@dra2020/district-analytics 6.2.0 → 7.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/cli.js CHANGED
@@ -89099,10 +89099,10 @@ exports.scorePolsbyPopper = scorePolsbyPopper;
89099
89099
  /*!*************************!*\
89100
89100
  !*** ./src/config.json ***!
89101
89101
  \*************************/
89102
- /*! exports provided: partisan, minority, traditionalPrinciples, default */
89102
+ /*! exports provided: partisan, minority, compactness, splitting, popdev, default */
89103
89103
  /***/ (function(module) {
89104
89104
 
89105
- module.exports = JSON.parse("{\"partisan\":{\"bias\":{\"range\":[0,0.2],\"weight\":[50,80]},\"impact\":{\"weight\":[50,0],\"threshold\":4},\"competitiveness\":{\"range\":[0,0.75],\"distribution\":[0.25,0.75],\"simpleRange\":[0.45,0.55],\"weight\":[0,20]},\"bonus\":2,\"weight\":[100,80]},\"minority\":{\"range\":[0.37,0.5],\"distribution\":[0.25,0.75],\"shift\":0.15,\"coalition\":{\"weight\":0.5},\"bonus\":20},\"traditionalPrinciples\":{\"compactness\":{\"reock\":{\"range\":[0.25,0.5],\"weight\":50},\"polsby\":{\"range\":[0.1,0.5],\"weight\":50},\"weight\":[0,50]},\"splitting\":{\"county\":{\"range\":[[1.26,1.68],[1.09,1.45]],\"weight\":50},\"district\":{\"range\":[[1.26,1.68],[1.09,1.45]],\"weight\":50},\"weight\":[0,50]},\"popdev\":{\"range\":[[0.0075,0.002],[0.1,-1]],\"weight\":[0,0]},\"weight\":[0,20]}}");
89105
+ module.exports = JSON.parse("{\"partisan\":{\"bias\":{\"range\":[0,0.2],\"weight\":[50,80]},\"impact\":{\"weight\":[50,0],\"threshold\":4},\"competitiveness\":{\"range\":[0,0.75],\"distribution\":[0.25,0.75],\"simpleRange\":[0.45,0.55],\"weight\":[0,20]},\"bonus\":2},\"minority\":{\"range\":[0.37,0.5],\"distribution\":[0.25,0.75],\"shift\":0.15,\"coalition\":{\"weight\":0.5}},\"compactness\":{\"reock\":{\"range\":[0.25,0.5],\"weight\":50},\"polsby\":{\"range\":[0.1,0.5],\"weight\":50}},\"splitting\":{\"county\":{\"range\":[[1.26,1.68],[1.09,1.45]],\"weight\":50},\"district\":{\"range\":[[1.26,1.68],[1.09,1.45]],\"weight\":50}},\"popdev\":{\"range\":[[0.0075,0.002],[0.1,-1]]}}");
89106
89106
 
89107
89107
  /***/ }),
89108
89108
 
@@ -89118,7 +89118,8 @@ module.exports = JSON.parse("{\"partisan\":{\"bias\":{\"range\":[0,0.2],\"weight
89118
89118
  //
89119
89119
  // THRESHOLDS, SCALES, AND WEIGHTS FOR SCORING MODEL
89120
89120
  //
89121
- // * A layer of functions over config.json, so that they can be overridden dynamically (TODO)
89121
+ // * A layer of functions over config.json, so that they could be overridden dynamically.
89122
+ // That is not implemented yet.
89122
89123
  //
89123
89124
  var __importDefault = (this && this.__importDefault) || function (mod) {
89124
89125
  return (mod && mod.__esModule) ? mod : { "default": mod };
@@ -89160,7 +89161,7 @@ function competitivenessWeight(context, overridesJSON) {
89160
89161
  return cW;
89161
89162
  }
89162
89163
  exports.competitivenessWeight = competitivenessWeight;
89163
- // COMPETITIVENESS - The simple user-facing range, i.e., 45–55%.
89164
+ // The simple user-facing range, i.e., 45–55%.
89164
89165
  function competitiveRange(overridesJSON) {
89165
89166
  const range = config_json_1.default.partisan.competitiveness.simpleRange;
89166
89167
  return range;
@@ -89171,9 +89172,9 @@ function competitiveDistribution(overridesJSON) {
89171
89172
  return dist;
89172
89173
  }
89173
89174
  exports.competitiveDistribution = competitiveDistribution;
89174
- // COMPETITIVENESS - The more complex internal range for normalizing Cdf.
89175
- // COMPETITIVENESS - 06/23/2020 - As part of relaxing the competitive range, I
89176
- // I changed this max from 0.67 to 0.75.
89175
+ // The more complex internal range for normalizing Cdf.
89176
+ // * 06/23/2020 - As part of relaxing the competitive range, I changed this max
89177
+ // from 0.67 to 0.75.
89177
89178
  function overallCompetitivenessRange(overridesJSON) {
89178
89179
  const range = config_json_1.default.partisan.competitiveness.range;
89179
89180
  return range;
@@ -89181,17 +89182,17 @@ function overallCompetitivenessRange(overridesJSON) {
89181
89182
  exports.overallCompetitivenessRange = overallCompetitivenessRange;
89182
89183
  // export function marginalCompetitivenessRange(overridesJSON?: any): number[]
89183
89184
  // {
89184
- // const range = config.partisan.competitiveness.marginal.range;
89185
+ // const range = config.partisan.responsiveness.marginal.range;
89185
89186
  // return range;
89186
89187
  // }
89187
89188
  // export function marginalCompetitivenessWeight(overridesJSON?: any): number
89188
89189
  // {
89189
- // const mcW = config.partisan.competitiveness.marginal.weight;
89190
+ // const mcW = config.partisan.responsiveness.marginal.weight;
89190
89191
  // return mcW;
89191
89192
  // }
89192
89193
  // export function overallCompetitivenessWeight(overridesJSON?: any): number
89193
89194
  // {
89194
- // const ocW = config.partisan.competitiveness.overall.weight;
89195
+ // const ocW = config.partisan.responsiveness.overall.weight;
89195
89196
  // return ocW;
89196
89197
  // }
89197
89198
  // MINORITY
@@ -89215,74 +89216,55 @@ function coalitionDistrictWeight(overridesJSON) {
89215
89216
  return weight;
89216
89217
  }
89217
89218
  exports.coalitionDistrictWeight = coalitionDistrictWeight;
89218
- function minorityBonus(overridesJSON) {
89219
- const bonus = config_json_1.default.minority.bonus;
89220
- return bonus;
89221
- }
89222
- exports.minorityBonus = minorityBonus;
89223
- // TRADITIONAL DISTRICTING PRINCIPLES
89224
- function compactnessWeight(context, overridesJSON) {
89225
- const cW = config_json_1.default.traditionalPrinciples.compactness.weight[context];
89226
- return cW;
89227
- }
89228
- exports.compactnessWeight = compactnessWeight;
89219
+ // COMPACTNESS
89229
89220
  function reockWeight(overridesJSON) {
89230
- const rW = config_json_1.default.traditionalPrinciples.compactness.reock.weight;
89221
+ const rW = config_json_1.default.compactness.reock.weight;
89231
89222
  return rW;
89232
89223
  }
89233
89224
  exports.reockWeight = reockWeight;
89234
89225
  function reockRange(overridesJSON) {
89235
- const range = config_json_1.default.traditionalPrinciples.compactness.reock.range;
89226
+ const range = config_json_1.default.compactness.reock.range;
89236
89227
  return range;
89237
89228
  }
89238
89229
  exports.reockRange = reockRange;
89239
89230
  function polsbyWeight(overridesJSON) {
89240
- const ppW = config_json_1.default.traditionalPrinciples.compactness.polsby.weight;
89231
+ const ppW = config_json_1.default.compactness.polsby.weight;
89241
89232
  return ppW;
89242
89233
  }
89243
89234
  exports.polsbyWeight = polsbyWeight;
89244
89235
  function polsbyRange(overridesJSON) {
89245
- const range = config_json_1.default.traditionalPrinciples.compactness.polsby.range;
89236
+ const range = config_json_1.default.compactness.polsby.range;
89246
89237
  return range;
89247
89238
  }
89248
89239
  exports.polsbyRange = polsbyRange;
89249
- function splittingWeight(context, overridesJSON) {
89250
- const sW = config_json_1.default.traditionalPrinciples.splitting.weight[context];
89251
- return sW;
89252
- }
89253
- exports.splittingWeight = splittingWeight;
89240
+ // SPLITTING
89254
89241
  function countySplittingWeight(overridesJSON) {
89255
- const csW = config_json_1.default.traditionalPrinciples.splitting.county.weight;
89242
+ const csW = config_json_1.default.splitting.county.weight;
89256
89243
  return csW;
89257
89244
  }
89258
89245
  exports.countySplittingWeight = countySplittingWeight;
89259
89246
  function countySplittingRange(d, overridesJSON) {
89260
- const range = config_json_1.default.traditionalPrinciples.splitting.county.range[d];
89247
+ const range = config_json_1.default.splitting.county.range[d];
89261
89248
  return range;
89262
89249
  }
89263
89250
  exports.countySplittingRange = countySplittingRange;
89264
89251
  function districtSplittingWeight(overridesJSON) {
89265
- const dsW = config_json_1.default.traditionalPrinciples.splitting.district.weight;
89252
+ const dsW = config_json_1.default.splitting.district.weight;
89266
89253
  return dsW;
89267
89254
  }
89268
89255
  exports.districtSplittingWeight = districtSplittingWeight;
89269
89256
  function districtSplittingRange(d, overridesJSON) {
89270
- const range = config_json_1.default.traditionalPrinciples.splitting.district.range[d];
89257
+ const range = config_json_1.default.splitting.district.range[d];
89271
89258
  return range;
89272
89259
  }
89273
89260
  exports.districtSplittingRange = districtSplittingRange;
89274
- function popdevWeight(context, overridesJSON) {
89275
- const pdW = config_json_1.default.traditionalPrinciples.popdev.weight[context];
89276
- return pdW;
89277
- }
89278
- exports.popdevWeight = popdevWeight;
89279
89261
  // NOTE - Raw ranges, not inverted (i.e., smaller is better)
89280
89262
  // NOTE - This could be optimized to not calc LD values for CD's (or do it once)
89281
89263
  function popdevRange(bLegislative, overridesJSON) {
89282
- const cdRange = config_json_1.default.traditionalPrinciples.popdev.range[0 /* Congressional */];
89264
+ const cdRange = config_json_1.default.popdev.range[0 /* Congressional */];
89283
89265
  const worstCD = cdRange[exports.BEG];
89284
89266
  const bestCD = cdRange[exports.END];
89285
- const ldRange = config_json_1.default.traditionalPrinciples.popdev.range[1 /* StateLegislative */];
89267
+ const ldRange = config_json_1.default.popdev.range[1 /* StateLegislative */];
89286
89268
  const iRange = bLegislative ? ldRange : cdRange;
89287
89269
  const worst = iRange[exports.BEG];
89288
89270
  const best = bLegislative ? (bestCD / worstCD) * iRange[exports.BEG] : iRange[exports.END];
@@ -89296,17 +89278,6 @@ function popdevThreshold(bLegislative, overridesJSON) {
89296
89278
  return threshold;
89297
89279
  }
89298
89280
  exports.popdevThreshold = popdevThreshold;
89299
- // OVERALL SCORE
89300
- function partisanWeight(context, overridesJSON) {
89301
- const pW = config_json_1.default.partisan.weight[context];
89302
- return pW;
89303
- }
89304
- exports.partisanWeight = partisanWeight;
89305
- function traditionalPrinciplesWeight(context, overridesJSON) {
89306
- const tpW = config_json_1.default.traditionalPrinciples.weight[context];
89307
- return tpW;
89308
- }
89309
- exports.traditionalPrinciplesWeight = traditionalPrinciplesWeight;
89310
89281
 
89311
89282
 
89312
89283
  /***/ }),
@@ -89431,18 +89402,12 @@ const C = __importStar(__webpack_require__(/*! ./config */ "./src/config.ts"));
89431
89402
  const normalize_1 = __webpack_require__(/*! ./normalize */ "./src/normalize.ts");
89432
89403
  const partisan_1 = __webpack_require__(/*! ./partisan */ "./src/partisan.ts");
89433
89404
  function evalMinorityOpportunity(p, bLog = false) {
89434
- // Calculate average Democratic win share
89435
- const VfArray = p.partisanProfile.vfArray;
89436
- const DWins = VfArray.filter(x => x > 0.5);
89437
- const RWins = VfArray.filter(x => x <= 0.5); // Ties credited to R's
89438
- const averageDVf = (DWins.length > 0) ? U.avgArray(DWins) : undefined;
89439
- const averageRVf = (RWins.length > 0) ? U.avgArray(RWins) : undefined;
89440
89405
  // Initialize arrays for results
89441
89406
  const offset = 1; // Don't process 'White'
89442
- const nDemos = 6 /* Native */ + 1 - offset; // Ditto
89407
+ const nDemos = 6 /* Total */; // Ditto
89408
+ // const nDemos = T.DemographicField.Native + 1 - offset; // Ditto
89443
89409
  const demosByDistrict = p.demographicProfile.mfArrayByDistrict;
89444
89410
  // Initialize the demographic buckets
89445
- // COMPETITIVENESS - 06/23/2020 - And populate the statewide values.
89446
89411
  // Get the statewide minority VAP/CVAP % (ignore 'White')
89447
89412
  const vapPctArray = p.demographicProfile.stateMfArray.slice(1);
89448
89413
  // Determine proportional minority districts by demographic (ignoring'White')
@@ -89484,23 +89449,15 @@ function evalMinorityOpportunity(p, bLog = false) {
89484
89449
  }
89485
89450
  // The # of opportunity districts for each separate demographic and all minorities
89486
89451
  const oD = U.sumArray(opptyByDemo.slice(1)); // Sum individual demos, skipping all minorities
89487
- const cD = opptyByDemo[1 /* Minority */ - offset]; // All minorities
89452
+ const cD = opptyByDemo[0 /* Minority */]; // All minorities
89488
89453
  // The # of proportional districts for each separate demographic and all minorities
89489
- const pOd = bucketsByDemo[7 /* Total */ - 1][4 /* PropSeats */];
89490
- const pCd = bucketsByDemo[1 /* Minority */ - 1][4 /* PropSeats */];
89491
- // const pOd: number = U.sumArray(districtsByDemo.slice(1)); // Sum individual demos, skipping all minorities
89492
- // const pCd: number = districtsByDemo[0]; // All minorities
89454
+ const pOd = bucketsByDemo[6 /* Total */][4 /* PropSeats */];
89455
+ const pCd = bucketsByDemo[0 /* Minority */][4 /* PropSeats */];
89493
89456
  // Score opportunity
89494
89457
  const score = scoreMinority(oD, pOd, cD, pCd);
89495
89458
  let mS = {
89496
- report: {
89497
- averageDVf: averageDVf,
89498
- averageRVf: averageRVf,
89499
- bucketsByDemographic: bucketsByDemo
89500
- },
89501
- // proportionalOpportunities: pOd,
89459
+ pivotByDemographic: bucketsByDemo,
89502
89460
  opportunityDistricts: oD,
89503
- // proportionalCoalitions: pCd,
89504
89461
  coalitionDistricts: cD,
89505
89462
  score: score,
89506
89463
  details: {}
@@ -89513,14 +89470,13 @@ exports.evalMinorityOpportunity = evalMinorityOpportunity;
89513
89470
  // how minority opportunities are estimated (so that 37% minority shares score
89514
89471
  // like 52% share).
89515
89472
  function scoreMinority(oD, pOd, cD, pCd) {
89516
- // Score minority opportunity [0–100] here; weight it later
89517
- const bonus = 100; // C.minorityBonus();
89473
+ // Score minority opportunity [0–100]
89518
89474
  const cDWeight = C.coalitionDistrictWeight();
89519
89475
  // Cap opportunity & coalition districts
89520
89476
  const oDCapped = Math.min(oD, pOd);
89521
89477
  const cdCapped = Math.min(cD, pCd);
89522
- const opportunityScore = (pOd > 0) ? Math.round((oDCapped / pOd) * bonus) : 0;
89523
- const coalitionScore = (pCd > 0) ? Math.round((cdCapped / pCd) * bonus) : 0;
89478
+ const opportunityScore = (pOd > 0) ? Math.round((oDCapped / pOd) * 100) : 0;
89479
+ const coalitionScore = (pCd > 0) ? Math.round((cdCapped / pCd) * 100) : 0;
89524
89480
  const score = Math.round(Math.min(opportunityScore + cDWeight * Math.max(coalitionScore - opportunityScore, 0), 100));
89525
89481
  return score;
89526
89482
  }
@@ -89561,7 +89517,6 @@ function exceedsMaximumThreshold(Mf) {
89561
89517
  return Mf > threshold;
89562
89518
  }
89563
89519
  function calcProportionalDistricts(proportion, nDistricts) {
89564
- // TODO - Maybe bump up to get a statewide proportion on the bubble to rate one district?
89565
89520
  const roundUp = 0.0;
89566
89521
  const fractional = proportion * nDistricts;
89567
89522
  const integral = Math.round(fractional + roundUp);
@@ -89613,7 +89568,6 @@ class Normalizer {
89613
89568
  }
89614
89569
  // Invert a value in the unit range [0.0–1.0] (so that bigger is better).
89615
89570
  invert() {
89616
- // TODO - DAVID: Can we make this throw an Error and expect that in unit test?
89617
89571
  console.assert(((this.wipNum >= 0.0) && (this.wipNum <= 1.0)), "Inverting: " + S.OUT_OF_RANGE_MSG, this.wipNum);
89618
89572
  this.wipNum = 1.0 - this.wipNum;
89619
89573
  return this.wipNum;
@@ -89637,7 +89591,6 @@ class Normalizer {
89637
89591
  unitize(begin_range, end_range) {
89638
89592
  const min_range = Math.min(begin_range, end_range);
89639
89593
  const max_range = Math.max(begin_range, end_range);
89640
- // TODO - DAVID: Can we make this throw an Error and expect that in unit test?
89641
89594
  console.assert(((this.wipNum >= min_range) && (this.wipNum <= max_range)), "Unitizing: " + S.OUT_OF_RANGE_MSG, this.wipNum);
89642
89595
  const ranged = this.wipNum - min_range;
89643
89596
  this.wipNum = Math.abs(ranged / (end_range - begin_range));
@@ -89647,7 +89600,6 @@ class Normalizer {
89647
89600
  // NOTE - If the range is already such that "bigger is better," then the closer
89648
89601
  // the value is to 1.0 (the best) the *less* it will decay.
89649
89602
  decay(fn = 0 /* Gravity */) {
89650
- // TODO - DAVID: Can we make this throw an Error and expect that in unit test?
89651
89603
  console.assert(((this.wipNum >= 0.0) && (this.wipNum <= 1.0)), "Decaying: " + S.OUT_OF_RANGE_MSG, this.wipNum);
89652
89604
  switch (fn) {
89653
89605
  case 0 /* Gravity */: {
@@ -89661,7 +89613,6 @@ class Normalizer {
89661
89613
  }
89662
89614
  // Translate a value in the unit range to the user-friendly range [0 – 100].
89663
89615
  rescale() {
89664
- // TODO - DAVID: Can we make this throw an Error and expect that in unit test?
89665
89616
  console.assert(((this.wipNum >= 0.0) && (this.wipNum <= 1.0)), "Rescaling: " + S.OUT_OF_RANGE_MSG, this.wipNum);
89666
89617
  this.normalizedNum = Math.round(this.wipNum * S.NORMALIZED_RANGE);
89667
89618
  return this.normalizedNum;
@@ -89698,12 +89649,12 @@ const C = __importStar(__webpack_require__(/*! ./config */ "./src/config.ts"));
89698
89649
  const normalize_1 = __webpack_require__(/*! ./normalize */ "./src/normalize.ts");
89699
89650
  // NOTE - I'm passing T.VfArray's into everything. District indices = array indices.
89700
89651
  // NOTE - I do not (cannot) assume that the values are sorted.
89652
+ // TODO - Revise this.
89701
89653
  // SCORE BIAS & COMPETITIVENESS
89702
89654
  /* SCORECARD FIELDS:
89703
89655
 
89704
89656
  * ??? [statewideV] (V) = the average statewide two-party vote for Democrats
89705
89657
 
89706
-
89707
89658
  * ^S# [bestS] = the Democratic seats closest to proportional
89708
89659
  * ^S% [bestSf] = the corresponding Democratic seat share
89709
89660
  * S! [fptpS] = the estimated number of Democratic seats using first past the post
@@ -89714,7 +89665,7 @@ const normalize_1 = __webpack_require__(/*! ./normalize */ "./src/normalize.ts")
89714
89665
  * BV_50 [bV50] = Votes bias as a fraction
89715
89666
  * decl [decl] = Declination
89716
89667
  * GS [gSym] = Global symmetry
89717
- * ?? [gamma] = TODO
89668
+ * ?? [gamma] = TODO: describe
89718
89669
 
89719
89670
  * EG [EG] = Efficiency gap as a fraction
89720
89671
  * BS_V [bSV] = Seats bias @ <V> (geometric)
@@ -89727,9 +89678,6 @@ const normalize_1 = __webpack_require__(/*! ./normalize */ "./src/normalize.ts")
89727
89678
  * B% [bias] = the bias calculated as S% – ^S%
89728
89679
  * B$ [bias.score] = the bias score normalized [0–100]
89729
89680
 
89730
- * UE# [unearnedS] = the number of unearned seats (R = positive; D = negative)
89731
- * I$ [impact.score] -- the unearned seats normalized [0–100] as impact
89732
-
89733
89681
  * R [bigR] = Overall responsiveness or winner’s bonus
89734
89682
  * r [littleR] = The point responsiveness at V% (the slope of the S(V) curve at <V>)
89735
89683
  * MIR [MIR] = Minimal inverse responsiveness
@@ -89744,85 +89692,66 @@ const normalize_1 = __webpack_require__(/*! ./normalize */ "./src/normalize.ts")
89744
89692
  * Md% [mDf] = the probability that the marginal seats will flip, so S% => ^S%
89745
89693
  * C$ [competitiveness.score] = the competitiveness score normalized [0–100]
89746
89694
 
89747
- * <P$ [score] = the combined partisan score used to compare plans *across* states
89748
- * >P$ [score2] = the combined partisan score used to compare plans *within* a state, along with traditional districting principles
89749
-
89750
89695
  */
89751
89696
  function scorePartisan(Vf, VfArray, options) {
89752
- const bAlternateMetrics = options.alternates;
89697
+ const bAdvanced = options.advanced;
89753
89698
  const bConstrained = options.constrained;
89754
89699
  const shift = options.shift;
89755
89700
  const N = VfArray.length;
89756
89701
  const bestS = bestSeats(N, Vf);
89757
89702
  const bestSf = bestSeatShare(bestS, N);
89758
- const fptpS = bAlternateMetrics ? estFPTPSeats(VfArray) : undefined;
89759
- // NOTE - When not constrained, use the full probability distribution to calc metrics.
89703
+ const fptpS = bAdvanced ? estFPTPSeats(VfArray) : undefined;
89704
+ // When not constrained, use the full probability distribution to calc metrics.
89760
89705
  const range = bConstrained ? C.competitiveDistribution() : undefined;
89761
89706
  const estS = estSeats(VfArray, range);
89762
89707
  const estSf = estSeatShare(estS, N);
89763
- const bias = estBias(estSf, bestSf);
89764
- const biasScore = scorebias(bias, Vf, estSf);
89765
- const unearnedS = estUnearnedSeats(bestS, estS);
89766
- const impactScore = scoreImpact(unearnedS, Vf, estSf, N);
89708
+ const deviation = estDeviation(estSf, bestSf);
89709
+ const proportionalityScore = scoreDeviation(deviation, Vf, estSf);
89767
89710
  // Calculate additional alternate metrics for reference
89768
- // NOTE - Use the uncompressed seat probability function
89769
89711
  const dSVpoints = inferSVpoints(Vf, VfArray, shift);
89770
89712
  const rSVpoints = invertSVPoints(dSVpoints);
89771
- // const dSVpoints = bAlternateMetrics ? inferSVpoints(Vf, VfArray, shift) : undefined;
89772
- const TOf = bAlternateMetrics ? calcTurnoutBias(Vf, VfArray) : undefined;
89773
- const Bs50 = bAlternateMetrics ? estPartisanBias(dSVpoints, N) : undefined;
89713
+ // const dSVpoints = bAdvanced ? inferSVpoints(Vf, VfArray, shift) : undefined;
89714
+ const TOf = bAdvanced ? calcTurnoutBias(Vf, VfArray) : undefined;
89715
+ const Bs50 = bAdvanced ? estPartisanBias(dSVpoints, N) : undefined;
89774
89716
  const Bs50f = (!(Bs50 === undefined)) ? U.trim(Bs50 / N) : undefined;
89775
- const Bv50f = bAlternateMetrics ? estVotesBias(dSVpoints, N) : undefined;
89776
- const rvPoints = bAlternateMetrics ? keyRVpoints(VfArray) : undefined;
89777
- const decl = bAlternateMetrics ? calcDeclination(VfArray) : undefined;
89778
- const gSym = bAlternateMetrics ? calcGlobalSymmetry(dSVpoints, rSVpoints, Bs50f) : undefined;
89779
- const EG = bAlternateMetrics ? calcEfficiencyGap(Vf, estSf) : undefined;
89780
- const BsGf = bAlternateMetrics ? estGeometricSeatsBias(Vf, dSVpoints, rSVpoints) : undefined;
89781
- const prop = bAlternateMetrics ? calcDisproportionality(Vf, estSf) : undefined;
89782
- const mMs = bAlternateMetrics ? estMeanMedianDifference(VfArray, Vf) : undefined;
89783
- const mMd = bAlternateMetrics ? estMeanMedianDifference(VfArray) : undefined;
89784
- const LO = bAlternateMetrics ? calcLopsidedOutcomes(VfArray) : undefined;
89717
+ const Bv50f = bAdvanced ? estVotesBias(dSVpoints, N) : undefined;
89718
+ const rvPoints = bAdvanced ? keyRVpoints(VfArray) : undefined;
89719
+ const decl = bAdvanced ? calcDeclination(VfArray) : undefined;
89720
+ const gSym = bAdvanced ? calcGlobalSymmetry(dSVpoints, rSVpoints, Bs50f) : undefined;
89721
+ const EG = bAdvanced ? calcEfficiencyGap(Vf, estSf) : undefined;
89722
+ const BsGf = bAdvanced ? estGeometricSeatsBias(Vf, dSVpoints, rSVpoints) : undefined;
89723
+ const prop = bAdvanced ? calcDisproportionality(Vf, estSf) : undefined;
89724
+ const mMs = bAdvanced ? estMeanMedianDifference(VfArray, Vf) : undefined;
89725
+ const mMd = bAdvanced ? estMeanMedianDifference(VfArray) : undefined;
89726
+ const LO = bAdvanced ? calcLopsidedOutcomes(VfArray) : undefined;
89785
89727
  // Calculate alternate responsiveness metrics for reference
89786
- const bigR = bAlternateMetrics ? calcBigR(Vf, estSf) : undefined;
89787
- const littleR = bAlternateMetrics ? estResponsiveness(Vf, dSVpoints) : undefined;
89788
- const MIR = (bAlternateMetrics && littleR) ? calcMinimalInverseResponsiveness(Vf, littleR) : undefined;
89789
- const rD = (!bConstrained || bAlternateMetrics) ? estResponsiveDistricts(VfArray) : undefined;
89790
- const rDf = bAlternateMetrics ? estResponsiveDistrictsShare(rD, N) : undefined;
89791
- const gamma = (bAlternateMetrics && littleR) ? calcGamma(Vf, estSf, littleR) : undefined;
89728
+ const bigR = bAdvanced ? calcBigR(Vf, estSf) : undefined;
89729
+ const littleR = bAdvanced ? estResponsiveness(Vf, dSVpoints) : undefined;
89730
+ const MIR = (bAdvanced && littleR) ? calcMinimalInverseResponsiveness(Vf, littleR) : undefined;
89731
+ const rD = (!bConstrained || bAdvanced) ? estResponsiveDistricts(VfArray) : undefined;
89732
+ const rDf = bAdvanced ? estResponsiveDistrictsShare(rD, N) : undefined;
89733
+ const gamma = (bAdvanced && littleR) ? calcGamma(Vf, estSf, littleR) : undefined;
89792
89734
  const Cn = countCompetitiveDistricts(VfArray);
89793
89735
  // NOTE - Cd by definition uses a *possibly* different (more narrow) probability
89794
89736
  // distribution than Rd.
89795
89737
  const cD = estCompetitiveDistricts(VfArray);
89796
- // const cD = bConstrained ? estCompetitiveDistricts(VfArray) : rD as number;
89797
89738
  const cDf = estCompetitiveDistrictsShare(cD, N);
89798
89739
  const competitivenessScore = scoreCompetitiveness(cDf);
89799
- // NOTE: Original version:
89800
- // const Mrange = findMarginalDistricts(Vf, VfArray, N);
89801
- // const Md = estMarginalCompetitiveDistricts(Mrange, VfArray);
89802
- // const Mdf = estMarginalCompetitiveShare(Md, Mrange);
89803
- // const competitivenessScore = scoreCompetitiveness(Mdf, cDf);
89804
89740
  let biasScoring = {
89805
89741
  bestS: bestS,
89806
89742
  bestSf: bestSf,
89807
89743
  estS: estS,
89808
89744
  estSf: estSf,
89809
- bias: bias,
89810
- score: biasScore
89811
- };
89812
- const impactScoring = {
89813
- unearnedS: unearnedS,
89814
- score: impactScore
89745
+ deviation: deviation,
89746
+ score: proportionalityScore
89815
89747
  };
89816
89748
  let competitiveScoring = {
89817
89749
  cSimple: Cn,
89818
89750
  cD: cD,
89819
89751
  cDf: cDf,
89820
- // mRange: Mrange,
89821
- // mD: Md,
89822
- // mDf: Mdf,
89823
89752
  score: competitivenessScore
89824
89753
  };
89825
- if (bAlternateMetrics) {
89754
+ if (bAdvanced) {
89826
89755
  biasScoring.tOf = TOf;
89827
89756
  biasScoring.fptpS = fptpS;
89828
89757
  biasScoring.bS50 = Bs50f;
@@ -89843,47 +89772,36 @@ function scorePartisan(Vf, VfArray, options) {
89843
89772
  competitiveScoring.rD = rD;
89844
89773
  competitiveScoring.rDf = rDf;
89845
89774
  }
89846
- // Weight bias, impact, and competitiveness into partisan scores to compare
89847
- // plans across states and within a state.
89848
- const bS = biasScoring.score;
89849
- const iS = impactScoring.score;
89850
- const cS = competitiveScoring.score;
89851
- const acrossStatesPartisanScore = weightPartisan(bS, iS, cS, 0 /* AcrossStates */);
89852
- const withinStatesPartisanScore = weightPartisan(bS, iS, cS, 1 /* WithinAState */);
89775
+ const DWins = VfArray.filter(x => x > 0.5);
89776
+ const RWins = VfArray.filter(x => x <= 0.5); // Ties credited to R's
89777
+ const averageDVf = (DWins.length > 0) ? U.avgArray(DWins) : undefined;
89778
+ const averageRVf = (RWins.length > 0) ? U.avgArray(RWins) : undefined;
89853
89779
  const s = {
89854
89780
  bias: biasScoring,
89855
- impact: impactScoring,
89856
- competitiveness: competitiveScoring,
89781
+ responsiveness: competitiveScoring,
89857
89782
  dSVpoints: dSVpoints,
89858
89783
  rSVpoints: rSVpoints,
89859
- score: acrossStatesPartisanScore,
89860
- score2: withinStatesPartisanScore,
89784
+ averageDVf: averageDVf,
89785
+ averageRVf: averageRVf,
89861
89786
  details: {}
89862
89787
  };
89863
89788
  return s;
89864
89789
  }
89865
89790
  exports.scorePartisan = scorePartisan;
89866
- function weightPartisan(bS, iS, cS, context) {
89867
- const bW = C.biasWeight(context);
89868
- const iW = C.impactWeight(context);
89869
- const cW = C.competitivenessWeight(context);
89870
- const score = Math.round(((bS * bW) + (iS * iW) + (cS * cW)) / (bW + iW + cW));
89871
- return score;
89872
- }
89873
- exports.weightPartisan = weightPartisan;
89874
89791
  function extraBonus(Vf) {
89875
- const okExtra = (0.5 - Vf) * (C.winnerBonus() - 1.0);
89792
+ const over50Pct = (Vf > 0.5) ? (Vf - 0.5) : (0.5 - Vf);
89793
+ const okExtra = over50Pct * (C.winnerBonus() - 1.0);
89876
89794
  return U.trim(okExtra);
89877
89795
  }
89878
89796
  exports.extraBonus = extraBonus;
89879
- function scorebias(rawBias, Vf, Sf) {
89797
+ function scoreDeviation(deviation, Vf, Sf) {
89880
89798
  if (isAntimajoritarian(Vf, Sf)) {
89881
89799
  return 0;
89882
89800
  }
89883
89801
  else {
89884
89802
  // Adjust bias to incorporate an acceptable winner's bonus based on Vf
89885
89803
  const extra = extraBonus(Vf);
89886
- const adjusted = adjustBias(Vf, rawBias, extra);
89804
+ const adjusted = adjustDeviation(Vf, deviation, extra);
89887
89805
  // Then normalize
89888
89806
  const _normalizer = new normalize_1.Normalizer(adjusted);
89889
89807
  const worst = C.biasRange()[C.BEG];
@@ -89897,15 +89815,24 @@ function scorebias(rawBias, Vf, Sf) {
89897
89815
  return score;
89898
89816
  }
89899
89817
  }
89900
- exports.scorebias = scorebias;
89901
- // Adjust bias to account for a winner's bonus
89902
- function adjustBias(Vf, bias, extra) {
89903
- if (Vf > 0.5)
89904
- return Math.min(bias - extra, 0);
89905
- else
89906
- return Math.max(bias - extra, 0);
89818
+ exports.scoreDeviation = scoreDeviation;
89819
+ // Adjust deviation from proportionality to account for a winner's bonus
89820
+ // * If the bias is in the *same* direction as the statewide vote %, then
89821
+ // discount the bias by the winner's bonus (extra).
89822
+ // * But if the bias and statewide vote % go in opposite directions, leave the
89823
+ // bias unadjusted.
89824
+ function adjustDeviation(Vf, deviation, extra) {
89825
+ let adjusted = deviation;
89826
+ if ((Vf > 0.5) && (deviation < 0)) {
89827
+ adjusted = Math.min(deviation + extra, 0);
89828
+ }
89829
+ else if ((Vf < 0.5) && (deviation > 0)) {
89830
+ adjusted = Math.max(deviation - extra, 0);
89831
+ }
89832
+ return adjusted;
89907
89833
  }
89908
- exports.adjustBias = adjustBias;
89834
+ exports.adjustDeviation = adjustDeviation;
89835
+ // NOTE - Not used.
89909
89836
  // Normalize unearned seats
89910
89837
  function scoreImpact(rawUE, Vf, Sf, N) {
89911
89838
  if (isAntimajoritarian(Vf, Sf)) {
@@ -89914,7 +89841,7 @@ function scoreImpact(rawUE, Vf, Sf, N) {
89914
89841
  else {
89915
89842
  // Adjust impact to incorporate an acceptable winner's bonus based on Vf
89916
89843
  const extra = extraBonus(Vf);
89917
- const adjustedBias = adjustBias(Vf, rawUE / N, extra);
89844
+ const adjustedBias = adjustDeviation(Vf, rawUE / N, extra);
89918
89845
  const adjustedImpact = adjustedBias * N;
89919
89846
  // Then normalize
89920
89847
  const _normalizer = new normalize_1.Normalizer(adjustedImpact);
@@ -89937,9 +89864,8 @@ function isAntimajoritarian(Vf, Sf) {
89937
89864
  return bDem || bRep;
89938
89865
  }
89939
89866
  exports.isAntimajoritarian = isAntimajoritarian;
89940
- // COMPETITIVENESS - Revised 06/23/2020
89941
89867
  // Normalize overall competitiveness - Raw values are in the range [0.0–1.0].
89942
- // But the practical max is more like 2/3's, so unitize that range to [0.0–1.0].
89868
+ // But the practical max is more like 3/4's, so unitize that range to [0.0–1.0].
89943
89869
  // Then scale the values to [0–100].
89944
89870
  function scoreCompetitiveness(Cdf) {
89945
89871
  const _normalizer = new normalize_1.Normalizer(Cdf);
@@ -90032,8 +89958,6 @@ function inferSVpoints(Vf, VfArray, shift, range) {
90032
89958
  const shiftedVPI = shiftDistricts(Vf, VfArray, shiftedVf, shift);
90033
89959
  const shiftedSf = estSeats(shiftedVPI, range) / nDistricts;
90034
89960
  SVpoints.push({ v: shiftedVf, s: shiftedSf });
90035
- // TODO - Why can't I trim these? Why does that only break the Hypotheticals?!?
90036
- // SVpoints.push({v: U.trim(Number(shiftedVf)), s: shiftedSf});
90037
89961
  }
90038
89962
  return SVpoints;
90039
89963
  }
@@ -90118,11 +90042,12 @@ function estFPTPSeats(VfArray) {
90118
90042
  }));
90119
90043
  }
90120
90044
  exports.estFPTPSeats = estFPTPSeats;
90121
- // B% - The bias calculated as ^S% — S%
90122
- function estBias(estSf, bestSf) {
90045
+ // B% - The deviation from proportionality calculated as ^S% — S%
90046
+ function estDeviation(estSf, bestSf) {
90123
90047
  return U.trim(bestSf - estSf);
90124
90048
  }
90125
- exports.estBias = estBias;
90049
+ exports.estDeviation = estDeviation;
90050
+ // NOTE - Not used.
90126
90051
  // UE# - The estimated # of unearned seats
90127
90052
  // UE_# from http://bit.ly/2Fcuf4q
90128
90053
  function estUnearnedSeats(proportional, probable) {
@@ -90227,11 +90152,9 @@ function estCompetitiveDistricts(VfArray, bCompress = false) {
90227
90152
  return U.trim(U.sumArray(VfArray.map(v => estDistrictCompetitiveness(v, bCompress))));
90228
90153
  }
90229
90154
  exports.estCompetitiveDistricts = estCompetitiveDistricts;
90230
- // COMPETITIVENESS - Modified 06/22/2020
90231
- // Re-scale a Democratic vote share to the competitive range (e.g., 45–55%).
90232
90155
  function estDistrictCompetitiveness(Vf, bCompress = false) {
90233
90156
  const _normalizer = new normalize_1.Normalizer(Vf);
90234
- // The end points of a compressed probability distribution
90157
+ // The end points of the probability distribution
90235
90158
  // NOTE - These aren't the points where races start or stop being contested,
90236
90159
  // just the end points of a distribution that yields the desired behavior
90237
90160
  // in the typical competitive range [45-55%].
@@ -90456,9 +90379,6 @@ function keyRVpoints(VfArray) {
90456
90379
  const nDistricts = VfArray.length;
90457
90380
  const estS = estSeats(VfArray);
90458
90381
  const Sb = estSeatShare(estS, nDistricts);
90459
- // TODO - Understand why the corresponding V to Sb is always @ 0.5.
90460
- // John Nagle: "This is the dividing vote for party A vs party B wins defined
90461
- // by Warrington. My modification just puts fractions of districts to the each side."
90462
90382
  const Rb = Sb / 2;
90463
90383
  const Ra = (1 + Sb) / 2;
90464
90384
  const Vb = 1.0 - (U.sumArray(VfArray.map(v => estSeatProbability(v) * v))) / estS;
@@ -90598,23 +90518,19 @@ function calcGamma(Vf, Sf, r) {
90598
90518
  exports.calcGamma = calcGamma;
90599
90519
  // HELPERS
90600
90520
  function printPartisanScorecardHeader() {
90601
- console.log('XX, Name, N, V%, ^S#, S#, B%, B$, UE#, I$, C#, Cd, Cdf, C$, <P$');
90521
+ console.log('XX, Name, N, V%, ^S#, S#, B%, B$, C#, Cd, Cdf, C$');
90602
90522
  }
90603
90523
  exports.printPartisanScorecardHeader = printPartisanScorecardHeader;
90604
90524
  function printPartisanScorecardRow(xx, name, N, Vf, s) {
90605
- console.log('%s, %s, %i, %f, %i, %f, %f, %i, %f, %i, %i, %f, %f, %i, %i', xx, // 1
90525
+ console.log('%s, %s, %i, %f, %i, %f, %f, %i, %i, %f, %f, %i', xx, // 1
90606
90526
  name, // 2
90607
90527
  N, // 3
90608
90528
  Vf, // 4
90609
90529
  s.bias.bestS, // 5
90610
90530
  s.bias.estS, // 6
90611
- s.bias.bias, // 7
90612
- s.bias.score, s.impact.unearnedS, // 9
90613
- s.impact.score, s.competitiveness.cSimple, // 11
90614
- s.competitiveness.cD, s.competitiveness.cDf,
90615
- // s.competitiveness.mD,
90616
- s.competitiveness.score, s.score // 15
90617
- );
90531
+ s.bias.deviation, // 7
90532
+ s.bias.score, s.responsiveness.cSimple, // 9
90533
+ s.responsiveness.cD, s.responsiveness.cDf, s.responsiveness.score);
90618
90534
  }
90619
90535
  exports.printPartisanScorecardRow = printPartisanScorecardRow;
90620
90536
  // Generate partisan details (Table 1)
@@ -90623,12 +90539,12 @@ function printPartisanDetailsHeader() {
90623
90539
  }
90624
90540
  exports.printPartisanDetailsHeader = printPartisanDetailsHeader;
90625
90541
  function printPartisanDetailsRow(xx, name, N, Vf, s) {
90626
- console.log('%s, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f', xx, Vf, s.bias.estSf, s.bias.bias, // Simple bias
90542
+ console.log('%s, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f', xx, Vf, s.bias.estSf, s.bias.deviation, // Simple deviation from proportionality
90627
90543
  s.bias.bS50, s.bias.bV50, s.bias.decl, s.bias.gSym, s.bias.eG, s.bias.bSV, // Beta
90628
90544
  s.bias.prop, // PR
90629
- s.bias.mMs, s.bias.tOf, s.bias.mMd, s.bias.lO, s.competitiveness.rD, s.competitiveness.bigR, s.competitiveness.littleR, s.competitiveness.mIR, // Zeta
90630
- s.competitiveness.cD, // COMPETITIVENESS - Temporary to confirm new calc
90631
- s.competitiveness.cDf);
90545
+ s.bias.mMs, s.bias.tOf, s.bias.mMd, s.bias.lO, s.responsiveness.rD, s.responsiveness.bigR, s.responsiveness.littleR, s.responsiveness.mIR, // Zeta
90546
+ s.responsiveness.cD, // COMPETITIVENESS - Temporary to confirm new calc
90547
+ s.responsiveness.cDf);
90632
90548
  }
90633
90549
  exports.printPartisanDetailsRow = printPartisanDetailsRow;
90634
90550
 
@@ -90655,7 +90571,6 @@ var __importStar = (this && this.__importStar) || function (mod) {
90655
90571
  return result;
90656
90572
  };
90657
90573
  Object.defineProperty(exports, "__esModule", { value: true });
90658
- const S = __importStar(__webpack_require__(/*! ./settings */ "./src/settings.ts"));
90659
90574
  const C = __importStar(__webpack_require__(/*! ./config */ "./src/config.ts"));
90660
90575
  const compact_1 = __webpack_require__(/*! ./compact */ "./src/compact.ts");
90661
90576
  const cohesive_1 = __webpack_require__(/*! ./cohesive */ "./src/cohesive.ts");
@@ -90671,7 +90586,8 @@ function scorePlan(p, overridesJSON) {
90671
90586
  const cS = {
90672
90587
  score: compactnessScore,
90673
90588
  reock: reockM,
90674
- polsby: polsbyM
90589
+ polsby: polsbyM,
90590
+ details: {}
90675
90591
  };
90676
90592
  // Splitting
90677
90593
  const CxD = p.splittingProfile.countyPopByDistrict;
@@ -90683,40 +90599,26 @@ function scorePlan(p, overridesJSON) {
90683
90599
  const sS = {
90684
90600
  score: splittingScore,
90685
90601
  county: countyM,
90686
- district: districtM
90602
+ district: districtM,
90603
+ details: {}
90687
90604
  };
90688
90605
  // Population deviation
90689
90606
  const pdS = equal_1.doPopulationDeviation(p.populationProfile.totalPopByDistrict, p.populationProfile.targetSize, p.legislativeDistricts);
90690
- // Combine traditional principles into a score to compare plans w/in a state
90691
- const tpScore = weightTradtionalPrinciples(cS.score, sS.score, pdS.normalized, 1 /* WithinAState */);
90692
- // Populate the "best" traditional principles scorecard
90693
- const tpS = {
90694
- score: tpScore,
90695
- compactness: cS,
90696
- splitting: sS,
90697
- populationDeviation: pdS,
90698
- details: {}
90699
- };
90700
- // PARTISAN ("fair") subcategories - bias, impact, & competitiveness (plus lots of supporting measures)
90607
+ // Partisan - bias & responsiveness
90701
90608
  const options = {
90702
- alternates: true,
90609
+ advanced: true,
90703
90610
  constrained: false,
90704
90611
  shift: 0 /* Proportional */
90705
90612
  };
90706
90613
  const pS = partisan_1.scorePartisan(p.partisanProfile.statewideVf, p.partisanProfile.vfArray, options);
90707
- // Combine the partisan/partisan & traditional principles/best scores into an overall
90708
- // score for comparing plans w/in a state
90709
- let score = weightOverall(pS.score2, tpS.score, 1 /* WithinAState */);
90710
90614
  const mS = minority_1.evalMinorityOpportunity(p);
90711
- // Add minority bonus, keeping score to the range [0–100]
90712
- const bonus = C.minorityBonus() * (mS.score / 100);
90713
- score = mixinMinorityBonus(score, bonus);
90714
- // Roll up an overall scorecard
90615
+ // Combine the pieces into a scorecard
90715
90616
  const scorecard = {
90716
90617
  partisan: pS,
90717
90618
  minority: mS,
90718
- traditionalPrinciples: tpS,
90719
- score: score,
90619
+ compactness: cS,
90620
+ splitting: sS,
90621
+ populationDeviation: pdS,
90720
90622
  details: {}
90721
90623
  };
90722
90624
  return scorecard;
@@ -90737,44 +90639,20 @@ function weightSplitting(csS, dsS) {
90737
90639
  return score;
90738
90640
  }
90739
90641
  exports.weightSplitting = weightSplitting;
90740
- function weightTradtionalPrinciples(cS, sS, pdS, context) {
90741
- const cW = C.compactnessWeight(context);
90742
- const sW = C.splittingWeight(context);
90743
- const pdW = C.popdevWeight(context);
90744
- const score = Math.round(((cS * cW) + (sS * sW) + (pdS * pdW)) / (cW + sW + pdW));
90745
- return score;
90746
- }
90747
- exports.weightTradtionalPrinciples = weightTradtionalPrinciples;
90748
- function weightOverall(pS, tpS, context) {
90749
- const pW = C.partisanWeight(context);
90750
- const tpW = C.traditionalPrinciplesWeight(context);
90751
- const score = Math.round(((pS * pW) + (tpS * tpW)) / (pW + tpW));
90752
- return score;
90753
- }
90754
- exports.weightOverall = weightOverall;
90755
- function mixinMinorityBonus(score, minorityBonus) {
90756
- const modifiedScore = Math.min(score + minorityBonus, S.NORMALIZED_RANGE);
90757
- return modifiedScore;
90758
- }
90759
- exports.mixinMinorityBonus = mixinMinorityBonus;
90760
90642
  function printScorecardHeader() {
90761
- console.log('XX, Name, N, V%, ^S#, S#, B%, B$, UE#, I$, C#, Cd, Cdf, C$, >P$, Rc, Rc$, Pc, Pc$, G$, Cs, Cs$, Ds, Ds$, S$, Eq, Eq$, T$, Od, Md, M$, $$$');
90643
+ console.log('XX, Name, N, V%, ^S#, S#, B%, B$, C#, Cd, Cdf, C$, Rc, Rc$, Pc, Pc$, G$, Cs, Cs$, Ds, Ds$, S$, Eq, Eq$, Od, Md, M$');
90762
90644
  }
90763
90645
  exports.printScorecardHeader = printScorecardHeader;
90764
90646
  function printScorecardRow(xx, name, N, Vf, s) {
90765
- console.log('%s, %s, %i, %f, %i, %f, %f, %i, %f, %i, %i, %f, %f, %i, %i, %f, %i, %f, %i, %i, %f, %i, %f, %i, %i, %f, %i, %i, %f, %f, %i, %i', xx, // 1
90647
+ console.log('%s, %s, %i, %f, %i, %f, %f, %i, %i, %f, %f, %i, %f, %i, %f, %i, %i, %f, %i, %f, %i, %i, %f, %i, %f, %f, %i', xx, // 1
90766
90648
  name, // 2
90767
90649
  N, // 3
90768
90650
  Vf, // 4
90769
90651
  s.partisan.bias.bestS, // 5
90770
90652
  s.partisan.bias.estS, // 6
90771
- s.partisan.bias.bias, // 7
90772
- s.partisan.bias.score, s.partisan.impact.unearnedS, // 9
90773
- s.partisan.impact.score, s.partisan.competitiveness.cSimple, // 11
90774
- s.partisan.competitiveness.cD, s.partisan.competitiveness.cDf,
90775
- // s.partisan.competitiveness.mD,
90776
- s.partisan.competitiveness.score, s.partisan.score2, // 15
90777
- s.traditionalPrinciples.compactness.reock.raw, s.traditionalPrinciples.compactness.reock.normalized, s.traditionalPrinciples.compactness.polsby.raw, s.traditionalPrinciples.compactness.polsby.normalized, s.traditionalPrinciples.compactness.score, s.traditionalPrinciples.splitting.county.raw, s.traditionalPrinciples.splitting.county.normalized, s.traditionalPrinciples.splitting.district.raw, s.traditionalPrinciples.splitting.district.normalized, s.traditionalPrinciples.splitting.score, s.traditionalPrinciples.populationDeviation.raw, s.traditionalPrinciples.populationDeviation.normalized, s.traditionalPrinciples.score, s.minority.opportunityDistricts, s.minority.coalitionDistricts, s.minority.score, s.score);
90653
+ s.partisan.bias.deviation, // 7
90654
+ s.partisan.bias.score, s.partisan.responsiveness.cSimple, // 9
90655
+ s.partisan.responsiveness.cD, s.partisan.responsiveness.cDf, s.partisan.responsiveness.score, s.compactness.reock.raw, s.compactness.reock.normalized, s.compactness.polsby.raw, s.compactness.polsby.normalized, s.compactness.score, s.splitting.county.raw, s.splitting.county.normalized, s.splitting.district.raw, s.splitting.district.normalized, s.splitting.score, s.populationDeviation.raw, s.populationDeviation.normalized, s.minority.opportunityDistricts, s.minority.coalitionDistricts, s.minority.score);
90778
90656
  }
90779
90657
  exports.printScorecardRow = printScorecardRow;
90780
90658
 
@@ -102923,10 +102801,10 @@ class AnalyticsSession {
102923
102801
  const scorecard = this._scorecard;
102924
102802
  const r = {
102925
102803
  proportionality: scorecard.partisan.bias.score,
102926
- competitiveness: scorecard.partisan.competitiveness.score,
102804
+ competitiveness: scorecard.partisan.responsiveness.score,
102927
102805
  minorityRights: scorecard.minority.score,
102928
- compactness: scorecard.traditionalPrinciples.compactness.score,
102929
- splitting: scorecard.traditionalPrinciples.splitting.score
102806
+ compactness: scorecard.compactness.score,
102807
+ splitting: scorecard.splitting.score
102930
102808
  };
102931
102809
  return r;
102932
102810
  }
@@ -104424,7 +104302,7 @@ function doAnalyzePostProcessing(s, bLog = false) {
104424
104302
  // Just populate the normalized population deviation score in the test
104425
104303
  const scorecard = s._scorecard;
104426
104304
  let popDev = s.getTest(4 /* PopulationDeviation */);
104427
- popDev['normalizedScore'] = scorecard.traditionalPrinciples.populationDeviation.normalized;
104305
+ popDev['normalizedScore'] = scorecard.populationDeviation.normalized;
104428
104306
  const datasets = {
104429
104307
  shapes: S.SHAPES,
104430
104308
  census: U.deepCopy(s.config['descriptions']['CENSUS']),
@@ -104433,12 +104311,12 @@ function doAnalyzePostProcessing(s, bLog = false) {
104433
104311
  };
104434
104312
  scorecard.partisan.details['election'] = datasets.election;
104435
104313
  scorecard.minority.details['vap'] = datasets.vap;
104436
- scorecard.traditionalPrinciples.details['shapes'] = datasets.shapes;
104437
- scorecard.traditionalPrinciples.details['census'] = datasets.census;
104314
+ scorecard.details['shapes'] = datasets.shapes;
104315
+ scorecard.details['census'] = datasets.census;
104438
104316
  const simpleSplits = s.getTest(5 /* UnexpectedCountySplits */);
104439
- scorecard.traditionalPrinciples.details['unexpectedAffected'] = simpleSplits['score'];
104440
- scorecard.traditionalPrinciples.details['nSplits'] = simpleSplits['details']['nSplits'];
104441
- scorecard.traditionalPrinciples.details['countiesSplitUnexpectedly'] = U.deepCopy(simpleSplits['details']['countiesSplitUnexpectedly']);
104317
+ scorecard.compactness.details['unexpectedAffected'] = simpleSplits['score'];
104318
+ scorecard.compactness.details['nSplits'] = simpleSplits['details']['nSplits'];
104319
+ scorecard.compactness.details['countiesSplitUnexpectedly'] = U.deepCopy(simpleSplits['details']['countiesSplitUnexpectedly']);
104442
104320
  // NOTE - Add split precincts in dra-client directly
104443
104321
  // Derive secondary tests
104444
104322
  analyze_1.doDeriveSecondaryTests(s, bLog);
@@ -104583,10 +104461,10 @@ function scorePlan(s, p, bLog = false, overridesJSON) {
104583
104461
  // doHasEqualPopulations() to use later.This is preserving the old calling sequence.
104584
104462
  let test = s.getTest(4 /* PopulationDeviation */);
104585
104463
  // Get the raw population deviation
104586
- const popDev = scorecard.traditionalPrinciples.populationDeviation.raw;
104464
+ const popDev = scorecard.populationDeviation.raw;
104587
104465
  // Populate the test entry
104588
104466
  test['score'] = popDev;
104589
- test['details'] = { 'maxDeviation': scorecard.traditionalPrinciples.populationDeviation.notes['maxDeviation'] };
104467
+ test['details'] = { 'maxDeviation': scorecard.populationDeviation.notes['maxDeviation'] };
104590
104468
  // Populate the N+1 summary "district" in district.statistics
104591
104469
  let totalPop = s.districts.statistics[D.DistrictField.TotalPop];
104592
104470
  let popDevPct = s.districts.statistics[D.DistrictField.PopDevPct];