@elizaos/plugin-openai 1.0.0-alpha.5 → 1.0.0-alpha.51

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.js CHANGED
@@ -1,11 +1,11 @@
1
1
  // src/index.ts
2
2
  import { createOpenAI } from "@ai-sdk/openai";
3
3
  import {
4
- ModelTypes
4
+ ModelTypes,
5
+ logger
5
6
  } from "@elizaos/core";
6
7
  import { generateText } from "ai";
7
8
  import { encodingForModel } from "js-tiktoken";
8
- import { z } from "zod";
9
9
  async function tokenizeText(model, prompt) {
10
10
  const modelName = model === ModelTypes.TEXT_SMALL ? process.env.OPENAI_SMALL_MODEL ?? process.env.SMALL_MODEL ?? "gpt-4o-mini" : process.env.LARGE_MODEL ?? "gpt-4o";
11
11
  const encoding = encodingForModel(modelName);
@@ -17,14 +17,6 @@ async function detokenizeText(model, tokens) {
17
17
  const encoding = encodingForModel(modelName);
18
18
  return encoding.decode(tokens);
19
19
  }
20
- var configSchema = z.object({
21
- OPENAI_API_KEY: z.string().min(1, "OpenAI API key is required"),
22
- OPENAI_BASE_URL: z.string().url().optional(),
23
- OPENAI_SMALL_MODEL: z.string().optional(),
24
- OPENAI_LARGE_MODEL: z.string().optional(),
25
- SMALL_MODEL: z.string().optional(),
26
- LARGE_MODEL: z.string().optional()
27
- });
28
20
  var openaiPlugin = {
29
21
  name: "openai",
30
22
  description: "OpenAI plugin",
@@ -38,52 +30,102 @@ var openaiPlugin = {
38
30
  },
39
31
  async init(config) {
40
32
  try {
41
- const validatedConfig = await configSchema.parseAsync(config);
42
- for (const [key, value] of Object.entries(validatedConfig)) {
43
- if (value) process.env[key] = value;
44
- }
45
- const baseURL = process.env.OPENAI_BASE_URL ?? "https://api.openai.com/v1";
46
- const response = await fetch(`${baseURL}/models`, {
47
- headers: { Authorization: `Bearer ${process.env.OPENAI_API_KEY}` }
48
- });
49
- if (!response.ok) {
50
- throw new Error(
51
- `Failed to validate OpenAI API key: ${response.statusText}`
33
+ if (!process.env.OPENAI_API_KEY) {
34
+ logger.warn(
35
+ "OPENAI_API_KEY is not set in environment - OpenAI functionality will be limited"
52
36
  );
37
+ return;
53
38
  }
54
- } catch (error) {
55
- if (error instanceof z.ZodError) {
56
- throw new Error(
57
- `Invalid plugin configuration: ${error.errors.map((e) => e.message).join(
58
- ", "
59
- )} - You need to configure the OPENAI_API_KEY in your environment variables`
39
+ try {
40
+ const baseURL = process.env.OPENAI_BASE_URL ?? "https://api.openai.com/v1";
41
+ const response = await fetch(`${baseURL}/models`, {
42
+ headers: { Authorization: `Bearer ${process.env.OPENAI_API_KEY}` }
43
+ });
44
+ if (!response.ok) {
45
+ logger.warn(
46
+ `OpenAI API key validation failed: ${response.statusText}`
47
+ );
48
+ logger.warn(
49
+ "OpenAI functionality will be limited until a valid API key is provided"
50
+ );
51
+ } else {
52
+ }
53
+ } catch (fetchError) {
54
+ logger.warn(`Error validating OpenAI API key: ${fetchError}`);
55
+ logger.warn(
56
+ "OpenAI functionality will be limited until a valid API key is provided"
60
57
  );
61
58
  }
62
- throw error;
59
+ } catch (error) {
60
+ logger.warn(
61
+ `OpenAI plugin configuration issue: ${error.errors.map((e) => e.message).join(
62
+ ", "
63
+ )} - You need to configure the OPENAI_API_KEY in your environment variables`
64
+ );
63
65
  }
64
66
  },
65
67
  models: {
66
- [ModelTypes.TEXT_EMBEDDING]: async (_runtime, text) => {
67
- if (!text) {
68
- return new Array(1536).fill(0);
68
+ [ModelTypes.TEXT_EMBEDDING]: async (runtime, params) => {
69
+ if (params === null) {
70
+ logger.debug("Creating test embedding for initialization");
71
+ const testVector = Array(1536).fill(0);
72
+ testVector[0] = 0.1;
73
+ return testVector;
69
74
  }
70
- const baseURL = process.env.OPENAI_BASE_URL ?? "https://api.openai.com/v1";
71
- const response = await fetch(`${baseURL}/embeddings`, {
72
- method: "POST",
73
- headers: {
74
- Authorization: `Bearer ${process.env.OPENAI_API_KEY}`,
75
- "Content-Type": "application/json"
76
- },
77
- body: JSON.stringify({
78
- model: "text-embedding-3-small",
79
- input: text
80
- })
81
- });
82
- if (!response.ok) {
83
- throw new Error(`Failed to get embedding: ${response.statusText}`);
75
+ let text;
76
+ if (typeof params === "string") {
77
+ text = params;
78
+ } else if (typeof params === "object" && params.text) {
79
+ text = params.text;
80
+ } else {
81
+ logger.warn("Invalid input format for embedding");
82
+ const fallbackVector = Array(1536).fill(0);
83
+ fallbackVector[0] = 0.2;
84
+ return fallbackVector;
85
+ }
86
+ if (!text.trim()) {
87
+ logger.warn("Empty text for embedding");
88
+ const emptyVector = Array(1536).fill(0);
89
+ emptyVector[0] = 0.3;
90
+ return emptyVector;
91
+ }
92
+ try {
93
+ const baseURL = process.env.OPENAI_BASE_URL ?? "https://api.openai.com/v1";
94
+ const response = await fetch(`${baseURL}/embeddings`, {
95
+ method: "POST",
96
+ headers: {
97
+ Authorization: `Bearer ${process.env.OPENAI_API_KEY}`,
98
+ "Content-Type": "application/json"
99
+ },
100
+ body: JSON.stringify({
101
+ model: "text-embedding-3-small",
102
+ input: text
103
+ })
104
+ });
105
+ if (!response.ok) {
106
+ logger.error(
107
+ `OpenAI API error: ${response.status} - ${response.statusText}`
108
+ );
109
+ const errorVector = Array(1536).fill(0);
110
+ errorVector[0] = 0.4;
111
+ return errorVector;
112
+ }
113
+ const data = await response.json();
114
+ if (!data?.data?.[0]?.embedding) {
115
+ logger.error("API returned invalid structure");
116
+ const errorVector = Array(1536).fill(0);
117
+ errorVector[0] = 0.5;
118
+ return errorVector;
119
+ }
120
+ const embedding = data.data[0].embedding;
121
+ logger.log(`Got valid embedding with length ${embedding.length}`);
122
+ return embedding;
123
+ } catch (error) {
124
+ logger.error("Error generating embedding:", error);
125
+ const errorVector = Array(1536).fill(0);
126
+ errorVector[0] = 0.6;
127
+ return errorVector;
84
128
  }
85
- const data = await response.json();
86
- return data.data[0].embedding;
87
129
  },
88
130
  [ModelTypes.TEXT_TOKENIZER_ENCODE]: async (_runtime, { prompt, modelType = ModelTypes.TEXT_LARGE }) => {
89
131
  return await tokenizeText(modelType ?? ModelTypes.TEXT_LARGE, prompt);
@@ -102,8 +144,8 @@ var openaiPlugin = {
102
144
  baseURL
103
145
  });
104
146
  const model = runtime.getSetting("OPENAI_SMALL_MODEL") ?? runtime.getSetting("SMALL_MODEL") ?? "gpt-4o-mini";
105
- console.log("generating text");
106
- console.log(prompt);
147
+ logger.log("generating text");
148
+ logger.log(prompt);
107
149
  const { text: openaiResponse } = await generateText({
108
150
  model: openai.languageModel(model),
109
151
  prompt,
@@ -163,51 +205,77 @@ var openaiPlugin = {
163
205
  const typedData = data;
164
206
  return typedData.data;
165
207
  },
166
- [ModelTypes.IMAGE_DESCRIPTION]: async (runtime, imageUrl) => {
167
- console.log("IMAGE_DESCRIPTION");
168
- const baseURL = runtime.getSetting("OPENAI_BASE_URL") ?? "https://api.openai.com/v1";
169
- console.log("baseURL", baseURL);
170
- const openai = createOpenAI({
171
- apiKey: runtime.getSetting("OPENAI_API_KEY"),
172
- baseURL
173
- });
174
- const { text } = await generateText({
175
- model: openai.languageModel(
176
- runtime.getSetting("OPENAI_SMALL_MODEL") ?? "gpt-4o-mini"
177
- ),
178
- messages: [
179
- {
180
- role: "system",
181
- content: "Provide a title and brief description of the image. Structure this as XML with the following syntax:\n<title>{{title}}</title>\n<description>{{description}}</description>\nReplacing the handlerbars with the actual text"
208
+ [ModelTypes.IMAGE_DESCRIPTION]: async (runtime, params) => {
209
+ let imageUrl;
210
+ let prompt;
211
+ if (typeof params === "string") {
212
+ imageUrl = params;
213
+ prompt = void 0;
214
+ } else {
215
+ imageUrl = params.imageUrl;
216
+ prompt = params.prompt;
217
+ }
218
+ try {
219
+ const baseURL = process.env.OPENAI_BASE_URL ?? "https://api.openai.com/v1";
220
+ const apiKey = process.env.OPENAI_API_KEY;
221
+ if (!apiKey) {
222
+ logger.error("OpenAI API key not set");
223
+ return {
224
+ title: "Failed to analyze image",
225
+ description: "API key not configured"
226
+ };
227
+ }
228
+ const response = await fetch(`${baseURL}/chat/completions`, {
229
+ method: "POST",
230
+ headers: {
231
+ "Content-Type": "application/json",
232
+ Authorization: `Bearer ${apiKey}`
182
233
  },
183
- {
184
- role: "user",
185
- content: [
234
+ body: JSON.stringify({
235
+ model: "gpt-4-vision-preview",
236
+ messages: [
186
237
  {
187
- type: "image",
188
- image: imageUrl
238
+ role: "user",
239
+ content: [
240
+ {
241
+ type: "text",
242
+ text: prompt || "Please analyze this image and provide a title and detailed description."
243
+ },
244
+ {
245
+ type: "image_url",
246
+ image_url: { url: imageUrl }
247
+ }
248
+ ]
189
249
  }
190
- ]
191
- }
192
- ],
193
- temperature: 0.7,
194
- maxTokens: 1024,
195
- frequencyPenalty: 0,
196
- presencePenalty: 0,
197
- stopSequences: []
198
- });
199
- const titleMatch = text.match(/<title>(.*?)<\/title>/);
200
- const descriptionMatch = text.match(/<description>(.*?)<\/description>/);
201
- if (!titleMatch || !descriptionMatch) {
202
- throw new Error("Could not parse title or description from response");
250
+ ],
251
+ max_tokens: 300
252
+ })
253
+ });
254
+ if (!response.ok) {
255
+ throw new Error(`OpenAI API error: ${response.status}`);
256
+ }
257
+ const result = await response.json();
258
+ const content = result.choices?.[0]?.message?.content;
259
+ if (!content) {
260
+ return {
261
+ title: "Failed to analyze image",
262
+ description: "No response from API"
263
+ };
264
+ }
265
+ const titleMatch = content.match(/title[:\s]+(.+?)(?:\n|$)/i);
266
+ const title = titleMatch?.[1] || "Image Analysis";
267
+ const description = content.replace(/title[:\s]+(.+?)(?:\n|$)/i, "").trim();
268
+ return { title, description };
269
+ } catch (error) {
270
+ logger.error("Error analyzing image:", error);
271
+ return {
272
+ title: "Failed to analyze image",
273
+ description: `Error: ${error instanceof Error ? error.message : String(error)}`
274
+ };
203
275
  }
204
- return {
205
- title: titleMatch[1],
206
- description: descriptionMatch[1]
207
- };
208
276
  },
209
277
  [ModelTypes.TRANSCRIPTION]: async (runtime, audioBuffer) => {
210
- console.log("audioBuffer", audioBuffer);
278
+ logger.log("audioBuffer", audioBuffer);
211
279
  const baseURL = runtime.getSetting("OPENAI_BASE_URL") ?? "https://api.openai.com/v1";
212
280
  const formData = new FormData();
213
281
  formData.append("file", new Blob([audioBuffer], { type: "audio/mp3" }));
@@ -220,12 +288,24 @@ var openaiPlugin = {
220
288
  },
221
289
  body: formData
222
290
  });
223
- console.log("response", response);
291
+ logger.log("response", response);
224
292
  if (!response.ok) {
225
293
  throw new Error(`Failed to transcribe audio: ${response.statusText}`);
226
294
  }
227
295
  const data = await response.json();
228
296
  return data.text;
297
+ },
298
+ [ModelTypes.OBJECT_SMALL]: async (runtime, params) => {
299
+ return await generateObject(runtime, {
300
+ ...params,
301
+ modelType: ModelTypes.OBJECT_SMALL
302
+ });
303
+ },
304
+ [ModelTypes.OBJECT_LARGE]: async (runtime, params) => {
305
+ return await generateObject(runtime, {
306
+ ...params,
307
+ modelType: ModelTypes.OBJECT_LARGE
308
+ });
229
309
  }
230
310
  },
231
311
  tests: [
@@ -242,7 +322,7 @@ var openaiPlugin = {
242
322
  }
243
323
  });
244
324
  const data = await response.json();
245
- console.log("Models Available:", data?.data.length);
325
+ logger.log("Models Available:", data?.data.length);
246
326
  if (!response.ok) {
247
327
  throw new Error(
248
328
  `Failed to validate OpenAI API key: ${response.statusText}`
@@ -256,11 +336,13 @@ var openaiPlugin = {
256
336
  try {
257
337
  const embedding = await runtime.useModel(
258
338
  ModelTypes.TEXT_EMBEDDING,
259
- "Hello, world!"
339
+ {
340
+ text: "Hello, world!"
341
+ }
260
342
  );
261
- console.log("embedding", embedding);
343
+ logger.log("embedding", embedding);
262
344
  } catch (error) {
263
- console.error("Error in test_text_embedding:", error);
345
+ logger.error("Error in test_text_embedding:", error);
264
346
  throw error;
265
347
  }
266
348
  }
@@ -275,9 +357,9 @@ var openaiPlugin = {
275
357
  if (text.length === 0) {
276
358
  throw new Error("Failed to generate text");
277
359
  }
278
- console.log("generated with test_text_large:", text);
360
+ logger.log("generated with test_text_large:", text);
279
361
  } catch (error) {
280
- console.error("Error in test_text_large:", error);
362
+ logger.error("Error in test_text_large:", error);
281
363
  throw error;
282
364
  }
283
365
  }
@@ -292,9 +374,9 @@ var openaiPlugin = {
292
374
  if (text.length === 0) {
293
375
  throw new Error("Failed to generate text");
294
376
  }
295
- console.log("generated with test_text_small:", text);
377
+ logger.log("generated with test_text_small:", text);
296
378
  } catch (error) {
297
- console.error("Error in test_text_small:", error);
379
+ logger.error("Error in test_text_small:", error);
298
380
  throw error;
299
381
  }
300
382
  }
@@ -302,44 +384,50 @@ var openaiPlugin = {
302
384
  {
303
385
  name: "openai_test_image_generation",
304
386
  fn: async (runtime) => {
305
- console.log("openai_test_image_generation");
387
+ logger.log("openai_test_image_generation");
306
388
  try {
307
389
  const image = await runtime.useModel(ModelTypes.IMAGE, {
308
390
  prompt: "A beautiful sunset over a calm ocean",
309
391
  n: 1,
310
392
  size: "1024x1024"
311
393
  });
312
- console.log("generated with test_image_generation:", image);
394
+ logger.log("generated with test_image_generation:", image);
313
395
  } catch (error) {
314
- console.error("Error in test_image_generation:", error);
396
+ logger.error("Error in test_image_generation:", error);
315
397
  throw error;
316
398
  }
317
399
  }
318
400
  },
319
401
  {
320
- name: "openai_test_image_description",
402
+ name: "image-description",
321
403
  fn: async (runtime) => {
322
- console.log("openai_test_image_description");
323
404
  try {
324
- const { title, description } = await runtime.useModel(
325
- ModelTypes.IMAGE_DESCRIPTION,
326
- "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg/537px-Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg"
327
- );
328
- console.log(
329
- "generated with test_image_description:",
330
- title,
331
- description
332
- );
333
- } catch (error) {
334
- console.error("Error in test_image_description:", error);
335
- throw error;
405
+ logger.log("openai_test_image_description");
406
+ try {
407
+ const result = await runtime.useModel(
408
+ ModelTypes.IMAGE_DESCRIPTION,
409
+ "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg/537px-Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg"
410
+ );
411
+ if (result && typeof result === "object" && "title" in result && "description" in result) {
412
+ logger.log("Image description:", result);
413
+ } else {
414
+ logger.error(
415
+ "Invalid image description result format:",
416
+ result
417
+ );
418
+ }
419
+ } catch (e) {
420
+ logger.error("Error in image description test:", e);
421
+ }
422
+ } catch (e) {
423
+ logger.error("Error in openai_test_image_description:", e);
336
424
  }
337
425
  }
338
426
  },
339
427
  {
340
428
  name: "openai_test_transcription",
341
429
  fn: async (runtime) => {
342
- console.log("openai_test_transcription");
430
+ logger.log("openai_test_transcription");
343
431
  try {
344
432
  const response = await fetch(
345
433
  "https://upload.wikimedia.org/wikipedia/en/4/40/Chris_Benoit_Voice_Message.ogg"
@@ -349,9 +437,9 @@ var openaiPlugin = {
349
437
  ModelTypes.TRANSCRIPTION,
350
438
  Buffer.from(new Uint8Array(arrayBuffer))
351
439
  );
352
- console.log("generated with test_transcription:", transcription);
440
+ logger.log("generated with test_transcription:", transcription);
353
441
  } catch (error) {
354
- console.error("Error in test_transcription:", error);
442
+ logger.error("Error in test_transcription:", error);
355
443
  throw error;
356
444
  }
357
445
  }
@@ -369,7 +457,7 @@ var openaiPlugin = {
369
457
  "Failed to tokenize text: expected non-empty array of tokens"
370
458
  );
371
459
  }
372
- console.log("Tokenized output:", tokens);
460
+ logger.log("Tokenized output:", tokens);
373
461
  }
374
462
  },
375
463
  {
@@ -389,7 +477,7 @@ var openaiPlugin = {
389
477
  `Decoded text does not match original. Expected "${prompt}", got "${decodedText}"`
390
478
  );
391
479
  }
392
- console.log("Decoded text:", decodedText);
480
+ logger.log("Decoded text:", decodedText);
393
481
  }
394
482
  }
395
483
  ]
@@ -397,6 +485,127 @@ var openaiPlugin = {
397
485
  ]
398
486
  };
399
487
  var index_default = openaiPlugin;
488
+ async function generateObject(runtime, params) {
489
+ const {
490
+ prompt,
491
+ schema,
492
+ output = "object",
493
+ enumValues = [],
494
+ modelType = ModelTypes.OBJECT_SMALL,
495
+ temperature = 0.7
496
+ } = params;
497
+ const modelName = modelType === ModelTypes.OBJECT_SMALL ? process.env.OPENAI_SMALL_MODEL ?? process.env.SMALL_MODEL ?? "gpt-4o-mini" : process.env.OPENAI_LARGE_MODEL ?? process.env.LARGE_MODEL ?? "gpt-4o";
498
+ const baseURL = process.env.OPENAI_BASE_URL ?? "https://api.openai.com/v1";
499
+ if (output === "enum" && enumValues.length) {
500
+ try {
501
+ const response = await fetch(`${baseURL}/chat/completions`, {
502
+ method: "POST",
503
+ headers: {
504
+ "Content-Type": "application/json",
505
+ Authorization: `Bearer ${process.env.OPENAI_API_KEY}`
506
+ },
507
+ body: JSON.stringify({
508
+ model: modelName,
509
+ messages: [{ role: "user", content: prompt }],
510
+ temperature,
511
+ tools: [
512
+ {
513
+ type: "function",
514
+ function: {
515
+ name: "select_value",
516
+ description: "Select the most appropriate value from the provided options",
517
+ parameters: {
518
+ type: "object",
519
+ properties: {
520
+ value: {
521
+ type: "string",
522
+ enum: enumValues,
523
+ description: "The selected value"
524
+ }
525
+ },
526
+ required: ["value"]
527
+ }
528
+ }
529
+ }
530
+ ],
531
+ tool_choice: { type: "function", function: { name: "select_value" } }
532
+ })
533
+ });
534
+ if (!response.ok) {
535
+ throw new Error(`API error: ${response.status}`);
536
+ }
537
+ const result = await response.json();
538
+ const toolCalls = result.choices?.[0]?.message?.tool_calls;
539
+ if (toolCalls && toolCalls.length > 0) {
540
+ try {
541
+ const functionArgs = JSON.parse(toolCalls[0].function.arguments);
542
+ return functionArgs.value;
543
+ } catch (err) {
544
+ logger.error("Failed to parse function arguments:", err);
545
+ return null;
546
+ }
547
+ }
548
+ return null;
549
+ } catch (error) {
550
+ logger.error("Error generating enum value:", error);
551
+ return null;
552
+ }
553
+ }
554
+ try {
555
+ let functionSchema;
556
+ if (schema) {
557
+ functionSchema = schema;
558
+ } else {
559
+ functionSchema = {
560
+ type: output === "array" ? "array" : "object",
561
+ ...output === "array" ? { items: { type: "object" } } : {}
562
+ };
563
+ }
564
+ const response = await fetch(`${baseURL}/chat/completions`, {
565
+ method: "POST",
566
+ headers: {
567
+ "Content-Type": "application/json",
568
+ Authorization: `Bearer ${process.env.OPENAI_API_KEY}`
569
+ },
570
+ body: JSON.stringify({
571
+ model: modelName,
572
+ messages: [{ role: "user", content: prompt }],
573
+ temperature,
574
+ tools: [
575
+ {
576
+ type: "function",
577
+ function: {
578
+ name: "generate_structured_data",
579
+ description: "Generate structured data based on the prompt",
580
+ parameters: functionSchema
581
+ }
582
+ }
583
+ ],
584
+ tool_choice: {
585
+ type: "function",
586
+ function: { name: "generate_structured_data" }
587
+ }
588
+ })
589
+ });
590
+ if (!response.ok) {
591
+ throw new Error(`API error: ${response.status}`);
592
+ }
593
+ const result = await response.json();
594
+ const toolCalls = result.choices?.[0]?.message?.tool_calls;
595
+ if (toolCalls && toolCalls.length > 0) {
596
+ try {
597
+ return JSON.parse(toolCalls[0].function.arguments);
598
+ } catch (err) {
599
+ logger.error("Failed to parse function arguments:", err);
600
+ return null;
601
+ }
602
+ }
603
+ return null;
604
+ } catch (error) {
605
+ logger.error("Error generating object:", error);
606
+ return null;
607
+ }
608
+ }
400
609
  export {
401
610
  index_default as default,
402
611
  openaiPlugin
package/dist/index.js.map CHANGED
@@ -1 +1 @@
1
- {"version":3,"sources":["../src/index.ts"],"sourcesContent":["import { createOpenAI } from \"@ai-sdk/openai\";\nimport type { IAgentRuntime, ModelType, Plugin } from \"@elizaos/core\";\nimport {\n\ttype DetokenizeTextParams,\n\ttype GenerateTextParams,\n\tModelTypes,\n\ttype TokenizeTextParams,\n} from \"@elizaos/core\";\nimport { generateText } from \"ai\";\nimport { encodingForModel, type TiktokenModel } from \"js-tiktoken\";\nimport { z } from \"zod\";\n\nasync function tokenizeText(model: ModelType, prompt: string) {\n\tconst modelName =\n\t\tmodel === ModelTypes.TEXT_SMALL\n\t\t\t? (process.env.OPENAI_SMALL_MODEL ??\n\t\t\t\tprocess.env.SMALL_MODEL ??\n\t\t\t\t\"gpt-4o-mini\")\n\t\t\t: (process.env.LARGE_MODEL ?? \"gpt-4o\");\n\tconst encoding = encodingForModel(modelName as TiktokenModel);\n\tconst tokens = encoding.encode(prompt);\n\treturn tokens;\n}\n\nasync function detokenizeText(model: ModelType, tokens: number[]) {\n\tconst modelName =\n\t\tmodel === ModelTypes.TEXT_SMALL\n\t\t\t? (process.env.OPENAI_SMALL_MODEL ??\n\t\t\t\tprocess.env.SMALL_MODEL ??\n\t\t\t\t\"gpt-4o-mini\")\n\t\t\t: (process.env.OPENAI_LARGE_MODEL ?? process.env.LARGE_MODEL ?? \"gpt-4o\");\n\tconst encoding = encodingForModel(modelName as TiktokenModel);\n\treturn encoding.decode(tokens);\n}\n\nconst configSchema = z.object({\n\tOPENAI_API_KEY: z.string().min(1, \"OpenAI API key is required\"),\n\tOPENAI_BASE_URL: z.string().url().optional(),\n\tOPENAI_SMALL_MODEL: z.string().optional(),\n\tOPENAI_LARGE_MODEL: z.string().optional(),\n\tSMALL_MODEL: z.string().optional(),\n\tLARGE_MODEL: z.string().optional(),\n});\n\nexport const openaiPlugin: Plugin = {\n\tname: \"openai\",\n\tdescription: \"OpenAI plugin\",\n\tconfig: {\n\t\tOPENAI_API_KEY: process.env.OPENAI_API_KEY,\n\t\tOPENAI_BASE_URL: process.env.OPENAI_BASE_URL,\n\t\tOPENAI_SMALL_MODEL: process.env.OPENAI_SMALL_MODEL,\n\t\tOPENAI_LARGE_MODEL: process.env.OPENAI_LARGE_MODEL,\n\t\tSMALL_MODEL: process.env.SMALL_MODEL,\n\t\tLARGE_MODEL: process.env.LARGE_MODEL,\n\t},\n\tasync init(config: Record<string, string>) {\n\t\ttry {\n\t\t\tconst validatedConfig = await configSchema.parseAsync(config);\n\n\t\t\t// Set all environment variables at once\n\t\t\tfor (const [key, value] of Object.entries(validatedConfig)) {\n\t\t\t\tif (value) process.env[key] = value;\n\t\t\t}\n\n\t\t\t// Verify API key\n\t\t\tconst baseURL =\n\t\t\t\tprocess.env.OPENAI_BASE_URL ?? \"https://api.openai.com/v1\";\n\t\t\tconst response = await fetch(`${baseURL}/models`, {\n\t\t\t\theaders: { Authorization: `Bearer ${process.env.OPENAI_API_KEY}` },\n\t\t\t});\n\n\t\t\tif (!response.ok) {\n\t\t\t\tthrow new Error(\n\t\t\t\t\t`Failed to validate OpenAI API key: ${response.statusText}`,\n\t\t\t\t);\n\t\t\t}\n\t\t} catch (error) {\n\t\t\tif (error instanceof z.ZodError) {\n\t\t\t\tthrow new Error(\n\t\t\t\t\t`Invalid plugin configuration: ${error.errors\n\t\t\t\t\t\t.map((e) => e.message)\n\t\t\t\t\t\t.join(\n\t\t\t\t\t\t\t\", \",\n\t\t\t\t\t\t)} - You need to configure the OPENAI_API_KEY in your environment variables`,\n\t\t\t\t);\n\t\t\t}\n\t\t\tthrow error;\n\t\t}\n\t},\n\tmodels: {\n\t\t[ModelTypes.TEXT_EMBEDDING]: async (\n\t\t\t_runtime: IAgentRuntime,\n\t\t\ttext: string | null,\n\t\t) => {\n\t\t\tif (!text) {\n\t\t\t\t// Return zero vector of appropriate length for model\n\t\t\t\treturn new Array(1536).fill(0);\n\t\t\t}\n\n\t\t\tconst baseURL =\n\t\t\t\tprocess.env.OPENAI_BASE_URL ?? \"https://api.openai.com/v1\";\n\n\t\t\t// use fetch to call embedding endpoint\n\t\t\tconst response = await fetch(`${baseURL}/embeddings`, {\n\t\t\t\tmethod: \"POST\",\n\t\t\t\theaders: {\n\t\t\t\t\tAuthorization: `Bearer ${process.env.OPENAI_API_KEY}`,\n\t\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t\t},\n\t\t\t\tbody: JSON.stringify({\n\t\t\t\t\tmodel: \"text-embedding-3-small\",\n\t\t\t\t\tinput: text,\n\t\t\t\t}),\n\t\t\t});\n\t\t\tif (!response.ok) {\n\t\t\t\tthrow new Error(`Failed to get embedding: ${response.statusText}`);\n\t\t\t}\n\n\t\t\tconst data = (await response.json()) as {\n\t\t\t\tdata: [{ embedding: number[] }];\n\t\t\t};\n\t\t\treturn data.data[0].embedding;\n\t\t},\n\t\t[ModelTypes.TEXT_TOKENIZER_ENCODE]: async (\n\t\t\t_runtime,\n\t\t\t{ prompt, modelType = ModelTypes.TEXT_LARGE }: TokenizeTextParams,\n\t\t) => {\n\t\t\treturn await tokenizeText(modelType ?? ModelTypes.TEXT_LARGE, prompt);\n\t\t},\n\t\t[ModelTypes.TEXT_TOKENIZER_DECODE]: async (\n\t\t\t_runtime,\n\t\t\t{ tokens, modelType = ModelTypes.TEXT_LARGE }: DetokenizeTextParams,\n\t\t) => {\n\t\t\treturn await detokenizeText(modelType ?? ModelTypes.TEXT_LARGE, tokens);\n\t\t},\n\t\t[ModelTypes.TEXT_SMALL]: async (\n\t\t\truntime,\n\t\t\t{ prompt, stopSequences = [] }: GenerateTextParams,\n\t\t) => {\n\t\t\tconst temperature = 0.7;\n\t\t\tconst frequency_penalty = 0.7;\n\t\t\tconst presence_penalty = 0.7;\n\t\t\tconst max_response_length = 8192;\n\n\t\t\tconst baseURL =\n\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ?? \"https://api.openai.com/v1\";\n\n\t\t\tconst openai = createOpenAI({\n\t\t\t\tapiKey: runtime.getSetting(\"OPENAI_API_KEY\"),\n\t\t\t\tbaseURL,\n\t\t\t});\n\n\t\t\tconst model =\n\t\t\t\truntime.getSetting(\"OPENAI_SMALL_MODEL\") ??\n\t\t\t\truntime.getSetting(\"SMALL_MODEL\") ??\n\t\t\t\t\"gpt-4o-mini\";\n\n\t\t\tconsole.log(\"generating text\");\n\t\t\tconsole.log(prompt);\n\n\t\t\tconst { text: openaiResponse } = await generateText({\n\t\t\t\tmodel: openai.languageModel(model),\n\t\t\t\tprompt: prompt,\n\t\t\t\tsystem: runtime.character.system ?? undefined,\n\t\t\t\ttemperature: temperature,\n\t\t\t\tmaxTokens: max_response_length,\n\t\t\t\tfrequencyPenalty: frequency_penalty,\n\t\t\t\tpresencePenalty: presence_penalty,\n\t\t\t\tstopSequences: stopSequences,\n\t\t\t});\n\n\t\t\treturn openaiResponse;\n\t\t},\n\t\t[ModelTypes.TEXT_LARGE]: async (\n\t\t\truntime,\n\t\t\t{\n\t\t\t\tprompt,\n\t\t\t\tstopSequences = [],\n\t\t\t\tmaxTokens = 8192,\n\t\t\t\ttemperature = 0.7,\n\t\t\t\tfrequencyPenalty = 0.7,\n\t\t\t\tpresencePenalty = 0.7,\n\t\t\t}: GenerateTextParams,\n\t\t) => {\n\t\t\tconst baseURL =\n\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ?? \"https://api.openai.com/v1\";\n\n\t\t\tconst openai = createOpenAI({\n\t\t\t\tapiKey: runtime.getSetting(\"OPENAI_API_KEY\"),\n\t\t\t\tbaseURL,\n\t\t\t});\n\n\t\t\tconst model =\n\t\t\t\truntime.getSetting(\"OPENAI_LARGE_MODEL\") ??\n\t\t\t\truntime.getSetting(\"LARGE_MODEL\") ??\n\t\t\t\t\"gpt-4o\";\n\n\t\t\tconst { text: openaiResponse } = await generateText({\n\t\t\t\tmodel: openai.languageModel(model),\n\t\t\t\tprompt: prompt,\n\t\t\t\tsystem: runtime.character.system ?? undefined,\n\t\t\t\ttemperature: temperature,\n\t\t\t\tmaxTokens: maxTokens,\n\t\t\t\tfrequencyPenalty: frequencyPenalty,\n\t\t\t\tpresencePenalty: presencePenalty,\n\t\t\t\tstopSequences: stopSequences,\n\t\t\t});\n\n\t\t\treturn openaiResponse;\n\t\t},\n\t\t[ModelTypes.IMAGE]: async (\n\t\t\truntime,\n\t\t\tparams: {\n\t\t\t\tprompt: string;\n\t\t\t\tn?: number;\n\t\t\t\tsize?: string;\n\t\t\t},\n\t\t) => {\n\t\t\tconst baseURL =\n\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ?? \"https://api.openai.com/v1\";\n\t\t\tconst response = await fetch(`${baseURL}/images/generations`, {\n\t\t\t\tmethod: \"POST\",\n\t\t\t\theaders: {\n\t\t\t\t\tAuthorization: `Bearer ${runtime.getSetting(\"OPENAI_API_KEY\")}`,\n\t\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t\t},\n\t\t\t\tbody: JSON.stringify({\n\t\t\t\t\tprompt: params.prompt,\n\t\t\t\t\tn: params.n || 1,\n\t\t\t\t\tsize: params.size || \"1024x1024\",\n\t\t\t\t}),\n\t\t\t});\n\t\t\tif (!response.ok) {\n\t\t\t\tthrow new Error(`Failed to generate image: ${response.statusText}`);\n\t\t\t}\n\t\t\tconst data = await response.json();\n\t\t\tconst typedData = data as { data: { url: string }[] };\n\t\t\treturn typedData.data;\n\t\t},\n\t\t[ModelTypes.IMAGE_DESCRIPTION]: async (runtime, imageUrl) => {\n\t\t\tconsole.log(\"IMAGE_DESCRIPTION\");\n\t\t\tconst baseURL =\n\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ?? \"https://api.openai.com/v1\";\n\t\t\tconsole.log(\"baseURL\", baseURL);\n\t\t\tconst openai = createOpenAI({\n\t\t\t\tapiKey: runtime.getSetting(\"OPENAI_API_KEY\"),\n\t\t\t\tbaseURL,\n\t\t\t});\n\n\t\t\tconst { text } = await generateText({\n\t\t\t\tmodel: openai.languageModel(\n\t\t\t\t\truntime.getSetting(\"OPENAI_SMALL_MODEL\") ?? \"gpt-4o-mini\",\n\t\t\t\t),\n\t\t\t\tmessages: [\n\t\t\t\t\t{\n\t\t\t\t\t\trole: \"system\",\n\t\t\t\t\t\tcontent:\n\t\t\t\t\t\t\t\"Provide a title and brief description of the image. Structure this as XML with the following syntax:\\n<title>{{title}}</title>\\n<description>{{description}}</description>\\nReplacing the handlerbars with the actual text\",\n\t\t\t\t\t},\n\t\t\t\t\t{\n\t\t\t\t\t\trole: \"user\",\n\t\t\t\t\t\tcontent: [\n\t\t\t\t\t\t\t{\n\t\t\t\t\t\t\t\ttype: \"image\" as const,\n\t\t\t\t\t\t\t\timage: imageUrl,\n\t\t\t\t\t\t\t},\n\t\t\t\t\t\t],\n\t\t\t\t\t},\n\t\t\t\t],\n\t\t\t\ttemperature: 0.7,\n\t\t\t\tmaxTokens: 1024,\n\t\t\t\tfrequencyPenalty: 0,\n\t\t\t\tpresencePenalty: 0,\n\t\t\t\tstopSequences: [],\n\t\t\t});\n\n\t\t\tconst titleMatch = text.match(/<title>(.*?)<\\/title>/);\n\t\t\tconst descriptionMatch = text.match(/<description>(.*?)<\\/description>/);\n\n\t\t\tif (!titleMatch || !descriptionMatch) {\n\t\t\t\tthrow new Error(\"Could not parse title or description from response\");\n\t\t\t}\n\n\t\t\treturn {\n\t\t\t\ttitle: titleMatch[1],\n\t\t\t\tdescription: descriptionMatch[1],\n\t\t\t};\n\t\t},\n\t\t[ModelTypes.TRANSCRIPTION]: async (runtime, audioBuffer: Buffer) => {\n\t\t\tconsole.log(\"audioBuffer\", audioBuffer);\n\t\t\tconst baseURL =\n\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ?? \"https://api.openai.com/v1\";\n\t\t\tconst formData = new FormData();\n\t\t\tformData.append(\"file\", new Blob([audioBuffer], { type: \"audio/mp3\" }));\n\t\t\tformData.append(\"model\", \"whisper-1\");\n\t\t\tconst response = await fetch(`${baseURL}/audio/transcriptions`, {\n\t\t\t\tmethod: \"POST\",\n\t\t\t\theaders: {\n\t\t\t\t\tAuthorization: `Bearer ${runtime.getSetting(\"OPENAI_API_KEY\")}`,\n\t\t\t\t\t// Note: Do not set a Content-Type header—letting fetch set it for FormData is best\n\t\t\t\t},\n\t\t\t\tbody: formData,\n\t\t\t});\n\n\t\t\tconsole.log(\"response\", response);\n\t\t\tif (!response.ok) {\n\t\t\t\tthrow new Error(`Failed to transcribe audio: ${response.statusText}`);\n\t\t\t}\n\t\t\tconst data = (await response.json()) as { text: string };\n\t\t\treturn data.text;\n\t\t},\n\t},\n\ttests: [\n\t\t{\n\t\t\tname: \"openai_plugin_tests\",\n\t\t\ttests: [\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_url_and_api_key_validation\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tconst baseURL =\n\t\t\t\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ??\n\t\t\t\t\t\t\t\"https://api.openai.com/v1\";\n\t\t\t\t\t\tconst response = await fetch(`${baseURL}/models`, {\n\t\t\t\t\t\t\theaders: {\n\t\t\t\t\t\t\t\tAuthorization: `Bearer ${runtime.getSetting(\"OPENAI_API_KEY\")}`,\n\t\t\t\t\t\t\t},\n\t\t\t\t\t\t});\n\t\t\t\t\t\tconst data = await response.json();\n\t\t\t\t\t\tconsole.log(\"Models Available:\", (data as any)?.data.length);\n\t\t\t\t\t\tif (!response.ok) {\n\t\t\t\t\t\t\tthrow new Error(\n\t\t\t\t\t\t\t\t`Failed to validate OpenAI API key: ${response.statusText}`,\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_embedding\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst embedding = await runtime.useModel(\n\t\t\t\t\t\t\t\tModelTypes.TEXT_EMBEDDING,\n\t\t\t\t\t\t\t\t\"Hello, world!\",\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t\tconsole.log(\"embedding\", embedding);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tconsole.error(\"Error in test_text_embedding:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_large\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst text = await runtime.useModel(ModelTypes.TEXT_LARGE, {\n\t\t\t\t\t\t\t\tprompt: \"What is the nature of reality in 10 words?\",\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t\tif (text.length === 0) {\n\t\t\t\t\t\t\t\tthrow new Error(\"Failed to generate text\");\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\tconsole.log(\"generated with test_text_large:\", text);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tconsole.error(\"Error in test_text_large:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_small\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst text = await runtime.useModel(ModelTypes.TEXT_SMALL, {\n\t\t\t\t\t\t\t\tprompt: \"What is the nature of reality in 10 words?\",\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t\tif (text.length === 0) {\n\t\t\t\t\t\t\t\tthrow new Error(\"Failed to generate text\");\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\tconsole.log(\"generated with test_text_small:\", text);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tconsole.error(\"Error in test_text_small:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_image_generation\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tconsole.log(\"openai_test_image_generation\");\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst image = await runtime.useModel(ModelTypes.IMAGE, {\n\t\t\t\t\t\t\t\tprompt: \"A beautiful sunset over a calm ocean\",\n\t\t\t\t\t\t\t\tn: 1,\n\t\t\t\t\t\t\t\tsize: \"1024x1024\",\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t\tconsole.log(\"generated with test_image_generation:\", image);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tconsole.error(\"Error in test_image_generation:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_image_description\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tconsole.log(\"openai_test_image_description\");\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst { title, description } = await runtime.useModel(\n\t\t\t\t\t\t\t\tModelTypes.IMAGE_DESCRIPTION,\n\t\t\t\t\t\t\t\t\"https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg/537px-Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg\",\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t\tconsole.log(\n\t\t\t\t\t\t\t\t\"generated with test_image_description:\",\n\t\t\t\t\t\t\t\ttitle,\n\t\t\t\t\t\t\t\tdescription,\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tconsole.error(\"Error in test_image_description:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_transcription\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tconsole.log(\"openai_test_transcription\");\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst response = await fetch(\n\t\t\t\t\t\t\t\t\"https://upload.wikimedia.org/wikipedia/en/4/40/Chris_Benoit_Voice_Message.ogg\",\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t\tconst arrayBuffer = await response.arrayBuffer();\n\t\t\t\t\t\t\tconst transcription = await runtime.useModel(\n\t\t\t\t\t\t\t\tModelTypes.TRANSCRIPTION,\n\t\t\t\t\t\t\t\tBuffer.from(new Uint8Array(arrayBuffer)),\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t\tconsole.log(\"generated with test_transcription:\", transcription);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tconsole.error(\"Error in test_transcription:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_tokenizer_encode\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tconst prompt = \"Hello tokenizer encode!\";\n\t\t\t\t\t\tconst tokens = await runtime.useModel(\n\t\t\t\t\t\t\tModelTypes.TEXT_TOKENIZER_ENCODE,\n\t\t\t\t\t\t\t{ prompt },\n\t\t\t\t\t\t);\n\t\t\t\t\t\tif (!Array.isArray(tokens) || tokens.length === 0) {\n\t\t\t\t\t\t\tthrow new Error(\n\t\t\t\t\t\t\t\t\"Failed to tokenize text: expected non-empty array of tokens\",\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t}\n\t\t\t\t\t\tconsole.log(\"Tokenized output:\", tokens);\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_tokenizer_decode\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tconst prompt = \"Hello tokenizer decode!\";\n\t\t\t\t\t\t// Encode the string into tokens first\n\t\t\t\t\t\tconst tokens = await runtime.useModel(\n\t\t\t\t\t\t\tModelTypes.TEXT_TOKENIZER_ENCODE,\n\t\t\t\t\t\t\t{ prompt },\n\t\t\t\t\t\t);\n\t\t\t\t\t\t// Now decode tokens back into text\n\t\t\t\t\t\tconst decodedText = await runtime.useModel(\n\t\t\t\t\t\t\tModelTypes.TEXT_TOKENIZER_DECODE,\n\t\t\t\t\t\t\t{ tokens },\n\t\t\t\t\t\t);\n\t\t\t\t\t\tif (decodedText !== prompt) {\n\t\t\t\t\t\t\tthrow new Error(\n\t\t\t\t\t\t\t\t`Decoded text does not match original. Expected \"${prompt}\", got \"${decodedText}\"`,\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t}\n\t\t\t\t\t\tconsole.log(\"Decoded text:\", decodedText);\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t],\n\t\t},\n\t],\n};\nexport default openaiPlugin;\n"],"mappings":";AAAA,SAAS,oBAAoB;AAE7B;AAAA,EAGC;AAAA,OAEM;AACP,SAAS,oBAAoB;AAC7B,SAAS,wBAA4C;AACrD,SAAS,SAAS;AAElB,eAAe,aAAa,OAAkB,QAAgB;AAC7D,QAAM,YACL,UAAU,WAAW,aACjB,QAAQ,IAAI,sBACd,QAAQ,IAAI,eACZ,gBACE,QAAQ,IAAI,eAAe;AAChC,QAAM,WAAW,iBAAiB,SAA0B;AAC5D,QAAM,SAAS,SAAS,OAAO,MAAM;AACrC,SAAO;AACR;AAEA,eAAe,eAAe,OAAkB,QAAkB;AACjE,QAAM,YACL,UAAU,WAAW,aACjB,QAAQ,IAAI,sBACd,QAAQ,IAAI,eACZ,gBACE,QAAQ,IAAI,sBAAsB,QAAQ,IAAI,eAAe;AAClE,QAAM,WAAW,iBAAiB,SAA0B;AAC5D,SAAO,SAAS,OAAO,MAAM;AAC9B;AAEA,IAAM,eAAe,EAAE,OAAO;AAAA,EAC7B,gBAAgB,EAAE,OAAO,EAAE,IAAI,GAAG,4BAA4B;AAAA,EAC9D,iBAAiB,EAAE,OAAO,EAAE,IAAI,EAAE,SAAS;AAAA,EAC3C,oBAAoB,EAAE,OAAO,EAAE,SAAS;AAAA,EACxC,oBAAoB,EAAE,OAAO,EAAE,SAAS;AAAA,EACxC,aAAa,EAAE,OAAO,EAAE,SAAS;AAAA,EACjC,aAAa,EAAE,OAAO,EAAE,SAAS;AAClC,CAAC;AAEM,IAAM,eAAuB;AAAA,EACnC,MAAM;AAAA,EACN,aAAa;AAAA,EACb,QAAQ;AAAA,IACP,gBAAgB,QAAQ,IAAI;AAAA,IAC5B,iBAAiB,QAAQ,IAAI;AAAA,IAC7B,oBAAoB,QAAQ,IAAI;AAAA,IAChC,oBAAoB,QAAQ,IAAI;AAAA,IAChC,aAAa,QAAQ,IAAI;AAAA,IACzB,aAAa,QAAQ,IAAI;AAAA,EAC1B;AAAA,EACA,MAAM,KAAK,QAAgC;AAC1C,QAAI;AACH,YAAM,kBAAkB,MAAM,aAAa,WAAW,MAAM;AAG5D,iBAAW,CAAC,KAAK,KAAK,KAAK,OAAO,QAAQ,eAAe,GAAG;AAC3D,YAAI,MAAO,SAAQ,IAAI,GAAG,IAAI;AAAA,MAC/B;AAGA,YAAM,UACL,QAAQ,IAAI,mBAAmB;AAChC,YAAM,WAAW,MAAM,MAAM,GAAG,OAAO,WAAW;AAAA,QACjD,SAAS,EAAE,eAAe,UAAU,QAAQ,IAAI,cAAc,GAAG;AAAA,MAClE,CAAC;AAED,UAAI,CAAC,SAAS,IAAI;AACjB,cAAM,IAAI;AAAA,UACT,sCAAsC,SAAS,UAAU;AAAA,QAC1D;AAAA,MACD;AAAA,IACD,SAAS,OAAO;AACf,UAAI,iBAAiB,EAAE,UAAU;AAChC,cAAM,IAAI;AAAA,UACT,iCAAiC,MAAM,OACrC,IAAI,CAAC,MAAM,EAAE,OAAO,EACpB;AAAA,YACA;AAAA,UACD,CAAC;AAAA,QACH;AAAA,MACD;AACA,YAAM;AAAA,IACP;AAAA,EACD;AAAA,EACA,QAAQ;AAAA,IACP,CAAC,WAAW,cAAc,GAAG,OAC5B,UACA,SACI;AACJ,UAAI,CAAC,MAAM;AAEV,eAAO,IAAI,MAAM,IAAI,EAAE,KAAK,CAAC;AAAA,MAC9B;AAEA,YAAM,UACL,QAAQ,IAAI,mBAAmB;AAGhC,YAAM,WAAW,MAAM,MAAM,GAAG,OAAO,eAAe;AAAA,QACrD,QAAQ;AAAA,QACR,SAAS;AAAA,UACR,eAAe,UAAU,QAAQ,IAAI,cAAc;AAAA,UACnD,gBAAgB;AAAA,QACjB;AAAA,QACA,MAAM,KAAK,UAAU;AAAA,UACpB,OAAO;AAAA,UACP,OAAO;AAAA,QACR,CAAC;AAAA,MACF,CAAC;AACD,UAAI,CAAC,SAAS,IAAI;AACjB,cAAM,IAAI,MAAM,4BAA4B,SAAS,UAAU,EAAE;AAAA,MAClE;AAEA,YAAM,OAAQ,MAAM,SAAS,KAAK;AAGlC,aAAO,KAAK,KAAK,CAAC,EAAE;AAAA,IACrB;AAAA,IACA,CAAC,WAAW,qBAAqB,GAAG,OACnC,UACA,EAAE,QAAQ,YAAY,WAAW,WAAW,MACxC;AACJ,aAAO,MAAM,aAAa,aAAa,WAAW,YAAY,MAAM;AAAA,IACrE;AAAA,IACA,CAAC,WAAW,qBAAqB,GAAG,OACnC,UACA,EAAE,QAAQ,YAAY,WAAW,WAAW,MACxC;AACJ,aAAO,MAAM,eAAe,aAAa,WAAW,YAAY,MAAM;AAAA,IACvE;AAAA,IACA,CAAC,WAAW,UAAU,GAAG,OACxB,SACA,EAAE,QAAQ,gBAAgB,CAAC,EAAE,MACzB;AACJ,YAAM,cAAc;AACpB,YAAM,oBAAoB;AAC1B,YAAM,mBAAmB;AACzB,YAAM,sBAAsB;AAE5B,YAAM,UACL,QAAQ,WAAW,iBAAiB,KAAK;AAE1C,YAAM,SAAS,aAAa;AAAA,QAC3B,QAAQ,QAAQ,WAAW,gBAAgB;AAAA,QAC3C;AAAA,MACD,CAAC;AAED,YAAM,QACL,QAAQ,WAAW,oBAAoB,KACvC,QAAQ,WAAW,aAAa,KAChC;AAED,cAAQ,IAAI,iBAAiB;AAC7B,cAAQ,IAAI,MAAM;AAElB,YAAM,EAAE,MAAM,eAAe,IAAI,MAAM,aAAa;AAAA,QACnD,OAAO,OAAO,cAAc,KAAK;AAAA,QACjC;AAAA,QACA,QAAQ,QAAQ,UAAU,UAAU;AAAA,QACpC;AAAA,QACA,WAAW;AAAA,QACX,kBAAkB;AAAA,QAClB,iBAAiB;AAAA,QACjB;AAAA,MACD,CAAC;AAED,aAAO;AAAA,IACR;AAAA,IACA,CAAC,WAAW,UAAU,GAAG,OACxB,SACA;AAAA,MACC;AAAA,MACA,gBAAgB,CAAC;AAAA,MACjB,YAAY;AAAA,MACZ,cAAc;AAAA,MACd,mBAAmB;AAAA,MACnB,kBAAkB;AAAA,IACnB,MACI;AACJ,YAAM,UACL,QAAQ,WAAW,iBAAiB,KAAK;AAE1C,YAAM,SAAS,aAAa;AAAA,QAC3B,QAAQ,QAAQ,WAAW,gBAAgB;AAAA,QAC3C;AAAA,MACD,CAAC;AAED,YAAM,QACL,QAAQ,WAAW,oBAAoB,KACvC,QAAQ,WAAW,aAAa,KAChC;AAED,YAAM,EAAE,MAAM,eAAe,IAAI,MAAM,aAAa;AAAA,QACnD,OAAO,OAAO,cAAc,KAAK;AAAA,QACjC;AAAA,QACA,QAAQ,QAAQ,UAAU,UAAU;AAAA,QACpC;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,MACD,CAAC;AAED,aAAO;AAAA,IACR;AAAA,IACA,CAAC,WAAW,KAAK,GAAG,OACnB,SACA,WAKI;AACJ,YAAM,UACL,QAAQ,WAAW,iBAAiB,KAAK;AAC1C,YAAM,WAAW,MAAM,MAAM,GAAG,OAAO,uBAAuB;AAAA,QAC7D,QAAQ;AAAA,QACR,SAAS;AAAA,UACR,eAAe,UAAU,QAAQ,WAAW,gBAAgB,CAAC;AAAA,UAC7D,gBAAgB;AAAA,QACjB;AAAA,QACA,MAAM,KAAK,UAAU;AAAA,UACpB,QAAQ,OAAO;AAAA,UACf,GAAG,OAAO,KAAK;AAAA,UACf,MAAM,OAAO,QAAQ;AAAA,QACtB,CAAC;AAAA,MACF,CAAC;AACD,UAAI,CAAC,SAAS,IAAI;AACjB,cAAM,IAAI,MAAM,6BAA6B,SAAS,UAAU,EAAE;AAAA,MACnE;AACA,YAAM,OAAO,MAAM,SAAS,KAAK;AACjC,YAAM,YAAY;AAClB,aAAO,UAAU;AAAA,IAClB;AAAA,IACA,CAAC,WAAW,iBAAiB,GAAG,OAAO,SAAS,aAAa;AAC5D,cAAQ,IAAI,mBAAmB;AAC/B,YAAM,UACL,QAAQ,WAAW,iBAAiB,KAAK;AAC1C,cAAQ,IAAI,WAAW,OAAO;AAC9B,YAAM,SAAS,aAAa;AAAA,QAC3B,QAAQ,QAAQ,WAAW,gBAAgB;AAAA,QAC3C;AAAA,MACD,CAAC;AAED,YAAM,EAAE,KAAK,IAAI,MAAM,aAAa;AAAA,QACnC,OAAO,OAAO;AAAA,UACb,QAAQ,WAAW,oBAAoB,KAAK;AAAA,QAC7C;AAAA,QACA,UAAU;AAAA,UACT;AAAA,YACC,MAAM;AAAA,YACN,SACC;AAAA,UACF;AAAA,UACA;AAAA,YACC,MAAM;AAAA,YACN,SAAS;AAAA,cACR;AAAA,gBACC,MAAM;AAAA,gBACN,OAAO;AAAA,cACR;AAAA,YACD;AAAA,UACD;AAAA,QACD;AAAA,QACA,aAAa;AAAA,QACb,WAAW;AAAA,QACX,kBAAkB;AAAA,QAClB,iBAAiB;AAAA,QACjB,eAAe,CAAC;AAAA,MACjB,CAAC;AAED,YAAM,aAAa,KAAK,MAAM,uBAAuB;AACrD,YAAM,mBAAmB,KAAK,MAAM,mCAAmC;AAEvE,UAAI,CAAC,cAAc,CAAC,kBAAkB;AACrC,cAAM,IAAI,MAAM,oDAAoD;AAAA,MACrE;AAEA,aAAO;AAAA,QACN,OAAO,WAAW,CAAC;AAAA,QACnB,aAAa,iBAAiB,CAAC;AAAA,MAChC;AAAA,IACD;AAAA,IACA,CAAC,WAAW,aAAa,GAAG,OAAO,SAAS,gBAAwB;AACnE,cAAQ,IAAI,eAAe,WAAW;AACtC,YAAM,UACL,QAAQ,WAAW,iBAAiB,KAAK;AAC1C,YAAM,WAAW,IAAI,SAAS;AAC9B,eAAS,OAAO,QAAQ,IAAI,KAAK,CAAC,WAAW,GAAG,EAAE,MAAM,YAAY,CAAC,CAAC;AACtE,eAAS,OAAO,SAAS,WAAW;AACpC,YAAM,WAAW,MAAM,MAAM,GAAG,OAAO,yBAAyB;AAAA,QAC/D,QAAQ;AAAA,QACR,SAAS;AAAA,UACR,eAAe,UAAU,QAAQ,WAAW,gBAAgB,CAAC;AAAA;AAAA,QAE9D;AAAA,QACA,MAAM;AAAA,MACP,CAAC;AAED,cAAQ,IAAI,YAAY,QAAQ;AAChC,UAAI,CAAC,SAAS,IAAI;AACjB,cAAM,IAAI,MAAM,+BAA+B,SAAS,UAAU,EAAE;AAAA,MACrE;AACA,YAAM,OAAQ,MAAM,SAAS,KAAK;AAClC,aAAO,KAAK;AAAA,IACb;AAAA,EACD;AAAA,EACA,OAAO;AAAA,IACN;AAAA,MACC,MAAM;AAAA,MACN,OAAO;AAAA,QACN;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,kBAAM,UACL,QAAQ,WAAW,iBAAiB,KACpC;AACD,kBAAM,WAAW,MAAM,MAAM,GAAG,OAAO,WAAW;AAAA,cACjD,SAAS;AAAA,gBACR,eAAe,UAAU,QAAQ,WAAW,gBAAgB,CAAC;AAAA,cAC9D;AAAA,YACD,CAAC;AACD,kBAAM,OAAO,MAAM,SAAS,KAAK;AACjC,oBAAQ,IAAI,qBAAsB,MAAc,KAAK,MAAM;AAC3D,gBAAI,CAAC,SAAS,IAAI;AACjB,oBAAM,IAAI;AAAA,gBACT,sCAAsC,SAAS,UAAU;AAAA,cAC1D;AAAA,YACD;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,gBAAI;AACH,oBAAM,YAAY,MAAM,QAAQ;AAAA,gBAC/B,WAAW;AAAA,gBACX;AAAA,cACD;AACA,sBAAQ,IAAI,aAAa,SAAS;AAAA,YACnC,SAAS,OAAO;AACf,sBAAQ,MAAM,iCAAiC,KAAK;AACpD,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,gBAAI;AACH,oBAAM,OAAO,MAAM,QAAQ,SAAS,WAAW,YAAY;AAAA,gBAC1D,QAAQ;AAAA,cACT,CAAC;AACD,kBAAI,KAAK,WAAW,GAAG;AACtB,sBAAM,IAAI,MAAM,yBAAyB;AAAA,cAC1C;AACA,sBAAQ,IAAI,mCAAmC,IAAI;AAAA,YACpD,SAAS,OAAO;AACf,sBAAQ,MAAM,6BAA6B,KAAK;AAChD,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,gBAAI;AACH,oBAAM,OAAO,MAAM,QAAQ,SAAS,WAAW,YAAY;AAAA,gBAC1D,QAAQ;AAAA,cACT,CAAC;AACD,kBAAI,KAAK,WAAW,GAAG;AACtB,sBAAM,IAAI,MAAM,yBAAyB;AAAA,cAC1C;AACA,sBAAQ,IAAI,mCAAmC,IAAI;AAAA,YACpD,SAAS,OAAO;AACf,sBAAQ,MAAM,6BAA6B,KAAK;AAChD,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,oBAAQ,IAAI,8BAA8B;AAC1C,gBAAI;AACH,oBAAM,QAAQ,MAAM,QAAQ,SAAS,WAAW,OAAO;AAAA,gBACtD,QAAQ;AAAA,gBACR,GAAG;AAAA,gBACH,MAAM;AAAA,cACP,CAAC;AACD,sBAAQ,IAAI,yCAAyC,KAAK;AAAA,YAC3D,SAAS,OAAO;AACf,sBAAQ,MAAM,mCAAmC,KAAK;AACtD,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,oBAAQ,IAAI,+BAA+B;AAC3C,gBAAI;AACH,oBAAM,EAAE,OAAO,YAAY,IAAI,MAAM,QAAQ;AAAA,gBAC5C,WAAW;AAAA,gBACX;AAAA,cACD;AACA,sBAAQ;AAAA,gBACP;AAAA,gBACA;AAAA,gBACA;AAAA,cACD;AAAA,YACD,SAAS,OAAO;AACf,sBAAQ,MAAM,oCAAoC,KAAK;AACvD,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,oBAAQ,IAAI,2BAA2B;AACvC,gBAAI;AACH,oBAAM,WAAW,MAAM;AAAA,gBACtB;AAAA,cACD;AACA,oBAAM,cAAc,MAAM,SAAS,YAAY;AAC/C,oBAAM,gBAAgB,MAAM,QAAQ;AAAA,gBACnC,WAAW;AAAA,gBACX,OAAO,KAAK,IAAI,WAAW,WAAW,CAAC;AAAA,cACxC;AACA,sBAAQ,IAAI,sCAAsC,aAAa;AAAA,YAChE,SAAS,OAAO;AACf,sBAAQ,MAAM,gCAAgC,KAAK;AACnD,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,kBAAM,SAAS;AACf,kBAAM,SAAS,MAAM,QAAQ;AAAA,cAC5B,WAAW;AAAA,cACX,EAAE,OAAO;AAAA,YACV;AACA,gBAAI,CAAC,MAAM,QAAQ,MAAM,KAAK,OAAO,WAAW,GAAG;AAClD,oBAAM,IAAI;AAAA,gBACT;AAAA,cACD;AAAA,YACD;AACA,oBAAQ,IAAI,qBAAqB,MAAM;AAAA,UACxC;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,kBAAM,SAAS;AAEf,kBAAM,SAAS,MAAM,QAAQ;AAAA,cAC5B,WAAW;AAAA,cACX,EAAE,OAAO;AAAA,YACV;AAEA,kBAAM,cAAc,MAAM,QAAQ;AAAA,cACjC,WAAW;AAAA,cACX,EAAE,OAAO;AAAA,YACV;AACA,gBAAI,gBAAgB,QAAQ;AAC3B,oBAAM,IAAI;AAAA,gBACT,mDAAmD,MAAM,WAAW,WAAW;AAAA,cAChF;AAAA,YACD;AACA,oBAAQ,IAAI,iBAAiB,WAAW;AAAA,UACzC;AAAA,QACD;AAAA,MACD;AAAA,IACD;AAAA,EACD;AACD;AACA,IAAO,gBAAQ;","names":[]}
1
+ {"version":3,"sources":["../src/index.ts"],"sourcesContent":["import { createOpenAI } from \"@ai-sdk/openai\";\nimport type {\n\tIAgentRuntime,\n\tImageDescriptionParams,\n\tModelType,\n\tObjectGenerationParams,\n\tPlugin,\n\tTextEmbeddingParams,\n} from \"@elizaos/core\";\nimport {\n\ttype DetokenizeTextParams,\n\ttype GenerateTextParams,\n\tModelTypes,\n\ttype TokenizeTextParams,\n\tlogger,\n} from \"@elizaos/core\";\nimport { generateText } from \"ai\";\nimport { type TiktokenModel, encodingForModel } from \"js-tiktoken\";\n// import { z } from \"zod\";\n\n/**\n * Asynchronously tokenizes the given text based on the specified model and prompt.\n *\n * @param {ModelType} model - The type of model to use for tokenization.\n * @param {string} prompt - The text prompt to tokenize.\n * @returns {number[]} - An array of tokens representing the encoded prompt.\n */\nasync function tokenizeText(model: ModelType, prompt: string) {\n\tconst modelName =\n\t\tmodel === ModelTypes.TEXT_SMALL\n\t\t\t? (process.env.OPENAI_SMALL_MODEL ??\n\t\t\t\tprocess.env.SMALL_MODEL ??\n\t\t\t\t\"gpt-4o-mini\")\n\t\t\t: (process.env.LARGE_MODEL ?? \"gpt-4o\");\n\tconst encoding = encodingForModel(modelName as TiktokenModel);\n\tconst tokens = encoding.encode(prompt);\n\treturn tokens;\n}\n\n/**\n * Detokenize a sequence of tokens back into text using the specified model.\n *\n * @param {ModelType} model - The type of model to use for detokenization.\n * @param {number[]} tokens - The sequence of tokens to detokenize.\n * @returns {string} The detokenized text.\n */\nasync function detokenizeText(model: ModelType, tokens: number[]) {\n\tconst modelName =\n\t\tmodel === ModelTypes.TEXT_SMALL\n\t\t\t? (process.env.OPENAI_SMALL_MODEL ??\n\t\t\t\tprocess.env.SMALL_MODEL ??\n\t\t\t\t\"gpt-4o-mini\")\n\t\t\t: (process.env.OPENAI_LARGE_MODEL ?? process.env.LARGE_MODEL ?? \"gpt-4o\");\n\tconst encoding = encodingForModel(modelName as TiktokenModel);\n\treturn encoding.decode(tokens);\n}\n\n// const configSchema = z.object({\n// \tOPENAI_API_KEY: z.string().min(1, \"OpenAI API key is required\"),\n// \tOPENAI_BASE_URL: z.string().url().optional(),\n// \tOPENAI_SMALL_MODEL: z.string().optional(),\n// \tOPENAI_LARGE_MODEL: z.string().optional(),\n// \tSMALL_MODEL: z.string().optional(),\n// \tLARGE_MODEL: z.string().optional(),\n// });\n\n/**\n * Defines the OpenAI plugin with its name, description, and configuration options.\n * @type {Plugin}\n */\nexport const openaiPlugin: Plugin = {\n\tname: \"openai\",\n\tdescription: \"OpenAI plugin\",\n\tconfig: {\n\t\tOPENAI_API_KEY: process.env.OPENAI_API_KEY,\n\t\tOPENAI_BASE_URL: process.env.OPENAI_BASE_URL,\n\t\tOPENAI_SMALL_MODEL: process.env.OPENAI_SMALL_MODEL,\n\t\tOPENAI_LARGE_MODEL: process.env.OPENAI_LARGE_MODEL,\n\t\tSMALL_MODEL: process.env.SMALL_MODEL,\n\t\tLARGE_MODEL: process.env.LARGE_MODEL,\n\t},\n\tasync init(config: Record<string, string>) {\n\t\ttry {\n\t\t\t// const validatedConfig = await configSchema.parseAsync(config);\n\n\t\t\t// // Set all environment variables at once\n\t\t\t// for (const [key, value] of Object.entries(validatedConfig)) {\n\t\t\t// \tif (value) process.env[key] = value;\n\t\t\t// }\n\n\t\t\t// If API key is not set, we'll show a warning but continue\n\t\t\tif (!process.env.OPENAI_API_KEY) {\n\t\t\t\tlogger.warn(\n\t\t\t\t\t\"OPENAI_API_KEY is not set in environment - OpenAI functionality will be limited\",\n\t\t\t\t);\n\t\t\t\t// Return early without throwing an error\n\t\t\t\treturn;\n\t\t\t}\n\n\t\t\t// Verify API key only if we have one\n\t\t\ttry {\n\t\t\t\tconst baseURL =\n\t\t\t\t\tprocess.env.OPENAI_BASE_URL ?? \"https://api.openai.com/v1\";\n\t\t\t\tconst response = await fetch(`${baseURL}/models`, {\n\t\t\t\t\theaders: { Authorization: `Bearer ${process.env.OPENAI_API_KEY}` },\n\t\t\t\t});\n\n\t\t\t\tif (!response.ok) {\n\t\t\t\t\tlogger.warn(\n\t\t\t\t\t\t`OpenAI API key validation failed: ${response.statusText}`,\n\t\t\t\t\t);\n\t\t\t\t\tlogger.warn(\n\t\t\t\t\t\t\"OpenAI functionality will be limited until a valid API key is provided\",\n\t\t\t\t\t);\n\t\t\t\t\t// Continue execution instead of throwing\n\t\t\t\t} else {\n\t\t\t\t\t// logger.log(\"OpenAI API key validated successfully\");\n\t\t\t\t}\n\t\t\t} catch (fetchError) {\n\t\t\t\tlogger.warn(`Error validating OpenAI API key: ${fetchError}`);\n\t\t\t\tlogger.warn(\n\t\t\t\t\t\"OpenAI functionality will be limited until a valid API key is provided\",\n\t\t\t\t);\n\t\t\t\t// Continue execution instead of throwing\n\t\t\t}\n\t\t} catch (error) {\n\t\t\t\t// Convert to warning instead of error\n\t\t\t\tlogger.warn(\n\t\t\t\t\t`OpenAI plugin configuration issue: ${error.errors\n\t\t\t\t\t\t.map((e) => e.message)\n\t\t\t\t\t\t.join(\n\t\t\t\t\t\t\t\", \",\n\t\t\t\t\t\t)} - You need to configure the OPENAI_API_KEY in your environment variables`,\n\t\t\t\t);\n\t\t}\n\t},\n\tmodels: {\n\t\t[ModelTypes.TEXT_EMBEDDING]: async (\n\t\t\truntime,\n\t\t\tparams: TextEmbeddingParams | string | null,\n\t\t): Promise<number[]> => {\n\t\t\t// Handle null input (initialization case)\n\t\t\tif (params === null) {\n\t\t\t\tlogger.debug(\"Creating test embedding for initialization\");\n\t\t\t\t// Return a consistent vector for null input\n\t\t\t\tconst testVector = Array(1536).fill(0);\n\t\t\t\ttestVector[0] = 0.1; // Make it non-zero\n\t\t\t\treturn testVector;\n\t\t\t}\n\n\t\t\t// Get the text from whatever format was provided\n\t\t\tlet text: string;\n\t\t\tif (typeof params === \"string\") {\n\t\t\t\ttext = params; // Direct string input\n\t\t\t} else if (typeof params === \"object\" && params.text) {\n\t\t\t\ttext = params.text; // Object with text property\n\t\t\t} else {\n\t\t\t\tlogger.warn(\"Invalid input format for embedding\");\n\t\t\t\t// Return a fallback for invalid input\n\t\t\t\tconst fallbackVector = Array(1536).fill(0);\n\t\t\t\tfallbackVector[0] = 0.2; // Different value for tracking\n\t\t\t\treturn fallbackVector;\n\t\t\t}\n\n\t\t\t// Skip API call for empty text\n\t\t\tif (!text.trim()) {\n\t\t\t\tlogger.warn(\"Empty text for embedding\");\n\t\t\t\tconst emptyVector = Array(1536).fill(0);\n\t\t\t\temptyVector[0] = 0.3; // Different value for tracking\n\t\t\t\treturn emptyVector;\n\t\t\t}\n\n\t\t\ttry {\n\t\t\t\tconst baseURL =\n\t\t\t\t\tprocess.env.OPENAI_BASE_URL ?? \"https://api.openai.com/v1\";\n\n\t\t\t\t// Call the OpenAI API\n\t\t\t\tconst response = await fetch(`${baseURL}/embeddings`, {\n\t\t\t\t\tmethod: \"POST\",\n\t\t\t\t\theaders: {\n\t\t\t\t\t\tAuthorization: `Bearer ${process.env.OPENAI_API_KEY}`,\n\t\t\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t\t\t},\n\t\t\t\t\tbody: JSON.stringify({\n\t\t\t\t\t\tmodel: \"text-embedding-3-small\",\n\t\t\t\t\t\tinput: text,\n\t\t\t\t\t}),\n\t\t\t\t});\n\n\t\t\t\tif (!response.ok) {\n\t\t\t\t\tlogger.error(\n\t\t\t\t\t\t`OpenAI API error: ${response.status} - ${response.statusText}`,\n\t\t\t\t\t);\n\t\t\t\t\tconst errorVector = Array(1536).fill(0);\n\t\t\t\t\terrorVector[0] = 0.4; // Different value for tracking\n\t\t\t\t\treturn errorVector;\n\t\t\t\t}\n\n\t\t\t\tconst data = (await response.json()) as {\n\t\t\t\t\tdata: [{ embedding: number[] }];\n\t\t\t\t};\n\n\t\t\t\tif (!data?.data?.[0]?.embedding) {\n\t\t\t\t\tlogger.error(\"API returned invalid structure\");\n\t\t\t\t\tconst errorVector = Array(1536).fill(0);\n\t\t\t\t\terrorVector[0] = 0.5; // Different value for tracking\n\t\t\t\t\treturn errorVector;\n\t\t\t\t}\n\n\t\t\t\tconst embedding = data.data[0].embedding;\n\t\t\t\tlogger.log(`Got valid embedding with length ${embedding.length}`);\n\t\t\t\treturn embedding;\n\t\t\t} catch (error) {\n\t\t\t\tlogger.error(\"Error generating embedding:\", error);\n\t\t\t\tconst errorVector = Array(1536).fill(0);\n\t\t\t\terrorVector[0] = 0.6; // Different value for tracking\n\t\t\t\treturn errorVector;\n\t\t\t}\n\t\t},\n\t\t[ModelTypes.TEXT_TOKENIZER_ENCODE]: async (\n\t\t\t_runtime,\n\t\t\t{ prompt, modelType = ModelTypes.TEXT_LARGE }: TokenizeTextParams,\n\t\t) => {\n\t\t\treturn await tokenizeText(modelType ?? ModelTypes.TEXT_LARGE, prompt);\n\t\t},\n\t\t[ModelTypes.TEXT_TOKENIZER_DECODE]: async (\n\t\t\t_runtime,\n\t\t\t{ tokens, modelType = ModelTypes.TEXT_LARGE }: DetokenizeTextParams,\n\t\t) => {\n\t\t\treturn await detokenizeText(modelType ?? ModelTypes.TEXT_LARGE, tokens);\n\t\t},\n\t\t[ModelTypes.TEXT_SMALL]: async (\n\t\t\truntime,\n\t\t\t{ prompt, stopSequences = [] }: GenerateTextParams,\n\t\t) => {\n\t\t\tconst temperature = 0.7;\n\t\t\tconst frequency_penalty = 0.7;\n\t\t\tconst presence_penalty = 0.7;\n\t\t\tconst max_response_length = 8192;\n\n\t\t\tconst baseURL =\n\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ?? \"https://api.openai.com/v1\";\n\n\t\t\tconst openai = createOpenAI({\n\t\t\t\tapiKey: runtime.getSetting(\"OPENAI_API_KEY\"),\n\t\t\t\tbaseURL,\n\t\t\t});\n\n\t\t\tconst model =\n\t\t\t\truntime.getSetting(\"OPENAI_SMALL_MODEL\") ??\n\t\t\t\truntime.getSetting(\"SMALL_MODEL\") ??\n\t\t\t\t\"gpt-4o-mini\";\n\n\t\t\tlogger.log(\"generating text\");\n\t\t\tlogger.log(prompt);\n\n\t\t\tconst { text: openaiResponse } = await generateText({\n\t\t\t\tmodel: openai.languageModel(model),\n\t\t\t\tprompt: prompt,\n\t\t\t\tsystem: runtime.character.system ?? undefined,\n\t\t\t\ttemperature: temperature,\n\t\t\t\tmaxTokens: max_response_length,\n\t\t\t\tfrequencyPenalty: frequency_penalty,\n\t\t\t\tpresencePenalty: presence_penalty,\n\t\t\t\tstopSequences: stopSequences,\n\t\t\t});\n\n\t\t\treturn openaiResponse;\n\t\t},\n\t\t[ModelTypes.TEXT_LARGE]: async (\n\t\t\truntime,\n\t\t\t{\n\t\t\t\tprompt,\n\t\t\t\tstopSequences = [],\n\t\t\t\tmaxTokens = 8192,\n\t\t\t\ttemperature = 0.7,\n\t\t\t\tfrequencyPenalty = 0.7,\n\t\t\t\tpresencePenalty = 0.7,\n\t\t\t}: GenerateTextParams,\n\t\t) => {\n\t\t\tconst baseURL =\n\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ?? \"https://api.openai.com/v1\";\n\n\t\t\tconst openai = createOpenAI({\n\t\t\t\tapiKey: runtime.getSetting(\"OPENAI_API_KEY\"),\n\t\t\t\tbaseURL,\n\t\t\t});\n\n\t\t\tconst model =\n\t\t\t\truntime.getSetting(\"OPENAI_LARGE_MODEL\") ??\n\t\t\t\truntime.getSetting(\"LARGE_MODEL\") ??\n\t\t\t\t\"gpt-4o\";\n\n\t\t\tconst { text: openaiResponse } = await generateText({\n\t\t\t\tmodel: openai.languageModel(model),\n\t\t\t\tprompt: prompt,\n\t\t\t\tsystem: runtime.character.system ?? undefined,\n\t\t\t\ttemperature: temperature,\n\t\t\t\tmaxTokens: maxTokens,\n\t\t\t\tfrequencyPenalty: frequencyPenalty,\n\t\t\t\tpresencePenalty: presencePenalty,\n\t\t\t\tstopSequences: stopSequences,\n\t\t\t});\n\n\t\t\treturn openaiResponse;\n\t\t},\n\t\t[ModelTypes.IMAGE]: async (\n\t\t\truntime,\n\t\t\tparams: {\n\t\t\t\tprompt: string;\n\t\t\t\tn?: number;\n\t\t\t\tsize?: string;\n\t\t\t},\n\t\t) => {\n\t\t\tconst baseURL =\n\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ?? \"https://api.openai.com/v1\";\n\t\t\tconst response = await fetch(`${baseURL}/images/generations`, {\n\t\t\t\tmethod: \"POST\",\n\t\t\t\theaders: {\n\t\t\t\t\tAuthorization: `Bearer ${runtime.getSetting(\"OPENAI_API_KEY\")}`,\n\t\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t\t},\n\t\t\t\tbody: JSON.stringify({\n\t\t\t\t\tprompt: params.prompt,\n\t\t\t\t\tn: params.n || 1,\n\t\t\t\t\tsize: params.size || \"1024x1024\",\n\t\t\t\t}),\n\t\t\t});\n\t\t\tif (!response.ok) {\n\t\t\t\tthrow new Error(`Failed to generate image: ${response.statusText}`);\n\t\t\t}\n\t\t\tconst data = await response.json();\n\t\t\tconst typedData = data as { data: { url: string }[] };\n\t\t\treturn typedData.data;\n\t\t},\n\t\t[ModelTypes.IMAGE_DESCRIPTION]: async (\n\t\t\truntime,\n\t\t\tparams: ImageDescriptionParams | string,\n\t\t) => {\n\t\t\t// Handle string case (direct URL)\n\t\t\tlet imageUrl: string;\n\t\t\tlet prompt: string | undefined;\n\n\t\t\tif (typeof params === \"string\") {\n\t\t\t\timageUrl = params;\n\t\t\t\tprompt = undefined;\n\t\t\t} else {\n\t\t\t\t// Object parameter case\n\t\t\t\timageUrl = params.imageUrl;\n\t\t\t\tprompt = params.prompt;\n\t\t\t}\n\n\t\t\ttry {\n\t\t\t\tconst baseURL =\n\t\t\t\t\tprocess.env.OPENAI_BASE_URL ?? \"https://api.openai.com/v1\";\n\t\t\t\tconst apiKey = process.env.OPENAI_API_KEY;\n\n\t\t\t\tif (!apiKey) {\n\t\t\t\t\tlogger.error(\"OpenAI API key not set\");\n\t\t\t\t\treturn {\n\t\t\t\t\t\ttitle: \"Failed to analyze image\",\n\t\t\t\t\t\tdescription: \"API key not configured\",\n\t\t\t\t\t};\n\t\t\t\t}\n\n\t\t\t\t// Call the GPT-4 Vision API\n\t\t\t\tconst response = await fetch(`${baseURL}/chat/completions`, {\n\t\t\t\t\tmethod: \"POST\",\n\t\t\t\t\theaders: {\n\t\t\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t\t\t\tAuthorization: `Bearer ${apiKey}`,\n\t\t\t\t\t},\n\t\t\t\t\tbody: JSON.stringify({\n\t\t\t\t\t\tmodel: \"gpt-4-vision-preview\",\n\t\t\t\t\t\tmessages: [\n\t\t\t\t\t\t\t{\n\t\t\t\t\t\t\t\trole: \"user\",\n\t\t\t\t\t\t\t\tcontent: [\n\t\t\t\t\t\t\t\t\t{\n\t\t\t\t\t\t\t\t\t\ttype: \"text\",\n\t\t\t\t\t\t\t\t\t\ttext:\n\t\t\t\t\t\t\t\t\t\t\tprompt ||\n\t\t\t\t\t\t\t\t\t\t\t\"Please analyze this image and provide a title and detailed description.\",\n\t\t\t\t\t\t\t\t\t},\n\t\t\t\t\t\t\t\t\t{\n\t\t\t\t\t\t\t\t\t\ttype: \"image_url\",\n\t\t\t\t\t\t\t\t\t\timage_url: { url: imageUrl },\n\t\t\t\t\t\t\t\t\t},\n\t\t\t\t\t\t\t\t],\n\t\t\t\t\t\t\t},\n\t\t\t\t\t\t],\n\t\t\t\t\t\tmax_tokens: 300,\n\t\t\t\t\t}),\n\t\t\t\t});\n\n\t\t\t\tif (!response.ok) {\n\t\t\t\t\tthrow new Error(`OpenAI API error: ${response.status}`);\n\t\t\t\t}\n\n\t\t\t\tconst result: any = await response.json();\n\t\t\t\tconst content = result.choices?.[0]?.message?.content;\n\n\t\t\t\tif (!content) {\n\t\t\t\t\treturn {\n\t\t\t\t\t\ttitle: \"Failed to analyze image\",\n\t\t\t\t\t\tdescription: \"No response from API\",\n\t\t\t\t\t};\n\t\t\t\t}\n\n\t\t\t\t// Extract title and description\n\t\t\t\tconst titleMatch = content.match(/title[:\\s]+(.+?)(?:\\n|$)/i);\n\t\t\t\tconst title = titleMatch?.[1] || \"Image Analysis\";\n\n\t\t\t\t// Rest of content is the description\n\t\t\t\tconst description = content\n\t\t\t\t\t.replace(/title[:\\s]+(.+?)(?:\\n|$)/i, \"\")\n\t\t\t\t\t.trim();\n\n\t\t\t\treturn { title, description };\n\t\t\t} catch (error) {\n\t\t\t\tlogger.error(\"Error analyzing image:\", error);\n\t\t\t\treturn {\n\t\t\t\t\ttitle: \"Failed to analyze image\",\n\t\t\t\t\tdescription: `Error: ${error instanceof Error ? error.message : String(error)}`,\n\t\t\t\t};\n\t\t\t}\n\t\t},\n\t\t[ModelTypes.TRANSCRIPTION]: async (runtime, audioBuffer: Buffer) => {\n\t\t\tlogger.log(\"audioBuffer\", audioBuffer);\n\t\t\tconst baseURL =\n\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ?? \"https://api.openai.com/v1\";\n\t\t\tconst formData = new FormData();\n\t\t\tformData.append(\"file\", new Blob([audioBuffer], { type: \"audio/mp3\" }));\n\t\t\tformData.append(\"model\", \"whisper-1\");\n\t\t\tconst response = await fetch(`${baseURL}/audio/transcriptions`, {\n\t\t\t\tmethod: \"POST\",\n\t\t\t\theaders: {\n\t\t\t\t\tAuthorization: `Bearer ${runtime.getSetting(\"OPENAI_API_KEY\")}`,\n\t\t\t\t\t// Note: Do not set a Content-Type header—letting fetch set it for FormData is best\n\t\t\t\t},\n\t\t\t\tbody: formData,\n\t\t\t});\n\n\t\t\tlogger.log(\"response\", response);\n\t\t\tif (!response.ok) {\n\t\t\t\tthrow new Error(`Failed to transcribe audio: ${response.statusText}`);\n\t\t\t}\n\t\t\tconst data = (await response.json()) as { text: string };\n\t\t\treturn data.text;\n\t\t},\n\t\t[ModelTypes.OBJECT_SMALL]: async (runtime, params) => {\n\t\t\treturn await generateObject(runtime, {\n\t\t\t\t...params,\n\t\t\t\tmodelType: ModelTypes.OBJECT_SMALL,\n\t\t\t});\n\t\t},\n\t\t[ModelTypes.OBJECT_LARGE]: async (runtime, params) => {\n\t\t\treturn await generateObject(runtime, {\n\t\t\t\t...params,\n\t\t\t\tmodelType: ModelTypes.OBJECT_LARGE,\n\t\t\t});\n\t\t},\n\t},\n\ttests: [\n\t\t{\n\t\t\tname: \"openai_plugin_tests\",\n\t\t\ttests: [\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_url_and_api_key_validation\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tconst baseURL =\n\t\t\t\t\t\t\truntime.getSetting(\"OPENAI_BASE_URL\") ??\n\t\t\t\t\t\t\t\"https://api.openai.com/v1\";\n\t\t\t\t\t\tconst response = await fetch(`${baseURL}/models`, {\n\t\t\t\t\t\t\theaders: {\n\t\t\t\t\t\t\t\tAuthorization: `Bearer ${runtime.getSetting(\"OPENAI_API_KEY\")}`,\n\t\t\t\t\t\t\t},\n\t\t\t\t\t\t});\n\t\t\t\t\t\tconst data = await response.json();\n\t\t\t\t\t\tlogger.log(\"Models Available:\", (data as any)?.data.length);\n\t\t\t\t\t\tif (!response.ok) {\n\t\t\t\t\t\t\tthrow new Error(\n\t\t\t\t\t\t\t\t`Failed to validate OpenAI API key: ${response.statusText}`,\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_embedding\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst embedding = await runtime.useModel(\n\t\t\t\t\t\t\t\tModelTypes.TEXT_EMBEDDING,\n\t\t\t\t\t\t\t\t{\n\t\t\t\t\t\t\t\t\ttext: \"Hello, world!\",\n\t\t\t\t\t\t\t\t},\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t\tlogger.log(\"embedding\", embedding);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tlogger.error(\"Error in test_text_embedding:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_large\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst text = await runtime.useModel(ModelTypes.TEXT_LARGE, {\n\t\t\t\t\t\t\t\tprompt: \"What is the nature of reality in 10 words?\",\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t\tif (text.length === 0) {\n\t\t\t\t\t\t\t\tthrow new Error(\"Failed to generate text\");\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\tlogger.log(\"generated with test_text_large:\", text);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tlogger.error(\"Error in test_text_large:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_small\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst text = await runtime.useModel(ModelTypes.TEXT_SMALL, {\n\t\t\t\t\t\t\t\tprompt: \"What is the nature of reality in 10 words?\",\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t\tif (text.length === 0) {\n\t\t\t\t\t\t\t\tthrow new Error(\"Failed to generate text\");\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\tlogger.log(\"generated with test_text_small:\", text);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tlogger.error(\"Error in test_text_small:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_image_generation\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tlogger.log(\"openai_test_image_generation\");\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst image = await runtime.useModel(ModelTypes.IMAGE, {\n\t\t\t\t\t\t\t\tprompt: \"A beautiful sunset over a calm ocean\",\n\t\t\t\t\t\t\t\tn: 1,\n\t\t\t\t\t\t\t\tsize: \"1024x1024\",\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t\tlogger.log(\"generated with test_image_generation:\", image);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tlogger.error(\"Error in test_image_generation:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"image-description\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tlogger.log(\"openai_test_image_description\");\n\t\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\t\tconst result = await runtime.useModel(\n\t\t\t\t\t\t\t\t\tModelTypes.IMAGE_DESCRIPTION,\n\t\t\t\t\t\t\t\t\t\"https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg/537px-Vitalik_Buterin_TechCrunch_London_2015_%28cropped%29.jpg\",\n\t\t\t\t\t\t\t\t);\n\n\t\t\t\t\t\t\t\t// Check if result has the expected structure\n\t\t\t\t\t\t\t\tif (\n\t\t\t\t\t\t\t\t\tresult &&\n\t\t\t\t\t\t\t\t\ttypeof result === \"object\" &&\n\t\t\t\t\t\t\t\t\t\"title\" in result &&\n\t\t\t\t\t\t\t\t\t\"description\" in result\n\t\t\t\t\t\t\t\t) {\n\t\t\t\t\t\t\t\t\tlogger.log(\"Image description:\", result);\n\t\t\t\t\t\t\t\t} else {\n\t\t\t\t\t\t\t\t\tlogger.error(\n\t\t\t\t\t\t\t\t\t\t\"Invalid image description result format:\",\n\t\t\t\t\t\t\t\t\t\tresult,\n\t\t\t\t\t\t\t\t\t);\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t} catch (e) {\n\t\t\t\t\t\t\t\tlogger.error(\"Error in image description test:\", e);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t} catch (e) {\n\t\t\t\t\t\t\tlogger.error(\"Error in openai_test_image_description:\", e);\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_transcription\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tlogger.log(\"openai_test_transcription\");\n\t\t\t\t\t\ttry {\n\t\t\t\t\t\t\tconst response = await fetch(\n\t\t\t\t\t\t\t\t\"https://upload.wikimedia.org/wikipedia/en/4/40/Chris_Benoit_Voice_Message.ogg\",\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t\tconst arrayBuffer = await response.arrayBuffer();\n\t\t\t\t\t\t\tconst transcription = await runtime.useModel(\n\t\t\t\t\t\t\t\tModelTypes.TRANSCRIPTION,\n\t\t\t\t\t\t\t\tBuffer.from(new Uint8Array(arrayBuffer)),\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t\tlogger.log(\"generated with test_transcription:\", transcription);\n\t\t\t\t\t\t} catch (error) {\n\t\t\t\t\t\t\tlogger.error(\"Error in test_transcription:\", error);\n\t\t\t\t\t\t\tthrow error;\n\t\t\t\t\t\t}\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_tokenizer_encode\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tconst prompt = \"Hello tokenizer encode!\";\n\t\t\t\t\t\tconst tokens = await runtime.useModel(\n\t\t\t\t\t\t\tModelTypes.TEXT_TOKENIZER_ENCODE,\n\t\t\t\t\t\t\t{ prompt },\n\t\t\t\t\t\t);\n\t\t\t\t\t\tif (!Array.isArray(tokens) || tokens.length === 0) {\n\t\t\t\t\t\t\tthrow new Error(\n\t\t\t\t\t\t\t\t\"Failed to tokenize text: expected non-empty array of tokens\",\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t}\n\t\t\t\t\t\tlogger.log(\"Tokenized output:\", tokens);\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\tname: \"openai_test_text_tokenizer_decode\",\n\t\t\t\t\tfn: async (runtime) => {\n\t\t\t\t\t\tconst prompt = \"Hello tokenizer decode!\";\n\t\t\t\t\t\t// Encode the string into tokens first\n\t\t\t\t\t\tconst tokens = await runtime.useModel(\n\t\t\t\t\t\t\tModelTypes.TEXT_TOKENIZER_ENCODE,\n\t\t\t\t\t\t\t{ prompt },\n\t\t\t\t\t\t);\n\t\t\t\t\t\t// Now decode tokens back into text\n\t\t\t\t\t\tconst decodedText = await runtime.useModel(\n\t\t\t\t\t\t\tModelTypes.TEXT_TOKENIZER_DECODE,\n\t\t\t\t\t\t\t{ tokens },\n\t\t\t\t\t\t);\n\t\t\t\t\t\tif (decodedText !== prompt) {\n\t\t\t\t\t\t\tthrow new Error(\n\t\t\t\t\t\t\t\t`Decoded text does not match original. Expected \"${prompt}\", got \"${decodedText}\"`,\n\t\t\t\t\t\t\t);\n\t\t\t\t\t\t}\n\t\t\t\t\t\tlogger.log(\"Decoded text:\", decodedText);\n\t\t\t\t\t},\n\t\t\t\t},\n\t\t\t],\n\t\t},\n\t],\n};\nexport default openaiPlugin;\n\n/**\n * Generates a structured object from a prompt using OpenAI's function calling capabilities.\n *\n * @param runtime The agent runtime\n * @param params The generation parameters\n * @returns The generated object\n */\nasync function generateObject(\n\truntime: IAgentRuntime,\n\tparams: ObjectGenerationParams,\n) {\n\tconst {\n\t\tprompt,\n\t\tschema,\n\t\toutput = \"object\",\n\t\tenumValues = [],\n\t\tmodelType = ModelTypes.OBJECT_SMALL,\n\t\ttemperature = 0.7,\n\t} = params;\n\n\t// Determine which model to use\n\tconst modelName =\n\t\tmodelType === ModelTypes.OBJECT_SMALL\n\t\t\t? (process.env.OPENAI_SMALL_MODEL ??\n\t\t\t\tprocess.env.SMALL_MODEL ??\n\t\t\t\t\"gpt-4o-mini\")\n\t\t\t: (process.env.OPENAI_LARGE_MODEL ?? process.env.LARGE_MODEL ?? \"gpt-4o\");\n\n\tconst baseURL = process.env.OPENAI_BASE_URL ?? \"https://api.openai.com/v1\";\n\n\t// Handle enum types specifically\n\tif (output === \"enum\" && enumValues.length) {\n\t\ttry {\n\t\t\tconst response = await fetch(`${baseURL}/chat/completions`, {\n\t\t\t\tmethod: \"POST\",\n\t\t\t\theaders: {\n\t\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t\t\tAuthorization: `Bearer ${process.env.OPENAI_API_KEY}`,\n\t\t\t\t},\n\t\t\t\tbody: JSON.stringify({\n\t\t\t\t\tmodel: modelName,\n\t\t\t\t\tmessages: [{ role: \"user\", content: prompt }],\n\t\t\t\t\ttemperature,\n\t\t\t\t\ttools: [\n\t\t\t\t\t\t{\n\t\t\t\t\t\t\ttype: \"function\",\n\t\t\t\t\t\t\tfunction: {\n\t\t\t\t\t\t\t\tname: \"select_value\",\n\t\t\t\t\t\t\t\tdescription:\n\t\t\t\t\t\t\t\t\t\"Select the most appropriate value from the provided options\",\n\t\t\t\t\t\t\t\tparameters: {\n\t\t\t\t\t\t\t\t\ttype: \"object\",\n\t\t\t\t\t\t\t\t\tproperties: {\n\t\t\t\t\t\t\t\t\t\tvalue: {\n\t\t\t\t\t\t\t\t\t\t\ttype: \"string\",\n\t\t\t\t\t\t\t\t\t\t\tenum: enumValues,\n\t\t\t\t\t\t\t\t\t\t\tdescription: \"The selected value\",\n\t\t\t\t\t\t\t\t\t\t},\n\t\t\t\t\t\t\t\t\t},\n\t\t\t\t\t\t\t\t\trequired: [\"value\"],\n\t\t\t\t\t\t\t\t},\n\t\t\t\t\t\t\t},\n\t\t\t\t\t\t},\n\t\t\t\t\t],\n\t\t\t\t\ttool_choice: { type: \"function\", function: { name: \"select_value\" } },\n\t\t\t\t}),\n\t\t\t});\n\n\t\t\tif (!response.ok) {\n\t\t\t\tthrow new Error(`API error: ${response.status}`);\n\t\t\t}\n\n\t\t\tconst result: any = await response.json();\n\t\t\tconst toolCalls = result.choices?.[0]?.message?.tool_calls;\n\n\t\t\tif (toolCalls && toolCalls.length > 0) {\n\t\t\t\ttry {\n\t\t\t\t\tconst functionArgs = JSON.parse(toolCalls[0].function.arguments);\n\t\t\t\t\treturn functionArgs.value;\n\t\t\t\t} catch (err) {\n\t\t\t\t\tlogger.error(\"Failed to parse function arguments:\", err);\n\t\t\t\t\treturn null;\n\t\t\t\t}\n\t\t\t}\n\n\t\t\treturn null;\n\t\t} catch (error) {\n\t\t\tlogger.error(\"Error generating enum value:\", error);\n\t\t\treturn null;\n\t\t}\n\t}\n\n\t// Handle regular object generation with schema\n\ttry {\n\t\t// Determine the appropriate JSON schema\n\t\tlet functionSchema: any;\n\n\t\tif (schema) {\n\t\t\t// Use provided schema\n\t\t\tfunctionSchema = schema;\n\t\t} else {\n\t\t\t// Default schema based on output type\n\t\t\tfunctionSchema = {\n\t\t\t\ttype: output === \"array\" ? \"array\" : \"object\",\n\t\t\t\t...(output === \"array\" ? { items: { type: \"object\" } } : {}),\n\t\t\t};\n\t\t}\n\n\t\t// Call the OpenAI API directly\n\t\tconst response = await fetch(`${baseURL}/chat/completions`, {\n\t\t\tmethod: \"POST\",\n\t\t\theaders: {\n\t\t\t\t\"Content-Type\": \"application/json\",\n\t\t\t\tAuthorization: `Bearer ${process.env.OPENAI_API_KEY}`,\n\t\t\t},\n\t\t\tbody: JSON.stringify({\n\t\t\t\tmodel: modelName,\n\t\t\t\tmessages: [{ role: \"user\", content: prompt }],\n\t\t\t\ttemperature,\n\t\t\t\ttools: [\n\t\t\t\t\t{\n\t\t\t\t\t\ttype: \"function\",\n\t\t\t\t\t\tfunction: {\n\t\t\t\t\t\t\tname: \"generate_structured_data\",\n\t\t\t\t\t\t\tdescription: \"Generate structured data based on the prompt\",\n\t\t\t\t\t\t\tparameters: functionSchema,\n\t\t\t\t\t\t},\n\t\t\t\t\t},\n\t\t\t\t],\n\t\t\t\ttool_choice: {\n\t\t\t\t\ttype: \"function\",\n\t\t\t\t\tfunction: { name: \"generate_structured_data\" },\n\t\t\t\t},\n\t\t\t}),\n\t\t});\n\n\t\tif (!response.ok) {\n\t\t\tthrow new Error(`API error: ${response.status}`);\n\t\t}\n\n\t\tconst result: any = await response.json();\n\t\tconst toolCalls = result.choices?.[0]?.message?.tool_calls;\n\n\t\tif (toolCalls && toolCalls.length > 0) {\n\t\t\ttry {\n\t\t\t\treturn JSON.parse(toolCalls[0].function.arguments);\n\t\t\t} catch (err) {\n\t\t\t\tlogger.error(\"Failed to parse function arguments:\", err);\n\t\t\t\treturn null;\n\t\t\t}\n\t\t}\n\n\t\treturn null;\n\t} catch (error) {\n\t\tlogger.error(\"Error generating object:\", error);\n\t\treturn null;\n\t}\n}\n"],"mappings":";AAAA,SAAS,oBAAoB;AAS7B;AAAA,EAGC;AAAA,EAEA;AAAA,OACM;AACP,SAAS,oBAAoB;AAC7B,SAA6B,wBAAwB;AAUrD,eAAe,aAAa,OAAkB,QAAgB;AAC7D,QAAM,YACL,UAAU,WAAW,aACjB,QAAQ,IAAI,sBACd,QAAQ,IAAI,eACZ,gBACE,QAAQ,IAAI,eAAe;AAChC,QAAM,WAAW,iBAAiB,SAA0B;AAC5D,QAAM,SAAS,SAAS,OAAO,MAAM;AACrC,SAAO;AACR;AASA,eAAe,eAAe,OAAkB,QAAkB;AACjE,QAAM,YACL,UAAU,WAAW,aACjB,QAAQ,IAAI,sBACd,QAAQ,IAAI,eACZ,gBACE,QAAQ,IAAI,sBAAsB,QAAQ,IAAI,eAAe;AAClE,QAAM,WAAW,iBAAiB,SAA0B;AAC5D,SAAO,SAAS,OAAO,MAAM;AAC9B;AAeO,IAAM,eAAuB;AAAA,EACnC,MAAM;AAAA,EACN,aAAa;AAAA,EACb,QAAQ;AAAA,IACP,gBAAgB,QAAQ,IAAI;AAAA,IAC5B,iBAAiB,QAAQ,IAAI;AAAA,IAC7B,oBAAoB,QAAQ,IAAI;AAAA,IAChC,oBAAoB,QAAQ,IAAI;AAAA,IAChC,aAAa,QAAQ,IAAI;AAAA,IACzB,aAAa,QAAQ,IAAI;AAAA,EAC1B;AAAA,EACA,MAAM,KAAK,QAAgC;AAC1C,QAAI;AASH,UAAI,CAAC,QAAQ,IAAI,gBAAgB;AAChC,eAAO;AAAA,UACN;AAAA,QACD;AAEA;AAAA,MACD;AAGA,UAAI;AACH,cAAM,UACL,QAAQ,IAAI,mBAAmB;AAChC,cAAM,WAAW,MAAM,MAAM,GAAG,OAAO,WAAW;AAAA,UACjD,SAAS,EAAE,eAAe,UAAU,QAAQ,IAAI,cAAc,GAAG;AAAA,QAClE,CAAC;AAED,YAAI,CAAC,SAAS,IAAI;AACjB,iBAAO;AAAA,YACN,qCAAqC,SAAS,UAAU;AAAA,UACzD;AACA,iBAAO;AAAA,YACN;AAAA,UACD;AAAA,QAED,OAAO;AAAA,QAEP;AAAA,MACD,SAAS,YAAY;AACpB,eAAO,KAAK,oCAAoC,UAAU,EAAE;AAC5D,eAAO;AAAA,UACN;AAAA,QACD;AAAA,MAED;AAAA,IACD,SAAS,OAAO;AAEd,aAAO;AAAA,QACN,sCAAsC,MAAM,OAC1C,IAAI,CAAC,MAAM,EAAE,OAAO,EACpB;AAAA,UACA;AAAA,QACD,CAAC;AAAA,MACH;AAAA,IACF;AAAA,EACD;AAAA,EACA,QAAQ;AAAA,IACP,CAAC,WAAW,cAAc,GAAG,OAC5B,SACA,WACuB;AAEvB,UAAI,WAAW,MAAM;AACpB,eAAO,MAAM,4CAA4C;AAEzD,cAAM,aAAa,MAAM,IAAI,EAAE,KAAK,CAAC;AACrC,mBAAW,CAAC,IAAI;AAChB,eAAO;AAAA,MACR;AAGA,UAAI;AACJ,UAAI,OAAO,WAAW,UAAU;AAC/B,eAAO;AAAA,MACR,WAAW,OAAO,WAAW,YAAY,OAAO,MAAM;AACrD,eAAO,OAAO;AAAA,MACf,OAAO;AACN,eAAO,KAAK,oCAAoC;AAEhD,cAAM,iBAAiB,MAAM,IAAI,EAAE,KAAK,CAAC;AACzC,uBAAe,CAAC,IAAI;AACpB,eAAO;AAAA,MACR;AAGA,UAAI,CAAC,KAAK,KAAK,GAAG;AACjB,eAAO,KAAK,0BAA0B;AACtC,cAAM,cAAc,MAAM,IAAI,EAAE,KAAK,CAAC;AACtC,oBAAY,CAAC,IAAI;AACjB,eAAO;AAAA,MACR;AAEA,UAAI;AACH,cAAM,UACL,QAAQ,IAAI,mBAAmB;AAGhC,cAAM,WAAW,MAAM,MAAM,GAAG,OAAO,eAAe;AAAA,UACrD,QAAQ;AAAA,UACR,SAAS;AAAA,YACR,eAAe,UAAU,QAAQ,IAAI,cAAc;AAAA,YACnD,gBAAgB;AAAA,UACjB;AAAA,UACA,MAAM,KAAK,UAAU;AAAA,YACpB,OAAO;AAAA,YACP,OAAO;AAAA,UACR,CAAC;AAAA,QACF,CAAC;AAED,YAAI,CAAC,SAAS,IAAI;AACjB,iBAAO;AAAA,YACN,qBAAqB,SAAS,MAAM,MAAM,SAAS,UAAU;AAAA,UAC9D;AACA,gBAAM,cAAc,MAAM,IAAI,EAAE,KAAK,CAAC;AACtC,sBAAY,CAAC,IAAI;AACjB,iBAAO;AAAA,QACR;AAEA,cAAM,OAAQ,MAAM,SAAS,KAAK;AAIlC,YAAI,CAAC,MAAM,OAAO,CAAC,GAAG,WAAW;AAChC,iBAAO,MAAM,gCAAgC;AAC7C,gBAAM,cAAc,MAAM,IAAI,EAAE,KAAK,CAAC;AACtC,sBAAY,CAAC,IAAI;AACjB,iBAAO;AAAA,QACR;AAEA,cAAM,YAAY,KAAK,KAAK,CAAC,EAAE;AAC/B,eAAO,IAAI,mCAAmC,UAAU,MAAM,EAAE;AAChE,eAAO;AAAA,MACR,SAAS,OAAO;AACf,eAAO,MAAM,+BAA+B,KAAK;AACjD,cAAM,cAAc,MAAM,IAAI,EAAE,KAAK,CAAC;AACtC,oBAAY,CAAC,IAAI;AACjB,eAAO;AAAA,MACR;AAAA,IACD;AAAA,IACA,CAAC,WAAW,qBAAqB,GAAG,OACnC,UACA,EAAE,QAAQ,YAAY,WAAW,WAAW,MACxC;AACJ,aAAO,MAAM,aAAa,aAAa,WAAW,YAAY,MAAM;AAAA,IACrE;AAAA,IACA,CAAC,WAAW,qBAAqB,GAAG,OACnC,UACA,EAAE,QAAQ,YAAY,WAAW,WAAW,MACxC;AACJ,aAAO,MAAM,eAAe,aAAa,WAAW,YAAY,MAAM;AAAA,IACvE;AAAA,IACA,CAAC,WAAW,UAAU,GAAG,OACxB,SACA,EAAE,QAAQ,gBAAgB,CAAC,EAAE,MACzB;AACJ,YAAM,cAAc;AACpB,YAAM,oBAAoB;AAC1B,YAAM,mBAAmB;AACzB,YAAM,sBAAsB;AAE5B,YAAM,UACL,QAAQ,WAAW,iBAAiB,KAAK;AAE1C,YAAM,SAAS,aAAa;AAAA,QAC3B,QAAQ,QAAQ,WAAW,gBAAgB;AAAA,QAC3C;AAAA,MACD,CAAC;AAED,YAAM,QACL,QAAQ,WAAW,oBAAoB,KACvC,QAAQ,WAAW,aAAa,KAChC;AAED,aAAO,IAAI,iBAAiB;AAC5B,aAAO,IAAI,MAAM;AAEjB,YAAM,EAAE,MAAM,eAAe,IAAI,MAAM,aAAa;AAAA,QACnD,OAAO,OAAO,cAAc,KAAK;AAAA,QACjC;AAAA,QACA,QAAQ,QAAQ,UAAU,UAAU;AAAA,QACpC;AAAA,QACA,WAAW;AAAA,QACX,kBAAkB;AAAA,QAClB,iBAAiB;AAAA,QACjB;AAAA,MACD,CAAC;AAED,aAAO;AAAA,IACR;AAAA,IACA,CAAC,WAAW,UAAU,GAAG,OACxB,SACA;AAAA,MACC;AAAA,MACA,gBAAgB,CAAC;AAAA,MACjB,YAAY;AAAA,MACZ,cAAc;AAAA,MACd,mBAAmB;AAAA,MACnB,kBAAkB;AAAA,IACnB,MACI;AACJ,YAAM,UACL,QAAQ,WAAW,iBAAiB,KAAK;AAE1C,YAAM,SAAS,aAAa;AAAA,QAC3B,QAAQ,QAAQ,WAAW,gBAAgB;AAAA,QAC3C;AAAA,MACD,CAAC;AAED,YAAM,QACL,QAAQ,WAAW,oBAAoB,KACvC,QAAQ,WAAW,aAAa,KAChC;AAED,YAAM,EAAE,MAAM,eAAe,IAAI,MAAM,aAAa;AAAA,QACnD,OAAO,OAAO,cAAc,KAAK;AAAA,QACjC;AAAA,QACA,QAAQ,QAAQ,UAAU,UAAU;AAAA,QACpC;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,MACD,CAAC;AAED,aAAO;AAAA,IACR;AAAA,IACA,CAAC,WAAW,KAAK,GAAG,OACnB,SACA,WAKI;AACJ,YAAM,UACL,QAAQ,WAAW,iBAAiB,KAAK;AAC1C,YAAM,WAAW,MAAM,MAAM,GAAG,OAAO,uBAAuB;AAAA,QAC7D,QAAQ;AAAA,QACR,SAAS;AAAA,UACR,eAAe,UAAU,QAAQ,WAAW,gBAAgB,CAAC;AAAA,UAC7D,gBAAgB;AAAA,QACjB;AAAA,QACA,MAAM,KAAK,UAAU;AAAA,UACpB,QAAQ,OAAO;AAAA,UACf,GAAG,OAAO,KAAK;AAAA,UACf,MAAM,OAAO,QAAQ;AAAA,QACtB,CAAC;AAAA,MACF,CAAC;AACD,UAAI,CAAC,SAAS,IAAI;AACjB,cAAM,IAAI,MAAM,6BAA6B,SAAS,UAAU,EAAE;AAAA,MACnE;AACA,YAAM,OAAO,MAAM,SAAS,KAAK;AACjC,YAAM,YAAY;AAClB,aAAO,UAAU;AAAA,IAClB;AAAA,IACA,CAAC,WAAW,iBAAiB,GAAG,OAC/B,SACA,WACI;AAEJ,UAAI;AACJ,UAAI;AAEJ,UAAI,OAAO,WAAW,UAAU;AAC/B,mBAAW;AACX,iBAAS;AAAA,MACV,OAAO;AAEN,mBAAW,OAAO;AAClB,iBAAS,OAAO;AAAA,MACjB;AAEA,UAAI;AACH,cAAM,UACL,QAAQ,IAAI,mBAAmB;AAChC,cAAM,SAAS,QAAQ,IAAI;AAE3B,YAAI,CAAC,QAAQ;AACZ,iBAAO,MAAM,wBAAwB;AACrC,iBAAO;AAAA,YACN,OAAO;AAAA,YACP,aAAa;AAAA,UACd;AAAA,QACD;AAGA,cAAM,WAAW,MAAM,MAAM,GAAG,OAAO,qBAAqB;AAAA,UAC3D,QAAQ;AAAA,UACR,SAAS;AAAA,YACR,gBAAgB;AAAA,YAChB,eAAe,UAAU,MAAM;AAAA,UAChC;AAAA,UACA,MAAM,KAAK,UAAU;AAAA,YACpB,OAAO;AAAA,YACP,UAAU;AAAA,cACT;AAAA,gBACC,MAAM;AAAA,gBACN,SAAS;AAAA,kBACR;AAAA,oBACC,MAAM;AAAA,oBACN,MACC,UACA;AAAA,kBACF;AAAA,kBACA;AAAA,oBACC,MAAM;AAAA,oBACN,WAAW,EAAE,KAAK,SAAS;AAAA,kBAC5B;AAAA,gBACD;AAAA,cACD;AAAA,YACD;AAAA,YACA,YAAY;AAAA,UACb,CAAC;AAAA,QACF,CAAC;AAED,YAAI,CAAC,SAAS,IAAI;AACjB,gBAAM,IAAI,MAAM,qBAAqB,SAAS,MAAM,EAAE;AAAA,QACvD;AAEA,cAAM,SAAc,MAAM,SAAS,KAAK;AACxC,cAAM,UAAU,OAAO,UAAU,CAAC,GAAG,SAAS;AAE9C,YAAI,CAAC,SAAS;AACb,iBAAO;AAAA,YACN,OAAO;AAAA,YACP,aAAa;AAAA,UACd;AAAA,QACD;AAGA,cAAM,aAAa,QAAQ,MAAM,2BAA2B;AAC5D,cAAM,QAAQ,aAAa,CAAC,KAAK;AAGjC,cAAM,cAAc,QAClB,QAAQ,6BAA6B,EAAE,EACvC,KAAK;AAEP,eAAO,EAAE,OAAO,YAAY;AAAA,MAC7B,SAAS,OAAO;AACf,eAAO,MAAM,0BAA0B,KAAK;AAC5C,eAAO;AAAA,UACN,OAAO;AAAA,UACP,aAAa,UAAU,iBAAiB,QAAQ,MAAM,UAAU,OAAO,KAAK,CAAC;AAAA,QAC9E;AAAA,MACD;AAAA,IACD;AAAA,IACA,CAAC,WAAW,aAAa,GAAG,OAAO,SAAS,gBAAwB;AACnE,aAAO,IAAI,eAAe,WAAW;AACrC,YAAM,UACL,QAAQ,WAAW,iBAAiB,KAAK;AAC1C,YAAM,WAAW,IAAI,SAAS;AAC9B,eAAS,OAAO,QAAQ,IAAI,KAAK,CAAC,WAAW,GAAG,EAAE,MAAM,YAAY,CAAC,CAAC;AACtE,eAAS,OAAO,SAAS,WAAW;AACpC,YAAM,WAAW,MAAM,MAAM,GAAG,OAAO,yBAAyB;AAAA,QAC/D,QAAQ;AAAA,QACR,SAAS;AAAA,UACR,eAAe,UAAU,QAAQ,WAAW,gBAAgB,CAAC;AAAA;AAAA,QAE9D;AAAA,QACA,MAAM;AAAA,MACP,CAAC;AAED,aAAO,IAAI,YAAY,QAAQ;AAC/B,UAAI,CAAC,SAAS,IAAI;AACjB,cAAM,IAAI,MAAM,+BAA+B,SAAS,UAAU,EAAE;AAAA,MACrE;AACA,YAAM,OAAQ,MAAM,SAAS,KAAK;AAClC,aAAO,KAAK;AAAA,IACb;AAAA,IACA,CAAC,WAAW,YAAY,GAAG,OAAO,SAAS,WAAW;AACrD,aAAO,MAAM,eAAe,SAAS;AAAA,QACpC,GAAG;AAAA,QACH,WAAW,WAAW;AAAA,MACvB,CAAC;AAAA,IACF;AAAA,IACA,CAAC,WAAW,YAAY,GAAG,OAAO,SAAS,WAAW;AACrD,aAAO,MAAM,eAAe,SAAS;AAAA,QACpC,GAAG;AAAA,QACH,WAAW,WAAW;AAAA,MACvB,CAAC;AAAA,IACF;AAAA,EACD;AAAA,EACA,OAAO;AAAA,IACN;AAAA,MACC,MAAM;AAAA,MACN,OAAO;AAAA,QACN;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,kBAAM,UACL,QAAQ,WAAW,iBAAiB,KACpC;AACD,kBAAM,WAAW,MAAM,MAAM,GAAG,OAAO,WAAW;AAAA,cACjD,SAAS;AAAA,gBACR,eAAe,UAAU,QAAQ,WAAW,gBAAgB,CAAC;AAAA,cAC9D;AAAA,YACD,CAAC;AACD,kBAAM,OAAO,MAAM,SAAS,KAAK;AACjC,mBAAO,IAAI,qBAAsB,MAAc,KAAK,MAAM;AAC1D,gBAAI,CAAC,SAAS,IAAI;AACjB,oBAAM,IAAI;AAAA,gBACT,sCAAsC,SAAS,UAAU;AAAA,cAC1D;AAAA,YACD;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,gBAAI;AACH,oBAAM,YAAY,MAAM,QAAQ;AAAA,gBAC/B,WAAW;AAAA,gBACX;AAAA,kBACC,MAAM;AAAA,gBACP;AAAA,cACD;AACA,qBAAO,IAAI,aAAa,SAAS;AAAA,YAClC,SAAS,OAAO;AACf,qBAAO,MAAM,iCAAiC,KAAK;AACnD,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,gBAAI;AACH,oBAAM,OAAO,MAAM,QAAQ,SAAS,WAAW,YAAY;AAAA,gBAC1D,QAAQ;AAAA,cACT,CAAC;AACD,kBAAI,KAAK,WAAW,GAAG;AACtB,sBAAM,IAAI,MAAM,yBAAyB;AAAA,cAC1C;AACA,qBAAO,IAAI,mCAAmC,IAAI;AAAA,YACnD,SAAS,OAAO;AACf,qBAAO,MAAM,6BAA6B,KAAK;AAC/C,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,gBAAI;AACH,oBAAM,OAAO,MAAM,QAAQ,SAAS,WAAW,YAAY;AAAA,gBAC1D,QAAQ;AAAA,cACT,CAAC;AACD,kBAAI,KAAK,WAAW,GAAG;AACtB,sBAAM,IAAI,MAAM,yBAAyB;AAAA,cAC1C;AACA,qBAAO,IAAI,mCAAmC,IAAI;AAAA,YACnD,SAAS,OAAO;AACf,qBAAO,MAAM,6BAA6B,KAAK;AAC/C,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,mBAAO,IAAI,8BAA8B;AACzC,gBAAI;AACH,oBAAM,QAAQ,MAAM,QAAQ,SAAS,WAAW,OAAO;AAAA,gBACtD,QAAQ;AAAA,gBACR,GAAG;AAAA,gBACH,MAAM;AAAA,cACP,CAAC;AACD,qBAAO,IAAI,yCAAyC,KAAK;AAAA,YAC1D,SAAS,OAAO;AACf,qBAAO,MAAM,mCAAmC,KAAK;AACrD,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,gBAAI;AACH,qBAAO,IAAI,+BAA+B;AAC1C,kBAAI;AACH,sBAAM,SAAS,MAAM,QAAQ;AAAA,kBAC5B,WAAW;AAAA,kBACX;AAAA,gBACD;AAGA,oBACC,UACA,OAAO,WAAW,YAClB,WAAW,UACX,iBAAiB,QAChB;AACD,yBAAO,IAAI,sBAAsB,MAAM;AAAA,gBACxC,OAAO;AACN,yBAAO;AAAA,oBACN;AAAA,oBACA;AAAA,kBACD;AAAA,gBACD;AAAA,cACD,SAAS,GAAG;AACX,uBAAO,MAAM,oCAAoC,CAAC;AAAA,cACnD;AAAA,YACD,SAAS,GAAG;AACX,qBAAO,MAAM,2CAA2C,CAAC;AAAA,YAC1D;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,mBAAO,IAAI,2BAA2B;AACtC,gBAAI;AACH,oBAAM,WAAW,MAAM;AAAA,gBACtB;AAAA,cACD;AACA,oBAAM,cAAc,MAAM,SAAS,YAAY;AAC/C,oBAAM,gBAAgB,MAAM,QAAQ;AAAA,gBACnC,WAAW;AAAA,gBACX,OAAO,KAAK,IAAI,WAAW,WAAW,CAAC;AAAA,cACxC;AACA,qBAAO,IAAI,sCAAsC,aAAa;AAAA,YAC/D,SAAS,OAAO;AACf,qBAAO,MAAM,gCAAgC,KAAK;AAClD,oBAAM;AAAA,YACP;AAAA,UACD;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,kBAAM,SAAS;AACf,kBAAM,SAAS,MAAM,QAAQ;AAAA,cAC5B,WAAW;AAAA,cACX,EAAE,OAAO;AAAA,YACV;AACA,gBAAI,CAAC,MAAM,QAAQ,MAAM,KAAK,OAAO,WAAW,GAAG;AAClD,oBAAM,IAAI;AAAA,gBACT;AAAA,cACD;AAAA,YACD;AACA,mBAAO,IAAI,qBAAqB,MAAM;AAAA,UACvC;AAAA,QACD;AAAA,QACA;AAAA,UACC,MAAM;AAAA,UACN,IAAI,OAAO,YAAY;AACtB,kBAAM,SAAS;AAEf,kBAAM,SAAS,MAAM,QAAQ;AAAA,cAC5B,WAAW;AAAA,cACX,EAAE,OAAO;AAAA,YACV;AAEA,kBAAM,cAAc,MAAM,QAAQ;AAAA,cACjC,WAAW;AAAA,cACX,EAAE,OAAO;AAAA,YACV;AACA,gBAAI,gBAAgB,QAAQ;AAC3B,oBAAM,IAAI;AAAA,gBACT,mDAAmD,MAAM,WAAW,WAAW;AAAA,cAChF;AAAA,YACD;AACA,mBAAO,IAAI,iBAAiB,WAAW;AAAA,UACxC;AAAA,QACD;AAAA,MACD;AAAA,IACD;AAAA,EACD;AACD;AACA,IAAO,gBAAQ;AASf,eAAe,eACd,SACA,QACC;AACD,QAAM;AAAA,IACL;AAAA,IACA;AAAA,IACA,SAAS;AAAA,IACT,aAAa,CAAC;AAAA,IACd,YAAY,WAAW;AAAA,IACvB,cAAc;AAAA,EACf,IAAI;AAGJ,QAAM,YACL,cAAc,WAAW,eACrB,QAAQ,IAAI,sBACd,QAAQ,IAAI,eACZ,gBACE,QAAQ,IAAI,sBAAsB,QAAQ,IAAI,eAAe;AAElE,QAAM,UAAU,QAAQ,IAAI,mBAAmB;AAG/C,MAAI,WAAW,UAAU,WAAW,QAAQ;AAC3C,QAAI;AACH,YAAM,WAAW,MAAM,MAAM,GAAG,OAAO,qBAAqB;AAAA,QAC3D,QAAQ;AAAA,QACR,SAAS;AAAA,UACR,gBAAgB;AAAA,UAChB,eAAe,UAAU,QAAQ,IAAI,cAAc;AAAA,QACpD;AAAA,QACA,MAAM,KAAK,UAAU;AAAA,UACpB,OAAO;AAAA,UACP,UAAU,CAAC,EAAE,MAAM,QAAQ,SAAS,OAAO,CAAC;AAAA,UAC5C;AAAA,UACA,OAAO;AAAA,YACN;AAAA,cACC,MAAM;AAAA,cACN,UAAU;AAAA,gBACT,MAAM;AAAA,gBACN,aACC;AAAA,gBACD,YAAY;AAAA,kBACX,MAAM;AAAA,kBACN,YAAY;AAAA,oBACX,OAAO;AAAA,sBACN,MAAM;AAAA,sBACN,MAAM;AAAA,sBACN,aAAa;AAAA,oBACd;AAAA,kBACD;AAAA,kBACA,UAAU,CAAC,OAAO;AAAA,gBACnB;AAAA,cACD;AAAA,YACD;AAAA,UACD;AAAA,UACA,aAAa,EAAE,MAAM,YAAY,UAAU,EAAE,MAAM,eAAe,EAAE;AAAA,QACrE,CAAC;AAAA,MACF,CAAC;AAED,UAAI,CAAC,SAAS,IAAI;AACjB,cAAM,IAAI,MAAM,cAAc,SAAS,MAAM,EAAE;AAAA,MAChD;AAEA,YAAM,SAAc,MAAM,SAAS,KAAK;AACxC,YAAM,YAAY,OAAO,UAAU,CAAC,GAAG,SAAS;AAEhD,UAAI,aAAa,UAAU,SAAS,GAAG;AACtC,YAAI;AACH,gBAAM,eAAe,KAAK,MAAM,UAAU,CAAC,EAAE,SAAS,SAAS;AAC/D,iBAAO,aAAa;AAAA,QACrB,SAAS,KAAK;AACb,iBAAO,MAAM,uCAAuC,GAAG;AACvD,iBAAO;AAAA,QACR;AAAA,MACD;AAEA,aAAO;AAAA,IACR,SAAS,OAAO;AACf,aAAO,MAAM,gCAAgC,KAAK;AAClD,aAAO;AAAA,IACR;AAAA,EACD;AAGA,MAAI;AAEH,QAAI;AAEJ,QAAI,QAAQ;AAEX,uBAAiB;AAAA,IAClB,OAAO;AAEN,uBAAiB;AAAA,QAChB,MAAM,WAAW,UAAU,UAAU;AAAA,QACrC,GAAI,WAAW,UAAU,EAAE,OAAO,EAAE,MAAM,SAAS,EAAE,IAAI,CAAC;AAAA,MAC3D;AAAA,IACD;AAGA,UAAM,WAAW,MAAM,MAAM,GAAG,OAAO,qBAAqB;AAAA,MAC3D,QAAQ;AAAA,MACR,SAAS;AAAA,QACR,gBAAgB;AAAA,QAChB,eAAe,UAAU,QAAQ,IAAI,cAAc;AAAA,MACpD;AAAA,MACA,MAAM,KAAK,UAAU;AAAA,QACpB,OAAO;AAAA,QACP,UAAU,CAAC,EAAE,MAAM,QAAQ,SAAS,OAAO,CAAC;AAAA,QAC5C;AAAA,QACA,OAAO;AAAA,UACN;AAAA,YACC,MAAM;AAAA,YACN,UAAU;AAAA,cACT,MAAM;AAAA,cACN,aAAa;AAAA,cACb,YAAY;AAAA,YACb;AAAA,UACD;AAAA,QACD;AAAA,QACA,aAAa;AAAA,UACZ,MAAM;AAAA,UACN,UAAU,EAAE,MAAM,2BAA2B;AAAA,QAC9C;AAAA,MACD,CAAC;AAAA,IACF,CAAC;AAED,QAAI,CAAC,SAAS,IAAI;AACjB,YAAM,IAAI,MAAM,cAAc,SAAS,MAAM,EAAE;AAAA,IAChD;AAEA,UAAM,SAAc,MAAM,SAAS,KAAK;AACxC,UAAM,YAAY,OAAO,UAAU,CAAC,GAAG,SAAS;AAEhD,QAAI,aAAa,UAAU,SAAS,GAAG;AACtC,UAAI;AACH,eAAO,KAAK,MAAM,UAAU,CAAC,EAAE,SAAS,SAAS;AAAA,MAClD,SAAS,KAAK;AACb,eAAO,MAAM,uCAAuC,GAAG;AACvD,eAAO;AAAA,MACR;AAAA,IACD;AAEA,WAAO;AAAA,EACR,SAAS,OAAO;AACf,WAAO,MAAM,4BAA4B,KAAK;AAC9C,WAAO;AAAA,EACR;AACD;","names":[]}
package/package.json CHANGED
@@ -1,10 +1,14 @@
1
1
  {
2
2
  "name": "@elizaos/plugin-openai",
3
- "version": "1.0.0-alpha.5",
3
+ "version": "1.0.0-alpha.51",
4
4
  "type": "module",
5
5
  "main": "dist/index.js",
6
6
  "module": "dist/index.js",
7
7
  "types": "dist/index.d.ts",
8
+ "repository": {
9
+ "type": "git",
10
+ "url": "https://github.com/elizaos-plugins/plugin-openai"
11
+ },
8
12
  "exports": {
9
13
  "./package.json": "./package.json",
10
14
  ".": {
@@ -20,26 +24,20 @@
20
24
  "dependencies": {
21
25
  "@ai-sdk/openai": "^1.1.9",
22
26
  "@ai-sdk/ui-utils": "1.1.9",
23
- "@elizaos/core": "1.0.0-alpha.5",
27
+ "@elizaos/core": "^1.0.0-alpha.51",
24
28
  "ai": "^4.1.25",
25
29
  "js-tiktoken": "^1.0.18",
26
- "tsup": "8.4.0",
27
- "zod": "3.21.4"
30
+ "tsup": "8.4.0"
28
31
  },
29
32
  "scripts": {
30
- "build": "tsup --format esm --dts",
31
- "dev": "tsup --format esm --dts --watch",
32
- "test": "vitest run"
33
- },
34
- "peerDependencies": {
35
- "whatwg-url": "7.1.0"
33
+ "build": "tsup",
34
+ "dev": "tsup --watch",
35
+ "lint": "biome check ./src --config-path=./ --apply-unsafe && biome format ./ --config-path=./ --write",
36
+ "clean": "rm -rf dist .turbo node_modules .turbo-tsconfig.json tsconfig.tsbuildinfo"
36
37
  },
37
38
  "publishConfig": {
38
39
  "access": "public"
39
40
  },
40
- "resolutions": {
41
- "zod": "3.24.1"
42
- },
43
41
  "agentConfig": {
44
42
  "pluginType": "elizaos:plugin:1.0.0",
45
43
  "pluginParameters": {
@@ -49,5 +47,5 @@
49
47
  }
50
48
  }
51
49
  },
52
- "gitHead": "76ce7bf0d22913003f5606489229baf37e1f7802"
50
+ "gitHead": "9e19a944455d97dc37cd32c4e2157542b4d3a8c4"
53
51
  }
package/dist/index.d.ts DELETED
@@ -1,5 +0,0 @@
1
- import { Plugin } from '@elizaos/core';
2
-
3
- declare const openaiPlugin: Plugin;
4
-
5
- export { openaiPlugin as default, openaiPlugin };