@fallom/trace 0.2.17 → 0.2.21

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,21 @@
1
+ import {
2
+ DEFAULT_JUDGE_MODEL,
3
+ _apiKey,
4
+ _baseUrl,
5
+ _initialized,
6
+ compareModels,
7
+ evaluate,
8
+ init,
9
+ uploadResultsPublic
10
+ } from "./chunk-GZ6TE7G4.mjs";
11
+ import "./chunk-7P6ASYW6.mjs";
12
+ export {
13
+ DEFAULT_JUDGE_MODEL,
14
+ _apiKey,
15
+ _baseUrl,
16
+ _initialized,
17
+ compareModels,
18
+ evaluate,
19
+ init,
20
+ uploadResultsPublic
21
+ };
@@ -0,0 +1,21 @@
1
+ import {
2
+ DEFAULT_JUDGE_MODEL,
3
+ _apiKey,
4
+ _baseUrl,
5
+ _initialized,
6
+ compareModels,
7
+ evaluate,
8
+ init,
9
+ uploadResultsPublic
10
+ } from "./chunk-XBZ3ESNV.mjs";
11
+ import "./chunk-7P6ASYW6.mjs";
12
+ export {
13
+ DEFAULT_JUDGE_MODEL,
14
+ _apiKey,
15
+ _baseUrl,
16
+ _initialized,
17
+ compareModels,
18
+ evaluate,
19
+ init,
20
+ uploadResultsPublic
21
+ };
package/dist/index.d.mts CHANGED
@@ -415,7 +415,7 @@ declare namespace prompts {
415
415
  * Type definitions for Fallom Evals.
416
416
  */
417
417
  /** Built-in metric names */
418
- type MetricName = "answer_relevancy" | "hallucination" | "toxicity" | "faithfulness" | "completeness";
418
+ type MetricName = "answer_relevancy" | "hallucination" | "toxicity" | "faithfulness" | "completeness" | "coherence" | "bias";
419
419
  /** List of all available built-in metrics */
420
420
  declare const AVAILABLE_METRICS: MetricName[];
421
421
  /**
@@ -452,6 +452,8 @@ interface EvalResult {
452
452
  toxicity?: number;
453
453
  faithfulness?: number;
454
454
  completeness?: number;
455
+ coherence?: number;
456
+ bias?: number;
455
457
  reasoning: Record<string, string>;
456
458
  latencyMs?: number;
457
459
  tokensIn?: number;
@@ -555,6 +557,61 @@ declare const METRIC_PROMPTS: Record<MetricName, {
555
557
  criteria: string;
556
558
  steps: string[];
557
559
  }>;
560
+ /**
561
+ * Build the G-Eval prompt for the LLM judge.
562
+ */
563
+ declare function buildGEvalPrompt(criteria: string, steps: string[], systemMessage: string | undefined, inputText: string, outputText: string): string;
564
+ /**
565
+ * Result of running G-Eval on a single metric.
566
+ */
567
+ interface GEvalScore {
568
+ score: number;
569
+ reasoning: string;
570
+ }
571
+ /**
572
+ * Run G-Eval for a single metric using OpenRouter.
573
+ * This is the low-level function used by both the SDK and backend workers.
574
+ *
575
+ * @param metric - Built-in metric name or custom metric config
576
+ * @param inputText - The user's input/query
577
+ * @param outputText - The LLM's response
578
+ * @param systemMessage - Optional system message
579
+ * @param judgeModel - The model to use as judge (OpenRouter format)
580
+ * @param openrouterKey - OpenRouter API key (defaults to env var)
581
+ */
582
+ declare function runGEval(metric: string | {
583
+ name: string;
584
+ criteria: string;
585
+ steps: string[];
586
+ }, inputText: string, outputText: string, systemMessage: string | undefined, judgeModel: string, openrouterKey?: string): Promise<GEvalScore>;
587
+ /**
588
+ * Calculate aggregate scores from a list of results.
589
+ */
590
+ declare function calculateAggregateScores(results: Array<{
591
+ scores: Record<string, {
592
+ score: number;
593
+ }>;
594
+ }>): Record<string, {
595
+ avg: number;
596
+ min: number;
597
+ max: number;
598
+ count: number;
599
+ }>;
600
+ /**
601
+ * Detect regression by comparing current scores to previous scores.
602
+ */
603
+ declare function detectRegression(currentScores: Record<string, {
604
+ avg: number;
605
+ }>, previousScores: Record<string, {
606
+ avg: number;
607
+ }>, threshold?: number): {
608
+ detected: boolean;
609
+ details: Record<string, {
610
+ current: number;
611
+ previous: number;
612
+ delta: number;
613
+ }>;
614
+ };
558
615
 
559
616
  /**
560
617
  * Core evaluation functions.
@@ -781,6 +838,7 @@ type evals_EvalResult = EvalResult;
781
838
  type evals_EvaluateOptions = EvaluateOptions;
782
839
  type evals_EvaluationDataset = EvaluationDataset;
783
840
  declare const evals_EvaluationDataset: typeof EvaluationDataset;
841
+ type evals_GEvalScore = GEvalScore;
784
842
  type evals_Golden = Golden;
785
843
  type evals_LLMTestCase = LLMTestCase;
786
844
  declare const evals_METRIC_PROMPTS: typeof METRIC_PROMPTS;
@@ -790,6 +848,8 @@ type evals_MetricName = MetricName;
790
848
  type evals_Model = Model;
791
849
  type evals_ModelCallable = ModelCallable;
792
850
  type evals_ModelResponse = ModelResponse;
851
+ declare const evals_buildGEvalPrompt: typeof buildGEvalPrompt;
852
+ declare const evals_calculateAggregateScores: typeof calculateAggregateScores;
793
853
  declare const evals_compareModels: typeof compareModels;
794
854
  declare const evals_createCustomModel: typeof createCustomModel;
795
855
  declare const evals_createModelFromCallable: typeof createModelFromCallable;
@@ -797,11 +857,13 @@ declare const evals_createOpenAIModel: typeof createOpenAIModel;
797
857
  declare const evals_customMetric: typeof customMetric;
798
858
  declare const evals_datasetFromFallom: typeof datasetFromFallom;
799
859
  declare const evals_datasetFromTraces: typeof datasetFromTraces;
860
+ declare const evals_detectRegression: typeof detectRegression;
800
861
  declare const evals_evaluate: typeof evaluate;
801
862
  declare const evals_getMetricName: typeof getMetricName;
802
863
  declare const evals_isCustomMetric: typeof isCustomMetric;
864
+ declare const evals_runGEval: typeof runGEval;
803
865
  declare namespace evals {
804
- export { evals_AVAILABLE_METRICS as AVAILABLE_METRICS, type evals_CompareModelsOptions as CompareModelsOptions, type evals_CustomMetric as CustomMetric, evals_DEFAULT_JUDGE_MODEL as DEFAULT_JUDGE_MODEL, type evals_DatasetInput as DatasetInput, type evals_DatasetItem as DatasetItem, type evals_EvalResult as EvalResult, type evals_EvaluateOptions as EvaluateOptions, evals_EvaluationDataset as EvaluationDataset, type evals_Golden as Golden, type InitOptions$1 as InitOptions, type evals_LLMTestCase as LLMTestCase, evals_METRIC_PROMPTS as METRIC_PROMPTS, type evals_Message as Message, type evals_MetricInput as MetricInput, type evals_MetricName as MetricName, type evals_Model as Model, type evals_ModelCallable as ModelCallable, type evals_ModelResponse as ModelResponse, evals_compareModels as compareModels, evals_createCustomModel as createCustomModel, evals_createModelFromCallable as createModelFromCallable, evals_createOpenAIModel as createOpenAIModel, evals_customMetric as customMetric, evals_datasetFromFallom as datasetFromFallom, evals_datasetFromTraces as datasetFromTraces, evals_evaluate as evaluate, evals_getMetricName as getMetricName, init$1 as init, evals_isCustomMetric as isCustomMetric, uploadResultsPublic as uploadResults };
866
+ export { evals_AVAILABLE_METRICS as AVAILABLE_METRICS, type evals_CompareModelsOptions as CompareModelsOptions, type evals_CustomMetric as CustomMetric, evals_DEFAULT_JUDGE_MODEL as DEFAULT_JUDGE_MODEL, type evals_DatasetInput as DatasetInput, type evals_DatasetItem as DatasetItem, type evals_EvalResult as EvalResult, type evals_EvaluateOptions as EvaluateOptions, evals_EvaluationDataset as EvaluationDataset, type evals_GEvalScore as GEvalScore, type evals_Golden as Golden, type InitOptions$1 as InitOptions, type evals_LLMTestCase as LLMTestCase, evals_METRIC_PROMPTS as METRIC_PROMPTS, type evals_Message as Message, type evals_MetricInput as MetricInput, type evals_MetricName as MetricName, type evals_Model as Model, type evals_ModelCallable as ModelCallable, type evals_ModelResponse as ModelResponse, evals_buildGEvalPrompt as buildGEvalPrompt, evals_calculateAggregateScores as calculateAggregateScores, evals_compareModels as compareModels, evals_createCustomModel as createCustomModel, evals_createModelFromCallable as createModelFromCallable, evals_createOpenAIModel as createOpenAIModel, evals_customMetric as customMetric, evals_datasetFromFallom as datasetFromFallom, evals_datasetFromTraces as datasetFromTraces, evals_detectRegression as detectRegression, evals_evaluate as evaluate, evals_getMetricName as getMetricName, init$1 as init, evals_isCustomMetric as isCustomMetric, evals_runGEval as runGEval, uploadResultsPublic as uploadResults };
805
867
  }
806
868
 
807
869
  /**
package/dist/index.d.ts CHANGED
@@ -415,7 +415,7 @@ declare namespace prompts {
415
415
  * Type definitions for Fallom Evals.
416
416
  */
417
417
  /** Built-in metric names */
418
- type MetricName = "answer_relevancy" | "hallucination" | "toxicity" | "faithfulness" | "completeness";
418
+ type MetricName = "answer_relevancy" | "hallucination" | "toxicity" | "faithfulness" | "completeness" | "coherence" | "bias";
419
419
  /** List of all available built-in metrics */
420
420
  declare const AVAILABLE_METRICS: MetricName[];
421
421
  /**
@@ -452,6 +452,8 @@ interface EvalResult {
452
452
  toxicity?: number;
453
453
  faithfulness?: number;
454
454
  completeness?: number;
455
+ coherence?: number;
456
+ bias?: number;
455
457
  reasoning: Record<string, string>;
456
458
  latencyMs?: number;
457
459
  tokensIn?: number;
@@ -555,6 +557,61 @@ declare const METRIC_PROMPTS: Record<MetricName, {
555
557
  criteria: string;
556
558
  steps: string[];
557
559
  }>;
560
+ /**
561
+ * Build the G-Eval prompt for the LLM judge.
562
+ */
563
+ declare function buildGEvalPrompt(criteria: string, steps: string[], systemMessage: string | undefined, inputText: string, outputText: string): string;
564
+ /**
565
+ * Result of running G-Eval on a single metric.
566
+ */
567
+ interface GEvalScore {
568
+ score: number;
569
+ reasoning: string;
570
+ }
571
+ /**
572
+ * Run G-Eval for a single metric using OpenRouter.
573
+ * This is the low-level function used by both the SDK and backend workers.
574
+ *
575
+ * @param metric - Built-in metric name or custom metric config
576
+ * @param inputText - The user's input/query
577
+ * @param outputText - The LLM's response
578
+ * @param systemMessage - Optional system message
579
+ * @param judgeModel - The model to use as judge (OpenRouter format)
580
+ * @param openrouterKey - OpenRouter API key (defaults to env var)
581
+ */
582
+ declare function runGEval(metric: string | {
583
+ name: string;
584
+ criteria: string;
585
+ steps: string[];
586
+ }, inputText: string, outputText: string, systemMessage: string | undefined, judgeModel: string, openrouterKey?: string): Promise<GEvalScore>;
587
+ /**
588
+ * Calculate aggregate scores from a list of results.
589
+ */
590
+ declare function calculateAggregateScores(results: Array<{
591
+ scores: Record<string, {
592
+ score: number;
593
+ }>;
594
+ }>): Record<string, {
595
+ avg: number;
596
+ min: number;
597
+ max: number;
598
+ count: number;
599
+ }>;
600
+ /**
601
+ * Detect regression by comparing current scores to previous scores.
602
+ */
603
+ declare function detectRegression(currentScores: Record<string, {
604
+ avg: number;
605
+ }>, previousScores: Record<string, {
606
+ avg: number;
607
+ }>, threshold?: number): {
608
+ detected: boolean;
609
+ details: Record<string, {
610
+ current: number;
611
+ previous: number;
612
+ delta: number;
613
+ }>;
614
+ };
558
615
 
559
616
  /**
560
617
  * Core evaluation functions.
@@ -781,6 +838,7 @@ type evals_EvalResult = EvalResult;
781
838
  type evals_EvaluateOptions = EvaluateOptions;
782
839
  type evals_EvaluationDataset = EvaluationDataset;
783
840
  declare const evals_EvaluationDataset: typeof EvaluationDataset;
841
+ type evals_GEvalScore = GEvalScore;
784
842
  type evals_Golden = Golden;
785
843
  type evals_LLMTestCase = LLMTestCase;
786
844
  declare const evals_METRIC_PROMPTS: typeof METRIC_PROMPTS;
@@ -790,6 +848,8 @@ type evals_MetricName = MetricName;
790
848
  type evals_Model = Model;
791
849
  type evals_ModelCallable = ModelCallable;
792
850
  type evals_ModelResponse = ModelResponse;
851
+ declare const evals_buildGEvalPrompt: typeof buildGEvalPrompt;
852
+ declare const evals_calculateAggregateScores: typeof calculateAggregateScores;
793
853
  declare const evals_compareModels: typeof compareModels;
794
854
  declare const evals_createCustomModel: typeof createCustomModel;
795
855
  declare const evals_createModelFromCallable: typeof createModelFromCallable;
@@ -797,11 +857,13 @@ declare const evals_createOpenAIModel: typeof createOpenAIModel;
797
857
  declare const evals_customMetric: typeof customMetric;
798
858
  declare const evals_datasetFromFallom: typeof datasetFromFallom;
799
859
  declare const evals_datasetFromTraces: typeof datasetFromTraces;
860
+ declare const evals_detectRegression: typeof detectRegression;
800
861
  declare const evals_evaluate: typeof evaluate;
801
862
  declare const evals_getMetricName: typeof getMetricName;
802
863
  declare const evals_isCustomMetric: typeof isCustomMetric;
864
+ declare const evals_runGEval: typeof runGEval;
803
865
  declare namespace evals {
804
- export { evals_AVAILABLE_METRICS as AVAILABLE_METRICS, type evals_CompareModelsOptions as CompareModelsOptions, type evals_CustomMetric as CustomMetric, evals_DEFAULT_JUDGE_MODEL as DEFAULT_JUDGE_MODEL, type evals_DatasetInput as DatasetInput, type evals_DatasetItem as DatasetItem, type evals_EvalResult as EvalResult, type evals_EvaluateOptions as EvaluateOptions, evals_EvaluationDataset as EvaluationDataset, type evals_Golden as Golden, type InitOptions$1 as InitOptions, type evals_LLMTestCase as LLMTestCase, evals_METRIC_PROMPTS as METRIC_PROMPTS, type evals_Message as Message, type evals_MetricInput as MetricInput, type evals_MetricName as MetricName, type evals_Model as Model, type evals_ModelCallable as ModelCallable, type evals_ModelResponse as ModelResponse, evals_compareModels as compareModels, evals_createCustomModel as createCustomModel, evals_createModelFromCallable as createModelFromCallable, evals_createOpenAIModel as createOpenAIModel, evals_customMetric as customMetric, evals_datasetFromFallom as datasetFromFallom, evals_datasetFromTraces as datasetFromTraces, evals_evaluate as evaluate, evals_getMetricName as getMetricName, init$1 as init, evals_isCustomMetric as isCustomMetric, uploadResultsPublic as uploadResults };
866
+ export { evals_AVAILABLE_METRICS as AVAILABLE_METRICS, type evals_CompareModelsOptions as CompareModelsOptions, type evals_CustomMetric as CustomMetric, evals_DEFAULT_JUDGE_MODEL as DEFAULT_JUDGE_MODEL, type evals_DatasetInput as DatasetInput, type evals_DatasetItem as DatasetItem, type evals_EvalResult as EvalResult, type evals_EvaluateOptions as EvaluateOptions, evals_EvaluationDataset as EvaluationDataset, type evals_GEvalScore as GEvalScore, type evals_Golden as Golden, type InitOptions$1 as InitOptions, type evals_LLMTestCase as LLMTestCase, evals_METRIC_PROMPTS as METRIC_PROMPTS, type evals_Message as Message, type evals_MetricInput as MetricInput, type evals_MetricName as MetricName, type evals_Model as Model, type evals_ModelCallable as ModelCallable, type evals_ModelResponse as ModelResponse, evals_buildGEvalPrompt as buildGEvalPrompt, evals_calculateAggregateScores as calculateAggregateScores, evals_compareModels as compareModels, evals_createCustomModel as createCustomModel, evals_createModelFromCallable as createModelFromCallable, evals_createOpenAIModel as createOpenAIModel, evals_customMetric as customMetric, evals_datasetFromFallom as datasetFromFallom, evals_datasetFromTraces as datasetFromTraces, evals_detectRegression as detectRegression, evals_evaluate as evaluate, evals_getMetricName as getMetricName, init$1 as init, evals_isCustomMetric as isCustomMetric, evals_runGEval as runGEval, uploadResultsPublic as uploadResults };
805
867
  }
806
868
 
807
869
  /**