@datagrok/eda 1.2.3 → 1.2.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +8 -0
- package/dist/128.js +2 -0
- package/dist/128.js.map +1 -0
- package/dist/23.js +1 -1
- package/dist/23.js.map +1 -1
- package/dist/{12a82b8001995d426ed2.wasm → 3cec7d4ab7dacdcb37e6.wasm} +0 -0
- package/dist/860.js +2 -0
- package/dist/860.js.map +1 -0
- package/dist/package-test.js +1 -1
- package/dist/package-test.js.map +1 -1
- package/dist/package.js +1 -1
- package/dist/package.js.map +1 -1
- package/package.json +1 -96
- package/scripts/command.txt +1 -1
- package/scripts/func.json +1 -664
- package/src/eda-tools.ts +52 -17
- package/src/eda-ui.ts +0 -114
- package/src/missing-values-imputation/ui-constants.ts +1 -1
- package/src/package.ts +20 -16
- package/src/pls/pls-constants.ts +7 -7
- package/src/pls/pls-ml.ts +2 -1
- package/src/pls/pls-tools.ts +8 -3
- package/src/tests/anova-tests.ts +1 -1
- package/src/tests/linear-methods-tests.ts +6 -1
- package/src/utils.ts +90 -0
- package/wasm/EDA.js +28 -1
- package/wasm/EDA.wasm +0 -0
- package/wasm/EDAAPI.js +22 -4
- package/wasm/EDAForWebWorker.js +1 -1
- package/wasm/PCA/PCA.cpp +49 -58
- package/wasm/PCA/PCA.h +19 -0
- package/wasm/pcaExport.cpp +25 -1
- package/wasm/workers/{principalComponentAnalysisWorker.js → principalComponentAnalysisNipalsWorker.js} +1 -1
- package/wasm/workers/principalComponentAnalysisWorkerUpd.js +16 -0
- package/dist/91.js +0 -2
- package/dist/91.js.map +0 -1
package/scripts/func.json
CHANGED
|
@@ -1,664 +1 @@
|
|
|
1
|
-
{
|
|
2
|
-
"pcaExport.cpp": {
|
|
3
|
-
"principalComponentAnalysis": {
|
|
4
|
-
"arguments": {
|
|
5
|
-
"columns": {
|
|
6
|
-
"type": "floatColumns"
|
|
7
|
-
},
|
|
8
|
-
"componentsCount": {
|
|
9
|
-
"type": "num"
|
|
10
|
-
},
|
|
11
|
-
"centerNum": {
|
|
12
|
-
"type": "num"
|
|
13
|
-
},
|
|
14
|
-
"scaleNum": {
|
|
15
|
-
"type": "num"
|
|
16
|
-
},
|
|
17
|
-
"components": {
|
|
18
|
-
"type": "newFloatColumns",
|
|
19
|
-
"numOfRows": {
|
|
20
|
-
"ref": "columns",
|
|
21
|
-
"value": "numOfRows"
|
|
22
|
-
},
|
|
23
|
-
"numOfColumns": {
|
|
24
|
-
"ref": "componentsCount",
|
|
25
|
-
"value": "data"
|
|
26
|
-
}
|
|
27
|
-
}
|
|
28
|
-
},
|
|
29
|
-
"output": {
|
|
30
|
-
"type": "tableFromColumns",
|
|
31
|
-
"source": "components"
|
|
32
|
-
},
|
|
33
|
-
"annotation": [
|
|
34
|
-
"//name: principalComponentAnalysis",
|
|
35
|
-
"//input: dataframe table",
|
|
36
|
-
"//input: column_list columns",
|
|
37
|
-
"//input: int componentsCount",
|
|
38
|
-
"//input: int centerNum",
|
|
39
|
-
"//input: int scaleNum",
|
|
40
|
-
"//output: dataframe result "
|
|
41
|
-
],
|
|
42
|
-
"prototype": "principalComponentAnalysis(table, columns, componentsCount, centerNum, scaleNum)",
|
|
43
|
-
"prototypeForWebWorker": "principalComponentAnalysisInWebWorker(table, columns, componentsCount, centerNum, scaleNum)",
|
|
44
|
-
"callArgs": "[columns, componentsCount, centerNum, scaleNum]"
|
|
45
|
-
},
|
|
46
|
-
"error": {
|
|
47
|
-
"arguments": {
|
|
48
|
-
"col1": {
|
|
49
|
-
"type": "floatColumn"
|
|
50
|
-
},
|
|
51
|
-
"col2": {
|
|
52
|
-
"type": "floatColumn"
|
|
53
|
-
}
|
|
54
|
-
},
|
|
55
|
-
"output": {
|
|
56
|
-
"type": "double",
|
|
57
|
-
"source": "_callResult"
|
|
58
|
-
},
|
|
59
|
-
"annotation": [
|
|
60
|
-
"//name: error",
|
|
61
|
-
"//input: dataframe df",
|
|
62
|
-
"//input: column col1",
|
|
63
|
-
"//input: column col2",
|
|
64
|
-
"//output: double mad "
|
|
65
|
-
],
|
|
66
|
-
"prototype": "error(df, col1, col2)",
|
|
67
|
-
"prototypeForWebWorker": "errorInWebWorker(df, col1, col2)",
|
|
68
|
-
"callArgs": "[col1, col2]"
|
|
69
|
-
}
|
|
70
|
-
},
|
|
71
|
-
"PCA/PCA.cpp": {},
|
|
72
|
-
"plsExport.cpp": {
|
|
73
|
-
"partialLeastSquareRegression": {
|
|
74
|
-
"arguments": {
|
|
75
|
-
"features": {
|
|
76
|
-
"type": "floatColumns"
|
|
77
|
-
},
|
|
78
|
-
"predict": {
|
|
79
|
-
"type": "floatColumn"
|
|
80
|
-
},
|
|
81
|
-
"componentsCount": {
|
|
82
|
-
"type": "num"
|
|
83
|
-
},
|
|
84
|
-
"prediction": {
|
|
85
|
-
"type": "newFloatColumn",
|
|
86
|
-
"numOfRows": {
|
|
87
|
-
"ref": "predict",
|
|
88
|
-
"value": "numOfRows"
|
|
89
|
-
}
|
|
90
|
-
},
|
|
91
|
-
"regressionCoefficients": {
|
|
92
|
-
"type": "newFloatColumn",
|
|
93
|
-
"numOfRows": {
|
|
94
|
-
"ref": "features",
|
|
95
|
-
"value": "numOfColumns"
|
|
96
|
-
}
|
|
97
|
-
},
|
|
98
|
-
"tScores": {
|
|
99
|
-
"type": "newFloatColumns",
|
|
100
|
-
"numOfRows": {
|
|
101
|
-
"ref": "predict",
|
|
102
|
-
"value": "numOfRows"
|
|
103
|
-
},
|
|
104
|
-
"numOfColumns": {
|
|
105
|
-
"ref": "componentsCount",
|
|
106
|
-
"value": "data"
|
|
107
|
-
}
|
|
108
|
-
},
|
|
109
|
-
"uScores": {
|
|
110
|
-
"type": "newFloatColumns",
|
|
111
|
-
"numOfRows": {
|
|
112
|
-
"ref": "predict",
|
|
113
|
-
"value": "numOfRows"
|
|
114
|
-
},
|
|
115
|
-
"numOfColumns": {
|
|
116
|
-
"ref": "componentsCount",
|
|
117
|
-
"value": "data"
|
|
118
|
-
}
|
|
119
|
-
},
|
|
120
|
-
"xLoadings": {
|
|
121
|
-
"type": "newFloatColumns",
|
|
122
|
-
"numOfRows": {
|
|
123
|
-
"ref": "features",
|
|
124
|
-
"value": "numOfColumns"
|
|
125
|
-
},
|
|
126
|
-
"numOfColumns": {
|
|
127
|
-
"ref": "componentsCount",
|
|
128
|
-
"value": "data"
|
|
129
|
-
}
|
|
130
|
-
},
|
|
131
|
-
"yLoadings": {
|
|
132
|
-
"type": "newFloatColumn",
|
|
133
|
-
"numOfRows": {
|
|
134
|
-
"ref": "componentsCount",
|
|
135
|
-
"value": "data"
|
|
136
|
-
}
|
|
137
|
-
}
|
|
138
|
-
},
|
|
139
|
-
"output": {
|
|
140
|
-
"type": "objects",
|
|
141
|
-
"source": "['prediction', 'regressionCoefficients', 'tScores', 'uScores', 'xLoadings', 'yLoadings']"
|
|
142
|
-
},
|
|
143
|
-
"annotation": [
|
|
144
|
-
"//name: partialLeastSquareRegression",
|
|
145
|
-
"//input: dataframe table",
|
|
146
|
-
"//input: column_list features",
|
|
147
|
-
"//input: column predict",
|
|
148
|
-
"//input: int componentsCount"
|
|
149
|
-
],
|
|
150
|
-
"prototype": "partialLeastSquareRegression(table, features, predict, componentsCount)",
|
|
151
|
-
"prototypeForWebWorker": "partialLeastSquareRegressionInWebWorker(table, features, predict, componentsCount)",
|
|
152
|
-
"callArgs": "[features, predict, componentsCount]"
|
|
153
|
-
}
|
|
154
|
-
},
|
|
155
|
-
"PLS/PLS.cpp": {},
|
|
156
|
-
"svmApi.cpp": {
|
|
157
|
-
"generateDataset": {
|
|
158
|
-
"arguments": {
|
|
159
|
-
"kernel": {
|
|
160
|
-
"type": "num"
|
|
161
|
-
},
|
|
162
|
-
"kernelParams": {
|
|
163
|
-
"type": "floatColumn"
|
|
164
|
-
},
|
|
165
|
-
"samplesCount": {
|
|
166
|
-
"type": "num"
|
|
167
|
-
},
|
|
168
|
-
"featuresCount": {
|
|
169
|
-
"type": "num"
|
|
170
|
-
},
|
|
171
|
-
"min": {
|
|
172
|
-
"type": "num"
|
|
173
|
-
},
|
|
174
|
-
"max": {
|
|
175
|
-
"type": "num"
|
|
176
|
-
},
|
|
177
|
-
"violatorsPercentage": {
|
|
178
|
-
"type": "num"
|
|
179
|
-
},
|
|
180
|
-
"dataset": {
|
|
181
|
-
"type": "newFloatColumns",
|
|
182
|
-
"numOfRows": {
|
|
183
|
-
"ref": "samplesCount",
|
|
184
|
-
"value": "data"
|
|
185
|
-
},
|
|
186
|
-
"numOfColumns": {
|
|
187
|
-
"ref": "featuresCount",
|
|
188
|
-
"value": "data"
|
|
189
|
-
}
|
|
190
|
-
},
|
|
191
|
-
"labels": {
|
|
192
|
-
"type": "newFloatColumn",
|
|
193
|
-
"numOfRows": {
|
|
194
|
-
"ref": "samplesCount",
|
|
195
|
-
"value": "data"
|
|
196
|
-
}
|
|
197
|
-
}
|
|
198
|
-
},
|
|
199
|
-
"output": {
|
|
200
|
-
"type": "objects",
|
|
201
|
-
"source": "['dataset', 'labels']"
|
|
202
|
-
},
|
|
203
|
-
"annotation": [
|
|
204
|
-
"//name: generateDataset",
|
|
205
|
-
"//input: int kernel",
|
|
206
|
-
"//input: column kernelParams",
|
|
207
|
-
"//input: int samplesCount",
|
|
208
|
-
"//input: int featuresCount",
|
|
209
|
-
"//input: double min",
|
|
210
|
-
"//input: double max",
|
|
211
|
-
"//input: double violatorsPercentage"
|
|
212
|
-
],
|
|
213
|
-
"prototype": "generateDataset(kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage)",
|
|
214
|
-
"prototypeForWebWorker": "generateDatasetInWebWorker(kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage)",
|
|
215
|
-
"callArgs": "[kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage]"
|
|
216
|
-
},
|
|
217
|
-
"normalizeDataset": {
|
|
218
|
-
"arguments": {
|
|
219
|
-
"data": {
|
|
220
|
-
"type": "floatColumns"
|
|
221
|
-
},
|
|
222
|
-
"normalizedData": {
|
|
223
|
-
"type": "newFloatColumns",
|
|
224
|
-
"numOfRows": {
|
|
225
|
-
"ref": "data",
|
|
226
|
-
"value": "numOfColumns"
|
|
227
|
-
},
|
|
228
|
-
"numOfColumns": {
|
|
229
|
-
"ref": "data",
|
|
230
|
-
"value": "numOfRows"
|
|
231
|
-
}
|
|
232
|
-
},
|
|
233
|
-
"means": {
|
|
234
|
-
"type": "newFloatColumn",
|
|
235
|
-
"numOfRows": {
|
|
236
|
-
"ref": "data",
|
|
237
|
-
"value": "numOfColumns"
|
|
238
|
-
}
|
|
239
|
-
},
|
|
240
|
-
"stdDevs": {
|
|
241
|
-
"type": "newFloatColumn",
|
|
242
|
-
"numOfRows": {
|
|
243
|
-
"ref": "data",
|
|
244
|
-
"value": "numOfColumns"
|
|
245
|
-
}
|
|
246
|
-
}
|
|
247
|
-
},
|
|
248
|
-
"output": {
|
|
249
|
-
"type": "objects",
|
|
250
|
-
"source": "['normalizedData', 'means', 'stdDevs']"
|
|
251
|
-
},
|
|
252
|
-
"annotation": [
|
|
253
|
-
"//name: normalizeDataset",
|
|
254
|
-
"//input: column_list data"
|
|
255
|
-
],
|
|
256
|
-
"prototype": "normalizeDataset(data)",
|
|
257
|
-
"prototypeForWebWorker": "normalizeDatasetInWebWorker(data)",
|
|
258
|
-
"callArgs": "[data]"
|
|
259
|
-
},
|
|
260
|
-
"trainLSSVM": {
|
|
261
|
-
"arguments": {
|
|
262
|
-
"gamma": {
|
|
263
|
-
"type": "num"
|
|
264
|
-
},
|
|
265
|
-
"kernel": {
|
|
266
|
-
"type": "num"
|
|
267
|
-
},
|
|
268
|
-
"kernelParams": {
|
|
269
|
-
"type": "floatColumn"
|
|
270
|
-
},
|
|
271
|
-
"modelParamsCount": {
|
|
272
|
-
"type": "num"
|
|
273
|
-
},
|
|
274
|
-
"precomputedWeightsCount": {
|
|
275
|
-
"type": "num"
|
|
276
|
-
},
|
|
277
|
-
"dataset": {
|
|
278
|
-
"type": "floatColumns"
|
|
279
|
-
},
|
|
280
|
-
"labels": {
|
|
281
|
-
"type": "floatColumn"
|
|
282
|
-
},
|
|
283
|
-
"normalizedData": {
|
|
284
|
-
"type": "newFloatColumns",
|
|
285
|
-
"numOfRows": {
|
|
286
|
-
"ref": "dataset",
|
|
287
|
-
"value": "numOfColumns"
|
|
288
|
-
},
|
|
289
|
-
"numOfColumns": {
|
|
290
|
-
"ref": "dataset",
|
|
291
|
-
"value": "numOfRows"
|
|
292
|
-
}
|
|
293
|
-
},
|
|
294
|
-
"means": {
|
|
295
|
-
"type": "newFloatColumn",
|
|
296
|
-
"numOfRows": {
|
|
297
|
-
"ref": "dataset",
|
|
298
|
-
"value": "numOfColumns"
|
|
299
|
-
}
|
|
300
|
-
},
|
|
301
|
-
"stdDevs": {
|
|
302
|
-
"type": "newFloatColumn",
|
|
303
|
-
"numOfRows": {
|
|
304
|
-
"ref": "dataset",
|
|
305
|
-
"value": "numOfColumns"
|
|
306
|
-
}
|
|
307
|
-
},
|
|
308
|
-
"modelParams": {
|
|
309
|
-
"type": "newFloatColumn",
|
|
310
|
-
"numOfRows": {
|
|
311
|
-
"ref": "modelParamsCount",
|
|
312
|
-
"value": "data"
|
|
313
|
-
}
|
|
314
|
-
},
|
|
315
|
-
"precomputedWeights": {
|
|
316
|
-
"type": "newFloatColumn",
|
|
317
|
-
"numOfRows": {
|
|
318
|
-
"ref": "precomputedWeightsCount",
|
|
319
|
-
"value": "data"
|
|
320
|
-
}
|
|
321
|
-
}
|
|
322
|
-
},
|
|
323
|
-
"output": {
|
|
324
|
-
"type": "objects",
|
|
325
|
-
"source": "['normalizedData', 'means', 'stdDevs', 'modelParams', 'precomputedWeights']"
|
|
326
|
-
},
|
|
327
|
-
"annotation": [
|
|
328
|
-
"//name: trainLSSVM",
|
|
329
|
-
"//input: double gamma",
|
|
330
|
-
"//input: int kernel",
|
|
331
|
-
"//input: column kernelParams",
|
|
332
|
-
"//input: int modelParamsCount",
|
|
333
|
-
"//input: int precomputedWeightsCount",
|
|
334
|
-
"//input: column_list dataset",
|
|
335
|
-
"//input: column labels"
|
|
336
|
-
],
|
|
337
|
-
"prototype": "trainLSSVM(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels)",
|
|
338
|
-
"prototypeForWebWorker": "trainLSSVMInWebWorker(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels)",
|
|
339
|
-
"callArgs": "[gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels]"
|
|
340
|
-
},
|
|
341
|
-
"predictByLSSVM": {
|
|
342
|
-
"arguments": {
|
|
343
|
-
"kernel": {
|
|
344
|
-
"type": "num"
|
|
345
|
-
},
|
|
346
|
-
"kernelParams": {
|
|
347
|
-
"type": "floatColumn"
|
|
348
|
-
},
|
|
349
|
-
"normalizedData": {
|
|
350
|
-
"type": "floatColumns"
|
|
351
|
-
},
|
|
352
|
-
"labels": {
|
|
353
|
-
"type": "floatColumn"
|
|
354
|
-
},
|
|
355
|
-
"means": {
|
|
356
|
-
"type": "floatColumn"
|
|
357
|
-
},
|
|
358
|
-
"stdDevs": {
|
|
359
|
-
"type": "floatColumn"
|
|
360
|
-
},
|
|
361
|
-
"modelParams": {
|
|
362
|
-
"type": "floatColumn"
|
|
363
|
-
},
|
|
364
|
-
"precomputedWeights": {
|
|
365
|
-
"type": "floatColumn"
|
|
366
|
-
},
|
|
367
|
-
"targetData": {
|
|
368
|
-
"type": "floatColumns"
|
|
369
|
-
},
|
|
370
|
-
"prediction": {
|
|
371
|
-
"type": "newFloatColumn",
|
|
372
|
-
"numOfRows": {
|
|
373
|
-
"ref": "targetData",
|
|
374
|
-
"value": "numOfRows"
|
|
375
|
-
}
|
|
376
|
-
}
|
|
377
|
-
},
|
|
378
|
-
"output": {
|
|
379
|
-
"type": "column",
|
|
380
|
-
"source": "prediction"
|
|
381
|
-
},
|
|
382
|
-
"annotation": [
|
|
383
|
-
"//name: predictByLSSVM",
|
|
384
|
-
"//input: int kernel",
|
|
385
|
-
"//input: column kernelParams",
|
|
386
|
-
"//input: column_list normalizedData",
|
|
387
|
-
"//input: column labels",
|
|
388
|
-
"//input: column means",
|
|
389
|
-
"//input: column stdDevs",
|
|
390
|
-
"//input: column modelParams",
|
|
391
|
-
"//input: column precomputedWeights",
|
|
392
|
-
"//input: column_list targetData",
|
|
393
|
-
"//output: column prediction"
|
|
394
|
-
],
|
|
395
|
-
"prototype": "predictByLSSVM(kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData)",
|
|
396
|
-
"prototypeForWebWorker": "predictByLSSVMInWebWorker(kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData)",
|
|
397
|
-
"callArgs": "[kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData]"
|
|
398
|
-
},
|
|
399
|
-
"trainAndAnalyzeLSSVM": {
|
|
400
|
-
"arguments": {
|
|
401
|
-
"gamma": {
|
|
402
|
-
"type": "num"
|
|
403
|
-
},
|
|
404
|
-
"kernel": {
|
|
405
|
-
"type": "num"
|
|
406
|
-
},
|
|
407
|
-
"kernelParams": {
|
|
408
|
-
"type": "floatColumn"
|
|
409
|
-
},
|
|
410
|
-
"modelParamsCount": {
|
|
411
|
-
"type": "num"
|
|
412
|
-
},
|
|
413
|
-
"precomputedWeightsCount": {
|
|
414
|
-
"type": "num"
|
|
415
|
-
},
|
|
416
|
-
"confusionMatrixElementsCount": {
|
|
417
|
-
"type": "num"
|
|
418
|
-
},
|
|
419
|
-
"dataset": {
|
|
420
|
-
"type": "floatColumns"
|
|
421
|
-
},
|
|
422
|
-
"labels": {
|
|
423
|
-
"type": "floatColumn"
|
|
424
|
-
},
|
|
425
|
-
"normalizedData": {
|
|
426
|
-
"type": "newFloatColumns",
|
|
427
|
-
"numOfRows": {
|
|
428
|
-
"ref": "dataset",
|
|
429
|
-
"value": "numOfColumns"
|
|
430
|
-
},
|
|
431
|
-
"numOfColumns": {
|
|
432
|
-
"ref": "dataset",
|
|
433
|
-
"value": "numOfRows"
|
|
434
|
-
}
|
|
435
|
-
},
|
|
436
|
-
"means": {
|
|
437
|
-
"type": "newFloatColumn",
|
|
438
|
-
"numOfRows": {
|
|
439
|
-
"ref": "dataset",
|
|
440
|
-
"value": "numOfColumns"
|
|
441
|
-
}
|
|
442
|
-
},
|
|
443
|
-
"stdDevs": {
|
|
444
|
-
"type": "newFloatColumn",
|
|
445
|
-
"numOfRows": {
|
|
446
|
-
"ref": "dataset",
|
|
447
|
-
"value": "numOfColumns"
|
|
448
|
-
}
|
|
449
|
-
},
|
|
450
|
-
"modelParams": {
|
|
451
|
-
"type": "newFloatColumn",
|
|
452
|
-
"numOfRows": {
|
|
453
|
-
"ref": "modelParamsCount",
|
|
454
|
-
"value": "data"
|
|
455
|
-
}
|
|
456
|
-
},
|
|
457
|
-
"precomputedWeights": {
|
|
458
|
-
"type": "newFloatColumn",
|
|
459
|
-
"numOfRows": {
|
|
460
|
-
"ref": "precomputedWeightsCount",
|
|
461
|
-
"value": "data"
|
|
462
|
-
}
|
|
463
|
-
},
|
|
464
|
-
"predictedLabels": {
|
|
465
|
-
"type": "newFloatColumn",
|
|
466
|
-
"numOfRows": {
|
|
467
|
-
"ref": "dataset",
|
|
468
|
-
"value": "numOfRows"
|
|
469
|
-
}
|
|
470
|
-
},
|
|
471
|
-
"correctness": {
|
|
472
|
-
"type": "newFloatColumn",
|
|
473
|
-
"numOfRows": {
|
|
474
|
-
"ref": "dataset",
|
|
475
|
-
"value": "numOfRows"
|
|
476
|
-
}
|
|
477
|
-
},
|
|
478
|
-
"consfusionMatrix": {
|
|
479
|
-
"type": "newIntColumn",
|
|
480
|
-
"numOfRows": {
|
|
481
|
-
"ref": "confusionMatrixElementsCount",
|
|
482
|
-
"value": "data"
|
|
483
|
-
}
|
|
484
|
-
}
|
|
485
|
-
},
|
|
486
|
-
"output": {
|
|
487
|
-
"type": "objects",
|
|
488
|
-
"source": "['normalizedData', 'means', 'stdDevs', 'modelParams', 'precomputedWeights', 'predictedLabels', 'correctness', 'consfusionMatrix']"
|
|
489
|
-
},
|
|
490
|
-
"annotation": [
|
|
491
|
-
"//name: trainAndAnalyzeLSSVM",
|
|
492
|
-
"//input: double gamma",
|
|
493
|
-
"//input: int kernel",
|
|
494
|
-
"//input: column kernelParams",
|
|
495
|
-
"//input: int modelParamsCount",
|
|
496
|
-
"//input: int precomputedWeightsCount",
|
|
497
|
-
"//input: int confusionMatrixElementsCount",
|
|
498
|
-
"//input: column_list dataset",
|
|
499
|
-
"//input: column labels"
|
|
500
|
-
],
|
|
501
|
-
"prototype": "trainAndAnalyzeLSSVM(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels)",
|
|
502
|
-
"prototypeForWebWorker": "trainAndAnalyzeLSSVMInWebWorker(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels)",
|
|
503
|
-
"callArgs": "[gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels]"
|
|
504
|
-
}
|
|
505
|
-
},
|
|
506
|
-
"regression-api.cpp": {
|
|
507
|
-
"fitLinearRegressionParamsWithDataNormalizing": {
|
|
508
|
-
"arguments": {
|
|
509
|
-
"features": {
|
|
510
|
-
"type": "floatColumns"
|
|
511
|
-
},
|
|
512
|
-
"featureAvgs": {
|
|
513
|
-
"type": "floatColumn"
|
|
514
|
-
},
|
|
515
|
-
"featureStdDevs": {
|
|
516
|
-
"type": "floatColumn"
|
|
517
|
-
},
|
|
518
|
-
"targets": {
|
|
519
|
-
"type": "floatColumn"
|
|
520
|
-
},
|
|
521
|
-
"targetsAvg": {
|
|
522
|
-
"type": "num"
|
|
523
|
-
},
|
|
524
|
-
"targetsStdDev": {
|
|
525
|
-
"type": "num"
|
|
526
|
-
},
|
|
527
|
-
"paramsCount": {
|
|
528
|
-
"type": "num"
|
|
529
|
-
},
|
|
530
|
-
"params": {
|
|
531
|
-
"type": "newFloatColumn",
|
|
532
|
-
"numOfRows": {
|
|
533
|
-
"ref": "paramsCount",
|
|
534
|
-
"value": "data"
|
|
535
|
-
}
|
|
536
|
-
}
|
|
537
|
-
},
|
|
538
|
-
"output": {
|
|
539
|
-
"type": "column",
|
|
540
|
-
"source": "params"
|
|
541
|
-
},
|
|
542
|
-
"annotation": [
|
|
543
|
-
"//name: fitLinearRegressionParamsWithDataNormalizing",
|
|
544
|
-
"//input: column_list features",
|
|
545
|
-
"//input: column featureAvgs",
|
|
546
|
-
"//input: column featureStdDevs",
|
|
547
|
-
"//input: column targets",
|
|
548
|
-
"//input: double targetsAvg",
|
|
549
|
-
"//input: double targetsStdDev",
|
|
550
|
-
"//input: int paramsCount",
|
|
551
|
-
"//output: column params"
|
|
552
|
-
],
|
|
553
|
-
"prototype": "fitLinearRegressionParamsWithDataNormalizing(features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount)",
|
|
554
|
-
"prototypeForWebWorker": "fitLinearRegressionParamsWithDataNormalizingInWebWorker(features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount)",
|
|
555
|
-
"callArgs": "[features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount]"
|
|
556
|
-
},
|
|
557
|
-
"fitLinearRegressionParams": {
|
|
558
|
-
"arguments": {
|
|
559
|
-
"features": {
|
|
560
|
-
"type": "floatColumns"
|
|
561
|
-
},
|
|
562
|
-
"targets": {
|
|
563
|
-
"type": "floatColumn"
|
|
564
|
-
},
|
|
565
|
-
"paramsCount": {
|
|
566
|
-
"type": "num"
|
|
567
|
-
},
|
|
568
|
-
"params": {
|
|
569
|
-
"type": "newFloatColumn",
|
|
570
|
-
"numOfRows": {
|
|
571
|
-
"ref": "paramsCount",
|
|
572
|
-
"value": "data"
|
|
573
|
-
}
|
|
574
|
-
}
|
|
575
|
-
},
|
|
576
|
-
"output": {
|
|
577
|
-
"type": "column",
|
|
578
|
-
"source": "params"
|
|
579
|
-
},
|
|
580
|
-
"annotation": [
|
|
581
|
-
"//name: fitLinearRegressionParams",
|
|
582
|
-
"//input: column_list features",
|
|
583
|
-
"//input: column targets",
|
|
584
|
-
"//input: int paramsCount",
|
|
585
|
-
"//output: column params"
|
|
586
|
-
],
|
|
587
|
-
"prototype": "fitLinearRegressionParams(features, targets, paramsCount)",
|
|
588
|
-
"prototypeForWebWorker": "fitLinearRegressionParamsInWebWorker(features, targets, paramsCount)",
|
|
589
|
-
"callArgs": "[features, targets, paramsCount]"
|
|
590
|
-
}
|
|
591
|
-
},
|
|
592
|
-
"softmax-api.cpp": {
|
|
593
|
-
"fitSoftmax": {
|
|
594
|
-
"arguments": {
|
|
595
|
-
"features": {
|
|
596
|
-
"type": "floatColumns"
|
|
597
|
-
},
|
|
598
|
-
"featureAvgs": {
|
|
599
|
-
"type": "floatColumn"
|
|
600
|
-
},
|
|
601
|
-
"featureStdDevs": {
|
|
602
|
-
"type": "floatColumn"
|
|
603
|
-
},
|
|
604
|
-
"targets": {
|
|
605
|
-
"type": "intColumn"
|
|
606
|
-
},
|
|
607
|
-
"classesCount": {
|
|
608
|
-
"type": "num"
|
|
609
|
-
},
|
|
610
|
-
"iterCount": {
|
|
611
|
-
"type": "num"
|
|
612
|
-
},
|
|
613
|
-
"learningRate": {
|
|
614
|
-
"type": "num"
|
|
615
|
-
},
|
|
616
|
-
"penalty": {
|
|
617
|
-
"type": "num"
|
|
618
|
-
},
|
|
619
|
-
"tolerance": {
|
|
620
|
-
"type": "num"
|
|
621
|
-
},
|
|
622
|
-
"paramsRows": {
|
|
623
|
-
"type": "num"
|
|
624
|
-
},
|
|
625
|
-
"paramsCols": {
|
|
626
|
-
"type": "num"
|
|
627
|
-
},
|
|
628
|
-
"params": {
|
|
629
|
-
"type": "newFloatColumns",
|
|
630
|
-
"numOfRows": {
|
|
631
|
-
"ref": "paramsRows",
|
|
632
|
-
"value": "data"
|
|
633
|
-
},
|
|
634
|
-
"numOfColumns": {
|
|
635
|
-
"ref": "paramsCols",
|
|
636
|
-
"value": "data"
|
|
637
|
-
}
|
|
638
|
-
}
|
|
639
|
-
},
|
|
640
|
-
"output": {
|
|
641
|
-
"type": "tableFromColumns",
|
|
642
|
-
"source": "params"
|
|
643
|
-
},
|
|
644
|
-
"annotation": [
|
|
645
|
-
"//name: fitSoftmax",
|
|
646
|
-
"//input: column_list features",
|
|
647
|
-
"//input: column featureAvgs",
|
|
648
|
-
"//input: column featureStdDevs",
|
|
649
|
-
"//input: column targets",
|
|
650
|
-
"//input: int classesCount",
|
|
651
|
-
"//input: int iterCount",
|
|
652
|
-
"//input: double learningRate",
|
|
653
|
-
"//input: double penalty",
|
|
654
|
-
"//input: double tolerance",
|
|
655
|
-
"//input: int paramsRows",
|
|
656
|
-
"//input: int paramsCols",
|
|
657
|
-
"//output: dataframe result "
|
|
658
|
-
],
|
|
659
|
-
"prototype": "fitSoftmax(features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols)",
|
|
660
|
-
"prototypeForWebWorker": "fitSoftmaxInWebWorker(features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols)",
|
|
661
|
-
"callArgs": "[features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols]"
|
|
662
|
-
}
|
|
663
|
-
}
|
|
664
|
-
}
|
|
1
|
+
{"pcaExport.cpp": {"principalComponentAnalysis": {"arguments": {"columns": {"type": "floatColumns"}, "componentsCount": {"type": "num"}, "centerNum": {"type": "num"}, "scaleNum": {"type": "num"}, "components": {"type": "newFloatColumns", "numOfRows": {"ref": "columns", "value": "numOfRows"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}}, "output": {"type": "tableFromColumns", "source": "components"}, "annotation": ["//name: principalComponentAnalysis", "//input: dataframe table", "//input: column_list columns", "//input: int componentsCount", "//input: int centerNum", "//input: int scaleNum", "//output: dataframe result "], "prototype": "principalComponentAnalysis(table, columns, componentsCount, centerNum, scaleNum)", "prototypeForWebWorker": "principalComponentAnalysisInWebWorker(table, columns, componentsCount, centerNum, scaleNum)", "callArgs": "[columns, componentsCount, centerNum, scaleNum]"}, "error": {"arguments": {"col1": {"type": "floatColumn"}, "col2": {"type": "floatColumn"}}, "output": {"type": "double", "source": "_callResult"}, "annotation": ["//name: error", "//input: dataframe df", "//input: column col1", "//input: column col2", "//output: double mad "], "prototype": "error(df, col1, col2)", "prototypeForWebWorker": "errorInWebWorker(df, col1, col2)", "callArgs": "[col1, col2]"}, "principalComponentAnalysisNipals": {"arguments": {"columns": {"type": "floatColumns"}, "componentsCount": {"type": "num"}, "components": {"type": "newFloatColumns", "numOfRows": {"ref": "columns", "value": "numOfRows"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}}, "output": {"type": "tableFromColumns", "source": "components"}, "annotation": ["//name: principalComponentAnalysisNipals", "//input: dataframe table", "//input: column_list columns", "//input: int componentsCount", "//output: dataframe result "], "prototype": "principalComponentAnalysisNipals(table, columns, componentsCount)", "prototypeForWebWorker": "principalComponentAnalysisNipalsInWebWorker(table, columns, componentsCount)", "callArgs": "[columns, componentsCount]"}}, "PCA/PCA.cpp": {}, "plsExport.cpp": {"partialLeastSquareRegression": {"arguments": {"features": {"type": "floatColumns"}, "predict": {"type": "floatColumn"}, "componentsCount": {"type": "num"}, "prediction": {"type": "newFloatColumn", "numOfRows": {"ref": "predict", "value": "numOfRows"}}, "regressionCoefficients": {"type": "newFloatColumn", "numOfRows": {"ref": "features", "value": "numOfColumns"}}, "tScores": {"type": "newFloatColumns", "numOfRows": {"ref": "predict", "value": "numOfRows"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}, "uScores": {"type": "newFloatColumns", "numOfRows": {"ref": "predict", "value": "numOfRows"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}, "xLoadings": {"type": "newFloatColumns", "numOfRows": {"ref": "features", "value": "numOfColumns"}, "numOfColumns": {"ref": "componentsCount", "value": "data"}}, "yLoadings": {"type": "newFloatColumn", "numOfRows": {"ref": "componentsCount", "value": "data"}}}, "output": {"type": "objects", "source": "['prediction', 'regressionCoefficients', 'tScores', 'uScores', 'xLoadings', 'yLoadings']"}, "annotation": ["//name: partialLeastSquareRegression", "//input: dataframe table", "//input: column_list features", "//input: column predict", "//input: int componentsCount"], "prototype": "partialLeastSquareRegression(table, features, predict, componentsCount)", "prototypeForWebWorker": "partialLeastSquareRegressionInWebWorker(table, features, predict, componentsCount)", "callArgs": "[features, predict, componentsCount]"}}, "PLS/PLS.cpp": {}, "svmApi.cpp": {"generateDataset": {"arguments": {"kernel": {"type": "num"}, "kernelParams": {"type": "floatColumn"}, "samplesCount": {"type": "num"}, "featuresCount": {"type": "num"}, "min": {"type": "num"}, "max": {"type": "num"}, "violatorsPercentage": {"type": "num"}, "dataset": {"type": "newFloatColumns", "numOfRows": {"ref": "samplesCount", "value": "data"}, "numOfColumns": {"ref": "featuresCount", "value": "data"}}, "labels": {"type": "newFloatColumn", "numOfRows": {"ref": "samplesCount", "value": "data"}}}, "output": {"type": "objects", "source": "['dataset', 'labels']"}, "annotation": ["//name: generateDataset", "//input: int kernel", "//input: column kernelParams", "//input: int samplesCount", "//input: int featuresCount", "//input: double min", "//input: double max", "//input: double violatorsPercentage"], "prototype": "generateDataset(kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage)", "prototypeForWebWorker": "generateDatasetInWebWorker(kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage)", "callArgs": "[kernel, kernelParams, samplesCount, featuresCount, min, max, violatorsPercentage]"}, "normalizeDataset": {"arguments": {"data": {"type": "floatColumns"}, "normalizedData": {"type": "newFloatColumns", "numOfRows": {"ref": "data", "value": "numOfColumns"}, "numOfColumns": {"ref": "data", "value": "numOfRows"}}, "means": {"type": "newFloatColumn", "numOfRows": {"ref": "data", "value": "numOfColumns"}}, "stdDevs": {"type": "newFloatColumn", "numOfRows": {"ref": "data", "value": "numOfColumns"}}}, "output": {"type": "objects", "source": "['normalizedData', 'means', 'stdDevs']"}, "annotation": ["//name: normalizeDataset", "//input: column_list data"], "prototype": "normalizeDataset(data)", "prototypeForWebWorker": "normalizeDatasetInWebWorker(data)", "callArgs": "[data]"}, "trainLSSVM": {"arguments": {"gamma": {"type": "num"}, "kernel": {"type": "num"}, "kernelParams": {"type": "floatColumn"}, "modelParamsCount": {"type": "num"}, "precomputedWeightsCount": {"type": "num"}, "dataset": {"type": "floatColumns"}, "labels": {"type": "floatColumn"}, "normalizedData": {"type": "newFloatColumns", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}, "numOfColumns": {"ref": "dataset", "value": "numOfRows"}}, "means": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}}, "stdDevs": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}}, "modelParams": {"type": "newFloatColumn", "numOfRows": {"ref": "modelParamsCount", "value": "data"}}, "precomputedWeights": {"type": "newFloatColumn", "numOfRows": {"ref": "precomputedWeightsCount", "value": "data"}}}, "output": {"type": "objects", "source": "['normalizedData', 'means', 'stdDevs', 'modelParams', 'precomputedWeights']"}, "annotation": ["//name: trainLSSVM", "//input: double gamma", "//input: int kernel", "//input: column kernelParams", "//input: int modelParamsCount", "//input: int precomputedWeightsCount", "//input: column_list dataset", "//input: column labels"], "prototype": "trainLSSVM(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels)", "prototypeForWebWorker": "trainLSSVMInWebWorker(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels)", "callArgs": "[gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, dataset, labels]"}, "predictByLSSVM": {"arguments": {"kernel": {"type": "num"}, "kernelParams": {"type": "floatColumn"}, "normalizedData": {"type": "floatColumns"}, "labels": {"type": "floatColumn"}, "means": {"type": "floatColumn"}, "stdDevs": {"type": "floatColumn"}, "modelParams": {"type": "floatColumn"}, "precomputedWeights": {"type": "floatColumn"}, "targetData": {"type": "floatColumns"}, "prediction": {"type": "newFloatColumn", "numOfRows": {"ref": "targetData", "value": "numOfRows"}}}, "output": {"type": "column", "source": "prediction"}, "annotation": ["//name: predictByLSSVM", "//input: int kernel", "//input: column kernelParams", "//input: column_list normalizedData", "//input: column labels", "//input: column means", "//input: column stdDevs", "//input: column modelParams", "//input: column precomputedWeights", "//input: column_list targetData", "//output: column prediction"], "prototype": "predictByLSSVM(kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData)", "prototypeForWebWorker": "predictByLSSVMInWebWorker(kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData)", "callArgs": "[kernel, kernelParams, normalizedData, labels, means, stdDevs, modelParams, precomputedWeights, targetData]"}, "trainAndAnalyzeLSSVM": {"arguments": {"gamma": {"type": "num"}, "kernel": {"type": "num"}, "kernelParams": {"type": "floatColumn"}, "modelParamsCount": {"type": "num"}, "precomputedWeightsCount": {"type": "num"}, "confusionMatrixElementsCount": {"type": "num"}, "dataset": {"type": "floatColumns"}, "labels": {"type": "floatColumn"}, "normalizedData": {"type": "newFloatColumns", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}, "numOfColumns": {"ref": "dataset", "value": "numOfRows"}}, "means": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}}, "stdDevs": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfColumns"}}, "modelParams": {"type": "newFloatColumn", "numOfRows": {"ref": "modelParamsCount", "value": "data"}}, "precomputedWeights": {"type": "newFloatColumn", "numOfRows": {"ref": "precomputedWeightsCount", "value": "data"}}, "predictedLabels": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfRows"}}, "correctness": {"type": "newFloatColumn", "numOfRows": {"ref": "dataset", "value": "numOfRows"}}, "consfusionMatrix": {"type": "newIntColumn", "numOfRows": {"ref": "confusionMatrixElementsCount", "value": "data"}}}, "output": {"type": "objects", "source": "['normalizedData', 'means', 'stdDevs', 'modelParams', 'precomputedWeights', 'predictedLabels', 'correctness', 'consfusionMatrix']"}, "annotation": ["//name: trainAndAnalyzeLSSVM", "//input: double gamma", "//input: int kernel", "//input: column kernelParams", "//input: int modelParamsCount", "//input: int precomputedWeightsCount", "//input: int confusionMatrixElementsCount", "//input: column_list dataset", "//input: column labels"], "prototype": "trainAndAnalyzeLSSVM(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels)", "prototypeForWebWorker": "trainAndAnalyzeLSSVMInWebWorker(gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels)", "callArgs": "[gamma, kernel, kernelParams, modelParamsCount, precomputedWeightsCount, confusionMatrixElementsCount, dataset, labels]"}}, "regression-api.cpp": {"fitLinearRegressionParamsWithDataNormalizing": {"arguments": {"features": {"type": "floatColumns"}, "featureAvgs": {"type": "floatColumn"}, "featureStdDevs": {"type": "floatColumn"}, "targets": {"type": "floatColumn"}, "targetsAvg": {"type": "num"}, "targetsStdDev": {"type": "num"}, "paramsCount": {"type": "num"}, "params": {"type": "newFloatColumn", "numOfRows": {"ref": "paramsCount", "value": "data"}}}, "output": {"type": "column", "source": "params"}, "annotation": ["//name: fitLinearRegressionParamsWithDataNormalizing", "//input: column_list features", "//input: column featureAvgs", "//input: column featureStdDevs", "//input: column targets", "//input: double targetsAvg", "//input: double targetsStdDev", "//input: int paramsCount", "//output: column params"], "prototype": "fitLinearRegressionParamsWithDataNormalizing(features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount)", "prototypeForWebWorker": "fitLinearRegressionParamsWithDataNormalizingInWebWorker(features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount)", "callArgs": "[features, featureAvgs, featureStdDevs, targets, targetsAvg, targetsStdDev, paramsCount]"}, "fitLinearRegressionParams": {"arguments": {"features": {"type": "floatColumns"}, "targets": {"type": "floatColumn"}, "paramsCount": {"type": "num"}, "params": {"type": "newFloatColumn", "numOfRows": {"ref": "paramsCount", "value": "data"}}}, "output": {"type": "column", "source": "params"}, "annotation": ["//name: fitLinearRegressionParams", "//input: column_list features", "//input: column targets", "//input: int paramsCount", "//output: column params"], "prototype": "fitLinearRegressionParams(features, targets, paramsCount)", "prototypeForWebWorker": "fitLinearRegressionParamsInWebWorker(features, targets, paramsCount)", "callArgs": "[features, targets, paramsCount]"}}, "softmax-api.cpp": {"fitSoftmax": {"arguments": {"features": {"type": "floatColumns"}, "featureAvgs": {"type": "floatColumn"}, "featureStdDevs": {"type": "floatColumn"}, "targets": {"type": "intColumn"}, "classesCount": {"type": "num"}, "iterCount": {"type": "num"}, "learningRate": {"type": "num"}, "penalty": {"type": "num"}, "tolerance": {"type": "num"}, "paramsRows": {"type": "num"}, "paramsCols": {"type": "num"}, "params": {"type": "newFloatColumns", "numOfRows": {"ref": "paramsRows", "value": "data"}, "numOfColumns": {"ref": "paramsCols", "value": "data"}}}, "output": {"type": "tableFromColumns", "source": "params"}, "annotation": ["//name: fitSoftmax", "//input: column_list features", "//input: column featureAvgs", "//input: column featureStdDevs", "//input: column targets", "//input: int classesCount", "//input: int iterCount", "//input: double learningRate", "//input: double penalty", "//input: double tolerance", "//input: int paramsRows", "//input: int paramsCols", "//output: dataframe result "], "prototype": "fitSoftmax(features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols)", "prototypeForWebWorker": "fitSoftmaxInWebWorker(features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols)", "callArgs": "[features, featureAvgs, featureStdDevs, targets, classesCount, iterCount, learningRate, penalty, tolerance, paramsRows, paramsCols]"}}}
|