@elizaos/plugin-openai 1.5.16 → 1.6.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,20 +1,7 @@
1
- var __create = Object.create;
2
- var __getProtoOf = Object.getPrototypeOf;
3
1
  var __defProp = Object.defineProperty;
4
2
  var __getOwnPropNames = Object.getOwnPropertyNames;
5
3
  var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
6
4
  var __hasOwnProp = Object.prototype.hasOwnProperty;
7
- var __toESM = (mod, isNodeMode, target) => {
8
- target = mod != null ? __create(__getProtoOf(mod)) : {};
9
- const to = isNodeMode || !mod || !mod.__esModule ? __defProp(target, "default", { value: mod, enumerable: true }) : target;
10
- for (let key of __getOwnPropNames(mod))
11
- if (!__hasOwnProp.call(to, key))
12
- __defProp(to, key, {
13
- get: () => mod[key],
14
- enumerable: true
15
- });
16
- return to;
17
- };
18
5
  var __moduleCache = /* @__PURE__ */ new WeakMap;
19
6
  var __toCommonJS = (from) => {
20
7
  var entry = __moduleCache.get(from), desc;
@@ -48,15 +35,22 @@ __export(exports_index_node, {
48
35
  module.exports = __toCommonJS(exports_index_node);
49
36
 
50
37
  // src/index.ts
51
- var import_openai = require("@ai-sdk/openai");
38
+ var import_core13 = require("@elizaos/core");
39
+
40
+ // src/init.ts
41
+ var import_core2 = require("@elizaos/core");
42
+
43
+ // src/utils/config.ts
52
44
  var import_core = require("@elizaos/core");
53
- var import_ai = require("ai");
54
- var import_js_tiktoken = require("js-tiktoken");
55
45
  function getSetting(runtime, key, defaultValue) {
56
- return runtime.getSetting(key) ?? process.env[key] ?? defaultValue;
46
+ const value = runtime.getSetting(key);
47
+ if (value !== undefined && value !== null) {
48
+ return String(value);
49
+ }
50
+ return process.env[key] ?? defaultValue;
57
51
  }
58
52
  function isBrowser() {
59
- return typeof globalThis !== "undefined" && typeof globalThis.document !== "undefined";
53
+ return typeof globalThis !== "undefined" && "document" in globalThis && typeof globalThis.document !== "undefined";
60
54
  }
61
55
  function isProxyMode(runtime) {
62
56
  return isBrowser() && !!getSetting(runtime, "OPENAI_BROWSER_BASE_URL");
@@ -95,13 +89,13 @@ function getEmbeddingApiKey(runtime) {
95
89
  return getApiKey(runtime);
96
90
  }
97
91
  function getSmallModel(runtime) {
98
- return getSetting(runtime, "OPENAI_SMALL_MODEL") ?? getSetting(runtime, "SMALL_MODEL", "gpt-5-nano");
92
+ return getSetting(runtime, "OPENAI_SMALL_MODEL") ?? getSetting(runtime, "SMALL_MODEL", "gpt-4o-mini");
99
93
  }
100
94
  function getLargeModel(runtime) {
101
- return getSetting(runtime, "OPENAI_LARGE_MODEL") ?? getSetting(runtime, "LARGE_MODEL", "gpt-5-mini");
95
+ return getSetting(runtime, "OPENAI_LARGE_MODEL") ?? getSetting(runtime, "LARGE_MODEL", "gpt-4o");
102
96
  }
103
97
  function getImageDescriptionModel(runtime) {
104
- return getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MODEL", "gpt-5-nano") ?? "gpt-5-nano";
98
+ return getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MODEL", "gpt-5-nano");
105
99
  }
106
100
  function getExperimentalTelemetry(runtime) {
107
101
  const setting = getSetting(runtime, "OPENAI_EXPERIMENTAL_TELEMETRY", "false");
@@ -110,150 +104,351 @@ function getExperimentalTelemetry(runtime) {
110
104
  import_core.logger.debug(`[OpenAI] Experimental telemetry in function: "${setting}" (type: ${typeof setting}, normalized: "${normalizedSetting}", result: ${result})`);
111
105
  return result;
112
106
  }
107
+
108
+ // src/init.ts
109
+ function initializeOpenAI(_config, runtime) {
110
+ (async () => {
111
+ try {
112
+ if (!getApiKey(runtime) && !isBrowser()) {
113
+ import_core2.logger.warn("OPENAI_API_KEY is not set in environment - OpenAI functionality will be limited");
114
+ return;
115
+ }
116
+ try {
117
+ const baseURL = getBaseURL(runtime);
118
+ const response = await fetch(`${baseURL}/models`, {
119
+ headers: getAuthHeader(runtime)
120
+ });
121
+ if (!response.ok) {
122
+ import_core2.logger.warn(`OpenAI API key validation failed: ${response.statusText}`);
123
+ import_core2.logger.warn("OpenAI functionality will be limited until a valid API key is provided");
124
+ } else {
125
+ import_core2.logger.log("OpenAI API key validated successfully");
126
+ }
127
+ } catch (fetchError) {
128
+ const message = fetchError instanceof Error ? fetchError.message : String(fetchError);
129
+ import_core2.logger.warn(`Error validating OpenAI API key: ${message}`);
130
+ import_core2.logger.warn("OpenAI functionality will be limited until a valid API key is provided");
131
+ }
132
+ } catch (error) {
133
+ const message = error?.errors?.map((e) => e.message).join(", ") || (error instanceof Error ? error.message : String(error));
134
+ import_core2.logger.warn(`OpenAI plugin configuration issue: ${message} - You need to configure the OPENAI_API_KEY in your environment variables`);
135
+ }
136
+ })();
137
+ }
138
+
139
+ // src/models/text.ts
140
+ var import_core4 = require("@elizaos/core");
141
+ var import_ai = require("ai");
142
+
143
+ // src/providers/openai.ts
144
+ var import_openai = require("@ai-sdk/openai");
113
145
  function createOpenAIClient(runtime) {
114
146
  const baseURL = getBaseURL(runtime);
115
147
  const apiKey = getApiKey(runtime) ?? (isProxyMode(runtime) ? "sk-proxy" : undefined);
116
148
  return import_openai.createOpenAI({ apiKey: apiKey ?? "", baseURL });
117
149
  }
118
- async function tokenizeText(model, prompt) {
119
- const modelName = model === import_core.ModelType.TEXT_SMALL ? process.env.OPENAI_SMALL_MODEL ?? process.env.SMALL_MODEL ?? "gpt-5-nano" : process.env.LARGE_MODEL ?? "gpt-5-mini";
120
- const tokens = import_js_tiktoken.encodingForModel(modelName).encode(prompt);
121
- return tokens;
122
- }
123
- async function detokenizeText(model, tokens) {
124
- const modelName = model === import_core.ModelType.TEXT_SMALL ? process.env.OPENAI_SMALL_MODEL ?? process.env.SMALL_MODEL ?? "gpt-5-nano" : process.env.OPENAI_LARGE_MODEL ?? process.env.LARGE_MODEL ?? "gpt-5-mini";
125
- return import_js_tiktoken.encodingForModel(modelName).decode(tokens);
150
+
151
+ // src/utils/events.ts
152
+ var import_core3 = require("@elizaos/core");
153
+ function emitModelUsageEvent(runtime, type, prompt, usage) {
154
+ const promptTokens = ("promptTokens" in usage ? usage.promptTokens : undefined) ?? ("inputTokens" in usage ? usage.inputTokens : undefined) ?? 0;
155
+ const completionTokens = ("completionTokens" in usage ? usage.completionTokens : undefined) ?? ("outputTokens" in usage ? usage.outputTokens : undefined) ?? 0;
156
+ const totalTokens = ("totalTokens" in usage ? usage.totalTokens : undefined) ?? promptTokens + completionTokens;
157
+ const truncatedPrompt = typeof prompt === "string" ? prompt.length > 200 ? `${prompt.slice(0, 200)}…` : prompt : "";
158
+ runtime.emitEvent(import_core3.EventType.MODEL_USED, {
159
+ runtime,
160
+ source: "openai",
161
+ provider: "openai",
162
+ type,
163
+ prompt: truncatedPrompt,
164
+ tokens: {
165
+ prompt: promptTokens,
166
+ completion: completionTokens,
167
+ total: totalTokens
168
+ }
169
+ });
126
170
  }
127
- async function generateObjectByModelType(runtime, params, modelType, getModelFn) {
171
+
172
+ // src/models/text.ts
173
+ async function generateTextByModelType(runtime, params, modelType, getModelFn) {
128
174
  const openai = createOpenAIClient(runtime);
129
175
  const modelName = getModelFn(runtime);
130
- import_core.logger.log(`[OpenAI] Using ${modelType} model: ${modelName}`);
131
- const temperature = params.temperature ?? 0;
132
- const schemaPresent = !!params.schema;
133
- if (schemaPresent) {
134
- import_core.logger.info(`Using ${modelType} without schema validation (schema provided but output=no-schema)`);
176
+ import_core4.logger.debug(`[OpenAI] ${modelType} model: ${modelName}`);
177
+ const generateParams = {
178
+ model: openai.languageModel(modelName),
179
+ prompt: params.prompt,
180
+ system: runtime.character.system ?? undefined,
181
+ temperature: params.temperature ?? 0.7,
182
+ maxOutputTokens: params.maxTokens ?? 8192,
183
+ frequencyPenalty: params.frequencyPenalty ?? 0.7,
184
+ presencePenalty: params.presencePenalty ?? 0.7,
185
+ stopSequences: params.stopSequences ?? [],
186
+ experimental_telemetry: { isEnabled: getExperimentalTelemetry(runtime) }
187
+ };
188
+ if (params.stream) {
189
+ const result = import_ai.streamText(generateParams);
190
+ return {
191
+ textStream: result.textStream,
192
+ text: result.text,
193
+ usage: result.usage.then((u) => u ? {
194
+ promptTokens: u.inputTokens ?? 0,
195
+ completionTokens: u.outputTokens ?? 0,
196
+ totalTokens: (u.inputTokens ?? 0) + (u.outputTokens ?? 0)
197
+ } : undefined),
198
+ finishReason: result.finishReason
199
+ };
135
200
  }
201
+ const { text, usage } = await import_ai.generateText(generateParams);
202
+ if (usage)
203
+ emitModelUsageEvent(runtime, modelType, params.prompt, usage);
204
+ return text;
205
+ }
206
+ async function handleTextSmall(runtime, params) {
207
+ return generateTextByModelType(runtime, params, import_core4.ModelType.TEXT_SMALL, getSmallModel);
208
+ }
209
+ async function handleTextLarge(runtime, params) {
210
+ return generateTextByModelType(runtime, params, import_core4.ModelType.TEXT_LARGE, getLargeModel);
211
+ }
212
+ // src/models/embedding.ts
213
+ var import_core5 = require("@elizaos/core");
214
+ async function handleTextEmbedding(runtime, params) {
215
+ const embeddingModelName = getSetting(runtime, "OPENAI_EMBEDDING_MODEL", "text-embedding-3-small");
216
+ const embeddingDimension = Number.parseInt(getSetting(runtime, "OPENAI_EMBEDDING_DIMENSIONS", "1536") || "1536", 10);
217
+ if (!Object.values(import_core5.VECTOR_DIMS).includes(embeddingDimension)) {
218
+ const errorMsg = `Invalid embedding dimension: ${embeddingDimension}. Must be one of: ${Object.values(import_core5.VECTOR_DIMS).join(", ")}`;
219
+ import_core5.logger.error(errorMsg);
220
+ throw new Error(errorMsg);
221
+ }
222
+ if (params === null) {
223
+ import_core5.logger.debug("Creating test embedding for initialization");
224
+ const testVector = Array(embeddingDimension).fill(0);
225
+ testVector[0] = 0.1;
226
+ return testVector;
227
+ }
228
+ let text;
229
+ if (typeof params === "string") {
230
+ text = params;
231
+ } else if (typeof params === "object" && params.text) {
232
+ text = params.text;
233
+ } else {
234
+ const errorMsg = "Invalid input format for embedding";
235
+ import_core5.logger.warn(errorMsg);
236
+ const fallbackVector = Array(embeddingDimension).fill(0);
237
+ fallbackVector[0] = 0.2;
238
+ return fallbackVector;
239
+ }
240
+ if (!text.trim()) {
241
+ const errorMsg = "Empty text for embedding";
242
+ import_core5.logger.warn(errorMsg);
243
+ const fallbackVector = Array(embeddingDimension).fill(0);
244
+ fallbackVector[0] = 0.3;
245
+ return fallbackVector;
246
+ }
247
+ const embeddingBaseURL = getEmbeddingBaseURL(runtime);
136
248
  try {
137
- const { object, usage } = await import_ai.generateObject({
138
- model: openai.languageModel(modelName),
139
- output: "no-schema",
140
- prompt: params.prompt,
141
- temperature,
142
- experimental_repairText: getJsonRepairFunction()
249
+ const response = await fetch(`${embeddingBaseURL}/embeddings`, {
250
+ method: "POST",
251
+ headers: {
252
+ ...getAuthHeader(runtime, true),
253
+ "Content-Type": "application/json"
254
+ },
255
+ body: JSON.stringify({
256
+ model: embeddingModelName,
257
+ input: text
258
+ })
143
259
  });
144
- if (usage) {
145
- emitModelUsageEvent(runtime, modelType, params.prompt, usage);
260
+ if (!response.ok) {
261
+ import_core5.logger.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
262
+ throw new Error(`OpenAI API error: ${response.status} - ${response.statusText}`);
146
263
  }
147
- return object;
148
- } catch (error) {
149
- if (error instanceof import_ai.JSONParseError) {
150
- import_core.logger.error(`[generateObject] Failed to parse JSON: ${error.message}`);
151
- const repairFunction = getJsonRepairFunction();
152
- const repairedJsonString = await repairFunction({
153
- text: error.text,
154
- error
155
- });
156
- if (repairedJsonString) {
157
- try {
158
- const repairedObject = JSON.parse(repairedJsonString);
159
- import_core.logger.info("[generateObject] Successfully repaired JSON.");
160
- return repairedObject;
161
- } catch (repairParseError) {
162
- const message = repairParseError instanceof Error ? repairParseError.message : String(repairParseError);
163
- import_core.logger.error(`[generateObject] Failed to parse repaired JSON: ${message}`);
164
- throw repairParseError;
165
- }
166
- } else {
167
- import_core.logger.error("[generateObject] JSON repair failed.");
168
- throw error;
169
- }
170
- } else {
171
- const message = error instanceof Error ? error.message : String(error);
172
- import_core.logger.error(`[generateObject] Unknown error: ${message}`);
173
- throw error;
264
+ const data = await response.json();
265
+ if (!data?.data?.[0]?.embedding) {
266
+ import_core5.logger.error("API returned invalid structure");
267
+ throw new Error("API returned invalid structure");
268
+ }
269
+ const embedding = data.data[0].embedding;
270
+ if (!Array.isArray(embedding) || embedding.length !== embeddingDimension) {
271
+ const errorMsg = `Embedding length ${embedding?.length ?? 0} does not match configured dimension ${embeddingDimension}`;
272
+ import_core5.logger.error(errorMsg);
273
+ const fallbackVector = Array(embeddingDimension).fill(0);
274
+ fallbackVector[0] = 0.4;
275
+ return fallbackVector;
276
+ }
277
+ if (data.usage) {
278
+ const usage = {
279
+ inputTokens: data.usage.prompt_tokens,
280
+ outputTokens: 0,
281
+ totalTokens: data.usage.total_tokens
282
+ };
283
+ emitModelUsageEvent(runtime, import_core5.ModelType.TEXT_EMBEDDING, text, usage);
174
284
  }
285
+ import_core5.logger.log(`Got valid embedding with length ${embedding.length}`);
286
+ return embedding;
287
+ } catch (error) {
288
+ const message = error instanceof Error ? error.message : String(error);
289
+ import_core5.logger.error(`Error generating embedding: ${message}`);
290
+ throw error instanceof Error ? error : new Error(message);
175
291
  }
176
292
  }
177
- function getJsonRepairFunction() {
178
- return async ({ text, error }) => {
179
- try {
180
- if (error instanceof import_ai.JSONParseError) {
181
- const cleanedText = text.replace(/```json\n|\n```|```/g, "");
182
- JSON.parse(cleanedText);
183
- return cleanedText;
184
- }
185
- return null;
186
- } catch (jsonError) {
187
- const message = jsonError instanceof Error ? jsonError.message : String(jsonError);
188
- import_core.logger.warn(`Failed to repair JSON text: ${message}`);
189
- return null;
293
+ // src/models/image.ts
294
+ var import_core6 = require("@elizaos/core");
295
+ async function handleImageGeneration(runtime, params) {
296
+ const n = params.count || 1;
297
+ const size = params.size || "1024x1024";
298
+ const prompt = params.prompt;
299
+ const modelName = getSetting(runtime, "OPENAI_IMAGE_MODEL", "gpt-image-1");
300
+ import_core6.logger.log(`[OpenAI] Using IMAGE model: ${modelName}`);
301
+ const baseURL = getBaseURL(runtime);
302
+ try {
303
+ const response = await fetch(`${baseURL}/images/generations`, {
304
+ method: "POST",
305
+ headers: {
306
+ ...getAuthHeader(runtime),
307
+ "Content-Type": "application/json"
308
+ },
309
+ body: JSON.stringify({
310
+ model: modelName,
311
+ prompt,
312
+ n,
313
+ size
314
+ })
315
+ });
316
+ if (!response.ok) {
317
+ throw new Error(`Failed to generate image: ${response.statusText}`);
190
318
  }
191
- };
319
+ const data = await response.json();
320
+ const typedData = data;
321
+ return typedData.data;
322
+ } catch (error) {
323
+ const message = error instanceof Error ? error.message : String(error);
324
+ throw error;
325
+ }
192
326
  }
193
- function emitModelUsageEvent(runtime, type, prompt, usage) {
194
- runtime.emitEvent(import_core.EventType.MODEL_USED, {
195
- provider: "openai",
196
- type,
197
- prompt,
198
- tokens: {
199
- prompt: usage.inputTokens,
200
- completion: usage.outputTokens,
201
- total: usage.totalTokens
327
+ async function handleImageDescription(runtime, params) {
328
+ let imageUrl;
329
+ let promptText;
330
+ const modelName = getImageDescriptionModel(runtime);
331
+ import_core6.logger.log(`[OpenAI] Using IMAGE_DESCRIPTION model: ${modelName}`);
332
+ const maxTokens = Number.parseInt(getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MAX_TOKENS", "8192") || "8192", 10);
333
+ const DEFAULT_PROMPT = "Please analyze this image and provide a title and detailed description.";
334
+ if (typeof params === "string") {
335
+ imageUrl = params;
336
+ promptText = DEFAULT_PROMPT;
337
+ } else {
338
+ imageUrl = params.imageUrl;
339
+ promptText = params.prompt || DEFAULT_PROMPT;
340
+ }
341
+ const messages = [
342
+ {
343
+ role: "user",
344
+ content: [
345
+ { type: "text", text: promptText },
346
+ { type: "image_url", image_url: { url: imageUrl } }
347
+ ]
202
348
  }
203
- });
349
+ ];
350
+ const baseURL = getBaseURL(runtime);
351
+ try {
352
+ const requestBody = {
353
+ model: modelName,
354
+ messages,
355
+ max_tokens: maxTokens
356
+ };
357
+ const response = await fetch(`${baseURL}/chat/completions`, {
358
+ method: "POST",
359
+ headers: {
360
+ "Content-Type": "application/json",
361
+ ...getAuthHeader(runtime)
362
+ },
363
+ body: JSON.stringify(requestBody)
364
+ });
365
+ if (!response.ok) {
366
+ throw new Error(`OpenAI API error: ${response.status}`);
367
+ }
368
+ const result = await response.json();
369
+ const typedResult = result;
370
+ const content = typedResult.choices?.[0]?.message?.content;
371
+ if (typedResult.usage) {
372
+ emitModelUsageEvent(runtime, import_core6.ModelType.IMAGE_DESCRIPTION, typeof params === "string" ? params : params.prompt || "", {
373
+ inputTokens: typedResult.usage.prompt_tokens,
374
+ outputTokens: typedResult.usage.completion_tokens,
375
+ totalTokens: typedResult.usage.total_tokens
376
+ });
377
+ }
378
+ if (!content) {
379
+ return {
380
+ title: "Failed to analyze image",
381
+ description: "No response from API"
382
+ };
383
+ }
384
+ const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
385
+ const title = titleMatch?.[1]?.trim();
386
+ if (!title) {
387
+ import_core6.logger.warn("Could not extract title from image description response");
388
+ }
389
+ const finalTitle = title || "Image Analysis";
390
+ const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
391
+ const processedResult = { title: finalTitle, description };
392
+ return processedResult;
393
+ } catch (error) {
394
+ const message = error instanceof Error ? error.message : String(error);
395
+ import_core6.logger.error(`Error analyzing image: ${message}`);
396
+ return {
397
+ title: "Failed to analyze image",
398
+ description: `Error: ${message}`
399
+ };
400
+ }
401
+ }
402
+ // src/models/audio.ts
403
+ var import_core8 = require("@elizaos/core");
404
+
405
+ // src/utils/audio.ts
406
+ var import_core7 = require("@elizaos/core");
407
+ var MAGIC_BYTES = {
408
+ WAV: {
409
+ HEADER: [82, 73, 70, 70],
410
+ IDENTIFIER: [87, 65, 86, 69]
411
+ },
412
+ MP3_ID3: [73, 68, 51],
413
+ OGG: [79, 103, 103, 83],
414
+ FLAC: [102, 76, 97, 67],
415
+ FTYP: [102, 116, 121, 112],
416
+ WEBM_EBML: [26, 69, 223, 163]
417
+ };
418
+ function matchBytes(buffer, offset, bytes) {
419
+ for (let i = 0;i < bytes.length; i++) {
420
+ if (buffer[offset + i] !== bytes[i])
421
+ return false;
422
+ }
423
+ return true;
204
424
  }
205
425
  function detectAudioMimeType(buffer) {
206
426
  if (buffer.length < 12) {
207
427
  return "application/octet-stream";
208
428
  }
209
- if (buffer[0] === 82 && buffer[1] === 73 && buffer[2] === 70 && buffer[3] === 70 && buffer[8] === 87 && buffer[9] === 65 && buffer[10] === 86 && buffer[11] === 69) {
429
+ if (matchBytes(buffer, 0, MAGIC_BYTES.WAV.HEADER) && matchBytes(buffer, 8, MAGIC_BYTES.WAV.IDENTIFIER)) {
210
430
  return "audio/wav";
211
431
  }
212
- if (buffer[0] === 73 && buffer[1] === 68 && buffer[2] === 51 || buffer[0] === 255 && (buffer[1] & 224) === 224) {
432
+ if (matchBytes(buffer, 0, MAGIC_BYTES.MP3_ID3) || buffer[0] === 255 && (buffer[1] & 224) === 224) {
213
433
  return "audio/mpeg";
214
434
  }
215
- if (buffer[0] === 79 && buffer[1] === 103 && buffer[2] === 103 && buffer[3] === 83) {
435
+ if (matchBytes(buffer, 0, MAGIC_BYTES.OGG)) {
216
436
  return "audio/ogg";
217
437
  }
218
- if (buffer[0] === 102 && buffer[1] === 76 && buffer[2] === 97 && buffer[3] === 67) {
438
+ if (matchBytes(buffer, 0, MAGIC_BYTES.FLAC)) {
219
439
  return "audio/flac";
220
440
  }
221
- if (buffer[4] === 102 && buffer[5] === 116 && buffer[6] === 121 && buffer[7] === 112) {
441
+ if (matchBytes(buffer, 4, MAGIC_BYTES.FTYP)) {
222
442
  return "audio/mp4";
223
443
  }
224
- if (buffer[0] === 26 && buffer[1] === 69 && buffer[2] === 223 && buffer[3] === 163) {
444
+ if (matchBytes(buffer, 0, MAGIC_BYTES.WEBM_EBML)) {
225
445
  return "audio/webm";
226
446
  }
227
- import_core.logger.warn("Could not detect audio format from buffer, using generic binary type");
447
+ import_core7.logger.warn("Could not detect audio format from buffer, using generic binary type");
228
448
  return "application/octet-stream";
229
449
  }
230
- async function webStreamToNodeStream(webStream) {
231
- try {
232
- const { Readable } = await import("node:stream");
233
- const reader = webStream.getReader();
234
- return new Readable({
235
- async read() {
236
- try {
237
- const { done, value } = await reader.read();
238
- if (done) {
239
- this.push(null);
240
- } else {
241
- this.push(value);
242
- }
243
- } catch (error) {
244
- this.destroy(error);
245
- }
246
- },
247
- destroy(error, callback) {
248
- reader.cancel().finally(() => callback(error));
249
- }
250
- });
251
- } catch (error) {
252
- const message = error instanceof Error ? error.message : String(error);
253
- import_core.logger.error(`Failed to load node:stream module: ${message}`);
254
- throw new Error(`Cannot convert stream: node:stream module unavailable. This feature requires a Node.js environment.`);
255
- }
256
- }
450
+
451
+ // src/models/audio.ts
257
452
  async function fetchTextToSpeech(runtime, options) {
258
453
  const defaultModel = getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
259
454
  const defaultVoice = getSetting(runtime, "OPENAI_TTS_VOICE", "nova");
@@ -283,18 +478,196 @@ async function fetchTextToSpeech(runtime, options) {
283
478
  const err = await res.text();
284
479
  throw new Error(`OpenAI TTS error ${res.status}: ${err}`);
285
480
  }
286
- if (!res.body) {
287
- throw new Error("OpenAI TTS response body is null");
288
- }
289
- if (!isBrowser()) {
290
- return await webStreamToNodeStream(res.body);
291
- }
292
- return res.body;
481
+ return await res.arrayBuffer();
293
482
  } catch (err) {
294
483
  const message = err instanceof Error ? err.message : String(err);
295
484
  throw new Error(`Failed to fetch speech from OpenAI TTS: ${message}`);
296
485
  }
297
486
  }
487
+ async function handleTranscription(runtime, input) {
488
+ let modelName = getSetting(runtime, "OPENAI_TRANSCRIPTION_MODEL", "gpt-4o-mini-transcribe");
489
+ import_core8.logger.log(`[OpenAI] Using TRANSCRIPTION model: ${modelName}`);
490
+ const baseURL = getBaseURL(runtime);
491
+ let blob;
492
+ let extraParams = null;
493
+ if (input instanceof Blob || input instanceof File) {
494
+ blob = input;
495
+ } else if (Buffer.isBuffer(input)) {
496
+ const detectedMimeType = detectAudioMimeType(input);
497
+ import_core8.logger.debug(`Auto-detected audio MIME type: ${detectedMimeType}`);
498
+ const uint8Array = new Uint8Array(input);
499
+ blob = new Blob([uint8Array], { type: detectedMimeType });
500
+ } else if (typeof input === "object" && input !== null && input.audio != null) {
501
+ const params = input;
502
+ if (!(params.audio instanceof Blob) && !(params.audio instanceof File) && !Buffer.isBuffer(params.audio)) {
503
+ throw new Error("TRANSCRIPTION param 'audio' must be a Blob/File/Buffer.");
504
+ }
505
+ if (Buffer.isBuffer(params.audio)) {
506
+ let mimeType = params.mimeType;
507
+ if (!mimeType) {
508
+ mimeType = detectAudioMimeType(params.audio);
509
+ import_core8.logger.debug(`Auto-detected audio MIME type: ${mimeType}`);
510
+ } else {
511
+ import_core8.logger.debug(`Using provided MIME type: ${mimeType}`);
512
+ }
513
+ const uint8Array = new Uint8Array(params.audio);
514
+ blob = new Blob([uint8Array], { type: mimeType });
515
+ } else {
516
+ blob = params.audio;
517
+ }
518
+ extraParams = params;
519
+ if (typeof params.model === "string" && params.model) {
520
+ modelName = params.model;
521
+ }
522
+ } else {
523
+ throw new Error("TRANSCRIPTION expects a Blob/File/Buffer or an object { audio: Blob/File/Buffer, mimeType?, language?, response_format?, timestampGranularities?, prompt?, temperature?, model? }");
524
+ }
525
+ const mime = blob.type || "audio/webm";
526
+ const filename = blob.name || (mime.includes("mp3") || mime.includes("mpeg") ? "recording.mp3" : mime.includes("ogg") ? "recording.ogg" : mime.includes("wav") ? "recording.wav" : mime.includes("webm") ? "recording.webm" : "recording.bin");
527
+ const formData = new FormData;
528
+ formData.append("file", blob, filename);
529
+ formData.append("model", String(modelName));
530
+ if (extraParams) {
531
+ if (typeof extraParams.language === "string") {
532
+ formData.append("language", String(extraParams.language));
533
+ }
534
+ if (typeof extraParams.response_format === "string") {
535
+ formData.append("response_format", String(extraParams.response_format));
536
+ }
537
+ if (typeof extraParams.prompt === "string") {
538
+ formData.append("prompt", String(extraParams.prompt));
539
+ }
540
+ if (typeof extraParams.temperature === "number") {
541
+ formData.append("temperature", String(extraParams.temperature));
542
+ }
543
+ if (Array.isArray(extraParams.timestampGranularities)) {
544
+ for (const g of extraParams.timestampGranularities) {
545
+ formData.append("timestamp_granularities[]", String(g));
546
+ }
547
+ }
548
+ }
549
+ try {
550
+ const response = await fetch(`${baseURL}/audio/transcriptions`, {
551
+ method: "POST",
552
+ headers: {
553
+ ...getAuthHeader(runtime)
554
+ },
555
+ body: formData
556
+ });
557
+ if (!response.ok) {
558
+ throw new Error(`Failed to transcribe audio: ${response.status} ${response.statusText}`);
559
+ }
560
+ const data = await response.json();
561
+ return data.text || "";
562
+ } catch (error) {
563
+ const message = error instanceof Error ? error.message : String(error);
564
+ import_core8.logger.error(`TRANSCRIPTION error: ${message}`);
565
+ throw error;
566
+ }
567
+ }
568
+ async function handleTextToSpeech(runtime, input) {
569
+ const options = typeof input === "string" ? { text: input } : input;
570
+ const resolvedModel = options.model || getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
571
+ import_core8.logger.log(`[OpenAI] Using TEXT_TO_SPEECH model: ${resolvedModel}`);
572
+ try {
573
+ return await fetchTextToSpeech(runtime, options);
574
+ } catch (error) {
575
+ const message = error instanceof Error ? error.message : String(error);
576
+ import_core8.logger.error(`Error in TEXT_TO_SPEECH: ${message}`);
577
+ throw error;
578
+ }
579
+ }
580
+ // src/models/object.ts
581
+ var import_core10 = require("@elizaos/core");
582
+ var import_ai3 = require("ai");
583
+
584
+ // src/utils/json.ts
585
+ var import_core9 = require("@elizaos/core");
586
+ var import_ai2 = require("ai");
587
+ function getJsonRepairFunction() {
588
+ return async ({ text, error }) => {
589
+ try {
590
+ if (error instanceof import_ai2.JSONParseError) {
591
+ const cleanedText = text.replace(/```json\n|\n```|```/g, "");
592
+ JSON.parse(cleanedText);
593
+ return cleanedText;
594
+ }
595
+ return null;
596
+ } catch (jsonError) {
597
+ const message = jsonError instanceof Error ? jsonError.message : String(jsonError);
598
+ import_core9.logger.warn(`Failed to repair JSON text: ${message}`);
599
+ return null;
600
+ }
601
+ };
602
+ }
603
+
604
+ // src/models/object.ts
605
+ async function generateObjectByModelType(runtime, params, modelType, getModelFn) {
606
+ const openai = createOpenAIClient(runtime);
607
+ const modelName = getModelFn(runtime);
608
+ import_core10.logger.log(`[OpenAI] Using ${modelType} model: ${modelName}`);
609
+ const temperature = params.temperature ?? 0;
610
+ const schemaPresent = !!params.schema;
611
+ if (schemaPresent) {
612
+ import_core10.logger.warn(`Schema provided but ignored: OpenAI object generation currently uses output=no-schema. The schema parameter has no effect.`);
613
+ }
614
+ try {
615
+ const { object, usage } = await import_ai3.generateObject({
616
+ model: openai.languageModel(modelName),
617
+ output: "no-schema",
618
+ prompt: params.prompt,
619
+ temperature,
620
+ experimental_repairText: getJsonRepairFunction()
621
+ });
622
+ if (usage) {
623
+ emitModelUsageEvent(runtime, modelType, params.prompt, usage);
624
+ }
625
+ return object;
626
+ } catch (error) {
627
+ const message = error instanceof Error ? error.message : String(error);
628
+ import_core10.logger.error(`[generateObject] Error: ${message}`);
629
+ throw error;
630
+ }
631
+ }
632
+ async function handleObjectSmall(runtime, params) {
633
+ return generateObjectByModelType(runtime, params, import_core10.ModelType.OBJECT_SMALL, getSmallModel);
634
+ }
635
+ async function handleObjectLarge(runtime, params) {
636
+ return generateObjectByModelType(runtime, params, import_core10.ModelType.OBJECT_LARGE, getLargeModel);
637
+ }
638
+ // src/models/tokenizer.ts
639
+ var import_core12 = require("@elizaos/core");
640
+
641
+ // src/utils/tokenization.ts
642
+ var import_core11 = require("@elizaos/core");
643
+ var import_js_tiktoken = require("js-tiktoken");
644
+ function resolveTokenizerEncoding(modelName) {
645
+ const normalized = modelName.toLowerCase();
646
+ const fallbackEncoding = normalized.includes("4o") ? "o200k_base" : "cl100k_base";
647
+ try {
648
+ return import_js_tiktoken.encodingForModel(modelName);
649
+ } catch (error) {
650
+ return import_js_tiktoken.getEncoding(fallbackEncoding);
651
+ }
652
+ }
653
+ async function tokenizeText(runtime, model, prompt) {
654
+ const modelName = model === import_core11.ModelType.TEXT_SMALL ? getSmallModel(runtime) : getLargeModel(runtime);
655
+ const tokens = resolveTokenizerEncoding(modelName).encode(prompt);
656
+ return tokens;
657
+ }
658
+ async function detokenizeText(runtime, model, tokens) {
659
+ const modelName = model === import_core11.ModelType.TEXT_SMALL ? getSmallModel(runtime) : getLargeModel(runtime);
660
+ return resolveTokenizerEncoding(modelName).decode(tokens);
661
+ }
662
+
663
+ // src/models/tokenizer.ts
664
+ async function handleTokenizerEncode(runtime, { prompt, modelType = import_core12.ModelType.TEXT_LARGE }) {
665
+ return await tokenizeText(runtime, modelType, prompt);
666
+ }
667
+ async function handleTokenizerDecode(runtime, { tokens, modelType = import_core12.ModelType.TEXT_LARGE }) {
668
+ return await detokenizeText(runtime, modelType, tokens);
669
+ }
670
+ // src/index.ts
298
671
  var openaiPlugin = {
299
672
  name: "openai",
300
673
  description: "OpenAI plugin",
@@ -314,383 +687,41 @@ var openaiPlugin = {
314
687
  OPENAI_EXPERIMENTAL_TELEMETRY: process.env.OPENAI_EXPERIMENTAL_TELEMETRY
315
688
  },
316
689
  async init(_config, runtime) {
317
- new Promise(async (resolve) => {
318
- resolve();
319
- try {
320
- if (!getApiKey(runtime) && !isBrowser()) {
321
- import_core.logger.warn("OPENAI_API_KEY is not set in environment - OpenAI functionality will be limited");
322
- return;
323
- }
324
- try {
325
- const baseURL = getBaseURL(runtime);
326
- const response = await fetch(`${baseURL}/models`, {
327
- headers: { ...getAuthHeader(runtime) }
328
- });
329
- if (!response.ok) {
330
- import_core.logger.warn(`OpenAI API key validation failed: ${response.statusText}`);
331
- import_core.logger.warn("OpenAI functionality will be limited until a valid API key is provided");
332
- } else {
333
- import_core.logger.log("OpenAI API key validated successfully");
334
- }
335
- } catch (fetchError) {
336
- const message = fetchError instanceof Error ? fetchError.message : String(fetchError);
337
- import_core.logger.warn(`Error validating OpenAI API key: ${message}`);
338
- import_core.logger.warn("OpenAI functionality will be limited until a valid API key is provided");
339
- }
340
- } catch (error) {
341
- const message = error?.errors?.map((e) => e.message).join(", ") || (error instanceof Error ? error.message : String(error));
342
- import_core.logger.warn(`OpenAI plugin configuration issue: ${message} - You need to configure the OPENAI_API_KEY in your environment variables`);
343
- }
344
- });
690
+ initializeOpenAI(_config, runtime);
345
691
  },
346
692
  models: {
347
- [import_core.ModelType.TEXT_EMBEDDING]: async (runtime, params) => {
348
- const embeddingModelName = getSetting(runtime, "OPENAI_EMBEDDING_MODEL", "text-embedding-3-small");
349
- const embeddingDimension = Number.parseInt(getSetting(runtime, "OPENAI_EMBEDDING_DIMENSIONS", "1536") || "1536", 10);
350
- if (!Object.values(import_core.VECTOR_DIMS).includes(embeddingDimension)) {
351
- const errorMsg = `Invalid embedding dimension: ${embeddingDimension}. Must be one of: ${Object.values(import_core.VECTOR_DIMS).join(", ")}`;
352
- import_core.logger.error(errorMsg);
353
- throw new Error(errorMsg);
354
- }
355
- if (params === null) {
356
- import_core.logger.debug("Creating test embedding for initialization");
357
- const testVector = Array(embeddingDimension).fill(0);
358
- testVector[0] = 0.1;
359
- return testVector;
360
- }
361
- let text;
362
- if (typeof params === "string") {
363
- text = params;
364
- } else if (typeof params === "object" && params.text) {
365
- text = params.text;
366
- } else {
367
- import_core.logger.warn("Invalid input format for embedding");
368
- const fallbackVector = Array(embeddingDimension).fill(0);
369
- fallbackVector[0] = 0.2;
370
- return fallbackVector;
371
- }
372
- if (!text.trim()) {
373
- import_core.logger.warn("Empty text for embedding");
374
- const emptyVector = Array(embeddingDimension).fill(0);
375
- emptyVector[0] = 0.3;
376
- return emptyVector;
377
- }
378
- const embeddingBaseURL = getEmbeddingBaseURL(runtime);
379
- try {
380
- const response = await fetch(`${embeddingBaseURL}/embeddings`, {
381
- method: "POST",
382
- headers: {
383
- ...getAuthHeader(runtime, true),
384
- "Content-Type": "application/json"
385
- },
386
- body: JSON.stringify({
387
- model: embeddingModelName,
388
- input: text
389
- })
390
- });
391
- if (!response.ok) {
392
- import_core.logger.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
393
- const errorVector = Array(embeddingDimension).fill(0);
394
- errorVector[0] = 0.4;
395
- return errorVector;
396
- }
397
- const data = await response.json();
398
- if (!data?.data?.[0]?.embedding) {
399
- import_core.logger.error("API returned invalid structure");
400
- const errorVector = Array(embeddingDimension).fill(0);
401
- errorVector[0] = 0.5;
402
- return errorVector;
403
- }
404
- const embedding = data.data[0].embedding;
405
- if (data.usage) {
406
- const usage = {
407
- inputTokens: data.usage.prompt_tokens,
408
- outputTokens: 0,
409
- totalTokens: data.usage.total_tokens
410
- };
411
- emitModelUsageEvent(runtime, import_core.ModelType.TEXT_EMBEDDING, text, usage);
412
- }
413
- import_core.logger.log(`Got valid embedding with length ${embedding.length}`);
414
- return embedding;
415
- } catch (error) {
416
- const message = error instanceof Error ? error.message : String(error);
417
- import_core.logger.error(`Error generating embedding: ${message}`);
418
- const errorVector = Array(embeddingDimension).fill(0);
419
- errorVector[0] = 0.6;
420
- return errorVector;
421
- }
693
+ [import_core13.ModelType.TEXT_EMBEDDING]: async (runtime, params) => {
694
+ return handleTextEmbedding(runtime, params);
422
695
  },
423
- [import_core.ModelType.TEXT_TOKENIZER_ENCODE]: async (_runtime, { prompt, modelType = import_core.ModelType.TEXT_LARGE }) => {
424
- return await tokenizeText(modelType ?? import_core.ModelType.TEXT_LARGE, prompt);
696
+ [import_core13.ModelType.TEXT_TOKENIZER_ENCODE]: async (runtime, params) => {
697
+ return handleTokenizerEncode(runtime, params);
425
698
  },
426
- [import_core.ModelType.TEXT_TOKENIZER_DECODE]: async (_runtime, { tokens, modelType = import_core.ModelType.TEXT_LARGE }) => {
427
- return await detokenizeText(modelType ?? import_core.ModelType.TEXT_LARGE, tokens);
699
+ [import_core13.ModelType.TEXT_TOKENIZER_DECODE]: async (runtime, params) => {
700
+ return handleTokenizerDecode(runtime, params);
428
701
  },
429
- [import_core.ModelType.TEXT_SMALL]: async (runtime, {
430
- prompt,
431
- stopSequences = [],
432
- maxTokens = 8192,
433
- temperature = 0.7,
434
- frequencyPenalty = 0.7,
435
- presencePenalty = 0.7
436
- }) => {
437
- const openai = createOpenAIClient(runtime);
438
- const modelName = getSmallModel(runtime);
439
- const experimentalTelemetry = getExperimentalTelemetry(runtime);
440
- import_core.logger.log(`[OpenAI] Using TEXT_SMALL model: ${modelName}`);
441
- import_core.logger.log(prompt);
442
- const { text: openaiResponse, usage } = await import_ai.generateText({
443
- model: openai.languageModel(modelName),
444
- prompt,
445
- system: runtime.character.system ?? undefined,
446
- temperature,
447
- maxOutputTokens: maxTokens,
448
- frequencyPenalty,
449
- presencePenalty,
450
- stopSequences,
451
- experimental_telemetry: {
452
- isEnabled: experimentalTelemetry
453
- }
454
- });
455
- if (usage) {
456
- emitModelUsageEvent(runtime, import_core.ModelType.TEXT_SMALL, prompt, usage);
457
- }
458
- return openaiResponse;
702
+ [import_core13.ModelType.TEXT_SMALL]: async (runtime, params) => {
703
+ return handleTextSmall(runtime, params);
459
704
  },
460
- [import_core.ModelType.TEXT_LARGE]: async (runtime, {
461
- prompt,
462
- stopSequences = [],
463
- maxTokens = 8192,
464
- temperature = 0.7,
465
- frequencyPenalty = 0.7,
466
- presencePenalty = 0.7
467
- }) => {
468
- const openai = createOpenAIClient(runtime);
469
- const modelName = getLargeModel(runtime);
470
- const experimentalTelemetry = getExperimentalTelemetry(runtime);
471
- import_core.logger.log(`[OpenAI] Using TEXT_LARGE model: ${modelName}`);
472
- import_core.logger.log(prompt);
473
- const { text: openaiResponse, usage } = await import_ai.generateText({
474
- model: openai.languageModel(modelName),
475
- prompt,
476
- system: runtime.character.system ?? undefined,
477
- temperature,
478
- maxOutputTokens: maxTokens,
479
- frequencyPenalty,
480
- presencePenalty,
481
- stopSequences,
482
- experimental_telemetry: {
483
- isEnabled: experimentalTelemetry
484
- }
485
- });
486
- if (usage) {
487
- emitModelUsageEvent(runtime, import_core.ModelType.TEXT_LARGE, prompt, usage);
488
- }
489
- return openaiResponse;
705
+ [import_core13.ModelType.TEXT_LARGE]: async (runtime, params) => {
706
+ return handleTextLarge(runtime, params);
490
707
  },
491
- [import_core.ModelType.IMAGE]: async (runtime, params) => {
492
- const n = params.n || 1;
493
- const size = params.size || "1024x1024";
494
- const prompt = params.prompt;
495
- const modelName = "gpt-image-1";
496
- import_core.logger.log(`[OpenAI] Using IMAGE model: ${modelName}`);
497
- const baseURL = getBaseURL(runtime);
498
- try {
499
- const response = await fetch(`${baseURL}/images/generations`, {
500
- method: "POST",
501
- headers: {
502
- ...getAuthHeader(runtime),
503
- "Content-Type": "application/json"
504
- },
505
- body: JSON.stringify({
506
- model: modelName,
507
- prompt,
508
- n,
509
- size
510
- })
511
- });
512
- if (!response.ok) {
513
- throw new Error(`Failed to generate image: ${response.statusText}`);
514
- }
515
- const data = await response.json();
516
- const typedData = data;
517
- return typedData.data;
518
- } catch (error) {
519
- const message = error instanceof Error ? error.message : String(error);
520
- throw error;
521
- }
708
+ [import_core13.ModelType.IMAGE]: async (runtime, params) => {
709
+ return handleImageGeneration(runtime, params);
522
710
  },
523
- [import_core.ModelType.IMAGE_DESCRIPTION]: async (runtime, params) => {
524
- let imageUrl;
525
- let promptText;
526
- const modelName = getImageDescriptionModel(runtime);
527
- import_core.logger.log(`[OpenAI] Using IMAGE_DESCRIPTION model: ${modelName}`);
528
- const maxTokens = Number.parseInt(getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MAX_TOKENS", "8192") || "8192", 10);
529
- if (typeof params === "string") {
530
- imageUrl = params;
531
- promptText = "Please analyze this image and provide a title and detailed description.";
532
- } else {
533
- imageUrl = params.imageUrl;
534
- promptText = params.prompt || "Please analyze this image and provide a title and detailed description.";
535
- }
536
- const messages = [
537
- {
538
- role: "user",
539
- content: [
540
- { type: "text", text: promptText },
541
- { type: "image_url", image_url: { url: imageUrl } }
542
- ]
543
- }
544
- ];
545
- const baseURL = getBaseURL(runtime);
546
- try {
547
- const requestBody = {
548
- model: modelName,
549
- messages,
550
- max_tokens: maxTokens
551
- };
552
- const response = await fetch(`${baseURL}/chat/completions`, {
553
- method: "POST",
554
- headers: {
555
- "Content-Type": "application/json",
556
- ...getAuthHeader(runtime)
557
- },
558
- body: JSON.stringify(requestBody)
559
- });
560
- if (!response.ok) {
561
- throw new Error(`OpenAI API error: ${response.status}`);
562
- }
563
- const result = await response.json();
564
- const typedResult = result;
565
- const content = typedResult.choices?.[0]?.message?.content;
566
- if (typedResult.usage) {
567
- emitModelUsageEvent(runtime, import_core.ModelType.IMAGE_DESCRIPTION, typeof params === "string" ? params : params.prompt || "", {
568
- inputTokens: typedResult.usage.prompt_tokens,
569
- outputTokens: typedResult.usage.completion_tokens,
570
- totalTokens: typedResult.usage.total_tokens
571
- });
572
- }
573
- if (!content) {
574
- return {
575
- title: "Failed to analyze image",
576
- description: "No response from API"
577
- };
578
- }
579
- const isCustomPrompt = typeof params === "object" && params.prompt && params.prompt !== "Please analyze this image and provide a title and detailed description.";
580
- if (isCustomPrompt) {
581
- return content;
582
- }
583
- const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
584
- const title = titleMatch?.[1]?.trim() || "Image Analysis";
585
- const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
586
- const processedResult = { title, description };
587
- return processedResult;
588
- } catch (error) {
589
- const message = error instanceof Error ? error.message : String(error);
590
- import_core.logger.error(`Error analyzing image: ${message}`);
591
- return {
592
- title: "Failed to analyze image",
593
- description: `Error: ${message}`
594
- };
595
- }
711
+ [import_core13.ModelType.IMAGE_DESCRIPTION]: async (runtime, params) => {
712
+ return handleImageDescription(runtime, params);
596
713
  },
597
- [import_core.ModelType.TRANSCRIPTION]: async (runtime, input) => {
598
- let modelName = getSetting(runtime, "OPENAI_TRANSCRIPTION_MODEL", "gpt-4o-mini-transcribe");
599
- import_core.logger.log(`[OpenAI] Using TRANSCRIPTION model: ${modelName}`);
600
- const baseURL = getBaseURL(runtime);
601
- let blob;
602
- let extraParams = null;
603
- if (input instanceof Blob || input instanceof File) {
604
- blob = input;
605
- } else if (Buffer.isBuffer(input)) {
606
- const detectedMimeType = detectAudioMimeType(input);
607
- import_core.logger.debug(`Auto-detected audio MIME type: ${detectedMimeType}`);
608
- blob = new Blob([input], { type: detectedMimeType });
609
- } else if (typeof input === "object" && input !== null && input.audio != null) {
610
- const params = input;
611
- if (!(params.audio instanceof Blob) && !(params.audio instanceof File) && !Buffer.isBuffer(params.audio)) {
612
- throw new Error("TRANSCRIPTION param 'audio' must be a Blob/File/Buffer.");
613
- }
614
- if (Buffer.isBuffer(params.audio)) {
615
- let mimeType = params.mimeType;
616
- if (!mimeType) {
617
- mimeType = detectAudioMimeType(params.audio);
618
- import_core.logger.debug(`Auto-detected audio MIME type: ${mimeType}`);
619
- } else {
620
- import_core.logger.debug(`Using provided MIME type: ${mimeType}`);
621
- }
622
- blob = new Blob([params.audio], { type: mimeType });
623
- } else {
624
- blob = params.audio;
625
- }
626
- extraParams = params;
627
- if (typeof params.model === "string" && params.model) {
628
- modelName = params.model;
629
- }
630
- } else {
631
- throw new Error("TRANSCRIPTION expects a Blob/File/Buffer or an object { audio: Blob/File/Buffer, mimeType?, language?, response_format?, timestampGranularities?, prompt?, temperature?, model? }");
632
- }
633
- const mime = blob.type || "audio/webm";
634
- const filename = blob.name || (mime.includes("mp3") || mime.includes("mpeg") ? "recording.mp3" : mime.includes("ogg") ? "recording.ogg" : mime.includes("wav") ? "recording.wav" : mime.includes("webm") ? "recording.webm" : "recording.bin");
635
- const formData = new FormData;
636
- formData.append("file", blob, filename);
637
- formData.append("model", String(modelName));
638
- if (extraParams) {
639
- if (typeof extraParams.language === "string") {
640
- formData.append("language", String(extraParams.language));
641
- }
642
- if (typeof extraParams.response_format === "string") {
643
- formData.append("response_format", String(extraParams.response_format));
644
- }
645
- if (typeof extraParams.prompt === "string") {
646
- formData.append("prompt", String(extraParams.prompt));
647
- }
648
- if (typeof extraParams.temperature === "number") {
649
- formData.append("temperature", String(extraParams.temperature));
650
- }
651
- if (Array.isArray(extraParams.timestampGranularities)) {
652
- for (const g of extraParams.timestampGranularities) {
653
- formData.append("timestamp_granularities[]", String(g));
654
- }
655
- }
656
- }
657
- try {
658
- const response = await fetch(`${baseURL}/audio/transcriptions`, {
659
- method: "POST",
660
- headers: {
661
- ...getAuthHeader(runtime)
662
- },
663
- body: formData
664
- });
665
- if (!response.ok) {
666
- throw new Error(`Failed to transcribe audio: ${response.status} ${response.statusText}`);
667
- }
668
- const data = await response.json();
669
- return data.text || "";
670
- } catch (error) {
671
- const message = error instanceof Error ? error.message : String(error);
672
- import_core.logger.error(`TRANSCRIPTION error: ${message}`);
673
- throw error;
674
- }
714
+ [import_core13.ModelType.TRANSCRIPTION]: async (runtime, input) => {
715
+ return handleTranscription(runtime, input);
675
716
  },
676
- [import_core.ModelType.TEXT_TO_SPEECH]: async (runtime, input) => {
677
- const options = typeof input === "string" ? { text: input } : input;
678
- const resolvedModel = options.model || getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
679
- import_core.logger.log(`[OpenAI] Using TEXT_TO_SPEECH model: ${resolvedModel}`);
680
- try {
681
- const speechStream = await fetchTextToSpeech(runtime, options);
682
- return speechStream;
683
- } catch (error) {
684
- const message = error instanceof Error ? error.message : String(error);
685
- import_core.logger.error(`Error in TEXT_TO_SPEECH: ${message}`);
686
- throw error;
687
- }
717
+ [import_core13.ModelType.TEXT_TO_SPEECH]: async (runtime, input) => {
718
+ return handleTextToSpeech(runtime, input);
688
719
  },
689
- [import_core.ModelType.OBJECT_SMALL]: async (runtime, params) => {
690
- return generateObjectByModelType(runtime, params, import_core.ModelType.OBJECT_SMALL, getSmallModel);
720
+ [import_core13.ModelType.OBJECT_SMALL]: async (runtime, params) => {
721
+ return handleObjectSmall(runtime, params);
691
722
  },
692
- [import_core.ModelType.OBJECT_LARGE]: async (runtime, params) => {
693
- return generateObjectByModelType(runtime, params, import_core.ModelType.OBJECT_LARGE, getLargeModel);
723
+ [import_core13.ModelType.OBJECT_LARGE]: async (runtime, params) => {
724
+ return handleObjectLarge(runtime, params);
694
725
  }
695
726
  },
696
727
  tests: [
@@ -702,12 +733,10 @@ var openaiPlugin = {
702
733
  fn: async (runtime) => {
703
734
  const baseURL = getBaseURL(runtime);
704
735
  const response = await fetch(`${baseURL}/models`, {
705
- headers: {
706
- Authorization: `Bearer ${getApiKey(runtime)}`
707
- }
736
+ headers: getAuthHeader(runtime)
708
737
  });
709
738
  const data = await response.json();
710
- import_core.logger.log({ data: data?.data?.length ?? "N/A" }, "Models Available");
739
+ import_core13.logger.log({ data: data?.data?.length ?? "N/A" }, "Models Available");
711
740
  if (!response.ok) {
712
741
  throw new Error(`Failed to validate OpenAI API key: ${response.statusText}`);
713
742
  }
@@ -717,13 +746,13 @@ var openaiPlugin = {
717
746
  name: "openai_test_text_embedding",
718
747
  fn: async (runtime) => {
719
748
  try {
720
- const embedding = await runtime.useModel(import_core.ModelType.TEXT_EMBEDDING, {
749
+ const embedding = await runtime.useModel(import_core13.ModelType.TEXT_EMBEDDING, {
721
750
  text: "Hello, world!"
722
751
  });
723
- import_core.logger.log({ embedding }, "embedding");
752
+ import_core13.logger.log({ embedding }, "embedding");
724
753
  } catch (error) {
725
754
  const message = error instanceof Error ? error.message : String(error);
726
- import_core.logger.error(`Error in test_text_embedding: ${message}`);
755
+ import_core13.logger.error(`Error in test_text_embedding: ${message}`);
727
756
  throw error;
728
757
  }
729
758
  }
@@ -732,16 +761,16 @@ var openaiPlugin = {
732
761
  name: "openai_test_text_large",
733
762
  fn: async (runtime) => {
734
763
  try {
735
- const text = await runtime.useModel(import_core.ModelType.TEXT_LARGE, {
764
+ const text = await runtime.useModel(import_core13.ModelType.TEXT_LARGE, {
736
765
  prompt: "What is the nature of reality in 10 words?"
737
766
  });
738
767
  if (text.length === 0) {
739
768
  throw new Error("Failed to generate text");
740
769
  }
741
- import_core.logger.log({ text }, "generated with test_text_large");
770
+ import_core13.logger.log({ text }, "generated with test_text_large");
742
771
  } catch (error) {
743
772
  const message = error instanceof Error ? error.message : String(error);
744
- import_core.logger.error(`Error in test_text_large: ${message}`);
773
+ import_core13.logger.error(`Error in test_text_large: ${message}`);
745
774
  throw error;
746
775
  }
747
776
  }
@@ -750,16 +779,16 @@ var openaiPlugin = {
750
779
  name: "openai_test_text_small",
751
780
  fn: async (runtime) => {
752
781
  try {
753
- const text = await runtime.useModel(import_core.ModelType.TEXT_SMALL, {
782
+ const text = await runtime.useModel(import_core13.ModelType.TEXT_SMALL, {
754
783
  prompt: "What is the nature of reality in 10 words?"
755
784
  });
756
785
  if (text.length === 0) {
757
786
  throw new Error("Failed to generate text");
758
787
  }
759
- import_core.logger.log({ text }, "generated with test_text_small");
788
+ import_core13.logger.log({ text }, "generated with test_text_small");
760
789
  } catch (error) {
761
790
  const message = error instanceof Error ? error.message : String(error);
762
- import_core.logger.error(`Error in test_text_small: ${message}`);
791
+ import_core13.logger.error(`Error in test_text_small: ${message}`);
763
792
  throw error;
764
793
  }
765
794
  }
@@ -767,17 +796,17 @@ var openaiPlugin = {
767
796
  {
768
797
  name: "openai_test_image_generation",
769
798
  fn: async (runtime) => {
770
- import_core.logger.log("openai_test_image_generation");
799
+ import_core13.logger.log("openai_test_image_generation");
771
800
  try {
772
- const image = await runtime.useModel(import_core.ModelType.IMAGE, {
801
+ const image = await runtime.useModel(import_core13.ModelType.IMAGE, {
773
802
  prompt: "A beautiful sunset over a calm ocean",
774
- n: 1,
803
+ count: 1,
775
804
  size: "1024x1024"
776
805
  });
777
- import_core.logger.log({ image }, "generated with test_image_generation");
806
+ import_core13.logger.log({ image }, "generated with test_image_generation");
778
807
  } catch (error) {
779
808
  const message = error instanceof Error ? error.message : String(error);
780
- import_core.logger.error(`Error in test_image_generation: ${message}`);
809
+ import_core13.logger.error(`Error in test_image_generation: ${message}`);
781
810
  throw error;
782
811
  }
783
812
  }
@@ -786,36 +815,36 @@ var openaiPlugin = {
786
815
  name: "image-description",
787
816
  fn: async (runtime) => {
788
817
  try {
789
- import_core.logger.log("openai_test_image_description");
818
+ import_core13.logger.log("openai_test_image_description");
790
819
  try {
791
- const result = await runtime.useModel(import_core.ModelType.IMAGE_DESCRIPTION, "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg/537px-Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg");
820
+ const result = await runtime.useModel(import_core13.ModelType.IMAGE_DESCRIPTION, "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg/537px-Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg");
792
821
  if (result && typeof result === "object" && "title" in result && "description" in result) {
793
- import_core.logger.log({ result }, "Image description");
822
+ import_core13.logger.log({ result }, "Image description");
794
823
  } else {
795
- import_core.logger.error("Invalid image description result format:", result);
824
+ import_core13.logger.error("Invalid image description result format:", result);
796
825
  }
797
826
  } catch (e) {
798
827
  const message = e instanceof Error ? e.message : String(e);
799
- import_core.logger.error(`Error in image description test: ${message}`);
828
+ import_core13.logger.error(`Error in image description test: ${message}`);
800
829
  }
801
830
  } catch (e) {
802
831
  const message = e instanceof Error ? e.message : String(e);
803
- import_core.logger.error(`Error in openai_test_image_description: ${message}`);
832
+ import_core13.logger.error(`Error in openai_test_image_description: ${message}`);
804
833
  }
805
834
  }
806
835
  },
807
836
  {
808
837
  name: "openai_test_transcription",
809
838
  fn: async (runtime) => {
810
- import_core.logger.log("openai_test_transcription");
839
+ import_core13.logger.log("openai_test_transcription");
811
840
  try {
812
841
  const response = await fetch("https://upload.wikimedia.org/wikipedia/en/4/40/Chris_Benoit_Voice_Message.ogg");
813
842
  const arrayBuffer = await response.arrayBuffer();
814
- const transcription = await runtime.useModel(import_core.ModelType.TRANSCRIPTION, Buffer.from(new Uint8Array(arrayBuffer)));
815
- import_core.logger.log({ transcription }, "generated with test_transcription");
843
+ const transcription = await runtime.useModel(import_core13.ModelType.TRANSCRIPTION, Buffer.from(new Uint8Array(arrayBuffer)));
844
+ import_core13.logger.log({ transcription }, "generated with test_transcription");
816
845
  } catch (error) {
817
846
  const message = error instanceof Error ? error.message : String(error);
818
- import_core.logger.error(`Error in test_transcription: ${message}`);
847
+ import_core13.logger.error(`Error in test_transcription: ${message}`);
819
848
  throw error;
820
849
  }
821
850
  }
@@ -824,39 +853,85 @@ var openaiPlugin = {
824
853
  name: "openai_test_text_tokenizer_encode",
825
854
  fn: async (runtime) => {
826
855
  const prompt = "Hello tokenizer encode!";
827
- const tokens = await runtime.useModel(import_core.ModelType.TEXT_TOKENIZER_ENCODE, { prompt });
856
+ const tokens = await runtime.useModel(import_core13.ModelType.TEXT_TOKENIZER_ENCODE, { prompt, modelType: import_core13.ModelType.TEXT_SMALL });
828
857
  if (!Array.isArray(tokens) || tokens.length === 0) {
829
858
  throw new Error("Failed to tokenize text: expected non-empty array of tokens");
830
859
  }
831
- import_core.logger.log({ tokens }, "Tokenized output");
860
+ import_core13.logger.log({ tokens }, "Tokenized output");
832
861
  }
833
862
  },
834
863
  {
835
864
  name: "openai_test_text_tokenizer_decode",
836
865
  fn: async (runtime) => {
837
866
  const prompt = "Hello tokenizer decode!";
838
- const tokens = await runtime.useModel(import_core.ModelType.TEXT_TOKENIZER_ENCODE, { prompt });
839
- const decodedText = await runtime.useModel(import_core.ModelType.TEXT_TOKENIZER_DECODE, { tokens });
867
+ const tokens = await runtime.useModel(import_core13.ModelType.TEXT_TOKENIZER_ENCODE, { prompt, modelType: import_core13.ModelType.TEXT_SMALL });
868
+ const decodedText = await runtime.useModel(import_core13.ModelType.TEXT_TOKENIZER_DECODE, {
869
+ tokens,
870
+ modelType: import_core13.ModelType.TEXT_SMALL
871
+ });
840
872
  if (decodedText !== prompt) {
841
873
  throw new Error(`Decoded text does not match original. Expected "${prompt}", got "${decodedText}"`);
842
874
  }
843
- import_core.logger.log({ decodedText }, "Decoded text");
875
+ import_core13.logger.log({ decodedText }, "Decoded text");
844
876
  }
845
877
  },
846
878
  {
847
879
  name: "openai_test_text_to_speech",
848
880
  fn: async (runtime) => {
849
881
  try {
850
- const response = await fetchTextToSpeech(runtime, {
882
+ const response = await runtime.useModel(import_core13.ModelType.TEXT_TO_SPEECH, {
851
883
  text: "Hello, this is a test for text-to-speech."
852
884
  });
853
885
  if (!response) {
854
886
  throw new Error("Failed to generate speech");
855
887
  }
856
- import_core.logger.log("Generated speech successfully");
888
+ import_core13.logger.log("Generated speech successfully");
889
+ } catch (error) {
890
+ const message = error instanceof Error ? error.message : String(error);
891
+ import_core13.logger.error(`Error in openai_test_text_to_speech: ${message}`);
892
+ throw error;
893
+ }
894
+ }
895
+ },
896
+ {
897
+ name: "openai_test_text_generation_large",
898
+ fn: async (runtime) => {
899
+ try {
900
+ const result = await runtime.useModel(import_core13.ModelType.TEXT_LARGE, {
901
+ prompt: "Say hello in 5 words."
902
+ });
903
+ if (!result || result.length === 0) {
904
+ throw new Error("Text generation returned empty result");
905
+ }
906
+ import_core13.logger.log({ result }, "Text generation test completed");
907
+ } catch (error) {
908
+ const message = error instanceof Error ? error.message : String(error);
909
+ import_core13.logger.error(`Error in openai_test_text_generation_large: ${message}`);
910
+ throw error;
911
+ }
912
+ }
913
+ },
914
+ {
915
+ name: "openai_test_streaming",
916
+ fn: async (runtime) => {
917
+ try {
918
+ const chunks = [];
919
+ const result = await runtime.useModel(import_core13.ModelType.TEXT_LARGE, {
920
+ prompt: "Count from 1 to 5.",
921
+ onStreamChunk: (chunk) => {
922
+ chunks.push(chunk);
923
+ }
924
+ });
925
+ if (!result || result.length === 0) {
926
+ throw new Error("Streaming returned empty result");
927
+ }
928
+ if (chunks.length === 0) {
929
+ throw new Error("No streaming chunks received");
930
+ }
931
+ import_core13.logger.log({ chunks: chunks.length, result: result.substring(0, 50) }, "Streaming test completed");
857
932
  } catch (error) {
858
933
  const message = error instanceof Error ? error.message : String(error);
859
- import_core.logger.error(`Error in openai_test_text_to_speech: ${message}`);
934
+ import_core13.logger.error(`Error in openai_test_streaming: ${message}`);
860
935
  throw error;
861
936
  }
862
937
  }
@@ -867,4 +942,4 @@ var openaiPlugin = {
867
942
  };
868
943
  var src_default = openaiPlugin;
869
944
 
870
- //# debugId=8239398CAC88490D64756E2164756E21
945
+ //# debugId=F03D6434951BC08A64756E2164756E21