@digipair/skill-llm 0.25.6 → 0.27.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/index.cjs2.js +30 -6
- package/index.esm2.js +30 -6
- package/package.json +1 -1
- package/schema.fr.json +277 -0
- package/schema.json +35 -35
package/index.cjs2.js
CHANGED
@@ -23509,14 +23509,14 @@ function indent(str, spaces) {
|
|
23509
23509
|
var match = parseIdentifier(input, i1, namePart) || namePart && parseAdditionalSymbol(input, i1) || maybeSpace && parseSpaces(input, i1);
|
23510
23510
|
// match is required
|
23511
23511
|
if (!match) {
|
23512
|
-
return
|
23512
|
+
return nextMatch = nextMatch1, i = i1, tokens = tokens1, {
|
23513
23513
|
v: nextMatch1
|
23514
23514
|
};
|
23515
23515
|
}
|
23516
23516
|
var token = match.token, offset = match.offset;
|
23517
23517
|
i1 += offset;
|
23518
23518
|
if (token === " ") {
|
23519
|
-
return
|
23519
|
+
return nextMatch = nextMatch1, i = i1, tokens = tokens1, "continue";
|
23520
23520
|
}
|
23521
23521
|
tokens1 = _to_consumable_array$y(tokens1).concat([
|
23522
23522
|
token
|
@@ -23535,7 +23535,7 @@ function indent(str, spaces) {
|
|
23535
23535
|
if (contextKeys.some(function(el) {
|
23536
23536
|
return el.startsWith(name);
|
23537
23537
|
})) {
|
23538
|
-
return
|
23538
|
+
return nextMatch = nextMatch1, i = i1, tokens = tokens1, "continue";
|
23539
23539
|
}
|
23540
23540
|
if (dateTimeIdentifiers.some(function(el) {
|
23541
23541
|
return el === name;
|
@@ -23554,9 +23554,9 @@ function indent(str, spaces) {
|
|
23554
23554
|
if (dateTimeIdentifiers.some(function(el) {
|
23555
23555
|
return el.startsWith(name);
|
23556
23556
|
})) {
|
23557
|
-
return
|
23557
|
+
return nextMatch = nextMatch1, i = i1, tokens = tokens1, "continue";
|
23558
23558
|
}
|
23559
|
-
return
|
23559
|
+
return nextMatch = nextMatch1, i = i1, tokens = tokens1, {
|
23560
23560
|
v: nextMatch1
|
23561
23561
|
};
|
23562
23562
|
};
|
@@ -77102,7 +77102,31 @@ let LLMService = class LLMService {
|
|
77102
77102
|
pinsSettings
|
77103
77103
|
], context)))
|
77104
77104
|
]);
|
77105
|
-
|
77105
|
+
let model;
|
77106
|
+
let service;
|
77107
|
+
const result = await chain.invoke({}, {
|
77108
|
+
callbacks: [
|
77109
|
+
{
|
77110
|
+
handleChatModelStart: async ({ id }, _1, _2, _3, extrasParams)=>{
|
77111
|
+
model = (extrasParams == null ? void 0 : extrasParams['invocation_params']).model;
|
77112
|
+
service = id[2];
|
77113
|
+
},
|
77114
|
+
handleLLMStart: async ({ id }, _1, _2, _3, extrasParams)=>{
|
77115
|
+
model = (extrasParams == null ? void 0 : extrasParams['invocation_params']).model;
|
77116
|
+
service = id[2];
|
77117
|
+
},
|
77118
|
+
handleLLMEnd: async (infos)=>{
|
77119
|
+
var _infos_llmOutput;
|
77120
|
+
const { completionTokens, promptTokens } = ((_infos_llmOutput = infos.llmOutput) == null ? void 0 : _infos_llmOutput['tokenUsage']) || {
|
77121
|
+
completionTokens: 0,
|
77122
|
+
promptTokens: 0
|
77123
|
+
};
|
77124
|
+
const skillLogger = require('@digipair/skill-logger');
|
77125
|
+
await skillLogger.addConsumption(context, service, model, promptTokens, completionTokens);
|
77126
|
+
}
|
77127
|
+
}
|
77128
|
+
]
|
77129
|
+
});
|
77106
77130
|
return result;
|
77107
77131
|
}
|
77108
77132
|
async reasoningStep(params, _pinsSettingsList, context) {
|
package/index.esm2.js
CHANGED
@@ -23489,14 +23489,14 @@ function indent(str, spaces) {
|
|
23489
23489
|
var match = parseIdentifier(input, i1, namePart) || namePart && parseAdditionalSymbol(input, i1) || maybeSpace && parseSpaces(input, i1);
|
23490
23490
|
// match is required
|
23491
23491
|
if (!match) {
|
23492
|
-
return
|
23492
|
+
return i = i1, tokens = tokens1, nextMatch = nextMatch1, {
|
23493
23493
|
v: nextMatch1
|
23494
23494
|
};
|
23495
23495
|
}
|
23496
23496
|
var token = match.token, offset = match.offset;
|
23497
23497
|
i1 += offset;
|
23498
23498
|
if (token === " ") {
|
23499
|
-
return
|
23499
|
+
return i = i1, tokens = tokens1, nextMatch = nextMatch1, "continue";
|
23500
23500
|
}
|
23501
23501
|
tokens1 = _to_consumable_array$y(tokens1).concat([
|
23502
23502
|
token
|
@@ -23515,7 +23515,7 @@ function indent(str, spaces) {
|
|
23515
23515
|
if (contextKeys.some(function(el) {
|
23516
23516
|
return el.startsWith(name);
|
23517
23517
|
})) {
|
23518
|
-
return
|
23518
|
+
return i = i1, tokens = tokens1, nextMatch = nextMatch1, "continue";
|
23519
23519
|
}
|
23520
23520
|
if (dateTimeIdentifiers.some(function(el) {
|
23521
23521
|
return el === name;
|
@@ -23534,9 +23534,9 @@ function indent(str, spaces) {
|
|
23534
23534
|
if (dateTimeIdentifiers.some(function(el) {
|
23535
23535
|
return el.startsWith(name);
|
23536
23536
|
})) {
|
23537
|
-
return
|
23537
|
+
return i = i1, tokens = tokens1, nextMatch = nextMatch1, "continue";
|
23538
23538
|
}
|
23539
|
-
return
|
23539
|
+
return i = i1, tokens = tokens1, nextMatch = nextMatch1, {
|
23540
23540
|
v: nextMatch1
|
23541
23541
|
};
|
23542
23542
|
};
|
@@ -77082,7 +77082,31 @@ let LLMService = class LLMService {
|
|
77082
77082
|
pinsSettings
|
77083
77083
|
], context)))
|
77084
77084
|
]);
|
77085
|
-
|
77085
|
+
let model;
|
77086
|
+
let service;
|
77087
|
+
const result = await chain.invoke({}, {
|
77088
|
+
callbacks: [
|
77089
|
+
{
|
77090
|
+
handleChatModelStart: async ({ id }, _1, _2, _3, extrasParams)=>{
|
77091
|
+
model = (extrasParams == null ? void 0 : extrasParams['invocation_params']).model;
|
77092
|
+
service = id[2];
|
77093
|
+
},
|
77094
|
+
handleLLMStart: async ({ id }, _1, _2, _3, extrasParams)=>{
|
77095
|
+
model = (extrasParams == null ? void 0 : extrasParams['invocation_params']).model;
|
77096
|
+
service = id[2];
|
77097
|
+
},
|
77098
|
+
handleLLMEnd: async (infos)=>{
|
77099
|
+
var _infos_llmOutput;
|
77100
|
+
const { completionTokens, promptTokens } = ((_infos_llmOutput = infos.llmOutput) == null ? void 0 : _infos_llmOutput['tokenUsage']) || {
|
77101
|
+
completionTokens: 0,
|
77102
|
+
promptTokens: 0
|
77103
|
+
};
|
77104
|
+
const skillLogger = require('@digipair/skill-logger');
|
77105
|
+
await skillLogger.addConsumption(context, service, model, promptTokens, completionTokens);
|
77106
|
+
}
|
77107
|
+
}
|
77108
|
+
]
|
77109
|
+
});
|
77086
77110
|
return result;
|
77087
77111
|
}
|
77088
77112
|
async reasoningStep(params, _pinsSettingsList, context) {
|
package/package.json
CHANGED
package/schema.fr.json
ADDED
@@ -0,0 +1,277 @@
|
|
1
|
+
{
|
2
|
+
"openapi": "3.0.0",
|
3
|
+
"info": {
|
4
|
+
"title": "@digipair/skill-llm",
|
5
|
+
"summary": "Gestion de modèles LLM",
|
6
|
+
"description": "La compétence @digipair/skill-llm est une compétence qui permet d'utiliser un modèle de langage à grande échelle.",
|
7
|
+
"version": "0.1.0",
|
8
|
+
"x-icon": "🚀"
|
9
|
+
},
|
10
|
+
"paths": {
|
11
|
+
"/invoke": {
|
12
|
+
"post": {
|
13
|
+
"tags": ["service"],
|
14
|
+
"summary": "Raisonnement LLM",
|
15
|
+
"parameters": [
|
16
|
+
{
|
17
|
+
"name": "execute",
|
18
|
+
"required": true,
|
19
|
+
"description": "Exécuter",
|
20
|
+
"schema": {
|
21
|
+
"type": "array",
|
22
|
+
"items": {
|
23
|
+
"$ref": "https://schemas.digipair.ai/pinsSettings"
|
24
|
+
}
|
25
|
+
}
|
26
|
+
},
|
27
|
+
{
|
28
|
+
"name": "input",
|
29
|
+
"summary": "Données d'entrée",
|
30
|
+
"required": false,
|
31
|
+
"description": "input",
|
32
|
+
"schema": {
|
33
|
+
"type": "object"
|
34
|
+
}
|
35
|
+
}
|
36
|
+
],
|
37
|
+
"x-events": []
|
38
|
+
}
|
39
|
+
},
|
40
|
+
"/reasoningStep": {
|
41
|
+
"post": {
|
42
|
+
"tags": ["service"],
|
43
|
+
"summary": "Etape de raisonnement",
|
44
|
+
"parameters": [
|
45
|
+
{
|
46
|
+
"name": "attributes",
|
47
|
+
"summary": "Données",
|
48
|
+
"required": true,
|
49
|
+
"description": "attributes",
|
50
|
+
"schema": {
|
51
|
+
"type": "array",
|
52
|
+
"items": {
|
53
|
+
"$ref": "#/components/schemas/reasonningStepAttribute"
|
54
|
+
}
|
55
|
+
}
|
56
|
+
}
|
57
|
+
],
|
58
|
+
"x-events": []
|
59
|
+
}
|
60
|
+
},
|
61
|
+
"/basic": {
|
62
|
+
"post": {
|
63
|
+
"tags": ["service"],
|
64
|
+
"summary": "Générer",
|
65
|
+
"description": "Génération de texte via un model LLM",
|
66
|
+
"parameters": [
|
67
|
+
{
|
68
|
+
"name": "prompt",
|
69
|
+
"summary": "Prompt",
|
70
|
+
"required": true,
|
71
|
+
"description": "Prompt à exécuter via le model LLM",
|
72
|
+
"schema": {
|
73
|
+
"type": "string"
|
74
|
+
}
|
75
|
+
},
|
76
|
+
{
|
77
|
+
"name": "model",
|
78
|
+
"summary": "Modèle LLM",
|
79
|
+
"required": false,
|
80
|
+
"description": "Modèle LLM à charger",
|
81
|
+
"schema": {
|
82
|
+
"type": "array",
|
83
|
+
"items": {
|
84
|
+
"$ref": "https://schemas.digipair.ai/pinsSettings"
|
85
|
+
}
|
86
|
+
}
|
87
|
+
},
|
88
|
+
{
|
89
|
+
"name": "schema",
|
90
|
+
"summary": "Schema",
|
91
|
+
"required": false,
|
92
|
+
"description": "Schema JSON des données à extraire",
|
93
|
+
"schema": {
|
94
|
+
"type": "object"
|
95
|
+
}
|
96
|
+
}
|
97
|
+
],
|
98
|
+
"x-events": []
|
99
|
+
}
|
100
|
+
},
|
101
|
+
"/vision": {
|
102
|
+
"post": {
|
103
|
+
"tags": ["service"],
|
104
|
+
"summary": "Voir",
|
105
|
+
"description": "Utiliser un model LLM qui sait lire des images et du texte en entrée",
|
106
|
+
"parameters": [
|
107
|
+
{
|
108
|
+
"name": "model",
|
109
|
+
"summary": "Modèle Vision",
|
110
|
+
"required": false,
|
111
|
+
"description": "Modèle Vision à charger",
|
112
|
+
"schema": {
|
113
|
+
"type": "array",
|
114
|
+
"items": {
|
115
|
+
"$ref": "https://schemas.digipair.ai/pinsSettings"
|
116
|
+
}
|
117
|
+
}
|
118
|
+
},
|
119
|
+
{
|
120
|
+
"name": "prompt",
|
121
|
+
"summary": "Prompt",
|
122
|
+
"required": true,
|
123
|
+
"description": "Prompt à exécuter sur le modèle LLM",
|
124
|
+
"schema": {
|
125
|
+
"type": "string"
|
126
|
+
}
|
127
|
+
},
|
128
|
+
{
|
129
|
+
"name": "image",
|
130
|
+
"summary": "Image",
|
131
|
+
"required": true,
|
132
|
+
"description": "Image en base 64",
|
133
|
+
"schema": {
|
134
|
+
"type": "string"
|
135
|
+
}
|
136
|
+
},
|
137
|
+
{
|
138
|
+
"name": "schema",
|
139
|
+
"summary": "Schema JSON",
|
140
|
+
"required": false,
|
141
|
+
"description": "Schema JSON des données à extraire",
|
142
|
+
"schema": {
|
143
|
+
"type": "object"
|
144
|
+
}
|
145
|
+
}
|
146
|
+
],
|
147
|
+
"x-events": []
|
148
|
+
}
|
149
|
+
},
|
150
|
+
"/summarization": {
|
151
|
+
"post": {
|
152
|
+
"tags": ["service"],
|
153
|
+
"summary": "Résumer un texte",
|
154
|
+
"description": "Résumer un texte via un model LLM",
|
155
|
+
"parameters": [
|
156
|
+
{
|
157
|
+
"name": "model",
|
158
|
+
"summary": "Modèle LLM",
|
159
|
+
"required": false,
|
160
|
+
"description": "Modèle LLM à charger",
|
161
|
+
"schema": {
|
162
|
+
"type": "array",
|
163
|
+
"items": {
|
164
|
+
"$ref": "https://schemas.digipair.ai/pinsSettings"
|
165
|
+
}
|
166
|
+
}
|
167
|
+
},
|
168
|
+
{
|
169
|
+
"name": "chunkSize",
|
170
|
+
"summary": "Taille des morceaux de texte",
|
171
|
+
"required": false,
|
172
|
+
"description": "Taille des morceaux de texte",
|
173
|
+
"schema": {
|
174
|
+
"type": "number"
|
175
|
+
}
|
176
|
+
},
|
177
|
+
{
|
178
|
+
"name": "type",
|
179
|
+
"summary": "Algorithme",
|
180
|
+
"required": false,
|
181
|
+
"description": "Algorithme à utiliser pour résumer le texte",
|
182
|
+
"schema": {
|
183
|
+
"type": "string"
|
184
|
+
}
|
185
|
+
},
|
186
|
+
{
|
187
|
+
"name": "prompt",
|
188
|
+
"summary": "Texte",
|
189
|
+
"required": true,
|
190
|
+
"description": "Texte à résumer",
|
191
|
+
"schema": {
|
192
|
+
"type": "string"
|
193
|
+
}
|
194
|
+
},
|
195
|
+
{
|
196
|
+
"name": "combineMapPrompt",
|
197
|
+
"summary": "",
|
198
|
+
"required": false,
|
199
|
+
"description": "combineMapPrompt",
|
200
|
+
"schema": {
|
201
|
+
"type": "string"
|
202
|
+
}
|
203
|
+
},
|
204
|
+
{
|
205
|
+
"name": "combinePrompt",
|
206
|
+
"summary": "",
|
207
|
+
"required": false,
|
208
|
+
"description": "combinePrompt",
|
209
|
+
"schema": {
|
210
|
+
"type": "string"
|
211
|
+
}
|
212
|
+
},
|
213
|
+
{
|
214
|
+
"name": "returnIntermediateSteps",
|
215
|
+
"summary": "",
|
216
|
+
"required": false,
|
217
|
+
"description": "returnIntermediateSteps",
|
218
|
+
"schema": {
|
219
|
+
"type": "boolean"
|
220
|
+
}
|
221
|
+
},
|
222
|
+
{
|
223
|
+
"name": "refinePrompt",
|
224
|
+
"summary": "",
|
225
|
+
"required": false,
|
226
|
+
"description": "refinePrompt",
|
227
|
+
"schema": {
|
228
|
+
"type": "string"
|
229
|
+
}
|
230
|
+
},
|
231
|
+
{
|
232
|
+
"name": "questionPrompt",
|
233
|
+
"summary": "",
|
234
|
+
"required": false,
|
235
|
+
"description": "questionPrompt",
|
236
|
+
"schema": {
|
237
|
+
"type": "string"
|
238
|
+
}
|
239
|
+
},
|
240
|
+
{
|
241
|
+
"name": "verbose",
|
242
|
+
"summary": "Debug",
|
243
|
+
"required": false,
|
244
|
+
"description": "Ajoute des logs de debug",
|
245
|
+
"schema": {
|
246
|
+
"type": "boolean"
|
247
|
+
}
|
248
|
+
}
|
249
|
+
],
|
250
|
+
"x-events": []
|
251
|
+
}
|
252
|
+
}
|
253
|
+
},
|
254
|
+
"components": {
|
255
|
+
"schemas": {
|
256
|
+
"reasonningStepAttribute": {
|
257
|
+
"tags": ["service"],
|
258
|
+
"summary": "Donnée",
|
259
|
+
"type": "object",
|
260
|
+
"properties": {
|
261
|
+
"name": {
|
262
|
+
"type": "string",
|
263
|
+
"summary": "Nom"
|
264
|
+
},
|
265
|
+
"value": {
|
266
|
+
"summary": "Valeur",
|
267
|
+
"type": "array",
|
268
|
+
"items": {
|
269
|
+
"$ref": "https://schemas.digipair.ai/pinsSettings"
|
270
|
+
}
|
271
|
+
}
|
272
|
+
},
|
273
|
+
"required": ["name", "value"]
|
274
|
+
}
|
275
|
+
}
|
276
|
+
}
|
277
|
+
}
|
package/schema.json
CHANGED
@@ -2,8 +2,8 @@
|
|
2
2
|
"openapi": "3.0.0",
|
3
3
|
"info": {
|
4
4
|
"title": "@digipair/skill-llm",
|
5
|
-
"summary": "
|
6
|
-
"description": "
|
5
|
+
"summary": "LLM Model Management",
|
6
|
+
"description": "The @digipair/skill-llm skill allows the use of a large-scale language model.",
|
7
7
|
"version": "0.1.0",
|
8
8
|
"x-icon": "🚀"
|
9
9
|
},
|
@@ -11,12 +11,12 @@
|
|
11
11
|
"/invoke": {
|
12
12
|
"post": {
|
13
13
|
"tags": ["service"],
|
14
|
-
"summary": "
|
14
|
+
"summary": "LLM Reasoning",
|
15
15
|
"parameters": [
|
16
16
|
{
|
17
17
|
"name": "execute",
|
18
18
|
"required": true,
|
19
|
-
"description": "
|
19
|
+
"description": "Execute",
|
20
20
|
"schema": {
|
21
21
|
"type": "array",
|
22
22
|
"items": {
|
@@ -26,7 +26,7 @@
|
|
26
26
|
},
|
27
27
|
{
|
28
28
|
"name": "input",
|
29
|
-
"summary": "
|
29
|
+
"summary": "Input Data",
|
30
30
|
"required": false,
|
31
31
|
"description": "input",
|
32
32
|
"schema": {
|
@@ -40,11 +40,11 @@
|
|
40
40
|
"/reasoningStep": {
|
41
41
|
"post": {
|
42
42
|
"tags": ["service"],
|
43
|
-
"summary": "
|
43
|
+
"summary": "Reasoning Step",
|
44
44
|
"parameters": [
|
45
45
|
{
|
46
46
|
"name": "attributes",
|
47
|
-
"summary": "
|
47
|
+
"summary": "Data",
|
48
48
|
"required": true,
|
49
49
|
"description": "attributes",
|
50
50
|
"schema": {
|
@@ -61,23 +61,23 @@
|
|
61
61
|
"/basic": {
|
62
62
|
"post": {
|
63
63
|
"tags": ["service"],
|
64
|
-
"summary": "
|
65
|
-
"description": "
|
64
|
+
"summary": "Generate",
|
65
|
+
"description": "Text generation via an LLM model",
|
66
66
|
"parameters": [
|
67
67
|
{
|
68
68
|
"name": "prompt",
|
69
69
|
"summary": "Prompt",
|
70
70
|
"required": true,
|
71
|
-
"description": "Prompt
|
71
|
+
"description": "Prompt to execute via the LLM model",
|
72
72
|
"schema": {
|
73
73
|
"type": "string"
|
74
74
|
}
|
75
75
|
},
|
76
76
|
{
|
77
77
|
"name": "model",
|
78
|
-
"summary": "
|
78
|
+
"summary": "LLM Model",
|
79
79
|
"required": false,
|
80
|
-
"description": "
|
80
|
+
"description": "LLM model to load",
|
81
81
|
"schema": {
|
82
82
|
"type": "array",
|
83
83
|
"items": {
|
@@ -89,7 +89,7 @@
|
|
89
89
|
"name": "schema",
|
90
90
|
"summary": "Schema",
|
91
91
|
"required": false,
|
92
|
-
"description": "
|
92
|
+
"description": "JSON schema of the data to extract",
|
93
93
|
"schema": {
|
94
94
|
"type": "object"
|
95
95
|
}
|
@@ -101,14 +101,14 @@
|
|
101
101
|
"/vision": {
|
102
102
|
"post": {
|
103
103
|
"tags": ["service"],
|
104
|
-
"summary": "
|
105
|
-
"description": "
|
104
|
+
"summary": "See",
|
105
|
+
"description": "Use an LLM model that can read images and text as input",
|
106
106
|
"parameters": [
|
107
107
|
{
|
108
108
|
"name": "model",
|
109
|
-
"summary": "
|
109
|
+
"summary": "Vision Model",
|
110
110
|
"required": false,
|
111
|
-
"description": "
|
111
|
+
"description": "Vision model to load",
|
112
112
|
"schema": {
|
113
113
|
"type": "array",
|
114
114
|
"items": {
|
@@ -120,7 +120,7 @@
|
|
120
120
|
"name": "prompt",
|
121
121
|
"summary": "Prompt",
|
122
122
|
"required": true,
|
123
|
-
"description": "Prompt
|
123
|
+
"description": "Prompt to execute on the LLM model",
|
124
124
|
"schema": {
|
125
125
|
"type": "string"
|
126
126
|
}
|
@@ -129,16 +129,16 @@
|
|
129
129
|
"name": "image",
|
130
130
|
"summary": "Image",
|
131
131
|
"required": true,
|
132
|
-
"description": "
|
132
|
+
"description": "Base64 image",
|
133
133
|
"schema": {
|
134
134
|
"type": "string"
|
135
135
|
}
|
136
136
|
},
|
137
137
|
{
|
138
138
|
"name": "schema",
|
139
|
-
"summary": "Schema
|
139
|
+
"summary": "JSON Schema",
|
140
140
|
"required": false,
|
141
|
-
"description": "
|
141
|
+
"description": "JSON schema of the data to extract",
|
142
142
|
"schema": {
|
143
143
|
"type": "object"
|
144
144
|
}
|
@@ -150,14 +150,14 @@
|
|
150
150
|
"/summarization": {
|
151
151
|
"post": {
|
152
152
|
"tags": ["service"],
|
153
|
-
"summary": "
|
154
|
-
"description": "
|
153
|
+
"summary": "Summarize Text",
|
154
|
+
"description": "Summarize text via an LLM model",
|
155
155
|
"parameters": [
|
156
156
|
{
|
157
157
|
"name": "model",
|
158
|
-
"summary": "
|
158
|
+
"summary": "LLM Model",
|
159
159
|
"required": false,
|
160
|
-
"description": "
|
160
|
+
"description": "LLM model to load",
|
161
161
|
"schema": {
|
162
162
|
"type": "array",
|
163
163
|
"items": {
|
@@ -167,27 +167,27 @@
|
|
167
167
|
},
|
168
168
|
{
|
169
169
|
"name": "chunkSize",
|
170
|
-
"summary": "
|
170
|
+
"summary": "Text Chunk Size",
|
171
171
|
"required": false,
|
172
|
-
"description": "
|
172
|
+
"description": "Size of text chunks",
|
173
173
|
"schema": {
|
174
174
|
"type": "number"
|
175
175
|
}
|
176
176
|
},
|
177
177
|
{
|
178
178
|
"name": "type",
|
179
|
-
"summary": "
|
179
|
+
"summary": "Algorithm",
|
180
180
|
"required": false,
|
181
|
-
"description": "
|
181
|
+
"description": "Algorithm to use for summarizing the text",
|
182
182
|
"schema": {
|
183
183
|
"type": "string"
|
184
184
|
}
|
185
185
|
},
|
186
186
|
{
|
187
187
|
"name": "prompt",
|
188
|
-
"summary": "
|
188
|
+
"summary": "Text",
|
189
189
|
"required": true,
|
190
|
-
"description": "
|
190
|
+
"description": "Text to summarize",
|
191
191
|
"schema": {
|
192
192
|
"type": "string"
|
193
193
|
}
|
@@ -241,7 +241,7 @@
|
|
241
241
|
"name": "verbose",
|
242
242
|
"summary": "Debug",
|
243
243
|
"required": false,
|
244
|
-
"description": "
|
244
|
+
"description": "Adds debug logs",
|
245
245
|
"schema": {
|
246
246
|
"type": "boolean"
|
247
247
|
}
|
@@ -255,15 +255,15 @@
|
|
255
255
|
"schemas": {
|
256
256
|
"reasonningStepAttribute": {
|
257
257
|
"tags": ["service"],
|
258
|
-
"summary": "
|
258
|
+
"summary": "Data",
|
259
259
|
"type": "object",
|
260
260
|
"properties": {
|
261
261
|
"name": {
|
262
262
|
"type": "string",
|
263
|
-
"summary": "
|
263
|
+
"summary": "Name"
|
264
264
|
},
|
265
265
|
"value": {
|
266
|
-
"summary": "
|
266
|
+
"summary": "Value",
|
267
267
|
"type": "array",
|
268
268
|
"items": {
|
269
269
|
"$ref": "https://schemas.digipair.ai/pinsSettings"
|