: combinedShape,
|
|
553
|
+
chunk_shape: combinedShape.map((s) => Math.min(s, 256)),
|
|
554
|
+
data_type: image.data.dtype,
|
|
555
|
+
fill_value: 0,
|
|
556
|
+
});
|
|
557
|
+
// Copy each downsampled slice into the combined array
|
|
558
|
+
for (let t = 0; t < tSize; t++) {
|
|
559
|
+
const sliceData = await zarr.get(downsampledSlices[t]);
|
|
560
|
+
const targetSelection = new Array(combinedShape.length).fill(null);
|
|
561
|
+
targetSelection[tDimIndex] = t;
|
|
562
|
+
await zarr.set(combinedArray, targetSelection, sliceData);
|
|
563
|
+
}
|
|
564
|
+
// Compute new metadata (time dimension unchanged, spatial dimensions downsampled)
|
|
565
|
+
const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
|
|
566
|
+
return new NgffImage({
|
|
567
|
+
data: combinedArray,
|
|
568
|
+
dims: image.dims,
|
|
569
|
+
scale: { ...image.scale, ...scale },
|
|
570
|
+
translation: { ...image.translation, ...translation },
|
|
571
|
+
name: image.name,
|
|
572
|
+
axesUnits: image.axesUnits,
|
|
573
|
+
computedCallbacks: image.computedCallbacks,
|
|
574
|
+
});
|
|
621
575
|
}
|
|
622
|
-
|
|
623
|
-
await zarr.set(combinedArray, [], {
|
|
624
|
-
data: combined,
|
|
625
|
-
shape: combinedShape,
|
|
626
|
-
stride,
|
|
627
|
-
});
|
|
628
|
-
return combinedArray;
|
|
629
|
-
}
|
|
630
|
-
/**
|
|
631
|
-
* Perform Gaussian downsampling using ITK-Wasm
|
|
632
|
-
*/
|
|
633
|
-
async function downsampleGaussian(image, dimFactors, spatialDims) {
|
|
634
|
-
const cIndex = image.dims.indexOf("c");
|
|
635
|
-
const isVector = cIndex === image.dims.length - 1;
|
|
636
|
-
const isChannelFirst = cIndex !== -1 && cIndex < image.dims.length - 1 &&
|
|
637
|
-
!isVector;
|
|
638
|
-
// If channel is first (before spatial dims), process each channel separately
|
|
639
|
-
if (isChannelFirst) {
|
|
640
|
-
return await downsampleChannelFirst(image, dimFactors, spatialDims, "gaussian");
|
|
641
|
-
}
|
|
576
|
+
const isVector = image.dims.includes("c");
|
|
642
577
|
// Convert to ITK-Wasm format
|
|
643
578
|
const itkImage = await zarrToItkImage(image.data, image.dims, isVector);
|
|
644
|
-
// Prepare shrink factors - need to be for
|
|
645
|
-
// For vector images, the last dimension (c) is NOT a spatial dimension in the ITK image
|
|
579
|
+
// Prepare shrink factors - need to be for ALL dimensions in ITK order (reversed)
|
|
646
580
|
const shrinkFactors = [];
|
|
647
|
-
|
|
648
|
-
|
|
649
|
-
const dim = effectiveDims[i];
|
|
581
|
+
for (let i = image.dims.length - 1; i >= 0; i--) {
|
|
582
|
+
const dim = image.dims[i];
|
|
650
583
|
if (SPATIAL_DIMS.includes(dim)) {
|
|
651
584
|
shrinkFactors.push(dimFactors[dim] || 1);
|
|
652
585
|
}
|
|
653
|
-
else {
|
|
654
|
-
shrinkFactors.push(1); // Non-spatial dimensions don't shrink
|
|
655
|
-
}
|
|
656
586
|
}
|
|
657
|
-
//
|
|
658
|
-
const
|
|
659
|
-
const sigma = computeSigma(shrinkFactors);
|
|
660
|
-
const { radius: _radius } = await gaussianKernelRadius({
|
|
661
|
-
size: blockSize,
|
|
662
|
-
sigma,
|
|
663
|
-
});
|
|
587
|
+
// Use all zeros for cropRadius
|
|
588
|
+
const cropRadius = new Array(shrinkFactors.length).fill(0);
|
|
664
589
|
// Perform downsampling
|
|
665
590
|
const { downsampled } = await downsample(itkImage, {
|
|
666
591
|
shrinkFactors,
|
|
667
|
-
cropRadius:
|
|
592
|
+
cropRadius: cropRadius,
|
|
668
593
|
});
|
|
669
594
|
// Compute new metadata
|
|
670
595
|
const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
|
|
671
|
-
// Convert back to zarr array
|
|
672
|
-
|
|
673
|
-
const
|
|
596
|
+
// Convert back to zarr array in a new in-memory store
|
|
597
|
+
// Each downsampled image gets its own store - toNgffZarr will handle copying to target
|
|
598
|
+
const store = new Map();
|
|
599
|
+
// Chunk shape needs to be in zarr order (reversed from ITK order)
|
|
600
|
+
const chunkShape = downsampled.size.map((s) => Math.min(s, 256)).reverse();
|
|
601
|
+
const array = await itkImageToZarr(downsampled, store, "image", chunkShape, image.dims);
|
|
674
602
|
return new NgffImage({
|
|
675
603
|
data: array,
|
|
676
604
|
dims: image.dims,
|
|
@@ -685,28 +613,97 @@ async function downsampleGaussian(image, dimFactors, spatialDims) {
|
|
|
685
613
|
* Perform bin shrink downsampling using ITK-Wasm
|
|
686
614
|
*/
|
|
687
615
|
async function downsampleBinShrinkImpl(image, dimFactors, spatialDims) {
|
|
688
|
-
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
|
|
692
|
-
|
|
693
|
-
|
|
694
|
-
|
|
616
|
+
// Handle time dimension by processing each time slice independently
|
|
617
|
+
if (image.dims.includes("t")) {
|
|
618
|
+
const tDimIndex = image.dims.indexOf("t");
|
|
619
|
+
const tSize = image.data.shape[tDimIndex];
|
|
620
|
+
const newDims = image.dims.filter((dim) => dim !== "t");
|
|
621
|
+
// Downsample each time slice
|
|
622
|
+
const downsampledSlices = [];
|
|
623
|
+
for (let t = 0; t < tSize; t++) {
|
|
624
|
+
// Extract time slice
|
|
625
|
+
const selection = new Array(image.data.shape.length).fill(null);
|
|
626
|
+
selection[tDimIndex] = t;
|
|
627
|
+
const sliceData = await zarr.get(image.data, selection);
|
|
628
|
+
// Create temporary zarr array for this slice
|
|
629
|
+
const sliceStore = new Map();
|
|
630
|
+
const sliceRoot = zarr.root(sliceStore);
|
|
631
|
+
const sliceShape = image.data.shape.filter((_, i) => i !== tDimIndex);
|
|
632
|
+
const sliceChunkShape = sliceShape.map((s) => Math.min(s, 256));
|
|
633
|
+
const sliceArray = await zarr.create(sliceRoot.resolve("slice"), {
|
|
634
|
+
shape: sliceShape,
|
|
635
|
+
chunk_shape: sliceChunkShape,
|
|
636
|
+
data_type: image.data.dtype,
|
|
637
|
+
fill_value: 0,
|
|
638
|
+
});
|
|
639
|
+
const fullSelection = new Array(sliceShape.length).fill(null);
|
|
640
|
+
await zarr.set(sliceArray, fullSelection, sliceData);
|
|
641
|
+
// Create NgffImage for this slice (without 't' dimension)
|
|
642
|
+
const sliceImage = new NgffImage({
|
|
643
|
+
data: sliceArray,
|
|
644
|
+
dims: newDims,
|
|
645
|
+
scale: Object.fromEntries(Object.entries(image.scale).filter(([dim]) => dim !== "t")),
|
|
646
|
+
translation: Object.fromEntries(Object.entries(image.translation).filter(([dim]) => dim !== "t")),
|
|
647
|
+
name: image.name,
|
|
648
|
+
axesUnits: image.axesUnits
|
|
649
|
+
? Object.fromEntries(Object.entries(image.axesUnits).filter(([dim]) => dim !== "t"))
|
|
650
|
+
: undefined,
|
|
651
|
+
computedCallbacks: image.computedCallbacks,
|
|
652
|
+
});
|
|
653
|
+
// Recursively downsample this slice
|
|
654
|
+
const downsampledSlice = await downsampleBinShrinkImpl(sliceImage, dimFactors, spatialDims);
|
|
655
|
+
downsampledSlices.push(downsampledSlice.data);
|
|
656
|
+
}
|
|
657
|
+
// Combine downsampled slices back into a single array with 't' dimension
|
|
658
|
+
const firstSlice = downsampledSlices[0];
|
|
659
|
+
const combinedShape = [...image.data.shape];
|
|
660
|
+
combinedShape[tDimIndex] = tSize;
|
|
661
|
+
// Update spatial dimensions based on downsampled size
|
|
662
|
+
for (let i = 0; i < image.dims.length; i++) {
|
|
663
|
+
if (i !== tDimIndex) {
|
|
664
|
+
const sliceIndex = i < tDimIndex ? i : i - 1;
|
|
665
|
+
combinedShape[i] = firstSlice.shape[sliceIndex];
|
|
666
|
+
}
|
|
667
|
+
}
|
|
668
|
+
// Create combined array
|
|
669
|
+
const combinedStore = new Map();
|
|
670
|
+
const combinedRoot = zarr.root(combinedStore);
|
|
671
|
+
const combinedArray = await zarr.create(combinedRoot.resolve("combined"), {
|
|
672
|
+
shape: combinedShape,
|
|
673
|
+
chunk_shape: combinedShape.map((s) => Math.min(s, 256)),
|
|
674
|
+
data_type: image.data.dtype,
|
|
675
|
+
fill_value: 0,
|
|
676
|
+
});
|
|
677
|
+
// Copy each downsampled slice into the combined array
|
|
678
|
+
for (let t = 0; t < tSize; t++) {
|
|
679
|
+
const sliceData = await zarr.get(downsampledSlices[t]);
|
|
680
|
+
const targetSelection = new Array(combinedShape.length).fill(null);
|
|
681
|
+
targetSelection[tDimIndex] = t;
|
|
682
|
+
await zarr.set(combinedArray, targetSelection, sliceData);
|
|
683
|
+
}
|
|
684
|
+
// Compute new metadata
|
|
685
|
+
const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
|
|
686
|
+
return new NgffImage({
|
|
687
|
+
data: combinedArray,
|
|
688
|
+
dims: image.dims,
|
|
689
|
+
scale: { ...image.scale, ...scale },
|
|
690
|
+
translation: { ...image.translation, ...translation },
|
|
691
|
+
name: image.name,
|
|
692
|
+
axesUnits: image.axesUnits,
|
|
693
|
+
computedCallbacks: image.computedCallbacks,
|
|
694
|
+
});
|
|
695
695
|
}
|
|
696
|
+
const isVector = image.dims.includes("c");
|
|
696
697
|
// Convert to ITK-Wasm format
|
|
697
698
|
const itkImage = await zarrToItkImage(image.data, image.dims, isVector);
|
|
698
|
-
// Prepare shrink factors -
|
|
699
|
-
//
|
|
699
|
+
// Prepare shrink factors - only for spatial dimensions in ITK order (reversed)
|
|
700
|
+
// ITK bin shrink does not expect shrink factors for non-spatial dimensions like 'c'
|
|
700
701
|
const shrinkFactors = [];
|
|
701
|
-
|
|
702
|
-
|
|
703
|
-
const dim = effectiveDims[i];
|
|
702
|
+
for (let i = image.dims.length - 1; i >= 0; i--) {
|
|
703
|
+
const dim = image.dims[i];
|
|
704
704
|
if (SPATIAL_DIMS.includes(dim)) {
|
|
705
705
|
shrinkFactors.push(dimFactors[dim] || 1);
|
|
706
706
|
}
|
|
707
|
-
else {
|
|
708
|
-
shrinkFactors.push(1); // Non-spatial dimensions don't shrink
|
|
709
|
-
}
|
|
710
707
|
}
|
|
711
708
|
// Perform downsampling
|
|
712
709
|
const { downsampled } = await downsampleBinShrink(itkImage, {
|
|
@@ -714,9 +711,12 @@ async function downsampleBinShrinkImpl(image, dimFactors, spatialDims) {
|
|
|
714
711
|
});
|
|
715
712
|
// Compute new metadata
|
|
716
713
|
const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
|
|
717
|
-
// Convert back to zarr array
|
|
718
|
-
|
|
719
|
-
const
|
|
714
|
+
// Convert back to zarr array in a new in-memory store
|
|
715
|
+
// Each downsampled image gets its own store - toNgffZarr will handle copying to target
|
|
716
|
+
const store = new Map();
|
|
717
|
+
// Chunk shape needs to be in zarr order (reversed from ITK order)
|
|
718
|
+
const chunkShape = downsampled.size.map((s) => Math.min(s, 256)).reverse();
|
|
719
|
+
const array = await itkImageToZarr(downsampled, store, "image", chunkShape, image.dims);
|
|
720
720
|
return new NgffImage({
|
|
721
721
|
data: array,
|
|
722
722
|
dims: image.dims,
|
|
@@ -731,22 +731,93 @@ async function downsampleBinShrinkImpl(image, dimFactors, spatialDims) {
|
|
|
731
731
|
* Perform label image downsampling using ITK-Wasm
|
|
732
732
|
*/
|
|
733
733
|
async function downsampleLabelImageImpl(image, dimFactors, spatialDims) {
|
|
734
|
-
|
|
735
|
-
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
|
|
739
|
-
|
|
740
|
-
|
|
734
|
+
// Handle time dimension by processing each time slice independently
|
|
735
|
+
if (image.dims.includes("t")) {
|
|
736
|
+
const tDimIndex = image.dims.indexOf("t");
|
|
737
|
+
const tSize = image.data.shape[tDimIndex];
|
|
738
|
+
const newDims = image.dims.filter((dim) => dim !== "t");
|
|
739
|
+
// Downsample each time slice
|
|
740
|
+
const downsampledSlices = [];
|
|
741
|
+
for (let t = 0; t < tSize; t++) {
|
|
742
|
+
// Extract time slice
|
|
743
|
+
const selection = new Array(image.data.shape.length).fill(null);
|
|
744
|
+
selection[tDimIndex] = t;
|
|
745
|
+
const sliceData = await zarr.get(image.data, selection);
|
|
746
|
+
// Create temporary zarr array for this slice
|
|
747
|
+
const sliceStore = new Map();
|
|
748
|
+
const sliceRoot = zarr.root(sliceStore);
|
|
749
|
+
const sliceShape = image.data.shape.filter((_, i) => i !== tDimIndex);
|
|
750
|
+
const sliceChunkShape = sliceShape.map((s) => Math.min(s, 256));
|
|
751
|
+
const sliceArray = await zarr.create(sliceRoot.resolve("slice"), {
|
|
752
|
+
shape: sliceShape,
|
|
753
|
+
chunk_shape: sliceChunkShape,
|
|
754
|
+
data_type: image.data.dtype,
|
|
755
|
+
fill_value: 0,
|
|
756
|
+
});
|
|
757
|
+
const fullSelection = new Array(sliceShape.length).fill(null);
|
|
758
|
+
await zarr.set(sliceArray, fullSelection, sliceData);
|
|
759
|
+
// Create NgffImage for this slice (without 't' dimension)
|
|
760
|
+
const sliceImage = new NgffImage({
|
|
761
|
+
data: sliceArray,
|
|
762
|
+
dims: newDims,
|
|
763
|
+
scale: Object.fromEntries(Object.entries(image.scale).filter(([dim]) => dim !== "t")),
|
|
764
|
+
translation: Object.fromEntries(Object.entries(image.translation).filter(([dim]) => dim !== "t")),
|
|
765
|
+
name: image.name,
|
|
766
|
+
axesUnits: image.axesUnits
|
|
767
|
+
? Object.fromEntries(Object.entries(image.axesUnits).filter(([dim]) => dim !== "t"))
|
|
768
|
+
: undefined,
|
|
769
|
+
computedCallbacks: image.computedCallbacks,
|
|
770
|
+
});
|
|
771
|
+
// Recursively downsample this slice
|
|
772
|
+
const downsampledSlice = await downsampleLabelImageImpl(sliceImage, dimFactors, spatialDims);
|
|
773
|
+
downsampledSlices.push(downsampledSlice.data);
|
|
774
|
+
}
|
|
775
|
+
// Combine downsampled slices back into a single array with 't' dimension
|
|
776
|
+
const firstSlice = downsampledSlices[0];
|
|
777
|
+
const combinedShape = [...image.data.shape];
|
|
778
|
+
combinedShape[tDimIndex] = tSize;
|
|
779
|
+
// Update spatial dimensions based on downsampled size
|
|
780
|
+
for (let i = 0; i < image.dims.length; i++) {
|
|
781
|
+
if (i !== tDimIndex) {
|
|
782
|
+
const sliceIndex = i < tDimIndex ? i : i - 1;
|
|
783
|
+
combinedShape[i] = firstSlice.shape[sliceIndex];
|
|
784
|
+
}
|
|
785
|
+
}
|
|
786
|
+
// Create combined array
|
|
787
|
+
const combinedStore = new Map();
|
|
788
|
+
const combinedRoot = zarr.root(combinedStore);
|
|
789
|
+
const combinedArray = await zarr.create(combinedRoot.resolve("combined"), {
|
|
790
|
+
shape: combinedShape,
|
|
791
|
+
chunk_shape: combinedShape.map((s) => Math.min(s, 256)),
|
|
792
|
+
data_type: image.data.dtype,
|
|
793
|
+
fill_value: 0,
|
|
794
|
+
});
|
|
795
|
+
// Copy each downsampled slice into the combined array
|
|
796
|
+
for (let t = 0; t < tSize; t++) {
|
|
797
|
+
const sliceData = await zarr.get(downsampledSlices[t]);
|
|
798
|
+
const targetSelection = new Array(combinedShape.length).fill(null);
|
|
799
|
+
targetSelection[tDimIndex] = t;
|
|
800
|
+
await zarr.set(combinedArray, targetSelection, sliceData);
|
|
801
|
+
}
|
|
802
|
+
// Compute new metadata
|
|
803
|
+
const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
|
|
804
|
+
return new NgffImage({
|
|
805
|
+
data: combinedArray,
|
|
806
|
+
dims: image.dims,
|
|
807
|
+
scale: { ...image.scale, ...scale },
|
|
808
|
+
translation: { ...image.translation, ...translation },
|
|
809
|
+
name: image.name,
|
|
810
|
+
axesUnits: image.axesUnits,
|
|
811
|
+
computedCallbacks: image.computedCallbacks,
|
|
812
|
+
});
|
|
741
813
|
}
|
|
814
|
+
const isVector = image.dims.includes("c");
|
|
742
815
|
// Convert to ITK-Wasm format
|
|
743
816
|
const itkImage = await zarrToItkImage(image.data, image.dims, isVector);
|
|
744
|
-
// Prepare shrink factors - need to be for
|
|
745
|
-
// For vector images, the last dimension (c) is NOT a spatial dimension in the ITK image
|
|
817
|
+
// Prepare shrink factors - need to be for ALL dimensions in ITK order (reversed)
|
|
746
818
|
const shrinkFactors = [];
|
|
747
|
-
|
|
748
|
-
|
|
749
|
-
const dim = effectiveDims[i];
|
|
819
|
+
for (let i = image.dims.length - 1; i >= 0; i--) {
|
|
820
|
+
const dim = image.dims[i];
|
|
750
821
|
if (SPATIAL_DIMS.includes(dim)) {
|
|
751
822
|
shrinkFactors.push(dimFactors[dim] || 1);
|
|
752
823
|
}
|
|
@@ -754,23 +825,21 @@ async function downsampleLabelImageImpl(image, dimFactors, spatialDims) {
|
|
|
754
825
|
shrinkFactors.push(1); // Non-spatial dimensions don't shrink
|
|
755
826
|
}
|
|
756
827
|
}
|
|
757
|
-
//
|
|
758
|
-
const
|
|
759
|
-
const sigma = computeSigma(shrinkFactors);
|
|
760
|
-
const { radius: _radius } = await gaussianKernelRadius({
|
|
761
|
-
size: blockSize,
|
|
762
|
-
sigma,
|
|
763
|
-
});
|
|
828
|
+
// Use all zeros for cropRadius
|
|
829
|
+
const cropRadius = new Array(shrinkFactors.length).fill(0);
|
|
764
830
|
// Perform downsampling
|
|
765
831
|
const { downsampled } = await downsampleLabelImage(itkImage, {
|
|
766
832
|
shrinkFactors,
|
|
767
|
-
cropRadius:
|
|
833
|
+
cropRadius: cropRadius,
|
|
768
834
|
});
|
|
769
835
|
// Compute new metadata
|
|
770
836
|
const [translation, scale] = nextScaleMetadata(image, dimFactors, spatialDims);
|
|
771
|
-
// Convert back to zarr array
|
|
772
|
-
|
|
773
|
-
const
|
|
837
|
+
// Convert back to zarr array in a new in-memory store
|
|
838
|
+
// Each downsampled image gets its own store - toNgffZarr will handle copying to target
|
|
839
|
+
const store = new Map();
|
|
840
|
+
// Chunk shape needs to be in zarr order (reversed from ITK order)
|
|
841
|
+
const chunkShape = downsampled.size.map((s) => Math.min(s, 256)).reverse();
|
|
842
|
+
const array = await itkImageToZarr(downsampled, store, "image", chunkShape, image.dims);
|
|
774
843
|
return new NgffImage({
|
|
775
844
|
data: array,
|
|
776
845
|
dims: image.dims,
|
|
@@ -786,31 +855,104 @@ async function downsampleLabelImageImpl(image, dimFactors, spatialDims) {
|
|
|
786
855
|
*/
|
|
787
856
|
export async function downsampleItkWasm(ngffImage, scaleFactors, smoothing) {
|
|
788
857
|
const multiscales = [ngffImage];
|
|
789
|
-
let previousImage = ngffImage;
|
|
790
858
|
const dims = ngffImage.dims;
|
|
859
|
+
const spatialDims = dims.filter((dim) => SPATIAL_DIMS.includes(dim));
|
|
860
|
+
// Two strategies:
|
|
861
|
+
// 1. gaussian / label_image: hybrid absolute scale factors (each element is absolute from original)
|
|
862
|
+
// using dimScaleFactors to choose incremental vs from-original for exact sizes.
|
|
863
|
+
// 2. bin_shrink: treat provided scaleFactors sequence as incremental factors applied successively.
|
|
864
|
+
let previousImage = ngffImage;
|
|
791
865
|
let previousDimFactors = {};
|
|
792
|
-
for (const dim of dims)
|
|
866
|
+
for (const dim of dims)
|
|
793
867
|
previousDimFactors[dim] = 1;
|
|
794
|
-
|
|
795
|
-
|
|
796
|
-
|
|
797
|
-
|
|
798
|
-
|
|
868
|
+
for (let i = 0; i < scaleFactors.length; i++) {
|
|
869
|
+
const scaleFactor = scaleFactors[i];
|
|
870
|
+
let sourceImage;
|
|
871
|
+
let sourceDimFactors;
|
|
872
|
+
if (smoothing === "bin_shrink") {
|
|
873
|
+
// Purely incremental: scaleFactor is the shrink for this step
|
|
874
|
+
sourceImage = previousImage; // always from previous
|
|
875
|
+
sourceDimFactors = {};
|
|
876
|
+
if (typeof scaleFactor === "number") {
|
|
877
|
+
for (const dim of spatialDims)
|
|
878
|
+
sourceDimFactors[dim] = scaleFactor;
|
|
879
|
+
}
|
|
880
|
+
else {
|
|
881
|
+
for (const dim of spatialDims) {
|
|
882
|
+
sourceDimFactors[dim] = scaleFactor[dim] || 1;
|
|
883
|
+
}
|
|
884
|
+
}
|
|
885
|
+
// Non-spatial dims factor 1
|
|
886
|
+
for (const dim of dims) {
|
|
887
|
+
if (!(dim in sourceDimFactors))
|
|
888
|
+
sourceDimFactors[dim] = 1;
|
|
889
|
+
}
|
|
890
|
+
}
|
|
891
|
+
else {
|
|
892
|
+
// Hybrid absolute strategy
|
|
893
|
+
const dimFactors = dimScaleFactors(dims, scaleFactor, previousDimFactors, ngffImage, previousImage);
|
|
894
|
+
// Decide if we can be incremental
|
|
895
|
+
let canDownsampleIncrementally = true;
|
|
896
|
+
for (const dim of Object.keys(dimFactors)) {
|
|
897
|
+
const dimIndex = ngffImage.dims.indexOf(dim);
|
|
898
|
+
if (dimIndex >= 0) {
|
|
899
|
+
const originalSize = ngffImage.data.shape[dimIndex];
|
|
900
|
+
const targetSize = Math.floor(originalSize /
|
|
901
|
+
(typeof scaleFactor === "number"
|
|
902
|
+
? scaleFactor
|
|
903
|
+
: scaleFactor[dim]));
|
|
904
|
+
const prevDimIndex = previousImage.dims.indexOf(dim);
|
|
905
|
+
const previousSize = previousImage.data.shape[prevDimIndex];
|
|
906
|
+
if (Math.floor(previousSize / dimFactors[dim]) !== targetSize) {
|
|
907
|
+
canDownsampleIncrementally = false;
|
|
908
|
+
break;
|
|
909
|
+
}
|
|
910
|
+
}
|
|
911
|
+
}
|
|
912
|
+
if (canDownsampleIncrementally) {
|
|
913
|
+
sourceImage = previousImage;
|
|
914
|
+
sourceDimFactors = dimFactors;
|
|
915
|
+
}
|
|
916
|
+
else {
|
|
917
|
+
sourceImage = ngffImage;
|
|
918
|
+
const originalDimFactors = {};
|
|
919
|
+
for (const dim of dims)
|
|
920
|
+
originalDimFactors[dim] = 1;
|
|
921
|
+
sourceDimFactors = dimScaleFactors(dims, scaleFactor, originalDimFactors);
|
|
922
|
+
}
|
|
923
|
+
}
|
|
799
924
|
let downsampled;
|
|
800
925
|
if (smoothing === "gaussian") {
|
|
801
|
-
downsampled = await downsampleGaussian(
|
|
926
|
+
downsampled = await downsampleGaussian(sourceImage, sourceDimFactors, spatialDims);
|
|
802
927
|
}
|
|
803
928
|
else if (smoothing === "bin_shrink") {
|
|
804
|
-
downsampled = await downsampleBinShrinkImpl(
|
|
929
|
+
downsampled = await downsampleBinShrinkImpl(sourceImage, sourceDimFactors, spatialDims);
|
|
805
930
|
}
|
|
806
931
|
else if (smoothing === "label_image") {
|
|
807
|
-
downsampled = await downsampleLabelImageImpl(
|
|
932
|
+
downsampled = await downsampleLabelImageImpl(sourceImage, sourceDimFactors, spatialDims);
|
|
808
933
|
}
|
|
809
934
|
else {
|
|
810
935
|
throw new Error(`Unknown smoothing method: ${smoothing}`);
|
|
811
936
|
}
|
|
812
937
|
multiscales.push(downsampled);
|
|
938
|
+
// Update for next iteration
|
|
813
939
|
previousImage = downsampled;
|
|
940
|
+
if (smoothing === "bin_shrink") {
|
|
941
|
+
// Accumulate cumulative factors (multiply) for bin_shrink to reflect total shrink so far
|
|
942
|
+
if (typeof scaleFactor === "number") {
|
|
943
|
+
for (const dim of spatialDims) {
|
|
944
|
+
previousDimFactors[dim] *= scaleFactor;
|
|
945
|
+
}
|
|
946
|
+
}
|
|
947
|
+
else {
|
|
948
|
+
for (const dim of spatialDims) {
|
|
949
|
+
previousDimFactors[dim] *= scaleFactor[dim] || 1;
|
|
950
|
+
}
|
|
951
|
+
}
|
|
952
|
+
}
|
|
953
|
+
else {
|
|
954
|
+
previousDimFactors = updatePreviousDimFactors(scaleFactor, spatialDims, previousDimFactors);
|
|
955
|
+
}
|
|
814
956
|
}
|
|
815
957
|
return multiscales;
|
|
816
958
|
}
|