@elizaos/plugin-openai 1.0.0-beta.34 → 1.0.0-beta.38

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.js CHANGED
@@ -1,19 +1,567 @@
1
1
  // src/index.ts
2
2
  import { createOpenAI } from "@ai-sdk/openai";
3
+ import { getProviderBaseURL } from "@elizaos/core";
3
4
  import {
4
- ModelType,
5
+ EventType,
5
6
  logger,
6
- VECTOR_DIMS
7
+ ModelType,
8
+ VECTOR_DIMS,
9
+ safeReplacer,
10
+ ServiceType
7
11
  } from "@elizaos/core";
8
- import { generateObject, generateText, JSONParseError } from "ai";
12
+ import {
13
+ generateObject,
14
+ generateText,
15
+ JSONParseError
16
+ } from "ai";
9
17
  import { encodingForModel } from "js-tiktoken";
10
- import FormData from "form-data";
11
- import fetch from "node-fetch";
18
+ import { fetch, FormData } from "undici";
19
+
20
+ // ../../node_modules/@opentelemetry/api/build/esm/platform/node/globalThis.js
21
+ var _globalThis = typeof globalThis === "object" ? globalThis : global;
22
+
23
+ // ../../node_modules/@opentelemetry/api/build/esm/version.js
24
+ var VERSION = "1.9.0";
25
+
26
+ // ../../node_modules/@opentelemetry/api/build/esm/internal/semver.js
27
+ var re = /^(\d+)\.(\d+)\.(\d+)(-(.+))?$/;
28
+ function _makeCompatibilityCheck(ownVersion) {
29
+ var acceptedVersions = /* @__PURE__ */ new Set([ownVersion]);
30
+ var rejectedVersions = /* @__PURE__ */ new Set();
31
+ var myVersionMatch = ownVersion.match(re);
32
+ if (!myVersionMatch) {
33
+ return function() {
34
+ return false;
35
+ };
36
+ }
37
+ var ownVersionParsed = {
38
+ major: +myVersionMatch[1],
39
+ minor: +myVersionMatch[2],
40
+ patch: +myVersionMatch[3],
41
+ prerelease: myVersionMatch[4]
42
+ };
43
+ if (ownVersionParsed.prerelease != null) {
44
+ return function isExactmatch(globalVersion) {
45
+ return globalVersion === ownVersion;
46
+ };
47
+ }
48
+ function _reject(v) {
49
+ rejectedVersions.add(v);
50
+ return false;
51
+ }
52
+ function _accept(v) {
53
+ acceptedVersions.add(v);
54
+ return true;
55
+ }
56
+ return function isCompatible2(globalVersion) {
57
+ if (acceptedVersions.has(globalVersion)) {
58
+ return true;
59
+ }
60
+ if (rejectedVersions.has(globalVersion)) {
61
+ return false;
62
+ }
63
+ var globalVersionMatch = globalVersion.match(re);
64
+ if (!globalVersionMatch) {
65
+ return _reject(globalVersion);
66
+ }
67
+ var globalVersionParsed = {
68
+ major: +globalVersionMatch[1],
69
+ minor: +globalVersionMatch[2],
70
+ patch: +globalVersionMatch[3],
71
+ prerelease: globalVersionMatch[4]
72
+ };
73
+ if (globalVersionParsed.prerelease != null) {
74
+ return _reject(globalVersion);
75
+ }
76
+ if (ownVersionParsed.major !== globalVersionParsed.major) {
77
+ return _reject(globalVersion);
78
+ }
79
+ if (ownVersionParsed.major === 0) {
80
+ if (ownVersionParsed.minor === globalVersionParsed.minor && ownVersionParsed.patch <= globalVersionParsed.patch) {
81
+ return _accept(globalVersion);
82
+ }
83
+ return _reject(globalVersion);
84
+ }
85
+ if (ownVersionParsed.minor <= globalVersionParsed.minor) {
86
+ return _accept(globalVersion);
87
+ }
88
+ return _reject(globalVersion);
89
+ };
90
+ }
91
+ var isCompatible = _makeCompatibilityCheck(VERSION);
92
+
93
+ // ../../node_modules/@opentelemetry/api/build/esm/internal/global-utils.js
94
+ var major = VERSION.split(".")[0];
95
+ var GLOBAL_OPENTELEMETRY_API_KEY = Symbol.for("opentelemetry.js.api." + major);
96
+ var _global = _globalThis;
97
+ function registerGlobal(type, instance, diag, allowOverride) {
98
+ var _a;
99
+ if (allowOverride === void 0) {
100
+ allowOverride = false;
101
+ }
102
+ var api = _global[GLOBAL_OPENTELEMETRY_API_KEY] = (_a = _global[GLOBAL_OPENTELEMETRY_API_KEY]) !== null && _a !== void 0 ? _a : {
103
+ version: VERSION
104
+ };
105
+ if (!allowOverride && api[type]) {
106
+ var err = new Error("@opentelemetry/api: Attempted duplicate registration of API: " + type);
107
+ diag.error(err.stack || err.message);
108
+ return false;
109
+ }
110
+ if (api.version !== VERSION) {
111
+ var err = new Error("@opentelemetry/api: Registration of version v" + api.version + " for " + type + " does not match previously registered API v" + VERSION);
112
+ diag.error(err.stack || err.message);
113
+ return false;
114
+ }
115
+ api[type] = instance;
116
+ diag.debug("@opentelemetry/api: Registered a global for " + type + " v" + VERSION + ".");
117
+ return true;
118
+ }
119
+ function getGlobal(type) {
120
+ var _a, _b;
121
+ var globalVersion = (_a = _global[GLOBAL_OPENTELEMETRY_API_KEY]) === null || _a === void 0 ? void 0 : _a.version;
122
+ if (!globalVersion || !isCompatible(globalVersion)) {
123
+ return;
124
+ }
125
+ return (_b = _global[GLOBAL_OPENTELEMETRY_API_KEY]) === null || _b === void 0 ? void 0 : _b[type];
126
+ }
127
+ function unregisterGlobal(type, diag) {
128
+ diag.debug("@opentelemetry/api: Unregistering a global for " + type + " v" + VERSION + ".");
129
+ var api = _global[GLOBAL_OPENTELEMETRY_API_KEY];
130
+ if (api) {
131
+ delete api[type];
132
+ }
133
+ }
134
+
135
+ // ../../node_modules/@opentelemetry/api/build/esm/diag/ComponentLogger.js
136
+ var __read = function(o, n) {
137
+ var m = typeof Symbol === "function" && o[Symbol.iterator];
138
+ if (!m) return o;
139
+ var i = m.call(o), r, ar = [], e;
140
+ try {
141
+ while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
142
+ } catch (error) {
143
+ e = { error };
144
+ } finally {
145
+ try {
146
+ if (r && !r.done && (m = i["return"])) m.call(i);
147
+ } finally {
148
+ if (e) throw e.error;
149
+ }
150
+ }
151
+ return ar;
152
+ };
153
+ var __spreadArray = function(to, from, pack) {
154
+ if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
155
+ if (ar || !(i in from)) {
156
+ if (!ar) ar = Array.prototype.slice.call(from, 0, i);
157
+ ar[i] = from[i];
158
+ }
159
+ }
160
+ return to.concat(ar || Array.prototype.slice.call(from));
161
+ };
162
+ var DiagComponentLogger = (
163
+ /** @class */
164
+ function() {
165
+ function DiagComponentLogger2(props) {
166
+ this._namespace = props.namespace || "DiagComponentLogger";
167
+ }
168
+ DiagComponentLogger2.prototype.debug = function() {
169
+ var args = [];
170
+ for (var _i = 0; _i < arguments.length; _i++) {
171
+ args[_i] = arguments[_i];
172
+ }
173
+ return logProxy("debug", this._namespace, args);
174
+ };
175
+ DiagComponentLogger2.prototype.error = function() {
176
+ var args = [];
177
+ for (var _i = 0; _i < arguments.length; _i++) {
178
+ args[_i] = arguments[_i];
179
+ }
180
+ return logProxy("error", this._namespace, args);
181
+ };
182
+ DiagComponentLogger2.prototype.info = function() {
183
+ var args = [];
184
+ for (var _i = 0; _i < arguments.length; _i++) {
185
+ args[_i] = arguments[_i];
186
+ }
187
+ return logProxy("info", this._namespace, args);
188
+ };
189
+ DiagComponentLogger2.prototype.warn = function() {
190
+ var args = [];
191
+ for (var _i = 0; _i < arguments.length; _i++) {
192
+ args[_i] = arguments[_i];
193
+ }
194
+ return logProxy("warn", this._namespace, args);
195
+ };
196
+ DiagComponentLogger2.prototype.verbose = function() {
197
+ var args = [];
198
+ for (var _i = 0; _i < arguments.length; _i++) {
199
+ args[_i] = arguments[_i];
200
+ }
201
+ return logProxy("verbose", this._namespace, args);
202
+ };
203
+ return DiagComponentLogger2;
204
+ }()
205
+ );
206
+ function logProxy(funcName, namespace, args) {
207
+ var logger2 = getGlobal("diag");
208
+ if (!logger2) {
209
+ return;
210
+ }
211
+ args.unshift(namespace);
212
+ return logger2[funcName].apply(logger2, __spreadArray([], __read(args), false));
213
+ }
214
+
215
+ // ../../node_modules/@opentelemetry/api/build/esm/diag/types.js
216
+ var DiagLogLevel;
217
+ (function(DiagLogLevel2) {
218
+ DiagLogLevel2[DiagLogLevel2["NONE"] = 0] = "NONE";
219
+ DiagLogLevel2[DiagLogLevel2["ERROR"] = 30] = "ERROR";
220
+ DiagLogLevel2[DiagLogLevel2["WARN"] = 50] = "WARN";
221
+ DiagLogLevel2[DiagLogLevel2["INFO"] = 60] = "INFO";
222
+ DiagLogLevel2[DiagLogLevel2["DEBUG"] = 70] = "DEBUG";
223
+ DiagLogLevel2[DiagLogLevel2["VERBOSE"] = 80] = "VERBOSE";
224
+ DiagLogLevel2[DiagLogLevel2["ALL"] = 9999] = "ALL";
225
+ })(DiagLogLevel || (DiagLogLevel = {}));
226
+
227
+ // ../../node_modules/@opentelemetry/api/build/esm/diag/internal/logLevelLogger.js
228
+ function createLogLevelDiagLogger(maxLevel, logger2) {
229
+ if (maxLevel < DiagLogLevel.NONE) {
230
+ maxLevel = DiagLogLevel.NONE;
231
+ } else if (maxLevel > DiagLogLevel.ALL) {
232
+ maxLevel = DiagLogLevel.ALL;
233
+ }
234
+ logger2 = logger2 || {};
235
+ function _filterFunc(funcName, theLevel) {
236
+ var theFunc = logger2[funcName];
237
+ if (typeof theFunc === "function" && maxLevel >= theLevel) {
238
+ return theFunc.bind(logger2);
239
+ }
240
+ return function() {
241
+ };
242
+ }
243
+ return {
244
+ error: _filterFunc("error", DiagLogLevel.ERROR),
245
+ warn: _filterFunc("warn", DiagLogLevel.WARN),
246
+ info: _filterFunc("info", DiagLogLevel.INFO),
247
+ debug: _filterFunc("debug", DiagLogLevel.DEBUG),
248
+ verbose: _filterFunc("verbose", DiagLogLevel.VERBOSE)
249
+ };
250
+ }
251
+
252
+ // ../../node_modules/@opentelemetry/api/build/esm/api/diag.js
253
+ var __read2 = function(o, n) {
254
+ var m = typeof Symbol === "function" && o[Symbol.iterator];
255
+ if (!m) return o;
256
+ var i = m.call(o), r, ar = [], e;
257
+ try {
258
+ while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
259
+ } catch (error) {
260
+ e = { error };
261
+ } finally {
262
+ try {
263
+ if (r && !r.done && (m = i["return"])) m.call(i);
264
+ } finally {
265
+ if (e) throw e.error;
266
+ }
267
+ }
268
+ return ar;
269
+ };
270
+ var __spreadArray2 = function(to, from, pack) {
271
+ if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
272
+ if (ar || !(i in from)) {
273
+ if (!ar) ar = Array.prototype.slice.call(from, 0, i);
274
+ ar[i] = from[i];
275
+ }
276
+ }
277
+ return to.concat(ar || Array.prototype.slice.call(from));
278
+ };
279
+ var API_NAME = "diag";
280
+ var DiagAPI = (
281
+ /** @class */
282
+ function() {
283
+ function DiagAPI2() {
284
+ function _logProxy(funcName) {
285
+ return function() {
286
+ var args = [];
287
+ for (var _i = 0; _i < arguments.length; _i++) {
288
+ args[_i] = arguments[_i];
289
+ }
290
+ var logger2 = getGlobal("diag");
291
+ if (!logger2)
292
+ return;
293
+ return logger2[funcName].apply(logger2, __spreadArray2([], __read2(args), false));
294
+ };
295
+ }
296
+ var self = this;
297
+ var setLogger = function(logger2, optionsOrLogLevel) {
298
+ var _a, _b, _c;
299
+ if (optionsOrLogLevel === void 0) {
300
+ optionsOrLogLevel = { logLevel: DiagLogLevel.INFO };
301
+ }
302
+ if (logger2 === self) {
303
+ var err = new Error("Cannot use diag as the logger for itself. Please use a DiagLogger implementation like ConsoleDiagLogger or a custom implementation");
304
+ self.error((_a = err.stack) !== null && _a !== void 0 ? _a : err.message);
305
+ return false;
306
+ }
307
+ if (typeof optionsOrLogLevel === "number") {
308
+ optionsOrLogLevel = {
309
+ logLevel: optionsOrLogLevel
310
+ };
311
+ }
312
+ var oldLogger = getGlobal("diag");
313
+ var newLogger = createLogLevelDiagLogger((_b = optionsOrLogLevel.logLevel) !== null && _b !== void 0 ? _b : DiagLogLevel.INFO, logger2);
314
+ if (oldLogger && !optionsOrLogLevel.suppressOverrideMessage) {
315
+ var stack = (_c = new Error().stack) !== null && _c !== void 0 ? _c : "<failed to generate stacktrace>";
316
+ oldLogger.warn("Current logger will be overwritten from " + stack);
317
+ newLogger.warn("Current logger will overwrite one already registered from " + stack);
318
+ }
319
+ return registerGlobal("diag", newLogger, self, true);
320
+ };
321
+ self.setLogger = setLogger;
322
+ self.disable = function() {
323
+ unregisterGlobal(API_NAME, self);
324
+ };
325
+ self.createComponentLogger = function(options) {
326
+ return new DiagComponentLogger(options);
327
+ };
328
+ self.verbose = _logProxy("verbose");
329
+ self.debug = _logProxy("debug");
330
+ self.info = _logProxy("info");
331
+ self.warn = _logProxy("warn");
332
+ self.error = _logProxy("error");
333
+ }
334
+ DiagAPI2.instance = function() {
335
+ if (!this._instance) {
336
+ this._instance = new DiagAPI2();
337
+ }
338
+ return this._instance;
339
+ };
340
+ return DiagAPI2;
341
+ }()
342
+ );
343
+
344
+ // ../../node_modules/@opentelemetry/api/build/esm/context/context.js
345
+ var BaseContext = (
346
+ /** @class */
347
+ /* @__PURE__ */ function() {
348
+ function BaseContext2(parentContext) {
349
+ var self = this;
350
+ self._currentContext = parentContext ? new Map(parentContext) : /* @__PURE__ */ new Map();
351
+ self.getValue = function(key) {
352
+ return self._currentContext.get(key);
353
+ };
354
+ self.setValue = function(key, value) {
355
+ var context2 = new BaseContext2(self._currentContext);
356
+ context2._currentContext.set(key, value);
357
+ return context2;
358
+ };
359
+ self.deleteValue = function(key) {
360
+ var context2 = new BaseContext2(self._currentContext);
361
+ context2._currentContext.delete(key);
362
+ return context2;
363
+ };
364
+ }
365
+ return BaseContext2;
366
+ }()
367
+ );
368
+ var ROOT_CONTEXT = new BaseContext();
369
+
370
+ // ../../node_modules/@opentelemetry/api/build/esm/context/NoopContextManager.js
371
+ var __read3 = function(o, n) {
372
+ var m = typeof Symbol === "function" && o[Symbol.iterator];
373
+ if (!m) return o;
374
+ var i = m.call(o), r, ar = [], e;
375
+ try {
376
+ while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
377
+ } catch (error) {
378
+ e = { error };
379
+ } finally {
380
+ try {
381
+ if (r && !r.done && (m = i["return"])) m.call(i);
382
+ } finally {
383
+ if (e) throw e.error;
384
+ }
385
+ }
386
+ return ar;
387
+ };
388
+ var __spreadArray3 = function(to, from, pack) {
389
+ if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
390
+ if (ar || !(i in from)) {
391
+ if (!ar) ar = Array.prototype.slice.call(from, 0, i);
392
+ ar[i] = from[i];
393
+ }
394
+ }
395
+ return to.concat(ar || Array.prototype.slice.call(from));
396
+ };
397
+ var NoopContextManager = (
398
+ /** @class */
399
+ function() {
400
+ function NoopContextManager2() {
401
+ }
402
+ NoopContextManager2.prototype.active = function() {
403
+ return ROOT_CONTEXT;
404
+ };
405
+ NoopContextManager2.prototype.with = function(_context, fn, thisArg) {
406
+ var args = [];
407
+ for (var _i = 3; _i < arguments.length; _i++) {
408
+ args[_i - 3] = arguments[_i];
409
+ }
410
+ return fn.call.apply(fn, __spreadArray3([thisArg], __read3(args), false));
411
+ };
412
+ NoopContextManager2.prototype.bind = function(_context, target) {
413
+ return target;
414
+ };
415
+ NoopContextManager2.prototype.enable = function() {
416
+ return this;
417
+ };
418
+ NoopContextManager2.prototype.disable = function() {
419
+ return this;
420
+ };
421
+ return NoopContextManager2;
422
+ }()
423
+ );
424
+
425
+ // ../../node_modules/@opentelemetry/api/build/esm/api/context.js
426
+ var __read4 = function(o, n) {
427
+ var m = typeof Symbol === "function" && o[Symbol.iterator];
428
+ if (!m) return o;
429
+ var i = m.call(o), r, ar = [], e;
430
+ try {
431
+ while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
432
+ } catch (error) {
433
+ e = { error };
434
+ } finally {
435
+ try {
436
+ if (r && !r.done && (m = i["return"])) m.call(i);
437
+ } finally {
438
+ if (e) throw e.error;
439
+ }
440
+ }
441
+ return ar;
442
+ };
443
+ var __spreadArray4 = function(to, from, pack) {
444
+ if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {
445
+ if (ar || !(i in from)) {
446
+ if (!ar) ar = Array.prototype.slice.call(from, 0, i);
447
+ ar[i] = from[i];
448
+ }
449
+ }
450
+ return to.concat(ar || Array.prototype.slice.call(from));
451
+ };
452
+ var API_NAME2 = "context";
453
+ var NOOP_CONTEXT_MANAGER = new NoopContextManager();
454
+ var ContextAPI = (
455
+ /** @class */
456
+ function() {
457
+ function ContextAPI2() {
458
+ }
459
+ ContextAPI2.getInstance = function() {
460
+ if (!this._instance) {
461
+ this._instance = new ContextAPI2();
462
+ }
463
+ return this._instance;
464
+ };
465
+ ContextAPI2.prototype.setGlobalContextManager = function(contextManager) {
466
+ return registerGlobal(API_NAME2, contextManager, DiagAPI.instance());
467
+ };
468
+ ContextAPI2.prototype.active = function() {
469
+ return this._getContextManager().active();
470
+ };
471
+ ContextAPI2.prototype.with = function(context2, fn, thisArg) {
472
+ var _a;
473
+ var args = [];
474
+ for (var _i = 3; _i < arguments.length; _i++) {
475
+ args[_i - 3] = arguments[_i];
476
+ }
477
+ return (_a = this._getContextManager()).with.apply(_a, __spreadArray4([context2, fn, thisArg], __read4(args), false));
478
+ };
479
+ ContextAPI2.prototype.bind = function(context2, target) {
480
+ return this._getContextManager().bind(context2, target);
481
+ };
482
+ ContextAPI2.prototype._getContextManager = function() {
483
+ return getGlobal(API_NAME2) || NOOP_CONTEXT_MANAGER;
484
+ };
485
+ ContextAPI2.prototype.disable = function() {
486
+ this._getContextManager().disable();
487
+ unregisterGlobal(API_NAME2, DiagAPI.instance());
488
+ };
489
+ return ContextAPI2;
490
+ }()
491
+ );
492
+
493
+ // ../../node_modules/@opentelemetry/api/build/esm/trace/status.js
494
+ var SpanStatusCode;
495
+ (function(SpanStatusCode2) {
496
+ SpanStatusCode2[SpanStatusCode2["UNSET"] = 0] = "UNSET";
497
+ SpanStatusCode2[SpanStatusCode2["OK"] = 1] = "OK";
498
+ SpanStatusCode2[SpanStatusCode2["ERROR"] = 2] = "ERROR";
499
+ })(SpanStatusCode || (SpanStatusCode = {}));
500
+
501
+ // ../../node_modules/@opentelemetry/api/build/esm/context-api.js
502
+ var context = ContextAPI.getInstance();
503
+
504
+ // src/index.ts
505
+ function getTracer(runtime) {
506
+ const availableServices = Array.from(runtime.getAllServices().keys());
507
+ logger.debug(`[getTracer] Available services: ${JSON.stringify(availableServices)}`);
508
+ logger.debug(`[getTracer] Attempting to get service with key: ${ServiceType.INSTRUMENTATION}`);
509
+ const instrumentationService = runtime.getService(
510
+ ServiceType.INSTRUMENTATION
511
+ );
512
+ if (!instrumentationService) {
513
+ logger.warn(`[getTracer] Service ${ServiceType.INSTRUMENTATION} not found in runtime.`);
514
+ return null;
515
+ }
516
+ if (!instrumentationService.isEnabled()) {
517
+ logger.debug("[getTracer] Instrumentation service found but is disabled.");
518
+ return null;
519
+ }
520
+ logger.debug("[getTracer] Successfully retrieved enabled instrumentation service.");
521
+ return instrumentationService.getTracer("eliza.llm.openai");
522
+ }
523
+ async function startLlmSpan(runtime, spanName, attributes, fn) {
524
+ const tracer = getTracer(runtime);
525
+ if (!tracer) {
526
+ const dummySpan = {
527
+ setAttribute: () => {
528
+ },
529
+ setAttributes: () => {
530
+ },
531
+ addEvent: () => {
532
+ },
533
+ recordException: () => {
534
+ },
535
+ setStatus: () => {
536
+ },
537
+ end: () => {
538
+ },
539
+ spanContext: () => ({ traceId: "", spanId: "", traceFlags: 0 })
540
+ };
541
+ return fn(dummySpan);
542
+ }
543
+ const activeContext = context.active();
544
+ return tracer.startActiveSpan(spanName, { attributes }, activeContext, async (span) => {
545
+ try {
546
+ const result = await fn(span);
547
+ span.setStatus({ code: SpanStatusCode.OK });
548
+ span.end();
549
+ return result;
550
+ } catch (error) {
551
+ const message = error instanceof Error ? error.message : String(error);
552
+ span.recordException(error);
553
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
554
+ span.end();
555
+ throw error;
556
+ }
557
+ });
558
+ }
12
559
  function getSetting(runtime, key, defaultValue) {
13
560
  return runtime.getSetting(key) ?? process.env[key] ?? defaultValue;
14
561
  }
15
562
  function getBaseURL(runtime) {
16
- return getSetting(runtime, "OPENAI_BASE_URL", "https://api.openai.com/v1");
563
+ const defaultBaseURL = getSetting(runtime, "OPENAI_BASE_URL", "https://api.openai.com/v1");
564
+ return getProviderBaseURL(runtime, "openai", defaultBaseURL);
17
565
  }
18
566
  function getApiKey(runtime) {
19
567
  return getSetting(runtime, "OPENAI_API_KEY");
@@ -43,23 +591,109 @@ async function detokenizeText(model, tokens) {
43
591
  }
44
592
  async function generateObjectByModelType(runtime, params, modelType, getModelFn) {
45
593
  const openai = createOpenAIClient(runtime);
46
- const model = getModelFn(runtime);
47
- try {
48
- if (params.schema) {
49
- logger.info(`Using ${modelType} without schema validation`);
594
+ const modelName = getModelFn(runtime);
595
+ const temperature = params.temperature ?? 0;
596
+ const schemaPresent = !!params.schema;
597
+ const attributes = {
598
+ "llm.vendor": "OpenAI",
599
+ "llm.request.type": "object_generation",
600
+ "llm.request.model": modelName,
601
+ "llm.request.temperature": temperature,
602
+ "llm.request.schema_present": schemaPresent
603
+ };
604
+ return startLlmSpan(runtime, "LLM.generateObject", attributes, async (span) => {
605
+ span.addEvent("llm.prompt", { "prompt.content": params.prompt });
606
+ if (schemaPresent) {
607
+ span.addEvent("llm.request.schema", {
608
+ schema: JSON.stringify(params.schema, safeReplacer())
609
+ });
610
+ logger.info(
611
+ `Using ${modelType} without schema validation (schema provided but output=no-schema)`
612
+ );
50
613
  }
51
- const { object } = await generateObject({
52
- model: openai.languageModel(model),
53
- output: "no-schema",
54
- prompt: params.prompt,
55
- temperature: params.temperature,
56
- experimental_repairText: getJsonRepairFunction()
57
- });
58
- return object;
59
- } catch (error) {
60
- logger.error(`Error generating object with ${modelType}:`, error);
61
- throw error;
62
- }
614
+ try {
615
+ const { object, usage } = await generateObject({
616
+ model: openai.languageModel(modelName),
617
+ output: "no-schema",
618
+ prompt: params.prompt,
619
+ temperature,
620
+ experimental_repairText: getJsonRepairFunction()
621
+ });
622
+ span.addEvent("llm.response.processed", {
623
+ "response.object": JSON.stringify(object, safeReplacer())
624
+ });
625
+ if (usage) {
626
+ span.setAttributes({
627
+ "llm.usage.prompt_tokens": usage.promptTokens,
628
+ "llm.usage.completion_tokens": usage.completionTokens,
629
+ "llm.usage.total_tokens": usage.totalTokens
630
+ });
631
+ emitModelUsageEvent(runtime, modelType, params.prompt, usage);
632
+ }
633
+ return object;
634
+ } catch (error) {
635
+ if (error instanceof JSONParseError) {
636
+ logger.error(`[generateObject] Failed to parse JSON: ${error.message}`);
637
+ span.recordException(error);
638
+ span.addEvent("llm.error.json_parse", {
639
+ "error.message": error.message,
640
+ "error.text": error.text
641
+ });
642
+ span.addEvent("llm.repair.attempt");
643
+ const repairFunction = getJsonRepairFunction();
644
+ const repairedJsonString = await repairFunction({
645
+ text: error.text,
646
+ error
647
+ });
648
+ if (repairedJsonString) {
649
+ try {
650
+ const repairedObject = JSON.parse(repairedJsonString);
651
+ span.addEvent("llm.repair.success", {
652
+ repaired_object: JSON.stringify(repairedObject, safeReplacer())
653
+ });
654
+ logger.info("[generateObject] Successfully repaired JSON.");
655
+ span.setStatus({
656
+ code: SpanStatusCode.ERROR,
657
+ message: "JSON parsing failed but was repaired"
658
+ });
659
+ return repairedObject;
660
+ } catch (repairParseError) {
661
+ const message = repairParseError instanceof Error ? repairParseError.message : String(repairParseError);
662
+ logger.error(`[generateObject] Failed to parse repaired JSON: ${message}`);
663
+ const exception = repairParseError instanceof Error ? repairParseError : new Error(message);
664
+ span.recordException(exception);
665
+ span.addEvent("llm.repair.parse_error", {
666
+ "error.message": message
667
+ });
668
+ span.setStatus({
669
+ code: SpanStatusCode.ERROR,
670
+ message: `JSON repair failed: ${message}`
671
+ });
672
+ throw repairParseError;
673
+ }
674
+ } else {
675
+ const errMsg = error instanceof Error ? error.message : String(error);
676
+ logger.error("[generateObject] JSON repair failed.");
677
+ span.addEvent("llm.repair.failed");
678
+ span.setStatus({
679
+ code: SpanStatusCode.ERROR,
680
+ message: `JSON repair failed: ${errMsg}`
681
+ });
682
+ throw error;
683
+ }
684
+ } else {
685
+ const message = error instanceof Error ? error.message : String(error);
686
+ logger.error(`[generateObject] Unknown error: ${message}`);
687
+ const exception = error instanceof Error ? error : new Error(message);
688
+ span.recordException(exception);
689
+ span.setStatus({
690
+ code: SpanStatusCode.ERROR,
691
+ message
692
+ });
693
+ throw error;
694
+ }
695
+ }
696
+ });
63
697
  }
64
698
  function getJsonRepairFunction() {
65
699
  return async ({ text, error }) => {
@@ -69,12 +703,26 @@ function getJsonRepairFunction() {
69
703
  JSON.parse(cleanedText);
70
704
  return cleanedText;
71
705
  }
706
+ return null;
72
707
  } catch (jsonError) {
73
- logger.warn("Failed to repair JSON text:", jsonError);
708
+ const message = jsonError instanceof Error ? jsonError.message : String(jsonError);
709
+ logger.warn(`Failed to repair JSON text: ${message}`);
74
710
  return null;
75
711
  }
76
712
  };
77
713
  }
714
+ function emitModelUsageEvent(runtime, type, prompt, usage) {
715
+ runtime.emitEvent(EventType.MODEL_USED, {
716
+ provider: "openai",
717
+ type,
718
+ prompt,
719
+ tokens: {
720
+ prompt: usage.promptTokens,
721
+ completion: usage.completionTokens,
722
+ total: usage.totalTokens
723
+ }
724
+ });
725
+ }
78
726
  async function fetchTextToSpeech(runtime, text) {
79
727
  const apiKey = getApiKey(runtime);
80
728
  const model = getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts");
@@ -101,7 +749,8 @@ async function fetchTextToSpeech(runtime, text) {
101
749
  }
102
750
  return res.body;
103
751
  } catch (err) {
104
- throw new Error(`Failed to fetch speech from OpenAI TTS: ${err.message || err}`);
752
+ const message = err instanceof Error ? err.message : String(err);
753
+ throw new Error(`Failed to fetch speech from OpenAI TTS: ${message}`);
105
754
  }
106
755
  }
107
756
  var openaiPlugin = {
@@ -134,29 +783,35 @@ var openaiPlugin = {
134
783
  logger.warn(`OpenAI API key validation failed: ${response.statusText}`);
135
784
  logger.warn("OpenAI functionality will be limited until a valid API key is provided");
136
785
  } else {
786
+ logger.log("OpenAI API key validated successfully");
137
787
  }
138
788
  } catch (fetchError) {
139
- logger.warn(`Error validating OpenAI API key: ${fetchError}`);
789
+ const message = fetchError instanceof Error ? fetchError.message : String(fetchError);
790
+ logger.warn(`Error validating OpenAI API key: ${message}`);
140
791
  logger.warn("OpenAI functionality will be limited until a valid API key is provided");
141
792
  }
142
793
  } catch (error) {
794
+ const message = error?.errors?.map((e) => e.message).join(", ") || (error instanceof Error ? error.message : String(error));
143
795
  logger.warn(
144
- `OpenAI plugin configuration issue: ${error.errors.map((e) => e.message).join(", ")} - You need to configure the OPENAI_API_KEY in your environment variables`
796
+ `OpenAI plugin configuration issue: ${message} - You need to configure the OPENAI_API_KEY in your environment variables`
145
797
  );
146
798
  }
147
799
  },
148
800
  models: {
149
801
  [ModelType.TEXT_EMBEDDING]: async (runtime, params) => {
150
- const embeddingDimension = parseInt(
151
- getSetting(runtime, "OPENAI_EMBEDDING_DIMENSIONS", "1536")
802
+ const embeddingModelName = getSetting(
803
+ runtime,
804
+ "OPENAI_EMBEDDING_MODEL",
805
+ "text-embedding-3-small"
806
+ );
807
+ const embeddingDimension = Number.parseInt(
808
+ getSetting(runtime, "OPENAI_EMBEDDING_DIMENSIONS", "1536") || "1536",
809
+ 10
152
810
  );
153
811
  if (!Object.values(VECTOR_DIMS).includes(embeddingDimension)) {
154
- logger.error(
155
- `Invalid embedding dimension: ${embeddingDimension}. Must be one of: ${Object.values(VECTOR_DIMS).join(", ")}`
156
- );
157
- throw new Error(
158
- `Invalid embedding dimension: ${embeddingDimension}. Must be one of: ${Object.values(VECTOR_DIMS).join(", ")}`
159
- );
812
+ const errorMsg = `Invalid embedding dimension: ${embeddingDimension}. Must be one of: ${Object.values(VECTOR_DIMS).join(", ")}`;
813
+ logger.error(errorMsg);
814
+ throw new Error(errorMsg);
160
815
  }
161
816
  if (params === null) {
162
817
  logger.debug("Creating test embedding for initialization");
@@ -181,41 +836,84 @@ var openaiPlugin = {
181
836
  emptyVector[0] = 0.3;
182
837
  return emptyVector;
183
838
  }
184
- try {
839
+ const attributes = {
840
+ "llm.vendor": "OpenAI",
841
+ "llm.request.type": "embedding",
842
+ "llm.request.model": embeddingModelName,
843
+ "llm.request.embedding.dimensions": embeddingDimension,
844
+ "input.text.length": text.length
845
+ };
846
+ return startLlmSpan(runtime, "LLM.embedding", attributes, async (span) => {
847
+ span.addEvent("llm.prompt", { "prompt.content": text });
185
848
  const baseURL = getBaseURL(runtime);
186
- const response = await fetch(`${baseURL}/embeddings`, {
187
- method: "POST",
188
- headers: {
189
- Authorization: `Bearer ${getApiKey(runtime)}`,
190
- "Content-Type": "application/json"
191
- },
192
- body: JSON.stringify({
193
- model: getSetting(runtime, "OPENAI_EMBEDDING_MODEL", "text-embedding-3-small"),
194
- input: text
195
- })
196
- });
197
- if (!response.ok) {
198
- logger.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
199
- const errorVector = Array(embeddingDimension).fill(0);
200
- errorVector[0] = 0.4;
201
- return errorVector;
849
+ const apiKey = getApiKey(runtime);
850
+ if (!apiKey) {
851
+ span.setStatus({
852
+ code: SpanStatusCode.ERROR,
853
+ message: "OpenAI API key not configured"
854
+ });
855
+ throw new Error("OpenAI API key not configured");
202
856
  }
203
- const data = await response.json();
204
- if (!data?.data?.[0]?.embedding) {
205
- logger.error("API returned invalid structure");
857
+ try {
858
+ const response = await fetch(`${baseURL}/embeddings`, {
859
+ method: "POST",
860
+ headers: {
861
+ Authorization: `Bearer ${apiKey}`,
862
+ "Content-Type": "application/json"
863
+ },
864
+ body: JSON.stringify({
865
+ model: embeddingModelName,
866
+ input: text
867
+ })
868
+ });
869
+ const responseClone = response.clone();
870
+ const rawResponseBody = await responseClone.text();
871
+ span.addEvent("llm.response.raw", {
872
+ "response.body": rawResponseBody
873
+ });
874
+ if (!response.ok) {
875
+ logger.error(`OpenAI API error: ${response.status} - ${response.statusText}`);
876
+ span.setAttributes({ "error.api.status": response.status });
877
+ span.setStatus({
878
+ code: SpanStatusCode.ERROR,
879
+ message: `OpenAI API error: ${response.status} - ${response.statusText}. Response: ${rawResponseBody}`
880
+ });
881
+ const errorVector = Array(embeddingDimension).fill(0);
882
+ errorVector[0] = 0.4;
883
+ return errorVector;
884
+ }
885
+ const data = await response.json();
886
+ if (!data?.data?.[0]?.embedding) {
887
+ logger.error("API returned invalid structure");
888
+ span.setStatus({
889
+ code: SpanStatusCode.ERROR,
890
+ message: "API returned invalid structure"
891
+ });
892
+ const errorVector = Array(embeddingDimension).fill(0);
893
+ errorVector[0] = 0.5;
894
+ return errorVector;
895
+ }
896
+ const embedding = data.data[0].embedding;
897
+ span.setAttribute("llm.response.embedding.vector_length", embedding.length);
898
+ if (data.usage) {
899
+ span.setAttributes({
900
+ "llm.usage.prompt_tokens": data.usage.prompt_tokens,
901
+ "llm.usage.total_tokens": data.usage.total_tokens
902
+ });
903
+ }
904
+ logger.log(`Got valid embedding with length ${embedding.length}`);
905
+ return embedding;
906
+ } catch (error) {
907
+ const message = error instanceof Error ? error.message : String(error);
908
+ logger.error(`Error generating embedding: ${message}`);
909
+ const exception = error instanceof Error ? error : new Error(message);
910
+ span.recordException(exception);
911
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
206
912
  const errorVector = Array(embeddingDimension).fill(0);
207
- errorVector[0] = 0.5;
913
+ errorVector[0] = 0.6;
208
914
  return errorVector;
209
915
  }
210
- const embedding = data.data[0].embedding;
211
- logger.log(`Got valid embedding with length ${embedding.length}`);
212
- return embedding;
213
- } catch (error) {
214
- logger.error("Error generating embedding:", error);
215
- const errorVector = Array(embeddingDimension).fill(0);
216
- errorVector[0] = 0.6;
217
- return errorVector;
218
- }
916
+ });
219
917
  },
220
918
  [ModelType.TEXT_TOKENIZER_ENCODE]: async (_runtime, { prompt, modelType = ModelType.TEXT_LARGE }) => {
221
919
  return await tokenizeText(modelType ?? ModelType.TEXT_LARGE, prompt);
@@ -229,20 +927,45 @@ var openaiPlugin = {
229
927
  const presence_penalty = 0.7;
230
928
  const max_response_length = 8192;
231
929
  const openai = createOpenAIClient(runtime);
232
- const model = getSmallModel(runtime);
930
+ const modelName = getSmallModel(runtime);
233
931
  logger.log("generating text");
234
932
  logger.log(prompt);
235
- const { text: openaiResponse } = await generateText({
236
- model: openai.languageModel(model),
237
- prompt,
238
- system: runtime.character.system ?? void 0,
239
- temperature,
240
- maxTokens: max_response_length,
241
- frequencyPenalty: frequency_penalty,
242
- presencePenalty: presence_penalty,
243
- stopSequences
933
+ const attributes = {
934
+ "llm.vendor": "OpenAI",
935
+ "llm.request.type": "completion",
936
+ "llm.request.model": modelName,
937
+ "llm.request.temperature": temperature,
938
+ "llm.request.max_tokens": max_response_length,
939
+ "llm.request.frequency_penalty": frequency_penalty,
940
+ "llm.request.presence_penalty": presence_penalty,
941
+ "llm.request.stop_sequences": JSON.stringify(stopSequences)
942
+ };
943
+ return startLlmSpan(runtime, "LLM.generateText", attributes, async (span) => {
944
+ span.addEvent("llm.prompt", { "prompt.content": prompt });
945
+ const { text: openaiResponse, usage } = await generateText({
946
+ model: openai.languageModel(modelName),
947
+ prompt,
948
+ system: runtime.character.system ?? void 0,
949
+ temperature,
950
+ maxTokens: max_response_length,
951
+ frequencyPenalty: frequency_penalty,
952
+ presencePenalty: presence_penalty,
953
+ stopSequences
954
+ });
955
+ span.setAttribute("llm.response.processed.length", openaiResponse.length);
956
+ span.addEvent("llm.response.processed", {
957
+ "response.content": openaiResponse.substring(0, 200) + (openaiResponse.length > 200 ? "..." : "")
958
+ });
959
+ if (usage) {
960
+ span.setAttributes({
961
+ "llm.usage.prompt_tokens": usage.promptTokens,
962
+ "llm.usage.completion_tokens": usage.completionTokens,
963
+ "llm.usage.total_tokens": usage.totalTokens
964
+ });
965
+ emitModelUsageEvent(runtime, ModelType.TEXT_SMALL, prompt, usage);
966
+ }
967
+ return openaiResponse;
244
968
  });
245
- return openaiResponse;
246
969
  },
247
970
  [ModelType.TEXT_LARGE]: async (runtime, {
248
971
  prompt,
@@ -253,134 +976,316 @@ var openaiPlugin = {
253
976
  presencePenalty = 0.7
254
977
  }) => {
255
978
  const openai = createOpenAIClient(runtime);
256
- const model = getLargeModel(runtime);
257
- const { text: openaiResponse } = await generateText({
258
- model: openai.languageModel(model),
259
- prompt,
260
- system: runtime.character.system ?? void 0,
261
- temperature,
262
- maxTokens,
263
- frequencyPenalty,
264
- presencePenalty,
265
- stopSequences
979
+ const modelName = getLargeModel(runtime);
980
+ logger.log("generating text");
981
+ logger.log(prompt);
982
+ const attributes = {
983
+ "llm.vendor": "OpenAI",
984
+ "llm.request.type": "completion",
985
+ "llm.request.model": modelName,
986
+ "llm.request.temperature": temperature,
987
+ "llm.request.max_tokens": maxTokens,
988
+ "llm.request.frequency_penalty": frequencyPenalty,
989
+ "llm.request.presence_penalty": presencePenalty,
990
+ "llm.request.stop_sequences": JSON.stringify(stopSequences)
991
+ };
992
+ return startLlmSpan(runtime, "LLM.generateText", attributes, async (span) => {
993
+ span.addEvent("llm.prompt", { "prompt.content": prompt });
994
+ const { text: openaiResponse, usage } = await generateText({
995
+ model: openai.languageModel(modelName),
996
+ prompt,
997
+ system: runtime.character.system ?? void 0,
998
+ temperature,
999
+ maxTokens,
1000
+ frequencyPenalty,
1001
+ presencePenalty,
1002
+ stopSequences
1003
+ });
1004
+ span.setAttribute("llm.response.processed.length", openaiResponse.length);
1005
+ span.addEvent("llm.response.processed", {
1006
+ "response.content": openaiResponse.substring(0, 200) + (openaiResponse.length > 200 ? "..." : "")
1007
+ });
1008
+ if (usage) {
1009
+ span.setAttributes({
1010
+ "llm.usage.prompt_tokens": usage.promptTokens,
1011
+ "llm.usage.completion_tokens": usage.completionTokens,
1012
+ "llm.usage.total_tokens": usage.totalTokens
1013
+ });
1014
+ emitModelUsageEvent(runtime, ModelType.TEXT_LARGE, prompt, usage);
1015
+ }
1016
+ return openaiResponse;
266
1017
  });
267
- return openaiResponse;
268
1018
  },
269
1019
  [ModelType.IMAGE]: async (runtime, params) => {
270
- const baseURL = getBaseURL(runtime);
271
- const response = await fetch(`${baseURL}/images/generations`, {
272
- method: "POST",
273
- headers: {
274
- Authorization: `Bearer ${getApiKey(runtime)}`,
275
- "Content-Type": "application/json"
276
- },
277
- body: JSON.stringify({
278
- prompt: params.prompt,
279
- n: params.n || 1,
280
- size: params.size || "1024x1024"
281
- })
1020
+ const n = params.n || 1;
1021
+ const size = params.size || "1024x1024";
1022
+ const prompt = params.prompt;
1023
+ const attributes = {
1024
+ "llm.vendor": "OpenAI",
1025
+ "llm.request.type": "image_generation",
1026
+ "llm.request.image.size": size,
1027
+ "llm.request.image.count": n
1028
+ };
1029
+ return startLlmSpan(runtime, "LLM.imageGeneration", attributes, async (span) => {
1030
+ span.addEvent("llm.prompt", { "prompt.content": prompt });
1031
+ const baseURL = getBaseURL(runtime);
1032
+ const apiKey = getApiKey(runtime);
1033
+ if (!apiKey) {
1034
+ span.setStatus({
1035
+ code: SpanStatusCode.ERROR,
1036
+ message: "OpenAI API key not configured"
1037
+ });
1038
+ throw new Error("OpenAI API key not configured");
1039
+ }
1040
+ try {
1041
+ const response = await fetch(`${baseURL}/images/generations`, {
1042
+ method: "POST",
1043
+ headers: {
1044
+ Authorization: `Bearer ${apiKey}`,
1045
+ "Content-Type": "application/json"
1046
+ },
1047
+ body: JSON.stringify({
1048
+ prompt,
1049
+ n,
1050
+ size
1051
+ })
1052
+ });
1053
+ const responseClone = response.clone();
1054
+ const rawResponseBody = await responseClone.text();
1055
+ span.addEvent("llm.response.raw", {
1056
+ "response.body": rawResponseBody
1057
+ });
1058
+ if (!response.ok) {
1059
+ span.setAttributes({ "error.api.status": response.status });
1060
+ span.setStatus({
1061
+ code: SpanStatusCode.ERROR,
1062
+ message: `Failed to generate image: ${response.statusText}. Response: ${rawResponseBody}`
1063
+ });
1064
+ throw new Error(`Failed to generate image: ${response.statusText}`);
1065
+ }
1066
+ const data = await response.json();
1067
+ const typedData = data;
1068
+ span.addEvent("llm.response.processed", {
1069
+ "response.urls": JSON.stringify(typedData.data)
1070
+ });
1071
+ return typedData.data;
1072
+ } catch (error) {
1073
+ const message = error instanceof Error ? error.message : String(error);
1074
+ const exception = error instanceof Error ? error : new Error(message);
1075
+ span.recordException(exception);
1076
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
1077
+ throw error;
1078
+ }
282
1079
  });
283
- if (!response.ok) {
284
- throw new Error(`Failed to generate image: ${response.statusText}`);
285
- }
286
- const data = await response.json();
287
- const typedData = data;
288
- return typedData.data;
289
1080
  },
290
1081
  [ModelType.IMAGE_DESCRIPTION]: async (runtime, params) => {
291
1082
  let imageUrl;
292
- let prompt;
1083
+ let promptText;
1084
+ const modelName = "gpt-4o-mini";
1085
+ const maxTokens = 300;
293
1086
  if (typeof params === "string") {
294
1087
  imageUrl = params;
295
- prompt = void 0;
1088
+ promptText = "Please analyze this image and provide a title and detailed description.";
296
1089
  } else {
297
1090
  imageUrl = params.imageUrl;
298
- prompt = params.prompt;
1091
+ promptText = params.prompt || "Please analyze this image and provide a title and detailed description.";
299
1092
  }
300
- try {
1093
+ const attributes = {
1094
+ "llm.vendor": "OpenAI",
1095
+ "llm.request.type": "chat",
1096
+ "llm.request.model": modelName,
1097
+ "llm.request.max_tokens": maxTokens,
1098
+ "llm.request.image.url": imageUrl
1099
+ };
1100
+ const messages = [
1101
+ {
1102
+ role: "user",
1103
+ content: [
1104
+ { type: "text", text: promptText },
1105
+ { type: "image_url", image_url: { url: imageUrl } }
1106
+ ]
1107
+ }
1108
+ ];
1109
+ return startLlmSpan(runtime, "LLM.imageDescription", attributes, async (span) => {
1110
+ span.addEvent("llm.prompt", {
1111
+ "prompt.content": JSON.stringify(messages, safeReplacer())
1112
+ });
301
1113
  const baseURL = getBaseURL(runtime);
302
1114
  const apiKey = getApiKey(runtime);
303
1115
  if (!apiKey) {
304
1116
  logger.error("OpenAI API key not set");
1117
+ span.setStatus({
1118
+ code: SpanStatusCode.ERROR,
1119
+ message: "OpenAI API key not configured"
1120
+ });
305
1121
  return {
306
1122
  title: "Failed to analyze image",
307
1123
  description: "API key not configured"
308
1124
  };
309
1125
  }
310
- const response = await fetch(`${baseURL}/chat/completions`, {
311
- method: "POST",
312
- headers: {
313
- "Content-Type": "application/json",
314
- Authorization: `Bearer ${apiKey}`
315
- },
316
- body: JSON.stringify({
317
- model: "gpt-4o-mini",
318
- messages: [
319
- {
320
- role: "user",
321
- content: [
322
- {
323
- type: "text",
324
- text: prompt || "Please analyze this image and provide a title and detailed description."
325
- },
326
- {
327
- type: "image_url",
328
- image_url: { url: imageUrl }
329
- }
330
- ]
331
- }
332
- ],
333
- max_tokens: 300
334
- })
335
- });
336
- if (!response.ok) {
337
- throw new Error(`OpenAI API error: ${response.status}`);
338
- }
339
- const result = await response.json();
340
- const content = result.choices?.[0]?.message?.content;
341
- if (!content) {
1126
+ try {
1127
+ const response = await fetch(`${baseURL}/chat/completions`, {
1128
+ method: "POST",
1129
+ headers: {
1130
+ "Content-Type": "application/json",
1131
+ Authorization: `Bearer ${apiKey}`
1132
+ },
1133
+ body: JSON.stringify({
1134
+ model: modelName,
1135
+ messages,
1136
+ max_tokens: maxTokens
1137
+ })
1138
+ });
1139
+ const responseClone = response.clone();
1140
+ const rawResponseBody = await responseClone.text();
1141
+ span.addEvent("llm.response.raw", {
1142
+ "response.body": rawResponseBody
1143
+ });
1144
+ if (!response.ok) {
1145
+ span.setAttributes({ "error.api.status": response.status });
1146
+ span.setStatus({
1147
+ code: SpanStatusCode.ERROR,
1148
+ message: `OpenAI API error: ${response.status}. Response: ${rawResponseBody}`
1149
+ });
1150
+ throw new Error(`OpenAI API error: ${response.status}`);
1151
+ }
1152
+ const result = await response.json();
1153
+ const typedResult = result;
1154
+ const content = typedResult.choices?.[0]?.message?.content;
1155
+ if (typedResult.usage) {
1156
+ span.setAttributes({
1157
+ "llm.usage.prompt_tokens": typedResult.usage.prompt_tokens,
1158
+ "llm.usage.completion_tokens": typedResult.usage.completion_tokens,
1159
+ "llm.usage.total_tokens": typedResult.usage.total_tokens
1160
+ });
1161
+ }
1162
+ if (typedResult.choices?.[0]?.finish_reason) {
1163
+ span.setAttribute("llm.response.finish_reason", typedResult.choices[0].finish_reason);
1164
+ }
1165
+ if (!content) {
1166
+ span.setStatus({
1167
+ code: SpanStatusCode.ERROR,
1168
+ message: "No content in API response"
1169
+ });
1170
+ return {
1171
+ title: "Failed to analyze image",
1172
+ description: "No response from API"
1173
+ };
1174
+ }
1175
+ const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
1176
+ const title = titleMatch?.[1]?.trim() || "Image Analysis";
1177
+ const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
1178
+ const processedResult = { title, description };
1179
+ span.addEvent("llm.response.processed", {
1180
+ "response.object": JSON.stringify(processedResult, safeReplacer())
1181
+ });
1182
+ return processedResult;
1183
+ } catch (error) {
1184
+ const message = error instanceof Error ? error.message : String(error);
1185
+ logger.error(`Error analyzing image: ${message}`);
1186
+ const exception = error instanceof Error ? error : new Error(message);
1187
+ span.recordException(exception);
1188
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
342
1189
  return {
343
1190
  title: "Failed to analyze image",
344
- description: "No response from API"
1191
+ description: `Error: ${message}`
345
1192
  };
346
1193
  }
347
- const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
348
- const title = titleMatch?.[1] || "Image Analysis";
349
- const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
350
- return { title, description };
351
- } catch (error) {
352
- logger.error("Error analyzing image:", error);
353
- return {
354
- title: "Failed to analyze image",
355
- description: `Error: ${error instanceof Error ? error.message : String(error)}`
356
- };
357
- }
1194
+ });
358
1195
  },
359
1196
  [ModelType.TRANSCRIPTION]: async (runtime, audioBuffer) => {
360
1197
  logger.log("audioBuffer", audioBuffer);
361
- const baseURL = getBaseURL(runtime);
362
- const formData = new FormData();
363
- formData.append("file", audioBuffer, {
364
- filename: "recording.mp3",
365
- contentType: "audio/mp3"
366
- });
367
- formData.append("model", "whisper-1");
368
- const response = await fetch(`${baseURL}/audio/transcriptions`, {
369
- method: "POST",
370
- headers: {
371
- Authorization: `Bearer ${getApiKey(runtime)}`
372
- },
373
- body: formData
1198
+ const modelName = "whisper-1";
1199
+ const attributes = {
1200
+ "llm.vendor": "OpenAI",
1201
+ "llm.request.type": "transcription",
1202
+ "llm.request.model": modelName,
1203
+ "llm.request.audio.input_size_bytes": audioBuffer?.length || 0
1204
+ };
1205
+ return startLlmSpan(runtime, "LLM.transcription", attributes, async (span) => {
1206
+ span.addEvent("llm.prompt", {
1207
+ "prompt.info": "Audio buffer for transcription"
1208
+ });
1209
+ const baseURL = getBaseURL(runtime);
1210
+ const apiKey = getApiKey(runtime);
1211
+ if (!apiKey) {
1212
+ span.setStatus({
1213
+ code: SpanStatusCode.ERROR,
1214
+ message: "OpenAI API key not configured"
1215
+ });
1216
+ throw new Error("OpenAI API key not configured - Cannot make request");
1217
+ }
1218
+ if (!audioBuffer || audioBuffer.length === 0) {
1219
+ span.setStatus({
1220
+ code: SpanStatusCode.ERROR,
1221
+ message: "Audio buffer is empty or invalid"
1222
+ });
1223
+ throw new Error("Audio buffer is empty or invalid for transcription");
1224
+ }
1225
+ const formData = new FormData();
1226
+ formData.append("file", new Blob([audioBuffer]), "recording.mp3");
1227
+ formData.append("model", "whisper-1");
1228
+ try {
1229
+ const response = await fetch(`${baseURL}/audio/transcriptions`, {
1230
+ method: "POST",
1231
+ headers: {
1232
+ Authorization: `Bearer ${apiKey}`
1233
+ },
1234
+ body: formData
1235
+ });
1236
+ const responseClone = response.clone();
1237
+ const rawResponseBody = await responseClone.text();
1238
+ span.addEvent("llm.response.raw", {
1239
+ "response.body": rawResponseBody
1240
+ });
1241
+ logger.log("response", response);
1242
+ if (!response.ok) {
1243
+ span.setAttributes({ "error.api.status": response.status });
1244
+ span.setStatus({
1245
+ code: SpanStatusCode.ERROR,
1246
+ message: `Failed to transcribe audio: ${response.statusText}. Response: ${rawResponseBody}`
1247
+ });
1248
+ throw new Error(`Failed to transcribe audio: ${response.statusText}`);
1249
+ }
1250
+ const data = await response.json();
1251
+ const processedText = data.text;
1252
+ span.setAttribute("llm.response.processed.length", processedText.length);
1253
+ span.addEvent("llm.response.processed", {
1254
+ "response.text": processedText
1255
+ });
1256
+ return processedText;
1257
+ } catch (error) {
1258
+ const message = error instanceof Error ? error.message : String(error);
1259
+ const exception = error instanceof Error ? error : new Error(message);
1260
+ span.recordException(exception);
1261
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
1262
+ throw error;
1263
+ }
374
1264
  });
375
- logger.log("response", response);
376
- if (!response.ok) {
377
- throw new Error(`Failed to transcribe audio: ${response.statusText}`);
378
- }
379
- const data = await response.json();
380
- return data.text;
381
1265
  },
382
1266
  [ModelType.TEXT_TO_SPEECH]: async (runtime, text) => {
383
- return await fetchTextToSpeech(runtime, text);
1267
+ const attributes = {
1268
+ "llm.vendor": "OpenAI",
1269
+ "llm.request.type": "tts",
1270
+ "llm.request.model": getSetting(runtime, "OPENAI_TTS_MODEL", "gpt-4o-mini-tts"),
1271
+ "input.text.length": text.length
1272
+ };
1273
+ return startLlmSpan(runtime, "LLM.tts", attributes, async (span) => {
1274
+ span.addEvent("llm.prompt", { "prompt.content": text });
1275
+ try {
1276
+ const speechStream = await fetchTextToSpeech(runtime, text);
1277
+ span.addEvent("llm.response.success", {
1278
+ info: "Speech stream generated"
1279
+ });
1280
+ return speechStream;
1281
+ } catch (error) {
1282
+ const message = error instanceof Error ? error.message : String(error);
1283
+ const exception = error instanceof Error ? error : new Error(message);
1284
+ span.recordException(exception);
1285
+ span.setStatus({ code: SpanStatusCode.ERROR, message });
1286
+ throw error;
1287
+ }
1288
+ });
384
1289
  },
385
1290
  [ModelType.OBJECT_SMALL]: async (runtime, params) => {
386
1291
  return generateObjectByModelType(runtime, params, ModelType.OBJECT_SMALL, getSmallModel);
@@ -403,7 +1308,7 @@ var openaiPlugin = {
403
1308
  }
404
1309
  });
405
1310
  const data = await response.json();
406
- logger.log("Models Available:", data?.data.length);
1311
+ logger.log("Models Available:", data?.data?.length ?? "N/A");
407
1312
  if (!response.ok) {
408
1313
  throw new Error(`Failed to validate OpenAI API key: ${response.statusText}`);
409
1314
  }
@@ -418,7 +1323,8 @@ var openaiPlugin = {
418
1323
  });
419
1324
  logger.log("embedding", embedding);
420
1325
  } catch (error) {
421
- logger.error("Error in test_text_embedding:", error);
1326
+ const message = error instanceof Error ? error.message : String(error);
1327
+ logger.error(`Error in test_text_embedding: ${message}`);
422
1328
  throw error;
423
1329
  }
424
1330
  }
@@ -435,7 +1341,8 @@ var openaiPlugin = {
435
1341
  }
436
1342
  logger.log("generated with test_text_large:", text);
437
1343
  } catch (error) {
438
- logger.error("Error in test_text_large:", error);
1344
+ const message = error instanceof Error ? error.message : String(error);
1345
+ logger.error(`Error in test_text_large: ${message}`);
439
1346
  throw error;
440
1347
  }
441
1348
  }
@@ -452,7 +1359,8 @@ var openaiPlugin = {
452
1359
  }
453
1360
  logger.log("generated with test_text_small:", text);
454
1361
  } catch (error) {
455
- logger.error("Error in test_text_small:", error);
1362
+ const message = error instanceof Error ? error.message : String(error);
1363
+ logger.error(`Error in test_text_small: ${message}`);
456
1364
  throw error;
457
1365
  }
458
1366
  }
@@ -469,7 +1377,8 @@ var openaiPlugin = {
469
1377
  });
470
1378
  logger.log("generated with test_image_generation:", image);
471
1379
  } catch (error) {
472
- logger.error("Error in test_image_generation:", error);
1380
+ const message = error instanceof Error ? error.message : String(error);
1381
+ logger.error(`Error in test_image_generation: ${message}`);
473
1382
  throw error;
474
1383
  }
475
1384
  }
@@ -490,10 +1399,12 @@ var openaiPlugin = {
490
1399
  logger.error("Invalid image description result format:", result);
491
1400
  }
492
1401
  } catch (e) {
493
- logger.error("Error in image description test:", e);
1402
+ const message = e instanceof Error ? e.message : String(e);
1403
+ logger.error(`Error in image description test: ${message}`);
494
1404
  }
495
1405
  } catch (e) {
496
- logger.error("Error in openai_test_image_description:", e);
1406
+ const message = e instanceof Error ? e.message : String(e);
1407
+ logger.error(`Error in openai_test_image_description: ${message}`);
497
1408
  }
498
1409
  }
499
1410
  },
@@ -512,7 +1423,8 @@ var openaiPlugin = {
512
1423
  );
513
1424
  logger.log("generated with test_transcription:", transcription);
514
1425
  } catch (error) {
515
- logger.error("Error in test_transcription:", error);
1426
+ const message = error instanceof Error ? error.message : String(error);
1427
+ logger.error(`Error in test_transcription: ${message}`);
516
1428
  throw error;
517
1429
  }
518
1430
  }
@@ -553,7 +1465,8 @@ var openaiPlugin = {
553
1465
  }
554
1466
  logger.log("Generated speech successfully");
555
1467
  } catch (error) {
556
- logger.error("Error in openai_test_text_to_speech:", error);
1468
+ const message = error instanceof Error ? error.message : String(error);
1469
+ logger.error(`Error in openai_test_text_to_speech: ${message}`);
557
1470
  throw error;
558
1471
  }
559
1472
  }