@elizaos/plugin-openai 1.0.3 → 1.0.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.js CHANGED
@@ -4,496 +4,8 @@ import {
4
4
  EventType,
5
5
  logger,
6
6
  ModelType,
7
- safeReplacer,
8
- ServiceType,
9
7
  VECTOR_DIMS
10
8
  } from "@elizaos/core";
11
-
12
- // node_modules/@opentelemetry/api/build/esm/platform/node/globalThis.js
13
- var _globalThis = typeof globalThis === "object" ? globalThis : global;
14
-
15
- // node_modules/@opentelemetry/api/build/esm/version.js
16
- var VERSION = "1.9.0";
17
-
18
- // node_modules/@opentelemetry/api/build/esm/internal/semver.js
19
- var re = /^(\d+)\.(\d+)\.(\d+)(-(.+))?$/;
20
- function _makeCompatibilityCheck(ownVersion) {
21
- var acceptedVersions = /* @__PURE__ */ new Set([ownVersion]);
22
- var rejectedVersions = /* @__PURE__ */ new Set();
23
- var myVersionMatch = ownVersion.match(re);
24
- if (!myVersionMatch) {
25
- return function() {
26
- return false;
27
- };
28
- }
29
- var ownVersionParsed = {
30
- major: +myVersionMatch[1],
31
- minor: +myVersionMatch[2],
32
- patch: +myVersionMatch[3],
33
- prerelease: myVersionMatch[4]
34
- };
35
- if (ownVersionParsed.prerelease != null) {
36
- return function isExactmatch(globalVersion) {
37
- return globalVersion === ownVersion;
38
- };
39
- }
40
- function _reject(v) {
41
- rejectedVersions.add(v);
42
- return false;
43
- }
44
- function _accept(v) {
45
- acceptedVersions.add(v);
46
- return true;
47
- }
48
- return function isCompatible2(globalVersion) {
49
- if (acceptedVersions.has(globalVersion)) {
50
- return true;
51
- }
52
- if (rejectedVersions.has(globalVersion)) {
53
- return false;
54
- }
55
- var globalVersionMatch = globalVersion.match(re);
56
- if (!globalVersionMatch) {
57
- return _reject(globalVersion);
58
- }
59
- var globalVersionParsed = {
60
- major: +globalVersionMatch[1],
61
- minor: +globalVersionMatch[2],
62
- patch: +globalVersionMatch[3],
63
- prerelease: globalVersionMatch[4]
64
- };
65
- if (globalVersionParsed.prerelease != null) {
66
- return _reject(globalVersion);
67
- }
68
- if (ownVersionParsed.major !== globalVersionParsed.major) {
69
- return _reject(globalVersion);
70
- }
71
- if (ownVersionParsed.major === 0) {
72
- if (ownVersionParsed.minor === globalVersionParsed.minor && ownVersionParsed.patch <= globalVersionParsed.patch) {
73
- return _accept(globalVersion);
74
- }
75
- return _reject(globalVersion);
76
- }
77
- if (ownVersionParsed.minor <= globalVersionParsed.minor) {
78
- return _accept(globalVersion);
79
- }
80
- return _reject(globalVersion);
81
- };
82
- }
83
- var isCompatible = _makeCompatibilityCheck(VERSION);
84
-
85
- // node_modules/@opentelemetry/api/build/esm/internal/global-utils.js
86
- var major = VERSION.split(".")[0];
87
- var GLOBAL_OPENTELEMETRY_API_KEY = Symbol.for("opentelemetry.js.api." + major);
88
- var _global = _globalThis;
89
- function registerGlobal(type, instance, diag, allowOverride) {
90
- var _a;
91
- if (allowOverride === void 0) {
92
- allowOverride = false;
93
- }
94
- var api = _global[GLOBAL_OPENTELEMETRY_API_KEY] = (_a = _global[GLOBAL_OPENTELEMETRY_API_KEY]) !== null && _a !== void 0 ? _a : {
95
- version: VERSION
96
- };
97
- if (!allowOverride && api[type]) {
98
- var err = new Error("@opentelemetry/api: Attempted duplicate registration of API: " + type);
99
- diag.error(err.stack || err.message);
100
- return false;
101
- }
102
- if (api.version !== VERSION) {
103
- var err = new Error("@opentelemetry/api: Registration of version v" + api.version + " for " + type + " does not match previously registered API v" + VERSION);
104
- diag.error(err.stack || err.message);
105
- return false;
106
- }
107
- api[type] = instance;
108
- diag.debug("@opentelemetry/api: Registered a global for " + type + " v" + VERSION + ".");
109
- return true;
110
- }
111
- function getGlobal(type) {
112
- var _a, _b;
113
- var globalVersion = (_a = _global[GLOBAL_OPENTELEMETRY_API_KEY]) === null || _a === void 0 ? void 0 : _a.version;
114
- if (!globalVersion || !isCompatible(globalVersion)) {
115
- return;
116
- }
117
- return (_b = _global[GLOBAL_OPENTELEMETRY_API_KEY]) === null || _b === void 0 ? void 0 : _b[type];
118
- }
119
- function unregisterGlobal(type, diag) {
120
- diag.debug("@opentelemetry/api: Unregistering a global for " + type + " v" + VERSION + ".");
121
- var api = _global[GLOBAL_OPENTELEMETRY_API_KEY];
122
- if (api) {
123
- delete api[type];
124
- }
125
- }
126
-
127
- // node_modules/@opentelemetry/api/build/esm/diag/ComponentLogger.js
128
- var __read = function(o, n) {
129
- var m = typeof Symbol === "function" && o[Symbol.iterator];
130
- if (!m) return o;
131
- var i = m.call(o), r, ar = [], e;
132
- try {
133
- while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
134
- } catch (error) {
135
- e = { error };
136
- } finally {
137
- try {
138
- if (r && !r.done && (m = i["return"])) m.call(i);
139
- } finally {
140
- if (e) throw e.error;
141
- }
142
- }
143
- return ar;
144
- };
145
- var __spreadArray = function(to, from, pack) {
146
- if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
147
- if (ar || !(i in from)) {
148
- if (!ar) ar = Array.prototype.slice.call(from, 0, i);
149
- ar[i] = from[i];
150
- }
151
- }
152
- return to.concat(ar || Array.prototype.slice.call(from));
153
- };
154
- var DiagComponentLogger = (
155
- /** @class */
156
- function() {
157
- function DiagComponentLogger2(props) {
158
- this._namespace = props.namespace || "DiagComponentLogger";
159
- }
160
- DiagComponentLogger2.prototype.debug = function() {
161
- var args = [];
162
- for (var _i = 0; _i < arguments.length; _i++) {
163
- args[_i] = arguments[_i];
164
- }
165
- return logProxy("debug", this._namespace, args);
166
- };
167
- DiagComponentLogger2.prototype.error = function() {
168
- var args = [];
169
- for (var _i = 0; _i < arguments.length; _i++) {
170
- args[_i] = arguments[_i];
171
- }
172
- return logProxy("error", this._namespace, args);
173
- };
174
- DiagComponentLogger2.prototype.info = function() {
175
- var args = [];
176
- for (var _i = 0; _i < arguments.length; _i++) {
177
- args[_i] = arguments[_i];
178
- }
179
- return logProxy("info", this._namespace, args);
180
- };
181
- DiagComponentLogger2.prototype.warn = function() {
182
- var args = [];
183
- for (var _i = 0; _i < arguments.length; _i++) {
184
- args[_i] = arguments[_i];
185
- }
186
- return logProxy("warn", this._namespace, args);
187
- };
188
- DiagComponentLogger2.prototype.verbose = function() {
189
- var args = [];
190
- for (var _i = 0; _i < arguments.length; _i++) {
191
- args[_i] = arguments[_i];
192
- }
193
- return logProxy("verbose", this._namespace, args);
194
- };
195
- return DiagComponentLogger2;
196
- }()
197
- );
198
- function logProxy(funcName, namespace, args) {
199
- var logger2 = getGlobal("diag");
200
- if (!logger2) {
201
- return;
202
- }
203
- args.unshift(namespace);
204
- return logger2[funcName].apply(logger2, __spreadArray([], __read(args), false));
205
- }
206
-
207
- // node_modules/@opentelemetry/api/build/esm/diag/types.js
208
- var DiagLogLevel;
209
- (function(DiagLogLevel2) {
210
- DiagLogLevel2[DiagLogLevel2["NONE"] = 0] = "NONE";
211
- DiagLogLevel2[DiagLogLevel2["ERROR"] = 30] = "ERROR";
212
- DiagLogLevel2[DiagLogLevel2["WARN"] = 50] = "WARN";
213
- DiagLogLevel2[DiagLogLevel2["INFO"] = 60] = "INFO";
214
- DiagLogLevel2[DiagLogLevel2["DEBUG"] = 70] = "DEBUG";
215
- DiagLogLevel2[DiagLogLevel2["VERBOSE"] = 80] = "VERBOSE";
216
- DiagLogLevel2[DiagLogLevel2["ALL"] = 9999] = "ALL";
217
- })(DiagLogLevel || (DiagLogLevel = {}));
218
-
219
- // node_modules/@opentelemetry/api/build/esm/diag/internal/logLevelLogger.js
220
- function createLogLevelDiagLogger(maxLevel, logger2) {
221
- if (maxLevel < DiagLogLevel.NONE) {
222
- maxLevel = DiagLogLevel.NONE;
223
- } else if (maxLevel > DiagLogLevel.ALL) {
224
- maxLevel = DiagLogLevel.ALL;
225
- }
226
- logger2 = logger2 || {};
227
- function _filterFunc(funcName, theLevel) {
228
- var theFunc = logger2[funcName];
229
- if (typeof theFunc === "function" && maxLevel >= theLevel) {
230
- return theFunc.bind(logger2);
231
- }
232
- return function() {
233
- };
234
- }
235
- return {
236
- error: _filterFunc("error", DiagLogLevel.ERROR),
237
- warn: _filterFunc("warn", DiagLogLevel.WARN),
238
- info: _filterFunc("info", DiagLogLevel.INFO),
239
- debug: _filterFunc("debug", DiagLogLevel.DEBUG),
240
- verbose: _filterFunc("verbose", DiagLogLevel.VERBOSE)
241
- };
242
- }
243
-
244
- // node_modules/@opentelemetry/api/build/esm/api/diag.js
245
- var __read2 = function(o, n) {
246
- var m = typeof Symbol === "function" && o[Symbol.iterator];
247
- if (!m) return o;
248
- var i = m.call(o), r, ar = [], e;
249
- try {
250
- while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
251
- } catch (error) {
252
- e = { error };
253
- } finally {
254
- try {
255
- if (r && !r.done && (m = i["return"])) m.call(i);
256
- } finally {
257
- if (e) throw e.error;
258
- }
259
- }
260
- return ar;
261
- };
262
- var __spreadArray2 = function(to, from, pack) {
263
- if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
264
- if (ar || !(i in from)) {
265
- if (!ar) ar = Array.prototype.slice.call(from, 0, i);
266
- ar[i] = from[i];
267
- }
268
- }
269
- return to.concat(ar || Array.prototype.slice.call(from));
270
- };
271
- var API_NAME = "diag";
272
- var DiagAPI = (
273
- /** @class */
274
- function() {
275
- function DiagAPI2() {
276
- function _logProxy(funcName) {
277
- return function() {
278
- var args = [];
279
- for (var _i = 0; _i < arguments.length; _i++) {
280
- args[_i] = arguments[_i];
281
- }
282
- var logger2 = getGlobal("diag");
283
- if (!logger2)
284
- return;
285
- return logger2[funcName].apply(logger2, __spreadArray2([], __read2(args), false));
286
- };
287
- }
288
- var self = this;
289
- var setLogger = function(logger2, optionsOrLogLevel) {
290
- var _a, _b, _c;
291
- if (optionsOrLogLevel === void 0) {
292
- optionsOrLogLevel = { logLevel: DiagLogLevel.INFO };
293
- }
294
- if (logger2 === self) {
295
- var err = new Error("Cannot use diag as the logger for itself. Please use a DiagLogger implementation like ConsoleDiagLogger or a custom implementation");
296
- self.error((_a = err.stack) !== null && _a !== void 0 ? _a : err.message);
297
- return false;
298
- }
299
- if (typeof optionsOrLogLevel === "number") {
300
- optionsOrLogLevel = {
301
- logLevel: optionsOrLogLevel
302
- };
303
- }
304
- var oldLogger = getGlobal("diag");
305
- var newLogger = createLogLevelDiagLogger((_b = optionsOrLogLevel.logLevel) !== null && _b !== void 0 ? _b : DiagLogLevel.INFO, logger2);
306
- if (oldLogger && !optionsOrLogLevel.suppressOverrideMessage) {
307
- var stack = (_c = new Error().stack) !== null && _c !== void 0 ? _c : "<failed to generate stacktrace>";
308
- oldLogger.warn("Current logger will be overwritten from " + stack);
309
- newLogger.warn("Current logger will overwrite one already registered from " + stack);
310
- }
311
- return registerGlobal("diag", newLogger, self, true);
312
- };
313
- self.setLogger = setLogger;
314
- self.disable = function() {
315
- unregisterGlobal(API_NAME, self);
316
- };
317
- self.createComponentLogger = function(options) {
318
- return new DiagComponentLogger(options);
319
- };
320
- self.verbose = _logProxy("verbose");
321
- self.debug = _logProxy("debug");
322
- self.info = _logProxy("info");
323
- self.warn = _logProxy("warn");
324
- self.error = _logProxy("error");
325
- }
326
- DiagAPI2.instance = function() {
327
- if (!this._instance) {
328
- this._instance = new DiagAPI2();
329
- }
330
- return this._instance;
331
- };
332
- return DiagAPI2;
333
- }()
334
- );
335
-
336
- // node_modules/@opentelemetry/api/build/esm/context/context.js
337
- var BaseContext = (
338
- /** @class */
339
- /* @__PURE__ */ function() {
340
- function BaseContext2(parentContext) {
341
- var self = this;
342
- self._currentContext = parentContext ? new Map(parentContext) : /* @__PURE__ */ new Map();
343
- self.getValue = function(key) {
344
- return self._currentContext.get(key);
345
- };
346
- self.setValue = function(key, value) {
347
- var context2 = new BaseContext2(self._currentContext);
348
- context2._currentContext.set(key, value);
349
- return context2;
350
- };
351
- self.deleteValue = function(key) {
352
- var context2 = new BaseContext2(self._currentContext);
353
- context2._currentContext.delete(key);
354
- return context2;
355
- };
356
- }
357
- return BaseContext2;
358
- }()
359
- );
360
- var ROOT_CONTEXT = new BaseContext();
361
-
362
- // node_modules/@opentelemetry/api/build/esm/context/NoopContextManager.js
363
- var __read3 = function(o, n) {
364
- var m = typeof Symbol === "function" && o[Symbol.iterator];
365
- if (!m) return o;
366
- var i = m.call(o), r, ar = [], e;
367
- try {
368
- while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
369
- } catch (error) {
370
- e = { error };
371
- } finally {
372
- try {
373
- if (r && !r.done && (m = i["return"])) m.call(i);
374
- } finally {
375
- if (e) throw e.error;
376
- }
377
- }
378
- return ar;
379
- };
380
- var __spreadArray3 = function(to, from, pack) {
381
- if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
382
- if (ar || !(i in from)) {
383
- if (!ar) ar = Array.prototype.slice.call(from, 0, i);
384
- ar[i] = from[i];
385
- }
386
- }
387
- return to.concat(ar || Array.prototype.slice.call(from));
388
- };
389
- var NoopContextManager = (
390
- /** @class */
391
- function() {
392
- function NoopContextManager2() {
393
- }
394
- NoopContextManager2.prototype.active = function() {
395
- return ROOT_CONTEXT;
396
- };
397
- NoopContextManager2.prototype.with = function(_context, fn, thisArg) {
398
- var args = [];
399
- for (var _i = 3; _i < arguments.length; _i++) {
400
- args[_i - 3] = arguments[_i];
401
- }
402
- return fn.call.apply(fn, __spreadArray3([thisArg], __read3(args), false));
403
- };
404
- NoopContextManager2.prototype.bind = function(_context, target) {
405
- return target;
406
- };
407
- NoopContextManager2.prototype.enable = function() {
408
- return this;
409
- };
410
- NoopContextManager2.prototype.disable = function() {
411
- return this;
412
- };
413
- return NoopContextManager2;
414
- }()
415
- );
416
-
417
- // node_modules/@opentelemetry/api/build/esm/api/context.js
418
- var __read4 = function(o, n) {
419
- var m = typeof Symbol === "function" && o[Symbol.iterator];
420
- if (!m) return o;
421
- var i = m.call(o), r, ar = [], e;
422
- try {
423
- while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
424
- } catch (error) {
425
- e = { error };
426
- } finally {
427
- try {
428
- if (r && !r.done && (m = i["return"])) m.call(i);
429
- } finally {
430
- if (e) throw e.error;
431
- }
432
- }
433
- return ar;
434
- };
435
- var __spreadArray4 = function(to, from, pack) {
436
- if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
437
- if (ar || !(i in from)) {
438
- if (!ar) ar = Array.prototype.slice.call(from, 0, i);
439
- ar[i] = from[i];
440
- }
441
- }
442
- return to.concat(ar || Array.prototype.slice.call(from));
443
- };
444
- var API_NAME2 = "context";
445
- var NOOP_CONTEXT_MANAGER = new NoopContextManager();
446
- var ContextAPI = (
447
- /** @class */
448
- function() {
449
- function ContextAPI2() {
450
- }
451
- ContextAPI2.getInstance = function() {
452
- if (!this._instance) {
453
- this._instance = new ContextAPI2();
454
- }
455
- return this._instance;
456
- };
457
- ContextAPI2.prototype.setGlobalContextManager = function(contextManager) {
458
- return registerGlobal(API_NAME2, contextManager, DiagAPI.instance());
459
- };
460
- ContextAPI2.prototype.active = function() {
461
- return this._getContextManager().active();
462
- };
463
- ContextAPI2.prototype.with = function(context2, fn, thisArg) {
464
- var _a;
465
- var args = [];
466
- for (var _i = 3; _i < arguments.length; _i++) {
467
- args[_i - 3] = arguments[_i];
468
- }
469
- return (_a = this._getContextManager()).with.apply(_a, __spreadArray4([context2, fn, thisArg], __read4(args), false));
470
- };
471
- ContextAPI2.prototype.bind = function(context2, target) {
472
- return this._getContextManager().bind(context2, target);
473
- };
474
- ContextAPI2.prototype._getContextManager = function() {
475
- return getGlobal(API_NAME2) || NOOP_CONTEXT_MANAGER;
476
- };
477
- ContextAPI2.prototype.disable = function() {
478
- this._getContextManager().disable();
479
- unregisterGlobal(API_NAME2, DiagAPI.instance());
480
- };
481
- return ContextAPI2;
482
- }()
483
- );
484
-
485
- // node_modules/@opentelemetry/api/build/esm/trace/status.js
486
- var SpanStatusCode;
487
- (function(SpanStatusCode2) {
488
- SpanStatusCode2[SpanStatusCode2["UNSET"] = 0] = "UNSET";
489
- SpanStatusCode2[SpanStatusCode2["OK"] = 1] = "OK";
490
- SpanStatusCode2[SpanStatusCode2["ERROR"] = 2] = "ERROR";
491
- })(SpanStatusCode || (SpanStatusCode = {}));
492
-
493
- // node_modules/@opentelemetry/api/build/esm/context-api.js
494
- var context = ContextAPI.getInstance();
495
-
496
- // src/index.ts
497
9
  import {
498
10
  generateObject,
499
11
  generateText,
@@ -501,60 +13,6 @@ import {
501
13
  } from "ai";
502
14
  import { encodingForModel } from "js-tiktoken";
503
15
  import { fetch, FormData } from "undici";
504
- function getTracer(runtime) {
505
- const availableServices = Array.from(runtime.getAllServices().keys());
506
- logger.debug(`[getTracer] Available services: ${JSON.stringify(availableServices)}`);
507
- logger.debug(`[getTracer] Attempting to get service with key: ${ServiceType.INSTRUMENTATION}`);
508
- const instrumentationService = runtime.getService(
509
- ServiceType.INSTRUMENTATION
510
- );
511
- if (!instrumentationService) {
512
- logger.warn(`[getTracer] Service ${ServiceType.INSTRUMENTATION} not found in runtime.`);
513
- return null;
514
- }
515
- if (!instrumentationService.isEnabled()) {
516
- logger.debug("[getTracer] Instrumentation service found but is disabled.");
517
- return null;
518
- }
519
- logger.debug("[getTracer] Successfully retrieved enabled instrumentation service.");
520
- return instrumentationService.getTracer("eliza.llm.openai");
521
- }
522
- async function startLlmSpan(runtime, spanName, attributes, fn) {
523
- const tracer = getTracer(runtime);
524
- if (!tracer) {
525
- const dummySpan = {
526
- setAttribute: () => {
527
- },
528
- setAttributes: () => {
529
- },
530
- addEvent: () => {
531
- },
532
- recordException: () => {
533
- },
534
- setStatus: () => {
535
- },
536
- end: () => {
537
- },
538
- spanContext: () => ({ traceId: "", spanId: "", traceFlags: 0 })
539
- };
540
- return fn(dummySpan);
541
- }
542
- const activeContext = context.active();
543
- return tracer.startActiveSpan(spanName, { attributes }, activeContext, async (span) => {
544
- try {
545
- const result = await fn(span);
546
- span.setStatus({ code: SpanStatusCode.OK });
547
- span.end();
548
- return result;
549
- } catch (error) {
550
- const message = error instanceof Error ? error.message : String(error);
551
- span.recordException(error);
552
- span.setStatus({ code: SpanStatusCode.ERROR, message });
553
- span.end();
554
- throw error;
555
- }
556
- });
557
- }
558
16
  function getSetting(runtime, key, defaultValue) {
559
17
  return runtime.getSetting(key) ?? process.env[key] ?? defaultValue;
560
18
  }
@@ -575,6 +33,15 @@ function getEmbeddingBaseURL(runtime) {
575
33
  function getApiKey(runtime) {
576
34
  return getSetting(runtime, "OPENAI_API_KEY");
577
35
  }
36
+ function getEmbeddingApiKey(runtime) {
37
+ const embeddingApiKey = getSetting(runtime, "OPENAI_EMBEDDING_API_KEY");
38
+ if (embeddingApiKey) {
39
+ logger.debug(`[OpenAI] Using specific embedding API key: ${embeddingApiKey}`);
40
+ return embeddingApiKey;
41
+ }
42
+ logger.debug("[OpenAI] Falling back to general API key for embeddings.");
43
+ return getApiKey(runtime);
44
+ }
578
45
  function getSmallModel(runtime) {
579
46
  return getSetting(runtime, "OPENAI_SMALL_MODEL") ?? getSetting(runtime, "SMALL_MODEL", "gpt-4o-mini");
580
47
  }
@@ -607,106 +74,51 @@ async function generateObjectByModelType(runtime, params, modelType, getModelFn)
607
74
  logger.log(`[OpenAI] Using ${modelType} model: ${modelName}`);
608
75
  const temperature = params.temperature ?? 0;
609
76
  const schemaPresent = !!params.schema;
610
- const attributes = {
611
- "llm.vendor": "OpenAI",
612
- "llm.request.type": "object_generation",
613
- "llm.request.model": modelName,
614
- "llm.request.temperature": temperature,
615
- "llm.request.schema_present": schemaPresent
616
- };
617
- return startLlmSpan(runtime, "LLM.generateObject", attributes, async (span) => {
618
- span.addEvent("llm.prompt", { "prompt.content": params.prompt });
619
- if (schemaPresent) {
620
- span.addEvent("llm.request.schema", {
621
- schema: JSON.stringify(params.schema, safeReplacer())
622
- });
623
- logger.info(
624
- `Using ${modelType} without schema validation (schema provided but output=no-schema)`
625
- );
77
+ if (schemaPresent) {
78
+ logger.info(
79
+ `Using ${modelType} without schema validation (schema provided but output=no-schema)`
80
+ );
81
+ }
82
+ try {
83
+ const { object, usage } = await generateObject({
84
+ model: openai.languageModel(modelName),
85
+ output: "no-schema",
86
+ prompt: params.prompt,
87
+ temperature,
88
+ experimental_repairText: getJsonRepairFunction()
89
+ });
90
+ if (usage) {
91
+ emitModelUsageEvent(runtime, modelType, params.prompt, usage);
626
92
  }
627
- try {
628
- const { object, usage } = await generateObject({
629
- model: openai.languageModel(modelName),
630
- output: "no-schema",
631
- prompt: params.prompt,
632
- temperature,
633
- experimental_repairText: getJsonRepairFunction()
634
- });
635
- span.addEvent("llm.response.processed", {
636
- "response.object": JSON.stringify(object, safeReplacer())
93
+ return object;
94
+ } catch (error) {
95
+ if (error instanceof JSONParseError) {
96
+ logger.error(`[generateObject] Failed to parse JSON: ${error.message}`);
97
+ const repairFunction = getJsonRepairFunction();
98
+ const repairedJsonString = await repairFunction({
99
+ text: error.text,
100
+ error
637
101
  });
638
- if (usage) {
639
- span.setAttributes({
640
- "llm.usage.prompt_tokens": usage.promptTokens,
641
- "llm.usage.completion_tokens": usage.completionTokens,
642
- "llm.usage.total_tokens": usage.totalTokens
643
- });
644
- emitModelUsageEvent(runtime, modelType, params.prompt, usage);
645
- }
646
- return object;
647
- } catch (error) {
648
- if (error instanceof JSONParseError) {
649
- logger.error(`[generateObject] Failed to parse JSON: ${error.message}`);
650
- span.recordException(error);
651
- span.addEvent("llm.error.json_parse", {
652
- "error.message": error.message,
653
- "error.text": error.text
654
- });
655
- span.addEvent("llm.repair.attempt");
656
- const repairFunction = getJsonRepairFunction();
657
- const repairedJsonString = await repairFunction({
658
- text: error.text,
659
- error
660
- });
661
- if (repairedJsonString) {
662
- try {
663
- const repairedObject = JSON.parse(repairedJsonString);
664
- span.addEvent("llm.repair.success", {
665
- repaired_object: JSON.stringify(repairedObject, safeReplacer())
666
- });
667
- logger.info("[generateObject] Successfully repaired JSON.");
668
- span.setStatus({
669
- code: SpanStatusCode.ERROR,
670
- message: "JSON parsing failed but was repaired"
671
- });
672
- return repairedObject;
673
- } catch (repairParseError) {
674
- const message = repairParseError instanceof Error ? repairParseError.message : String(repairParseError);
675
- logger.error(`[generateObject] Failed to parse repaired JSON: ${message}`);
676
- const exception = repairParseError instanceof Error ? repairParseError : new Error(message);
677
- span.recordException(exception);
678
- span.addEvent("llm.repair.parse_error", {
679
- "error.message": message
680
- });
681
- span.setStatus({
682
- code: SpanStatusCode.ERROR,
683
- message: `JSON repair failed: ${message}`
684
- });
685
- throw repairParseError;
686
- }
687
- } else {
688
- const errMsg = error instanceof Error ? error.message : String(error);
689
- logger.error("[generateObject] JSON repair failed.");
690
- span.addEvent("llm.repair.failed");
691
- span.setStatus({
692
- code: SpanStatusCode.ERROR,
693
- message: `JSON repair failed: ${errMsg}`
694
- });
695
- throw error;
102
+ if (repairedJsonString) {
103
+ try {
104
+ const repairedObject = JSON.parse(repairedJsonString);
105
+ logger.info("[generateObject] Successfully repaired JSON.");
106
+ return repairedObject;
107
+ } catch (repairParseError) {
108
+ const message = repairParseError instanceof Error ? repairParseError.message : String(repairParseError);
109
+ logger.error(`[generateObject] Failed to parse repaired JSON: ${message}`);
110
+ throw repairParseError;
696
111
  }
697
112
  } else {
698
- const message = error instanceof Error ? error.message : String(error);
699
- logger.error(`[generateObject] Unknown error: ${message}`);
700
- const exception = error instanceof Error ? error : new Error(message);
701
- span.recordException(exception);
702
- span.setStatus({
703
- code: SpanStatusCode.ERROR,
704
- message
705
- });
113
+ logger.error("[generateObject] JSON repair failed.");
706
114
  throw error;
707
115
  }
116
+ } else {
117
+ const message = error instanceof Error ? error.message : String(error);
118
+ logger.error(`[generateObject] Unknown error: ${message}`);
119
+ throw error;
708
120
  }
709
- });
121
+ }
710
122
  }
711
123
  function getJsonRepairFunction() {
712
124
  return async ({ text, error }) => {
@@ -777,41 +189,45 @@ var openaiPlugin = {
777
189
  SMALL_MODEL: process.env.SMALL_MODEL,
778
190
  LARGE_MODEL: process.env.LARGE_MODEL,
779
191
  OPENAI_EMBEDDING_MODEL: process.env.OPENAI_EMBEDDING_MODEL,
192
+ OPENAI_EMBEDDING_API_KEY: process.env.OPENAI_EMBEDDING_API_KEY,
780
193
  OPENAI_EMBEDDING_URL: process.env.OPENAI_EMBEDDING_URL,
781
194
  OPENAI_EMBEDDING_DIMENSIONS: process.env.OPENAI_EMBEDDING_DIMENSIONS,
782
195
  OPENAI_IMAGE_DESCRIPTION_MODEL: process.env.OPENAI_IMAGE_DESCRIPTION_MODEL,
783
196
  OPENAI_IMAGE_DESCRIPTION_MAX_TOKENS: process.env.OPENAI_IMAGE_DESCRIPTION_MAX_TOKENS
784
197
  },
785
198
  async init(_config, runtime) {
786
- try {
787
- if (!getApiKey(runtime)) {
788
- logger.warn(
789
- "OPENAI_API_KEY is not set in environment - OpenAI functionality will be limited"
790
- );
791
- return;
792
- }
199
+ new Promise(async (resolve) => {
200
+ resolve();
793
201
  try {
794
- const baseURL = getBaseURL(runtime);
795
- const response = await fetch(`${baseURL}/models`, {
796
- headers: { Authorization: `Bearer ${getApiKey(runtime)}` }
797
- });
798
- if (!response.ok) {
799
- logger.warn(`OpenAI API key validation failed: ${response.statusText}`);
202
+ if (!getApiKey(runtime)) {
203
+ logger.warn(
204
+ "OPENAI_API_KEY is not set in environment - OpenAI functionality will be limited"
205
+ );
206
+ return;
207
+ }
208
+ try {
209
+ const baseURL = getBaseURL(runtime);
210
+ const response = await fetch(`${baseURL}/models`, {
211
+ headers: { Authorization: `Bearer ${getApiKey(runtime)}` }
212
+ });
213
+ if (!response.ok) {
214
+ logger.warn(`OpenAI API key validation failed: ${response.statusText}`);
215
+ logger.warn("OpenAI functionality will be limited until a valid API key is provided");
216
+ } else {
217
+ logger.log("OpenAI API key validated successfully");
218
+ }
219
+ } catch (fetchError) {
220
+ const message = fetchError instanceof Error ? fetchError.message : String(fetchError);
221
+ logger.warn(`Error validating OpenAI API key: ${message}`);
800
222
  logger.warn("OpenAI functionality will be limited until a valid API key is provided");
801
- } else {
802
- logger.log("OpenAI API key validated successfully");
803
223
  }
804
- } catch (fetchError) {
805
- const message = fetchError instanceof Error ? fetchError.message : String(fetchError);
806
- logger.warn(`Error validating OpenAI API key: ${message}`);
807
- logger.warn("OpenAI functionality will be limited until a valid API key is provided");
224
+ } catch (error) {
225
+ const message = error?.errors?.map((e) => e.message).join(", ") || (error instanceof Error ? error.message : String(error));
226
+ logger.warn(
227
+ `OpenAI plugin configuration issue: ${message} - You need to configure the OPENAI_API_KEY in your environment variables`
228
+ );
808
229
  }
809
- } catch (error) {
810
- const message = error?.errors?.map((e) => e.message).join(", ") || (error instanceof Error ? error.message : String(error));
811
- logger.warn(
812
- `OpenAI plugin configuration issue: ${message} - You need to configure the OPENAI_API_KEY in your environment variables`
813
- );
814
- }
230
+ });
815
231
  },
816
232
  models: {
817
233
  [ModelType.TEXT_EMBEDDING]: async (runtime, params) => {
@@ -855,90 +271,56 @@ var openaiPlugin = {
855
271
  emptyVector[0] = 0.3;
856
272
  return emptyVector;
857
273
  }
858
- const attributes = {
859
- "llm.vendor": "OpenAI",
860
- "llm.request.type": "embedding",
861
- "llm.request.model": embeddingModelName,
862
- "llm.request.embedding.dimensions": embeddingDimension,
863
- "input.text.length": text.length
864
- };
865
- return startLlmSpan(runtime, "LLM.embedding", attributes, async (span) => {
866
- span.addEvent("llm.prompt", { "prompt.content": text });
867
- const embeddingBaseURL = getEmbeddingBaseURL(runtime);
868
- const apiKey = getApiKey(runtime);
869
- if (!apiKey) {
870
- span.setStatus({
871
- code: SpanStatusCode.ERROR,
872
- message: "OpenAI API key not configured"
873
- });
874
- throw new Error("OpenAI API key not configured");
274
+ const embeddingBaseURL = getEmbeddingBaseURL(runtime);
275
+ const apiKey = getEmbeddingApiKey(runtime);
276
+ if (!apiKey) {
277
+ throw new Error("OpenAI API key not configured");
278
+ }
279
+ try {
280
+ const response = await fetch(`${embeddingBaseURL}/embeddings`, {
281
+ method: "POST",
282
+ headers: {
283
+ Authorization: `Bearer ${apiKey}`,
284
+ "Content-Type": "application/json"
285
+ },
286
+ body: JSON.stringify({
287
+ model: embeddingModelName,
288
+ input: text
289
+ })
290
+ });
291
+ const responseClone = response.clone();
292
+ const rawResponseBody = await responseClone.text();
293
+ if (!response.ok) {
294
+ logger.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
295
+ const errorVector = Array(embeddingDimension).fill(0);
296
+ errorVector[0] = 0.4;
297
+ return errorVector;
875
298
  }
876
- try {
877
- const response = await fetch(`${embeddingBaseURL}/embeddings`, {
878
- method: "POST",
879
- headers: {
880
- Authorization: `Bearer ${apiKey}`,
881
- "Content-Type": "application/json"
882
- },
883
- body: JSON.stringify({
884
- model: embeddingModelName,
885
- input: text
886
- })
887
- });
888
- const responseClone = response.clone();
889
- const rawResponseBody = await responseClone.text();
890
- span.addEvent("llm.response.raw", {
891
- "response.body": rawResponseBody
892
- });
893
- if (!response.ok) {
894
- logger.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
895
- span.setAttributes({ "error.api.status": response.status });
896
- span.setStatus({
897
- code: SpanStatusCode.ERROR,
898
- message: `OpenAI API error: ${response.status} - ${response.statusText}. Response: ${rawResponseBody}`
899
- });
900
- const errorVector = Array(embeddingDimension).fill(0);
901
- errorVector[0] = 0.4;
902
- return errorVector;
903
- }
904
- const data = await response.json();
905
- if (!data?.data?.[0]?.embedding) {
906
- logger.error("API returned invalid structure");
907
- span.setStatus({
908
- code: SpanStatusCode.ERROR,
909
- message: "API returned invalid structure"
910
- });
911
- const errorVector = Array(embeddingDimension).fill(0);
912
- errorVector[0] = 0.5;
913
- return errorVector;
914
- }
915
- const embedding = data.data[0].embedding;
916
- span.setAttribute("llm.response.embedding.vector_length", embedding.length);
917
- if (data.usage) {
918
- span.setAttributes({
919
- "llm.usage.prompt_tokens": data.usage.prompt_tokens,
920
- "llm.usage.total_tokens": data.usage.total_tokens
921
- });
922
- const usage = {
923
- promptTokens: data.usage.prompt_tokens,
924
- completionTokens: 0,
925
- totalTokens: data.usage.total_tokens
926
- };
927
- emitModelUsageEvent(runtime, ModelType.TEXT_EMBEDDING, text, usage);
928
- }
929
- logger.log(`Got valid embedding with length ${embedding.length}`);
930
- return embedding;
931
- } catch (error) {
932
- const message = error instanceof Error ? error.message : String(error);
933
- logger.error(`Error generating embedding: ${message}`);
934
- const exception = error instanceof Error ? error : new Error(message);
935
- span.recordException(exception);
936
- span.setStatus({ code: SpanStatusCode.ERROR, message });
299
+ const data = await response.json();
300
+ if (!data?.data?.[0]?.embedding) {
301
+ logger.error("API returned invalid structure");
937
302
  const errorVector = Array(embeddingDimension).fill(0);
938
- errorVector[0] = 0.6;
303
+ errorVector[0] = 0.5;
939
304
  return errorVector;
940
305
  }
941
- });
306
+ const embedding = data.data[0].embedding;
307
+ if (data.usage) {
308
+ const usage = {
309
+ promptTokens: data.usage.prompt_tokens,
310
+ completionTokens: 0,
311
+ totalTokens: data.usage.total_tokens
312
+ };
313
+ emitModelUsageEvent(runtime, ModelType.TEXT_EMBEDDING, text, usage);
314
+ }
315
+ logger.log(`Got valid embedding with length ${embedding.length}`);
316
+ return embedding;
317
+ } catch (error) {
318
+ const message = error instanceof Error ? error.message : String(error);
319
+ logger.error(`Error generating embedding: ${message}`);
320
+ const errorVector = Array(embeddingDimension).fill(0);
321
+ errorVector[0] = 0.6;
322
+ return errorVector;
323
+ }
942
324
  },
943
325
  [ModelType.TEXT_TOKENIZER_ENCODE]: async (_runtime, { prompt, modelType = ModelType.TEXT_LARGE }) => {
944
326
  return await tokenizeText(modelType ?? ModelType.TEXT_LARGE, prompt);
@@ -955,42 +337,20 @@ var openaiPlugin = {
955
337
  const modelName = getSmallModel(runtime);
956
338
  logger.log(`[OpenAI] Using TEXT_SMALL model: ${modelName}`);
957
339
  logger.log(prompt);
958
- const attributes = {
959
- "llm.vendor": "OpenAI",
960
- "llm.request.type": "completion",
961
- "llm.request.model": modelName,
962
- "llm.request.temperature": temperature,
963
- "llm.request.max_tokens": max_response_length,
964
- "llm.request.frequency_penalty": frequency_penalty,
965
- "llm.request.presence_penalty": presence_penalty,
966
- "llm.request.stop_sequences": JSON.stringify(stopSequences)
967
- };
968
- return startLlmSpan(runtime, "LLM.generateText", attributes, async (span) => {
969
- span.addEvent("llm.prompt", { "prompt.content": prompt });
970
- const { text: openaiResponse, usage } = await generateText({
971
- model: openai.languageModel(modelName),
972
- prompt,
973
- system: runtime.character.system ?? void 0,
974
- temperature,
975
- maxTokens: max_response_length,
976
- frequencyPenalty: frequency_penalty,
977
- presencePenalty: presence_penalty,
978
- stopSequences
979
- });
980
- span.setAttribute("llm.response.processed.length", openaiResponse.length);
981
- span.addEvent("llm.response.processed", {
982
- "response.content": openaiResponse.substring(0, 200) + (openaiResponse.length > 200 ? "..." : "")
983
- });
984
- if (usage) {
985
- span.setAttributes({
986
- "llm.usage.prompt_tokens": usage.promptTokens,
987
- "llm.usage.completion_tokens": usage.completionTokens,
988
- "llm.usage.total_tokens": usage.totalTokens
989
- });
990
- emitModelUsageEvent(runtime, ModelType.TEXT_SMALL, prompt, usage);
991
- }
992
- return openaiResponse;
340
+ const { text: openaiResponse, usage } = await generateText({
341
+ model: openai.languageModel(modelName),
342
+ prompt,
343
+ system: runtime.character.system ?? void 0,
344
+ temperature,
345
+ maxTokens: max_response_length,
346
+ frequencyPenalty: frequency_penalty,
347
+ presencePenalty: presence_penalty,
348
+ stopSequences
993
349
  });
350
+ if (usage) {
351
+ emitModelUsageEvent(runtime, ModelType.TEXT_SMALL, prompt, usage);
352
+ }
353
+ return openaiResponse;
994
354
  },
995
355
  [ModelType.TEXT_LARGE]: async (runtime, {
996
356
  prompt,
@@ -1004,42 +364,20 @@ var openaiPlugin = {
1004
364
  const modelName = getLargeModel(runtime);
1005
365
  logger.log(`[OpenAI] Using TEXT_LARGE model: ${modelName}`);
1006
366
  logger.log(prompt);
1007
- const attributes = {
1008
- "llm.vendor": "OpenAI",
1009
- "llm.request.type": "completion",
1010
- "llm.request.model": modelName,
1011
- "llm.request.temperature": temperature,
1012
- "llm.request.max_tokens": maxTokens,
1013
- "llm.request.frequency_penalty": frequencyPenalty,
1014
- "llm.request.presence_penalty": presencePenalty,
1015
- "llm.request.stop_sequences": JSON.stringify(stopSequences)
1016
- };
1017
- return startLlmSpan(runtime, "LLM.generateText", attributes, async (span) => {
1018
- span.addEvent("llm.prompt", { "prompt.content": prompt });
1019
- const { text: openaiResponse, usage } = await generateText({
1020
- model: openai.languageModel(modelName),
1021
- prompt,
1022
- system: runtime.character.system ?? void 0,
1023
- temperature,
1024
- maxTokens,
1025
- frequencyPenalty,
1026
- presencePenalty,
1027
- stopSequences
1028
- });
1029
- span.setAttribute("llm.response.processed.length", openaiResponse.length);
1030
- span.addEvent("llm.response.processed", {
1031
- "response.content": openaiResponse.substring(0, 200) + (openaiResponse.length > 200 ? "..." : "")
1032
- });
1033
- if (usage) {
1034
- span.setAttributes({
1035
- "llm.usage.prompt_tokens": usage.promptTokens,
1036
- "llm.usage.completion_tokens": usage.completionTokens,
1037
- "llm.usage.total_tokens": usage.totalTokens
1038
- });
1039
- emitModelUsageEvent(runtime, ModelType.TEXT_LARGE, prompt, usage);
1040
- }
1041
- return openaiResponse;
367
+ const { text: openaiResponse, usage } = await generateText({
368
+ model: openai.languageModel(modelName),
369
+ prompt,
370
+ system: runtime.character.system ?? void 0,
371
+ temperature,
372
+ maxTokens,
373
+ frequencyPenalty,
374
+ presencePenalty,
375
+ stopSequences
1042
376
  });
377
+ if (usage) {
378
+ emitModelUsageEvent(runtime, ModelType.TEXT_LARGE, prompt, usage);
379
+ }
380
+ return openaiResponse;
1043
381
  },
1044
382
  [ModelType.IMAGE]: async (runtime, params) => {
1045
383
  const n = params.n || 1;
@@ -1047,63 +385,36 @@ var openaiPlugin = {
1047
385
  const prompt = params.prompt;
1048
386
  const modelName = "dall-e-3";
1049
387
  logger.log(`[OpenAI] Using IMAGE model: ${modelName}`);
1050
- const attributes = {
1051
- "llm.vendor": "OpenAI",
1052
- "llm.request.type": "image_generation",
1053
- "llm.request.image.size": size,
1054
- "llm.request.image.count": n
1055
- };
1056
- return startLlmSpan(runtime, "LLM.imageGeneration", attributes, async (span) => {
1057
- span.addEvent("llm.prompt", { "prompt.content": prompt });
1058
- const baseURL = getBaseURL(runtime);
1059
- const apiKey = getApiKey(runtime);
1060
- if (!apiKey) {
1061
- span.setStatus({
1062
- code: SpanStatusCode.ERROR,
1063
- message: "OpenAI API key not configured"
1064
- });
1065
- throw new Error("OpenAI API key not configured");
1066
- }
1067
- try {
1068
- const response = await fetch(`${baseURL}/images/generations`, {
1069
- method: "POST",
1070
- headers: {
1071
- Authorization: `Bearer ${apiKey}`,
1072
- "Content-Type": "application/json"
1073
- },
1074
- body: JSON.stringify({
1075
- prompt,
1076
- n,
1077
- size
1078
- })
1079
- });
1080
- const responseClone = response.clone();
1081
- const rawResponseBody = await responseClone.text();
1082
- span.addEvent("llm.response.raw", {
1083
- "response.body": rawResponseBody
1084
- });
1085
- if (!response.ok) {
1086
- span.setAttributes({ "error.api.status": response.status });
1087
- span.setStatus({
1088
- code: SpanStatusCode.ERROR,
1089
- message: `Failed to generate image: ${response.statusText}. Response: ${rawResponseBody}`
1090
- });
1091
- throw new Error(`Failed to generate image: ${response.statusText}`);
1092
- }
1093
- const data = await response.json();
1094
- const typedData = data;
1095
- span.addEvent("llm.response.processed", {
1096
- "response.urls": JSON.stringify(typedData.data)
1097
- });
1098
- return typedData.data;
1099
- } catch (error) {
1100
- const message = error instanceof Error ? error.message : String(error);
1101
- const exception = error instanceof Error ? error : new Error(message);
1102
- span.recordException(exception);
1103
- span.setStatus({ code: SpanStatusCode.ERROR, message });
1104
- throw error;
388
+ const baseURL = getBaseURL(runtime);
389
+ const apiKey = getApiKey(runtime);
390
+ if (!apiKey) {
391
+ throw new Error("OpenAI API key not configured");
392
+ }
393
+ try {
394
+ const response = await fetch(`${baseURL}/images/generations`, {
395
+ method: "POST",
396
+ headers: {
397
+ Authorization: `Bearer ${apiKey}`,
398
+ "Content-Type": "application/json"
399
+ },
400
+ body: JSON.stringify({
401
+ prompt,
402
+ n,
403
+ size
404
+ })
405
+ });
406
+ const responseClone = response.clone();
407
+ const rawResponseBody = await responseClone.text();
408
+ if (!response.ok) {
409
+ throw new Error(`Failed to generate image: ${response.statusText}`);
1105
410
  }
1106
- });
411
+ const data = await response.json();
412
+ const typedData = data;
413
+ return typedData.data;
414
+ } catch (error) {
415
+ const message = error instanceof Error ? error.message : String(error);
416
+ throw error;
417
+ }
1107
418
  },
1108
419
  [ModelType.IMAGE_DESCRIPTION]: async (runtime, params) => {
1109
420
  let imageUrl;
@@ -1121,13 +432,6 @@ var openaiPlugin = {
1121
432
  imageUrl = params.imageUrl;
1122
433
  promptText = params.prompt || "Please analyze this image and provide a title and detailed description.";
1123
434
  }
1124
- const attributes = {
1125
- "llm.vendor": "OpenAI",
1126
- "llm.request.type": "chat",
1127
- "llm.request.model": modelName,
1128
- "llm.request.max_tokens": maxTokens,
1129
- "llm.request.image.url": imageUrl
1130
- };
1131
435
  const messages = [
1132
436
  {
1133
437
  role: "user",
@@ -1137,209 +441,122 @@ var openaiPlugin = {
1137
441
  ]
1138
442
  }
1139
443
  ];
1140
- return startLlmSpan(runtime, "LLM.imageDescription", attributes, async (span) => {
1141
- span.addEvent("llm.prompt", {
1142
- "prompt.content": JSON.stringify(messages, safeReplacer())
444
+ const baseURL = getBaseURL(runtime);
445
+ const apiKey = getApiKey(runtime);
446
+ if (!apiKey) {
447
+ logger.error("OpenAI API key not set");
448
+ return {
449
+ title: "Failed to analyze image",
450
+ description: "API key not configured"
451
+ };
452
+ }
453
+ try {
454
+ const requestBody = {
455
+ model: modelName,
456
+ messages,
457
+ max_tokens: maxTokens
458
+ };
459
+ const response = await fetch(`${baseURL}/chat/completions`, {
460
+ method: "POST",
461
+ headers: {
462
+ "Content-Type": "application/json",
463
+ Authorization: `Bearer ${apiKey}`
464
+ },
465
+ body: JSON.stringify(requestBody)
1143
466
  });
1144
- const baseURL = getBaseURL(runtime);
1145
- const apiKey = getApiKey(runtime);
1146
- if (!apiKey) {
1147
- logger.error("OpenAI API key not set");
1148
- span.setStatus({
1149
- code: SpanStatusCode.ERROR,
1150
- message: "OpenAI API key not configured"
1151
- });
1152
- return {
1153
- title: "Failed to analyze image",
1154
- description: "API key not configured"
1155
- };
467
+ const responseClone = response.clone();
468
+ const rawResponseBody = await responseClone.text();
469
+ if (!response.ok) {
470
+ throw new Error(`OpenAI API error: ${response.status}`);
1156
471
  }
1157
- try {
1158
- const requestBody = {
1159
- model: modelName,
1160
- messages,
1161
- max_tokens: maxTokens
1162
- };
1163
- const response = await fetch(`${baseURL}/chat/completions`, {
1164
- method: "POST",
1165
- headers: {
1166
- "Content-Type": "application/json",
1167
- Authorization: `Bearer ${apiKey}`
1168
- },
1169
- body: JSON.stringify(requestBody)
1170
- });
1171
- const responseClone = response.clone();
1172
- const rawResponseBody = await responseClone.text();
1173
- span.addEvent("llm.response.raw", {
1174
- "response.body": rawResponseBody
1175
- });
1176
- if (!response.ok) {
1177
- span.setAttributes({ "error.api.status": response.status });
1178
- span.setStatus({
1179
- code: SpanStatusCode.ERROR,
1180
- message: `OpenAI API error: ${response.status}. Response: ${rawResponseBody}`
1181
- });
1182
- throw new Error(`OpenAI API error: ${response.status}`);
1183
- }
1184
- const result = await response.json();
1185
- const typedResult = result;
1186
- const content = typedResult.choices?.[0]?.message?.content;
1187
- console.log("############## CONTENT", content);
1188
- if (typedResult.usage) {
1189
- span.setAttributes({
1190
- "llm.usage.prompt_tokens": typedResult.usage.prompt_tokens,
1191
- "llm.usage.completion_tokens": typedResult.usage.completion_tokens,
1192
- "llm.usage.total_tokens": typedResult.usage.total_tokens
1193
- });
1194
- emitModelUsageEvent(
1195
- runtime,
1196
- ModelType.IMAGE_DESCRIPTION,
1197
- typeof params === "string" ? params : params.prompt || "",
1198
- {
1199
- promptTokens: typedResult.usage.prompt_tokens,
1200
- completionTokens: typedResult.usage.completion_tokens,
1201
- totalTokens: typedResult.usage.total_tokens
1202
- }
1203
- );
1204
- }
1205
- if (typedResult.choices?.[0]?.finish_reason) {
1206
- span.setAttribute("llm.response.finish_reason", typedResult.choices[0].finish_reason);
1207
- }
1208
- if (!content) {
1209
- span.setStatus({
1210
- code: SpanStatusCode.ERROR,
1211
- message: "No content in API response"
1212
- });
1213
- return {
1214
- title: "Failed to analyze image",
1215
- description: "No response from API"
1216
- };
1217
- }
1218
- console.log("######################## CONTENT", content);
1219
- const isCustomPrompt = typeof params === "object" && params.prompt && params.prompt !== "Please analyze this image and provide a title and detailed description.";
1220
- if (isCustomPrompt) {
1221
- span.addEvent("llm.response.raw_content", {
1222
- "response.content": content
1223
- });
1224
- return content;
1225
- }
1226
- const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
1227
- const title = titleMatch?.[1]?.trim() || "Image Analysis";
1228
- const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
1229
- const processedResult = { title, description };
1230
- span.addEvent("llm.response.processed", {
1231
- "response.object": JSON.stringify(processedResult, safeReplacer())
1232
- });
1233
- return processedResult;
1234
- } catch (error) {
1235
- const message = error instanceof Error ? error.message : String(error);
1236
- logger.error(`Error analyzing image: ${message}`);
1237
- const exception = error instanceof Error ? error : new Error(message);
1238
- span.recordException(exception);
1239
- span.setStatus({ code: SpanStatusCode.ERROR, message });
472
+ const result = await response.json();
473
+ const typedResult = result;
474
+ const content = typedResult.choices?.[0]?.message?.content;
475
+ console.log("############## CONTENT", content);
476
+ if (typedResult.usage) {
477
+ emitModelUsageEvent(
478
+ runtime,
479
+ ModelType.IMAGE_DESCRIPTION,
480
+ typeof params === "string" ? params : params.prompt || "",
481
+ {
482
+ promptTokens: typedResult.usage.prompt_tokens,
483
+ completionTokens: typedResult.usage.completion_tokens,
484
+ totalTokens: typedResult.usage.total_tokens
485
+ }
486
+ );
487
+ }
488
+ if (!content) {
1240
489
  return {
1241
490
  title: "Failed to analyze image",
1242
- description: `Error: ${message}`
491
+ description: "No response from API"
1243
492
  };
1244
493
  }
1245
- });
494
+ console.log("######################## CONTENT", content);
495
+ const isCustomPrompt = typeof params === "object" && params.prompt && params.prompt !== "Please analyze this image and provide a title and detailed description.";
496
+ if (isCustomPrompt) {
497
+ return content;
498
+ }
499
+ const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
500
+ const title = titleMatch?.[1]?.trim() || "Image Analysis";
501
+ const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
502
+ const processedResult = { title, description };
503
+ return processedResult;
504
+ } catch (error) {
505
+ const message = error instanceof Error ? error.message : String(error);
506
+ logger.error(`Error analyzing image: ${message}`);
507
+ return {
508
+ title: "Failed to analyze image",
509
+ description: `Error: ${message}`
510
+ };
511
+ }
1246
512
  },
1247
513
  [ModelType.TRANSCRIPTION]: async (runtime, audioBuffer) => {
1248
514
  logger.log("audioBuffer", audioBuffer);
1249
515
  const modelName = "whisper-1";
1250
516
  logger.log(`[OpenAI] Using TRANSCRIPTION model: ${modelName}`);
1251
- const attributes = {
1252
- "llm.vendor": "OpenAI",
1253
- "llm.request.type": "transcription",
1254
- "llm.request.model": modelName,
1255
- "llm.request.audio.input_size_bytes": audioBuffer?.length || 0
1256
- };
1257
- return startLlmSpan(runtime, "LLM.transcription", attributes, async (span) => {
1258
- span.addEvent("llm.prompt", {
1259
- "prompt.info": "Audio buffer for transcription"
517
+ const baseURL = getBaseURL(runtime);
518
+ const apiKey = getApiKey(runtime);
519
+ if (!apiKey) {
520
+ throw new Error("OpenAI API key not configured - Cannot make request");
521
+ }
522
+ if (!audioBuffer || audioBuffer.length === 0) {
523
+ throw new Error("Audio buffer is empty or invalid for transcription");
524
+ }
525
+ const formData = new FormData();
526
+ formData.append("file", new Blob([audioBuffer]), "recording.mp3");
527
+ formData.append("model", "whisper-1");
528
+ try {
529
+ const response = await fetch(`${baseURL}/audio/transcriptions`, {
530
+ method: "POST",
531
+ headers: {
532
+ Authorization: `Bearer ${apiKey}`
533
+ },
534
+ body: formData
1260
535
  });
1261
- const baseURL = getBaseURL(runtime);
1262
- const apiKey = getApiKey(runtime);
1263
- if (!apiKey) {
1264
- span.setStatus({
1265
- code: SpanStatusCode.ERROR,
1266
- message: "OpenAI API key not configured"
1267
- });
1268
- throw new Error("OpenAI API key not configured - Cannot make request");
1269
- }
1270
- if (!audioBuffer || audioBuffer.length === 0) {
1271
- span.setStatus({
1272
- code: SpanStatusCode.ERROR,
1273
- message: "Audio buffer is empty or invalid"
1274
- });
1275
- throw new Error("Audio buffer is empty or invalid for transcription");
1276
- }
1277
- const formData = new FormData();
1278
- formData.append("file", new Blob([audioBuffer]), "recording.mp3");
1279
- formData.append("model", "whisper-1");
1280
- try {
1281
- const response = await fetch(`${baseURL}/audio/transcriptions`, {
1282
- method: "POST",
1283
- headers: {
1284
- Authorization: `Bearer ${apiKey}`
1285
- },
1286
- body: formData
1287
- });
1288
- const responseClone = response.clone();
1289
- const rawResponseBody = await responseClone.text();
1290
- span.addEvent("llm.response.raw", {
1291
- "response.body": rawResponseBody
1292
- });
1293
- logger.log("response", response);
1294
- if (!response.ok) {
1295
- span.setAttributes({ "error.api.status": response.status });
1296
- span.setStatus({
1297
- code: SpanStatusCode.ERROR,
1298
- message: `Failed to transcribe audio: ${response.statusText}. Response: ${rawResponseBody}`
1299
- });
1300
- throw new Error(`Failed to transcribe audio: ${response.statusText}`);
1301
- }
1302
- const data = await response.json();
1303
- const processedText = data.text;
1304
- span.setAttribute("llm.response.processed.length", processedText.length);
1305
- span.addEvent("llm.response.processed", {
1306
- "response.text": processedText
1307
- });
1308
- return processedText;
1309
- } catch (error) {
1310
- const message = error instanceof Error ? error.message : String(error);
1311
- const exception = error instanceof Error ? error : new Error(message);
1312
- span.recordException(exception);
1313
- span.setStatus({ code: SpanStatusCode.ERROR, message });
1314
- throw error;
536
+ const responseClone = response.clone();
537
+ const rawResponseBody = await responseClone.text();
538
+ logger.log("response", response);
539
+ if (!response.ok) {
540
+ throw new Error(`Failed to transcribe audio: ${response.statusText}`);
1315
541
  }
1316
- });
542
+ const data = await response.json();
543
+ const processedText = data.text;
544
+ return processedText;
545
+ } catch (error) {
546
+ const message = error instanceof Error ? error.message : String(error);
547
+ throw error;
548
+ }
1317
549
  },
1318
550
  [ModelType.TEXT_TO_SPEECH]: async (runtime, text) => {
1319
551
  const ttsModelName = getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
1320
- const attributes = {
1321
- "llm.vendor": "OpenAI",
1322
- "llm.request.type": "tts",
1323
- "llm.request.model": ttsModelName,
1324
- "input.text.length": text.length
1325
- };
1326
- return startLlmSpan(runtime, "LLM.tts", attributes, async (span) => {
1327
- logger.log(`[OpenAI] Using TEXT_TO_SPEECH model: ${ttsModelName}`);
1328
- span.addEvent("llm.prompt", { "prompt.content": text });
1329
- try {
1330
- const speechStream = await fetchTextToSpeech(runtime, text);
1331
- span.addEvent("llm.response.success", {
1332
- info: "Speech stream generated"
1333
- });
1334
- return speechStream;
1335
- } catch (error) {
1336
- const message = error instanceof Error ? error.message : String(error);
1337
- const exception = error instanceof Error ? error : new Error(message);
1338
- span.recordException(exception);
1339
- span.setStatus({ code: SpanStatusCode.ERROR, message });
1340
- throw error;
1341
- }
1342
- });
552
+ logger.log(`[OpenAI] Using TEXT_TO_SPEECH model: ${ttsModelName}`);
553
+ try {
554
+ const speechStream = await fetchTextToSpeech(runtime, text);
555
+ return speechStream;
556
+ } catch (error) {
557
+ const message = error instanceof Error ? error.message : String(error);
558
+ throw error;
559
+ }
1343
560
  },
1344
561
  [ModelType.OBJECT_SMALL]: async (runtime, params) => {
1345
562
  return generateObjectByModelType(runtime, params, ModelType.OBJECT_SMALL, getSmallModel);