@elaraai/east-py-datascience 0.0.2-beta.1 → 0.0.2-beta.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE.md +56 -12
- package/README.md +42 -4
- package/dist/index.d.ts +1 -1
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +3 -1
- package/dist/index.js.map +1 -1
- package/dist/scipy/scipy.d.ts +213 -1
- package/dist/scipy/scipy.d.ts.map +1 -1
- package/dist/scipy/scipy.js +78 -1
- package/dist/scipy/scipy.js.map +1 -1
- package/dist/sklearn/sklearn.d.ts +1555 -136
- package/dist/sklearn/sklearn.d.ts.map +1 -1
- package/dist/sklearn/sklearn.js +274 -57
- package/dist/sklearn/sklearn.js.map +1 -1
- package/dist/torch/torch.d.ts +194 -2
- package/dist/torch/torch.d.ts.map +1 -1
- package/dist/torch/torch.js +30 -2
- package/dist/torch/torch.js.map +1 -1
- package/dist/tsconfig.tsbuildinfo +1 -1
- package/package.json +3 -3
|
@@ -10,7 +10,7 @@
|
|
|
10
10
|
*
|
|
11
11
|
* @packageDocumentation
|
|
12
12
|
*/
|
|
13
|
-
import { StructType, VariantType, OptionType, IntegerType, BooleanType, FloatType, BlobType, ArrayType, StringType } from "@elaraai/east";
|
|
13
|
+
import { StructType, VariantType, OptionType, IntegerType, BooleanType, FloatType, BlobType, ArrayType, StringType, NullType } from "@elaraai/east";
|
|
14
14
|
export { VectorType, MatrixType, LabelVectorType } from "../types.js";
|
|
15
15
|
export { XGBoostConfigType } from "../xgboost/xgboost.js";
|
|
16
16
|
export { LightGBMConfigType } from "../lightgbm/lightgbm.js";
|
|
@@ -27,6 +27,19 @@ export declare const SplitConfigType: StructType<{
|
|
|
27
27
|
/** Whether to shuffle data before splitting (default true) */
|
|
28
28
|
shuffle: OptionType<BooleanType>;
|
|
29
29
|
}>;
|
|
30
|
+
/**
|
|
31
|
+
* Configuration for 3-way train/val/test split.
|
|
32
|
+
*/
|
|
33
|
+
export declare const ThreeWaySplitConfigType: StructType<{
|
|
34
|
+
/** Proportion of data for validation (default 0.15) */
|
|
35
|
+
val_size: OptionType<FloatType>;
|
|
36
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
37
|
+
test_size: OptionType<FloatType>;
|
|
38
|
+
/** Random seed for reproducibility */
|
|
39
|
+
random_state: OptionType<IntegerType>;
|
|
40
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
41
|
+
shuffle: OptionType<BooleanType>;
|
|
42
|
+
}>;
|
|
30
43
|
/**
|
|
31
44
|
* Result of train/test split.
|
|
32
45
|
*/
|
|
@@ -41,33 +54,365 @@ export declare const SplitResultType: StructType<{
|
|
|
41
54
|
y_test: ArrayType<FloatType>;
|
|
42
55
|
}>;
|
|
43
56
|
/**
|
|
44
|
-
*
|
|
57
|
+
* Result of 3-way train/val/test split.
|
|
58
|
+
*/
|
|
59
|
+
export declare const ThreeWaySplitResultType: StructType<{
|
|
60
|
+
/** Training features */
|
|
61
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
62
|
+
/** Validation features */
|
|
63
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
64
|
+
/** Test/holdout features */
|
|
65
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
66
|
+
/** Training targets (matrix) */
|
|
67
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
68
|
+
/** Validation targets (matrix) */
|
|
69
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
70
|
+
/** Test/holdout targets (matrix) */
|
|
71
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
72
|
+
}>;
|
|
73
|
+
/**
|
|
74
|
+
* Available regression metrics from sklearn.metrics.
|
|
75
|
+
*/
|
|
76
|
+
export declare const RegressionMetricType: VariantType<{
|
|
77
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
78
|
+
mse: NullType;
|
|
79
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
80
|
+
rmse: NullType;
|
|
81
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
82
|
+
mae: NullType;
|
|
83
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
84
|
+
r2: NullType;
|
|
85
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
86
|
+
mape: NullType;
|
|
87
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
88
|
+
explained_variance: NullType;
|
|
89
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
90
|
+
max_error: NullType;
|
|
91
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
92
|
+
median_ae: NullType;
|
|
93
|
+
}>;
|
|
94
|
+
/**
|
|
95
|
+
* Single metric result (scalar value).
|
|
96
|
+
*/
|
|
97
|
+
export declare const MetricResultType: StructType<{
|
|
98
|
+
/** Which metric was computed */
|
|
99
|
+
metric: VariantType<{
|
|
100
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
101
|
+
mse: NullType;
|
|
102
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
103
|
+
rmse: NullType;
|
|
104
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
105
|
+
mae: NullType;
|
|
106
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
107
|
+
r2: NullType;
|
|
108
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
109
|
+
mape: NullType;
|
|
110
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
111
|
+
explained_variance: NullType;
|
|
112
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
113
|
+
max_error: NullType;
|
|
114
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
115
|
+
median_ae: NullType;
|
|
116
|
+
}>;
|
|
117
|
+
/** Scalar metric value */
|
|
118
|
+
value: FloatType;
|
|
119
|
+
}>;
|
|
120
|
+
/**
|
|
121
|
+
* Result containing multiple computed metrics.
|
|
122
|
+
*/
|
|
123
|
+
export declare const MetricsResultType: ArrayType<StructType<{
|
|
124
|
+
/** Which metric was computed */
|
|
125
|
+
metric: VariantType<{
|
|
126
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
127
|
+
mse: NullType;
|
|
128
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
129
|
+
rmse: NullType;
|
|
130
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
131
|
+
mae: NullType;
|
|
132
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
133
|
+
r2: NullType;
|
|
134
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
135
|
+
mape: NullType;
|
|
136
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
137
|
+
explained_variance: NullType;
|
|
138
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
139
|
+
max_error: NullType;
|
|
140
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
141
|
+
median_ae: NullType;
|
|
142
|
+
}>;
|
|
143
|
+
/** Scalar metric value */
|
|
144
|
+
value: FloatType;
|
|
145
|
+
}>>;
|
|
146
|
+
/**
|
|
147
|
+
* Aggregation strategy for multi-target metrics.
|
|
148
|
+
*/
|
|
149
|
+
export declare const MetricAggregationType: VariantType<{
|
|
150
|
+
/** Return metric for each target separately (default) */
|
|
151
|
+
per_target: NullType;
|
|
152
|
+
/** Average across all targets (uniform weights) */
|
|
153
|
+
uniform_average: NullType;
|
|
154
|
+
}>;
|
|
155
|
+
/**
|
|
156
|
+
* Configuration for multi-target metrics computation.
|
|
157
|
+
*/
|
|
158
|
+
export declare const MultiMetricsConfigType: StructType<{
|
|
159
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
160
|
+
aggregation: OptionType<VariantType<{
|
|
161
|
+
/** Return metric for each target separately (default) */
|
|
162
|
+
per_target: NullType;
|
|
163
|
+
/** Average across all targets (uniform weights) */
|
|
164
|
+
uniform_average: NullType;
|
|
165
|
+
}>>;
|
|
166
|
+
}>;
|
|
167
|
+
/**
|
|
168
|
+
* Multi-target metric result.
|
|
169
|
+
*/
|
|
170
|
+
export declare const MultiMetricResultType: StructType<{
|
|
171
|
+
/** Which metric was computed */
|
|
172
|
+
metric: VariantType<{
|
|
173
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
174
|
+
mse: NullType;
|
|
175
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
176
|
+
rmse: NullType;
|
|
177
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
178
|
+
mae: NullType;
|
|
179
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
180
|
+
r2: NullType;
|
|
181
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
182
|
+
mape: NullType;
|
|
183
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
184
|
+
explained_variance: NullType;
|
|
185
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
186
|
+
max_error: NullType;
|
|
187
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
188
|
+
median_ae: NullType;
|
|
189
|
+
}>;
|
|
190
|
+
/** Metric value(s) */
|
|
191
|
+
value: VariantType<{
|
|
192
|
+
/** Aggregated scalar value */
|
|
193
|
+
scalar: FloatType;
|
|
194
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
195
|
+
per_target: ArrayType<FloatType>;
|
|
196
|
+
}>;
|
|
197
|
+
}>;
|
|
198
|
+
/**
|
|
199
|
+
* Result containing multiple computed metrics (multi-target).
|
|
200
|
+
*/
|
|
201
|
+
export declare const MultiMetricsResultType: ArrayType<StructType<{
|
|
202
|
+
/** Which metric was computed */
|
|
203
|
+
metric: VariantType<{
|
|
204
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
205
|
+
mse: NullType;
|
|
206
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
207
|
+
rmse: NullType;
|
|
208
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
209
|
+
mae: NullType;
|
|
210
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
211
|
+
r2: NullType;
|
|
212
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
213
|
+
mape: NullType;
|
|
214
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
215
|
+
explained_variance: NullType;
|
|
216
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
217
|
+
max_error: NullType;
|
|
218
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
219
|
+
median_ae: NullType;
|
|
220
|
+
}>;
|
|
221
|
+
/** Metric value(s) */
|
|
222
|
+
value: VariantType<{
|
|
223
|
+
/** Aggregated scalar value */
|
|
224
|
+
scalar: FloatType;
|
|
225
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
226
|
+
per_target: ArrayType<FloatType>;
|
|
227
|
+
}>;
|
|
228
|
+
}>>;
|
|
229
|
+
/**
|
|
230
|
+
* Available classification metrics from sklearn.metrics.
|
|
231
|
+
*/
|
|
232
|
+
export declare const ClassificationMetricType: VariantType<{
|
|
233
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
234
|
+
accuracy: NullType;
|
|
235
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
236
|
+
balanced_accuracy: NullType;
|
|
237
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
238
|
+
precision: NullType;
|
|
239
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
240
|
+
recall: NullType;
|
|
241
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
242
|
+
f1: NullType;
|
|
243
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
244
|
+
matthews_corrcoef: NullType;
|
|
245
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
246
|
+
cohen_kappa: NullType;
|
|
247
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
248
|
+
jaccard: NullType;
|
|
249
|
+
}>;
|
|
250
|
+
/**
|
|
251
|
+
* Averaging strategy for multi-class classification metrics.
|
|
252
|
+
*/
|
|
253
|
+
export declare const ClassificationAverageType: VariantType<{
|
|
254
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
255
|
+
macro: NullType;
|
|
256
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
257
|
+
micro: NullType;
|
|
258
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
259
|
+
weighted: NullType;
|
|
260
|
+
/** Only for binary classification */
|
|
261
|
+
binary: NullType;
|
|
262
|
+
}>;
|
|
263
|
+
/**
|
|
264
|
+
* Configuration for classification metrics.
|
|
265
|
+
*/
|
|
266
|
+
export declare const ClassificationMetricsConfigType: StructType<{
|
|
267
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
268
|
+
average: OptionType<VariantType<{
|
|
269
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
270
|
+
macro: NullType;
|
|
271
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
272
|
+
micro: NullType;
|
|
273
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
274
|
+
weighted: NullType;
|
|
275
|
+
/** Only for binary classification */
|
|
276
|
+
binary: NullType;
|
|
277
|
+
}>>;
|
|
278
|
+
}>;
|
|
279
|
+
/**
|
|
280
|
+
* Single classification metric result.
|
|
281
|
+
*/
|
|
282
|
+
export declare const ClassificationMetricResultType: StructType<{
|
|
283
|
+
/** Which metric was computed */
|
|
284
|
+
metric: VariantType<{
|
|
285
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
286
|
+
accuracy: NullType;
|
|
287
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
288
|
+
balanced_accuracy: NullType;
|
|
289
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
290
|
+
precision: NullType;
|
|
291
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
292
|
+
recall: NullType;
|
|
293
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
294
|
+
f1: NullType;
|
|
295
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
296
|
+
matthews_corrcoef: NullType;
|
|
297
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
298
|
+
cohen_kappa: NullType;
|
|
299
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
300
|
+
jaccard: NullType;
|
|
301
|
+
}>;
|
|
302
|
+
/** Scalar metric value */
|
|
303
|
+
value: FloatType;
|
|
304
|
+
}>;
|
|
305
|
+
/**
|
|
306
|
+
* Result containing multiple computed classification metrics.
|
|
45
307
|
*/
|
|
46
|
-
export declare const
|
|
47
|
-
/**
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
308
|
+
export declare const ClassificationMetricResultsType: ArrayType<StructType<{
|
|
309
|
+
/** Which metric was computed */
|
|
310
|
+
metric: VariantType<{
|
|
311
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
312
|
+
accuracy: NullType;
|
|
313
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
314
|
+
balanced_accuracy: NullType;
|
|
315
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
316
|
+
precision: NullType;
|
|
317
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
318
|
+
recall: NullType;
|
|
319
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
320
|
+
f1: NullType;
|
|
321
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
322
|
+
matthews_corrcoef: NullType;
|
|
323
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
324
|
+
cohen_kappa: NullType;
|
|
325
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
326
|
+
jaccard: NullType;
|
|
327
|
+
}>;
|
|
328
|
+
/** Scalar metric value */
|
|
329
|
+
value: FloatType;
|
|
330
|
+
}>>;
|
|
331
|
+
/**
|
|
332
|
+
* Configuration for multi-target classification metrics.
|
|
333
|
+
*/
|
|
334
|
+
export declare const MultiClassificationConfigType: StructType<{
|
|
335
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
336
|
+
average: OptionType<VariantType<{
|
|
337
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
338
|
+
macro: NullType;
|
|
339
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
340
|
+
micro: NullType;
|
|
341
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
342
|
+
weighted: NullType;
|
|
343
|
+
/** Only for binary classification */
|
|
344
|
+
binary: NullType;
|
|
345
|
+
}>>;
|
|
346
|
+
/** How to aggregate across targets (default: per_target) */
|
|
347
|
+
aggregation: OptionType<VariantType<{
|
|
348
|
+
/** Return metric for each target separately (default) */
|
|
349
|
+
per_target: NullType;
|
|
350
|
+
/** Average across all targets (uniform weights) */
|
|
351
|
+
uniform_average: NullType;
|
|
352
|
+
}>>;
|
|
57
353
|
}>;
|
|
58
354
|
/**
|
|
59
|
-
*
|
|
355
|
+
* Multi-target classification metric result.
|
|
60
356
|
*/
|
|
61
|
-
export declare const
|
|
62
|
-
/**
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
357
|
+
export declare const MultiClassificationMetricResultType: StructType<{
|
|
358
|
+
/** Which metric was computed */
|
|
359
|
+
metric: VariantType<{
|
|
360
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
361
|
+
accuracy: NullType;
|
|
362
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
363
|
+
balanced_accuracy: NullType;
|
|
364
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
365
|
+
precision: NullType;
|
|
366
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
367
|
+
recall: NullType;
|
|
368
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
369
|
+
f1: NullType;
|
|
370
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
371
|
+
matthews_corrcoef: NullType;
|
|
372
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
373
|
+
cohen_kappa: NullType;
|
|
374
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
375
|
+
jaccard: NullType;
|
|
376
|
+
}>;
|
|
377
|
+
/** Metric value(s) */
|
|
378
|
+
value: VariantType<{
|
|
379
|
+
/** Aggregated scalar value */
|
|
380
|
+
scalar: FloatType;
|
|
381
|
+
/** Per-target values */
|
|
382
|
+
per_target: ArrayType<FloatType>;
|
|
383
|
+
}>;
|
|
70
384
|
}>;
|
|
385
|
+
/**
|
|
386
|
+
* Result containing multiple computed classification metrics (multi-target).
|
|
387
|
+
*/
|
|
388
|
+
export declare const MultiClassificationMetricResultsType: ArrayType<StructType<{
|
|
389
|
+
/** Which metric was computed */
|
|
390
|
+
metric: VariantType<{
|
|
391
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
392
|
+
accuracy: NullType;
|
|
393
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
394
|
+
balanced_accuracy: NullType;
|
|
395
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
396
|
+
precision: NullType;
|
|
397
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
398
|
+
recall: NullType;
|
|
399
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
400
|
+
f1: NullType;
|
|
401
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
402
|
+
matthews_corrcoef: NullType;
|
|
403
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
404
|
+
cohen_kappa: NullType;
|
|
405
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
406
|
+
jaccard: NullType;
|
|
407
|
+
}>;
|
|
408
|
+
/** Metric value(s) */
|
|
409
|
+
value: VariantType<{
|
|
410
|
+
/** Aggregated scalar value */
|
|
411
|
+
scalar: FloatType;
|
|
412
|
+
/** Per-target values */
|
|
413
|
+
per_target: ArrayType<FloatType>;
|
|
414
|
+
}>;
|
|
415
|
+
}>>;
|
|
71
416
|
/**
|
|
72
417
|
* Model blob type for serialized sklearn models.
|
|
73
418
|
*
|
|
@@ -389,46 +734,6 @@ export declare const sklearn_min_max_scaler_transform: import("@elaraai/east").P
|
|
|
389
734
|
base_estimator_type: StringType;
|
|
390
735
|
}>;
|
|
391
736
|
}>, ArrayType<ArrayType<FloatType>>], ArrayType<ArrayType<FloatType>>>;
|
|
392
|
-
/**
|
|
393
|
-
* Compute regression metrics.
|
|
394
|
-
*
|
|
395
|
-
* @param y_true - True target values
|
|
396
|
-
* @param y_pred - Predicted target values
|
|
397
|
-
* @returns Regression metrics (MSE, RMSE, MAE, R2, MAPE)
|
|
398
|
-
*/
|
|
399
|
-
export declare const sklearn_metrics_regression: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>], StructType<{
|
|
400
|
-
/** Mean Squared Error */
|
|
401
|
-
mse: FloatType;
|
|
402
|
-
/** Root Mean Squared Error */
|
|
403
|
-
rmse: FloatType;
|
|
404
|
-
/** Mean Absolute Error */
|
|
405
|
-
mae: FloatType;
|
|
406
|
-
/** R-squared (coefficient of determination) */
|
|
407
|
-
r2: FloatType;
|
|
408
|
-
/** Mean Absolute Percentage Error */
|
|
409
|
-
mape: FloatType;
|
|
410
|
-
}>>;
|
|
411
|
-
/**
|
|
412
|
-
* Compute classification metrics.
|
|
413
|
-
*
|
|
414
|
-
* @param y_true - True class labels
|
|
415
|
-
* @param y_pred - Predicted class labels
|
|
416
|
-
* @returns Classification metrics (accuracy, precision, recall, F1)
|
|
417
|
-
*/
|
|
418
|
-
export declare const sklearn_metrics_classification: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>], StructType<{
|
|
419
|
-
/** Accuracy score */
|
|
420
|
-
accuracy: FloatType;
|
|
421
|
-
/** Precision (weighted average) */
|
|
422
|
-
precision: FloatType;
|
|
423
|
-
/** Recall (weighted average) */
|
|
424
|
-
recall: FloatType;
|
|
425
|
-
/** F1 score (weighted average) */
|
|
426
|
-
f1: FloatType;
|
|
427
|
-
}>>;
|
|
428
|
-
/**
|
|
429
|
-
* Multi-target output type for RegressorChain.
|
|
430
|
-
*/
|
|
431
|
-
export declare const MultiTargetType: ArrayType<ArrayType<FloatType>>;
|
|
432
737
|
/**
|
|
433
738
|
* Train a RegressorChain for multi-target regression.
|
|
434
739
|
*
|
|
@@ -563,6 +868,281 @@ export declare const sklearn_regressor_chain_predict: import("@elaraai/east").Pl
|
|
|
563
868
|
base_estimator_type: StringType;
|
|
564
869
|
}>;
|
|
565
870
|
}>, ArrayType<ArrayType<FloatType>>], ArrayType<ArrayType<FloatType>>>;
|
|
871
|
+
/**
|
|
872
|
+
* Split arrays into train, validation, and test subsets.
|
|
873
|
+
*
|
|
874
|
+
* @param X - Feature matrix
|
|
875
|
+
* @param Y - Target matrix (multi-target)
|
|
876
|
+
* @param config - Split configuration with val_size and test_size
|
|
877
|
+
* @returns Split result with X_train, X_val, X_test, Y_train, Y_val, Y_test
|
|
878
|
+
*/
|
|
879
|
+
export declare const sklearn_train_val_test_split: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, StructType<{
|
|
880
|
+
/** Proportion of data for validation (default 0.15) */
|
|
881
|
+
val_size: OptionType<FloatType>;
|
|
882
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
883
|
+
test_size: OptionType<FloatType>;
|
|
884
|
+
/** Random seed for reproducibility */
|
|
885
|
+
random_state: OptionType<IntegerType>;
|
|
886
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
887
|
+
shuffle: OptionType<BooleanType>;
|
|
888
|
+
}>], StructType<{
|
|
889
|
+
/** Training features */
|
|
890
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
891
|
+
/** Validation features */
|
|
892
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
893
|
+
/** Test/holdout features */
|
|
894
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
895
|
+
/** Training targets (matrix) */
|
|
896
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
897
|
+
/** Validation targets (matrix) */
|
|
898
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
899
|
+
/** Test/holdout targets (matrix) */
|
|
900
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
901
|
+
}>>;
|
|
902
|
+
/**
|
|
903
|
+
* Compute regression metrics for single-target predictions.
|
|
904
|
+
*
|
|
905
|
+
* @param y_true - True target values (1D vector)
|
|
906
|
+
* @param y_pred - Predicted target values (1D vector)
|
|
907
|
+
* @param metrics - Array of metrics to compute
|
|
908
|
+
* @returns Array of metric results with scalar values
|
|
909
|
+
*/
|
|
910
|
+
export declare const sklearn_compute_metrics: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>, ArrayType<VariantType<{
|
|
911
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
912
|
+
mse: NullType;
|
|
913
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
914
|
+
rmse: NullType;
|
|
915
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
916
|
+
mae: NullType;
|
|
917
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
918
|
+
r2: NullType;
|
|
919
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
920
|
+
mape: NullType;
|
|
921
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
922
|
+
explained_variance: NullType;
|
|
923
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
924
|
+
max_error: NullType;
|
|
925
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
926
|
+
median_ae: NullType;
|
|
927
|
+
}>>], ArrayType<StructType<{
|
|
928
|
+
/** Which metric was computed */
|
|
929
|
+
metric: VariantType<{
|
|
930
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
931
|
+
mse: NullType;
|
|
932
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
933
|
+
rmse: NullType;
|
|
934
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
935
|
+
mae: NullType;
|
|
936
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
937
|
+
r2: NullType;
|
|
938
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
939
|
+
mape: NullType;
|
|
940
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
941
|
+
explained_variance: NullType;
|
|
942
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
943
|
+
max_error: NullType;
|
|
944
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
945
|
+
median_ae: NullType;
|
|
946
|
+
}>;
|
|
947
|
+
/** Scalar metric value */
|
|
948
|
+
value: FloatType;
|
|
949
|
+
}>>>;
|
|
950
|
+
/**
|
|
951
|
+
* Compute regression metrics for multi-target predictions.
|
|
952
|
+
*
|
|
953
|
+
* @param Y_true - True target matrix [n_samples, n_targets]
|
|
954
|
+
* @param Y_pred - Predicted target matrix [n_samples, n_targets]
|
|
955
|
+
* @param metrics - Array of metrics to compute
|
|
956
|
+
* @param config - Aggregation configuration
|
|
957
|
+
* @returns Array of metric results with per-target or aggregated values
|
|
958
|
+
*/
|
|
959
|
+
export declare const sklearn_compute_metrics_multi: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
|
|
960
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
961
|
+
mse: NullType;
|
|
962
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
963
|
+
rmse: NullType;
|
|
964
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
965
|
+
mae: NullType;
|
|
966
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
967
|
+
r2: NullType;
|
|
968
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
969
|
+
mape: NullType;
|
|
970
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
971
|
+
explained_variance: NullType;
|
|
972
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
973
|
+
max_error: NullType;
|
|
974
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
975
|
+
median_ae: NullType;
|
|
976
|
+
}>>, StructType<{
|
|
977
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
978
|
+
aggregation: OptionType<VariantType<{
|
|
979
|
+
/** Return metric for each target separately (default) */
|
|
980
|
+
per_target: NullType;
|
|
981
|
+
/** Average across all targets (uniform weights) */
|
|
982
|
+
uniform_average: NullType;
|
|
983
|
+
}>>;
|
|
984
|
+
}>], ArrayType<StructType<{
|
|
985
|
+
/** Which metric was computed */
|
|
986
|
+
metric: VariantType<{
|
|
987
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
988
|
+
mse: NullType;
|
|
989
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
990
|
+
rmse: NullType;
|
|
991
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
992
|
+
mae: NullType;
|
|
993
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
994
|
+
r2: NullType;
|
|
995
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
996
|
+
mape: NullType;
|
|
997
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
998
|
+
explained_variance: NullType;
|
|
999
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1000
|
+
max_error: NullType;
|
|
1001
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1002
|
+
median_ae: NullType;
|
|
1003
|
+
}>;
|
|
1004
|
+
/** Metric value(s) */
|
|
1005
|
+
value: VariantType<{
|
|
1006
|
+
/** Aggregated scalar value */
|
|
1007
|
+
scalar: FloatType;
|
|
1008
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
1009
|
+
per_target: ArrayType<FloatType>;
|
|
1010
|
+
}>;
|
|
1011
|
+
}>>>;
|
|
1012
|
+
/**
|
|
1013
|
+
* Compute classification metrics for single-target predictions.
|
|
1014
|
+
*
|
|
1015
|
+
* @param y_true - True class labels (1D integer array)
|
|
1016
|
+
* @param y_pred - Predicted class labels (1D integer array)
|
|
1017
|
+
* @param metrics - Array of metrics to compute
|
|
1018
|
+
* @param config - Configuration (averaging strategy)
|
|
1019
|
+
* @returns Array of metric results with scalar values
|
|
1020
|
+
*/
|
|
1021
|
+
export declare const sklearn_compute_classification_metrics: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>, ArrayType<VariantType<{
|
|
1022
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1023
|
+
accuracy: NullType;
|
|
1024
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1025
|
+
balanced_accuracy: NullType;
|
|
1026
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1027
|
+
precision: NullType;
|
|
1028
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1029
|
+
recall: NullType;
|
|
1030
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1031
|
+
f1: NullType;
|
|
1032
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1033
|
+
matthews_corrcoef: NullType;
|
|
1034
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1035
|
+
cohen_kappa: NullType;
|
|
1036
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1037
|
+
jaccard: NullType;
|
|
1038
|
+
}>>, StructType<{
|
|
1039
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1040
|
+
average: OptionType<VariantType<{
|
|
1041
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1042
|
+
macro: NullType;
|
|
1043
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1044
|
+
micro: NullType;
|
|
1045
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1046
|
+
weighted: NullType;
|
|
1047
|
+
/** Only for binary classification */
|
|
1048
|
+
binary: NullType;
|
|
1049
|
+
}>>;
|
|
1050
|
+
}>], ArrayType<StructType<{
|
|
1051
|
+
/** Which metric was computed */
|
|
1052
|
+
metric: VariantType<{
|
|
1053
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1054
|
+
accuracy: NullType;
|
|
1055
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1056
|
+
balanced_accuracy: NullType;
|
|
1057
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1058
|
+
precision: NullType;
|
|
1059
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1060
|
+
recall: NullType;
|
|
1061
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1062
|
+
f1: NullType;
|
|
1063
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1064
|
+
matthews_corrcoef: NullType;
|
|
1065
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1066
|
+
cohen_kappa: NullType;
|
|
1067
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1068
|
+
jaccard: NullType;
|
|
1069
|
+
}>;
|
|
1070
|
+
/** Scalar metric value */
|
|
1071
|
+
value: FloatType;
|
|
1072
|
+
}>>>;
|
|
1073
|
+
/**
|
|
1074
|
+
* Compute classification metrics for multi-target predictions.
|
|
1075
|
+
*
|
|
1076
|
+
* @param Y_true - True class labels matrix [n_samples, n_targets]
|
|
1077
|
+
* @param Y_pred - Predicted class labels matrix [n_samples, n_targets]
|
|
1078
|
+
* @param metrics - Array of metrics to compute
|
|
1079
|
+
* @param config - Configuration (averaging, aggregation)
|
|
1080
|
+
* @returns Array of metric results with per-target or aggregated values
|
|
1081
|
+
*/
|
|
1082
|
+
export declare const sklearn_compute_classification_metrics_multi: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
|
|
1083
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1084
|
+
accuracy: NullType;
|
|
1085
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1086
|
+
balanced_accuracy: NullType;
|
|
1087
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1088
|
+
precision: NullType;
|
|
1089
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1090
|
+
recall: NullType;
|
|
1091
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1092
|
+
f1: NullType;
|
|
1093
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1094
|
+
matthews_corrcoef: NullType;
|
|
1095
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1096
|
+
cohen_kappa: NullType;
|
|
1097
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1098
|
+
jaccard: NullType;
|
|
1099
|
+
}>>, StructType<{
|
|
1100
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1101
|
+
average: OptionType<VariantType<{
|
|
1102
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1103
|
+
macro: NullType;
|
|
1104
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1105
|
+
micro: NullType;
|
|
1106
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1107
|
+
weighted: NullType;
|
|
1108
|
+
/** Only for binary classification */
|
|
1109
|
+
binary: NullType;
|
|
1110
|
+
}>>;
|
|
1111
|
+
/** How to aggregate across targets (default: per_target) */
|
|
1112
|
+
aggregation: OptionType<VariantType<{
|
|
1113
|
+
/** Return metric for each target separately (default) */
|
|
1114
|
+
per_target: NullType;
|
|
1115
|
+
/** Average across all targets (uniform weights) */
|
|
1116
|
+
uniform_average: NullType;
|
|
1117
|
+
}>>;
|
|
1118
|
+
}>], ArrayType<StructType<{
|
|
1119
|
+
/** Which metric was computed */
|
|
1120
|
+
metric: VariantType<{
|
|
1121
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1122
|
+
accuracy: NullType;
|
|
1123
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1124
|
+
balanced_accuracy: NullType;
|
|
1125
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1126
|
+
precision: NullType;
|
|
1127
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1128
|
+
recall: NullType;
|
|
1129
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1130
|
+
f1: NullType;
|
|
1131
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1132
|
+
matthews_corrcoef: NullType;
|
|
1133
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1134
|
+
cohen_kappa: NullType;
|
|
1135
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1136
|
+
jaccard: NullType;
|
|
1137
|
+
}>;
|
|
1138
|
+
/** Metric value(s) */
|
|
1139
|
+
value: VariantType<{
|
|
1140
|
+
/** Aggregated scalar value */
|
|
1141
|
+
scalar: FloatType;
|
|
1142
|
+
/** Per-target values */
|
|
1143
|
+
per_target: ArrayType<FloatType>;
|
|
1144
|
+
}>;
|
|
1145
|
+
}>>>;
|
|
566
1146
|
/**
|
|
567
1147
|
* Type definitions for sklearn functions.
|
|
568
1148
|
*/
|
|
@@ -593,29 +1173,31 @@ export declare const SklearnTypes: {
|
|
|
593
1173
|
/** Test labels */
|
|
594
1174
|
y_test: ArrayType<FloatType>;
|
|
595
1175
|
}>;
|
|
596
|
-
/**
|
|
597
|
-
readonly
|
|
598
|
-
/**
|
|
599
|
-
|
|
600
|
-
/**
|
|
601
|
-
|
|
602
|
-
/**
|
|
603
|
-
|
|
604
|
-
/**
|
|
605
|
-
|
|
606
|
-
/** Mean Absolute Percentage Error */
|
|
607
|
-
mape: FloatType;
|
|
1176
|
+
/** 3-way split configuration type */
|
|
1177
|
+
readonly ThreeWaySplitConfigType: StructType<{
|
|
1178
|
+
/** Proportion of data for validation (default 0.15) */
|
|
1179
|
+
val_size: OptionType<FloatType>;
|
|
1180
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
1181
|
+
test_size: OptionType<FloatType>;
|
|
1182
|
+
/** Random seed for reproducibility */
|
|
1183
|
+
random_state: OptionType<IntegerType>;
|
|
1184
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
1185
|
+
shuffle: OptionType<BooleanType>;
|
|
608
1186
|
}>;
|
|
609
|
-
/**
|
|
610
|
-
readonly
|
|
611
|
-
/**
|
|
612
|
-
|
|
613
|
-
/**
|
|
614
|
-
|
|
615
|
-
/**
|
|
616
|
-
|
|
617
|
-
/**
|
|
618
|
-
|
|
1187
|
+
/** 3-way split result type */
|
|
1188
|
+
readonly ThreeWaySplitResultType: StructType<{
|
|
1189
|
+
/** Training features */
|
|
1190
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
1191
|
+
/** Validation features */
|
|
1192
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
1193
|
+
/** Test/holdout features */
|
|
1194
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
1195
|
+
/** Training targets (matrix) */
|
|
1196
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
1197
|
+
/** Validation targets (matrix) */
|
|
1198
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
1199
|
+
/** Test/holdout targets (matrix) */
|
|
1200
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
619
1201
|
}>;
|
|
620
1202
|
/** Model blob type for sklearn models */
|
|
621
1203
|
readonly ModelBlobType: VariantType<{
|
|
@@ -645,8 +1227,6 @@ export declare const SklearnTypes: {
|
|
|
645
1227
|
base_estimator_type: StringType;
|
|
646
1228
|
}>;
|
|
647
1229
|
}>;
|
|
648
|
-
/** Multi-target output type */
|
|
649
|
-
readonly MultiTargetType: ArrayType<ArrayType<FloatType>>;
|
|
650
1230
|
/** RegressorChain base estimator config type */
|
|
651
1231
|
readonly RegressorChainBaseConfigType: VariantType<{
|
|
652
1232
|
/** XGBoost regressor */
|
|
@@ -768,6 +1348,319 @@ export declare const SklearnTypes: {
|
|
|
768
1348
|
/** Random seed for reproducibility */
|
|
769
1349
|
random_state: OptionType<IntegerType>;
|
|
770
1350
|
}>;
|
|
1351
|
+
/** Regression metric variant */
|
|
1352
|
+
readonly RegressionMetricType: VariantType<{
|
|
1353
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1354
|
+
mse: NullType;
|
|
1355
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1356
|
+
rmse: NullType;
|
|
1357
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1358
|
+
mae: NullType;
|
|
1359
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1360
|
+
r2: NullType;
|
|
1361
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1362
|
+
mape: NullType;
|
|
1363
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1364
|
+
explained_variance: NullType;
|
|
1365
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1366
|
+
max_error: NullType;
|
|
1367
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1368
|
+
median_ae: NullType;
|
|
1369
|
+
}>;
|
|
1370
|
+
/** Single metric result */
|
|
1371
|
+
readonly MetricResultType: StructType<{
|
|
1372
|
+
/** Which metric was computed */
|
|
1373
|
+
metric: VariantType<{
|
|
1374
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1375
|
+
mse: NullType;
|
|
1376
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1377
|
+
rmse: NullType;
|
|
1378
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1379
|
+
mae: NullType;
|
|
1380
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1381
|
+
r2: NullType;
|
|
1382
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1383
|
+
mape: NullType;
|
|
1384
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1385
|
+
explained_variance: NullType;
|
|
1386
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1387
|
+
max_error: NullType;
|
|
1388
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1389
|
+
median_ae: NullType;
|
|
1390
|
+
}>;
|
|
1391
|
+
/** Scalar metric value */
|
|
1392
|
+
value: FloatType;
|
|
1393
|
+
}>;
|
|
1394
|
+
/** Multiple metrics result */
|
|
1395
|
+
readonly MetricsResultType: ArrayType<StructType<{
|
|
1396
|
+
/** Which metric was computed */
|
|
1397
|
+
metric: VariantType<{
|
|
1398
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1399
|
+
mse: NullType;
|
|
1400
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1401
|
+
rmse: NullType;
|
|
1402
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1403
|
+
mae: NullType;
|
|
1404
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1405
|
+
r2: NullType;
|
|
1406
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1407
|
+
mape: NullType;
|
|
1408
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1409
|
+
explained_variance: NullType;
|
|
1410
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1411
|
+
max_error: NullType;
|
|
1412
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1413
|
+
median_ae: NullType;
|
|
1414
|
+
}>;
|
|
1415
|
+
/** Scalar metric value */
|
|
1416
|
+
value: FloatType;
|
|
1417
|
+
}>>;
|
|
1418
|
+
/** Metric aggregation type */
|
|
1419
|
+
readonly MetricAggregationType: VariantType<{
|
|
1420
|
+
/** Return metric for each target separately (default) */
|
|
1421
|
+
per_target: NullType;
|
|
1422
|
+
/** Average across all targets (uniform weights) */
|
|
1423
|
+
uniform_average: NullType;
|
|
1424
|
+
}>;
|
|
1425
|
+
/** Multi-target metrics config */
|
|
1426
|
+
readonly MultiMetricsConfigType: StructType<{
|
|
1427
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
1428
|
+
aggregation: OptionType<VariantType<{
|
|
1429
|
+
/** Return metric for each target separately (default) */
|
|
1430
|
+
per_target: NullType;
|
|
1431
|
+
/** Average across all targets (uniform weights) */
|
|
1432
|
+
uniform_average: NullType;
|
|
1433
|
+
}>>;
|
|
1434
|
+
}>;
|
|
1435
|
+
/** Multi-target metric result */
|
|
1436
|
+
readonly MultiMetricResultType: StructType<{
|
|
1437
|
+
/** Which metric was computed */
|
|
1438
|
+
metric: VariantType<{
|
|
1439
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1440
|
+
mse: NullType;
|
|
1441
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1442
|
+
rmse: NullType;
|
|
1443
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1444
|
+
mae: NullType;
|
|
1445
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1446
|
+
r2: NullType;
|
|
1447
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1448
|
+
mape: NullType;
|
|
1449
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1450
|
+
explained_variance: NullType;
|
|
1451
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1452
|
+
max_error: NullType;
|
|
1453
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1454
|
+
median_ae: NullType;
|
|
1455
|
+
}>;
|
|
1456
|
+
/** Metric value(s) */
|
|
1457
|
+
value: VariantType<{
|
|
1458
|
+
/** Aggregated scalar value */
|
|
1459
|
+
scalar: FloatType;
|
|
1460
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
1461
|
+
per_target: ArrayType<FloatType>;
|
|
1462
|
+
}>;
|
|
1463
|
+
}>;
|
|
1464
|
+
/** Multi-target metrics result */
|
|
1465
|
+
readonly MultiMetricsResultType: ArrayType<StructType<{
|
|
1466
|
+
/** Which metric was computed */
|
|
1467
|
+
metric: VariantType<{
|
|
1468
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1469
|
+
mse: NullType;
|
|
1470
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1471
|
+
rmse: NullType;
|
|
1472
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1473
|
+
mae: NullType;
|
|
1474
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1475
|
+
r2: NullType;
|
|
1476
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1477
|
+
mape: NullType;
|
|
1478
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1479
|
+
explained_variance: NullType;
|
|
1480
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1481
|
+
max_error: NullType;
|
|
1482
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1483
|
+
median_ae: NullType;
|
|
1484
|
+
}>;
|
|
1485
|
+
/** Metric value(s) */
|
|
1486
|
+
value: VariantType<{
|
|
1487
|
+
/** Aggregated scalar value */
|
|
1488
|
+
scalar: FloatType;
|
|
1489
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
1490
|
+
per_target: ArrayType<FloatType>;
|
|
1491
|
+
}>;
|
|
1492
|
+
}>>;
|
|
1493
|
+
/** Classification metric variant */
|
|
1494
|
+
readonly ClassificationMetricType: VariantType<{
|
|
1495
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1496
|
+
accuracy: NullType;
|
|
1497
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1498
|
+
balanced_accuracy: NullType;
|
|
1499
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1500
|
+
precision: NullType;
|
|
1501
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1502
|
+
recall: NullType;
|
|
1503
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1504
|
+
f1: NullType;
|
|
1505
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1506
|
+
matthews_corrcoef: NullType;
|
|
1507
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1508
|
+
cohen_kappa: NullType;
|
|
1509
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1510
|
+
jaccard: NullType;
|
|
1511
|
+
}>;
|
|
1512
|
+
/** Classification averaging type */
|
|
1513
|
+
readonly ClassificationAverageType: VariantType<{
|
|
1514
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1515
|
+
macro: NullType;
|
|
1516
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1517
|
+
micro: NullType;
|
|
1518
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1519
|
+
weighted: NullType;
|
|
1520
|
+
/** Only for binary classification */
|
|
1521
|
+
binary: NullType;
|
|
1522
|
+
}>;
|
|
1523
|
+
/** Classification metrics config */
|
|
1524
|
+
readonly ClassificationMetricsConfigType: StructType<{
|
|
1525
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1526
|
+
average: OptionType<VariantType<{
|
|
1527
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1528
|
+
macro: NullType;
|
|
1529
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1530
|
+
micro: NullType;
|
|
1531
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1532
|
+
weighted: NullType;
|
|
1533
|
+
/** Only for binary classification */
|
|
1534
|
+
binary: NullType;
|
|
1535
|
+
}>>;
|
|
1536
|
+
}>;
|
|
1537
|
+
/** Classification metric result */
|
|
1538
|
+
readonly ClassificationMetricResultType: StructType<{
|
|
1539
|
+
/** Which metric was computed */
|
|
1540
|
+
metric: VariantType<{
|
|
1541
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1542
|
+
accuracy: NullType;
|
|
1543
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1544
|
+
balanced_accuracy: NullType;
|
|
1545
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1546
|
+
precision: NullType;
|
|
1547
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1548
|
+
recall: NullType;
|
|
1549
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1550
|
+
f1: NullType;
|
|
1551
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1552
|
+
matthews_corrcoef: NullType;
|
|
1553
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1554
|
+
cohen_kappa: NullType;
|
|
1555
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1556
|
+
jaccard: NullType;
|
|
1557
|
+
}>;
|
|
1558
|
+
/** Scalar metric value */
|
|
1559
|
+
value: FloatType;
|
|
1560
|
+
}>;
|
|
1561
|
+
/** Classification metrics result */
|
|
1562
|
+
readonly ClassificationMetricResultsType: ArrayType<StructType<{
|
|
1563
|
+
/** Which metric was computed */
|
|
1564
|
+
metric: VariantType<{
|
|
1565
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1566
|
+
accuracy: NullType;
|
|
1567
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1568
|
+
balanced_accuracy: NullType;
|
|
1569
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1570
|
+
precision: NullType;
|
|
1571
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1572
|
+
recall: NullType;
|
|
1573
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1574
|
+
f1: NullType;
|
|
1575
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1576
|
+
matthews_corrcoef: NullType;
|
|
1577
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1578
|
+
cohen_kappa: NullType;
|
|
1579
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1580
|
+
jaccard: NullType;
|
|
1581
|
+
}>;
|
|
1582
|
+
/** Scalar metric value */
|
|
1583
|
+
value: FloatType;
|
|
1584
|
+
}>>;
|
|
1585
|
+
/** Multi-target classification config */
|
|
1586
|
+
readonly MultiClassificationConfigType: StructType<{
|
|
1587
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1588
|
+
average: OptionType<VariantType<{
|
|
1589
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1590
|
+
macro: NullType;
|
|
1591
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1592
|
+
micro: NullType;
|
|
1593
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1594
|
+
weighted: NullType;
|
|
1595
|
+
/** Only for binary classification */
|
|
1596
|
+
binary: NullType;
|
|
1597
|
+
}>>;
|
|
1598
|
+
/** How to aggregate across targets (default: per_target) */
|
|
1599
|
+
aggregation: OptionType<VariantType<{
|
|
1600
|
+
/** Return metric for each target separately (default) */
|
|
1601
|
+
per_target: NullType;
|
|
1602
|
+
/** Average across all targets (uniform weights) */
|
|
1603
|
+
uniform_average: NullType;
|
|
1604
|
+
}>>;
|
|
1605
|
+
}>;
|
|
1606
|
+
/** Multi-target classification metric result */
|
|
1607
|
+
readonly MultiClassificationMetricResultType: StructType<{
|
|
1608
|
+
/** Which metric was computed */
|
|
1609
|
+
metric: VariantType<{
|
|
1610
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1611
|
+
accuracy: NullType;
|
|
1612
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1613
|
+
balanced_accuracy: NullType;
|
|
1614
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1615
|
+
precision: NullType;
|
|
1616
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1617
|
+
recall: NullType;
|
|
1618
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1619
|
+
f1: NullType;
|
|
1620
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1621
|
+
matthews_corrcoef: NullType;
|
|
1622
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1623
|
+
cohen_kappa: NullType;
|
|
1624
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1625
|
+
jaccard: NullType;
|
|
1626
|
+
}>;
|
|
1627
|
+
/** Metric value(s) */
|
|
1628
|
+
value: VariantType<{
|
|
1629
|
+
/** Aggregated scalar value */
|
|
1630
|
+
scalar: FloatType;
|
|
1631
|
+
/** Per-target values */
|
|
1632
|
+
per_target: ArrayType<FloatType>;
|
|
1633
|
+
}>;
|
|
1634
|
+
}>;
|
|
1635
|
+
/** Multi-target classification metrics result */
|
|
1636
|
+
readonly MultiClassificationMetricResultsType: ArrayType<StructType<{
|
|
1637
|
+
/** Which metric was computed */
|
|
1638
|
+
metric: VariantType<{
|
|
1639
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1640
|
+
accuracy: NullType;
|
|
1641
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1642
|
+
balanced_accuracy: NullType;
|
|
1643
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1644
|
+
precision: NullType;
|
|
1645
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1646
|
+
recall: NullType;
|
|
1647
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1648
|
+
f1: NullType;
|
|
1649
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1650
|
+
matthews_corrcoef: NullType;
|
|
1651
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1652
|
+
cohen_kappa: NullType;
|
|
1653
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1654
|
+
jaccard: NullType;
|
|
1655
|
+
}>;
|
|
1656
|
+
/** Metric value(s) */
|
|
1657
|
+
value: VariantType<{
|
|
1658
|
+
/** Aggregated scalar value */
|
|
1659
|
+
scalar: FloatType;
|
|
1660
|
+
/** Per-target values */
|
|
1661
|
+
per_target: ArrayType<FloatType>;
|
|
1662
|
+
}>;
|
|
1663
|
+
}>>;
|
|
771
1664
|
};
|
|
772
1665
|
/**
|
|
773
1666
|
* Scikit-learn machine learning utilities.
|
|
@@ -810,6 +1703,30 @@ export declare const Sklearn: {
|
|
|
810
1703
|
/** Test labels */
|
|
811
1704
|
y_test: ArrayType<FloatType>;
|
|
812
1705
|
}>>;
|
|
1706
|
+
/** Split arrays into train, validation, and test subsets */
|
|
1707
|
+
readonly trainValTestSplit: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, StructType<{
|
|
1708
|
+
/** Proportion of data for validation (default 0.15) */
|
|
1709
|
+
val_size: OptionType<FloatType>;
|
|
1710
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
1711
|
+
test_size: OptionType<FloatType>;
|
|
1712
|
+
/** Random seed for reproducibility */
|
|
1713
|
+
random_state: OptionType<IntegerType>;
|
|
1714
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
1715
|
+
shuffle: OptionType<BooleanType>;
|
|
1716
|
+
}>], StructType<{
|
|
1717
|
+
/** Training features */
|
|
1718
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
1719
|
+
/** Validation features */
|
|
1720
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
1721
|
+
/** Test/holdout features */
|
|
1722
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
1723
|
+
/** Training targets (matrix) */
|
|
1724
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
1725
|
+
/** Validation targets (matrix) */
|
|
1726
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
1727
|
+
/** Test/holdout targets (matrix) */
|
|
1728
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
1729
|
+
}>>;
|
|
813
1730
|
/** Fit a StandardScaler to data */
|
|
814
1731
|
readonly standardScalerFit: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>], VariantType<{
|
|
815
1732
|
/** StandardScaler model */
|
|
@@ -922,30 +1839,219 @@ export declare const Sklearn: {
|
|
|
922
1839
|
base_estimator_type: StringType;
|
|
923
1840
|
}>;
|
|
924
1841
|
}>, ArrayType<ArrayType<FloatType>>], ArrayType<ArrayType<FloatType>>>;
|
|
925
|
-
/** Compute regression metrics */
|
|
926
|
-
readonly
|
|
927
|
-
/** Mean Squared Error */
|
|
928
|
-
mse:
|
|
929
|
-
/** Root Mean Squared Error */
|
|
930
|
-
rmse:
|
|
931
|
-
/** Mean Absolute Error */
|
|
932
|
-
mae:
|
|
933
|
-
/** R
|
|
934
|
-
r2:
|
|
935
|
-
/** Mean Absolute Percentage Error */
|
|
936
|
-
mape:
|
|
937
|
-
|
|
938
|
-
|
|
939
|
-
|
|
940
|
-
|
|
941
|
-
|
|
942
|
-
|
|
943
|
-
|
|
944
|
-
/**
|
|
945
|
-
|
|
946
|
-
|
|
947
|
-
|
|
948
|
-
|
|
1842
|
+
/** Compute regression metrics (single-target) */
|
|
1843
|
+
readonly computeMetrics: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>, ArrayType<VariantType<{
|
|
1844
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1845
|
+
mse: NullType;
|
|
1846
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1847
|
+
rmse: NullType;
|
|
1848
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1849
|
+
mae: NullType;
|
|
1850
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1851
|
+
r2: NullType;
|
|
1852
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1853
|
+
mape: NullType;
|
|
1854
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1855
|
+
explained_variance: NullType;
|
|
1856
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1857
|
+
max_error: NullType;
|
|
1858
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1859
|
+
median_ae: NullType;
|
|
1860
|
+
}>>], ArrayType<StructType<{
|
|
1861
|
+
/** Which metric was computed */
|
|
1862
|
+
metric: VariantType<{
|
|
1863
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1864
|
+
mse: NullType;
|
|
1865
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1866
|
+
rmse: NullType;
|
|
1867
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1868
|
+
mae: NullType;
|
|
1869
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1870
|
+
r2: NullType;
|
|
1871
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1872
|
+
mape: NullType;
|
|
1873
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1874
|
+
explained_variance: NullType;
|
|
1875
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1876
|
+
max_error: NullType;
|
|
1877
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1878
|
+
median_ae: NullType;
|
|
1879
|
+
}>;
|
|
1880
|
+
/** Scalar metric value */
|
|
1881
|
+
value: FloatType;
|
|
1882
|
+
}>>>;
|
|
1883
|
+
/** Compute regression metrics (multi-target) */
|
|
1884
|
+
readonly computeMetricsMulti: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
|
|
1885
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1886
|
+
mse: NullType;
|
|
1887
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1888
|
+
rmse: NullType;
|
|
1889
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1890
|
+
mae: NullType;
|
|
1891
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1892
|
+
r2: NullType;
|
|
1893
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1894
|
+
mape: NullType;
|
|
1895
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1896
|
+
explained_variance: NullType;
|
|
1897
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1898
|
+
max_error: NullType;
|
|
1899
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1900
|
+
median_ae: NullType;
|
|
1901
|
+
}>>, StructType<{
|
|
1902
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
1903
|
+
aggregation: OptionType<VariantType<{
|
|
1904
|
+
/** Return metric for each target separately (default) */
|
|
1905
|
+
per_target: NullType;
|
|
1906
|
+
/** Average across all targets (uniform weights) */
|
|
1907
|
+
uniform_average: NullType;
|
|
1908
|
+
}>>;
|
|
1909
|
+
}>], ArrayType<StructType<{
|
|
1910
|
+
/** Which metric was computed */
|
|
1911
|
+
metric: VariantType<{
|
|
1912
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1913
|
+
mse: NullType;
|
|
1914
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1915
|
+
rmse: NullType;
|
|
1916
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1917
|
+
mae: NullType;
|
|
1918
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1919
|
+
r2: NullType;
|
|
1920
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1921
|
+
mape: NullType;
|
|
1922
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1923
|
+
explained_variance: NullType;
|
|
1924
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1925
|
+
max_error: NullType;
|
|
1926
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1927
|
+
median_ae: NullType;
|
|
1928
|
+
}>;
|
|
1929
|
+
/** Metric value(s) */
|
|
1930
|
+
value: VariantType<{
|
|
1931
|
+
/** Aggregated scalar value */
|
|
1932
|
+
scalar: FloatType;
|
|
1933
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
1934
|
+
per_target: ArrayType<FloatType>;
|
|
1935
|
+
}>;
|
|
1936
|
+
}>>>;
|
|
1937
|
+
/** Compute classification metrics (single-target) */
|
|
1938
|
+
readonly computeClassificationMetrics: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>, ArrayType<VariantType<{
|
|
1939
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1940
|
+
accuracy: NullType;
|
|
1941
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1942
|
+
balanced_accuracy: NullType;
|
|
1943
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1944
|
+
precision: NullType;
|
|
1945
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1946
|
+
recall: NullType;
|
|
1947
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1948
|
+
f1: NullType;
|
|
1949
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1950
|
+
matthews_corrcoef: NullType;
|
|
1951
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1952
|
+
cohen_kappa: NullType;
|
|
1953
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1954
|
+
jaccard: NullType;
|
|
1955
|
+
}>>, StructType<{
|
|
1956
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1957
|
+
average: OptionType<VariantType<{
|
|
1958
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1959
|
+
macro: NullType;
|
|
1960
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1961
|
+
micro: NullType;
|
|
1962
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1963
|
+
weighted: NullType;
|
|
1964
|
+
/** Only for binary classification */
|
|
1965
|
+
binary: NullType;
|
|
1966
|
+
}>>;
|
|
1967
|
+
}>], ArrayType<StructType<{
|
|
1968
|
+
/** Which metric was computed */
|
|
1969
|
+
metric: VariantType<{
|
|
1970
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1971
|
+
accuracy: NullType;
|
|
1972
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1973
|
+
balanced_accuracy: NullType;
|
|
1974
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1975
|
+
precision: NullType;
|
|
1976
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1977
|
+
recall: NullType;
|
|
1978
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1979
|
+
f1: NullType;
|
|
1980
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1981
|
+
matthews_corrcoef: NullType;
|
|
1982
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1983
|
+
cohen_kappa: NullType;
|
|
1984
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1985
|
+
jaccard: NullType;
|
|
1986
|
+
}>;
|
|
1987
|
+
/** Scalar metric value */
|
|
1988
|
+
value: FloatType;
|
|
1989
|
+
}>>>;
|
|
1990
|
+
/** Compute classification metrics (multi-target) */
|
|
1991
|
+
readonly computeClassificationMetricsMulti: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
|
|
1992
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1993
|
+
accuracy: NullType;
|
|
1994
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1995
|
+
balanced_accuracy: NullType;
|
|
1996
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1997
|
+
precision: NullType;
|
|
1998
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1999
|
+
recall: NullType;
|
|
2000
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2001
|
+
f1: NullType;
|
|
2002
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2003
|
+
matthews_corrcoef: NullType;
|
|
2004
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2005
|
+
cohen_kappa: NullType;
|
|
2006
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2007
|
+
jaccard: NullType;
|
|
2008
|
+
}>>, StructType<{
|
|
2009
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
2010
|
+
average: OptionType<VariantType<{
|
|
2011
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
2012
|
+
macro: NullType;
|
|
2013
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
2014
|
+
micro: NullType;
|
|
2015
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
2016
|
+
weighted: NullType;
|
|
2017
|
+
/** Only for binary classification */
|
|
2018
|
+
binary: NullType;
|
|
2019
|
+
}>>;
|
|
2020
|
+
/** How to aggregate across targets (default: per_target) */
|
|
2021
|
+
aggregation: OptionType<VariantType<{
|
|
2022
|
+
/** Return metric for each target separately (default) */
|
|
2023
|
+
per_target: NullType;
|
|
2024
|
+
/** Average across all targets (uniform weights) */
|
|
2025
|
+
uniform_average: NullType;
|
|
2026
|
+
}>>;
|
|
2027
|
+
}>], ArrayType<StructType<{
|
|
2028
|
+
/** Which metric was computed */
|
|
2029
|
+
metric: VariantType<{
|
|
2030
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2031
|
+
accuracy: NullType;
|
|
2032
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2033
|
+
balanced_accuracy: NullType;
|
|
2034
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2035
|
+
precision: NullType;
|
|
2036
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2037
|
+
recall: NullType;
|
|
2038
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2039
|
+
f1: NullType;
|
|
2040
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2041
|
+
matthews_corrcoef: NullType;
|
|
2042
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2043
|
+
cohen_kappa: NullType;
|
|
2044
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2045
|
+
jaccard: NullType;
|
|
2046
|
+
}>;
|
|
2047
|
+
/** Metric value(s) */
|
|
2048
|
+
value: VariantType<{
|
|
2049
|
+
/** Aggregated scalar value */
|
|
2050
|
+
scalar: FloatType;
|
|
2051
|
+
/** Per-target values */
|
|
2052
|
+
per_target: ArrayType<FloatType>;
|
|
2053
|
+
}>;
|
|
2054
|
+
}>>>;
|
|
949
2055
|
/** Train a RegressorChain for multi-target regression */
|
|
950
2056
|
readonly regressorChainTrain: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, StructType<{
|
|
951
2057
|
/** Base estimator with its configuration */
|
|
@@ -1092,29 +2198,31 @@ export declare const Sklearn: {
|
|
|
1092
2198
|
/** Test labels */
|
|
1093
2199
|
y_test: ArrayType<FloatType>;
|
|
1094
2200
|
}>;
|
|
1095
|
-
/**
|
|
1096
|
-
readonly
|
|
1097
|
-
/**
|
|
1098
|
-
|
|
1099
|
-
/**
|
|
1100
|
-
|
|
1101
|
-
/**
|
|
1102
|
-
|
|
1103
|
-
/**
|
|
1104
|
-
|
|
1105
|
-
|
|
1106
|
-
|
|
1107
|
-
|
|
1108
|
-
|
|
1109
|
-
|
|
1110
|
-
/**
|
|
1111
|
-
|
|
1112
|
-
/**
|
|
1113
|
-
|
|
1114
|
-
/**
|
|
1115
|
-
|
|
1116
|
-
/**
|
|
1117
|
-
|
|
2201
|
+
/** 3-way split configuration type */
|
|
2202
|
+
readonly ThreeWaySplitConfigType: StructType<{
|
|
2203
|
+
/** Proportion of data for validation (default 0.15) */
|
|
2204
|
+
val_size: OptionType<FloatType>;
|
|
2205
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
2206
|
+
test_size: OptionType<FloatType>;
|
|
2207
|
+
/** Random seed for reproducibility */
|
|
2208
|
+
random_state: OptionType<IntegerType>;
|
|
2209
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
2210
|
+
shuffle: OptionType<BooleanType>;
|
|
2211
|
+
}>;
|
|
2212
|
+
/** 3-way split result type */
|
|
2213
|
+
readonly ThreeWaySplitResultType: StructType<{
|
|
2214
|
+
/** Training features */
|
|
2215
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
2216
|
+
/** Validation features */
|
|
2217
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
2218
|
+
/** Test/holdout features */
|
|
2219
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
2220
|
+
/** Training targets (matrix) */
|
|
2221
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
2222
|
+
/** Validation targets (matrix) */
|
|
2223
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
2224
|
+
/** Test/holdout targets (matrix) */
|
|
2225
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
1118
2226
|
}>;
|
|
1119
2227
|
/** Model blob type for sklearn models */
|
|
1120
2228
|
readonly ModelBlobType: VariantType<{
|
|
@@ -1144,8 +2252,6 @@ export declare const Sklearn: {
|
|
|
1144
2252
|
base_estimator_type: StringType;
|
|
1145
2253
|
}>;
|
|
1146
2254
|
}>;
|
|
1147
|
-
/** Multi-target output type */
|
|
1148
|
-
readonly MultiTargetType: ArrayType<ArrayType<FloatType>>;
|
|
1149
2255
|
/** RegressorChain base estimator config type */
|
|
1150
2256
|
readonly RegressorChainBaseConfigType: VariantType<{
|
|
1151
2257
|
/** XGBoost regressor */
|
|
@@ -1267,6 +2373,319 @@ export declare const Sklearn: {
|
|
|
1267
2373
|
/** Random seed for reproducibility */
|
|
1268
2374
|
random_state: OptionType<IntegerType>;
|
|
1269
2375
|
}>;
|
|
2376
|
+
/** Regression metric variant */
|
|
2377
|
+
readonly RegressionMetricType: VariantType<{
|
|
2378
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2379
|
+
mse: NullType;
|
|
2380
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2381
|
+
rmse: NullType;
|
|
2382
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2383
|
+
mae: NullType;
|
|
2384
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2385
|
+
r2: NullType;
|
|
2386
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2387
|
+
mape: NullType;
|
|
2388
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2389
|
+
explained_variance: NullType;
|
|
2390
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2391
|
+
max_error: NullType;
|
|
2392
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2393
|
+
median_ae: NullType;
|
|
2394
|
+
}>;
|
|
2395
|
+
/** Single metric result */
|
|
2396
|
+
readonly MetricResultType: StructType<{
|
|
2397
|
+
/** Which metric was computed */
|
|
2398
|
+
metric: VariantType<{
|
|
2399
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2400
|
+
mse: NullType;
|
|
2401
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2402
|
+
rmse: NullType;
|
|
2403
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2404
|
+
mae: NullType;
|
|
2405
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2406
|
+
r2: NullType;
|
|
2407
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2408
|
+
mape: NullType;
|
|
2409
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2410
|
+
explained_variance: NullType;
|
|
2411
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2412
|
+
max_error: NullType;
|
|
2413
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2414
|
+
median_ae: NullType;
|
|
2415
|
+
}>;
|
|
2416
|
+
/** Scalar metric value */
|
|
2417
|
+
value: FloatType;
|
|
2418
|
+
}>;
|
|
2419
|
+
/** Multiple metrics result */
|
|
2420
|
+
readonly MetricsResultType: ArrayType<StructType<{
|
|
2421
|
+
/** Which metric was computed */
|
|
2422
|
+
metric: VariantType<{
|
|
2423
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2424
|
+
mse: NullType;
|
|
2425
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2426
|
+
rmse: NullType;
|
|
2427
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2428
|
+
mae: NullType;
|
|
2429
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2430
|
+
r2: NullType;
|
|
2431
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2432
|
+
mape: NullType;
|
|
2433
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2434
|
+
explained_variance: NullType;
|
|
2435
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2436
|
+
max_error: NullType;
|
|
2437
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2438
|
+
median_ae: NullType;
|
|
2439
|
+
}>;
|
|
2440
|
+
/** Scalar metric value */
|
|
2441
|
+
value: FloatType;
|
|
2442
|
+
}>>;
|
|
2443
|
+
/** Metric aggregation type */
|
|
2444
|
+
readonly MetricAggregationType: VariantType<{
|
|
2445
|
+
/** Return metric for each target separately (default) */
|
|
2446
|
+
per_target: NullType;
|
|
2447
|
+
/** Average across all targets (uniform weights) */
|
|
2448
|
+
uniform_average: NullType;
|
|
2449
|
+
}>;
|
|
2450
|
+
/** Multi-target metrics config */
|
|
2451
|
+
readonly MultiMetricsConfigType: StructType<{
|
|
2452
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
2453
|
+
aggregation: OptionType<VariantType<{
|
|
2454
|
+
/** Return metric for each target separately (default) */
|
|
2455
|
+
per_target: NullType;
|
|
2456
|
+
/** Average across all targets (uniform weights) */
|
|
2457
|
+
uniform_average: NullType;
|
|
2458
|
+
}>>;
|
|
2459
|
+
}>;
|
|
2460
|
+
/** Multi-target metric result */
|
|
2461
|
+
readonly MultiMetricResultType: StructType<{
|
|
2462
|
+
/** Which metric was computed */
|
|
2463
|
+
metric: VariantType<{
|
|
2464
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2465
|
+
mse: NullType;
|
|
2466
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2467
|
+
rmse: NullType;
|
|
2468
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2469
|
+
mae: NullType;
|
|
2470
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2471
|
+
r2: NullType;
|
|
2472
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2473
|
+
mape: NullType;
|
|
2474
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2475
|
+
explained_variance: NullType;
|
|
2476
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2477
|
+
max_error: NullType;
|
|
2478
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2479
|
+
median_ae: NullType;
|
|
2480
|
+
}>;
|
|
2481
|
+
/** Metric value(s) */
|
|
2482
|
+
value: VariantType<{
|
|
2483
|
+
/** Aggregated scalar value */
|
|
2484
|
+
scalar: FloatType;
|
|
2485
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
2486
|
+
per_target: ArrayType<FloatType>;
|
|
2487
|
+
}>;
|
|
2488
|
+
}>;
|
|
2489
|
+
/** Multi-target metrics result */
|
|
2490
|
+
readonly MultiMetricsResultType: ArrayType<StructType<{
|
|
2491
|
+
/** Which metric was computed */
|
|
2492
|
+
metric: VariantType<{
|
|
2493
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2494
|
+
mse: NullType;
|
|
2495
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2496
|
+
rmse: NullType;
|
|
2497
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2498
|
+
mae: NullType;
|
|
2499
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2500
|
+
r2: NullType;
|
|
2501
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2502
|
+
mape: NullType;
|
|
2503
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2504
|
+
explained_variance: NullType;
|
|
2505
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2506
|
+
max_error: NullType;
|
|
2507
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2508
|
+
median_ae: NullType;
|
|
2509
|
+
}>;
|
|
2510
|
+
/** Metric value(s) */
|
|
2511
|
+
value: VariantType<{
|
|
2512
|
+
/** Aggregated scalar value */
|
|
2513
|
+
scalar: FloatType;
|
|
2514
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
2515
|
+
per_target: ArrayType<FloatType>;
|
|
2516
|
+
}>;
|
|
2517
|
+
}>>;
|
|
2518
|
+
/** Classification metric variant */
|
|
2519
|
+
readonly ClassificationMetricType: VariantType<{
|
|
2520
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2521
|
+
accuracy: NullType;
|
|
2522
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2523
|
+
balanced_accuracy: NullType;
|
|
2524
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2525
|
+
precision: NullType;
|
|
2526
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2527
|
+
recall: NullType;
|
|
2528
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2529
|
+
f1: NullType;
|
|
2530
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2531
|
+
matthews_corrcoef: NullType;
|
|
2532
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2533
|
+
cohen_kappa: NullType;
|
|
2534
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2535
|
+
jaccard: NullType;
|
|
2536
|
+
}>;
|
|
2537
|
+
/** Classification averaging type */
|
|
2538
|
+
readonly ClassificationAverageType: VariantType<{
|
|
2539
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
2540
|
+
macro: NullType;
|
|
2541
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
2542
|
+
micro: NullType;
|
|
2543
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
2544
|
+
weighted: NullType;
|
|
2545
|
+
/** Only for binary classification */
|
|
2546
|
+
binary: NullType;
|
|
2547
|
+
}>;
|
|
2548
|
+
/** Classification metrics config */
|
|
2549
|
+
readonly ClassificationMetricsConfigType: StructType<{
|
|
2550
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
2551
|
+
average: OptionType<VariantType<{
|
|
2552
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
2553
|
+
macro: NullType;
|
|
2554
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
2555
|
+
micro: NullType;
|
|
2556
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
2557
|
+
weighted: NullType;
|
|
2558
|
+
/** Only for binary classification */
|
|
2559
|
+
binary: NullType;
|
|
2560
|
+
}>>;
|
|
2561
|
+
}>;
|
|
2562
|
+
/** Classification metric result */
|
|
2563
|
+
readonly ClassificationMetricResultType: StructType<{
|
|
2564
|
+
/** Which metric was computed */
|
|
2565
|
+
metric: VariantType<{
|
|
2566
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2567
|
+
accuracy: NullType;
|
|
2568
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2569
|
+
balanced_accuracy: NullType;
|
|
2570
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2571
|
+
precision: NullType;
|
|
2572
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2573
|
+
recall: NullType;
|
|
2574
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2575
|
+
f1: NullType;
|
|
2576
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2577
|
+
matthews_corrcoef: NullType;
|
|
2578
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2579
|
+
cohen_kappa: NullType;
|
|
2580
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2581
|
+
jaccard: NullType;
|
|
2582
|
+
}>;
|
|
2583
|
+
/** Scalar metric value */
|
|
2584
|
+
value: FloatType;
|
|
2585
|
+
}>;
|
|
2586
|
+
/** Classification metrics result */
|
|
2587
|
+
readonly ClassificationMetricResultsType: ArrayType<StructType<{
|
|
2588
|
+
/** Which metric was computed */
|
|
2589
|
+
metric: VariantType<{
|
|
2590
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2591
|
+
accuracy: NullType;
|
|
2592
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2593
|
+
balanced_accuracy: NullType;
|
|
2594
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2595
|
+
precision: NullType;
|
|
2596
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2597
|
+
recall: NullType;
|
|
2598
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2599
|
+
f1: NullType;
|
|
2600
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2601
|
+
matthews_corrcoef: NullType;
|
|
2602
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2603
|
+
cohen_kappa: NullType;
|
|
2604
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2605
|
+
jaccard: NullType;
|
|
2606
|
+
}>;
|
|
2607
|
+
/** Scalar metric value */
|
|
2608
|
+
value: FloatType;
|
|
2609
|
+
}>>;
|
|
2610
|
+
/** Multi-target classification config */
|
|
2611
|
+
readonly MultiClassificationConfigType: StructType<{
|
|
2612
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
2613
|
+
average: OptionType<VariantType<{
|
|
2614
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
2615
|
+
macro: NullType;
|
|
2616
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
2617
|
+
micro: NullType;
|
|
2618
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
2619
|
+
weighted: NullType;
|
|
2620
|
+
/** Only for binary classification */
|
|
2621
|
+
binary: NullType;
|
|
2622
|
+
}>>;
|
|
2623
|
+
/** How to aggregate across targets (default: per_target) */
|
|
2624
|
+
aggregation: OptionType<VariantType<{
|
|
2625
|
+
/** Return metric for each target separately (default) */
|
|
2626
|
+
per_target: NullType;
|
|
2627
|
+
/** Average across all targets (uniform weights) */
|
|
2628
|
+
uniform_average: NullType;
|
|
2629
|
+
}>>;
|
|
2630
|
+
}>;
|
|
2631
|
+
/** Multi-target classification metric result */
|
|
2632
|
+
readonly MultiClassificationMetricResultType: StructType<{
|
|
2633
|
+
/** Which metric was computed */
|
|
2634
|
+
metric: VariantType<{
|
|
2635
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2636
|
+
accuracy: NullType;
|
|
2637
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2638
|
+
balanced_accuracy: NullType;
|
|
2639
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2640
|
+
precision: NullType;
|
|
2641
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2642
|
+
recall: NullType;
|
|
2643
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2644
|
+
f1: NullType;
|
|
2645
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2646
|
+
matthews_corrcoef: NullType;
|
|
2647
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2648
|
+
cohen_kappa: NullType;
|
|
2649
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2650
|
+
jaccard: NullType;
|
|
2651
|
+
}>;
|
|
2652
|
+
/** Metric value(s) */
|
|
2653
|
+
value: VariantType<{
|
|
2654
|
+
/** Aggregated scalar value */
|
|
2655
|
+
scalar: FloatType;
|
|
2656
|
+
/** Per-target values */
|
|
2657
|
+
per_target: ArrayType<FloatType>;
|
|
2658
|
+
}>;
|
|
2659
|
+
}>;
|
|
2660
|
+
/** Multi-target classification metrics result */
|
|
2661
|
+
readonly MultiClassificationMetricResultsType: ArrayType<StructType<{
|
|
2662
|
+
/** Which metric was computed */
|
|
2663
|
+
metric: VariantType<{
|
|
2664
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2665
|
+
accuracy: NullType;
|
|
2666
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2667
|
+
balanced_accuracy: NullType;
|
|
2668
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2669
|
+
precision: NullType;
|
|
2670
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2671
|
+
recall: NullType;
|
|
2672
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2673
|
+
f1: NullType;
|
|
2674
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2675
|
+
matthews_corrcoef: NullType;
|
|
2676
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2677
|
+
cohen_kappa: NullType;
|
|
2678
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2679
|
+
jaccard: NullType;
|
|
2680
|
+
}>;
|
|
2681
|
+
/** Metric value(s) */
|
|
2682
|
+
value: VariantType<{
|
|
2683
|
+
/** Aggregated scalar value */
|
|
2684
|
+
scalar: FloatType;
|
|
2685
|
+
/** Per-target values */
|
|
2686
|
+
per_target: ArrayType<FloatType>;
|
|
2687
|
+
}>;
|
|
2688
|
+
}>>;
|
|
1270
2689
|
};
|
|
1271
2690
|
};
|
|
1272
2691
|
//# sourceMappingURL=sklearn.d.ts.map
|