@datagrok/eda 1.4.1 → 1.4.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +11 -0
- package/README.md +1 -0
- package/dist/package-test.js +1 -1
- package/dist/package-test.js.map +1 -1
- package/dist/package.js +1 -1
- package/dist/package.js.map +1 -1
- package/package.json +2 -2
- package/src/package.ts +1 -0
- package/src/pls/pls-constants.ts +12 -1
- package/src/pls/pls-ml.ts +1 -0
- package/src/pls/pls-tools.ts +176 -36
- package/src/regression.ts +1 -0
- package/src/tests/linear-methods-tests.ts +2 -0
- package/test-console-output-1.log +159 -172
- package/test-record-1.mp4 +0 -0
package/CHANGELOG.md
CHANGED
|
@@ -1,5 +1,16 @@
|
|
|
1
1
|
# EDA changelog
|
|
2
2
|
|
|
3
|
+
## 1.4.3 (2025-03-28)
|
|
4
|
+
|
|
5
|
+
Updated grok tools
|
|
6
|
+
|
|
7
|
+
## 1.4.2 (2025-03-28)
|
|
8
|
+
|
|
9
|
+
Updated Multivariate Analysis:
|
|
10
|
+
|
|
11
|
+
* Implemented the Quadratic PLS regression
|
|
12
|
+
* Improved MVA and PLS UI/UX
|
|
13
|
+
|
|
3
14
|
## 1.3.5 (2025-03-07)
|
|
4
15
|
|
|
5
16
|
Vector distance functions support for dimensionality reduction on webGPU and without
|
package/README.md
CHANGED
|
@@ -9,6 +9,7 @@ EDA is a [package](https://datagrok.ai/help/develop/#packages) for the [Datagrok
|
|
|
9
9
|
* Stochastic proximity embedding ([SPE](https://pubmed.ncbi.nlm.nih.gov/12820129/))
|
|
10
10
|
* Multivariate analysis
|
|
11
11
|
* Partial least squares regression ([PLS](https://en.wikipedia.org/wiki/Partial_least_squares_regression))
|
|
12
|
+
* Quadratic PLS regression
|
|
12
13
|
* Supervised machine learning
|
|
13
14
|
* Least-squares support vector machine ([LS-SVM](https://en.wikipedia.org/wiki/Least-squares_support_vector_machine))
|
|
14
15
|
* [Linear regression](https://en.wikipedia.org/wiki/Linear_regression)
|