@elizaos/plugin-openai 1.5.15 → 1.5.18

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,17 +1,35 @@
1
+ import { createRequire } from "node:module";
2
+ var __create = Object.create;
3
+ var __getProtoOf = Object.getPrototypeOf;
4
+ var __defProp = Object.defineProperty;
5
+ var __getOwnPropNames = Object.getOwnPropertyNames;
6
+ var __hasOwnProp = Object.prototype.hasOwnProperty;
7
+ var __toESM = (mod, isNodeMode, target) => {
8
+ target = mod != null ? __create(__getProtoOf(mod)) : {};
9
+ const to = isNodeMode || !mod || !mod.__esModule ? __defProp(target, "default", { value: mod, enumerable: true }) : target;
10
+ for (let key of __getOwnPropNames(mod))
11
+ if (!__hasOwnProp.call(to, key))
12
+ __defProp(to, key, {
13
+ get: () => mod[key],
14
+ enumerable: true
15
+ });
16
+ return to;
17
+ };
18
+ var __require = /* @__PURE__ */ createRequire(import.meta.url);
19
+
1
20
  // src/index.ts
2
- import { createOpenAI } from "@ai-sdk/openai";
3
- import { EventType, logger, ModelType, VECTOR_DIMS } from "@elizaos/core";
4
- import {
5
- generateObject,
6
- generateText,
7
- JSONParseError
8
- } from "ai";
9
- import { encodingForModel } from "js-tiktoken";
21
+ import { logger as logger10, ModelType as ModelType7 } from "@elizaos/core";
22
+
23
+ // src/init.ts
24
+ import { logger as logger2 } from "@elizaos/core";
25
+
26
+ // src/utils/config.ts
27
+ import { logger } from "@elizaos/core";
10
28
  function getSetting(runtime, key, defaultValue) {
11
29
  return runtime.getSetting(key) ?? process.env[key] ?? defaultValue;
12
30
  }
13
31
  function isBrowser() {
14
- return typeof globalThis !== "undefined" && typeof globalThis.document !== "undefined";
32
+ return typeof globalThis !== "undefined" && "document" in globalThis && typeof globalThis.document !== "undefined";
15
33
  }
16
34
  function isProxyMode(runtime) {
17
35
  return isBrowser() && !!getSetting(runtime, "OPENAI_BROWSER_BASE_URL");
@@ -50,13 +68,13 @@ function getEmbeddingApiKey(runtime) {
50
68
  return getApiKey(runtime);
51
69
  }
52
70
  function getSmallModel(runtime) {
53
- return getSetting(runtime, "OPENAI_SMALL_MODEL") ?? getSetting(runtime, "SMALL_MODEL", "gpt-5-nano");
71
+ return getSetting(runtime, "OPENAI_SMALL_MODEL") ?? getSetting(runtime, "SMALL_MODEL", "gpt-4o-mini");
54
72
  }
55
73
  function getLargeModel(runtime) {
56
- return getSetting(runtime, "OPENAI_LARGE_MODEL") ?? getSetting(runtime, "LARGE_MODEL", "gpt-5-mini");
74
+ return getSetting(runtime, "OPENAI_LARGE_MODEL") ?? getSetting(runtime, "LARGE_MODEL", "gpt-4o");
57
75
  }
58
76
  function getImageDescriptionModel(runtime) {
59
- return getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MODEL", "gpt-5-nano") ?? "gpt-5-nano";
77
+ return getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MODEL", "gpt-5-nano");
60
78
  }
61
79
  function getExperimentalTelemetry(runtime) {
62
80
  const setting = getSetting(runtime, "OPENAI_EXPERIMENTAL_TELEMETRY", "false");
@@ -65,98 +83,378 @@ function getExperimentalTelemetry(runtime) {
65
83
  logger.debug(`[OpenAI] Experimental telemetry in function: "${setting}" (type: ${typeof setting}, normalized: "${normalizedSetting}", result: ${result})`);
66
84
  return result;
67
85
  }
86
+
87
+ // src/init.ts
88
+ function initializeOpenAI(_config, runtime) {
89
+ (async () => {
90
+ try {
91
+ if (!getApiKey(runtime) && !isBrowser()) {
92
+ logger2.warn("OPENAI_API_KEY is not set in environment - OpenAI functionality will be limited");
93
+ return;
94
+ }
95
+ try {
96
+ const baseURL = getBaseURL(runtime);
97
+ const response = await fetch(`${baseURL}/models`, {
98
+ headers: getAuthHeader(runtime)
99
+ });
100
+ if (!response.ok) {
101
+ logger2.warn(`OpenAI API key validation failed: ${response.statusText}`);
102
+ logger2.warn("OpenAI functionality will be limited until a valid API key is provided");
103
+ } else {
104
+ logger2.log("OpenAI API key validated successfully");
105
+ }
106
+ } catch (fetchError) {
107
+ const message = fetchError instanceof Error ? fetchError.message : String(fetchError);
108
+ logger2.warn(`Error validating OpenAI API key: ${message}`);
109
+ logger2.warn("OpenAI functionality will be limited until a valid API key is provided");
110
+ }
111
+ } catch (error) {
112
+ const message = error?.errors?.map((e) => e.message).join(", ") || (error instanceof Error ? error.message : String(error));
113
+ logger2.warn(`OpenAI plugin configuration issue: ${message} - You need to configure the OPENAI_API_KEY in your environment variables`);
114
+ }
115
+ })();
116
+ }
117
+
118
+ // src/models/text.ts
119
+ import { logger as logger3, ModelType } from "@elizaos/core";
120
+ import { generateText } from "ai";
121
+
122
+ // src/providers/openai.ts
123
+ import { createOpenAI } from "@ai-sdk/openai";
68
124
  function createOpenAIClient(runtime) {
69
125
  const baseURL = getBaseURL(runtime);
70
126
  const apiKey = getApiKey(runtime) ?? (isProxyMode(runtime) ? "sk-proxy" : undefined);
71
127
  return createOpenAI({ apiKey: apiKey ?? "", baseURL });
72
128
  }
73
- async function tokenizeText(model, prompt) {
74
- const modelName = model === ModelType.TEXT_SMALL ? process.env.OPENAI_SMALL_MODEL ?? process.env.SMALL_MODEL ?? "gpt-5-nano" : process.env.LARGE_MODEL ?? "gpt-5-mini";
75
- const tokens = encodingForModel(modelName).encode(prompt);
76
- return tokens;
77
- }
78
- async function detokenizeText(model, tokens) {
79
- const modelName = model === ModelType.TEXT_SMALL ? process.env.OPENAI_SMALL_MODEL ?? process.env.SMALL_MODEL ?? "gpt-5-nano" : process.env.OPENAI_LARGE_MODEL ?? process.env.LARGE_MODEL ?? "gpt-5-mini";
80
- return encodingForModel(modelName).decode(tokens);
129
+
130
+ // src/utils/events.ts
131
+ import { EventType } from "@elizaos/core";
132
+ function emitModelUsageEvent(runtime, type, prompt, usage) {
133
+ const promptTokens = ("promptTokens" in usage ? usage.promptTokens : undefined) ?? ("inputTokens" in usage ? usage.inputTokens : undefined) ?? 0;
134
+ const completionTokens = ("completionTokens" in usage ? usage.completionTokens : undefined) ?? ("outputTokens" in usage ? usage.outputTokens : undefined) ?? 0;
135
+ const totalTokens = ("totalTokens" in usage ? usage.totalTokens : undefined) ?? promptTokens + completionTokens;
136
+ runtime.emitEvent(EventType.MODEL_USED, {
137
+ provider: "openai",
138
+ type,
139
+ prompt,
140
+ tokens: {
141
+ prompt: promptTokens,
142
+ completion: completionTokens,
143
+ total: totalTokens
144
+ }
145
+ });
81
146
  }
82
- async function generateObjectByModelType(runtime, params, modelType, getModelFn) {
147
+
148
+ // src/models/text.ts
149
+ async function generateTextByModelType(runtime, params, modelType, getModelFn) {
83
150
  const openai = createOpenAIClient(runtime);
84
151
  const modelName = getModelFn(runtime);
85
- logger.log(`[OpenAI] Using ${modelType} model: ${modelName}`);
86
- const temperature = params.temperature ?? 0;
87
- const schemaPresent = !!params.schema;
88
- if (schemaPresent) {
89
- logger.info(`Using ${modelType} without schema validation (schema provided but output=no-schema)`);
152
+ const experimentalTelemetry = getExperimentalTelemetry(runtime);
153
+ logger3.log(`[OpenAI] Using ${modelType} model: ${modelName}`);
154
+ logger3.log(params.prompt);
155
+ const {
156
+ prompt,
157
+ stopSequences = [],
158
+ maxTokens = 8192,
159
+ temperature = 0.7,
160
+ frequencyPenalty = 0.7,
161
+ presencePenalty = 0.7
162
+ } = params;
163
+ const { text: openaiResponse, usage } = await generateText({
164
+ model: openai.languageModel(modelName),
165
+ prompt,
166
+ system: runtime.character.system ?? undefined,
167
+ temperature,
168
+ maxOutputTokens: maxTokens,
169
+ frequencyPenalty,
170
+ presencePenalty,
171
+ stopSequences,
172
+ experimental_telemetry: {
173
+ isEnabled: experimentalTelemetry
174
+ }
175
+ });
176
+ if (usage) {
177
+ emitModelUsageEvent(runtime, modelType, prompt, usage);
178
+ }
179
+ return openaiResponse;
180
+ }
181
+ async function handleTextSmall(runtime, params) {
182
+ return generateTextByModelType(runtime, params, ModelType.TEXT_SMALL, getSmallModel);
183
+ }
184
+ async function handleTextLarge(runtime, params) {
185
+ return generateTextByModelType(runtime, params, ModelType.TEXT_LARGE, getLargeModel);
186
+ }
187
+ // src/models/embedding.ts
188
+ import { logger as logger4, ModelType as ModelType2, VECTOR_DIMS } from "@elizaos/core";
189
+ async function handleTextEmbedding(runtime, params) {
190
+ const embeddingModelName = getSetting(runtime, "OPENAI_EMBEDDING_MODEL", "text-embedding-3-small");
191
+ const embeddingDimension = Number.parseInt(getSetting(runtime, "OPENAI_EMBEDDING_DIMENSIONS", "1536") || "1536", 10);
192
+ if (!Object.values(VECTOR_DIMS).includes(embeddingDimension)) {
193
+ const errorMsg = `Invalid embedding dimension: ${embeddingDimension}. Must be one of: ${Object.values(VECTOR_DIMS).join(", ")}`;
194
+ logger4.error(errorMsg);
195
+ throw new Error(errorMsg);
196
+ }
197
+ if (params === null) {
198
+ logger4.debug("Creating test embedding for initialization");
199
+ const testVector = Array(embeddingDimension).fill(0);
200
+ testVector[0] = 0.1;
201
+ return testVector;
202
+ }
203
+ let text;
204
+ if (typeof params === "string") {
205
+ text = params;
206
+ } else if (typeof params === "object" && params.text) {
207
+ text = params.text;
208
+ } else {
209
+ const errorMsg = "Invalid input format for embedding";
210
+ logger4.warn(errorMsg);
211
+ const fallbackVector = Array(embeddingDimension).fill(0);
212
+ fallbackVector[0] = 0.2;
213
+ return fallbackVector;
90
214
  }
215
+ if (!text.trim()) {
216
+ const errorMsg = "Empty text for embedding";
217
+ logger4.warn(errorMsg);
218
+ const fallbackVector = Array(embeddingDimension).fill(0);
219
+ fallbackVector[0] = 0.3;
220
+ return fallbackVector;
221
+ }
222
+ const embeddingBaseURL = getEmbeddingBaseURL(runtime);
91
223
  try {
92
- const { object, usage } = await generateObject({
93
- model: openai.languageModel(modelName),
94
- output: "no-schema",
95
- prompt: params.prompt,
96
- temperature,
97
- experimental_repairText: getJsonRepairFunction()
224
+ const response = await fetch(`${embeddingBaseURL}/embeddings`, {
225
+ method: "POST",
226
+ headers: {
227
+ ...getAuthHeader(runtime, true),
228
+ "Content-Type": "application/json"
229
+ },
230
+ body: JSON.stringify({
231
+ model: embeddingModelName,
232
+ input: text
233
+ })
98
234
  });
99
- if (usage) {
100
- emitModelUsageEvent(runtime, modelType, params.prompt, usage);
235
+ if (!response.ok) {
236
+ logger4.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
237
+ throw new Error(`OpenAI API error: ${response.status} - ${response.statusText}`);
101
238
  }
102
- return object;
103
- } catch (error) {
104
- if (error instanceof JSONParseError) {
105
- logger.error(`[generateObject] Failed to parse JSON: ${error.message}`);
106
- const repairFunction = getJsonRepairFunction();
107
- const repairedJsonString = await repairFunction({
108
- text: error.text,
109
- error
110
- });
111
- if (repairedJsonString) {
112
- try {
113
- const repairedObject = JSON.parse(repairedJsonString);
114
- logger.info("[generateObject] Successfully repaired JSON.");
115
- return repairedObject;
116
- } catch (repairParseError) {
117
- const message = repairParseError instanceof Error ? repairParseError.message : String(repairParseError);
118
- logger.error(`[generateObject] Failed to parse repaired JSON: ${message}`);
119
- throw repairParseError;
120
- }
121
- } else {
122
- logger.error("[generateObject] JSON repair failed.");
123
- throw error;
124
- }
125
- } else {
126
- const message = error instanceof Error ? error.message : String(error);
127
- logger.error(`[generateObject] Unknown error: ${message}`);
128
- throw error;
239
+ const data = await response.json();
240
+ if (!data?.data?.[0]?.embedding) {
241
+ logger4.error("API returned invalid structure");
242
+ throw new Error("API returned invalid structure");
243
+ }
244
+ const embedding = data.data[0].embedding;
245
+ if (!Array.isArray(embedding) || embedding.length !== embeddingDimension) {
246
+ const errorMsg = `Embedding length ${embedding?.length ?? 0} does not match configured dimension ${embeddingDimension}`;
247
+ logger4.error(errorMsg);
248
+ const fallbackVector = Array(embeddingDimension).fill(0);
249
+ fallbackVector[0] = 0.4;
250
+ return fallbackVector;
129
251
  }
252
+ if (data.usage) {
253
+ const usage = {
254
+ inputTokens: data.usage.prompt_tokens,
255
+ outputTokens: 0,
256
+ totalTokens: data.usage.total_tokens
257
+ };
258
+ emitModelUsageEvent(runtime, ModelType2.TEXT_EMBEDDING, text, usage);
259
+ }
260
+ logger4.log(`Got valid embedding with length ${embedding.length}`);
261
+ return embedding;
262
+ } catch (error) {
263
+ const message = error instanceof Error ? error.message : String(error);
264
+ logger4.error(`Error generating embedding: ${message}`);
265
+ throw error instanceof Error ? error : new Error(message);
130
266
  }
131
267
  }
132
- function getJsonRepairFunction() {
133
- return async ({ text, error }) => {
134
- try {
135
- if (error instanceof JSONParseError) {
136
- const cleanedText = text.replace(/```json\n|\n```|```/g, "");
137
- JSON.parse(cleanedText);
138
- return cleanedText;
139
- }
140
- return null;
141
- } catch (jsonError) {
142
- const message = jsonError instanceof Error ? jsonError.message : String(jsonError);
143
- logger.warn(`Failed to repair JSON text: ${message}`);
144
- return null;
268
+ // src/models/image.ts
269
+ import { logger as logger5, ModelType as ModelType3 } from "@elizaos/core";
270
+ async function handleImageGeneration(runtime, params) {
271
+ const n = params.n || 1;
272
+ const size = params.size || "1024x1024";
273
+ const prompt = params.prompt;
274
+ const modelName = getSetting(runtime, "OPENAI_IMAGE_MODEL", "gpt-image-1");
275
+ logger5.log(`[OpenAI] Using IMAGE model: ${modelName}`);
276
+ const baseURL = getBaseURL(runtime);
277
+ try {
278
+ const response = await fetch(`${baseURL}/images/generations`, {
279
+ method: "POST",
280
+ headers: {
281
+ ...getAuthHeader(runtime),
282
+ "Content-Type": "application/json"
283
+ },
284
+ body: JSON.stringify({
285
+ model: modelName,
286
+ prompt,
287
+ n,
288
+ size
289
+ })
290
+ });
291
+ if (!response.ok) {
292
+ throw new Error(`Failed to generate image: ${response.statusText}`);
145
293
  }
146
- };
294
+ const data = await response.json();
295
+ const typedData = data;
296
+ return typedData;
297
+ } catch (error) {
298
+ const message = error instanceof Error ? error.message : String(error);
299
+ throw error;
300
+ }
147
301
  }
148
- function emitModelUsageEvent(runtime, type, prompt, usage) {
149
- runtime.emitEvent(EventType.MODEL_USED, {
150
- provider: "openai",
151
- type,
152
- prompt,
153
- tokens: {
154
- prompt: usage.inputTokens,
155
- completion: usage.outputTokens,
156
- total: usage.totalTokens
302
+ async function handleImageDescription(runtime, params) {
303
+ let imageUrl;
304
+ let promptText;
305
+ const modelName = getImageDescriptionModel(runtime);
306
+ logger5.log(`[OpenAI] Using IMAGE_DESCRIPTION model: ${modelName}`);
307
+ const maxTokens = Number.parseInt(getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MAX_TOKENS", "8192") || "8192", 10);
308
+ const DEFAULT_PROMPT = "Please analyze this image and provide a title and detailed description.";
309
+ if (typeof params === "string") {
310
+ imageUrl = params;
311
+ promptText = DEFAULT_PROMPT;
312
+ } else {
313
+ imageUrl = params.imageUrl;
314
+ promptText = params.prompt || DEFAULT_PROMPT;
315
+ }
316
+ const messages = [
317
+ {
318
+ role: "user",
319
+ content: [
320
+ { type: "text", text: promptText },
321
+ { type: "image_url", image_url: { url: imageUrl } }
322
+ ]
157
323
  }
158
- });
324
+ ];
325
+ const baseURL = getBaseURL(runtime);
326
+ try {
327
+ const requestBody = {
328
+ model: modelName,
329
+ messages,
330
+ max_tokens: maxTokens
331
+ };
332
+ const response = await fetch(`${baseURL}/chat/completions`, {
333
+ method: "POST",
334
+ headers: {
335
+ "Content-Type": "application/json",
336
+ ...getAuthHeader(runtime)
337
+ },
338
+ body: JSON.stringify(requestBody)
339
+ });
340
+ if (!response.ok) {
341
+ throw new Error(`OpenAI API error: ${response.status}`);
342
+ }
343
+ const result = await response.json();
344
+ const typedResult = result;
345
+ const content = typedResult.choices?.[0]?.message?.content;
346
+ if (typedResult.usage) {
347
+ emitModelUsageEvent(runtime, ModelType3.IMAGE_DESCRIPTION, typeof params === "string" ? params : params.prompt || "", {
348
+ inputTokens: typedResult.usage.prompt_tokens,
349
+ outputTokens: typedResult.usage.completion_tokens,
350
+ totalTokens: typedResult.usage.total_tokens
351
+ });
352
+ }
353
+ if (!content) {
354
+ return {
355
+ title: "Failed to analyze image",
356
+ description: "No response from API"
357
+ };
358
+ }
359
+ const isCustomPrompt = typeof params === "object" && Boolean(params.prompt) && params.prompt !== DEFAULT_PROMPT;
360
+ if (isCustomPrompt) {
361
+ return content;
362
+ }
363
+ const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
364
+ const title = titleMatch?.[1]?.trim();
365
+ if (!title) {
366
+ logger5.warn("Could not extract title from image description response");
367
+ }
368
+ const finalTitle = title || "Image Analysis";
369
+ const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
370
+ const processedResult = { title: finalTitle, description };
371
+ return processedResult;
372
+ } catch (error) {
373
+ const message = error instanceof Error ? error.message : String(error);
374
+ logger5.error(`Error analyzing image: ${message}`);
375
+ return {
376
+ title: "Failed to analyze image",
377
+ description: `Error: ${message}`
378
+ };
379
+ }
380
+ }
381
+ // src/models/audio.ts
382
+ import { logger as logger7 } from "@elizaos/core";
383
+
384
+ // src/utils/audio.ts
385
+ import { logger as logger6 } from "@elizaos/core";
386
+ var MAGIC_BYTES = {
387
+ WAV: {
388
+ HEADER: [82, 73, 70, 70],
389
+ IDENTIFIER: [87, 65, 86, 69]
390
+ },
391
+ MP3_ID3: [73, 68, 51],
392
+ OGG: [79, 103, 103, 83],
393
+ FLAC: [102, 76, 97, 67],
394
+ FTYP: [102, 116, 121, 112],
395
+ WEBM_EBML: [26, 69, 223, 163]
396
+ };
397
+ function matchBytes(buffer, offset, bytes) {
398
+ for (let i = 0;i < bytes.length; i++) {
399
+ if (buffer[offset + i] !== bytes[i])
400
+ return false;
401
+ }
402
+ return true;
403
+ }
404
+ function detectAudioMimeType(buffer) {
405
+ if (buffer.length < 12) {
406
+ return "application/octet-stream";
407
+ }
408
+ if (matchBytes(buffer, 0, MAGIC_BYTES.WAV.HEADER) && matchBytes(buffer, 8, MAGIC_BYTES.WAV.IDENTIFIER)) {
409
+ return "audio/wav";
410
+ }
411
+ if (matchBytes(buffer, 0, MAGIC_BYTES.MP3_ID3) || buffer[0] === 255 && (buffer[1] & 224) === 224) {
412
+ return "audio/mpeg";
413
+ }
414
+ if (matchBytes(buffer, 0, MAGIC_BYTES.OGG)) {
415
+ return "audio/ogg";
416
+ }
417
+ if (matchBytes(buffer, 0, MAGIC_BYTES.FLAC)) {
418
+ return "audio/flac";
419
+ }
420
+ if (matchBytes(buffer, 4, MAGIC_BYTES.FTYP)) {
421
+ return "audio/mp4";
422
+ }
423
+ if (matchBytes(buffer, 0, MAGIC_BYTES.WEBM_EBML)) {
424
+ return "audio/webm";
425
+ }
426
+ logger6.warn("Could not detect audio format from buffer, using generic binary type");
427
+ return "application/octet-stream";
428
+ }
429
+ async function webStreamToNodeStream(webStream) {
430
+ try {
431
+ const { Readable } = await import("node:stream");
432
+ const reader = webStream.getReader();
433
+ return new Readable({
434
+ async read() {
435
+ try {
436
+ const { done, value } = await reader.read();
437
+ if (done) {
438
+ this.push(null);
439
+ } else {
440
+ this.push(value);
441
+ }
442
+ } catch (error) {
443
+ this.destroy(error);
444
+ }
445
+ },
446
+ destroy(error, callback) {
447
+ reader.cancel().finally(() => callback(error));
448
+ }
449
+ });
450
+ } catch (error) {
451
+ const message = error instanceof Error ? error.message : String(error);
452
+ logger6.error(`Failed to load node:stream module: ${message}`);
453
+ throw new Error(`Cannot convert stream: node:stream module unavailable. This feature requires a Node.js environment.`);
454
+ }
159
455
  }
456
+
457
+ // src/models/audio.ts
160
458
  async function fetchTextToSpeech(runtime, options) {
161
459
  const defaultModel = getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
162
460
  const defaultVoice = getSetting(runtime, "OPENAI_TTS_VOICE", "nova");
@@ -186,12 +484,203 @@ async function fetchTextToSpeech(runtime, options) {
186
484
  const err = await res.text();
187
485
  throw new Error(`OpenAI TTS error ${res.status}: ${err}`);
188
486
  }
487
+ if (!res.body) {
488
+ throw new Error("OpenAI TTS response body is null");
489
+ }
490
+ if (!isBrowser()) {
491
+ return await webStreamToNodeStream(res.body);
492
+ }
189
493
  return res.body;
190
494
  } catch (err) {
191
495
  const message = err instanceof Error ? err.message : String(err);
192
496
  throw new Error(`Failed to fetch speech from OpenAI TTS: ${message}`);
193
497
  }
194
498
  }
499
+ async function handleTranscription(runtime, input) {
500
+ let modelName = getSetting(runtime, "OPENAI_TRANSCRIPTION_MODEL", "gpt-4o-mini-transcribe");
501
+ logger7.log(`[OpenAI] Using TRANSCRIPTION model: ${modelName}`);
502
+ const baseURL = getBaseURL(runtime);
503
+ let blob;
504
+ let extraParams = null;
505
+ if (input instanceof Blob || input instanceof File) {
506
+ blob = input;
507
+ } else if (Buffer.isBuffer(input)) {
508
+ const detectedMimeType = detectAudioMimeType(input);
509
+ logger7.debug(`Auto-detected audio MIME type: ${detectedMimeType}`);
510
+ const uint8Array = new Uint8Array(input);
511
+ blob = new Blob([uint8Array], { type: detectedMimeType });
512
+ } else if (typeof input === "object" && input !== null && input.audio != null) {
513
+ const params = input;
514
+ if (!(params.audio instanceof Blob) && !(params.audio instanceof File) && !Buffer.isBuffer(params.audio)) {
515
+ throw new Error("TRANSCRIPTION param 'audio' must be a Blob/File/Buffer.");
516
+ }
517
+ if (Buffer.isBuffer(params.audio)) {
518
+ let mimeType = params.mimeType;
519
+ if (!mimeType) {
520
+ mimeType = detectAudioMimeType(params.audio);
521
+ logger7.debug(`Auto-detected audio MIME type: ${mimeType}`);
522
+ } else {
523
+ logger7.debug(`Using provided MIME type: ${mimeType}`);
524
+ }
525
+ const uint8Array = new Uint8Array(params.audio);
526
+ blob = new Blob([uint8Array], { type: mimeType });
527
+ } else {
528
+ blob = params.audio;
529
+ }
530
+ extraParams = params;
531
+ if (typeof params.model === "string" && params.model) {
532
+ modelName = params.model;
533
+ }
534
+ } else {
535
+ throw new Error("TRANSCRIPTION expects a Blob/File/Buffer or an object { audio: Blob/File/Buffer, mimeType?, language?, response_format?, timestampGranularities?, prompt?, temperature?, model? }");
536
+ }
537
+ const mime = blob.type || "audio/webm";
538
+ const filename = blob.name || (mime.includes("mp3") || mime.includes("mpeg") ? "recording.mp3" : mime.includes("ogg") ? "recording.ogg" : mime.includes("wav") ? "recording.wav" : mime.includes("webm") ? "recording.webm" : "recording.bin");
539
+ const formData = new FormData;
540
+ formData.append("file", blob, filename);
541
+ formData.append("model", String(modelName));
542
+ if (extraParams) {
543
+ if (typeof extraParams.language === "string") {
544
+ formData.append("language", String(extraParams.language));
545
+ }
546
+ if (typeof extraParams.response_format === "string") {
547
+ formData.append("response_format", String(extraParams.response_format));
548
+ }
549
+ if (typeof extraParams.prompt === "string") {
550
+ formData.append("prompt", String(extraParams.prompt));
551
+ }
552
+ if (typeof extraParams.temperature === "number") {
553
+ formData.append("temperature", String(extraParams.temperature));
554
+ }
555
+ if (Array.isArray(extraParams.timestampGranularities)) {
556
+ for (const g of extraParams.timestampGranularities) {
557
+ formData.append("timestamp_granularities[]", String(g));
558
+ }
559
+ }
560
+ }
561
+ try {
562
+ const response = await fetch(`${baseURL}/audio/transcriptions`, {
563
+ method: "POST",
564
+ headers: {
565
+ ...getAuthHeader(runtime)
566
+ },
567
+ body: formData
568
+ });
569
+ if (!response.ok) {
570
+ throw new Error(`Failed to transcribe audio: ${response.status} ${response.statusText}`);
571
+ }
572
+ const data = await response.json();
573
+ return data.text || "";
574
+ } catch (error) {
575
+ const message = error instanceof Error ? error.message : String(error);
576
+ logger7.error(`TRANSCRIPTION error: ${message}`);
577
+ throw error;
578
+ }
579
+ }
580
+ async function handleTextToSpeech(runtime, input) {
581
+ const options = typeof input === "string" ? { text: input } : input;
582
+ const resolvedModel = options.model || getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
583
+ logger7.log(`[OpenAI] Using TEXT_TO_SPEECH model: ${resolvedModel}`);
584
+ try {
585
+ const speechStream = await fetchTextToSpeech(runtime, options);
586
+ return speechStream;
587
+ } catch (error) {
588
+ const message = error instanceof Error ? error.message : String(error);
589
+ logger7.error(`Error in TEXT_TO_SPEECH: ${message}`);
590
+ throw error;
591
+ }
592
+ }
593
+ // src/models/object.ts
594
+ import { logger as logger9, ModelType as ModelType4 } from "@elizaos/core";
595
+ import { generateObject } from "ai";
596
+
597
+ // src/utils/json.ts
598
+ import { logger as logger8 } from "@elizaos/core";
599
+ import { JSONParseError } from "ai";
600
+ function getJsonRepairFunction() {
601
+ return async ({ text, error }) => {
602
+ try {
603
+ if (error instanceof JSONParseError) {
604
+ const cleanedText = text.replace(/```json\n|\n```|```/g, "");
605
+ JSON.parse(cleanedText);
606
+ return cleanedText;
607
+ }
608
+ return null;
609
+ } catch (jsonError) {
610
+ const message = jsonError instanceof Error ? jsonError.message : String(jsonError);
611
+ logger8.warn(`Failed to repair JSON text: ${message}`);
612
+ return null;
613
+ }
614
+ };
615
+ }
616
+
617
+ // src/models/object.ts
618
+ async function generateObjectByModelType(runtime, params, modelType, getModelFn) {
619
+ const openai = createOpenAIClient(runtime);
620
+ const modelName = getModelFn(runtime);
621
+ logger9.log(`[OpenAI] Using ${modelType} model: ${modelName}`);
622
+ const temperature = params.temperature ?? 0;
623
+ const schemaPresent = !!params.schema;
624
+ if (schemaPresent) {
625
+ logger9.warn(`Schema provided but ignored: OpenAI object generation currently uses output=no-schema. The schema parameter has no effect.`);
626
+ }
627
+ try {
628
+ const { object, usage } = await generateObject({
629
+ model: openai.languageModel(modelName),
630
+ output: "no-schema",
631
+ prompt: params.prompt,
632
+ temperature,
633
+ experimental_repairText: getJsonRepairFunction()
634
+ });
635
+ if (usage) {
636
+ emitModelUsageEvent(runtime, modelType, params.prompt, usage);
637
+ }
638
+ return object;
639
+ } catch (error) {
640
+ const message = error instanceof Error ? error.message : String(error);
641
+ logger9.error(`[generateObject] Error: ${message}`);
642
+ throw error;
643
+ }
644
+ }
645
+ async function handleObjectSmall(runtime, params) {
646
+ return generateObjectByModelType(runtime, params, ModelType4.OBJECT_SMALL, getSmallModel);
647
+ }
648
+ async function handleObjectLarge(runtime, params) {
649
+ return generateObjectByModelType(runtime, params, ModelType4.OBJECT_LARGE, getLargeModel);
650
+ }
651
+ // src/models/tokenizer.ts
652
+ import { ModelType as ModelType6 } from "@elizaos/core";
653
+
654
+ // src/utils/tokenization.ts
655
+ import { ModelType as ModelType5 } from "@elizaos/core";
656
+ import { encodingForModel, getEncoding } from "js-tiktoken";
657
+ function resolveTokenizerEncoding(modelName) {
658
+ const normalized = modelName.toLowerCase();
659
+ const fallbackEncoding = normalized.includes("4o") ? "o200k_base" : "cl100k_base";
660
+ try {
661
+ return encodingForModel(modelName);
662
+ } catch (error) {
663
+ return getEncoding(fallbackEncoding);
664
+ }
665
+ }
666
+ async function tokenizeText(runtime, model, prompt) {
667
+ const modelName = model === ModelType5.TEXT_SMALL ? getSmallModel(runtime) : getLargeModel(runtime);
668
+ const tokens = resolveTokenizerEncoding(modelName).encode(prompt);
669
+ return tokens;
670
+ }
671
+ async function detokenizeText(runtime, model, tokens) {
672
+ const modelName = model === ModelType5.TEXT_SMALL ? getSmallModel(runtime) : getLargeModel(runtime);
673
+ return resolveTokenizerEncoding(modelName).decode(tokens);
674
+ }
675
+
676
+ // src/models/tokenizer.ts
677
+ async function handleTokenizerEncode(runtime, { prompt, modelType = ModelType6.TEXT_LARGE }) {
678
+ return await tokenizeText(runtime, modelType, prompt);
679
+ }
680
+ async function handleTokenizerDecode(runtime, { tokens, modelType = ModelType6.TEXT_LARGE }) {
681
+ return await detokenizeText(runtime, modelType, tokens);
682
+ }
683
+ // src/index.ts
195
684
  var openaiPlugin = {
196
685
  name: "openai",
197
686
  description: "OpenAI plugin",
@@ -211,368 +700,41 @@ var openaiPlugin = {
211
700
  OPENAI_EXPERIMENTAL_TELEMETRY: process.env.OPENAI_EXPERIMENTAL_TELEMETRY
212
701
  },
213
702
  async init(_config, runtime) {
214
- new Promise(async (resolve) => {
215
- resolve();
216
- try {
217
- if (!getApiKey(runtime) && !isBrowser()) {
218
- logger.warn("OPENAI_API_KEY is not set in environment - OpenAI functionality will be limited");
219
- return;
220
- }
221
- try {
222
- const baseURL = getBaseURL(runtime);
223
- const response = await fetch(`${baseURL}/models`, {
224
- headers: { ...getAuthHeader(runtime) }
225
- });
226
- if (!response.ok) {
227
- logger.warn(`OpenAI API key validation failed: ${response.statusText}`);
228
- logger.warn("OpenAI functionality will be limited until a valid API key is provided");
229
- } else {
230
- logger.log("OpenAI API key validated successfully");
231
- }
232
- } catch (fetchError) {
233
- const message = fetchError instanceof Error ? fetchError.message : String(fetchError);
234
- logger.warn(`Error validating OpenAI API key: ${message}`);
235
- logger.warn("OpenAI functionality will be limited until a valid API key is provided");
236
- }
237
- } catch (error) {
238
- const message = error?.errors?.map((e) => e.message).join(", ") || (error instanceof Error ? error.message : String(error));
239
- logger.warn(`OpenAI plugin configuration issue: ${message} - You need to configure the OPENAI_API_KEY in your environment variables`);
240
- }
241
- });
703
+ initializeOpenAI(_config, runtime);
242
704
  },
243
705
  models: {
244
- [ModelType.TEXT_EMBEDDING]: async (runtime, params) => {
245
- const embeddingModelName = getSetting(runtime, "OPENAI_EMBEDDING_MODEL", "text-embedding-3-small");
246
- const embeddingDimension = Number.parseInt(getSetting(runtime, "OPENAI_EMBEDDING_DIMENSIONS", "1536") || "1536", 10);
247
- if (!Object.values(VECTOR_DIMS).includes(embeddingDimension)) {
248
- const errorMsg = `Invalid embedding dimension: ${embeddingDimension}. Must be one of: ${Object.values(VECTOR_DIMS).join(", ")}`;
249
- logger.error(errorMsg);
250
- throw new Error(errorMsg);
251
- }
252
- if (params === null) {
253
- logger.debug("Creating test embedding for initialization");
254
- const testVector = Array(embeddingDimension).fill(0);
255
- testVector[0] = 0.1;
256
- return testVector;
257
- }
258
- let text;
259
- if (typeof params === "string") {
260
- text = params;
261
- } else if (typeof params === "object" && params.text) {
262
- text = params.text;
263
- } else {
264
- logger.warn("Invalid input format for embedding");
265
- const fallbackVector = Array(embeddingDimension).fill(0);
266
- fallbackVector[0] = 0.2;
267
- return fallbackVector;
268
- }
269
- if (!text.trim()) {
270
- logger.warn("Empty text for embedding");
271
- const emptyVector = Array(embeddingDimension).fill(0);
272
- emptyVector[0] = 0.3;
273
- return emptyVector;
274
- }
275
- const embeddingBaseURL = getEmbeddingBaseURL(runtime);
276
- try {
277
- const response = await fetch(`${embeddingBaseURL}/embeddings`, {
278
- method: "POST",
279
- headers: {
280
- ...getAuthHeader(runtime, true),
281
- "Content-Type": "application/json"
282
- },
283
- body: JSON.stringify({
284
- model: embeddingModelName,
285
- input: text
286
- })
287
- });
288
- if (!response.ok) {
289
- logger.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
290
- const errorVector = Array(embeddingDimension).fill(0);
291
- errorVector[0] = 0.4;
292
- return errorVector;
293
- }
294
- const data = await response.json();
295
- if (!data?.data?.[0]?.embedding) {
296
- logger.error("API returned invalid structure");
297
- const errorVector = Array(embeddingDimension).fill(0);
298
- errorVector[0] = 0.5;
299
- return errorVector;
300
- }
301
- const embedding = data.data[0].embedding;
302
- if (data.usage) {
303
- const usage = {
304
- inputTokens: data.usage.prompt_tokens,
305
- outputTokens: 0,
306
- totalTokens: data.usage.total_tokens
307
- };
308
- emitModelUsageEvent(runtime, ModelType.TEXT_EMBEDDING, text, usage);
309
- }
310
- logger.log(`Got valid embedding with length ${embedding.length}`);
311
- return embedding;
312
- } catch (error) {
313
- const message = error instanceof Error ? error.message : String(error);
314
- logger.error(`Error generating embedding: ${message}`);
315
- const errorVector = Array(embeddingDimension).fill(0);
316
- errorVector[0] = 0.6;
317
- return errorVector;
318
- }
706
+ [ModelType7.TEXT_EMBEDDING]: async (runtime, params) => {
707
+ return handleTextEmbedding(runtime, params);
319
708
  },
320
- [ModelType.TEXT_TOKENIZER_ENCODE]: async (_runtime, { prompt, modelType = ModelType.TEXT_LARGE }) => {
321
- return await tokenizeText(modelType ?? ModelType.TEXT_LARGE, prompt);
709
+ [ModelType7.TEXT_TOKENIZER_ENCODE]: async (runtime, params) => {
710
+ return handleTokenizerEncode(runtime, params);
322
711
  },
323
- [ModelType.TEXT_TOKENIZER_DECODE]: async (_runtime, { tokens, modelType = ModelType.TEXT_LARGE }) => {
324
- return await detokenizeText(modelType ?? ModelType.TEXT_LARGE, tokens);
712
+ [ModelType7.TEXT_TOKENIZER_DECODE]: async (runtime, params) => {
713
+ return handleTokenizerDecode(runtime, params);
325
714
  },
326
- [ModelType.TEXT_SMALL]: async (runtime, {
327
- prompt,
328
- stopSequences = [],
329
- maxTokens = 8192,
330
- temperature = 0.7,
331
- frequencyPenalty = 0.7,
332
- presencePenalty = 0.7
333
- }) => {
334
- const openai = createOpenAIClient(runtime);
335
- const modelName = getSmallModel(runtime);
336
- const experimentalTelemetry = getExperimentalTelemetry(runtime);
337
- logger.log(`[OpenAI] Using TEXT_SMALL model: ${modelName}`);
338
- logger.log(prompt);
339
- const { text: openaiResponse, usage } = await generateText({
340
- model: openai.languageModel(modelName),
341
- prompt,
342
- system: runtime.character.system ?? undefined,
343
- temperature,
344
- maxOutputTokens: maxTokens,
345
- frequencyPenalty,
346
- presencePenalty,
347
- stopSequences,
348
- experimental_telemetry: {
349
- isEnabled: experimentalTelemetry
350
- }
351
- });
352
- if (usage) {
353
- emitModelUsageEvent(runtime, ModelType.TEXT_SMALL, prompt, usage);
354
- }
355
- return openaiResponse;
715
+ [ModelType7.TEXT_SMALL]: async (runtime, params) => {
716
+ return handleTextSmall(runtime, params);
356
717
  },
357
- [ModelType.TEXT_LARGE]: async (runtime, {
358
- prompt,
359
- stopSequences = [],
360
- maxTokens = 8192,
361
- temperature = 0.7,
362
- frequencyPenalty = 0.7,
363
- presencePenalty = 0.7
364
- }) => {
365
- const openai = createOpenAIClient(runtime);
366
- const modelName = getLargeModel(runtime);
367
- const experimentalTelemetry = getExperimentalTelemetry(runtime);
368
- logger.log(`[OpenAI] Using TEXT_LARGE model: ${modelName}`);
369
- logger.log(prompt);
370
- const { text: openaiResponse, usage } = await generateText({
371
- model: openai.languageModel(modelName),
372
- prompt,
373
- system: runtime.character.system ?? undefined,
374
- temperature,
375
- maxOutputTokens: maxTokens,
376
- frequencyPenalty,
377
- presencePenalty,
378
- stopSequences,
379
- experimental_telemetry: {
380
- isEnabled: experimentalTelemetry
381
- }
382
- });
383
- if (usage) {
384
- emitModelUsageEvent(runtime, ModelType.TEXT_LARGE, prompt, usage);
385
- }
386
- return openaiResponse;
718
+ [ModelType7.TEXT_LARGE]: async (runtime, params) => {
719
+ return handleTextLarge(runtime, params);
387
720
  },
388
- [ModelType.IMAGE]: async (runtime, params) => {
389
- const n = params.n || 1;
390
- const size = params.size || "1024x1024";
391
- const prompt = params.prompt;
392
- const modelName = "gpt-image-1";
393
- logger.log(`[OpenAI] Using IMAGE model: ${modelName}`);
394
- const baseURL = getBaseURL(runtime);
395
- try {
396
- const response = await fetch(`${baseURL}/images/generations`, {
397
- method: "POST",
398
- headers: {
399
- ...getAuthHeader(runtime),
400
- "Content-Type": "application/json"
401
- },
402
- body: JSON.stringify({
403
- model: modelName,
404
- prompt,
405
- n,
406
- size
407
- })
408
- });
409
- if (!response.ok) {
410
- throw new Error(`Failed to generate image: ${response.statusText}`);
411
- }
412
- const data = await response.json();
413
- const typedData = data;
414
- return typedData.data;
415
- } catch (error) {
416
- const message = error instanceof Error ? error.message : String(error);
417
- throw error;
418
- }
721
+ [ModelType7.IMAGE]: async (runtime, params) => {
722
+ return handleImageGeneration(runtime, params);
419
723
  },
420
- [ModelType.IMAGE_DESCRIPTION]: async (runtime, params) => {
421
- let imageUrl;
422
- let promptText;
423
- const modelName = getImageDescriptionModel(runtime);
424
- logger.log(`[OpenAI] Using IMAGE_DESCRIPTION model: ${modelName}`);
425
- const maxTokens = Number.parseInt(getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MAX_TOKENS", "8192") || "8192", 10);
426
- if (typeof params === "string") {
427
- imageUrl = params;
428
- promptText = "Please analyze this image and provide a title and detailed description.";
429
- } else {
430
- imageUrl = params.imageUrl;
431
- promptText = params.prompt || "Please analyze this image and provide a title and detailed description.";
432
- }
433
- const messages = [
434
- {
435
- role: "user",
436
- content: [
437
- { type: "text", text: promptText },
438
- { type: "image_url", image_url: { url: imageUrl } }
439
- ]
440
- }
441
- ];
442
- const baseURL = getBaseURL(runtime);
443
- try {
444
- const requestBody = {
445
- model: modelName,
446
- messages,
447
- max_tokens: maxTokens
448
- };
449
- const response = await fetch(`${baseURL}/chat/completions`, {
450
- method: "POST",
451
- headers: {
452
- "Content-Type": "application/json",
453
- ...getAuthHeader(runtime)
454
- },
455
- body: JSON.stringify(requestBody)
456
- });
457
- if (!response.ok) {
458
- throw new Error(`OpenAI API error: ${response.status}`);
459
- }
460
- const result = await response.json();
461
- const typedResult = result;
462
- const content = typedResult.choices?.[0]?.message?.content;
463
- if (typedResult.usage) {
464
- emitModelUsageEvent(runtime, ModelType.IMAGE_DESCRIPTION, typeof params === "string" ? params : params.prompt || "", {
465
- inputTokens: typedResult.usage.prompt_tokens,
466
- outputTokens: typedResult.usage.completion_tokens,
467
- totalTokens: typedResult.usage.total_tokens
468
- });
469
- }
470
- if (!content) {
471
- return {
472
- title: "Failed to analyze image",
473
- description: "No response from API"
474
- };
475
- }
476
- const isCustomPrompt = typeof params === "object" && params.prompt && params.prompt !== "Please analyze this image and provide a title and detailed description.";
477
- if (isCustomPrompt) {
478
- return content;
479
- }
480
- const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
481
- const title = titleMatch?.[1]?.trim() || "Image Analysis";
482
- const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
483
- const processedResult = { title, description };
484
- return processedResult;
485
- } catch (error) {
486
- const message = error instanceof Error ? error.message : String(error);
487
- logger.error(`Error analyzing image: ${message}`);
488
- return {
489
- title: "Failed to analyze image",
490
- description: `Error: ${message}`
491
- };
492
- }
724
+ [ModelType7.IMAGE_DESCRIPTION]: async (runtime, params) => {
725
+ return handleImageDescription(runtime, params);
493
726
  },
494
- [ModelType.TRANSCRIPTION]: async (runtime, input) => {
495
- let modelName = getSetting(runtime, "OPENAI_TRANSCRIPTION_MODEL", "gpt-4o-mini-transcribe");
496
- logger.log(`[OpenAI] Using TRANSCRIPTION model: ${modelName}`);
497
- const baseURL = getBaseURL(runtime);
498
- let blob;
499
- let extraParams = null;
500
- if (input instanceof Blob || input instanceof File) {
501
- blob = input;
502
- } else if (typeof input === "object" && input !== null && input.audio != null) {
503
- const params = input;
504
- if (!(params.audio instanceof Blob) && !(params.audio instanceof File)) {
505
- throw new Error("TRANSCRIPTION param 'audio' must be a Blob/File. Wrap buffers as: new Blob([buffer], { type: 'audio/mpeg' })");
506
- }
507
- blob = params.audio;
508
- extraParams = params;
509
- if (typeof params.model === "string" && params.model) {
510
- modelName = params.model;
511
- }
512
- } else {
513
- throw new Error("TRANSCRIPTION expects a Blob/File or an object { audio: Blob/File, language?, response_format?, timestampGranularities?, prompt?, temperature?, model? }");
514
- }
515
- const mime = blob.type || "audio/webm";
516
- const filename = blob.name || (mime.includes("mp3") || mime.includes("mpeg") ? "recording.mp3" : mime.includes("ogg") ? "recording.ogg" : mime.includes("wav") ? "recording.wav" : mime.includes("webm") ? "recording.webm" : "recording.bin");
517
- const formData = new FormData;
518
- formData.append("file", blob, filename);
519
- formData.append("model", String(modelName));
520
- if (extraParams) {
521
- if (typeof extraParams.language === "string") {
522
- formData.append("language", String(extraParams.language));
523
- }
524
- if (typeof extraParams.response_format === "string") {
525
- formData.append("response_format", String(extraParams.response_format));
526
- }
527
- if (typeof extraParams.prompt === "string") {
528
- formData.append("prompt", String(extraParams.prompt));
529
- }
530
- if (typeof extraParams.temperature === "number") {
531
- formData.append("temperature", String(extraParams.temperature));
532
- }
533
- if (Array.isArray(extraParams.timestampGranularities)) {
534
- for (const g of extraParams.timestampGranularities) {
535
- formData.append("timestamp_granularities[]", String(g));
536
- }
537
- }
538
- }
539
- try {
540
- const response = await fetch(`${baseURL}/audio/transcriptions`, {
541
- method: "POST",
542
- headers: {
543
- ...getAuthHeader(runtime)
544
- },
545
- body: formData
546
- });
547
- if (!response.ok) {
548
- throw new Error(`Failed to transcribe audio: ${response.status} ${response.statusText}`);
549
- }
550
- const data = await response.json();
551
- return data.text || "";
552
- } catch (error) {
553
- const message = error instanceof Error ? error.message : String(error);
554
- logger.error(`TRANSCRIPTION error: ${message}`);
555
- throw error;
556
- }
727
+ [ModelType7.TRANSCRIPTION]: async (runtime, input) => {
728
+ return handleTranscription(runtime, input);
557
729
  },
558
- [ModelType.TEXT_TO_SPEECH]: async (runtime, input) => {
559
- const options = typeof input === "string" ? { text: input } : input;
560
- const resolvedModel = options.model || getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
561
- logger.log(`[OpenAI] Using TEXT_TO_SPEECH model: ${resolvedModel}`);
562
- try {
563
- const speechStream = await fetchTextToSpeech(runtime, options);
564
- return speechStream;
565
- } catch (error) {
566
- const message = error instanceof Error ? error.message : String(error);
567
- logger.error(`Error in TEXT_TO_SPEECH: ${message}`);
568
- throw error;
569
- }
730
+ [ModelType7.TEXT_TO_SPEECH]: async (runtime, input) => {
731
+ return handleTextToSpeech(runtime, input);
570
732
  },
571
- [ModelType.OBJECT_SMALL]: async (runtime, params) => {
572
- return generateObjectByModelType(runtime, params, ModelType.OBJECT_SMALL, getSmallModel);
733
+ [ModelType7.OBJECT_SMALL]: async (runtime, params) => {
734
+ return handleObjectSmall(runtime, params);
573
735
  },
574
- [ModelType.OBJECT_LARGE]: async (runtime, params) => {
575
- return generateObjectByModelType(runtime, params, ModelType.OBJECT_LARGE, getLargeModel);
736
+ [ModelType7.OBJECT_LARGE]: async (runtime, params) => {
737
+ return handleObjectLarge(runtime, params);
576
738
  }
577
739
  },
578
740
  tests: [
@@ -584,12 +746,10 @@ var openaiPlugin = {
584
746
  fn: async (runtime) => {
585
747
  const baseURL = getBaseURL(runtime);
586
748
  const response = await fetch(`${baseURL}/models`, {
587
- headers: {
588
- Authorization: `Bearer ${getApiKey(runtime)}`
589
- }
749
+ headers: getAuthHeader(runtime)
590
750
  });
591
751
  const data = await response.json();
592
- logger.log({ data: data?.data?.length ?? "N/A" }, "Models Available");
752
+ logger10.log({ data: data?.data?.length ?? "N/A" }, "Models Available");
593
753
  if (!response.ok) {
594
754
  throw new Error(`Failed to validate OpenAI API key: ${response.statusText}`);
595
755
  }
@@ -599,13 +759,13 @@ var openaiPlugin = {
599
759
  name: "openai_test_text_embedding",
600
760
  fn: async (runtime) => {
601
761
  try {
602
- const embedding = await runtime.useModel(ModelType.TEXT_EMBEDDING, {
762
+ const embedding = await runtime.useModel(ModelType7.TEXT_EMBEDDING, {
603
763
  text: "Hello, world!"
604
764
  });
605
- logger.log({ embedding }, "embedding");
765
+ logger10.log({ embedding }, "embedding");
606
766
  } catch (error) {
607
767
  const message = error instanceof Error ? error.message : String(error);
608
- logger.error(`Error in test_text_embedding: ${message}`);
768
+ logger10.error(`Error in test_text_embedding: ${message}`);
609
769
  throw error;
610
770
  }
611
771
  }
@@ -614,16 +774,16 @@ var openaiPlugin = {
614
774
  name: "openai_test_text_large",
615
775
  fn: async (runtime) => {
616
776
  try {
617
- const text = await runtime.useModel(ModelType.TEXT_LARGE, {
777
+ const text = await runtime.useModel(ModelType7.TEXT_LARGE, {
618
778
  prompt: "What is the nature of reality in 10 words?"
619
779
  });
620
780
  if (text.length === 0) {
621
781
  throw new Error("Failed to generate text");
622
782
  }
623
- logger.log({ text }, "generated with test_text_large");
783
+ logger10.log({ text }, "generated with test_text_large");
624
784
  } catch (error) {
625
785
  const message = error instanceof Error ? error.message : String(error);
626
- logger.error(`Error in test_text_large: ${message}`);
786
+ logger10.error(`Error in test_text_large: ${message}`);
627
787
  throw error;
628
788
  }
629
789
  }
@@ -632,16 +792,16 @@ var openaiPlugin = {
632
792
  name: "openai_test_text_small",
633
793
  fn: async (runtime) => {
634
794
  try {
635
- const text = await runtime.useModel(ModelType.TEXT_SMALL, {
795
+ const text = await runtime.useModel(ModelType7.TEXT_SMALL, {
636
796
  prompt: "What is the nature of reality in 10 words?"
637
797
  });
638
798
  if (text.length === 0) {
639
799
  throw new Error("Failed to generate text");
640
800
  }
641
- logger.log({ text }, "generated with test_text_small");
801
+ logger10.log({ text }, "generated with test_text_small");
642
802
  } catch (error) {
643
803
  const message = error instanceof Error ? error.message : String(error);
644
- logger.error(`Error in test_text_small: ${message}`);
804
+ logger10.error(`Error in test_text_small: ${message}`);
645
805
  throw error;
646
806
  }
647
807
  }
@@ -649,17 +809,17 @@ var openaiPlugin = {
649
809
  {
650
810
  name: "openai_test_image_generation",
651
811
  fn: async (runtime) => {
652
- logger.log("openai_test_image_generation");
812
+ logger10.log("openai_test_image_generation");
653
813
  try {
654
- const image = await runtime.useModel(ModelType.IMAGE, {
814
+ const image = await runtime.useModel(ModelType7.IMAGE, {
655
815
  prompt: "A beautiful sunset over a calm ocean",
656
816
  n: 1,
657
817
  size: "1024x1024"
658
818
  });
659
- logger.log({ image }, "generated with test_image_generation");
819
+ logger10.log({ image }, "generated with test_image_generation");
660
820
  } catch (error) {
661
821
  const message = error instanceof Error ? error.message : String(error);
662
- logger.error(`Error in test_image_generation: ${message}`);
822
+ logger10.error(`Error in test_image_generation: ${message}`);
663
823
  throw error;
664
824
  }
665
825
  }
@@ -668,36 +828,36 @@ var openaiPlugin = {
668
828
  name: "image-description",
669
829
  fn: async (runtime) => {
670
830
  try {
671
- logger.log("openai_test_image_description");
831
+ logger10.log("openai_test_image_description");
672
832
  try {
673
- const result = await runtime.useModel(ModelType.IMAGE_DESCRIPTION, "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg/537px-Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg");
833
+ const result = await runtime.useModel(ModelType7.IMAGE_DESCRIPTION, "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg/537px-Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg");
674
834
  if (result && typeof result === "object" && "title" in result && "description" in result) {
675
- logger.log({ result }, "Image description");
835
+ logger10.log({ result }, "Image description");
676
836
  } else {
677
- logger.error("Invalid image description result format:", result);
837
+ logger10.error("Invalid image description result format:", result);
678
838
  }
679
839
  } catch (e) {
680
840
  const message = e instanceof Error ? e.message : String(e);
681
- logger.error(`Error in image description test: ${message}`);
841
+ logger10.error(`Error in image description test: ${message}`);
682
842
  }
683
843
  } catch (e) {
684
844
  const message = e instanceof Error ? e.message : String(e);
685
- logger.error(`Error in openai_test_image_description: ${message}`);
845
+ logger10.error(`Error in openai_test_image_description: ${message}`);
686
846
  }
687
847
  }
688
848
  },
689
849
  {
690
850
  name: "openai_test_transcription",
691
851
  fn: async (runtime) => {
692
- logger.log("openai_test_transcription");
852
+ logger10.log("openai_test_transcription");
693
853
  try {
694
854
  const response = await fetch("https://upload.wikimedia.org/wikipedia/en/4/40/Chris_Benoit_Voice_Message.ogg");
695
855
  const arrayBuffer = await response.arrayBuffer();
696
- const transcription = await runtime.useModel(ModelType.TRANSCRIPTION, Buffer.from(new Uint8Array(arrayBuffer)));
697
- logger.log({ transcription }, "generated with test_transcription");
856
+ const transcription = await runtime.useModel(ModelType7.TRANSCRIPTION, Buffer.from(new Uint8Array(arrayBuffer)));
857
+ logger10.log({ transcription }, "generated with test_transcription");
698
858
  } catch (error) {
699
859
  const message = error instanceof Error ? error.message : String(error);
700
- logger.error(`Error in test_transcription: ${message}`);
860
+ logger10.error(`Error in test_transcription: ${message}`);
701
861
  throw error;
702
862
  }
703
863
  }
@@ -706,39 +866,41 @@ var openaiPlugin = {
706
866
  name: "openai_test_text_tokenizer_encode",
707
867
  fn: async (runtime) => {
708
868
  const prompt = "Hello tokenizer encode!";
709
- const tokens = await runtime.useModel(ModelType.TEXT_TOKENIZER_ENCODE, { prompt });
869
+ const tokens = await runtime.useModel(ModelType7.TEXT_TOKENIZER_ENCODE, { prompt });
710
870
  if (!Array.isArray(tokens) || tokens.length === 0) {
711
871
  throw new Error("Failed to tokenize text: expected non-empty array of tokens");
712
872
  }
713
- logger.log({ tokens }, "Tokenized output");
873
+ logger10.log({ tokens }, "Tokenized output");
714
874
  }
715
875
  },
716
876
  {
717
877
  name: "openai_test_text_tokenizer_decode",
718
878
  fn: async (runtime) => {
719
879
  const prompt = "Hello tokenizer decode!";
720
- const tokens = await runtime.useModel(ModelType.TEXT_TOKENIZER_ENCODE, { prompt });
721
- const decodedText = await runtime.useModel(ModelType.TEXT_TOKENIZER_DECODE, { tokens });
880
+ const tokens = await runtime.useModel(ModelType7.TEXT_TOKENIZER_ENCODE, { prompt });
881
+ const decodedText = await runtime.useModel(ModelType7.TEXT_TOKENIZER_DECODE, {
882
+ tokens
883
+ });
722
884
  if (decodedText !== prompt) {
723
885
  throw new Error(`Decoded text does not match original. Expected "${prompt}", got "${decodedText}"`);
724
886
  }
725
- logger.log({ decodedText }, "Decoded text");
887
+ logger10.log({ decodedText }, "Decoded text");
726
888
  }
727
889
  },
728
890
  {
729
891
  name: "openai_test_text_to_speech",
730
892
  fn: async (runtime) => {
731
893
  try {
732
- const response = await fetchTextToSpeech(runtime, {
894
+ const response = await runtime.useModel(ModelType7.TEXT_TO_SPEECH, {
733
895
  text: "Hello, this is a test for text-to-speech."
734
896
  });
735
897
  if (!response) {
736
898
  throw new Error("Failed to generate speech");
737
899
  }
738
- logger.log("Generated speech successfully");
900
+ logger10.log("Generated speech successfully");
739
901
  } catch (error) {
740
902
  const message = error instanceof Error ? error.message : String(error);
741
- logger.error(`Error in openai_test_text_to_speech: ${message}`);
903
+ logger10.error(`Error in openai_test_text_to_speech: ${message}`);
742
904
  throw error;
743
905
  }
744
906
  }
@@ -753,4 +915,4 @@ export {
753
915
  src_default as default
754
916
  };
755
917
 
756
- //# debugId=B1A62305054258BB64756E2164756E21
918
+ //# debugId=967FB48261E5AE3064756E2164756E21