@datagrok/eda 1.2.3 → 1.2.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/scripts/func.json CHANGED
@@ -1,664 +1 @@
1
- {
2
- "pcaExport.cpp": {
3
- "principalComponentAnalysis": {
4
- "arguments": {
5
- "columns": {
6
- "type": "floatColumns"
7
- },
8
- "componentsCount": {
9
- "type": "num"
10
- },
11
- "centerNum": {
12
- "type": "num"
13
- },
14
- "scaleNum": {
15
- "type": "num"
16
- },
17
- "components": {
18
- "type": "newFloatColumns",
19
- "numOfRows": {
20
- "ref": "columns",
21
- "value": "numOfRows"
22
- },
23
- "numOfColumns": {
24
- "ref": "componentsCount",
25
- "value": "data"
26
- }
27
- }
28
- },
29
- "output": {
30
- "type": "tableFromColumns",
31
- "source": "components"
32
- },
33
- "annotation": [
34
- "//name: principalComponentAnalysis",
35
- "//input: dataframe table",
36
- "//input: column_list columns",
37
- "//input: int componentsCount",
38
- "//input: int centerNum",
39
- "//input: int scaleNum",
40
- "//output: dataframe result "
41
- ],
42
- "prototype": "principalComponentAnalysis(table, columns, componentsCount, centerNum, scaleNum)",
43
- "prototypeForWebWorker": "principalComponentAnalysisInWebWorker(table, columns, componentsCount, centerNum, scaleNum)",
44
- "callArgs": "[columns, componentsCount, centerNum, scaleNum]"
45
- },
46
- "error": {
47
- "arguments": {
48
- "col1": {
49
- "type": "floatColumn"
50
- },
51
- "col2": {
52
- "type": "floatColumn"
53
- }
54
- },
55
- "output": {
56
- "type": "double",
57
- "source": "_callResult"
58
- },
59
- "annotation": [
60
- "//name: error",
61
- "//input: dataframe df",
62
- "//input: column col1",
63
- "//input: column col2",
64
- "//output: double mad "
65
- ],
66
- "prototype": "error(df, col1, col2)",
67
- "prototypeForWebWorker": "errorInWebWorker(df, col1, col2)",
68
- "callArgs": "[col1, col2]"
69
- }
70
- },
71
- "PCA/PCA.cpp": {},
72
- "plsExport.cpp": {
73
- "partialLeastSquareRegression": {
74
- "arguments": {
75
- "features": {
76
- "type": "floatColumns"
77
- },
78
- "predict": {
79
- "type": "floatColumn"
80
- },
81
- "componentsCount": {
82
- "type": "num"
83
- },
84
- "prediction": {
85
- "type": "newFloatColumn",
86
- "numOfRows": {
87
- "ref": "predict",
88
- "value": "numOfRows"
89
- }
90
- },
91
- "regressionCoefficients": {
92
- "type": "newFloatColumn",
93
- "numOfRows": {
94
- "ref": "features",
95
- "value": "numOfColumns"
96
- }
97
- },
98
- "tScores": {
99
- "type": "newFloatColumns",
100
- "numOfRows": {
101
- "ref": "predict",
102
- "value": "numOfRows"
103
- },
104
- "numOfColumns": {
105
- "ref": "componentsCount",
106
- "value": "data"
107
- }
108
- },
109
- "uScores": {
110
- "type": "newFloatColumns",
111
- "numOfRows": {
112
- "ref": "predict",
113
- "value": "numOfRows"
114
- },
115
- "numOfColumns": {
116
- "ref": "componentsCount",
117
- "value": "data"
118
- }
119
- },
120
- "xLoadings": {
121
- "type": "newFloatColumns",
122
- "numOfRows": {
123
- "ref": "features",
124
- "value": "numOfColumns"
125
- },
126
- "numOfColumns": {
127
- "ref": "componentsCount",
128
- "value": "data"
129
- }
130
- },
131
- "yLoadings": {
132
- "type": "newFloatColumn",
133
- "numOfRows": {
134
- "ref": "componentsCount",
135
- "value": "data"
136
- }
137
- }
138
- },
139
- "output": {
140
- "type": "objects",
141
- "source": "['prediction', 'regressionCoefficients', 'tScores', 'uScores', 'xLoadings', 'yLoadings']"
142
- },
143
- "annotation": [
144
- "//name: partialLeastSquareRegression",
145
- "//input: dataframe table",
146
- "//input: column_list features",
147
- "//input: column predict",
148
- "//input: int componentsCount"
149
- ],
150
- "prototype": "partialLeastSquareRegression(table, features, predict, componentsCount)",
151
- "prototypeForWebWorker": "partialLeastSquareRegressionInWebWorker(table, features, predict, componentsCount)",
152
- "callArgs": "[features, predict, componentsCount]"
153
- }
154
- },
155
- "PLS/PLS.cpp": {},
156
- "svmApi.cpp": {
157
- "generateDataset": {
158
- "arguments": {
159
- "kernel": {
160
- "type": "num"
161
- },
162
- "kernelParams": {
163
- "type": "floatColumn"
164
- },
165
- "samplesCount": {
166
- "type": "num"
167
- },
168
- "featuresCount": {
169
- "type": "num"
170
- },
171
- "min": {
172
- "type": "num"
173
- },
174
- "max": {
175
- "type": "num"
176
- },
177
- "violatorsPercentage": {
178
- "type": "num"
179
- },
180
- "dataset": {
181
- "type": "newFloatColumns",
182
- "numOfRows": {
183
- "ref": "samplesCount",
184
- "value": "data"
185
- },
186
- "numOfColumns": {
187
- "ref": "featuresCount",
188
- "value": "data"
189
- }
190
- },
191
- "labels": {
192
- "type": "newFloatColumn",
193
- "numOfRows": {
194
- "ref": "samplesCount",
195
- "value": "data"
196
- }
197
- }
198
- },
199
- "output": {
200
- "type": "objects",
201
- "source": "['dataset', 'labels']"
202
- },
203
- "annotation": [
204
- "//name: generateDataset",
205
- "//input: int kernel",
206
- "//input: column kernelParams",
207
- "//input: int samplesCount",
208
- "//input: int featuresCount",
209
- "//input: double min",
210
- "//input: double max",
211
- "//input: double violatorsPercentage"
212
- ],
213
- "prototype": "generateDataset(kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage)",
214
- "prototypeForWebWorker": "generateDatasetInWebWorker(kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage)",
215
- "callArgs": "[kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage]"
216
- },
217
- "normalizeDataset": {
218
- "arguments": {
219
- "data": {
220
- "type": "floatColumns"
221
- },
222
- "normalizedData": {
223
- "type": "newFloatColumns",
224
- "numOfRows": {
225
- "ref": "data",
226
- "value": "numOfColumns"
227
- },
228
- "numOfColumns": {
229
- "ref": "data",
230
- "value": "numOfRows"
231
- }
232
- },
233
- "means": {
234
- "type": "newFloatColumn",
235
- "numOfRows": {
236
- "ref": "data",
237
- "value": "numOfColumns"
238
- }
239
- },
240
- "stdDevs": {
241
- "type": "newFloatColumn",
242
- "numOfRows": {
243
- "ref": "data",
244
- "value": "numOfColumns"
245
- }
246
- }
247
- },
248
- "output": {
249
- "type": "objects",
250
- "source": "['normalizedData', 'means', 'stdDevs']"
251
- },
252
- "annotation": [
253
- "//name: normalizeDataset",
254
- "//input: column_list data"
255
- ],
256
- "prototype": "normalizeDataset(data)",
257
- "prototypeForWebWorker": "normalizeDatasetInWebWorker(data)",
258
- "callArgs": "[data]"
259
- },
260
- "trainLSSVM": {
261
- "arguments": {
262
- "gamma": {
263
- "type": "num"
264
- },
265
- "kernel": {
266
- "type": "num"
267
- },
268
- "kernelParams": {
269
- "type": "floatColumn"
270
- },
271
- "modelParamsCount": {
272
- "type": "num"
273
- },
274
- "precomputedWeightsCount": {
275
- "type": "num"
276
- },
277
- "dataset": {
278
- "type": "floatColumns"
279
- },
280
- "labels": {
281
- "type": "floatColumn"
282
- },
283
- "normalizedData": {
284
- "type": "newFloatColumns",
285
- "numOfRows": {
286
- "ref": "dataset",
287
- "value": "numOfColumns"
288
- },
289
- "numOfColumns": {
290
- "ref": "dataset",
291
- "value": "numOfRows"
292
- }
293
- },
294
- "means": {
295
- "type": "newFloatColumn",
296
- "numOfRows": {
297
- "ref": "dataset",
298
- "value": "numOfColumns"
299
- }
300
- },
301
- "stdDevs": {
302
- "type": "newFloatColumn",
303
- "numOfRows": {
304
- "ref": "dataset",
305
- "value": "numOfColumns"
306
- }
307
- },
308
- "modelParams": {
309
- "type": "newFloatColumn",
310
- "numOfRows": {
311
- "ref": "modelParamsCount",
312
- "value": "data"
313
- }
314
- },
315
- "precomputedWeights": {
316
- "type": "newFloatColumn",
317
- "numOfRows": {
318
- "ref": "precomputedWeightsCount",
319
- "value": "data"
320
- }
321
- }
322
- },
323
- "output": {
324
- "type": "objects",
325
- "source": "['normalizedData', 'means', 'stdDevs', 'modelParams', 'precomputedWeights']"
326
- },
327
- "annotation": [
328
- "//name: trainLSSVM",
329
- "//input: double gamma",
330
- "//input: int kernel",
331
- "//input: column kernelParams",
332
- "//input: int modelParamsCount",
333
- "//input: int precomputedWeightsCount",
334
- "//input: column_list dataset",
335
- "//input: column labels"
336
- ],
337
- "prototype": "trainLSSVM(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels)",
338
- "prototypeForWebWorker": "trainLSSVMInWebWorker(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels)",
339
- "callArgs": "[gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels]"
340
- },
341
- "predictByLSSVM": {
342
- "arguments": {
343
- "kernel": {
344
- "type": "num"
345
- },
346
- "kernelParams": {
347
- "type": "floatColumn"
348
- },
349
- "normalizedData": {
350
- "type": "floatColumns"
351
- },
352
- "labels": {
353
- "type": "floatColumn"
354
- },
355
- "means": {
356
- "type": "floatColumn"
357
- },
358
- "stdDevs": {
359
- "type": "floatColumn"
360
- },
361
- "modelParams": {
362
- "type": "floatColumn"
363
- },
364
- "precomputedWeights": {
365
- "type": "floatColumn"
366
- },
367
- "targetData": {
368
- "type": "floatColumns"
369
- },
370
- "prediction": {
371
- "type": "newFloatColumn",
372
- "numOfRows": {
373
- "ref": "targetData",
374
- "value": "numOfRows"
375
- }
376
- }
377
- },
378
- "output": {
379
- "type": "column",
380
- "source": "prediction"
381
- },
382
- "annotation": [
383
- "//name: predictByLSSVM",
384
- "//input: int kernel",
385
- "//input: column kernelParams",
386
- "//input: column_list normalizedData",
387
- "//input: column labels",
388
- "//input: column means",
389
- "//input: column stdDevs",
390
- "//input: column modelParams",
391
- "//input: column precomputedWeights",
392
- "//input: column_list targetData",
393
- "//output: column prediction"
394
- ],
395
- "prototype": "predictByLSSVM(kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData)",
396
- "prototypeForWebWorker": "predictByLSSVMInWebWorker(kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData)",
397
- "callArgs": "[kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData]"
398
- },
399
- "trainAndAnalyzeLSSVM": {
400
- "arguments": {
401
- "gamma": {
402
- "type": "num"
403
- },
404
- "kernel": {
405
- "type": "num"
406
- },
407
- "kernelParams": {
408
- "type": "floatColumn"
409
- },
410
- "modelParamsCount": {
411
- "type": "num"
412
- },
413
- "precomputedWeightsCount": {
414
- "type": "num"
415
- },
416
- "confusionMatrixElementsCount": {
417
- "type": "num"
418
- },
419
- "dataset": {
420
- "type": "floatColumns"
421
- },
422
- "labels": {
423
- "type": "floatColumn"
424
- },
425
- "normalizedData": {
426
- "type": "newFloatColumns",
427
- "numOfRows": {
428
- "ref": "dataset",
429
- "value": "numOfColumns"
430
- },
431
- "numOfColumns": {
432
- "ref": "dataset",
433
- "value": "numOfRows"
434
- }
435
- },
436
- "means": {
437
- "type": "newFloatColumn",
438
- "numOfRows": {
439
- "ref": "dataset",
440
- "value": "numOfColumns"
441
- }
442
- },
443
- "stdDevs": {
444
- "type": "newFloatColumn",
445
- "numOfRows": {
446
- "ref": "dataset",
447
- "value": "numOfColumns"
448
- }
449
- },
450
- "modelParams": {
451
- "type": "newFloatColumn",
452
- "numOfRows": {
453
- "ref": "modelParamsCount",
454
- "value": "data"
455
- }
456
- },
457
- "precomputedWeights": {
458
- "type": "newFloatColumn",
459
- "numOfRows": {
460
- "ref": "precomputedWeightsCount",
461
- "value": "data"
462
- }
463
- },
464
- "predictedLabels": {
465
- "type": "newFloatColumn",
466
- "numOfRows": {
467
- "ref": "dataset",
468
- "value": "numOfRows"
469
- }
470
- },
471
- "correctness": {
472
- "type": "newFloatColumn",
473
- "numOfRows": {
474
- "ref": "dataset",
475
- "value": "numOfRows"
476
- }
477
- },
478
- "consfusionMatrix": {
479
- "type": "newIntColumn",
480
- "numOfRows": {
481
- "ref": "confusionMatrixElementsCount",
482
- "value": "data"
483
- }
484
- }
485
- },
486
- "output": {
487
- "type": "objects",
488
- "source": "['normalizedData', 'means', 'stdDevs', 'modelParams', 'precomputedWeights', 'predictedLabels', 'correctness', 'consfusionMatrix']"
489
- },
490
- "annotation": [
491
- "//name: trainAndAnalyzeLSSVM",
492
- "//input: double gamma",
493
- "//input: int kernel",
494
- "//input: column kernelParams",
495
- "//input: int modelParamsCount",
496
- "//input: int precomputedWeightsCount",
497
- "//input: int confusionMatrixElementsCount",
498
- "//input: column_list dataset",
499
- "//input: column labels"
500
- ],
501
- "prototype": "trainAndAnalyzeLSSVM(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels)",
502
- "prototypeForWebWorker": "trainAndAnalyzeLSSVMInWebWorker(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels)",
503
- "callArgs": "[gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels]"
504
- }
505
- },
506
- "regression-api.cpp": {
507
- "fitLinearRegressionParamsWithDataNormalizing": {
508
- "arguments": {
509
- "features": {
510
- "type": "floatColumns"
511
- },
512
- "featureAvgs": {
513
- "type": "floatColumn"
514
- },
515
- "featureStdDevs": {
516
- "type": "floatColumn"
517
- },
518
- "targets": {
519
- "type": "floatColumn"
520
- },
521
- "targetsAvg": {
522
- "type": "num"
523
- },
524
- "targetsStdDev": {
525
- "type": "num"
526
- },
527
- "paramsCount": {
528
- "type": "num"
529
- },
530
- "params": {
531
- "type": "newFloatColumn",
532
- "numOfRows": {
533
- "ref": "paramsCount",
534
- "value": "data"
535
- }
536
- }
537
- },
538
- "output": {
539
- "type": "column",
540
- "source": "params"
541
- },
542
- "annotation": [
543
- "//name: fitLinearRegressionParamsWithDataNormalizing",
544
- "//input: column_list features",
545
- "//input: column featureAvgs",
546
- "//input: column featureStdDevs",
547
- "//input: column targets",
548
- "//input: double targetsAvg",
549
- "//input: double targetsStdDev",
550
- "//input: int paramsCount",
551
- "//output: column params"
552
- ],
553
- "prototype": "fitLinearRegressionParamsWithDataNormalizing(features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount)",
554
- "prototypeForWebWorker": "fitLinearRegressionParamsWithDataNormalizingInWebWorker(features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount)",
555
- "callArgs": "[features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount]"
556
- },
557
- "fitLinearRegressionParams": {
558
- "arguments": {
559
- "features": {
560
- "type": "floatColumns"
561
- },
562
- "targets": {
563
- "type": "floatColumn"
564
- },
565
- "paramsCount": {
566
- "type": "num"
567
- },
568
- "params": {
569
- "type": "newFloatColumn",
570
- "numOfRows": {
571
- "ref": "paramsCount",
572
- "value": "data"
573
- }
574
- }
575
- },
576
- "output": {
577
- "type": "column",
578
- "source": "params"
579
- },
580
- "annotation": [
581
- "//name: fitLinearRegressionParams",
582
- "//input: column_list features",
583
- "//input: column targets",
584
- "//input: int paramsCount",
585
- "//output: column params"
586
- ],
587
- "prototype": "fitLinearRegressionParams(features, targets, paramsCount)",
588
- "prototypeForWebWorker": "fitLinearRegressionParamsInWebWorker(features, targets, paramsCount)",
589
- "callArgs": "[features, targets, paramsCount]"
590
- }
591
- },
592
- "softmax-api.cpp": {
593
- "fitSoftmax": {
594
- "arguments": {
595
- "features": {
596
- "type": "floatColumns"
597
- },
598
- "featureAvgs": {
599
- "type": "floatColumn"
600
- },
601
- "featureStdDevs": {
602
- "type": "floatColumn"
603
- },
604
- "targets": {
605
- "type": "intColumn"
606
- },
607
- "classesCount": {
608
- "type": "num"
609
- },
610
- "iterCount": {
611
- "type": "num"
612
- },
613
- "learningRate": {
614
- "type": "num"
615
- },
616
- "penalty": {
617
- "type": "num"
618
- },
619
- "tolerance": {
620
- "type": "num"
621
- },
622
- "paramsRows": {
623
- "type": "num"
624
- },
625
- "paramsCols": {
626
- "type": "num"
627
- },
628
- "params": {
629
- "type": "newFloatColumns",
630
- "numOfRows": {
631
- "ref": "paramsRows",
632
- "value": "data"
633
- },
634
- "numOfColumns": {
635
- "ref": "paramsCols",
636
- "value": "data"
637
- }
638
- }
639
- },
640
- "output": {
641
- "type": "tableFromColumns",
642
- "source": "params"
643
- },
644
- "annotation": [
645
- "//name: fitSoftmax",
646
- "//input: column_list features",
647
- "//input: column featureAvgs",
648
- "//input: column featureStdDevs",
649
- "//input: column targets",
650
- "//input: int classesCount",
651
- "//input: int iterCount",
652
- "//input: double learningRate",
653
- "//input: double penalty",
654
- "//input: double tolerance",
655
- "//input: int paramsRows",
656
- "//input: int paramsCols",
657
- "//output: dataframe result "
658
- ],
659
- "prototype": "fitSoftmax(features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols)",
660
- "prototypeForWebWorker": "fitSoftmaxInWebWorker(features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols)",
661
- "callArgs": "[features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols]"
662
- }
663
- }
664
- }
1
+ {"pcaExport.cpp": {"principalComponentAnalysis": {"arguments": {"columns": {"type": "floatColumns"}, "componentsCount": {"type": "num"}, "centerNum": {"type": "num"}, "scaleNum": {"type": "num"}, "components": {"type": "newFloatColumns", "numOfRows": {"ref": "columns", "value": "numOfRows"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}}, "output": {"type": "tableFromColumns", "source": "components"}, "annotation": ["//name: principalComponentAnalysis", "//input: dataframe table", "//input: column_list columns", "//input: int componentsCount", "//input: int centerNum", "//input: int scaleNum", "//output: dataframe result "], "prototype": "principalComponentAnalysis(table, columns, componentsCount, centerNum, scaleNum)", "prototypeForWebWorker": "principalComponentAnalysisInWebWorker(table, columns, componentsCount, centerNum, scaleNum)", "callArgs": "[columns, componentsCount, centerNum, scaleNum]"}, "error": {"arguments": {"col1": {"type": "floatColumn"}, "col2": {"type": "floatColumn"}}, "output": {"type": "double", "source": "_callResult"}, "annotation": ["//name: error", "//input: dataframe df", "//input: column col1", "//input: column col2", "//output: double mad "], "prototype": "error(df, col1, col2)", "prototypeForWebWorker": "errorInWebWorker(df, col1, col2)", "callArgs": "[col1, col2]"}, "principalComponentAnalysisNipals": {"arguments": {"columns": {"type": "floatColumns"}, "componentsCount": {"type": "num"}, "components": {"type": "newFloatColumns", "numOfRows": {"ref": "columns", "value": "numOfRows"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}}, "output": {"type": "tableFromColumns", "source": "components"}, "annotation": ["//name: principalComponentAnalysisNipals", "//input: dataframe table", "//input: column_list columns", "//input: int componentsCount", "//output: dataframe result "], "prototype": "principalComponentAnalysisNipals(table, columns, componentsCount)", "prototypeForWebWorker": "principalComponentAnalysisNipalsInWebWorker(table, columns, componentsCount)", "callArgs": "[columns, componentsCount]"}}, "PCA/PCA.cpp": {}, "plsExport.cpp": {"partialLeastSquareRegression": {"arguments": {"features": {"type": "floatColumns"}, "predict": {"type": "floatColumn"}, "componentsCount": {"type": "num"}, "prediction": {"type": "newFloatColumn", "numOfRows": {"ref": "predict", "value": "numOfRows"}}, "regressionCoefficients": {"type": "newFloatColumn", "numOfRows": {"ref": "features", "value": "numOfColumns"}}, "tScores": {"type": "newFloatColumns", "numOfRows": {"ref": "predict", "value": "numOfRows"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}, "uScores": {"type": "newFloatColumns", "numOfRows": {"ref": "predict", "value": "numOfRows"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}, "xLoadings": {"type": "newFloatColumns", "numOfRows": {"ref": "features", "value": "numOfColumns"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}, "yLoadings": {"type": "newFloatColumn", "numOfRows": {"ref": "componentsCount", "value": "data"}}}, "output": {"type": "objects", "source": "['prediction', 'regressionCoefficients', 'tScores', 'uScores', 'xLoadings', 'yLoadings']"}, "annotation": ["//name: partialLeastSquareRegression", "//input: dataframe table", "//input: column_list features", "//input: column predict", "//input: int componentsCount"], "prototype": "partialLeastSquareRegression(table, features, predict, componentsCount)", "prototypeForWebWorker": "partialLeastSquareRegressionInWebWorker(table, features, predict, componentsCount)", "callArgs": "[features, predict, componentsCount]"}}, "PLS/PLS.cpp": {}, "svmApi.cpp": {"generateDataset": {"arguments": {"kernel": {"type": "num"}, "kernelParams": {"type": "floatColumn"}, "samplesCount": {"type": "num"}, "featuresCount": {"type": "num"}, "min": {"type": "num"}, "max": {"type": "num"}, "violatorsPercentage": {"type": "num"}, "dataset": {"type": "newFloatColumns", "numOfRows": {"ref": "samplesCount", "value": "data"}, "numOfColumns": {"ref": "featuresCount", "value": "data"}}, "labels": {"type": "newFloatColumn", "numOfRows": {"ref": "samplesCount", "value": "data"}}}, "output": {"type": "objects", "source": "['dataset', 'labels']"}, "annotation": ["//name: generateDataset", "//input: int kernel", "//input: column kernelParams", "//input: int samplesCount", "//input: int featuresCount", "//input: double min", "//input: double max", "//input: double violatorsPercentage"], "prototype": "generateDataset(kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage)", "prototypeForWebWorker": "generateDatasetInWebWorker(kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage)", "callArgs": "[kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage]"}, "normalizeDataset": {"arguments": {"data": {"type": "floatColumns"}, "normalizedData": {"type": "newFloatColumns", "numOfRows": {"ref": "data", "value": "numOfColumns"}, "numOfColumns": {"ref": "data", "value": "numOfRows"}}, "means": {"type": "newFloatColumn", "numOfRows": {"ref": "data", "value": "numOfColumns"}}, "stdDevs": {"type": "newFloatColumn", "numOfRows": {"ref": "data", "value": "numOfColumns"}}}, "output": {"type": "objects", "source": "['normalizedData', 'means', 'stdDevs']"}, "annotation": ["//name: normalizeDataset", "//input: column_list data"], "prototype": "normalizeDataset(data)", "prototypeForWebWorker": "normalizeDatasetInWebWorker(data)", "callArgs": "[data]"}, "trainLSSVM": {"arguments": {"gamma": {"type": "num"}, "kernel": {"type": "num"}, "kernelParams": {"type": "floatColumn"}, "modelParamsCount": {"type": "num"}, "precomputedWeightsCount": {"type": "num"}, "dataset": {"type": "floatColumns"}, "labels": {"type": "floatColumn"}, "normalizedData": {"type": "newFloatColumns", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}, "numOfColumns": {"ref": "dataset", "value": "numOfRows"}}, "means": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}}, "stdDevs": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}}, "modelParams": {"type": "newFloatColumn", "numOfRows": {"ref": "modelParamsCount", "value": "data"}}, "precomputedWeights": {"type": "newFloatColumn", "numOfRows": {"ref": "precomputedWeightsCount", "value": "data"}}}, "output": {"type": "objects", "source": "['normalizedData', 'means', 'stdDevs', 'modelParams', 'precomputedWeights']"}, "annotation": ["//name: trainLSSVM", "//input: double gamma", "//input: int kernel", "//input: column kernelParams", "//input: int modelParamsCount", "//input: int precomputedWeightsCount", "//input: column_list dataset", "//input: column labels"], "prototype": "trainLSSVM(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels)", "prototypeForWebWorker": "trainLSSVMInWebWorker(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels)", "callArgs": "[gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels]"}, "predictByLSSVM": {"arguments": {"kernel": {"type": "num"}, "kernelParams": {"type": "floatColumn"}, "normalizedData": {"type": "floatColumns"}, "labels": {"type": "floatColumn"}, "means": {"type": "floatColumn"}, "stdDevs": {"type": "floatColumn"}, "modelParams": {"type": "floatColumn"}, "precomputedWeights": {"type": "floatColumn"}, "targetData": {"type": "floatColumns"}, "prediction": {"type": "newFloatColumn", "numOfRows": {"ref": "targetData", "value": "numOfRows"}}}, "output": {"type": "column", "source": "prediction"}, "annotation": ["//name: predictByLSSVM", "//input: int kernel", "//input: column kernelParams", "//input: column_list normalizedData", "//input: column labels", "//input: column means", "//input: column stdDevs", "//input: column modelParams", "//input: column precomputedWeights", "//input: column_list targetData", "//output: column prediction"], "prototype": "predictByLSSVM(kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData)", "prototypeForWebWorker": "predictByLSSVMInWebWorker(kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData)", "callArgs": "[kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData]"}, "trainAndAnalyzeLSSVM": {"arguments": {"gamma": {"type": "num"}, "kernel": {"type": "num"}, "kernelParams": {"type": "floatColumn"}, "modelParamsCount": {"type": "num"}, "precomputedWeightsCount": {"type": "num"}, "confusionMatrixElementsCount": {"type": "num"}, "dataset": {"type": "floatColumns"}, "labels": {"type": "floatColumn"}, "normalizedData": {"type": "newFloatColumns", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}, "numOfColumns": {"ref": "dataset", "value": "numOfRows"}}, "means": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}}, "stdDevs": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}}, "modelParams": {"type": "newFloatColumn", "numOfRows": {"ref": "modelParamsCount", "value": "data"}}, "precomputedWeights": {"type": "newFloatColumn", "numOfRows": {"ref": "precomputedWeightsCount", "value": "data"}}, "predictedLabels": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfRows"}}, "correctness": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfRows"}}, "consfusionMatrix": {"type": "newIntColumn", "numOfRows": {"ref": "confusionMatrixElementsCount", "value": "data"}}}, "output": {"type": "objects", "source": "['normalizedData', 'means', 'stdDevs', 'modelParams', 'precomputedWeights', 'predictedLabels', 'correctness', 'consfusionMatrix']"}, "annotation": ["//name: trainAndAnalyzeLSSVM", "//input: double gamma", "//input: int kernel", "//input: column kernelParams", "//input: int modelParamsCount", "//input: int precomputedWeightsCount", "//input: int confusionMatrixElementsCount", "//input: column_list dataset", "//input: column labels"], "prototype": "trainAndAnalyzeLSSVM(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels)", "prototypeForWebWorker": "trainAndAnalyzeLSSVMInWebWorker(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels)", "callArgs": "[gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels]"}}, "regression-api.cpp": {"fitLinearRegressionParamsWithDataNormalizing": {"arguments": {"features": {"type": "floatColumns"}, "featureAvgs": {"type": "floatColumn"}, "featureStdDevs": {"type": "floatColumn"}, "targets": {"type": "floatColumn"}, "targetsAvg": {"type": "num"}, "targetsStdDev": {"type": "num"}, "paramsCount": {"type": "num"}, "params": {"type": "newFloatColumn", "numOfRows": {"ref": "paramsCount", "value": "data"}}}, "output": {"type": "column", "source": "params"}, "annotation": ["//name: fitLinearRegressionParamsWithDataNormalizing", "//input: column_list features", "//input: column featureAvgs", "//input: column featureStdDevs", "//input: column targets", "//input: double targetsAvg", "//input: double targetsStdDev", "//input: int paramsCount", "//output: column params"], "prototype": "fitLinearRegressionParamsWithDataNormalizing(features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount)", "prototypeForWebWorker": "fitLinearRegressionParamsWithDataNormalizingInWebWorker(features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount)", "callArgs": "[features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount]"}, "fitLinearRegressionParams": {"arguments": {"features": {"type": "floatColumns"}, "targets": {"type": "floatColumn"}, "paramsCount": {"type": "num"}, "params": {"type": "newFloatColumn", "numOfRows": {"ref": "paramsCount", "value": "data"}}}, "output": {"type": "column", "source": "params"}, "annotation": ["//name: fitLinearRegressionParams", "//input: column_list features", "//input: column targets", "//input: int paramsCount", "//output: column params"], "prototype": "fitLinearRegressionParams(features, targets, paramsCount)", "prototypeForWebWorker": "fitLinearRegressionParamsInWebWorker(features, targets, paramsCount)", "callArgs": "[features, targets, paramsCount]"}}, "softmax-api.cpp": {"fitSoftmax": {"arguments": {"features": {"type": "floatColumns"}, "featureAvgs": {"type": "floatColumn"}, "featureStdDevs": {"type": "floatColumn"}, "targets": {"type": "intColumn"}, "classesCount": {"type": "num"}, "iterCount": {"type": "num"}, "learningRate": {"type": "num"}, "penalty": {"type": "num"}, "tolerance": {"type": "num"}, "paramsRows": {"type": "num"}, "paramsCols": {"type": "num"}, "params": {"type": "newFloatColumns", "numOfRows": {"ref": "paramsRows", "value": "data"}, "numOfColumns": {"ref": "paramsCols", "value": "data"}}}, "output": {"type": "tableFromColumns", "source": "params"}, "annotation": ["//name: fitSoftmax", "//input: column_list features", "//input: column featureAvgs", "//input: column featureStdDevs", "//input: column targets", "//input: int classesCount", "//input: int iterCount", "//input: double learningRate", "//input: double penalty", "//input: double tolerance", "//input: int paramsRows", "//input: int paramsCols", "//output: dataframe result "], "prototype": "fitSoftmax(features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols)", "prototypeForWebWorker": "fitSoftmaxInWebWorker(features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols)", "callArgs": "[features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols]"}}}