@epfml/discojs 3.0.1-p20250429140233.0 → 3.0.1-p20250701123931.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/models/hellaswag.d.ts +31 -0
- package/dist/models/hellaswag.js +120 -0
- package/dist/models/index.d.ts +3 -0
- package/dist/models/index.js +3 -0
- package/dist/models/onnx.d.ts +19 -0
- package/dist/models/onnx.js +71 -0
- package/package.json +1 -1
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
import { GPT } from './index.js';
|
|
2
|
+
import { PreTrainedTokenizer } from '@xenova/transformers';
|
|
3
|
+
import { ONNXModel } from './onnx.js';
|
|
4
|
+
export declare const HELLASWAG_URL = "https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_val.jsonl";
|
|
5
|
+
/**
|
|
6
|
+
* Represents a single example from the HellaSwag dataset.
|
|
7
|
+
*
|
|
8
|
+
* ctx - The context sentence or paragraph that sets up the situation.
|
|
9
|
+
* endings - An array of four possible continuations of the context.
|
|
10
|
+
* label - The index (0–3) of the correct ending in the `endings` array.
|
|
11
|
+
*/
|
|
12
|
+
export interface HellaSwagExample {
|
|
13
|
+
ctx: string;
|
|
14
|
+
endings: string[];
|
|
15
|
+
label: number;
|
|
16
|
+
}
|
|
17
|
+
export type HellaSwagDataset = HellaSwagExample[];
|
|
18
|
+
type Tokenizer = PreTrainedTokenizer;
|
|
19
|
+
type ModelType = GPT | ONNXModel;
|
|
20
|
+
/**
|
|
21
|
+
* Evaluates the model on a given HellaSwag dataset.
|
|
22
|
+
*
|
|
23
|
+
* @param model - The model to evaluate (GPT or ONNXModel)
|
|
24
|
+
* @param tokenizer - The tokenizer to use
|
|
25
|
+
* @param dataset - An array of HellaSwagExample to evaluate on
|
|
26
|
+
* @param limit - Number of examples to evaluate (default: all)
|
|
27
|
+
* @param print - Whether to print results (default: true)
|
|
28
|
+
* @returns The accuracy of the model on the dataset
|
|
29
|
+
*/
|
|
30
|
+
export declare function evaluate(model: ModelType, tokenizer: Tokenizer, dataset: HellaSwagExample[], print?: boolean): Promise<number>;
|
|
31
|
+
export {};
|
|
@@ -0,0 +1,120 @@
|
|
|
1
|
+
import * as tf from '@tensorflow/tfjs';
|
|
2
|
+
import { GPT } from './index.js';
|
|
3
|
+
import { tokenize } from '../processing/text.js';
|
|
4
|
+
import { List } from 'immutable';
|
|
5
|
+
export const HELLASWAG_URL = 'https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_val.jsonl';
|
|
6
|
+
// Computes the log likelihood of the input sequence using the tfjs model
|
|
7
|
+
// The input sequence is expected to be a concatenation of the context and the ending
|
|
8
|
+
// The function computes the log likelihood of each ending and returns the one with the loss of each ending
|
|
9
|
+
// Sources:
|
|
10
|
+
// https://github.com/karpathy/build-nanogpt/blob/master/hellaswag.py
|
|
11
|
+
//https://www.youtube.com/watch?v=l8pRSuU81PU
|
|
12
|
+
async function computeLogLikelihood(gpt, inputIds, ctxLength) {
|
|
13
|
+
const lossTensor = tf.tidy(() => {
|
|
14
|
+
// Convert input sequence to shape [1, seq_len]
|
|
15
|
+
const inputTensor = tf.tensor2d([inputIds], [1, inputIds.length], 'int32');
|
|
16
|
+
// Get model logits: [1, seq_len, vocab_size]
|
|
17
|
+
const logits3D = gpt.extract().predict(inputTensor);
|
|
18
|
+
// Shift logits to align with next-token targets
|
|
19
|
+
const shiftedLogits = logits3D.slice([0, 0, 0], [1, inputIds.length - 1, -1]);
|
|
20
|
+
// Target tokens (next tokens), same length as shifted logits
|
|
21
|
+
const shiftedTargets = inputIds.slice(1);
|
|
22
|
+
const targetTensor = tf.tensor1d(shiftedTargets, 'int32');
|
|
23
|
+
// One-hot encode targets for cross-entropy loss
|
|
24
|
+
const oneHotLabels = tf.oneHot(targetTensor, shiftedLogits.shape[2]);
|
|
25
|
+
// Compute per-token cross-entropy log-probabilities (unnormalized loss)
|
|
26
|
+
const logProbs = tf.losses.softmaxCrossEntropy(oneHotLabels, shiftedLogits.squeeze());
|
|
27
|
+
// Create a mask to only include loss after the context length
|
|
28
|
+
const mask = tf.tensor1d(inputIds.map((_, i) => (i >= ctxLength ? 1 : 0)), 'float32').slice(1);
|
|
29
|
+
// Apply the mask and average over the selected tokens
|
|
30
|
+
const masked = logProbs.mul(mask);
|
|
31
|
+
const loss = masked.sum().div(mask.sum());
|
|
32
|
+
return loss;
|
|
33
|
+
});
|
|
34
|
+
const lossNumber = await lossTensor.array();
|
|
35
|
+
if (typeof lossNumber !== 'number') {
|
|
36
|
+
throw new Error('got multiple loss');
|
|
37
|
+
}
|
|
38
|
+
return lossNumber;
|
|
39
|
+
}
|
|
40
|
+
// Computes the log likelihood of the input sequence using the ONNX model
|
|
41
|
+
// The input sequence is expected to be a concatenation of the context and the ending
|
|
42
|
+
// The function computes the log likelihood of each ending and returns the one with the loss of each ending
|
|
43
|
+
// Sources:
|
|
44
|
+
// https://github.com/karpathy/build-nanogpt/blob/master/hellaswag.py
|
|
45
|
+
// https://www.youtube.com/watch?v=l8pRSuU81PU
|
|
46
|
+
async function computeONNXLogLikelihood(model, inputIds, ctxLength) {
|
|
47
|
+
const batchInput = List([List(inputIds)]); // [1, seq_len]
|
|
48
|
+
// Run model to get logits: flattened [T * V]
|
|
49
|
+
const logitsTensor = await model.getLogits(batchInput);
|
|
50
|
+
const logits = logitsTensor.data;
|
|
51
|
+
const [_B, T, V] = logitsTensor.dims;
|
|
52
|
+
// Reshape flattened logits into [T][V]
|
|
53
|
+
const reshaped = Array.from({ length: T }, (_, t) => logits.slice(t * V, (t + 1) * V));
|
|
54
|
+
// Shift targets (next-token prediction)
|
|
55
|
+
const targets = inputIds.slice(1); // length = T - 1
|
|
56
|
+
const logitsShifted = reshaped.slice(0, T - 1); // also length = T - 1
|
|
57
|
+
// Compute per-token cross-entropy loss manually
|
|
58
|
+
const losses = logitsShifted.map((logit, i) => {
|
|
59
|
+
const maxLogit = Math.max(...logit); // for numerical stability
|
|
60
|
+
const exp = logit.map(x => Math.exp(x - maxLogit));
|
|
61
|
+
const sumExp = exp.reduce((a, b) => a + b, 0);
|
|
62
|
+
const probs = exp.map(e => e / sumExp); // softmax
|
|
63
|
+
return -Math.log(probs[targets[i]]); // cross-entropy loss
|
|
64
|
+
});
|
|
65
|
+
// Create a binary mask for non-context tokens
|
|
66
|
+
const mask = inputIds.map((_, i) => (i >= ctxLength ? 1 : 0)).slice(1);
|
|
67
|
+
// Apply the mask to the losses
|
|
68
|
+
const maskedLosses = losses.map((l, i) => l * mask[i]);
|
|
69
|
+
// Average the masked losses
|
|
70
|
+
const totalLoss = maskedLosses.reduce((a, b) => a + b, 0);
|
|
71
|
+
const sum = mask.reduce((a, b) => a + b, 0);
|
|
72
|
+
return totalLoss / (sum || 1); // avoid division by 0
|
|
73
|
+
}
|
|
74
|
+
/**
|
|
75
|
+
* Evaluates the model on a given HellaSwag dataset.
|
|
76
|
+
*
|
|
77
|
+
* @param model - The model to evaluate (GPT or ONNXModel)
|
|
78
|
+
* @param tokenizer - The tokenizer to use
|
|
79
|
+
* @param dataset - An array of HellaSwagExample to evaluate on
|
|
80
|
+
* @param limit - Number of examples to evaluate (default: all)
|
|
81
|
+
* @param print - Whether to print results (default: true)
|
|
82
|
+
* @returns The accuracy of the model on the dataset
|
|
83
|
+
*/
|
|
84
|
+
export async function evaluate(model, tokenizer, dataset, print = true) {
|
|
85
|
+
let correct = 0;
|
|
86
|
+
let total = 0;
|
|
87
|
+
for (const example of dataset) {
|
|
88
|
+
const endingTokens = example.endings.map(e => tokenize(tokenizer, example.ctx + ' ' + e, {
|
|
89
|
+
truncation: true,
|
|
90
|
+
max_length: 128
|
|
91
|
+
}).toArray());
|
|
92
|
+
const ctxTokens = tokenize(tokenizer, example.ctx, {
|
|
93
|
+
truncation: true,
|
|
94
|
+
max_length: 128
|
|
95
|
+
}).toArray();
|
|
96
|
+
let losses = [];
|
|
97
|
+
if (model instanceof GPT) {
|
|
98
|
+
losses = await Promise.all(endingTokens.map(e => computeLogLikelihood(model, e, ctxTokens.length)));
|
|
99
|
+
}
|
|
100
|
+
else {
|
|
101
|
+
losses = await Promise.all(endingTokens.map(e => computeONNXLogLikelihood(model, e, ctxTokens.length)));
|
|
102
|
+
}
|
|
103
|
+
const pred = losses.indexOf(Math.min(...losses));
|
|
104
|
+
if (pred === example.label)
|
|
105
|
+
correct++;
|
|
106
|
+
total++;
|
|
107
|
+
if (print) {
|
|
108
|
+
console.log(`\nExample #${total}`);
|
|
109
|
+
console.log(`Context: ${example.ctx}`);
|
|
110
|
+
example.endings.forEach((end, i) => {
|
|
111
|
+
console.log(` ${i}: ${end} (loss: ${losses[i].toFixed(4)})${i === example.label ? ' <-- correct' : ''}${i === pred ? ' <-- picked' : ''}`);
|
|
112
|
+
});
|
|
113
|
+
const accuracy_temp = correct / total;
|
|
114
|
+
console.log(`\n Accuracy on ${total} examples: ${(accuracy_temp * 100).toFixed(2)}%`);
|
|
115
|
+
}
|
|
116
|
+
}
|
|
117
|
+
const accuracy = correct / total;
|
|
118
|
+
console.log(`\nFinal accuracy on ${total} examples: ${(accuracy * 100).toFixed(2)}%`);
|
|
119
|
+
return accuracy;
|
|
120
|
+
}
|
package/dist/models/index.d.ts
CHANGED
|
@@ -1,6 +1,9 @@
|
|
|
1
1
|
export { Model } from './model.js';
|
|
2
2
|
export { BatchLogs, EpochLogs, ValidationMetrics } from "./logs.js";
|
|
3
3
|
export { GPT } from './gpt/index.js';
|
|
4
|
+
export { ONNXModel } from './onnx.js';
|
|
4
5
|
export { GPTConfig } from './gpt/config.js';
|
|
6
|
+
export { evaluate as evaluate_hellaswag } from './hellaswag.js';
|
|
5
7
|
export { TFJS } from './tfjs.js';
|
|
6
8
|
export { getTaskTokenizer } from './tokenizer.js';
|
|
9
|
+
export { evaluate, HellaSwagDataset, HellaSwagExample, HELLASWAG_URL } from './hellaswag.js';
|
package/dist/models/index.js
CHANGED
|
@@ -1,5 +1,8 @@
|
|
|
1
1
|
export { Model } from './model.js';
|
|
2
2
|
export { EpochLogs } from "./logs.js";
|
|
3
3
|
export { GPT } from './gpt/index.js';
|
|
4
|
+
export { ONNXModel } from './onnx.js';
|
|
5
|
+
export { evaluate as evaluate_hellaswag } from './hellaswag.js';
|
|
4
6
|
export { TFJS } from './tfjs.js';
|
|
5
7
|
export { getTaskTokenizer } from './tokenizer.js';
|
|
8
|
+
export { evaluate, HELLASWAG_URL } from './hellaswag.js';
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
import { Tensor } from '@xenova/transformers';
|
|
2
|
+
import { Model } from './index.js';
|
|
3
|
+
import type { WeightsContainer } from '../index.js';
|
|
4
|
+
import { List } from 'immutable';
|
|
5
|
+
import type { GenerationConfig as TFJSGenerationConfig } from './gpt/config.js';
|
|
6
|
+
import type { Batched, DataFormat } from "../index.js";
|
|
7
|
+
export declare class ONNXModel extends Model<'text'> {
|
|
8
|
+
#private;
|
|
9
|
+
private model;
|
|
10
|
+
private constructor();
|
|
11
|
+
static init_pretrained(modelName?: string): Promise<ONNXModel>;
|
|
12
|
+
getConfig(): Record<string, unknown>;
|
|
13
|
+
predict(batch: Batched<DataFormat.ModelEncoded["text"][0]>, options?: Partial<TFJSGenerationConfig>): Promise<Batched<DataFormat.ModelEncoded["text"][1]>>;
|
|
14
|
+
getLogits(batch: List<List<number>>): Promise<Tensor>;
|
|
15
|
+
train(): AsyncGenerator<never, never>;
|
|
16
|
+
get weights(): WeightsContainer;
|
|
17
|
+
set weights(_: WeightsContainer);
|
|
18
|
+
[Symbol.dispose](): void;
|
|
19
|
+
}
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
import { AutoModelForCausalLM, Tensor } from '@xenova/transformers';
|
|
2
|
+
import { Model } from './index.js';
|
|
3
|
+
import { List } from 'immutable';
|
|
4
|
+
import { DefaultGenerationConfig } from './gpt/config.js';
|
|
5
|
+
export class ONNXModel extends Model {
|
|
6
|
+
model;
|
|
7
|
+
constructor(model) {
|
|
8
|
+
super();
|
|
9
|
+
this.model = model;
|
|
10
|
+
}
|
|
11
|
+
static async init_pretrained(modelName = 'Xenova/gpt2') {
|
|
12
|
+
const model = await AutoModelForCausalLM.from_pretrained(modelName);
|
|
13
|
+
return new ONNXModel(model);
|
|
14
|
+
}
|
|
15
|
+
getConfig() {
|
|
16
|
+
return this.model.config;
|
|
17
|
+
}
|
|
18
|
+
async predict(batch, options) {
|
|
19
|
+
const config = Object.assign({}, DefaultGenerationConfig, options);
|
|
20
|
+
return List(await Promise.all(batch.map(tokens => this.#predictSingle(tokens, config))));
|
|
21
|
+
}
|
|
22
|
+
async #predictSingle(tokens, config) {
|
|
23
|
+
const contextLength = this.model.config.max_position_embeddings ?? 1024;
|
|
24
|
+
const truncated = tokens.slice(-contextLength).toArray();
|
|
25
|
+
if (truncated.length === 0) {
|
|
26
|
+
throw new Error('Token list is empty. Cannot run generate().');
|
|
27
|
+
}
|
|
28
|
+
const input_ids = new Tensor('int64', truncated.map(BigInt), [1, truncated.length]);
|
|
29
|
+
const output = await this.model.generate(input_ids, {
|
|
30
|
+
max_new_tokens: 1,
|
|
31
|
+
temperature: config.temperature,
|
|
32
|
+
do_sample: config.doSample,
|
|
33
|
+
top_k: config.topk,
|
|
34
|
+
});
|
|
35
|
+
if (!Array.isArray(output) || output.length === 0 || !Array.isArray(output[0])) {
|
|
36
|
+
throw new Error('ONNX model.generate() did not return valid sequences.');
|
|
37
|
+
}
|
|
38
|
+
const predicted_id = output[0].at(-1);
|
|
39
|
+
return Number(predicted_id);
|
|
40
|
+
}
|
|
41
|
+
async getLogits(batch) {
|
|
42
|
+
const input_ids_array = batch.toArray().map(seq => seq.toArray());
|
|
43
|
+
const attention_mask_array = input_ids_array.map((seq) => new Array(seq.length).fill(1));
|
|
44
|
+
const input_ids_flat = input_ids_array.flat();
|
|
45
|
+
const attention_mask_flat = attention_mask_array.flat();
|
|
46
|
+
const shape = [input_ids_array.length, input_ids_array[0].length];
|
|
47
|
+
// use BigInt for int64 compatibility
|
|
48
|
+
const input_ids = new Tensor('int64', input_ids_flat.map(BigInt), shape);
|
|
49
|
+
const attention_mask = new Tensor('int64', attention_mask_flat.map(BigInt), shape);
|
|
50
|
+
// run model forward
|
|
51
|
+
const outputs = await this.model.forward({ input_ids, attention_mask });
|
|
52
|
+
return outputs.logits;
|
|
53
|
+
}
|
|
54
|
+
async *train() {
|
|
55
|
+
await Promise.resolve(); // dummy await
|
|
56
|
+
const yieldFlag = false;
|
|
57
|
+
if (yieldFlag)
|
|
58
|
+
yield undefined; // satisfy 'require-yield'
|
|
59
|
+
throw new Error('Training not supported for ONNX models');
|
|
60
|
+
}
|
|
61
|
+
get weights() {
|
|
62
|
+
throw new Error('Weights access not supported in ONNX models');
|
|
63
|
+
}
|
|
64
|
+
set weights(_) {
|
|
65
|
+
throw new Error('Weights setting not supported in ONNX models');
|
|
66
|
+
}
|
|
67
|
+
[Symbol.dispose]() {
|
|
68
|
+
// Dispose of the model to free up memory
|
|
69
|
+
void this.model.dispose();
|
|
70
|
+
}
|
|
71
|
+
}
|