@elizaos/plugin-openai 1.0.0-beta.7 → 1.0.0-beta.72

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.js CHANGED
@@ -1,11 +1,595 @@
1
1
  // src/index.ts
2
2
  import { createOpenAI } from "@ai-sdk/openai";
3
3
  import {
4
+ EventType,
5
+ logger,
4
6
  ModelType,
5
- logger
7
+ safeReplacer,
8
+ ServiceType,
9
+ VECTOR_DIMS
6
10
  } from "@elizaos/core";
7
- import { generateObject, generateText } from "ai";
11
+
12
+ // node_modules/@opentelemetry/api/build/esm/platform/node/globalThis.js
13
+ var _globalThis = typeof globalThis === "object" ? globalThis : global;
14
+
15
+ // node_modules/@opentelemetry/api/build/esm/version.js
16
+ var VERSION = "1.9.0";
17
+
18
+ // node_modules/@opentelemetry/api/build/esm/internal/semver.js
19
+ var re = /^(\d+)\.(\d+)\.(\d+)(-(.+))?$/;
20
+ function _makeCompatibilityCheck(ownVersion) {
21
+ var acceptedVersions = /* @__PURE__ */ new Set([ownVersion]);
22
+ var rejectedVersions = /* @__PURE__ */ new Set();
23
+ var myVersionMatch = ownVersion.match(re);
24
+ if (!myVersionMatch) {
25
+ return function() {
26
+ return false;
27
+ };
28
+ }
29
+ var ownVersionParsed = {
30
+ major: +myVersionMatch[1],
31
+ minor: +myVersionMatch[2],
32
+ patch: +myVersionMatch[3],
33
+ prerelease: myVersionMatch[4]
34
+ };
35
+ if (ownVersionParsed.prerelease != null) {
36
+ return function isExactmatch(globalVersion) {
37
+ return globalVersion === ownVersion;
38
+ };
39
+ }
40
+ function _reject(v) {
41
+ rejectedVersions.add(v);
42
+ return false;
43
+ }
44
+ function _accept(v) {
45
+ acceptedVersions.add(v);
46
+ return true;
47
+ }
48
+ return function isCompatible2(globalVersion) {
49
+ if (acceptedVersions.has(globalVersion)) {
50
+ return true;
51
+ }
52
+ if (rejectedVersions.has(globalVersion)) {
53
+ return false;
54
+ }
55
+ var globalVersionMatch = globalVersion.match(re);
56
+ if (!globalVersionMatch) {
57
+ return _reject(globalVersion);
58
+ }
59
+ var globalVersionParsed = {
60
+ major: +globalVersionMatch[1],
61
+ minor: +globalVersionMatch[2],
62
+ patch: +globalVersionMatch[3],
63
+ prerelease: globalVersionMatch[4]
64
+ };
65
+ if (globalVersionParsed.prerelease != null) {
66
+ return _reject(globalVersion);
67
+ }
68
+ if (ownVersionParsed.major !== globalVersionParsed.major) {
69
+ return _reject(globalVersion);
70
+ }
71
+ if (ownVersionParsed.major === 0) {
72
+ if (ownVersionParsed.minor === globalVersionParsed.minor && ownVersionParsed.patch <= globalVersionParsed.patch) {
73
+ return _accept(globalVersion);
74
+ }
75
+ return _reject(globalVersion);
76
+ }
77
+ if (ownVersionParsed.minor <= globalVersionParsed.minor) {
78
+ return _accept(globalVersion);
79
+ }
80
+ return _reject(globalVersion);
81
+ };
82
+ }
83
+ var isCompatible = _makeCompatibilityCheck(VERSION);
84
+
85
+ // node_modules/@opentelemetry/api/build/esm/internal/global-utils.js
86
+ var major = VERSION.split(".")[0];
87
+ var GLOBAL_OPENTELEMETRY_API_KEY = Symbol.for("opentelemetry.js.api." + major);
88
+ var _global = _globalThis;
89
+ function registerGlobal(type, instance, diag, allowOverride) {
90
+ var _a;
91
+ if (allowOverride === void 0) {
92
+ allowOverride = false;
93
+ }
94
+ var api = _global[GLOBAL_OPENTELEMETRY_API_KEY] = (_a = _global[GLOBAL_OPENTELEMETRY_API_KEY]) !== null && _a !== void 0 ? _a : {
95
+ version: VERSION
96
+ };
97
+ if (!allowOverride && api[type]) {
98
+ var err = new Error("@opentelemetry/api: Attempted duplicate registration of API: " + type);
99
+ diag.error(err.stack || err.message);
100
+ return false;
101
+ }
102
+ if (api.version !== VERSION) {
103
+ var err = new Error("@opentelemetry/api: Registration of version v" + api.version + " for " + type + " does not match previously registered API v" + VERSION);
104
+ diag.error(err.stack || err.message);
105
+ return false;
106
+ }
107
+ api[type] = instance;
108
+ diag.debug("@opentelemetry/api: Registered a global for " + type + " v" + VERSION + ".");
109
+ return true;
110
+ }
111
+ function getGlobal(type) {
112
+ var _a, _b;
113
+ var globalVersion = (_a = _global[GLOBAL_OPENTELEMETRY_API_KEY]) === null || _a === void 0 ? void 0 : _a.version;
114
+ if (!globalVersion || !isCompatible(globalVersion)) {
115
+ return;
116
+ }
117
+ return (_b = _global[GLOBAL_OPENTELEMETRY_API_KEY]) === null || _b === void 0 ? void 0 : _b[type];
118
+ }
119
+ function unregisterGlobal(type, diag) {
120
+ diag.debug("@opentelemetry/api: Unregistering a global for " + type + " v" + VERSION + ".");
121
+ var api = _global[GLOBAL_OPENTELEMETRY_API_KEY];
122
+ if (api) {
123
+ delete api[type];
124
+ }
125
+ }
126
+
127
+ // node_modules/@opentelemetry/api/build/esm/diag/ComponentLogger.js
128
+ var __read = function(o, n) {
129
+ var m = typeof Symbol === "function" && o[Symbol.iterator];
130
+ if (!m) return o;
131
+ var i = m.call(o), r, ar = [], e;
132
+ try {
133
+ while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
134
+ } catch (error) {
135
+ e = { error };
136
+ } finally {
137
+ try {
138
+ if (r && !r.done && (m = i["return"])) m.call(i);
139
+ } finally {
140
+ if (e) throw e.error;
141
+ }
142
+ }
143
+ return ar;
144
+ };
145
+ var __spreadArray = function(to, from, pack) {
146
+ if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
147
+ if (ar || !(i in from)) {
148
+ if (!ar) ar = Array.prototype.slice.call(from, 0, i);
149
+ ar[i] = from[i];
150
+ }
151
+ }
152
+ return to.concat(ar || Array.prototype.slice.call(from));
153
+ };
154
+ var DiagComponentLogger = (
155
+ /** @class */
156
+ function() {
157
+ function DiagComponentLogger2(props) {
158
+ this._namespace = props.namespace || "DiagComponentLogger";
159
+ }
160
+ DiagComponentLogger2.prototype.debug = function() {
161
+ var args = [];
162
+ for (var _i = 0; _i < arguments.length; _i++) {
163
+ args[_i] = arguments[_i];
164
+ }
165
+ return logProxy("debug", this._namespace, args);
166
+ };
167
+ DiagComponentLogger2.prototype.error = function() {
168
+ var args = [];
169
+ for (var _i = 0; _i < arguments.length; _i++) {
170
+ args[_i] = arguments[_i];
171
+ }
172
+ return logProxy("error", this._namespace, args);
173
+ };
174
+ DiagComponentLogger2.prototype.info = function() {
175
+ var args = [];
176
+ for (var _i = 0; _i < arguments.length; _i++) {
177
+ args[_i] = arguments[_i];
178
+ }
179
+ return logProxy("info", this._namespace, args);
180
+ };
181
+ DiagComponentLogger2.prototype.warn = function() {
182
+ var args = [];
183
+ for (var _i = 0; _i < arguments.length; _i++) {
184
+ args[_i] = arguments[_i];
185
+ }
186
+ return logProxy("warn", this._namespace, args);
187
+ };
188
+ DiagComponentLogger2.prototype.verbose = function() {
189
+ var args = [];
190
+ for (var _i = 0; _i < arguments.length; _i++) {
191
+ args[_i] = arguments[_i];
192
+ }
193
+ return logProxy("verbose", this._namespace, args);
194
+ };
195
+ return DiagComponentLogger2;
196
+ }()
197
+ );
198
+ function logProxy(funcName, namespace, args) {
199
+ var logger2 = getGlobal("diag");
200
+ if (!logger2) {
201
+ return;
202
+ }
203
+ args.unshift(namespace);
204
+ return logger2[funcName].apply(logger2, __spreadArray([], __read(args), false));
205
+ }
206
+
207
+ // node_modules/@opentelemetry/api/build/esm/diag/types.js
208
+ var DiagLogLevel;
209
+ (function(DiagLogLevel2) {
210
+ DiagLogLevel2[DiagLogLevel2["NONE"] = 0] = "NONE";
211
+ DiagLogLevel2[DiagLogLevel2["ERROR"] = 30] = "ERROR";
212
+ DiagLogLevel2[DiagLogLevel2["WARN"] = 50] = "WARN";
213
+ DiagLogLevel2[DiagLogLevel2["INFO"] = 60] = "INFO";
214
+ DiagLogLevel2[DiagLogLevel2["DEBUG"] = 70] = "DEBUG";
215
+ DiagLogLevel2[DiagLogLevel2["VERBOSE"] = 80] = "VERBOSE";
216
+ DiagLogLevel2[DiagLogLevel2["ALL"] = 9999] = "ALL";
217
+ })(DiagLogLevel || (DiagLogLevel = {}));
218
+
219
+ // node_modules/@opentelemetry/api/build/esm/diag/internal/logLevelLogger.js
220
+ function createLogLevelDiagLogger(maxLevel, logger2) {
221
+ if (maxLevel < DiagLogLevel.NONE) {
222
+ maxLevel = DiagLogLevel.NONE;
223
+ } else if (maxLevel > DiagLogLevel.ALL) {
224
+ maxLevel = DiagLogLevel.ALL;
225
+ }
226
+ logger2 = logger2 || {};
227
+ function _filterFunc(funcName, theLevel) {
228
+ var theFunc = logger2[funcName];
229
+ if (typeof theFunc === "function" && maxLevel >= theLevel) {
230
+ return theFunc.bind(logger2);
231
+ }
232
+ return function() {
233
+ };
234
+ }
235
+ return {
236
+ error: _filterFunc("error", DiagLogLevel.ERROR),
237
+ warn: _filterFunc("warn", DiagLogLevel.WARN),
238
+ info: _filterFunc("info", DiagLogLevel.INFO),
239
+ debug: _filterFunc("debug", DiagLogLevel.DEBUG),
240
+ verbose: _filterFunc("verbose", DiagLogLevel.VERBOSE)
241
+ };
242
+ }
243
+
244
+ // node_modules/@opentelemetry/api/build/esm/api/diag.js
245
+ var __read2 = function(o, n) {
246
+ var m = typeof Symbol === "function" && o[Symbol.iterator];
247
+ if (!m) return o;
248
+ var i = m.call(o), r, ar = [], e;
249
+ try {
250
+ while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
251
+ } catch (error) {
252
+ e = { error };
253
+ } finally {
254
+ try {
255
+ if (r && !r.done && (m = i["return"])) m.call(i);
256
+ } finally {
257
+ if (e) throw e.error;
258
+ }
259
+ }
260
+ return ar;
261
+ };
262
+ var __spreadArray2 = function(to, from, pack) {
263
+ if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
264
+ if (ar || !(i in from)) {
265
+ if (!ar) ar = Array.prototype.slice.call(from, 0, i);
266
+ ar[i] = from[i];
267
+ }
268
+ }
269
+ return to.concat(ar || Array.prototype.slice.call(from));
270
+ };
271
+ var API_NAME = "diag";
272
+ var DiagAPI = (
273
+ /** @class */
274
+ function() {
275
+ function DiagAPI2() {
276
+ function _logProxy(funcName) {
277
+ return function() {
278
+ var args = [];
279
+ for (var _i = 0; _i < arguments.length; _i++) {
280
+ args[_i] = arguments[_i];
281
+ }
282
+ var logger2 = getGlobal("diag");
283
+ if (!logger2)
284
+ return;
285
+ return logger2[funcName].apply(logger2, __spreadArray2([], __read2(args), false));
286
+ };
287
+ }
288
+ var self = this;
289
+ var setLogger = function(logger2, optionsOrLogLevel) {
290
+ var _a, _b, _c;
291
+ if (optionsOrLogLevel === void 0) {
292
+ optionsOrLogLevel = { logLevel: DiagLogLevel.INFO };
293
+ }
294
+ if (logger2 === self) {
295
+ var err = new Error("Cannot use diag as the logger for itself. Please use a DiagLogger implementation like ConsoleDiagLogger or a custom implementation");
296
+ self.error((_a = err.stack) !== null && _a !== void 0 ? _a : err.message);
297
+ return false;
298
+ }
299
+ if (typeof optionsOrLogLevel === "number") {
300
+ optionsOrLogLevel = {
301
+ logLevel: optionsOrLogLevel
302
+ };
303
+ }
304
+ var oldLogger = getGlobal("diag");
305
+ var newLogger = createLogLevelDiagLogger((_b = optionsOrLogLevel.logLevel) !== null && _b !== void 0 ? _b : DiagLogLevel.INFO, logger2);
306
+ if (oldLogger && !optionsOrLogLevel.suppressOverrideMessage) {
307
+ var stack = (_c = new Error().stack) !== null && _c !== void 0 ? _c : "<failed to generate stacktrace>";
308
+ oldLogger.warn("Current logger will be overwritten from " + stack);
309
+ newLogger.warn("Current logger will overwrite one already registered from " + stack);
310
+ }
311
+ return registerGlobal("diag", newLogger, self, true);
312
+ };
313
+ self.setLogger = setLogger;
314
+ self.disable = function() {
315
+ unregisterGlobal(API_NAME, self);
316
+ };
317
+ self.createComponentLogger = function(options) {
318
+ return new DiagComponentLogger(options);
319
+ };
320
+ self.verbose = _logProxy("verbose");
321
+ self.debug = _logProxy("debug");
322
+ self.info = _logProxy("info");
323
+ self.warn = _logProxy("warn");
324
+ self.error = _logProxy("error");
325
+ }
326
+ DiagAPI2.instance = function() {
327
+ if (!this._instance) {
328
+ this._instance = new DiagAPI2();
329
+ }
330
+ return this._instance;
331
+ };
332
+ return DiagAPI2;
333
+ }()
334
+ );
335
+
336
+ // node_modules/@opentelemetry/api/build/esm/context/context.js
337
+ var BaseContext = (
338
+ /** @class */
339
+ /* @__PURE__ */ function() {
340
+ function BaseContext2(parentContext) {
341
+ var self = this;
342
+ self._currentContext = parentContext ? new Map(parentContext) : /* @__PURE__ */ new Map();
343
+ self.getValue = function(key) {
344
+ return self._currentContext.get(key);
345
+ };
346
+ self.setValue = function(key, value) {
347
+ var context2 = new BaseContext2(self._currentContext);
348
+ context2._currentContext.set(key, value);
349
+ return context2;
350
+ };
351
+ self.deleteValue = function(key) {
352
+ var context2 = new BaseContext2(self._currentContext);
353
+ context2._currentContext.delete(key);
354
+ return context2;
355
+ };
356
+ }
357
+ return BaseContext2;
358
+ }()
359
+ );
360
+ var ROOT_CONTEXT = new BaseContext();
361
+
362
+ // node_modules/@opentelemetry/api/build/esm/context/NoopContextManager.js
363
+ var __read3 = function(o, n) {
364
+ var m = typeof Symbol === "function" && o[Symbol.iterator];
365
+ if (!m) return o;
366
+ var i = m.call(o), r, ar = [], e;
367
+ try {
368
+ while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
369
+ } catch (error) {
370
+ e = { error };
371
+ } finally {
372
+ try {
373
+ if (r && !r.done && (m = i["return"])) m.call(i);
374
+ } finally {
375
+ if (e) throw e.error;
376
+ }
377
+ }
378
+ return ar;
379
+ };
380
+ var __spreadArray3 = function(to, from, pack) {
381
+ if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
382
+ if (ar || !(i in from)) {
383
+ if (!ar) ar = Array.prototype.slice.call(from, 0, i);
384
+ ar[i] = from[i];
385
+ }
386
+ }
387
+ return to.concat(ar || Array.prototype.slice.call(from));
388
+ };
389
+ var NoopContextManager = (
390
+ /** @class */
391
+ function() {
392
+ function NoopContextManager2() {
393
+ }
394
+ NoopContextManager2.prototype.active = function() {
395
+ return ROOT_CONTEXT;
396
+ };
397
+ NoopContextManager2.prototype.with = function(_context, fn, thisArg) {
398
+ var args = [];
399
+ for (var _i = 3; _i < arguments.length; _i++) {
400
+ args[_i - 3] = arguments[_i];
401
+ }
402
+ return fn.call.apply(fn, __spreadArray3([thisArg], __read3(args), false));
403
+ };
404
+ NoopContextManager2.prototype.bind = function(_context, target) {
405
+ return target;
406
+ };
407
+ NoopContextManager2.prototype.enable = function() {
408
+ return this;
409
+ };
410
+ NoopContextManager2.prototype.disable = function() {
411
+ return this;
412
+ };
413
+ return NoopContextManager2;
414
+ }()
415
+ );
416
+
417
+ // node_modules/@opentelemetry/api/build/esm/api/context.js
418
+ var __read4 = function(o, n) {
419
+ var m = typeof Symbol === "function" && o[Symbol.iterator];
420
+ if (!m) return o;
421
+ var i = m.call(o), r, ar = [], e;
422
+ try {
423
+ while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
424
+ } catch (error) {
425
+ e = { error };
426
+ } finally {
427
+ try {
428
+ if (r && !r.done && (m = i["return"])) m.call(i);
429
+ } finally {
430
+ if (e) throw e.error;
431
+ }
432
+ }
433
+ return ar;
434
+ };
435
+ var __spreadArray4 = function(to, from, pack) {
436
+ if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
437
+ if (ar || !(i in from)) {
438
+ if (!ar) ar = Array.prototype.slice.call(from, 0, i);
439
+ ar[i] = from[i];
440
+ }
441
+ }
442
+ return to.concat(ar || Array.prototype.slice.call(from));
443
+ };
444
+ var API_NAME2 = "context";
445
+ var NOOP_CONTEXT_MANAGER = new NoopContextManager();
446
+ var ContextAPI = (
447
+ /** @class */
448
+ function() {
449
+ function ContextAPI2() {
450
+ }
451
+ ContextAPI2.getInstance = function() {
452
+ if (!this._instance) {
453
+ this._instance = new ContextAPI2();
454
+ }
455
+ return this._instance;
456
+ };
457
+ ContextAPI2.prototype.setGlobalContextManager = function(contextManager) {
458
+ return registerGlobal(API_NAME2, contextManager, DiagAPI.instance());
459
+ };
460
+ ContextAPI2.prototype.active = function() {
461
+ return this._getContextManager().active();
462
+ };
463
+ ContextAPI2.prototype.with = function(context2, fn, thisArg) {
464
+ var _a;
465
+ var args = [];
466
+ for (var _i = 3; _i < arguments.length; _i++) {
467
+ args[_i - 3] = arguments[_i];
468
+ }
469
+ return (_a = this._getContextManager()).with.apply(_a, __spreadArray4([context2, fn, thisArg], __read4(args), false));
470
+ };
471
+ ContextAPI2.prototype.bind = function(context2, target) {
472
+ return this._getContextManager().bind(context2, target);
473
+ };
474
+ ContextAPI2.prototype._getContextManager = function() {
475
+ return getGlobal(API_NAME2) || NOOP_CONTEXT_MANAGER;
476
+ };
477
+ ContextAPI2.prototype.disable = function() {
478
+ this._getContextManager().disable();
479
+ unregisterGlobal(API_NAME2, DiagAPI.instance());
480
+ };
481
+ return ContextAPI2;
482
+ }()
483
+ );
484
+
485
+ // node_modules/@opentelemetry/api/build/esm/trace/status.js
486
+ var SpanStatusCode;
487
+ (function(SpanStatusCode2) {
488
+ SpanStatusCode2[SpanStatusCode2["UNSET"] = 0] = "UNSET";
489
+ SpanStatusCode2[SpanStatusCode2["OK"] = 1] = "OK";
490
+ SpanStatusCode2[SpanStatusCode2["ERROR"] = 2] = "ERROR";
491
+ })(SpanStatusCode || (SpanStatusCode = {}));
492
+
493
+ // node_modules/@opentelemetry/api/build/esm/context-api.js
494
+ var context = ContextAPI.getInstance();
495
+
496
+ // src/index.ts
497
+ import {
498
+ generateObject,
499
+ generateText,
500
+ JSONParseError
501
+ } from "ai";
8
502
  import { encodingForModel } from "js-tiktoken";
503
+ import { fetch, FormData } from "undici";
504
+ function getTracer(runtime) {
505
+ const availableServices = Array.from(runtime.getAllServices().keys());
506
+ logger.debug(`[getTracer] Available services: ${JSON.stringify(availableServices)}`);
507
+ logger.debug(`[getTracer] Attempting to get service with key: ${ServiceType.INSTRUMENTATION}`);
508
+ const instrumentationService = runtime.getService(
509
+ ServiceType.INSTRUMENTATION
510
+ );
511
+ if (!instrumentationService) {
512
+ logger.warn(`[getTracer] Service ${ServiceType.INSTRUMENTATION} not found in runtime.`);
513
+ return null;
514
+ }
515
+ if (!instrumentationService.isEnabled()) {
516
+ logger.debug("[getTracer] Instrumentation service found but is disabled.");
517
+ return null;
518
+ }
519
+ logger.debug("[getTracer] Successfully retrieved enabled instrumentation service.");
520
+ return instrumentationService.getTracer("eliza.llm.openai");
521
+ }
522
+ async function startLlmSpan(runtime, spanName, attributes, fn) {
523
+ const tracer = getTracer(runtime);
524
+ if (!tracer) {
525
+ const dummySpan = {
526
+ setAttribute: () => {
527
+ },
528
+ setAttributes: () => {
529
+ },
530
+ addEvent: () => {
531
+ },
532
+ recordException: () => {
533
+ },
534
+ setStatus: () => {
535
+ },
536
+ end: () => {
537
+ },
538
+ spanContext: () => ({ traceId: "", spanId: "", traceFlags: 0 })
539
+ };
540
+ return fn(dummySpan);
541
+ }
542
+ const activeContext = context.active();
543
+ return tracer.startActiveSpan(spanName, { attributes }, activeContext, async (span) => {
544
+ try {
545
+ const result = await fn(span);
546
+ span.setStatus({ code: SpanStatusCode.OK });
547
+ span.end();
548
+ return result;
549
+ } catch (error) {
550
+ const message = error instanceof Error ? error.message : String(error);
551
+ span.recordException(error);
552
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
553
+ span.end();
554
+ throw error;
555
+ }
556
+ });
557
+ }
558
+ function getSetting(runtime, key, defaultValue) {
559
+ return runtime.getSetting(key) ?? process.env[key] ?? defaultValue;
560
+ }
561
+ function getBaseURL(runtime) {
562
+ const baseURL = getSetting(runtime, "OPENAI_BASE_URL", "https://api.openai.com/v1");
563
+ logger.debug(`[OpenAI] Default base URL: ${baseURL}`);
564
+ return baseURL;
565
+ }
566
+ function getEmbeddingBaseURL(runtime) {
567
+ const embeddingURL = getSetting(runtime, "OPENAI_EMBEDDING_URL");
568
+ if (embeddingURL) {
569
+ logger.debug(`[OpenAI] Using specific embedding base URL: ${embeddingURL}`);
570
+ return embeddingURL;
571
+ }
572
+ logger.debug("[OpenAI] Falling back to general base URL for embeddings.");
573
+ return getBaseURL(runtime);
574
+ }
575
+ function getApiKey(runtime) {
576
+ return getSetting(runtime, "OPENAI_API_KEY");
577
+ }
578
+ function getSmallModel(runtime) {
579
+ return getSetting(runtime, "OPENAI_SMALL_MODEL") ?? getSetting(runtime, "SMALL_MODEL", "gpt-4o-mini");
580
+ }
581
+ function getLargeModel(runtime) {
582
+ return getSetting(runtime, "OPENAI_LARGE_MODEL") ?? getSetting(runtime, "LARGE_MODEL", "gpt-4o");
583
+ }
584
+ function getImageDescriptionModel(runtime) {
585
+ return getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MODEL", "gpt-4o-mini") ?? "gpt-4o-mini";
586
+ }
587
+ function createOpenAIClient(runtime) {
588
+ return createOpenAI({
589
+ apiKey: getApiKey(runtime),
590
+ baseURL: getBaseURL(runtime)
591
+ });
592
+ }
9
593
  async function tokenizeText(model, prompt) {
10
594
  const modelName = model === ModelType.TEXT_SMALL ? process.env.OPENAI_SMALL_MODEL ?? process.env.SMALL_MODEL ?? "gpt-4o-mini" : process.env.LARGE_MODEL ?? "gpt-4o";
11
595
  const encoding = encodingForModel(modelName);
@@ -17,6 +601,171 @@ async function detokenizeText(model, tokens) {
17
601
  const encoding = encodingForModel(modelName);
18
602
  return encoding.decode(tokens);
19
603
  }
604
+ async function generateObjectByModelType(runtime, params, modelType, getModelFn) {
605
+ const openai = createOpenAIClient(runtime);
606
+ const modelName = getModelFn(runtime);
607
+ logger.log(`[OpenAI] Using ${modelType} model: ${modelName}`);
608
+ const temperature = params.temperature ?? 0;
609
+ const schemaPresent = !!params.schema;
610
+ const attributes = {
611
+ "llm.vendor": "OpenAI",
612
+ "llm.request.type": "object_generation",
613
+ "llm.request.model": modelName,
614
+ "llm.request.temperature": temperature,
615
+ "llm.request.schema_present": schemaPresent
616
+ };
617
+ return startLlmSpan(runtime, "LLM.generateObject", attributes, async (span) => {
618
+ span.addEvent("llm.prompt", { "prompt.content": params.prompt });
619
+ if (schemaPresent) {
620
+ span.addEvent("llm.request.schema", {
621
+ schema: JSON.stringify(params.schema, safeReplacer())
622
+ });
623
+ logger.info(
624
+ `Using ${modelType} without schema validation (schema provided but output=no-schema)`
625
+ );
626
+ }
627
+ try {
628
+ const { object, usage } = await generateObject({
629
+ model: openai.languageModel(modelName),
630
+ output: "no-schema",
631
+ prompt: params.prompt,
632
+ temperature,
633
+ experimental_repairText: getJsonRepairFunction()
634
+ });
635
+ span.addEvent("llm.response.processed", {
636
+ "response.object": JSON.stringify(object, safeReplacer())
637
+ });
638
+ if (usage) {
639
+ span.setAttributes({
640
+ "llm.usage.prompt_tokens": usage.promptTokens,
641
+ "llm.usage.completion_tokens": usage.completionTokens,
642
+ "llm.usage.total_tokens": usage.totalTokens
643
+ });
644
+ emitModelUsageEvent(runtime, modelType, params.prompt, usage);
645
+ }
646
+ return object;
647
+ } catch (error) {
648
+ if (error instanceof JSONParseError) {
649
+ logger.error(`[generateObject] Failed to parse JSON: ${error.message}`);
650
+ span.recordException(error);
651
+ span.addEvent("llm.error.json_parse", {
652
+ "error.message": error.message,
653
+ "error.text": error.text
654
+ });
655
+ span.addEvent("llm.repair.attempt");
656
+ const repairFunction = getJsonRepairFunction();
657
+ const repairedJsonString = await repairFunction({
658
+ text: error.text,
659
+ error
660
+ });
661
+ if (repairedJsonString) {
662
+ try {
663
+ const repairedObject = JSON.parse(repairedJsonString);
664
+ span.addEvent("llm.repair.success", {
665
+ repaired_object: JSON.stringify(repairedObject, safeReplacer())
666
+ });
667
+ logger.info("[generateObject] Successfully repaired JSON.");
668
+ span.setStatus({
669
+ code: SpanStatusCode.ERROR,
670
+ message: "JSON parsing failed but was repaired"
671
+ });
672
+ return repairedObject;
673
+ } catch (repairParseError) {
674
+ const message = repairParseError instanceof Error ? repairParseError.message : String(repairParseError);
675
+ logger.error(`[generateObject] Failed to parse repaired JSON: ${message}`);
676
+ const exception = repairParseError instanceof Error ? repairParseError : new Error(message);
677
+ span.recordException(exception);
678
+ span.addEvent("llm.repair.parse_error", {
679
+ "error.message": message
680
+ });
681
+ span.setStatus({
682
+ code: SpanStatusCode.ERROR,
683
+ message: `JSON repair failed: ${message}`
684
+ });
685
+ throw repairParseError;
686
+ }
687
+ } else {
688
+ const errMsg = error instanceof Error ? error.message : String(error);
689
+ logger.error("[generateObject] JSON repair failed.");
690
+ span.addEvent("llm.repair.failed");
691
+ span.setStatus({
692
+ code: SpanStatusCode.ERROR,
693
+ message: `JSON repair failed: ${errMsg}`
694
+ });
695
+ throw error;
696
+ }
697
+ } else {
698
+ const message = error instanceof Error ? error.message : String(error);
699
+ logger.error(`[generateObject] Unknown error: ${message}`);
700
+ const exception = error instanceof Error ? error : new Error(message);
701
+ span.recordException(exception);
702
+ span.setStatus({
703
+ code: SpanStatusCode.ERROR,
704
+ message
705
+ });
706
+ throw error;
707
+ }
708
+ }
709
+ });
710
+ }
711
+ function getJsonRepairFunction() {
712
+ return async ({ text, error }) => {
713
+ try {
714
+ if (error instanceof JSONParseError) {
715
+ const cleanedText = text.replace(/```json\n|\n```|```/g, "");
716
+ JSON.parse(cleanedText);
717
+ return cleanedText;
718
+ }
719
+ return null;
720
+ } catch (jsonError) {
721
+ const message = jsonError instanceof Error ? jsonError.message : String(jsonError);
722
+ logger.warn(`Failed to repair JSON text: ${message}`);
723
+ return null;
724
+ }
725
+ };
726
+ }
727
+ function emitModelUsageEvent(runtime, type, prompt, usage) {
728
+ runtime.emitEvent(EventType.MODEL_USED, {
729
+ provider: "openai",
730
+ type,
731
+ prompt,
732
+ tokens: {
733
+ prompt: usage.promptTokens,
734
+ completion: usage.completionTokens,
735
+ total: usage.totalTokens
736
+ }
737
+ });
738
+ }
739
+ async function fetchTextToSpeech(runtime, text) {
740
+ const apiKey = getApiKey(runtime);
741
+ const model = getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
742
+ const voice = getSetting(runtime, "OPENAI_TTS_VOICE", "nova");
743
+ const instructions = getSetting(runtime, "OPENAI_TTS_INSTRUCTIONS", "");
744
+ const baseURL = getBaseURL(runtime);
745
+ try {
746
+ const res = await fetch(`${baseURL}/audio/speech`, {
747
+ method: "POST",
748
+ headers: {
749
+ Authorization: `Bearer ${apiKey}`,
750
+ "Content-Type": "application/json"
751
+ },
752
+ body: JSON.stringify({
753
+ model,
754
+ voice,
755
+ input: text,
756
+ ...instructions && { instructions }
757
+ })
758
+ });
759
+ if (!res.ok) {
760
+ const err = await res.text();
761
+ throw new Error(`OpenAI TTS error ${res.status}: ${err}`);
762
+ }
763
+ return res.body;
764
+ } catch (err) {
765
+ const message = err instanceof Error ? err.message : String(err);
766
+ throw new Error(`Failed to fetch speech from OpenAI TTS: ${message}`);
767
+ }
768
+ }
20
769
  var openaiPlugin = {
21
770
  name: "openai",
22
771
  description: "OpenAI plugin",
@@ -26,41 +775,66 @@ var openaiPlugin = {
26
775
  OPENAI_SMALL_MODEL: process.env.OPENAI_SMALL_MODEL,
27
776
  OPENAI_LARGE_MODEL: process.env.OPENAI_LARGE_MODEL,
28
777
  SMALL_MODEL: process.env.SMALL_MODEL,
29
- LARGE_MODEL: process.env.LARGE_MODEL
778
+ LARGE_MODEL: process.env.LARGE_MODEL,
779
+ OPENAI_EMBEDDING_MODEL: process.env.OPENAI_EMBEDDING_MODEL,
780
+ OPENAI_EMBEDDING_URL: process.env.OPENAI_EMBEDDING_URL,
781
+ OPENAI_EMBEDDING_DIMENSIONS: process.env.OPENAI_EMBEDDING_DIMENSIONS,
782
+ OPENAI_IMAGE_DESCRIPTION_MODEL: process.env.OPENAI_IMAGE_DESCRIPTION_MODEL,
783
+ OPENAI_IMAGE_DESCRIPTION_MAX_TOKENS: process.env.OPENAI_IMAGE_DESCRIPTION_MAX_TOKENS
30
784
  },
31
- async init(config) {
785
+ async init(_config, runtime) {
32
786
  try {
33
- if (!process.env.OPENAI_API_KEY) {
787
+ if (!getApiKey(runtime)) {
34
788
  logger.warn(
35
789
  "OPENAI_API_KEY is not set in environment - OpenAI functionality will be limited"
36
790
  );
37
791
  return;
38
792
  }
39
793
  try {
40
- const baseURL = process.env.OPENAI_BASE_URL ?? "https://api.openai.com/v1";
794
+ const baseURL = getBaseURL(runtime);
41
795
  const response = await fetch(`${baseURL}/models`, {
42
- headers: { Authorization: `Bearer ${process.env.OPENAI_API_KEY}` }
796
+ headers: { Authorization: `Bearer ${getApiKey(runtime)}` }
43
797
  });
44
798
  if (!response.ok) {
45
799
  logger.warn(`OpenAI API key validation failed: ${response.statusText}`);
46
800
  logger.warn("OpenAI functionality will be limited until a valid API key is provided");
47
801
  } else {
802
+ logger.log("OpenAI API key validated successfully");
48
803
  }
49
804
  } catch (fetchError) {
50
- logger.warn(`Error validating OpenAI API key: ${fetchError}`);
805
+ const message = fetchError instanceof Error ? fetchError.message : String(fetchError);
806
+ logger.warn(`Error validating OpenAI API key: ${message}`);
51
807
  logger.warn("OpenAI functionality will be limited until a valid API key is provided");
52
808
  }
53
809
  } catch (error) {
810
+ const message = error?.errors?.map((e) => e.message).join(", ") || (error instanceof Error ? error.message : String(error));
54
811
  logger.warn(
55
- `OpenAI plugin configuration issue: ${error.errors.map((e) => e.message).join(", ")} - You need to configure the OPENAI_API_KEY in your environment variables`
812
+ `OpenAI plugin configuration issue: ${message} - You need to configure the OPENAI_API_KEY in your environment variables`
56
813
  );
57
814
  }
58
815
  },
59
816
  models: {
60
- [ModelType.TEXT_EMBEDDING]: async (_runtime, params) => {
817
+ [ModelType.TEXT_EMBEDDING]: async (runtime, params) => {
818
+ const embeddingModelName = getSetting(
819
+ runtime,
820
+ "OPENAI_EMBEDDING_MODEL",
821
+ "text-embedding-3-small"
822
+ );
823
+ const embeddingDimension = Number.parseInt(
824
+ getSetting(runtime, "OPENAI_EMBEDDING_DIMENSIONS", "1536") || "1536",
825
+ 10
826
+ );
827
+ logger.debug(
828
+ `[OpenAI] Using embedding model: ${embeddingModelName} with dimension: ${embeddingDimension}`
829
+ );
830
+ if (!Object.values(VECTOR_DIMS).includes(embeddingDimension)) {
831
+ const errorMsg = `Invalid embedding dimension: ${embeddingDimension}. Must be one of: ${Object.values(VECTOR_DIMS).join(", ")}`;
832
+ logger.error(errorMsg);
833
+ throw new Error(errorMsg);
834
+ }
61
835
  if (params === null) {
62
836
  logger.debug("Creating test embedding for initialization");
63
- const testVector = Array(1536).fill(0);
837
+ const testVector = Array(embeddingDimension).fill(0);
64
838
  testVector[0] = 0.1;
65
839
  return testVector;
66
840
  }
@@ -71,51 +845,100 @@ var openaiPlugin = {
71
845
  text = params.text;
72
846
  } else {
73
847
  logger.warn("Invalid input format for embedding");
74
- const fallbackVector = Array(1536).fill(0);
848
+ const fallbackVector = Array(embeddingDimension).fill(0);
75
849
  fallbackVector[0] = 0.2;
76
850
  return fallbackVector;
77
851
  }
78
852
  if (!text.trim()) {
79
853
  logger.warn("Empty text for embedding");
80
- const emptyVector = Array(1536).fill(0);
854
+ const emptyVector = Array(embeddingDimension).fill(0);
81
855
  emptyVector[0] = 0.3;
82
856
  return emptyVector;
83
857
  }
84
- try {
85
- const baseURL = process.env.OPENAI_BASE_URL ?? "https://api.openai.com/v1";
86
- const response = await fetch(`${baseURL}/embeddings`, {
87
- method: "POST",
88
- headers: {
89
- Authorization: `Bearer ${process.env.OPENAI_API_KEY}`,
90
- "Content-Type": "application/json"
91
- },
92
- body: JSON.stringify({
93
- model: "text-embedding-3-small",
94
- input: text
95
- })
96
- });
97
- if (!response.ok) {
98
- logger.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
99
- const errorVector = Array(1536).fill(0);
100
- errorVector[0] = 0.4;
101
- return errorVector;
858
+ const attributes = {
859
+ "llm.vendor": "OpenAI",
860
+ "llm.request.type": "embedding",
861
+ "llm.request.model": embeddingModelName,
862
+ "llm.request.embedding.dimensions": embeddingDimension,
863
+ "input.text.length": text.length
864
+ };
865
+ return startLlmSpan(runtime, "LLM.embedding", attributes, async (span) => {
866
+ span.addEvent("llm.prompt", { "prompt.content": text });
867
+ const embeddingBaseURL = getEmbeddingBaseURL(runtime);
868
+ const apiKey = getApiKey(runtime);
869
+ if (!apiKey) {
870
+ span.setStatus({
871
+ code: SpanStatusCode.ERROR,
872
+ message: "OpenAI API key not configured"
873
+ });
874
+ throw new Error("OpenAI API key not configured");
102
875
  }
103
- const data = await response.json();
104
- if (!data?.data?.[0]?.embedding) {
105
- logger.error("API returned invalid structure");
106
- const errorVector = Array(1536).fill(0);
107
- errorVector[0] = 0.5;
876
+ try {
877
+ const response = await fetch(`${embeddingBaseURL}/embeddings`, {
878
+ method: "POST",
879
+ headers: {
880
+ Authorization: `Bearer ${apiKey}`,
881
+ "Content-Type": "application/json"
882
+ },
883
+ body: JSON.stringify({
884
+ model: embeddingModelName,
885
+ input: text
886
+ })
887
+ });
888
+ const responseClone = response.clone();
889
+ const rawResponseBody = await responseClone.text();
890
+ span.addEvent("llm.response.raw", {
891
+ "response.body": rawResponseBody
892
+ });
893
+ if (!response.ok) {
894
+ logger.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
895
+ span.setAttributes({ "error.api.status": response.status });
896
+ span.setStatus({
897
+ code: SpanStatusCode.ERROR,
898
+ message: `OpenAI API error: ${response.status} - ${response.statusText}. Response: ${rawResponseBody}`
899
+ });
900
+ const errorVector = Array(embeddingDimension).fill(0);
901
+ errorVector[0] = 0.4;
902
+ return errorVector;
903
+ }
904
+ const data = await response.json();
905
+ if (!data?.data?.[0]?.embedding) {
906
+ logger.error("API returned invalid structure");
907
+ span.setStatus({
908
+ code: SpanStatusCode.ERROR,
909
+ message: "API returned invalid structure"
910
+ });
911
+ const errorVector = Array(embeddingDimension).fill(0);
912
+ errorVector[0] = 0.5;
913
+ return errorVector;
914
+ }
915
+ const embedding = data.data[0].embedding;
916
+ span.setAttribute("llm.response.embedding.vector_length", embedding.length);
917
+ if (data.usage) {
918
+ span.setAttributes({
919
+ "llm.usage.prompt_tokens": data.usage.prompt_tokens,
920
+ "llm.usage.total_tokens": data.usage.total_tokens
921
+ });
922
+ const usage = {
923
+ promptTokens: data.usage.prompt_tokens,
924
+ completionTokens: 0,
925
+ totalTokens: data.usage.total_tokens
926
+ };
927
+ emitModelUsageEvent(runtime, ModelType.TEXT_EMBEDDING, text, usage);
928
+ }
929
+ logger.log(`Got valid embedding with length ${embedding.length}`);
930
+ return embedding;
931
+ } catch (error) {
932
+ const message = error instanceof Error ? error.message : String(error);
933
+ logger.error(`Error generating embedding: ${message}`);
934
+ const exception = error instanceof Error ? error : new Error(message);
935
+ span.recordException(exception);
936
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
937
+ const errorVector = Array(embeddingDimension).fill(0);
938
+ errorVector[0] = 0.6;
108
939
  return errorVector;
109
940
  }
110
- const embedding = data.data[0].embedding;
111
- logger.log(`Got valid embedding with length ${embedding.length}`);
112
- return embedding;
113
- } catch (error) {
114
- logger.error("Error generating embedding:", error);
115
- const errorVector = Array(1536).fill(0);
116
- errorVector[0] = 0.6;
117
- return errorVector;
118
- }
941
+ });
119
942
  },
120
943
  [ModelType.TEXT_TOKENIZER_ENCODE]: async (_runtime, { prompt, modelType = ModelType.TEXT_LARGE }) => {
121
944
  return await tokenizeText(modelType ?? ModelType.TEXT_LARGE, prompt);
@@ -128,25 +951,46 @@ var openaiPlugin = {
128
951
  const frequency_penalty = 0.7;
129
952
  const presence_penalty = 0.7;
130
953
  const max_response_length = 8192;
131
- const baseURL = runtime.getSetting("OPENAI_BASE_URL") ?? "https://api.openai.com/v1";
132
- const openai = createOpenAI({
133
- apiKey: runtime.getSetting("OPENAI_API_KEY"),
134
- baseURL
135
- });
136
- const model = runtime.getSetting("OPENAI_SMALL_MODEL") ?? runtime.getSetting("SMALL_MODEL") ?? "gpt-4o-mini";
137
- logger.log("generating text");
954
+ const openai = createOpenAIClient(runtime);
955
+ const modelName = getSmallModel(runtime);
956
+ logger.log(`[OpenAI] Using TEXT_SMALL model: ${modelName}`);
138
957
  logger.log(prompt);
139
- const { text: openaiResponse } = await generateText({
140
- model: openai.languageModel(model),
141
- prompt,
142
- system: runtime.character.system ?? void 0,
143
- temperature,
144
- maxTokens: max_response_length,
145
- frequencyPenalty: frequency_penalty,
146
- presencePenalty: presence_penalty,
147
- stopSequences
958
+ const attributes = {
959
+ "llm.vendor": "OpenAI",
960
+ "llm.request.type": "completion",
961
+ "llm.request.model": modelName,
962
+ "llm.request.temperature": temperature,
963
+ "llm.request.max_tokens": max_response_length,
964
+ "llm.request.frequency_penalty": frequency_penalty,
965
+ "llm.request.presence_penalty": presence_penalty,
966
+ "llm.request.stop_sequences": JSON.stringify(stopSequences)
967
+ };
968
+ return startLlmSpan(runtime, "LLM.generateText", attributes, async (span) => {
969
+ span.addEvent("llm.prompt", { "prompt.content": prompt });
970
+ const { text: openaiResponse, usage } = await generateText({
971
+ model: openai.languageModel(modelName),
972
+ prompt,
973
+ system: runtime.character.system ?? void 0,
974
+ temperature,
975
+ maxTokens: max_response_length,
976
+ frequencyPenalty: frequency_penalty,
977
+ presencePenalty: presence_penalty,
978
+ stopSequences
979
+ });
980
+ span.setAttribute("llm.response.processed.length", openaiResponse.length);
981
+ span.addEvent("llm.response.processed", {
982
+ "response.content": openaiResponse.substring(0, 200) + (openaiResponse.length > 200 ? "..." : "")
983
+ });
984
+ if (usage) {
985
+ span.setAttributes({
986
+ "llm.usage.prompt_tokens": usage.promptTokens,
987
+ "llm.usage.completion_tokens": usage.completionTokens,
988
+ "llm.usage.total_tokens": usage.totalTokens
989
+ });
990
+ emitModelUsageEvent(runtime, ModelType.TEXT_SMALL, prompt, usage);
991
+ }
992
+ return openaiResponse;
148
993
  });
149
- return openaiResponse;
150
994
  },
151
995
  [ModelType.TEXT_LARGE]: async (runtime, {
152
996
  prompt,
@@ -156,194 +1000,352 @@ var openaiPlugin = {
156
1000
  frequencyPenalty = 0.7,
157
1001
  presencePenalty = 0.7
158
1002
  }) => {
159
- const baseURL = runtime.getSetting("OPENAI_BASE_URL") ?? "https://api.openai.com/v1";
160
- const openai = createOpenAI({
161
- apiKey: runtime.getSetting("OPENAI_API_KEY"),
162
- baseURL
163
- });
164
- const model = runtime.getSetting("OPENAI_LARGE_MODEL") ?? runtime.getSetting("LARGE_MODEL") ?? "gpt-4o";
165
- const { text: openaiResponse } = await generateText({
166
- model: openai.languageModel(model),
167
- prompt,
168
- system: runtime.character.system ?? void 0,
169
- temperature,
170
- maxTokens,
171
- frequencyPenalty,
172
- presencePenalty,
173
- stopSequences
1003
+ const openai = createOpenAIClient(runtime);
1004
+ const modelName = getLargeModel(runtime);
1005
+ logger.log(`[OpenAI] Using TEXT_LARGE model: ${modelName}`);
1006
+ logger.log(prompt);
1007
+ const attributes = {
1008
+ "llm.vendor": "OpenAI",
1009
+ "llm.request.type": "completion",
1010
+ "llm.request.model": modelName,
1011
+ "llm.request.temperature": temperature,
1012
+ "llm.request.max_tokens": maxTokens,
1013
+ "llm.request.frequency_penalty": frequencyPenalty,
1014
+ "llm.request.presence_penalty": presencePenalty,
1015
+ "llm.request.stop_sequences": JSON.stringify(stopSequences)
1016
+ };
1017
+ return startLlmSpan(runtime, "LLM.generateText", attributes, async (span) => {
1018
+ span.addEvent("llm.prompt", { "prompt.content": prompt });
1019
+ const { text: openaiResponse, usage } = await generateText({
1020
+ model: openai.languageModel(modelName),
1021
+ prompt,
1022
+ system: runtime.character.system ?? void 0,
1023
+ temperature,
1024
+ maxTokens,
1025
+ frequencyPenalty,
1026
+ presencePenalty,
1027
+ stopSequences
1028
+ });
1029
+ span.setAttribute("llm.response.processed.length", openaiResponse.length);
1030
+ span.addEvent("llm.response.processed", {
1031
+ "response.content": openaiResponse.substring(0, 200) + (openaiResponse.length > 200 ? "..." : "")
1032
+ });
1033
+ if (usage) {
1034
+ span.setAttributes({
1035
+ "llm.usage.prompt_tokens": usage.promptTokens,
1036
+ "llm.usage.completion_tokens": usage.completionTokens,
1037
+ "llm.usage.total_tokens": usage.totalTokens
1038
+ });
1039
+ emitModelUsageEvent(runtime, ModelType.TEXT_LARGE, prompt, usage);
1040
+ }
1041
+ return openaiResponse;
174
1042
  });
175
- return openaiResponse;
176
1043
  },
177
1044
  [ModelType.IMAGE]: async (runtime, params) => {
178
- const baseURL = runtime.getSetting("OPENAI_BASE_URL") ?? "https://api.openai.com/v1";
179
- const response = await fetch(`${baseURL}/images/generations`, {
180
- method: "POST",
181
- headers: {
182
- Authorization: `Bearer ${runtime.getSetting("OPENAI_API_KEY")}`,
183
- "Content-Type": "application/json"
184
- },
185
- body: JSON.stringify({
186
- prompt: params.prompt,
187
- n: params.n || 1,
188
- size: params.size || "1024x1024"
189
- })
1045
+ const n = params.n || 1;
1046
+ const size = params.size || "1024x1024";
1047
+ const prompt = params.prompt;
1048
+ const modelName = "dall-e-3";
1049
+ logger.log(`[OpenAI] Using IMAGE model: ${modelName}`);
1050
+ const attributes = {
1051
+ "llm.vendor": "OpenAI",
1052
+ "llm.request.type": "image_generation",
1053
+ "llm.request.image.size": size,
1054
+ "llm.request.image.count": n
1055
+ };
1056
+ return startLlmSpan(runtime, "LLM.imageGeneration", attributes, async (span) => {
1057
+ span.addEvent("llm.prompt", { "prompt.content": prompt });
1058
+ const baseURL = getBaseURL(runtime);
1059
+ const apiKey = getApiKey(runtime);
1060
+ if (!apiKey) {
1061
+ span.setStatus({
1062
+ code: SpanStatusCode.ERROR,
1063
+ message: "OpenAI API key not configured"
1064
+ });
1065
+ throw new Error("OpenAI API key not configured");
1066
+ }
1067
+ try {
1068
+ const response = await fetch(`${baseURL}/images/generations`, {
1069
+ method: "POST",
1070
+ headers: {
1071
+ Authorization: `Bearer ${apiKey}`,
1072
+ "Content-Type": "application/json"
1073
+ },
1074
+ body: JSON.stringify({
1075
+ prompt,
1076
+ n,
1077
+ size
1078
+ })
1079
+ });
1080
+ const responseClone = response.clone();
1081
+ const rawResponseBody = await responseClone.text();
1082
+ span.addEvent("llm.response.raw", {
1083
+ "response.body": rawResponseBody
1084
+ });
1085
+ if (!response.ok) {
1086
+ span.setAttributes({ "error.api.status": response.status });
1087
+ span.setStatus({
1088
+ code: SpanStatusCode.ERROR,
1089
+ message: `Failed to generate image: ${response.statusText}. Response: ${rawResponseBody}`
1090
+ });
1091
+ throw new Error(`Failed to generate image: ${response.statusText}`);
1092
+ }
1093
+ const data = await response.json();
1094
+ const typedData = data;
1095
+ span.addEvent("llm.response.processed", {
1096
+ "response.urls": JSON.stringify(typedData.data)
1097
+ });
1098
+ return typedData.data;
1099
+ } catch (error) {
1100
+ const message = error instanceof Error ? error.message : String(error);
1101
+ const exception = error instanceof Error ? error : new Error(message);
1102
+ span.recordException(exception);
1103
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
1104
+ throw error;
1105
+ }
190
1106
  });
191
- if (!response.ok) {
192
- throw new Error(`Failed to generate image: ${response.statusText}`);
193
- }
194
- const data = await response.json();
195
- const typedData = data;
196
- return typedData.data;
197
1107
  },
198
1108
  [ModelType.IMAGE_DESCRIPTION]: async (runtime, params) => {
199
1109
  let imageUrl;
200
- let prompt;
1110
+ let promptText;
1111
+ const modelName = getImageDescriptionModel(runtime);
1112
+ logger.log(`[OpenAI] Using IMAGE_DESCRIPTION model: ${modelName}`);
1113
+ const maxTokens = Number.parseInt(
1114
+ getSetting(runtime, "OPENAI_IMAGE_DESCRIPTION_MAX_TOKENS", "8192") || "8192",
1115
+ 10
1116
+ );
201
1117
  if (typeof params === "string") {
202
1118
  imageUrl = params;
203
- prompt = void 0;
1119
+ promptText = "Please analyze this image and provide a title and detailed description.";
204
1120
  } else {
205
1121
  imageUrl = params.imageUrl;
206
- prompt = params.prompt;
1122
+ promptText = params.prompt || "Please analyze this image and provide a title and detailed description.";
207
1123
  }
208
- try {
209
- const baseURL = process.env.OPENAI_BASE_URL ?? "https://api.openai.com/v1";
210
- const apiKey = process.env.OPENAI_API_KEY;
1124
+ const attributes = {
1125
+ "llm.vendor": "OpenAI",
1126
+ "llm.request.type": "chat",
1127
+ "llm.request.model": modelName,
1128
+ "llm.request.max_tokens": maxTokens,
1129
+ "llm.request.image.url": imageUrl
1130
+ };
1131
+ const messages = [
1132
+ {
1133
+ role: "user",
1134
+ content: [
1135
+ { type: "text", text: promptText },
1136
+ { type: "image_url", image_url: { url: imageUrl } }
1137
+ ]
1138
+ }
1139
+ ];
1140
+ return startLlmSpan(runtime, "LLM.imageDescription", attributes, async (span) => {
1141
+ span.addEvent("llm.prompt", {
1142
+ "prompt.content": JSON.stringify(messages, safeReplacer())
1143
+ });
1144
+ const baseURL = getBaseURL(runtime);
1145
+ const apiKey = getApiKey(runtime);
211
1146
  if (!apiKey) {
212
1147
  logger.error("OpenAI API key not set");
1148
+ span.setStatus({
1149
+ code: SpanStatusCode.ERROR,
1150
+ message: "OpenAI API key not configured"
1151
+ });
213
1152
  return {
214
1153
  title: "Failed to analyze image",
215
1154
  description: "API key not configured"
216
1155
  };
217
1156
  }
218
- const response = await fetch(`${baseURL}/chat/completions`, {
219
- method: "POST",
220
- headers: {
221
- "Content-Type": "application/json",
222
- Authorization: `Bearer ${apiKey}`
223
- },
224
- body: JSON.stringify({
225
- model: "gpt-4-vision-preview",
226
- messages: [
1157
+ try {
1158
+ const requestBody = {
1159
+ model: modelName,
1160
+ messages,
1161
+ max_tokens: maxTokens
1162
+ };
1163
+ const response = await fetch(`${baseURL}/chat/completions`, {
1164
+ method: "POST",
1165
+ headers: {
1166
+ "Content-Type": "application/json",
1167
+ Authorization: `Bearer ${apiKey}`
1168
+ },
1169
+ body: JSON.stringify(requestBody)
1170
+ });
1171
+ const responseClone = response.clone();
1172
+ const rawResponseBody = await responseClone.text();
1173
+ span.addEvent("llm.response.raw", {
1174
+ "response.body": rawResponseBody
1175
+ });
1176
+ if (!response.ok) {
1177
+ span.setAttributes({ "error.api.status": response.status });
1178
+ span.setStatus({
1179
+ code: SpanStatusCode.ERROR,
1180
+ message: `OpenAI API error: ${response.status}. Response: ${rawResponseBody}`
1181
+ });
1182
+ throw new Error(`OpenAI API error: ${response.status}`);
1183
+ }
1184
+ const result = await response.json();
1185
+ const typedResult = result;
1186
+ const content = typedResult.choices?.[0]?.message?.content;
1187
+ console.log("############## CONTENT", content);
1188
+ if (typedResult.usage) {
1189
+ span.setAttributes({
1190
+ "llm.usage.prompt_tokens": typedResult.usage.prompt_tokens,
1191
+ "llm.usage.completion_tokens": typedResult.usage.completion_tokens,
1192
+ "llm.usage.total_tokens": typedResult.usage.total_tokens
1193
+ });
1194
+ emitModelUsageEvent(
1195
+ runtime,
1196
+ ModelType.IMAGE_DESCRIPTION,
1197
+ typeof params === "string" ? params : params.prompt || "",
227
1198
  {
228
- role: "user",
229
- content: [
230
- {
231
- type: "text",
232
- text: prompt || "Please analyze this image and provide a title and detailed description."
233
- },
234
- {
235
- type: "image_url",
236
- image_url: { url: imageUrl }
237
- }
238
- ]
1199
+ promptTokens: typedResult.usage.prompt_tokens,
1200
+ completionTokens: typedResult.usage.completion_tokens,
1201
+ totalTokens: typedResult.usage.total_tokens
239
1202
  }
240
- ],
241
- max_tokens: 300
242
- })
243
- });
244
- if (!response.ok) {
245
- throw new Error(`OpenAI API error: ${response.status}`);
246
- }
247
- const result = await response.json();
248
- const content = result.choices?.[0]?.message?.content;
249
- if (!content) {
1203
+ );
1204
+ }
1205
+ if (typedResult.choices?.[0]?.finish_reason) {
1206
+ span.setAttribute("llm.response.finish_reason", typedResult.choices[0].finish_reason);
1207
+ }
1208
+ if (!content) {
1209
+ span.setStatus({
1210
+ code: SpanStatusCode.ERROR,
1211
+ message: "No content in API response"
1212
+ });
1213
+ return {
1214
+ title: "Failed to analyze image",
1215
+ description: "No response from API"
1216
+ };
1217
+ }
1218
+ console.log("######################## CONTENT", content);
1219
+ const isCustomPrompt = typeof params === "object" && params.prompt && params.prompt !== "Please analyze this image and provide a title and detailed description.";
1220
+ if (isCustomPrompt) {
1221
+ span.addEvent("llm.response.raw_content", {
1222
+ "response.content": content
1223
+ });
1224
+ return content;
1225
+ }
1226
+ const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
1227
+ const title = titleMatch?.[1]?.trim() || "Image Analysis";
1228
+ const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
1229
+ const processedResult = { title, description };
1230
+ span.addEvent("llm.response.processed", {
1231
+ "response.object": JSON.stringify(processedResult, safeReplacer())
1232
+ });
1233
+ return processedResult;
1234
+ } catch (error) {
1235
+ const message = error instanceof Error ? error.message : String(error);
1236
+ logger.error(`Error analyzing image: ${message}`);
1237
+ const exception = error instanceof Error ? error : new Error(message);
1238
+ span.recordException(exception);
1239
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
250
1240
  return {
251
1241
  title: "Failed to analyze image",
252
- description: "No response from API"
1242
+ description: `Error: ${message}`
253
1243
  };
254
1244
  }
255
- const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
256
- const title = titleMatch?.[1] || "Image Analysis";
257
- const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
258
- return { title, description };
259
- } catch (error) {
260
- logger.error("Error analyzing image:", error);
261
- return {
262
- title: "Failed to analyze image",
263
- description: `Error: ${error instanceof Error ? error.message : String(error)}`
264
- };
265
- }
1245
+ });
266
1246
  },
267
1247
  [ModelType.TRANSCRIPTION]: async (runtime, audioBuffer) => {
268
1248
  logger.log("audioBuffer", audioBuffer);
269
- const baseURL = runtime.getSetting("OPENAI_BASE_URL") ?? "https://api.openai.com/v1";
270
- const formData = new FormData();
271
- formData.append("file", new Blob([audioBuffer], { type: "audio/mp3" }));
272
- formData.append("model", "whisper-1");
273
- const response = await fetch(`${baseURL}/audio/transcriptions`, {
274
- method: "POST",
275
- headers: {
276
- Authorization: `Bearer ${runtime.getSetting("OPENAI_API_KEY")}`
277
- // Note: Do not set a Content-Type header—letting fetch set it for FormData is best
278
- },
279
- body: formData
1249
+ const modelName = "whisper-1";
1250
+ logger.log(`[OpenAI] Using TRANSCRIPTION model: ${modelName}`);
1251
+ const attributes = {
1252
+ "llm.vendor": "OpenAI",
1253
+ "llm.request.type": "transcription",
1254
+ "llm.request.model": modelName,
1255
+ "llm.request.audio.input_size_bytes": audioBuffer?.length || 0
1256
+ };
1257
+ return startLlmSpan(runtime, "LLM.transcription", attributes, async (span) => {
1258
+ span.addEvent("llm.prompt", {
1259
+ "prompt.info": "Audio buffer for transcription"
1260
+ });
1261
+ const baseURL = getBaseURL(runtime);
1262
+ const apiKey = getApiKey(runtime);
1263
+ if (!apiKey) {
1264
+ span.setStatus({
1265
+ code: SpanStatusCode.ERROR,
1266
+ message: "OpenAI API key not configured"
1267
+ });
1268
+ throw new Error("OpenAI API key not configured - Cannot make request");
1269
+ }
1270
+ if (!audioBuffer || audioBuffer.length === 0) {
1271
+ span.setStatus({
1272
+ code: SpanStatusCode.ERROR,
1273
+ message: "Audio buffer is empty or invalid"
1274
+ });
1275
+ throw new Error("Audio buffer is empty or invalid for transcription");
1276
+ }
1277
+ const formData = new FormData();
1278
+ formData.append("file", new Blob([audioBuffer]), "recording.mp3");
1279
+ formData.append("model", "whisper-1");
1280
+ try {
1281
+ const response = await fetch(`${baseURL}/audio/transcriptions`, {
1282
+ method: "POST",
1283
+ headers: {
1284
+ Authorization: `Bearer ${apiKey}`
1285
+ },
1286
+ body: formData
1287
+ });
1288
+ const responseClone = response.clone();
1289
+ const rawResponseBody = await responseClone.text();
1290
+ span.addEvent("llm.response.raw", {
1291
+ "response.body": rawResponseBody
1292
+ });
1293
+ logger.log("response", response);
1294
+ if (!response.ok) {
1295
+ span.setAttributes({ "error.api.status": response.status });
1296
+ span.setStatus({
1297
+ code: SpanStatusCode.ERROR,
1298
+ message: `Failed to transcribe audio: ${response.statusText}. Response: ${rawResponseBody}`
1299
+ });
1300
+ throw new Error(`Failed to transcribe audio: ${response.statusText}`);
1301
+ }
1302
+ const data = await response.json();
1303
+ const processedText = data.text;
1304
+ span.setAttribute("llm.response.processed.length", processedText.length);
1305
+ span.addEvent("llm.response.processed", {
1306
+ "response.text": processedText
1307
+ });
1308
+ return processedText;
1309
+ } catch (error) {
1310
+ const message = error instanceof Error ? error.message : String(error);
1311
+ const exception = error instanceof Error ? error : new Error(message);
1312
+ span.recordException(exception);
1313
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
1314
+ throw error;
1315
+ }
280
1316
  });
281
- logger.log("response", response);
282
- if (!response.ok) {
283
- throw new Error(`Failed to transcribe audio: ${response.statusText}`);
284
- }
285
- const data = await response.json();
286
- return data.text;
287
1317
  },
288
- [ModelType.OBJECT_SMALL]: async (runtime, params) => {
289
- const baseURL = runtime.getSetting("OPENAI_BASE_URL") ?? "https://api.openai.com/v1";
290
- const openai = createOpenAI({
291
- apiKey: runtime.getSetting("OPENAI_API_KEY"),
292
- baseURL
293
- });
294
- const model = runtime.getSetting("OPENAI_SMALL_MODEL") ?? runtime.getSetting("SMALL_MODEL") ?? "gpt-4o-mini";
295
- try {
296
- if (params.schema) {
297
- logger.info("Using OBJECT_SMALL without schema validation");
298
- const { object: object2 } = await generateObject({
299
- model: openai.languageModel(model),
300
- output: "no-schema",
301
- prompt: params.prompt,
302
- temperature: params.temperature
1318
+ [ModelType.TEXT_TO_SPEECH]: async (runtime, text) => {
1319
+ const ttsModelName = getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
1320
+ const attributes = {
1321
+ "llm.vendor": "OpenAI",
1322
+ "llm.request.type": "tts",
1323
+ "llm.request.model": ttsModelName,
1324
+ "input.text.length": text.length
1325
+ };
1326
+ return startLlmSpan(runtime, "LLM.tts", attributes, async (span) => {
1327
+ logger.log(`[OpenAI] Using TEXT_TO_SPEECH model: ${ttsModelName}`);
1328
+ span.addEvent("llm.prompt", { "prompt.content": text });
1329
+ try {
1330
+ const speechStream = await fetchTextToSpeech(runtime, text);
1331
+ span.addEvent("llm.response.success", {
1332
+ info: "Speech stream generated"
303
1333
  });
304
- return object2;
1334
+ return speechStream;
1335
+ } catch (error) {
1336
+ const message = error instanceof Error ? error.message : String(error);
1337
+ const exception = error instanceof Error ? error : new Error(message);
1338
+ span.recordException(exception);
1339
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
1340
+ throw error;
305
1341
  }
306
- const { object } = await generateObject({
307
- model: openai.languageModel(model),
308
- output: "no-schema",
309
- prompt: params.prompt,
310
- temperature: params.temperature
311
- });
312
- return object;
313
- } catch (error) {
314
- logger.error("Error generating object:", error);
315
- throw error;
316
- }
1342
+ });
1343
+ },
1344
+ [ModelType.OBJECT_SMALL]: async (runtime, params) => {
1345
+ return generateObjectByModelType(runtime, params, ModelType.OBJECT_SMALL, getSmallModel);
317
1346
  },
318
1347
  [ModelType.OBJECT_LARGE]: async (runtime, params) => {
319
- const baseURL = runtime.getSetting("OPENAI_BASE_URL") ?? "https://api.openai.com/v1";
320
- const openai = createOpenAI({
321
- apiKey: runtime.getSetting("OPENAI_API_KEY"),
322
- baseURL
323
- });
324
- const model = runtime.getSetting("OPENAI_LARGE_MODEL") ?? runtime.getSetting("LARGE_MODEL") ?? "gpt-4o";
325
- try {
326
- if (params.schema) {
327
- logger.info("Using OBJECT_LARGE without schema validation");
328
- const { object: object2 } = await generateObject({
329
- model: openai.languageModel(model),
330
- output: "no-schema",
331
- prompt: params.prompt,
332
- temperature: params.temperature
333
- });
334
- return object2;
335
- }
336
- const { object } = await generateObject({
337
- model: openai.languageModel(model),
338
- output: "no-schema",
339
- prompt: params.prompt,
340
- temperature: params.temperature
341
- });
342
- return object;
343
- } catch (error) {
344
- logger.error("Error generating object:", error);
345
- throw error;
346
- }
1348
+ return generateObjectByModelType(runtime, params, ModelType.OBJECT_LARGE, getLargeModel);
347
1349
  }
348
1350
  },
349
1351
  tests: [
@@ -353,14 +1355,14 @@ var openaiPlugin = {
353
1355
  {
354
1356
  name: "openai_test_url_and_api_key_validation",
355
1357
  fn: async (runtime) => {
356
- const baseURL = runtime.getSetting("OPENAI_BASE_URL") ?? "https://api.openai.com/v1";
1358
+ const baseURL = getBaseURL(runtime);
357
1359
  const response = await fetch(`${baseURL}/models`, {
358
1360
  headers: {
359
- Authorization: `Bearer ${runtime.getSetting("OPENAI_API_KEY")}`
1361
+ Authorization: `Bearer ${getApiKey(runtime)}`
360
1362
  }
361
1363
  });
362
1364
  const data = await response.json();
363
- logger.log("Models Available:", data?.data.length);
1365
+ logger.log("Models Available:", data?.data?.length ?? "N/A");
364
1366
  if (!response.ok) {
365
1367
  throw new Error(`Failed to validate OpenAI API key: ${response.statusText}`);
366
1368
  }
@@ -375,7 +1377,8 @@ var openaiPlugin = {
375
1377
  });
376
1378
  logger.log("embedding", embedding);
377
1379
  } catch (error) {
378
- logger.error("Error in test_text_embedding:", error);
1380
+ const message = error instanceof Error ? error.message : String(error);
1381
+ logger.error(`Error in test_text_embedding: ${message}`);
379
1382
  throw error;
380
1383
  }
381
1384
  }
@@ -392,7 +1395,8 @@ var openaiPlugin = {
392
1395
  }
393
1396
  logger.log("generated with test_text_large:", text);
394
1397
  } catch (error) {
395
- logger.error("Error in test_text_large:", error);
1398
+ const message = error instanceof Error ? error.message : String(error);
1399
+ logger.error(`Error in test_text_large: ${message}`);
396
1400
  throw error;
397
1401
  }
398
1402
  }
@@ -409,7 +1413,8 @@ var openaiPlugin = {
409
1413
  }
410
1414
  logger.log("generated with test_text_small:", text);
411
1415
  } catch (error) {
412
- logger.error("Error in test_text_small:", error);
1416
+ const message = error instanceof Error ? error.message : String(error);
1417
+ logger.error(`Error in test_text_small: ${message}`);
413
1418
  throw error;
414
1419
  }
415
1420
  }
@@ -426,7 +1431,8 @@ var openaiPlugin = {
426
1431
  });
427
1432
  logger.log("generated with test_image_generation:", image);
428
1433
  } catch (error) {
429
- logger.error("Error in test_image_generation:", error);
1434
+ const message = error instanceof Error ? error.message : String(error);
1435
+ logger.error(`Error in test_image_generation: ${message}`);
430
1436
  throw error;
431
1437
  }
432
1438
  }
@@ -447,10 +1453,12 @@ var openaiPlugin = {
447
1453
  logger.error("Invalid image description result format:", result);
448
1454
  }
449
1455
  } catch (e) {
450
- logger.error("Error in image description test:", e);
1456
+ const message = e instanceof Error ? e.message : String(e);
1457
+ logger.error(`Error in image description test: ${message}`);
451
1458
  }
452
1459
  } catch (e) {
453
- logger.error("Error in openai_test_image_description:", e);
1460
+ const message = e instanceof Error ? e.message : String(e);
1461
+ logger.error(`Error in openai_test_image_description: ${message}`);
454
1462
  }
455
1463
  }
456
1464
  },
@@ -469,7 +1477,8 @@ var openaiPlugin = {
469
1477
  );
470
1478
  logger.log("generated with test_transcription:", transcription);
471
1479
  } catch (error) {
472
- logger.error("Error in test_transcription:", error);
1480
+ const message = error instanceof Error ? error.message : String(error);
1481
+ logger.error(`Error in test_transcription: ${message}`);
473
1482
  throw error;
474
1483
  }
475
1484
  }
@@ -498,6 +1507,23 @@ var openaiPlugin = {
498
1507
  }
499
1508
  logger.log("Decoded text:", decodedText);
500
1509
  }
1510
+ },
1511
+ {
1512
+ name: "openai_test_text_to_speech",
1513
+ fn: async (runtime) => {
1514
+ try {
1515
+ const text = "Hello, this is a test for text-to-speech.";
1516
+ const response = await fetchTextToSpeech(runtime, text);
1517
+ if (!response) {
1518
+ throw new Error("Failed to generate speech");
1519
+ }
1520
+ logger.log("Generated speech successfully");
1521
+ } catch (error) {
1522
+ const message = error instanceof Error ? error.message : String(error);
1523
+ logger.error(`Error in openai_test_text_to_speech: ${message}`);
1524
+ throw error;
1525
+ }
1526
+ }
501
1527
  }
502
1528
  ]
503
1529
  }