@elsahafy/ux-mcp-server 2.0.0 → 4.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +159 -18
- package/dist/index.js +2130 -8
- package/knowledge/ai-ml-patterns.json +192 -0
- package/knowledge/analytics-metrics.json +521 -0
- package/knowledge/angular-patterns.json +347 -0
- package/knowledge/ar-vr-interfaces.json +139 -0
- package/knowledge/color-theory.json +499 -0
- package/knowledge/data-viz.json +527 -0
- package/knowledge/design-system-advanced.json +533 -0
- package/knowledge/ecommerce-patterns.json +616 -0
- package/knowledge/ethical-design.json +484 -0
- package/knowledge/finance-ux.json +208 -0
- package/knowledge/forms.json +641 -0
- package/knowledge/haptic-feedback.json +102 -0
- package/knowledge/healthcare-ux.json +209 -0
- package/knowledge/information-architecture.json +494 -0
- package/knowledge/microcopy.json +743 -0
- package/knowledge/mobile-patterns.json +537 -0
- package/knowledge/neurodiversity.json +228 -0
- package/knowledge/pwa-patterns.json +429 -0
- package/knowledge/saas-patterns.json +613 -0
- package/knowledge/testing-validation.json +561 -0
- package/knowledge/typography.json +509 -0
- package/knowledge/voice-ui.json +359 -0
- package/knowledge/vue-patterns.json +279 -0
- package/knowledge/web-components.json +148 -0
- package/package.json +1 -1
|
@@ -0,0 +1,521 @@
|
|
|
1
|
+
{
|
|
2
|
+
"name": "UX Analytics & Metrics",
|
|
3
|
+
"description": "Comprehensive guide to measuring user experience through analytics, metrics, and data-driven decision making",
|
|
4
|
+
"why_measure_ux": {
|
|
5
|
+
"reasons": [
|
|
6
|
+
"Identify usability issues at scale",
|
|
7
|
+
"Prioritize improvements (data > opinions)",
|
|
8
|
+
"Prove ROI of UX work",
|
|
9
|
+
"Track progress over time",
|
|
10
|
+
"Make informed decisions",
|
|
11
|
+
"Benchmark against competitors/industry"
|
|
12
|
+
],
|
|
13
|
+
"quote": "In God we trust. All others must bring data. - W. Edwards Deming"
|
|
14
|
+
},
|
|
15
|
+
"types_of_metrics": {
|
|
16
|
+
"quantitative": {
|
|
17
|
+
"description": "Numerical data, answers 'what' and 'how many'",
|
|
18
|
+
"examples": ["Conversion rate", "Time on task", "Click-through rate", "Bounce rate"],
|
|
19
|
+
"tools": ["Google Analytics", "Mixpanel", "Amplitude", "Heap"],
|
|
20
|
+
"pros": ["Scalable", "Statistical significance", "Trackable over time"],
|
|
21
|
+
"cons": ["Doesn't explain 'why'", "Can miss context"]
|
|
22
|
+
},
|
|
23
|
+
"qualitative": {
|
|
24
|
+
"description": "Descriptive data, answers 'why' and 'how'",
|
|
25
|
+
"examples": ["User interviews", "Usability test observations", "Survey comments", "Session recordings"],
|
|
26
|
+
"tools": ["Hotjar", "FullStory", "UserTesting", "Surveys"],
|
|
27
|
+
"pros": ["Rich insights", "Explains behavior", "Uncovers unknown issues"],
|
|
28
|
+
"cons": ["Small sample size", "Not statistically significant", "Time-intensive"]
|
|
29
|
+
},
|
|
30
|
+
"attitudinal": {
|
|
31
|
+
"description": "What users say (opinions, preferences)",
|
|
32
|
+
"examples": ["Surveys", "NPS", "User interviews", "Ratings"],
|
|
33
|
+
"use_when": "Understanding satisfaction, preferences, perceptions"
|
|
34
|
+
},
|
|
35
|
+
"behavioral": {
|
|
36
|
+
"description": "What users do (actions, patterns)",
|
|
37
|
+
"examples": ["Analytics", "A/B tests", "Session recordings", "Heatmaps"],
|
|
38
|
+
"use_when": "Understanding actual behavior (more reliable than stated)"
|
|
39
|
+
},
|
|
40
|
+
"recommendation": "Combine quantitative + qualitative, and attitudinal + behavioral for complete picture"
|
|
41
|
+
},
|
|
42
|
+
"key_ux_metrics": {
|
|
43
|
+
"task_success_metrics": {
|
|
44
|
+
"task_success_rate": {
|
|
45
|
+
"definition": "% of users who complete a task successfully",
|
|
46
|
+
"formula": "Successful completions / Total attempts × 100",
|
|
47
|
+
"benchmark": "> 78% (Nielsen benchmark for usability)",
|
|
48
|
+
"measurement": "Usability testing or analytics (track goal completions)",
|
|
49
|
+
"use_when": "Evaluating specific workflows (checkout, onboarding, search)"
|
|
50
|
+
},
|
|
51
|
+
"time_on_task": {
|
|
52
|
+
"definition": "How long it takes to complete a task",
|
|
53
|
+
"goal": "Lower is better (efficiency)",
|
|
54
|
+
"measurement": "Usability testing (stopwatch) or analytics (time between events)",
|
|
55
|
+
"considerations": ["Compare to baseline or benchmark", "High variance? Task unclear or multiple paths"],
|
|
56
|
+
"note": "Long time may indicate confusion OR engagement (depends on task)"
|
|
57
|
+
},
|
|
58
|
+
"error_rate": {
|
|
59
|
+
"definition": "Number of errors per task attempt",
|
|
60
|
+
"types": ["Slips (typos, misclicks)", "Mistakes (wrong path, wrong action)"],
|
|
61
|
+
"measurement": "Usability testing (observe errors) or analytics (track failed attempts)",
|
|
62
|
+
"goal": "< 1 error per task (Nielsen)"
|
|
63
|
+
}
|
|
64
|
+
},
|
|
65
|
+
"user_satisfaction": {
|
|
66
|
+
"sus": {
|
|
67
|
+
"name": "System Usability Scale",
|
|
68
|
+
"description": "10-question standardized usability survey",
|
|
69
|
+
"scale": "1-5 Likert scale per question",
|
|
70
|
+
"scoring": "0-100 (68+ is above average, 80+ is excellent)",
|
|
71
|
+
"when": "Post-task or after using product",
|
|
72
|
+
"pros": ["Standardized (compare across products/time)", "Quick (< 5 min)", "Reliable"],
|
|
73
|
+
"cons": ["Retrospective (memory bias)", "Doesn't explain why"],
|
|
74
|
+
"sample_questions": [
|
|
75
|
+
"I think that I would like to use this system frequently",
|
|
76
|
+
"I found the system unnecessarily complex",
|
|
77
|
+
"I thought the system was easy to use"
|
|
78
|
+
]
|
|
79
|
+
},
|
|
80
|
+
"nps": {
|
|
81
|
+
"name": "Net Promoter Score",
|
|
82
|
+
"question": "How likely are you to recommend [product] to a friend or colleague? (0-10)",
|
|
83
|
+
"calculation": "% Promoters (9-10) - % Detractors (0-6)",
|
|
84
|
+
"score_range": "-100 to +100",
|
|
85
|
+
"benchmark": "> 50 excellent, 0-30 good, < 0 poor",
|
|
86
|
+
"pros": ["Simple", "Industry standard", "Predictive of growth"],
|
|
87
|
+
"cons": ["Doesn't explain why", "Cultural bias (varies by country)"],
|
|
88
|
+
"follow_up": "Ask 'Why did you give that score?' (qualitative insight)"
|
|
89
|
+
},
|
|
90
|
+
"csat": {
|
|
91
|
+
"name": "Customer Satisfaction Score",
|
|
92
|
+
"question": "How satisfied are you with [product/feature]?",
|
|
93
|
+
"scale": "1-5 (Very Unsatisfied to Very Satisfied)",
|
|
94
|
+
"calculation": "% who selected 4 or 5 (Satisfied or Very Satisfied)",
|
|
95
|
+
"when": "After specific interaction (purchase, support ticket, feature use)",
|
|
96
|
+
"pros": ["Specific to experience", "Actionable"],
|
|
97
|
+
"cons": ["Not standardized across companies"]
|
|
98
|
+
},
|
|
99
|
+
"ces": {
|
|
100
|
+
"name": "Customer Effort Score",
|
|
101
|
+
"question": "How easy was it to [complete task]?",
|
|
102
|
+
"scale": "1-7 (Very Difficult to Very Easy)",
|
|
103
|
+
"calculation": "Average score or % who selected 6-7",
|
|
104
|
+
"when": "After task completion",
|
|
105
|
+
"finding": "Effort is more predictive of loyalty than satisfaction (CEB research)",
|
|
106
|
+
"use_when": "Evaluating task ease (support, checkout, onboarding)"
|
|
107
|
+
}
|
|
108
|
+
},
|
|
109
|
+
"engagement_metrics": {
|
|
110
|
+
"active_users": {
|
|
111
|
+
"dau": { "name": "Daily Active Users", "definition": "Users who interact with product daily" },
|
|
112
|
+
"wau": { "name": "Weekly Active Users", "definition": "Users who interact with product weekly" },
|
|
113
|
+
"mau": { "name": "Monthly Active Users", "definition": "Users who interact with product monthly" },
|
|
114
|
+
"dau_mau_ratio": {
|
|
115
|
+
"name": "Stickiness",
|
|
116
|
+
"formula": "DAU / MAU",
|
|
117
|
+
"benchmark": "> 20% good, > 50% excellent (varies by product type)",
|
|
118
|
+
"interpretation": "Higher = users return more frequently"
|
|
119
|
+
}
|
|
120
|
+
},
|
|
121
|
+
"session_metrics": {
|
|
122
|
+
"session_duration": {
|
|
123
|
+
"definition": "Time user spends in a session",
|
|
124
|
+
"interpretation": "Longer may indicate engagement OR confusion (depends on product)",
|
|
125
|
+
"use_case": "Content sites (longer good), task-based apps (shorter may be good)"
|
|
126
|
+
},
|
|
127
|
+
"pages_per_session": {
|
|
128
|
+
"definition": "Number of pages viewed per session",
|
|
129
|
+
"interpretation": "Higher = more engagement (content sites) OR poor IA (task sites)"
|
|
130
|
+
},
|
|
131
|
+
"bounce_rate": {
|
|
132
|
+
"definition": "% of sessions where user views only one page and leaves",
|
|
133
|
+
"formula": "Single-page sessions / Total sessions × 100",
|
|
134
|
+
"benchmark": "< 40% good (varies by page type)",
|
|
135
|
+
"high_bounce_causes": ["Irrelevant traffic", "Poor first impression", "Slow load time", "Found answer (not always bad)"]
|
|
136
|
+
}
|
|
137
|
+
},
|
|
138
|
+
"feature_adoption": {
|
|
139
|
+
"adoption_rate": {
|
|
140
|
+
"definition": "% of users who've used a feature",
|
|
141
|
+
"formula": "Users who used feature / Total users × 100",
|
|
142
|
+
"goal": "High for core features, lower OK for advanced features"
|
|
143
|
+
},
|
|
144
|
+
"frequency_of_use": {
|
|
145
|
+
"definition": "How often users engage with feature",
|
|
146
|
+
"measurement": "Average uses per user per time period"
|
|
147
|
+
},
|
|
148
|
+
"depth_of_use": {
|
|
149
|
+
"definition": "How deeply users engage",
|
|
150
|
+
"example": "% of users who use advanced settings vs basic"
|
|
151
|
+
}
|
|
152
|
+
}
|
|
153
|
+
},
|
|
154
|
+
"business_metrics": {
|
|
155
|
+
"conversion_rate": {
|
|
156
|
+
"definition": "% of users who complete desired action (purchase, sign-up, etc.)",
|
|
157
|
+
"formula": "Conversions / Total visitors × 100",
|
|
158
|
+
"benchmark": "1-3% (e-commerce), varies widely by industry",
|
|
159
|
+
"micro_conversions": "Smaller goals leading to main goal (add to cart, start checkout)"
|
|
160
|
+
},
|
|
161
|
+
"funnel_metrics": {
|
|
162
|
+
"drop_off_rate": {
|
|
163
|
+
"definition": "% who leave at each funnel step",
|
|
164
|
+
"formula": "Users who didn't proceed / Users who reached step × 100",
|
|
165
|
+
"use": "Identify bottlenecks in conversion funnel"
|
|
166
|
+
},
|
|
167
|
+
"funnel_visualization": "Visualize drop-off at each step (Analytics → Funnel report)"
|
|
168
|
+
},
|
|
169
|
+
"revenue_metrics": {
|
|
170
|
+
"arpu": { "name": "Average Revenue Per User", "formula": "Total Revenue / Total Users" },
|
|
171
|
+
"ltv": { "name": "Lifetime Value", "definition": "Average revenue per customer over their lifetime" },
|
|
172
|
+
"cac": { "name": "Customer Acquisition Cost", "formula": "Total marketing + sales cost / New customers" },
|
|
173
|
+
"ltv_cac_ratio": { "formula": "LTV / CAC", "benchmark": "> 3 (for every $1 spent acquiring, earn $3+)" }
|
|
174
|
+
}
|
|
175
|
+
},
|
|
176
|
+
"performance_metrics": {
|
|
177
|
+
"page_load_time": {
|
|
178
|
+
"definition": "Time for page to fully load",
|
|
179
|
+
"benchmark": "< 3 seconds (ideal < 1 second)",
|
|
180
|
+
"impact": "1 second delay = 7% reduction in conversions (Akamai study)",
|
|
181
|
+
"tools": ["Google PageSpeed Insights", "WebPageTest", "Lighthouse"]
|
|
182
|
+
},
|
|
183
|
+
"core_web_vitals": {
|
|
184
|
+
"lcp": {
|
|
185
|
+
"name": "Largest Contentful Paint",
|
|
186
|
+
"definition": "Time for largest element to render",
|
|
187
|
+
"target": "< 2.5 seconds",
|
|
188
|
+
"ux_impact": "Perceived load speed"
|
|
189
|
+
},
|
|
190
|
+
"fid": {
|
|
191
|
+
"name": "First Input Delay",
|
|
192
|
+
"definition": "Time from first interaction to browser response",
|
|
193
|
+
"target": "< 100ms",
|
|
194
|
+
"ux_impact": "Interactivity responsiveness"
|
|
195
|
+
},
|
|
196
|
+
"cls": {
|
|
197
|
+
"name": "Cumulative Layout Shift",
|
|
198
|
+
"definition": "Visual stability (elements shifting during load)",
|
|
199
|
+
"target": "< 0.1",
|
|
200
|
+
"ux_impact": "Visual stability (no unexpected jumps)"
|
|
201
|
+
}
|
|
202
|
+
},
|
|
203
|
+
"time_to_interactive": {
|
|
204
|
+
"definition": "Time until page is fully interactive",
|
|
205
|
+
"target": "< 3.8 seconds (mobile)",
|
|
206
|
+
"ux_impact": "User can interact without lag"
|
|
207
|
+
}
|
|
208
|
+
}
|
|
209
|
+
},
|
|
210
|
+
"analytics_tools": {
|
|
211
|
+
"web_analytics": {
|
|
212
|
+
"google_analytics": {
|
|
213
|
+
"pros": ["Free", "Comprehensive", "Industry standard", "Integrations"],
|
|
214
|
+
"cons": ["Privacy concerns", "Complex for beginners", "GA4 learning curve"],
|
|
215
|
+
"use_for": ["Traffic sources", "Page views", "Conversion funnels", "Demographics"]
|
|
216
|
+
},
|
|
217
|
+
"mixpanel": {
|
|
218
|
+
"pros": ["Event-based (track specific actions)", "User-centric", "Funnel analysis", "Cohort analysis"],
|
|
219
|
+
"cons": ["Expensive at scale", "Requires custom implementation"],
|
|
220
|
+
"use_for": ["Product analytics", "Feature adoption", "User journeys"]
|
|
221
|
+
},
|
|
222
|
+
"amplitude": {
|
|
223
|
+
"pros": ["Behavioral analytics", "Retention analysis", "Easy to use"],
|
|
224
|
+
"cons": ["Expensive", "Learning curve for advanced features"],
|
|
225
|
+
"use_for": ["Product analytics", "User behavior patterns", "Retention"]
|
|
226
|
+
},
|
|
227
|
+
"heap": {
|
|
228
|
+
"pros": ["Auto-capture all events", "Retroactive analysis", "No code changes for new events"],
|
|
229
|
+
"cons": ["Data overload", "Expensive"],
|
|
230
|
+
"use_for": ["When you don't know what to track yet", "Fast iteration"]
|
|
231
|
+
}
|
|
232
|
+
},
|
|
233
|
+
"qualitative_analytics": {
|
|
234
|
+
"hotjar": {
|
|
235
|
+
"features": ["Heatmaps", "Session recordings", "Surveys", "Feedback widgets"],
|
|
236
|
+
"pros": ["All-in-one", "Affordable", "Easy to use"],
|
|
237
|
+
"use_for": ["Understanding user behavior", "Finding usability issues"]
|
|
238
|
+
},
|
|
239
|
+
"fullstory": {
|
|
240
|
+
"features": ["Session replay", "Rage clicks", "Error tracking", "Funnel analysis"],
|
|
241
|
+
"pros": ["Powerful search", "Automatic error detection"],
|
|
242
|
+
"cons": ["Expensive"],
|
|
243
|
+
"use_for": ["Debugging UX issues", "Understanding confusion"]
|
|
244
|
+
},
|
|
245
|
+
"microsoft_clarity": {
|
|
246
|
+
"features": ["Heatmaps", "Session recordings", "Insights"],
|
|
247
|
+
"pros": ["FREE", "Privacy-focused", "Easy setup"],
|
|
248
|
+
"cons": ["Fewer features than Hotjar/FullStory"],
|
|
249
|
+
"use_for": ["Budget option for heatmaps and recordings"
|
|
250
|
+
}
|
|
251
|
+
},
|
|
252
|
+
"heatmap_tools": {
|
|
253
|
+
"types": {
|
|
254
|
+
"click_heatmap": "Where users click (find dead clicks, popular elements)",
|
|
255
|
+
"scroll_heatmap": "How far users scroll (where to place CTAs)",
|
|
256
|
+
"move_heatmap": "Mouse movement (attention, though imperfect on mobile)"
|
|
257
|
+
},
|
|
258
|
+
"tools": ["Hotjar", "Crazy Egg", "Microsoft Clarity"],
|
|
259
|
+
"insights": ["Dead clicks (non-clickable elements users click)", "Ignored CTAs", "Content below fold unseen"]
|
|
260
|
+
},
|
|
261
|
+
"ab_testing_tools": {
|
|
262
|
+
"google_optimize": {
|
|
263
|
+
"pros": ["Free", "Integrates with GA"],
|
|
264
|
+
"cons": ["Being sunset (2023)", "Limited features"],
|
|
265
|
+
"status": "Discontinued Sep 2023"
|
|
266
|
+
},
|
|
267
|
+
"optimizely": {
|
|
268
|
+
"pros": ["Enterprise-grade", "Multivariate testing", "Personalization"],
|
|
269
|
+
"cons": ["Expensive", "Complex"],
|
|
270
|
+
"use_for": "Large-scale experimentation programs"
|
|
271
|
+
},
|
|
272
|
+
"vwo": {
|
|
273
|
+
"pros": ["A/B testing + heatmaps + surveys", "Affordable", "Good UI"],
|
|
274
|
+
"use_for": "Mid-market companies"
|
|
275
|
+
}
|
|
276
|
+
},
|
|
277
|
+
"survey_tools": {
|
|
278
|
+
"typeform": {
|
|
279
|
+
"pros": ["Beautiful UI", "Conversational", "High completion rates"],
|
|
280
|
+
"cons": ["Expensive for high volume"],
|
|
281
|
+
"use_for": "Customer feedback, NPS, onboarding surveys"
|
|
282
|
+
},
|
|
283
|
+
"surveymonkey": {
|
|
284
|
+
"pros": ["Comprehensive", "Templates", "Analytics"],
|
|
285
|
+
"cons": ["Less modern UI"],
|
|
286
|
+
"use_for": "Traditional surveys, market research"
|
|
287
|
+
},
|
|
288
|
+
"google_forms": {
|
|
289
|
+
"pros": ["Free", "Simple", "Familiar"],
|
|
290
|
+
"cons": ["Basic features", "Less engaging"],
|
|
291
|
+
"use_for": "Quick surveys, internal feedback"
|
|
292
|
+
}
|
|
293
|
+
}
|
|
294
|
+
},
|
|
295
|
+
"measurement_frameworks": {
|
|
296
|
+
"heart_framework": {
|
|
297
|
+
"description": "Google's UX metrics framework",
|
|
298
|
+
"developed_by": "Google HEART team",
|
|
299
|
+
"dimensions": {
|
|
300
|
+
"happiness": {
|
|
301
|
+
"description": "User attitudes and satisfaction",
|
|
302
|
+
"metrics": ["NPS", "CSAT", "SUS"],
|
|
303
|
+
"method": "Surveys"
|
|
304
|
+
},
|
|
305
|
+
"engagement": {
|
|
306
|
+
"description": "Level of user involvement",
|
|
307
|
+
"metrics": ["DAU/MAU", "Session duration", "Feature usage", "Frequency"],
|
|
308
|
+
"method": "Analytics"
|
|
309
|
+
},
|
|
310
|
+
"adoption": {
|
|
311
|
+
"description": "New users of a product or feature",
|
|
312
|
+
"metrics": ["New user sign-ups", "First-time feature use", "Onboarding completion"],
|
|
313
|
+
"method": "Analytics"
|
|
314
|
+
},
|
|
315
|
+
"retention": {
|
|
316
|
+
"description": "Rate at which users return",
|
|
317
|
+
"metrics": ["Churn rate", "Day 1/7/30 retention", "Repeat usage"],
|
|
318
|
+
"method": "Analytics"
|
|
319
|
+
},
|
|
320
|
+
"task_success": {
|
|
321
|
+
"description": "Efficiency, effectiveness, error rate",
|
|
322
|
+
"metrics": ["Task completion rate", "Time on task", "Error rate"],
|
|
323
|
+
"method": "Usability testing or analytics"
|
|
324
|
+
}
|
|
325
|
+
},
|
|
326
|
+
"use": "Comprehensive UX measurement for products"
|
|
327
|
+
},
|
|
328
|
+
"aarrr_pirate_metrics": {
|
|
329
|
+
"description": "Dave McClure's startup metrics",
|
|
330
|
+
"stages": {
|
|
331
|
+
"acquisition": {
|
|
332
|
+
"description": "Users arrive",
|
|
333
|
+
"metrics": ["Traffic sources", "Cost per acquisition", "Conversion rate"],
|
|
334
|
+
"goal": "Bring users to product"
|
|
335
|
+
},
|
|
336
|
+
"activation": {
|
|
337
|
+
"description": "Users have good first experience",
|
|
338
|
+
"metrics": ["Onboarding completion", "Time to first value", "Activation rate"],
|
|
339
|
+
"goal": "Users experience 'aha moment'"
|
|
340
|
+
},
|
|
341
|
+
"retention": {
|
|
342
|
+
"description": "Users come back",
|
|
343
|
+
"metrics": ["Retention rate", "Churn rate", "DAU/MAU"],
|
|
344
|
+
"goal": "Users return and engage"
|
|
345
|
+
},
|
|
346
|
+
"revenue": {
|
|
347
|
+
"description": "Users pay",
|
|
348
|
+
"metrics": ["Conversion to paid", "ARPU", "MRR/ARR"],
|
|
349
|
+
"goal": "Monetize users"
|
|
350
|
+
},
|
|
351
|
+
"referral": {
|
|
352
|
+
"description": "Users refer others",
|
|
353
|
+
"metrics": ["Viral coefficient", "Referral rate", "Invites sent"],
|
|
354
|
+
"goal": "Users invite others (viral growth)"
|
|
355
|
+
}
|
|
356
|
+
},
|
|
357
|
+
"use": "Startup growth tracking (SaaS, apps)"
|
|
358
|
+
},
|
|
359
|
+
"pulse_framework": {
|
|
360
|
+
"description": "Google's lightweight HEART alternative",
|
|
361
|
+
"metrics": {
|
|
362
|
+
"page_views": "Overall usage",
|
|
363
|
+
"uptime": "Technical reliability",
|
|
364
|
+
"latency": "Performance (speed)",
|
|
365
|
+
"seven_day_active_users": "Engagement",
|
|
366
|
+
"earnings": "Revenue (if applicable)"
|
|
367
|
+
},
|
|
368
|
+
"use": "Quick health check for features/products"
|
|
369
|
+
}
|
|
370
|
+
},
|
|
371
|
+
"data_analysis": {
|
|
372
|
+
"segmentation": {
|
|
373
|
+
"description": "Break down metrics by user groups",
|
|
374
|
+
"segments": {
|
|
375
|
+
"demographic": "Age, gender, location",
|
|
376
|
+
"behavioral": "Power users, casual users, new users",
|
|
377
|
+
"acquisition": "Traffic source (organic, paid, referral)",
|
|
378
|
+
"device": "Mobile, tablet, desktop",
|
|
379
|
+
"temporal": "Time of day, day of week"
|
|
380
|
+
},
|
|
381
|
+
"benefit": "Uncover insights hidden in averages",
|
|
382
|
+
"example": "Overall conversion 5%, but mobile 2%, desktop 8% (mobile issue!)"
|
|
383
|
+
},
|
|
384
|
+
"cohort_analysis": {
|
|
385
|
+
"description": "Group users by shared characteristic (e.g., sign-up date)",
|
|
386
|
+
"use_cases": [
|
|
387
|
+
"Retention over time (Do users from Jan retain better than Feb?)",
|
|
388
|
+
"Feature impact (Do users who adopted feature X retain better?)",
|
|
389
|
+
"A/B test long-term effects"
|
|
390
|
+
],
|
|
391
|
+
"tools": ["Mixpanel", "Amplitude", "Google Analytics (limited)"]
|
|
392
|
+
},
|
|
393
|
+
"funnel_analysis": {
|
|
394
|
+
"description": "Track users through multi-step process",
|
|
395
|
+
"steps": ["Identify funnel steps", "Measure drop-off at each step", "Analyze why drop-off occurs", "Optimize"],
|
|
396
|
+
"example": "E-commerce: View Product → Add to Cart → Checkout → Payment → Confirmation",
|
|
397
|
+
"tools": ["Google Analytics", "Mixpanel", "Amplitude"]
|
|
398
|
+
},
|
|
399
|
+
"statistical_significance": {
|
|
400
|
+
"description": "Determine if results are due to chance or real effect",
|
|
401
|
+
"p_value": {
|
|
402
|
+
"definition": "Probability result is due to chance",
|
|
403
|
+
"threshold": "p < 0.05 (95% confidence)",
|
|
404
|
+
"interpretation": "p = 0.03 means 3% chance result is due to chance (significant!)"
|
|
405
|
+
},
|
|
406
|
+
"sample_size": {
|
|
407
|
+
"importance": "Small samples = unreliable results",
|
|
408
|
+
"calculator": "Use A/B test sample size calculator",
|
|
409
|
+
"rule_of_thumb": "At least 30 users per variant (more for small effects)"
|
|
410
|
+
},
|
|
411
|
+
"duration": {
|
|
412
|
+
"minimum": "1 week (account for weekly cycles)",
|
|
413
|
+
"ideal": "2-4 weeks",
|
|
414
|
+
"avoid": "Stopping test early because winning (regression to mean)"
|
|
415
|
+
}
|
|
416
|
+
}
|
|
417
|
+
},
|
|
418
|
+
"reporting_dashboards": {
|
|
419
|
+
"dashboard_design": {
|
|
420
|
+
"principles": {
|
|
421
|
+
"hierarchy": "Most important metrics prominent",
|
|
422
|
+
"glanceability": "Understand at a glance (no hunting for info)",
|
|
423
|
+
"actionability": "Clear what action to take",
|
|
424
|
+
"context": "Show trends, comparisons, benchmarks (not just numbers)"
|
|
425
|
+
},
|
|
426
|
+
"elements": {
|
|
427
|
+
"kpis": "Key metrics (large, prominent)",
|
|
428
|
+
"trends": "Line charts showing change over time",
|
|
429
|
+
"comparisons": "Current vs previous period (%, absolute change)",
|
|
430
|
+
"targets": "Goal lines on charts",
|
|
431
|
+
"alerts": "Highlight when metric is outside normal range"
|
|
432
|
+
}
|
|
433
|
+
},
|
|
434
|
+
"visualization_types": {
|
|
435
|
+
"line_chart": { "use": "Trends over time", "example": "Daily active users over 30 days" },
|
|
436
|
+
"bar_chart": { "use": "Compare categories", "example": "Conversion rate by traffic source" },
|
|
437
|
+
"pie_chart": { "use": "Proportions (use sparingly, < 6 segments)", "example": "Traffic sources" },
|
|
438
|
+
"funnel_chart": { "use": "Multi-step process drop-off", "example": "Checkout funnel" },
|
|
439
|
+
"table": { "use": "Detailed data, multiple dimensions", "example": "Top pages by traffic and conversion" }
|
|
440
|
+
},
|
|
441
|
+
"tools": {
|
|
442
|
+
"google_data_studio": "Free, integrates with GA and other Google tools (now Looker Studio)",
|
|
443
|
+
"tableau": "Enterprise BI tool, powerful visualizations",
|
|
444
|
+
"power_bi": "Microsoft BI tool",
|
|
445
|
+
"mixpanel_dashboards": "Built-in product analytics dashboards",
|
|
446
|
+
"amplitude_dashboards": "Built-in behavioral analytics dashboards"
|
|
447
|
+
}
|
|
448
|
+
},
|
|
449
|
+
"best_practices": [
|
|
450
|
+
"Define goals before measuring (what do you want to improve?)",
|
|
451
|
+
"Combine quantitative and qualitative data (what + why)",
|
|
452
|
+
"Track both attitudinal and behavioral metrics",
|
|
453
|
+
"Use standardized surveys (SUS, NPS) for benchmarking",
|
|
454
|
+
"Segment data (don't rely on averages)",
|
|
455
|
+
"Ensure statistical significance (p < 0.05, sufficient sample size)",
|
|
456
|
+
"Run A/B tests long enough (1-4 weeks, not days)",
|
|
457
|
+
"Track Core Web Vitals (LCP, FID, CLS)",
|
|
458
|
+
"Use funnel analysis to find bottlenecks",
|
|
459
|
+
"Cohort analysis for retention insights",
|
|
460
|
+
"Set up dashboards for key metrics (glanceable)",
|
|
461
|
+
"Review metrics regularly (weekly or monthly)",
|
|
462
|
+
"Make data accessible to team (not siloed)",
|
|
463
|
+
"Focus on actionable metrics (not vanity metrics)",
|
|
464
|
+
"Validate insights with users (don't just trust data)",
|
|
465
|
+
"Use heatmaps and session recordings to understand behavior",
|
|
466
|
+
"Track both macro and micro conversions",
|
|
467
|
+
"Monitor performance metrics (speed impacts UX and conversion)",
|
|
468
|
+
"Test one variable at a time (A/B testing)",
|
|
469
|
+
"Document findings and decisions (build institutional knowledge)"
|
|
470
|
+
],
|
|
471
|
+
"anti_patterns": [
|
|
472
|
+
"Vanity metrics (page views without context)",
|
|
473
|
+
"Measuring everything (focus on what matters)",
|
|
474
|
+
"Ignoring qualitative data (numbers don't explain why)",
|
|
475
|
+
"Small sample sizes (unreliable results)",
|
|
476
|
+
"Stopping A/B tests early (false positives)",
|
|
477
|
+
"Not segmenting data (averages hide insights)",
|
|
478
|
+
"Correlation = causation (confounding variables)",
|
|
479
|
+
"Analysis paralysis (measure but don't act)",
|
|
480
|
+
"No statistical significance testing (guessing)",
|
|
481
|
+
"Ignoring performance metrics (speed matters)",
|
|
482
|
+
"Not sharing data with team (siloed insights)",
|
|
483
|
+
"Optimizing for wrong metrics (engagement ≠ satisfaction)",
|
|
484
|
+
"No baseline/benchmark (can't measure improvement)",
|
|
485
|
+
"Testing multiple variables at once (can't isolate cause)",
|
|
486
|
+
"Ignoring mobile metrics (separate mobile/desktop)",
|
|
487
|
+
"Not tracking long-term impacts (optimize for short-term only)",
|
|
488
|
+
"Over-relying on one metric (need holistic view)",
|
|
489
|
+
"No action from insights (data without decisions is waste)",
|
|
490
|
+
"Privacy violations (GDPR, tracking without consent)",
|
|
491
|
+
"Ignoring outliers without investigation (may reveal issues)"
|
|
492
|
+
],
|
|
493
|
+
"case_studies": {
|
|
494
|
+
"obama_campaign_ab_testing": {
|
|
495
|
+
"test": "Sign-up button text and media",
|
|
496
|
+
"result": "$60 million in additional donations from A/B testing",
|
|
497
|
+
"lesson": "Small changes, big impact"
|
|
498
|
+
},
|
|
499
|
+
"booking_com": {
|
|
500
|
+
"approach": "Runs 25,000+ A/B tests per year",
|
|
501
|
+
"culture": "Data-driven experimentation",
|
|
502
|
+
"result": "Continuous optimization, market leader"
|
|
503
|
+
},
|
|
504
|
+
"netflix": {
|
|
505
|
+
"metric": "Stream Starts (not just sign-ups)",
|
|
506
|
+
"insight": "Engagement matters more than acquisition",
|
|
507
|
+
"result": "Focus shifted to content and retention"
|
|
508
|
+
}
|
|
509
|
+
},
|
|
510
|
+
"resources": [
|
|
511
|
+
"Lean Analytics (Alistair Croll, Benjamin Yoskovitz) - Metrics for startups",
|
|
512
|
+
"Measuring the User Experience (Tullis & Albert) - UX metrics bible",
|
|
513
|
+
"Quantifying the User Experience (Sauro & Lewis) - Statistics for UX",
|
|
514
|
+
"Google Analytics Academy - Free GA training",
|
|
515
|
+
"HEART Framework (Google Research) - UX metrics framework",
|
|
516
|
+
"Nielsen Norman Group - UX measurement articles",
|
|
517
|
+
"Mixpanel University - Product analytics training",
|
|
518
|
+
"A/B Testing Mastery (Peep Laja) - CXL course",
|
|
519
|
+
"Web.dev - Core Web Vitals guide"
|
|
520
|
+
]
|
|
521
|
+
}
|