@defai.digital/automatosx 12.8.7 → 13.1.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (130) hide show
  1. package/LICENSE +1 -1
  2. package/dist/bin.d.ts +8 -0
  3. package/dist/bin.d.ts.map +1 -0
  4. package/dist/bin.js +16 -0
  5. package/dist/bin.js.map +1 -0
  6. package/dist/index.d.ts +8 -2
  7. package/dist/index.d.ts.map +1 -0
  8. package/dist/index.js +7 -74239
  9. package/dist/index.js.map +1 -0
  10. package/package.json +35 -160
  11. package/.github/assets/ax-cli.png +0 -0
  12. package/.github/assets/axlogo.png +0 -0
  13. package/CHANGELOG.md +0 -81
  14. package/README.md +0 -790
  15. package/SECURITY.md +0 -173
  16. package/dist/mcp/index.d.ts +0 -2
  17. package/dist/mcp/index.js +0 -43627
  18. package/examples/AGENTS_INFO.md +0 -187
  19. package/examples/README.md +0 -434
  20. package/examples/abilities/accessibility.md +0 -115
  21. package/examples/abilities/api-design.md +0 -168
  22. package/examples/abilities/best-practices.md +0 -102
  23. package/examples/abilities/caching-strategy.md +0 -165
  24. package/examples/abilities/ci-cd.md +0 -61
  25. package/examples/abilities/clean-code.md +0 -398
  26. package/examples/abilities/code-generation.md +0 -333
  27. package/examples/abilities/code-review.md +0 -51
  28. package/examples/abilities/component-architecture.md +0 -112
  29. package/examples/abilities/content-creation.md +0 -97
  30. package/examples/abilities/data-modeling.md +0 -171
  31. package/examples/abilities/data-validation.md +0 -50
  32. package/examples/abilities/db-modeling.md +0 -167
  33. package/examples/abilities/debugging.md +0 -52
  34. package/examples/abilities/design-patterns.md +0 -437
  35. package/examples/abilities/design-system-implementation.md +0 -126
  36. package/examples/abilities/documentation.md +0 -54
  37. package/examples/abilities/etl-pipelines.md +0 -44
  38. package/examples/abilities/feasibility-study.md +0 -20
  39. package/examples/abilities/general-assistance.md +0 -26
  40. package/examples/abilities/idea-evaluation.md +0 -21
  41. package/examples/abilities/infra-as-code.md +0 -57
  42. package/examples/abilities/job-orchestration.md +0 -44
  43. package/examples/abilities/literature-review.md +0 -19
  44. package/examples/abilities/longform-report.md +0 -25
  45. package/examples/abilities/mathematical-reasoning.md +0 -170
  46. package/examples/abilities/observability.md +0 -61
  47. package/examples/abilities/orbital-mechanics.md +0 -50
  48. package/examples/abilities/our-architecture-decisions.md +0 -180
  49. package/examples/abilities/our-code-review-checklist.md +0 -149
  50. package/examples/abilities/our-coding-standards.md +0 -369
  51. package/examples/abilities/our-project-structure.md +0 -183
  52. package/examples/abilities/performance.md +0 -89
  53. package/examples/abilities/problem-solving.md +0 -50
  54. package/examples/abilities/propulsion-systems.md +0 -50
  55. package/examples/abilities/quantum-algorithm-design.md +0 -54
  56. package/examples/abilities/quantum-error-correction.md +0 -56
  57. package/examples/abilities/quantum-frameworks-transpilation.md +0 -53
  58. package/examples/abilities/quantum-noise-modeling.md +0 -58
  59. package/examples/abilities/refactoring.md +0 -223
  60. package/examples/abilities/release-strategy.md +0 -58
  61. package/examples/abilities/secrets-policy.md +0 -61
  62. package/examples/abilities/secure-coding-review.md +0 -60
  63. package/examples/abilities/software-architecture.md +0 -394
  64. package/examples/abilities/solid-principles.md +0 -341
  65. package/examples/abilities/sql-optimization.md +0 -84
  66. package/examples/abilities/state-management.md +0 -96
  67. package/examples/abilities/task-planning.md +0 -65
  68. package/examples/abilities/technical-writing.md +0 -77
  69. package/examples/abilities/telemetry-diagnostics.md +0 -51
  70. package/examples/abilities/testing.md +0 -56
  71. package/examples/abilities/threat-modeling.md +0 -58
  72. package/examples/abilities/troubleshooting.md +0 -80
  73. package/examples/abilities/typescript-zod-validation.md +0 -830
  74. package/examples/agents/AGENTS_INTEGRATION.md +0 -99
  75. package/examples/agents/aerospace-scientist.yaml +0 -159
  76. package/examples/agents/architecture.yaml +0 -244
  77. package/examples/agents/automatosx.config.json +0 -286
  78. package/examples/agents/backend.yaml +0 -141
  79. package/examples/agents/ceo.yaml +0 -105
  80. package/examples/agents/creative-marketer.yaml +0 -173
  81. package/examples/agents/cto.yaml +0 -118
  82. package/examples/agents/data-scientist.yaml +0 -200
  83. package/examples/agents/data.yaml +0 -106
  84. package/examples/agents/design.yaml +0 -115
  85. package/examples/agents/devops.yaml +0 -124
  86. package/examples/agents/frontend.yaml +0 -171
  87. package/examples/agents/fullstack.yaml +0 -172
  88. package/examples/agents/mobile.yaml +0 -185
  89. package/examples/agents/product.yaml +0 -103
  90. package/examples/agents/quality.yaml +0 -117
  91. package/examples/agents/quantum-engineer.yaml +0 -166
  92. package/examples/agents/researcher.yaml +0 -122
  93. package/examples/agents/security.yaml +0 -115
  94. package/examples/agents/standard.yaml +0 -214
  95. package/examples/agents/writer.yaml +0 -122
  96. package/examples/providers/README.md +0 -117
  97. package/examples/providers/claude/CLAUDE_INTEGRATION.md +0 -302
  98. package/examples/providers/claude/mcp/automatosx.json +0 -244
  99. package/examples/providers/codex/CODEX_INTEGRATION.md +0 -593
  100. package/examples/providers/codex/README.md +0 -349
  101. package/examples/providers/codex/usage-examples.ts +0 -421
  102. package/examples/providers/gemini/GEMINI_INTEGRATION.md +0 -236
  103. package/examples/providers/gemini/README.md +0 -76
  104. package/examples/providers/openai-codex-example.ts +0 -421
  105. package/examples/pytorch_resnet50_training.py +0 -289
  106. package/examples/specs/automatosx-release.ax.yaml +0 -380
  107. package/examples/specs/enterprise.ax.yaml +0 -121
  108. package/examples/specs/enterprise.yaml.mustache +0 -121
  109. package/examples/specs/government.ax.yaml +0 -148
  110. package/examples/specs/government.yaml.mustache +0 -148
  111. package/examples/specs/minimal.ax.yaml +0 -21
  112. package/examples/specs/minimal.yaml.mustache +0 -21
  113. package/examples/teams/business.yaml +0 -56
  114. package/examples/teams/core.yaml +0 -60
  115. package/examples/teams/design.yaml +0 -58
  116. package/examples/teams/engineering.yaml +0 -69
  117. package/examples/teams/research.yaml +0 -56
  118. package/examples/use-cases/01-web-app-development.md +0 -374
  119. package/examples/workflows/analyst.yaml +0 -60
  120. package/examples/workflows/assistant.yaml +0 -48
  121. package/examples/workflows/basic-agent.yaml +0 -28
  122. package/examples/workflows/code-reviewer.yaml +0 -52
  123. package/examples/workflows/debugger.yaml +0 -63
  124. package/examples/workflows/designer.yaml +0 -69
  125. package/examples/workflows/developer.yaml +0 -60
  126. package/examples/workflows/fullstack-developer.yaml +0 -395
  127. package/examples/workflows/qa-specialist.yaml +0 -71
  128. package/schema/ability-metadata.json +0 -21
  129. package/schema/config.json +0 -703
  130. package/schema/spec-schema.json +0 -608
@@ -1,89 +0,0 @@
1
- # Frontend Performance Optimization
2
-
3
- Optimize React applications for speed and efficiency.
4
-
5
- ## Core Web Vitals
6
-
7
- Target metrics:
8
- - **LCP** (Largest Contentful Paint): < 2.5s
9
- - **FID** (First Input Delay): < 100ms
10
- - **CLS** (Cumulative Layout Shift): < 0.1
11
- - **FCP** (First Contentful Paint): < 1.8s
12
- - **TTI** (Time to Interactive): < 3.8s
13
-
14
- ## Optimization Strategies
15
-
16
- ### 1. Code Splitting
17
- - Use React.lazy() for route-based splitting
18
- - Split heavy components (charts, editors, modals)
19
- - Use Suspense with meaningful fallbacks
20
- - Analyze bundle with webpack-bundle-analyzer
21
-
22
- ### 2. Memoization
23
- - useMemo() for expensive calculations
24
- - useCallback() for callbacks passed to child components
25
- - React.memo() for components that re-render with same props
26
- - Don't over-memoize (profile first)
27
-
28
- ### 3. Virtualization
29
- - Use react-window or react-virtualized for long lists (>100 items)
30
- - Implement infinite scroll for large datasets
31
- - Lazy load images in viewport
32
-
33
- ### 4. Asset Optimization
34
- - Compress images (WebP format, use srcset)
35
- - Lazy load images (loading="lazy")
36
- - Use CDN for static assets
37
- - Enable gzip/brotli compression
38
- - Optimize fonts (font-display: swap, preload critical fonts)
39
-
40
- ### 5. Render Optimization
41
- - Avoid inline function/object creation in render
42
- - Use key prop correctly for lists
43
- - Lift state up sparingly (keep state local when possible)
44
- - Debounce/throttle expensive operations (search, scroll handlers)
45
- - Use production build for deployment
46
-
47
- ### 6. Network Optimization
48
- - Implement caching strategies (Cache-Control headers)
49
- - Use service workers for offline support
50
- - Prefetch critical resources
51
- - Minimize API calls (batch requests)
52
- - Use GraphQL field selection to fetch only needed data
53
-
54
- ### 7. Bundle Optimization
55
- - Tree-shake unused code
56
- - Use dynamic imports for conditional features
57
- - Remove unused dependencies
58
- - Use lighter alternatives (date-fns instead of moment)
59
- - Configure webpack to split vendor bundles
60
-
61
- ## Performance Profiling
62
-
63
- Tools and techniques:
64
- - Chrome DevTools Performance tab
65
- - React DevTools Profiler
66
- - Lighthouse CI
67
- - Web Vitals library
68
- - Bundle analyzer
69
-
70
- ## Quick Checklist
71
-
72
- Before deploying:
73
- - [ ] Bundle size analyzed and optimized
74
- - [ ] Images compressed and lazy loaded
75
- - [ ] Long lists virtualized
76
- - [ ] Expensive computations memoized
77
- - [ ] Route-based code splitting implemented
78
- - [ ] Core Web Vitals measured and acceptable
79
- - [ ] Production build tested
80
- - [ ] Caching strategy configured
81
-
82
- ## Application Hints
83
-
84
- When optimizing performance:
85
- - Measure before optimizing; profile to identify actual bottlenecks, not assumed ones
86
- - Target Core Web Vitals thresholds (LCP < 2.5s, FID < 100ms, CLS < 0.1)
87
- - Prefer code splitting and lazy loading over micro-optimizations
88
- - Don't over-memoize; useMemo/useCallback have overhead and should be profiled
89
- - Test performance with production builds; dev mode hides real performance issues
@@ -1,50 +0,0 @@
1
- # Problem-Solving Ability
2
-
3
- Systematically approach and solve complex problems.
4
-
5
- ## Problem-Solving Framework
6
-
7
- 1. **Define** the problem
8
- - State the problem clearly
9
- - Identify root cause (5 Whys)
10
- - Separate symptoms from causes
11
- - Define constraints
12
-
13
- 2. **Analyze** the situation
14
- - Gather relevant information
15
- - Identify patterns
16
- - Consider multiple perspectives
17
- - List assumptions
18
-
19
- 3. **Generate** solutions
20
- - Brainstorm alternatives
21
- - Don't judge initially (divergent thinking)
22
- - Consider unconventional approaches
23
- - Document all ideas
24
-
25
- 4. **Evaluate** options
26
- - List pros and cons
27
- - Consider trade-offs
28
- - Assess feasibility
29
- - Estimate impact
30
-
31
- 5. **Implement** solution
32
- - Create action plan
33
- - Start with small experiments
34
- - Monitor progress
35
- - Adjust as needed
36
-
37
- 6. **Review** and learn
38
- - Did it solve the problem?
39
- - What worked well?
40
- - What could be improved?
41
- - Document lessons learned
42
-
43
- ## Techniques
44
-
45
- - **5 Whys**: Dig deeper by asking "why" repeatedly
46
- - **First Principles**: Break down to fundamental truths
47
- - **Rubber Duck Debugging**: Explain problem out loud
48
- - **Divide and Conquer**: Break into smaller sub-problems
49
- - **Work Backwards**: Start from desired outcome
50
- - **Analogies**: Apply solutions from similar domains
@@ -1,50 +0,0 @@
1
- # Propulsion Systems
2
-
3
- ## Overview
4
-
5
- Engineer and evaluate spacecraft propulsion systems, encompassing chemical and
6
- electric propulsion performance envelopes, reliability modeling, and
7
- integration with vehicle architecture and mission requirements.
8
-
9
- ## Core Concepts & Best Practices
10
-
11
- - **Propulsion Taxonomy**: Compare bipropellant, monopropellant, solid,
12
- hybrid, electric (Hall, ion, MPD), and advanced concepts (nuclear thermal,
13
- solar sail).
14
- - **Performance Metrics**: Calculate specific impulse, thrust-to-weight, mass
15
- flow, and efficiency; assess throttling capability and response time.
16
- - **System Integration**: Design feed systems (pressurization, valves,
17
- regulators), thermal management, and structural interfaces with redundancy.
18
- - **Reliability Modeling**: Apply fault tree analysis, Weibull statistics, and
19
- Bayesian updating to predict MTBF and mission success probabilities.
20
- - **Contamination & Plume Effects**: Model plume impingement, erosion, and
21
- electromagnetic interference on spacecraft subsystems.
22
-
23
- ## Tools & Methodologies
24
-
25
- - **Analysis Suites**: Use NASA CEA, RPA, or in-house CFD tools for combustion
26
- and nozzle performance prediction.
27
- - **Electric Propulsion Modeling**: Employ Hall thruster simulators, ion optics
28
- codes, and particle-in-cell (PIC) methods to analyze plasma behavior.
29
- - **System Sizing**: Develop Excel, Modelica, or Amesim models for propellant
30
- budget, tank sizing, and pressurization cycles.
31
- - **Test Campaign Planning**: Define hot-fire, vibration, thermal vacuum, and
32
- life tests; collect telemetry for model correlation.
33
- - **Verification & Validation**: Execute acceptance test procedures (ATP) and
34
- qualification plans while enforcing strict configuration control.
35
-
36
- ## Example Scenario
37
-
38
- A GEO comsat program selects a hybrid propulsion architecture: chemical
39
- thrusters for orbit raising and Hall-effect thrusters for station-keeping.
40
- Engineers use NASA CEA to size bipropellant engines, run PIC simulations to
41
- verify Hall thruster plume interactions, and apply reliability block diagrams
42
- to ensure mission lifetime exceeds 15 years with 0.98 probability.
43
-
44
- ## Reference Resources
45
-
46
- - Sutton & Biblarz, *Rocket Propulsion Elements*, Wiley
47
- - Humble, Henry & Larson, *Space Propulsion Analysis and Design*, McGraw-Hill
48
- - Goebel & Katz, *Fundamentals of Electric Propulsion*, JPL/NASA
49
- - NASA Chemical Equilibrium with Applications (CEA): <https://cearun.grc.nasa.gov>
50
- - AIAA Propulsion and Energy Forum Proceedings
@@ -1,54 +0,0 @@
1
- # Quantum Algorithm Design
2
-
3
- ## Overview
4
-
5
- Architect and tailor quantum algorithms such as QAOA, VQE, phase estimation,
6
- Grover, and Shor to solve optimization, simulation, and search problems while
7
- balancing gate depth, noise resilience, and classical-quantum workflow
8
- integration.
9
-
10
- ## Core Concepts & Best Practices
11
-
12
- - **Problem Mapping**: Encode cost Hamiltonians or oracle functions that capture
13
- the classical objective while minimizing qubit requirements.
14
- - **Ansatz Engineering**: Choose hardware-efficient or problem-inspired
15
- ansätze; analyze expressibility versus trainability to avoid barren plateaus.
16
- - **Hybrid Loops**: Couple classical optimizers (e.g., SPSA, COBYLA, Adam) with
17
- quantum evaluations; reuse measurement data with parameter-shift gradients
18
- where available.
19
- - **Resource Estimation**: Quantify logical depth, T-count, and qubit footprint
20
- prior to execution; evaluate circuit cut options for limited hardware.
21
- - **Error Mitigation**: Integrate zero-noise extrapolation, symmetry
22
- verification, and probabilistic error cancellation early in algorithm design.
23
-
24
- ## Tools & Methodologies
25
-
26
- - **Algorithm Templates**: Start from QAOA/VQE scaffolds and customize mixers,
27
- cost layers, and measurement strategies.
28
- - **Classical Preprocessing**: Leverage problem reductions, graph
29
- sparsification, or symmetry analysis to shrink the search space.
30
- - **Parameter Initialization**: Apply warm-start heuristics (e.g., classical
31
- solutions, layer-wise training) to accelerate convergence.
32
- - **Performance Benchmarking**: Run simulators with realistic noise models and
33
- track expected energy, fidelity, or success probability across layer depths.
34
- - **Result Verification**: Validate solutions against classical solvers (exact
35
- or approximate) and quantify quantum advantage via scaling studies.
36
-
37
- ## Example Scenario
38
-
39
- A logistics team models vehicle routing as a constrained optimization problem.
40
- By formulating the cost Hamiltonian for QAOA, selecting a tailored mixer that
41
- respects route feasibility, and combining SPSA with layer-wise parameter
42
- growth, they achieve improved approximation ratios on a noisy
43
- intermediate-scale quantum (NISQ) device relative to classical heuristics.
44
-
45
- ## Reference Resources
46
-
47
- - Farhi et al., “A Quantum Approximate Optimization Algorithm,” arXiv:1411.4028
48
- - Peruzzo et al., “A Variational Eigenvalue Solver on a Photonic Quantum
49
- Processor,” *Nature Communications* (2014)
50
- - Schuld & Killoran, “Quantum Machine Learning in Feature Hilbert Spaces,”
51
- *PRL* (2019)
52
- - Nielsen & Chuang, *Quantum Computation and Quantum Information*, Cambridge
53
- University Press
54
- - Qiskit Textbook: <https://qiskit.org/textbook>
@@ -1,56 +0,0 @@
1
- # Quantum Error Correction
2
-
3
- ## Overview
4
-
5
- Design and analyze quantum error-correcting codes, including surface codes and
6
- fault-tolerant logical operations, while applying error mitigation techniques
7
- to bridge current hardware limitations.
8
-
9
- ## Core Concepts & Best Practices
10
-
11
- - **Code Families**: Evaluate stabilizer, surface, color, and LDPC codes; match
12
- code distance and threshold to hardware constraints.
13
- - **Fault Tolerance**: Implement transversal gates, lattice surgery, and magic
14
- state distillation while tracking logical error budgets.
15
- - **Syndrome Extraction**: Optimize measurement circuits to minimize hook
16
- errors and leakage; schedule parallelism carefully.
17
- - **Decoding Strategies**: Apply minimum-weight perfect matching, belief
18
- propagation, or neural decoders; benchmark latency versus accuracy.
19
- - **Error Mitigation**: Combine post-selection, probabilistic error
20
- cancellation, and Clifford data regression with error correction for
21
- near-term devices.
22
-
23
- ## Tools & Methodologies
24
-
25
- - **Simulation Frameworks**: Use Qiskit Ignis, QEC frameworks, Stim, or LDPC
26
- simulation libraries to evaluate logical error rates.
27
- - **Decoder Implementations**: Integrate PyMatching, tensor network decoders,
28
- or custom FPGA-based solutions for real-time performance.
29
- - **Threshold Analysis**: Perform Monte Carlo sampling over noise channels
30
- (Pauli, amplitude damping, biased dephasing) to estimate thresholds.
31
- - **Logical Circuit Compilation**: Map high-level algorithms onto logical
32
- qubits, schedule patch moves, and analyze lattice surgery costs.
33
- - **Cross-Layer Co-Design**: Coordinate hardware calibration teams with QEC
34
- architects to ensure stabilizer measurements align with physical gate
35
- capabilities.
36
-
37
- ## Example Scenario
38
-
39
- A quantum computing platform targets a 10⁻³ logical error rate. Engineers
40
- select rotated surface codes with distance nine, implement syndrome extraction
41
- sequences with tailored CNOT ordering, and deploy PyMatching for decoding.
42
- Post-implementation Monte Carlo runs confirm the logical failure rate meets
43
- the reliability target under measured device noise.
44
-
45
- ## Reference Resources
46
-
47
- - Fowler et al., “Surface Codes: Towards Practical Large-Scale Quantum
48
- Computation,” *PR A* (2012)
49
- - Dennis et al., “Topological Quantum Memory,” *Journal of Mathematical
50
- Physics* (2002)
51
- - Gottesman, “An Introduction to Quantum Error Correction and Fault-Tolerant
52
- Quantum Computation,” arXiv:0904.2557
53
- - Stim: <https://github.com/quantumlib/Stim>
54
- - PyMatching: <https://github.com/Quantum-Computing-UK/pymatching>
55
- - Terhal, “Quantum Error Correction for Quantum Memories,” *Reviews of Modern
56
- Physics* (2015)
@@ -1,53 +0,0 @@
1
- # Quantum Frameworks & Transpilation
2
-
3
- ## Overview
4
-
5
- Leverage Qiskit, Cirq, and related toolchains to build quantum circuits,
6
- perform transpilation and optimization passes, and tailor executions to
7
- specific backend topologies and calibration data for maximal performance.
8
-
9
- ## Core Concepts & Best Practices
10
-
11
- - **Circuit Abstraction**: Separate algorithm logic from backend configuration
12
- using parameterized circuits and modular subroutines.
13
- - **Compilation Stages**: Understand high-level synthesis, basis translation,
14
- layout selection, and scheduling; tune each stage for depth and fidelity.
15
- - **Hardware Awareness**: Align qubit allocation with device coupling maps and
16
- apply gate direction corrections plus SWAP insertion strategies judiciously.
17
- - **Optimization Heuristics**: Employ gate cancellation, commutation analysis,
18
- and resynthesis passes; iterate on pass managers to hit depth or width
19
- targets.
20
- - **Calibration Integration**: Consume backend calibration data (gate errors,
21
- T1/T2, readout errors) to inform transpiler cost models and pulse-level
22
- adjustments.
23
-
24
- ## Tools & Methodologies
25
-
26
- - **Qiskit Workflow**: Use `QuantumCircuit`, `transpile`, and `PassManager`
27
- with custom passes; export to QASM or pulse schedules when required.
28
- - **Cirq Workflow**: Build `Circuit` objects with PhasedFSim gates, optimize
29
- via `cirq.optimize_for_target_gateset`, and serialize using `cirq.to_json`.
30
- - **Cross-Framework Interop**: Convert circuits via `qasm3` or `tket` bridges
31
- for comparative benchmarking.
32
- - **Pulse-Level Control**: Employ Qiskit Pulse or Cirq’s `pulses` module for
33
- custom calibrations and dynamical decoupling sequences.
34
- - **Automation Pipelines**: Script transpilation sweeps across optimization
35
- levels, collect performance metrics, and store build artifacts for
36
- reproducibility.
37
-
38
- ## Example Scenario
39
-
40
- An R&D team migrates a chemistry VQE circuit to new superconducting hardware.
41
- They create a custom Qiskit `PassManager` that performs layout selection via
42
- SABRE, enables commutation-aware gate cancellations, and inserts echoed
43
- cross-resonance calibrations, cutting circuit depth by 27% while preserving
44
- expected energy accuracy.
45
-
46
- ## Reference Resources
47
-
48
- - Qiskit Documentation: <https://qiskit.org/documentation>
49
- - Cirq Documentation: <https://quantumai.google/cirq>
50
- - Murali et al., “Noise-Adaptive Compiler Mappings for Noisy
51
- Intermediate-Scale Quantum Computers,” *ASPLOS* (2019)
52
- - Cowtan et al., “On the Qubit Routing Problem,” *ACM TECS* (2020)
53
- - TKET Compiler: <https://cqcl.github.io/tket/pytket/api>
@@ -1,58 +0,0 @@
1
- # Quantum Noise Modeling
2
-
3
- ## Overview
4
-
5
- Model and mitigate noise in quantum systems by characterizing decoherence
6
- channels, gate error rates, and calibration drift to improve reliability of
7
- algorithm execution on NISQ and emerging fault-tolerant hardware.
8
-
9
- ## Core Concepts & Best Practices
10
-
11
- - **Noise Channels**: Represent errors via Kraus operators (depolarizing,
12
- amplitude damping, phase damping) or Lindblad master equations for
13
- continuous-time modeling.
14
- - **Decoherence Metrics**: Track T1/T2 times, Ramsey fringes, and spin-echo
15
- results; monitor temperature and flux bias stability.
16
- - **Gate Characterization**: Use randomized benchmarking, interleaved RB, gate
17
- set tomography, and cycle benchmarking to quantify fidelity.
18
- - **Readout Analysis**: Build confusion matrices, apply measurement error
19
- mitigation, and detect drift through auto-calibration routines.
20
- - **Calibration Strategies**: Schedule frequent recalibrations, employ
21
- closed-loop optimization, and maintain calibration history with anomaly
22
- alerts.
23
-
24
- ## Tools & Methodologies
25
-
26
- - **Simulation Platforms**: Employ Qiskit Aer noise models, Cirq’s
27
- `NoiseModel`, or QuTiP for density-matrix simulations.
28
- - **Characterization Pipelines**: Automate RB experiments, fit exponential
29
- decay to extract error per Clifford, and store metadata in configuration
30
- databases.
31
- - **Drift Detection**: Apply statistical process control (SPC) on calibration
32
- metrics; trigger recalibration when control charts exceed thresholds.
33
- - **Noise-Aware Scheduling**: Route circuits through lower-error qubits, adjust
34
- scheduling to avoid crosstalk hotspots, and insert dynamical decoupling
35
- pulses.
36
- - **Mitigation Techniques**: Combine zero-noise extrapolation, probabilistic
37
- error cancellation, and measurement mitigation with robust statistical
38
- post-processing.
39
-
40
- ## Example Scenario
41
-
42
- An operations team observes declining algorithm fidelity on a trapped-ion
43
- device. They run interleaved RB to isolate a two-qubit gate with rising error,
44
- update the Qiskit Aer noise model with new Kraus parameters, and deploy
45
- adaptive recalibration routines that restore average gate fidelity above
46
- 99.5%, improving VQE energy convergence.
47
-
48
- ## Reference Resources
49
-
50
- - Wallman & Emerson, “Noise Tailoring for Scalable Quantum Computation via
51
- Randomized Compiling,” *PRL* (2016)
52
- - Kjaergaard et al., “Superconducting Qubits: Current State of Play,” *Annual
53
- Review of Condensed Matter Physics* (2020)
54
- - Magesan et al., “Scalable and Robust Randomized Benchmarking of Quantum
55
- Processes,” *PRL* (2011)
56
- - QuTiP Documentation: <https://qutip.org>
57
- - Kandala et al., “Error Mitigation Extends the Computational Reach of a Noisy
58
- Quantum Processor,” *Nature* (2019)
@@ -1,223 +0,0 @@
1
- # Refactoring Ability
2
-
3
- Expert knowledge of code smells, refactoring techniques, and strategies for improving code quality without changing behavior.
4
-
5
- ## Overview
6
-
7
- Refactoring is the process of restructuring existing code without changing its external behavior. The goal is to improve code quality, readability, and maintainability.
8
-
9
- ## Code Smells
10
-
11
- Code smells are indicators that something might be wrong with your code structure.
12
-
13
- ### Bloaters
14
-
15
- **Long Method**
16
- - **Smell**: Method with too many lines
17
- - **Impact**: Hard to understand, test, and maintain
18
- - **Refactoring**: Extract Method, Replace Temp with Query, Decompose Conditional
19
-
20
- ```typescript
21
- // ❌ BAD: Long method
22
- function processOrder(order: Order) {
23
- // Validate order
24
- if (!order.id) throw new Error('Invalid order');
25
- if (order.items.length === 0) throw new Error('Empty order');
26
- for (const item of order.items) {
27
- if (item.quantity <= 0) throw new Error('Invalid quantity');
28
- if (!item.price) throw new Error('Missing price');
29
- }
30
-
31
- // Calculate total
32
- let subtotal = 0;
33
- for (const item of order.items) {
34
- subtotal += item.price * item.quantity;
35
- }
36
- const tax = subtotal * 0.1;
37
- const shipping = subtotal > 100 ? 0 : 10;
38
- const total = subtotal + tax + shipping;
39
-
40
- // Apply discounts
41
- let discount = 0;
42
- if (order.customer.isPremium) {
43
- discount = total * 0.15;
44
- } else if (total > 200) {
45
- discount = total * 0.1;
46
- } else if (total > 100) {
47
- discount = total * 0.05;
48
- }
49
-
50
- // Save order
51
- // ... 50 more lines
52
- }
53
-
54
- // ✅ GOOD: Extracted methods
55
- function processOrder(order: Order) {
56
- validateOrder(order);
57
- const total = calculateTotal(order);
58
- const discounted = applyDiscounts(total, order.customer);
59
- return saveOrder(order, discounted);
60
- }
61
-
62
- function validateOrder(order: Order) {
63
- if (!order.id) throw new Error('Invalid order');
64
- if (order.items.length === 0) throw new Error('Empty order');
65
- order.items.forEach(validateOrderItem);
66
- }
67
-
68
- function calculateTotal(order: Order): number {
69
- const subtotal = calculateSubtotal(order.items);
70
- const tax = calculateTax(subtotal);
71
- const shipping = calculateShipping(subtotal);
72
- return subtotal + tax + shipping;
73
- }
74
-
75
- function applyDiscounts(total: number, customer: Customer): number {
76
- const discountRate = getDiscountRate(total, customer);
77
- return total * (1 - discountRate);
78
- }
79
- ```
80
-
81
- **Large Class**
82
- - **Smell**: Class with too many fields, methods, or responsibilities
83
- - **Impact**: Violates Single Responsibility Principle
84
- - **Refactoring**: Extract Class, Extract Subclass
85
-
86
- **Long Parameter List**
87
- - **Smell**: Function with many parameters
88
- - **Impact**: Hard to use, understand, and change
89
- - **Refactoring**: Introduce Parameter Object, Preserve Whole Object
90
-
91
- **Primitive Obsession**
92
- - **Smell**: Using primitives instead of small objects
93
- - **Impact**: Loss of type safety and domain meaning
94
- - **Refactoring**: Replace Data Value with Object, Introduce Value Object
95
-
96
- ### Object-Orientation Abusers
97
-
98
- **Switch Statements**
99
- - **Smell**: Type-based conditionals instead of polymorphism
100
- - **Impact**: Violates Open/Closed Principle, hard to extend
101
- - **Refactoring**: Replace Conditional with Polymorphism
102
-
103
- **Refused Bequest**
104
- - **Smell**: Subclass doesn't use inherited methods
105
- - **Impact**: Violates Liskov Substitution Principle
106
- - **Refactoring**: Replace Inheritance with Delegation, Push Down Method
107
-
108
- ### Change Preventers
109
-
110
- **Divergent Change**
111
- - **Smell**: One class changed for many different reasons
112
- - **Impact**: Violates Single Responsibility Principle
113
- - **Refactoring**: Extract Class
114
-
115
- **Shotgun Surgery**
116
- - **Smell**: Every change requires many small changes in many classes
117
- - **Impact**: Hard to make changes, easy to miss updates
118
- - **Refactoring**: Move Method, Move Field, Inline Class
119
-
120
- ### Dispensables
121
-
122
- **Duplicate Code**
123
- - **Smell**: Same code structure in multiple places
124
- - **Impact**: Maintenance nightmare, bugs replicate
125
- - **Refactoring**: Extract Method, Extract Class, Pull Up Method
126
-
127
- **Dead Code**
128
- - **Smell**: Unused variables, parameters, methods, classes
129
- - **Impact**: Confusion, maintenance burden
130
- - **Refactoring**: Delete it
131
-
132
- **Speculative Generality**
133
- - **Smell**: "We might need this someday" code
134
- - **Impact**: Unnecessary complexity
135
- - **Refactoring**: Collapse Hierarchy, Inline Class, Remove Parameter
136
-
137
- ## Refactoring Techniques
138
-
139
- ### Extract Method
140
-
141
- **When**: Code fragment can be grouped together
142
- **Benefit**: Improves clarity, reusability
143
-
144
- ### Inline Method
145
-
146
- **When**: Method body is as clear as the name
147
- **Benefit**: Reduces unnecessary indirection
148
-
149
- ### Extract Variable
150
-
151
- **When**: Complex expression that's hard to understand
152
- **Benefit**: Makes expression clearer
153
-
154
- ### Rename Variable/Method/Class
155
-
156
- **When**: Name doesn't reveal intent
157
- **Benefit**: Improves readability
158
-
159
- ### Move Method/Field
160
-
161
- **When**: Method/field used more by another class
162
- **Benefit**: Reduces coupling, improves cohesion
163
-
164
- ### Extract Class
165
-
166
- **When**: Class has responsibilities for multiple concerns
167
- **Benefit**: Follows Single Responsibility Principle
168
-
169
- ### Replace Conditional with Polymorphism
170
-
171
- **When**: Type-based conditionals
172
- **Benefit**: Follows Open/Closed Principle
173
-
174
- ## Refactoring Strategies
175
-
176
- ### 1. The Refactoring Workflow
177
-
178
- **Red-Green-Refactor (TDD)**:
179
- 1. **Red**: Write failing test
180
- 2. **Green**: Make test pass (quick and dirty)
181
- 3. **Refactor**: Improve code while keeping tests green
182
-
183
- **Safe Refactoring**:
184
- 1. Ensure tests exist and pass
185
- 2. Make small, incremental changes
186
- 3. Run tests after each change
187
- 4. Commit frequently
188
- 5. Use automated refactoring tools when possible
189
-
190
- ### 2. When to Refactor
191
-
192
- **Rule of Three**:
193
- - First time: Just do it
194
- - Second time: Wince but do it anyway
195
- - Third time: Refactor
196
-
197
- **Opportunistic Refactoring**:
198
- - While adding features
199
- - While fixing bugs
200
- - During code review
201
- - When understanding code
202
-
203
- ### 3. When NOT to Refactor
204
-
205
- - Code is about to be deleted
206
- - Rewriting is easier than refactoring
207
- - Close to a deadline (defer to later)
208
- - Code works and doesn't need changes
209
-
210
- ## Best Practices
211
-
212
- 1. **Test Coverage First**: Ensure tests exist before refactoring
213
- 2. **Small Steps**: Make one change at a time
214
- 3. **Commit Often**: Save working states frequently
215
- 4. **Use Tools**: Leverage IDE and automated refactoring
216
- 5. **Review Changes**: Have someone review your refactoring
217
- 6. **Document Why**: Explain major refactorings in commit messages
218
-
219
- ## Further Reading
220
-
221
- - "Refactoring" by Martin Fowler
222
- - "Working Effectively with Legacy Code" by Michael Feathers
223
- - "Your Code as a Crime Scene" by Adam Tornhill