@d3p1/img2pxl 1.21.0 → 1.21.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/img2pxl.js CHANGED
@@ -1,15 +1,15 @@
1
- var Oe = Object.defineProperty;
2
- var de = (o) => {
1
+ var Me = Object.defineProperty;
2
+ var Ve = (o) => {
3
3
  throw TypeError(o);
4
4
  };
5
- var Me = (o, e, t) => e in o ? Oe(o, e, { enumerable: !0, configurable: !0, writable: !0, value: t }) : o[e] = t;
6
- var q = (o, e, t) => Me(o, typeof e != "symbol" ? e + "" : e, t), te = (o, e, t) => e.has(o) || de("Cannot " + t);
7
- var i = (o, e, t) => (te(o, e, "read from private field"), t ? t.call(o) : e.get(o)), a = (o, e, t) => e.has(o) ? de("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), l = (o, e, t, s) => (te(o, e, "write to private field"), s ? s.call(o, t) : e.set(o, t), t), n = (o, e, t) => (te(o, e, "access private method"), t);
8
- import { Pane as ke } from "tweakpane";
9
- import * as V from "three";
10
- class je {
5
+ var ke = (o, e, t) => e in o ? Me(o, e, { enumerable: !0, configurable: !0, writable: !0, value: t }) : o[e] = t;
6
+ var v = (o, e, t) => ke(o, typeof e != "symbol" ? e + "" : e, t), te = (o, e, t) => e.has(o) || Ve("Cannot " + t);
7
+ var i = (o, e, t) => (te(o, e, "read from private field"), t ? t.call(o) : e.get(o)), a = (o, e, t) => e.has(o) ? Ve("Cannot add the same private member more than once") : e instanceof WeakSet ? e.add(o) : e.set(o, t), l = (o, e, t, s) => (te(o, e, "write to private field"), s ? s.call(o, t) : e.set(o, t), t), n = (o, e, t) => (te(o, e, "access private method"), t);
8
+ import { Pane as je } from "tweakpane";
9
+ import * as d from "three";
10
+ class Je {
11
11
  constructor() {
12
- this._previousTime = 0, this._currentTime = 0, this._startTime = se(), this._delta = 0, this._elapsed = 0, this._timescale = 1, this._usePageVisibilityAPI = typeof document < "u" && document.hidden !== void 0, this._usePageVisibilityAPI === !0 && (this._pageVisibilityHandler = Je.bind(this), document.addEventListener("visibilitychange", this._pageVisibilityHandler, !1));
12
+ this._previousTime = 0, this._currentTime = 0, this._startTime = se(), this._delta = 0, this._elapsed = 0, this._timescale = 1, this._usePageVisibilityAPI = typeof document < "u" && document.hidden !== void 0, this._usePageVisibilityAPI === !0 && (this._pageVisibilityHandler = Ie.bind(this), document.addEventListener("visibilitychange", this._pageVisibilityHandler, !1));
13
13
  }
14
14
  getDelta() {
15
15
  return this._delta / 1e3;
@@ -36,10 +36,10 @@ class je {
36
36
  function se() {
37
37
  return performance.now();
38
38
  }
39
- function Je() {
39
+ function Ie() {
40
40
  document.hidden === !1 && this.reset();
41
41
  }
42
- var Ie = `attribute float aDisAngle;
42
+ var Ce = `attribute float aDisAngle;
43
43
  attribute float aDisAmplitude;
44
44
 
45
45
  uniform float uTime;
@@ -50,7 +50,7 @@ uniform float uNoiseFrequency;
50
50
  uniform float uNoiseAmplitude;
51
51
  uniform sampler2D uNoiseTexture;
52
52
 
53
- varying vec4 vColor;`, Ce = `vec3 vertexPosition = position;
53
+ varying vec4 vColor;`, De = `vec3 vertexPosition = position;
54
54
 
55
55
  vec2 noiseUv = vec2(uv.x - uNoiseFrequency * uTime, uv.y);
56
56
  float noiseFactor = texture(uNoiseTexture, noiseUv).r * uNoiseAmplitude;
@@ -69,8 +69,8 @@ float disFactor = texture(uDisTexture, uv).r;
69
69
  float displacementX = cos(aDisAngle) * disFactor;
70
70
  float displacementY = sin(aDisAngle) * disFactor;
71
71
  vec2 displacement = vec2(displacementX, displacementY);
72
- vertexPosition.xy += displacement;`, d, R, b, g, X, me, qe, ve, he;
73
- class De {
72
+ vertexPosition.xy += displacement;`, p, R, b, x, X, qe, ve, he, ce;
73
+ class Ee {
74
74
  /**
75
75
  * Constructor
76
76
  *
@@ -84,12 +84,12 @@ class De {
84
84
  * @param {number} displacementFrequency
85
85
  * @param {number} displacementAmplitude
86
86
  */
87
- constructor(e, t, s, r, u, h = 0.1, W = 5, m = 5, D = 50) {
87
+ constructor(e, t, s, r, q, h = 0.1, c = 5, u = 5, D = 50) {
88
88
  a(this, X);
89
89
  /**
90
90
  * @type {Image}
91
91
  */
92
- a(this, d);
92
+ a(this, p);
93
93
  /**
94
94
  * @type {Pointer}
95
95
  */
@@ -101,8 +101,8 @@ class De {
101
101
  /**
102
102
  * @type {Pane}
103
103
  */
104
- a(this, g);
105
- l(this, d, e), l(this, R, t), l(this, b, s), l(this, g, r), n(this, X, me).call(this, u, h, W, m, D), n(this, X, qe).call(this);
104
+ a(this, x);
105
+ l(this, p, e), l(this, R, t), l(this, b, s), l(this, x, r), n(this, X, qe).call(this, q, h, c, u, D), n(this, X, ve).call(this);
106
106
  }
107
107
  /**
108
108
  * Update
@@ -111,7 +111,7 @@ class De {
111
111
  * @returns {void}
112
112
  */
113
113
  update(e) {
114
- i(this, d).points.material.uniforms.uTime.value = e, i(this, R).update(), i(this, b).update();
114
+ i(this, p).points.material.uniforms.uTime.value = e, i(this, R).update(), i(this, b).update();
115
115
  }
116
116
  /**
117
117
  * Enable debug mode
@@ -119,50 +119,50 @@ class De {
119
119
  * @returns {void}
120
120
  */
121
121
  debug() {
122
- i(this, R).debug(), i(this, d).debug();
123
- const e = i(this, g).addFolder({
122
+ i(this, R).debug(), i(this, p).debug();
123
+ const e = i(this, x).addFolder({
124
124
  title: "Image Pixel Motion"
125
125
  });
126
126
  e.addBinding(
127
127
  {
128
- frequency: i(this, d).points.material.uniforms.uDisFrequency.value
128
+ frequency: i(this, p).points.material.uniforms.uDisFrequency.value
129
129
  },
130
130
  "frequency",
131
131
  { min: 0, max: 10 * 2 * Math.PI, step: 0.01 }
132
132
  ).on(
133
133
  "change",
134
- (s) => i(this, d).points.material.uniforms.uDisFrequency.value = s.value
134
+ (s) => i(this, p).points.material.uniforms.uDisFrequency.value = s.value
135
135
  ), e.addBinding(
136
136
  {
137
- amplitude: i(this, d).points.material.uniforms.uDisAmplitude.value
137
+ amplitude: i(this, p).points.material.uniforms.uDisAmplitude.value
138
138
  },
139
139
  "amplitude",
140
140
  { min: 0, max: i(this, b).width, step: 1 }
141
141
  ).on(
142
142
  "change",
143
- (s) => i(this, d).points.material.uniforms.uDisAmplitude.value = s.value
143
+ (s) => i(this, p).points.material.uniforms.uDisAmplitude.value = s.value
144
144
  );
145
- const t = i(this, g).addFolder({
145
+ const t = i(this, x).addFolder({
146
146
  title: "Image Motion"
147
147
  });
148
148
  t.addBinding(
149
149
  {
150
- frequency: i(this, d).points.material.uniforms.uNoiseFrequency.value
150
+ frequency: i(this, p).points.material.uniforms.uNoiseFrequency.value
151
151
  },
152
152
  "frequency",
153
153
  { min: 0, max: 2 * Math.PI, step: 0.01 }
154
154
  ).on(
155
155
  "change",
156
- (s) => i(this, d).points.material.uniforms.uNoiseFrequency.value = s.value
156
+ (s) => i(this, p).points.material.uniforms.uNoiseFrequency.value = s.value
157
157
  ), t.addBinding(
158
158
  {
159
- amplitude: i(this, d).points.material.uniforms.uNoiseAmplitude.value
159
+ amplitude: i(this, p).points.material.uniforms.uNoiseAmplitude.value
160
160
  },
161
161
  "amplitude",
162
162
  { min: 0, max: i(this, b).width, step: 1 }
163
163
  ).on(
164
164
  "change",
165
- (s) => i(this, d).points.material.uniforms.uNoiseAmplitude.value = s.value
165
+ (s) => i(this, p).points.material.uniforms.uNoiseAmplitude.value = s.value
166
166
  );
167
167
  }
168
168
  /**
@@ -171,10 +171,10 @@ class De {
171
171
  * @returns {void}
172
172
  */
173
173
  dispose() {
174
- i(this, d).dispose(), i(this, R).dispose();
174
+ i(this, p).dispose(), i(this, R).dispose();
175
175
  }
176
176
  }
177
- d = new WeakMap(), R = new WeakMap(), b = new WeakMap(), g = new WeakMap(), X = new WeakSet(), /**
177
+ p = new WeakMap(), R = new WeakMap(), b = new WeakMap(), x = new WeakMap(), X = new WeakSet(), /**
178
178
  * Init image
179
179
  *
180
180
  * @param {string} noiseImageSrc
@@ -184,15 +184,15 @@ d = new WeakMap(), R = new WeakMap(), b = new WeakMap(), g = new WeakMap(), X =
184
184
  * @param {number} displacementAmplitude
185
185
  * @returns {void}
186
186
  */
187
- me = function(e, t, s, r, u) {
188
- i(this, b).scene.add(i(this, d).points), n(this, X, he).call(this), n(this, X, ve).call(this, e, t, s, r, u);
187
+ qe = function(e, t, s, r, q) {
188
+ i(this, b).scene.add(i(this, p).points), n(this, X, ce).call(this), n(this, X, he).call(this, e, t, s, r, q);
189
189
  }, /**
190
190
  * Init pointer
191
191
  *
192
192
  * @returns {void}
193
193
  */
194
- qe = function() {
195
- i(this, R).raycasterPlane.position.copy(i(this, d).points.position), i(this, R).raycasterPlane.position.z += 0.01, i(this, b).scene.add(i(this, R).raycasterPlane);
194
+ ve = function() {
195
+ i(this, R).raycasterPlane.position.copy(i(this, p).points.position), i(this, R).raycasterPlane.position.z += 0.01, i(this, b).scene.add(i(this, R).raycasterPlane);
196
196
  }, /**
197
197
  * Add logic that handles vertex/point/pixel displacement to image
198
198
  *
@@ -211,21 +211,21 @@ qe = function() {
211
211
  * uniforms will be undefined until first render of the scene
212
212
  * {@link https://github.com/mrdoob/three.js/pull/10960}
213
213
  */
214
- ve = function(e, t, s, r, u) {
215
- const W = new V.TextureLoader().load(e);
216
- W.wrapS = V.RepeatWrapping, i(this, d).points.material.onBeforeCompile = (m) => {
217
- m.uniforms.uTime = new V.Uniform(0), m.uniforms.uDisFrequency = new V.Uniform(
214
+ he = function(e, t, s, r, q) {
215
+ const c = new d.TextureLoader().load(e);
216
+ c.wrapS = d.RepeatWrapping, i(this, p).points.material.onBeforeCompile = (u) => {
217
+ u.uniforms.uTime = new d.Uniform(0), u.uniforms.uDisFrequency = new d.Uniform(
218
218
  r
219
- ), m.uniforms.uDisAmplitude = new V.Uniform(
220
- u
221
- ), m.uniforms.uDisTexture = new V.Uniform(
219
+ ), u.uniforms.uDisAmplitude = new d.Uniform(
220
+ q
221
+ ), u.uniforms.uDisTexture = new d.Uniform(
222
222
  i(this, R).canvas.texture
223
- ), m.uniforms.uNoiseFrequency = new V.Uniform(t), m.uniforms.uNoiseAmplitude = new V.Uniform(s), m.uniforms.uNoiseTexture = new V.Uniform(W), m.vertexShader = m.vertexShader.replace(
223
+ ), u.uniforms.uNoiseFrequency = new d.Uniform(t), u.uniforms.uNoiseAmplitude = new d.Uniform(s), u.uniforms.uNoiseTexture = new d.Uniform(c), u.vertexShader = u.vertexShader.replace(
224
224
  "varying vec4 vColor;",
225
- Ie
226
- ), m.vertexShader = m.vertexShader.replace(
227
- "vec3 vertexPosition = position;",
228
225
  Ce
226
+ ), u.vertexShader = u.vertexShader.replace(
227
+ "vec3 vertexPosition = position;",
228
+ De
229
229
  );
230
230
  }, i(this, b).compile();
231
231
  }, /**
@@ -233,20 +233,20 @@ ve = function(e, t, s, r, u) {
233
233
  *
234
234
  * @returns {void}
235
235
  */
236
- he = function() {
237
- const e = i(this, d).points.geometry.attributes.position.count, t = new Float32Array(e), s = new Float32Array(e);
236
+ ce = function() {
237
+ const e = i(this, p).points.geometry.attributes.position.count, t = new Float32Array(e), s = new Float32Array(e);
238
238
  for (let r = 0; r < e; r++)
239
239
  t[r] = Math.random() * 2 * Math.PI, s[r] = Math.random();
240
- i(this, d).points.geometry.setAttribute(
240
+ i(this, p).points.geometry.setAttribute(
241
241
  "aDisAngle",
242
- new V.BufferAttribute(t, 1)
243
- ), i(this, d).points.geometry.setAttribute(
242
+ new d.BufferAttribute(t, 1)
243
+ ), i(this, p).points.geometry.setAttribute(
244
244
  "aDisAmplitude",
245
- new V.BufferAttribute(s, 1)
245
+ new d.BufferAttribute(s, 1)
246
246
  );
247
247
  };
248
- var U, ce, fe, Ue, We, Re;
249
- class Ee {
248
+ var W, fe, Ue, We, Re, Ke;
249
+ class Ye {
250
250
  /**
251
251
  * Constructor
252
252
  *
@@ -254,35 +254,35 @@ class Ee {
254
254
  * @param {number} height
255
255
  */
256
256
  constructor(e, t) {
257
- a(this, U);
257
+ a(this, W);
258
258
  /**
259
259
  * @type {THREE.Scene}
260
260
  */
261
- q(this, "scene");
261
+ v(this, "scene");
262
262
  /**
263
263
  * @type {THREE.WebGLRenderer}
264
264
  */
265
- q(this, "renderer");
265
+ v(this, "renderer");
266
266
  /**
267
267
  * @type {THREE.OrthographicCamera}
268
268
  * @note It is used an orthographic camera because it is desired
269
269
  * to draw a 2d image without perspective
270
270
  */
271
- q(this, "camera");
271
+ v(this, "camera");
272
272
  /**
273
273
  * @type {number}
274
274
  */
275
- q(this, "width");
275
+ v(this, "width");
276
276
  /**
277
277
  * @type {number}
278
278
  */
279
- q(this, "height");
279
+ v(this, "height");
280
280
  /**
281
281
  * @type {number}
282
282
  * @note Device pixel ratio
283
283
  */
284
- q(this, "dpr");
285
- this.width = e, this.height = t, n(this, U, ce).call(this), n(this, U, Ue).call(this), n(this, U, fe).call(this);
284
+ v(this, "dpr");
285
+ this.width = e, this.height = t, n(this, W, fe).call(this), n(this, W, We).call(this), n(this, W, Ue).call(this);
286
286
  }
287
287
  /**
288
288
  * Update
@@ -307,10 +307,10 @@ class Ee {
307
307
  * @returns {void}
308
308
  */
309
309
  dispose() {
310
- n(this, U, Re).call(this), n(this, U, We).call(this), this.renderer.domElement.remove();
310
+ n(this, W, Ke).call(this), n(this, W, Re).call(this), this.renderer.domElement.remove();
311
311
  }
312
312
  }
313
- U = new WeakSet(), /**
313
+ W = new WeakSet(), /**
314
314
  * Init renderer
315
315
  *
316
316
  * @returns {void}
@@ -319,11 +319,11 @@ U = new WeakSet(), /**
319
319
  * devices with `2` or more as pixel ratio
320
320
  * do not require this feature
321
321
  */
322
- ce = function() {
322
+ fe = function() {
323
323
  const e = document.createElement("canvas");
324
324
  document.body.append(e), this.dpr = Math.min(window.devicePixelRatio, 2);
325
325
  let t = !1;
326
- this.dpr <= 1 && (t = !0), this.renderer = new V.WebGLRenderer({
326
+ this.dpr <= 1 && (t = !0), this.renderer = new d.WebGLRenderer({
327
327
  canvas: e,
328
328
  antialias: t
329
329
  }), this.renderer.setPixelRatio(this.dpr), this.renderer.setSize(this.width, this.height), this.renderer.setClearAlpha(0);
@@ -341,14 +341,14 @@ ce = function() {
341
341
  * `1` world unit is `1` pixel, making it easy to position things
342
342
  * @link https://discourse.threejs.org/t/mapping-orthographiccamera-world-units-to-pixels/10142
343
343
  */
344
- fe = function() {
345
- const e = -this.renderer.domElement.width / 2, t = this.renderer.domElement.width / 2, s = this.renderer.domElement.height / 2, r = -this.renderer.domElement.height / 2, u = 0.1, h = 1;
346
- this.camera = new V.OrthographicCamera(
344
+ Ue = function() {
345
+ const e = -this.renderer.domElement.width / 2, t = this.renderer.domElement.width / 2, s = this.renderer.domElement.height / 2, r = -this.renderer.domElement.height / 2, q = 0.1, h = 1;
346
+ this.camera = new d.OrthographicCamera(
347
347
  e,
348
348
  t,
349
349
  s,
350
350
  r,
351
- u,
351
+ q,
352
352
  h
353
353
  ), this.scene.add(this.camera), this.camera.position.z = h - 0.1;
354
354
  }, /**
@@ -356,25 +356,25 @@ fe = function() {
356
356
  *
357
357
  * @returns {void}
358
358
  */
359
- Ue = function() {
360
- this.scene = new V.Scene();
359
+ We = function() {
360
+ this.scene = new d.Scene();
361
361
  }, /**
362
362
  * Dispose renderer
363
363
  *
364
364
  * @returns {void}
365
365
  */
366
- We = function() {
366
+ Re = function() {
367
367
  this.renderer.dispose();
368
368
  }, /**
369
369
  * Dispose scene
370
370
  *
371
371
  * @returns {void}
372
372
  */
373
- Re = function() {
373
+ Ke = function() {
374
374
  for (; this.scene.children.length > 0; )
375
375
  this.scene.remove(this.scene.children[0]);
376
376
  };
377
- var Ye = `uniform sampler2D uImageTexture;
377
+ var Qe = `uniform sampler2D uImageTexture;
378
378
  uniform float uPointSize;
379
379
 
380
380
  varying vec4 vColor;
@@ -390,15 +390,15 @@ void main() {
390
390
  gl_PointSize = uPointSize;
391
391
 
392
392
  vColor = texture(uImageTexture, uv);
393
- }`, Qe = `varying vec4 vColor;
393
+ }`, Ge = `varying vec4 vColor;
394
394
 
395
395
  void main() {
396
396
  gl_FragColor = vColor;
397
397
 
398
398
  #include <tonemapping_fragment>
399
399
  #include <colorspace_fragment>
400
- }`, x, N, L, F, Ke, ne, re, ue;
401
- let Ge = (ue = class {
400
+ }`, N, P, L, F, be, ne, re, me;
401
+ let Be = (me = class {
402
402
  /**
403
403
  * Constructor
404
404
  *
@@ -408,26 +408,27 @@ let Ge = (ue = class {
408
408
  * @param {number} resolutionWidth
409
409
  * @param {number} resolutionHeight
410
410
  * @param {number} pointSize
411
+ * @param {number} alphaTest
411
412
  */
412
- constructor(e, t, s, r, u, h = 1) {
413
+ constructor(e, t, s, r, q, h = 1, c = 0.1) {
413
414
  a(this, F);
414
415
  /**
415
416
  * @type {THREE.Points}
416
417
  */
417
- q(this, "points");
418
+ v(this, "points");
418
419
  /**
419
420
  * @type {THREE.Texture}
420
421
  */
421
- a(this, x);
422
+ a(this, N);
422
423
  /**
423
424
  * @type {RendererManager}
424
425
  */
425
- a(this, N);
426
+ a(this, P);
426
427
  /**
427
428
  * @type {Pane}
428
429
  */
429
430
  a(this, L);
430
- l(this, N, e), l(this, L, t), n(this, F, Ke).call(this, s, r, u, h);
431
+ l(this, P, e), l(this, L, t), n(this, F, be).call(this, s, r, q, h, c);
431
432
  }
432
433
  /**
433
434
  * Enable debug mode
@@ -464,31 +465,33 @@ let Ge = (ue = class {
464
465
  * @returns {void}
465
466
  */
466
467
  dispose() {
467
- this.points.geometry.dispose(), this.points.material.dispose(), i(this, x).dispose();
468
+ this.points.geometry.dispose(), this.points.material.dispose(), i(this, N).dispose();
468
469
  }
469
- }, x = new WeakMap(), N = new WeakMap(), L = new WeakMap(), F = new WeakSet(), /**
470
+ }, N = new WeakMap(), P = new WeakMap(), L = new WeakMap(), F = new WeakSet(), /**
470
471
  * Init points
471
472
  *
472
473
  * @param {string} imageSrc
473
474
  * @param {number} resolutionWidth
474
475
  * @param {number} resolutionHeight
475
476
  * @param {number} pointSize
477
+ * @param {number} alphaTest
476
478
  * @returns {void}
477
479
  */
478
- Ke = function(e, t, s, r) {
479
- const u = new V.TextureLoader();
480
- l(this, x, u.load(e));
481
- const h = n(this, F, re).call(this, t, s), W = new V.ShaderMaterial({
482
- vertexShader: Ye,
483
- fragmentShader: Qe,
480
+ be = function(e, t, s, r, q) {
481
+ const h = new d.TextureLoader();
482
+ l(this, N, h.load(e));
483
+ const c = n(this, F, re).call(this, t, s), u = new d.ShaderMaterial({
484
+ vertexShader: Qe,
485
+ fragmentShader: Ge,
484
486
  uniforms: {
485
- uImageTexture: new V.Uniform(i(this, x)),
486
- uPointSize: new V.Uniform(r)
487
+ uImageTexture: new d.Uniform(i(this, N)),
488
+ uPointSize: new d.Uniform(r)
487
489
  },
488
490
  transparent: !0,
489
- depthWrite: !1
491
+ depthWrite: !1,
492
+ alphaTest: q
490
493
  });
491
- this.points = new V.Points(h, W);
494
+ this.points = new d.Points(c, u);
492
495
  }, /**
493
496
  * Replace image geometry
494
497
  *
@@ -509,6 +512,10 @@ ne = function(e, t) {
509
512
  * @param {number} resolutionHeight
510
513
  * @param {THREE.NormalBufferAttributes | null} attributes
511
514
  * @returns {THREE.PlaneGeometry}
515
+ * @note It is created a plane that occupies all the render
516
+ * @note The dom element width and height of the renderer include
517
+ * the device pixel ratio, so it is important to use them
518
+ * to create a plane that take all the render space/pixels
512
519
  * @note It is removed the index and normals from the geometry
513
520
  * to improve performance.
514
521
  * Normals are not going to be needed.
@@ -516,16 +523,16 @@ ne = function(e, t) {
516
523
  * same place. That is why it is required to remove it
517
524
  */
518
525
  re = function(e, t, s = null) {
519
- const r = new V.PlaneGeometry(
520
- i(this, N).width,
521
- i(this, N).height,
522
- e,
523
- t
526
+ const r = new d.PlaneGeometry(
527
+ i(this, P).renderer.domElement.width,
528
+ i(this, P).renderer.domElement.height,
529
+ e * i(this, P).dpr,
530
+ t * i(this, P).dpr
524
531
  );
525
532
  return r.setIndex(null), r.deleteAttribute("normal"), s && (r.attributes = { ...s, ...r.attributes }), r;
526
- }, ue);
527
- var K, T, O, Z, be, Xe, Fe, Ze;
528
- class Be {
533
+ }, me);
534
+ var K, T, O, Z, Xe, Fe, Ze, ye;
535
+ class He {
529
536
  /**
530
537
  * Constructor
531
538
  *
@@ -537,19 +544,19 @@ class Be {
537
544
  /**
538
545
  * @type {THREE.Vector2 | {x: number | undefined, y: number | undefined}}
539
546
  */
540
- q(this, "coord");
547
+ v(this, "coord");
541
548
  /**
542
549
  * @type {Canvas}
543
550
  */
544
- q(this, "canvas");
551
+ v(this, "canvas");
545
552
  /**
546
553
  * @type {THREE.Raycaster}
547
554
  */
548
- q(this, "raycaster");
555
+ v(this, "raycaster");
549
556
  /**
550
557
  * @type {THREE.Mesh}
551
558
  */
552
- q(this, "raycasterPlane");
559
+ v(this, "raycasterPlane");
553
560
  /**
554
561
  * @type {RendererManager}
555
562
  */
@@ -562,7 +569,7 @@ class Be {
562
569
  * @type {Function}
563
570
  */
564
571
  a(this, O);
565
- this.canvas = t, this.coord = new V.Vector2(void 0, void 0), l(this, K, e), n(this, Z, Fe).call(this);
572
+ this.canvas = t, this.coord = new d.Vector2(void 0, void 0), l(this, K, e), n(this, Z, Ze).call(this);
566
573
  }
567
574
  /**
568
575
  * Update
@@ -598,7 +605,7 @@ class Be {
598
605
  * @returns {void}
599
606
  */
600
607
  dispose() {
601
- this.canvas.dispose(), n(this, Z, Ze).call(this);
608
+ this.canvas.dispose(), n(this, Z, ye).call(this);
602
609
  }
603
610
  }
604
611
  K = new WeakMap(), T = new WeakMap(), O = new WeakMap(), Z = new WeakSet(), /**
@@ -610,7 +617,7 @@ K = new WeakMap(), T = new WeakMap(), O = new WeakMap(), Z = new WeakSet(), /**
610
617
  * clip space (NDC - Normalized Device Coordinate) to
611
618
  * use it for raycasting
612
619
  */
613
- be = function(e) {
620
+ Xe = function(e) {
614
621
  const t = e.target;
615
622
  this.coord.x = (e.offsetX / t.width - 0.5) * 2, this.coord.y = -(e.offsetY / t.height - 0.5) * 2;
616
623
  }, /**
@@ -618,7 +625,7 @@ be = function(e) {
618
625
  *
619
626
  * @returns {void}
620
627
  */
621
- Xe = function() {
628
+ Fe = function() {
622
629
  this.coord.x = void 0, this.coord.y = void 0;
623
630
  }, /**
624
631
  * Init raycaster
@@ -628,26 +635,26 @@ Xe = function() {
628
635
  * to avoid performance issues that could arise while
629
636
  * working between the raycaster and image points
630
637
  */
631
- Fe = function() {
632
- this.raycaster = new V.Raycaster(), l(this, T, n(this, Z, be).bind(this)), i(this, K).renderer.domElement.addEventListener(
638
+ Ze = function() {
639
+ this.raycaster = new d.Raycaster(), l(this, T, n(this, Z, Xe).bind(this)), i(this, K).renderer.domElement.addEventListener(
633
640
  "pointermove",
634
641
  i(this, T)
635
- ), l(this, O, n(this, Z, Xe).bind(this)), i(this, K).renderer.domElement.addEventListener(
642
+ ), l(this, O, n(this, Z, Fe).bind(this)), i(this, K).renderer.domElement.addEventListener(
636
643
  "pointerleave",
637
644
  i(this, O)
638
- ), this.raycasterPlane = new V.Mesh(
639
- new V.PlaneGeometry(
645
+ ), this.raycasterPlane = new d.Mesh(
646
+ new d.PlaneGeometry(
640
647
  i(this, K).width,
641
648
  i(this, K).height
642
649
  ),
643
- new V.MeshBasicMaterial()
650
+ new d.MeshBasicMaterial()
644
651
  ), this.raycasterPlane.visible = !1;
645
652
  }, /**
646
653
  * Dispose raycaster
647
654
  *
648
655
  * @returns {void}
649
656
  */
650
- Ze = function() {
657
+ ye = function() {
651
658
  i(this, K).renderer.domElement.removeEventListener(
652
659
  "pointermove",
653
660
  i(this, T)
@@ -656,8 +663,8 @@ Ze = function() {
656
663
  i(this, O)
657
664
  ), this.raycasterPlane.geometry.dispose(), this.raycasterPlane.material.dispose();
658
665
  };
659
- var M, c, k, y, j, f, ye, Se, Pe, ze, ae;
660
- class He {
666
+ var M, f, k, y, j, U, Se, Pe, ze, we, ae;
667
+ class Ae {
661
668
  /**
662
669
  * Constructor
663
670
  *
@@ -668,8 +675,8 @@ class He {
668
675
  * @param {number} pointerImageSize
669
676
  * @param {number} pointerTrailingFactor
670
677
  */
671
- constructor(e, t, s, r, u = 0.1, h = 0.05) {
672
- a(this, f);
678
+ constructor(e, t, s, r, q = 0.1, h = 0.05) {
679
+ a(this, U);
673
680
  /**
674
681
  * @type {Pane}
675
682
  */
@@ -677,15 +684,15 @@ class He {
677
684
  /**
678
685
  * @type {THREE.CanvasTexture}
679
686
  */
680
- q(this, "texture");
687
+ v(this, "texture");
681
688
  /**
682
689
  * @type {HTMLCanvasElement}
683
690
  */
684
- q(this, "element");
691
+ v(this, "element");
685
692
  /**
686
693
  * @type {CanvasRenderingContext2D}
687
694
  */
688
- a(this, c);
695
+ a(this, f);
689
696
  /**
690
697
  * @type {HTMLImageElement}
691
698
  * @note Image that will represent the pointer.
@@ -708,7 +715,7 @@ class He {
708
715
  * pixels' displacement
709
716
  */
710
717
  a(this, j);
711
- l(this, M, e), l(this, j, h), n(this, f, Pe).call(this, t, s), n(this, f, ze).call(this, r, u);
718
+ l(this, M, e), l(this, j, h), n(this, U, ze).call(this, t, s), n(this, U, we).call(this, r, q);
712
719
  }
713
720
  /**
714
721
  * Update
@@ -718,7 +725,7 @@ class He {
718
725
  * @returns {void}
719
726
  */
720
727
  update(e, t) {
721
- n(this, f, Se).call(this), e && t && n(this, f, ye).call(this, e, t), this.texture.needsUpdate = !0;
728
+ n(this, U, Pe).call(this), e && t && n(this, U, Se).call(this, e, t), this.texture.needsUpdate = !0;
722
729
  }
723
730
  /**
724
731
  * Enable debug mode
@@ -733,7 +740,7 @@ class He {
733
740
  min: 0,
734
741
  max: 1,
735
742
  step: 0.01
736
- }).on("change", (s) => n(this, f, ae).call(this, s.value)), e.addBinding(
743
+ }).on("change", (s) => n(this, U, ae).call(this, s.value)), e.addBinding(
737
744
  { trailing: i(this, j) },
738
745
  "trailing",
739
746
  {
@@ -756,7 +763,7 @@ class He {
756
763
  this.texture.dispose();
757
764
  }
758
765
  }
759
- M = new WeakMap(), c = new WeakMap(), k = new WeakMap(), y = new WeakMap(), j = new WeakMap(), f = new WeakSet(), /**
766
+ M = new WeakMap(), f = new WeakMap(), k = new WeakMap(), y = new WeakMap(), j = new WeakMap(), U = new WeakSet(), /**
760
767
  * Draw
761
768
  *
762
769
  * @param {number} dx
@@ -765,14 +772,14 @@ M = new WeakMap(), c = new WeakMap(), k = new WeakMap(), y = new WeakMap(), j =
765
772
  * @note The destination of the image is moved half its size
766
773
  * so it is drawn at the center of the destination position
767
774
  */
768
- ye = function(e, t) {
769
- e -= i(this, y) / 2, t -= i(this, y) / 2, i(this, c).save(), i(this, c).globalCompositeOperation = "lighten", i(this, c).drawImage(
775
+ Se = function(e, t) {
776
+ e -= i(this, y) / 2, t -= i(this, y) / 2, i(this, f).save(), i(this, f).globalCompositeOperation = "lighten", i(this, f).drawImage(
770
777
  i(this, k),
771
778
  e,
772
779
  t,
773
780
  i(this, y),
774
781
  i(this, y)
775
- ), i(this, c).restore();
782
+ ), i(this, f).restore();
776
783
  }, /**
777
784
  * Clear
778
785
  *
@@ -781,8 +788,8 @@ ye = function(e, t) {
781
788
  * indicate how much points inside them will be displaced.
782
789
  * That is why it is required to clear the canvas with black color
783
790
  */
784
- Se = function() {
785
- i(this, c).save(), i(this, c).globalAlpha = i(this, j), i(this, c).fillStyle = "#000", i(this, c).fillRect(0, 0, this.element.width, this.element.height), i(this, c).restore();
791
+ Pe = function() {
792
+ i(this, f).save(), i(this, f).globalAlpha = i(this, j), i(this, f).fillStyle = "#000", i(this, f).fillRect(0, 0, this.element.width, this.element.height), i(this, f).restore();
786
793
  }, /**
787
794
  * Init canvas texture used to detect pointer location and
788
795
  * displace points
@@ -794,8 +801,8 @@ Se = function() {
794
801
  * image.
795
802
  * That is why it is used the image resolution as its dimensions
796
803
  */
797
- Pe = function(e, t) {
798
- this.element = document.createElement("canvas"), this.element.width = e, this.element.height = t, this.texture = new V.CanvasTexture(this.element), l(this, c, this.element.getContext("2d"));
804
+ ze = function(e, t) {
805
+ this.element = document.createElement("canvas"), this.element.width = e, this.element.height = t, this.texture = new d.CanvasTexture(this.element), l(this, f, this.element.getContext("2d"));
799
806
  }, /**
800
807
  * Init pointer image
801
808
  *
@@ -805,8 +812,8 @@ Pe = function(e, t) {
805
812
  * @note It is considered that the pointer image will be
806
813
  * a white image that will indicate which pixels should be displaced
807
814
  */
808
- ze = function(e, t) {
809
- l(this, k, new Image()), i(this, k).src = e, n(this, f, ae).call(this, t);
815
+ we = function(e, t) {
816
+ l(this, k, new Image()), i(this, k).src = e, n(this, U, ae).call(this, t);
810
817
  }, /**
811
818
  * Process pointer image size
812
819
  *
@@ -821,9 +828,9 @@ ze = function(e, t) {
821
828
  ae = function(e) {
822
829
  l(this, y, e * this.element.width);
823
830
  };
824
- const Ae = "", _e = "", pe = 0;
825
- var J, Q, ie, we;
826
- class $e {
831
+ const _e = "", $e = "", ue = 0;
832
+ var J, Q, ie, ge;
833
+ class ei {
827
834
  /**
828
835
  * Constructor
829
836
  *
@@ -836,8 +843,9 @@ class $e {
836
843
  * height: number;
837
844
  * };
838
845
  * pixel?: {
839
- * size ?: number;
840
- * motion?: {
846
+ * size ?: number;
847
+ * alphaTest?: number;
848
+ * motion ?: {
841
849
  * displacement?: {
842
850
  * frequency?: number;
843
851
  * amplitude?: number;
@@ -866,8 +874,9 @@ class $e {
866
874
  * height: number;
867
875
  * }
868
876
  * pixel?: {
869
- * size ?: number;
870
- * motion?: {
877
+ * size ?: number;
878
+ * alphaTest?: number;
879
+ * motion ?: {
871
880
  * displacement?: {
872
881
  * frequency?: number;
873
882
  * amplitude?: number;
@@ -883,7 +892,7 @@ class $e {
883
892
  * };
884
893
  * }[]}
885
894
  */
886
- q(this, "images");
895
+ v(this, "images");
887
896
  /**
888
897
  * @type {{
889
898
  * src : string;
@@ -894,8 +903,9 @@ class $e {
894
903
  * height: number;
895
904
  * };
896
905
  * pixel?: {
897
- * size ?: number;
898
- * motion?: {
906
+ * size ?: number;
907
+ * alphaTest?: number;
908
+ * motion ?: {
899
909
  * displacement?: {
900
910
  * frequency?: number;
901
911
  * amplitude?: number;
@@ -911,7 +921,7 @@ class $e {
911
921
  * };
912
922
  * }}
913
923
  */
914
- q(this, "currentImage");
924
+ v(this, "currentImage");
915
925
  /**
916
926
  * @type {number}
917
927
  */
@@ -920,7 +930,7 @@ class $e {
920
930
  * @type {number[]}
921
931
  */
922
932
  a(this, Q);
923
- this.images = e, n(this, ie, we).call(this, Object.keys(this.images).map(Number)), this.update();
933
+ this.images = e, n(this, ie, ge).call(this, Object.keys(this.images).map(Number)), this.update();
924
934
  }
925
935
  /**
926
936
  * Taking into consideration window size,
@@ -936,7 +946,7 @@ class $e {
936
946
  update() {
937
947
  const e = window.innerWidth, t = i(this, Q).reduce(
938
948
  (s, r) => r <= e && r > s ? r : s,
939
- pe
949
+ ue
940
950
  );
941
951
  return t !== i(this, J) ? (l(this, J, t), this.currentImage = this.images[i(this, J)], !0) : !1;
942
952
  }
@@ -948,17 +958,17 @@ J = new WeakMap(), Q = new WeakMap(), ie = new WeakSet(), /**
948
958
  * @returns {void}
949
959
  * @throws {Error}
950
960
  */
951
- we = function(e) {
961
+ ge = function(e) {
952
962
  if (e.find(
953
- (t) => t === pe
963
+ (t) => t === ue
954
964
  ) === void 0)
955
965
  throw new Error(
956
966
  "The `0` breakpoint is required. It defines the default image that should be used."
957
967
  );
958
968
  l(this, Q, e);
959
969
  };
960
- var P, v, z, S, w, G, I, C, p, oe, le, ge, Ve, xe, Ne, Le, Te;
961
- class si {
970
+ var z, m, w, S, g, G, I, C, V, oe, le, xe, de, Ne, Le, Te, Oe;
971
+ class ni {
962
972
  /**
963
973
  * Constructor
964
974
  *
@@ -973,8 +983,9 @@ class si {
973
983
  * height: number;
974
984
  * };
975
985
  * pixel?: {
976
- * size ?: number;
977
- * motion?: {
986
+ * size ?: number;
987
+ * alphaTest?: number;
988
+ * motion ?: {
978
989
  * displacement?: {
979
990
  * frequency?: number;
980
991
  * amplitude?: number;
@@ -1001,27 +1012,27 @@ class si {
1001
1012
  * @throws {Error}
1002
1013
  */
1003
1014
  constructor(e) {
1004
- a(this, p);
1015
+ a(this, V);
1005
1016
  /**
1006
1017
  * @type {RendererManager}
1007
1018
  */
1008
- q(this, "rendererManager");
1019
+ v(this, "rendererManager");
1009
1020
  /**
1010
1021
  * @type {Pane}
1011
1022
  */
1012
- q(this, "debugManager");
1023
+ v(this, "debugManager");
1013
1024
  /**
1014
1025
  * @type {App}
1015
1026
  */
1016
- a(this, P);
1027
+ a(this, z);
1017
1028
  /**
1018
1029
  * @type {ImageManager}
1019
1030
  */
1020
- a(this, v);
1031
+ a(this, m);
1021
1032
  /**
1022
1033
  * @type {Timer}
1023
1034
  */
1024
- a(this, z);
1035
+ a(this, w);
1025
1036
  /**
1026
1037
  * @type {{
1027
1038
  * containerSelector?: string;
@@ -1064,7 +1075,7 @@ class si {
1064
1075
  /**
1065
1076
  * @type {boolean}
1066
1077
  */
1067
- a(this, w);
1078
+ a(this, g);
1068
1079
  /**
1069
1080
  * @type {number}
1070
1081
  */
@@ -1077,7 +1088,7 @@ class si {
1077
1088
  * @type {Function}
1078
1089
  */
1079
1090
  a(this, C);
1080
- l(this, S, e), l(this, w, e.isDebugging ?? !1), l(this, v, new $e(e.images)), n(this, p, oe).call(this);
1091
+ l(this, S, e), l(this, g, e.isDebugging ?? !1), l(this, m, new ei(e.images)), n(this, V, oe).call(this);
1081
1092
  }
1082
1093
  /**
1083
1094
  * Debug
@@ -1085,7 +1096,7 @@ class si {
1085
1096
  * @returns {void}
1086
1097
  */
1087
1098
  debug() {
1088
- i(this, w) || (n(this, p, Ve).call(this), l(this, w, !0));
1099
+ i(this, g) || (n(this, V, de).call(this), l(this, g, !0));
1089
1100
  }
1090
1101
  /**
1091
1102
  * Dispose
@@ -1093,21 +1104,21 @@ class si {
1093
1104
  * @returns {void}
1094
1105
  */
1095
1106
  dispose() {
1096
- cancelAnimationFrame(i(this, G)), window.removeEventListener("keydown", i(this, I)), window.removeEventListener("resize", i(this, C)), i(this, z).dispose(), i(this, P).dispose(), this.rendererManager.dispose(), this.debugManager.dispose(), this.debugManager.element.remove();
1107
+ cancelAnimationFrame(i(this, G)), window.removeEventListener("keydown", i(this, I)), window.removeEventListener("resize", i(this, C)), i(this, w).dispose(), i(this, z).dispose(), this.rendererManager.dispose(), this.debugManager.dispose(), this.debugManager.element.remove();
1097
1108
  }
1098
1109
  }
1099
- P = new WeakMap(), v = new WeakMap(), z = new WeakMap(), S = new WeakMap(), w = new WeakMap(), G = new WeakMap(), I = new WeakMap(), C = new WeakMap(), p = new WeakSet(), /**
1110
+ z = new WeakMap(), m = new WeakMap(), w = new WeakMap(), S = new WeakMap(), g = new WeakMap(), G = new WeakMap(), I = new WeakMap(), C = new WeakMap(), V = new WeakSet(), /**
1100
1111
  * Init
1101
1112
  *
1102
1113
  * @returns {void}
1103
1114
  */
1104
1115
  oe = function() {
1105
- this.rendererManager = new Ee(
1106
- i(this, v).currentImage.width,
1107
- i(this, v).currentImage.height
1108
- ), l(this, z, new je()), n(this, p, Le).call(this), n(this, p, Ne).call(this), i(this, S).containerSelector && n(this, p, Te).call(this, i(this, S).containerSelector), l(this, I, n(this, p, ge).bind(this)), window.addEventListener("keydown", i(this, I)), i(this, w) ? n(this, p, Ve).call(this) : n(this, p, xe).call(this), l(this, C, () => {
1109
- i(this, v).update() && (this.dispose(), n(this, p, oe).call(this));
1110
- }), window.addEventListener("resize", i(this, C)), n(this, p, le).call(this);
1116
+ this.rendererManager = new Ye(
1117
+ i(this, m).currentImage.width,
1118
+ i(this, m).currentImage.height
1119
+ ), l(this, w, new Je()), n(this, V, Te).call(this), n(this, V, Le).call(this), i(this, S).containerSelector && n(this, V, Oe).call(this, i(this, S).containerSelector), l(this, I, n(this, V, xe).bind(this)), window.addEventListener("keydown", i(this, I)), i(this, g) ? n(this, V, de).call(this) : n(this, V, Ne).call(this), l(this, C, () => {
1120
+ i(this, m).update() && (this.dispose(), n(this, V, oe).call(this));
1121
+ }), window.addEventListener("resize", i(this, C)), n(this, V, le).call(this);
1111
1122
  }, /**
1112
1123
  * Render
1113
1124
  *
@@ -1115,37 +1126,37 @@ oe = function() {
1115
1126
  * @returns {void}
1116
1127
  */
1117
1128
  le = function(e = 0) {
1118
- i(this, z).update(e), i(this, P).update(i(this, z).getElapsed()), l(this, G, requestAnimationFrame(n(this, p, le).bind(this)));
1129
+ i(this, w).update(e), i(this, z).update(i(this, w).getElapsed()), l(this, G, requestAnimationFrame(n(this, V, le).bind(this)));
1119
1130
  }, /**
1120
1131
  * Handle debug
1121
1132
  *
1122
1133
  * @param {KeyboardEvent} e
1123
1134
  * @returns {void}
1124
1135
  */
1125
- ge = function(e) {
1136
+ xe = function(e) {
1126
1137
  e.key === "d" && this.debug();
1127
1138
  }, /**
1128
1139
  * Enable debug
1129
1140
  *
1130
1141
  * @returns {void}
1131
1142
  */
1132
- Ve = function() {
1133
- i(this, P).debug();
1143
+ de = function() {
1144
+ i(this, z).debug();
1134
1145
  const e = this.debugManager.addButton({
1135
1146
  title: "Copy"
1136
1147
  });
1137
1148
  e.on("click", () => {
1138
1149
  const t = this.debugManager.exportState();
1139
1150
  if (t.children && t.children instanceof Array) {
1140
- const s = t.children[0], r = s.children[0].binding.value, u = s.children[1].binding.value, h = t.children[2], W = h.children[0].binding.value, m = h.children[1].binding.value, B = t.children[3].children[0].binding.value, E = t.children[4], H = E.children[0].binding.value, A = E.children[1].binding.value, Y = t.children[5], _ = Y.children[0].binding.value, $ = Y.children[1].binding.value, ee = `{
1151
+ const s = t.children[0], r = s.children[0].binding.value, q = s.children[1].binding.value, h = t.children[2], c = h.children[0].binding.value, u = h.children[1].binding.value, B = t.children[3].children[0].binding.value, E = t.children[4], H = E.children[0].binding.value, A = E.children[1].binding.value, Y = t.children[5], _ = Y.children[0].binding.value, $ = Y.children[1].binding.value, ee = `{
1141
1152
  images: {
1142
1153
  0: {
1143
1154
  src: <image-src>,
1144
1155
  width: <image-width>,
1145
1156
  height: <image-height>,
1146
1157
  resolution: {
1147
- width: ${W},
1148
- height: ${m}
1158
+ width: ${c},
1159
+ height: ${u}
1149
1160
  },
1150
1161
  pixel: {
1151
1162
  size: ${B},
@@ -1167,7 +1178,7 @@ Ve = function() {
1167
1178
  pointer: {
1168
1179
  size: ${r},
1169
1180
  trailing: {
1170
- factor: ${u}
1181
+ factor: ${q}
1171
1182
  }
1172
1183
  }
1173
1184
  }`;
@@ -1183,61 +1194,62 @@ Ve = function() {
1183
1194
  *
1184
1195
  * @returns {void}
1185
1196
  */
1186
- xe = function() {
1197
+ Ne = function() {
1187
1198
  this.debugManager.element.style.display = "none";
1188
1199
  }, /**
1189
1200
  * Init app
1190
1201
  *
1191
1202
  * @returns {void}
1192
1203
  */
1193
- Ne = function() {
1194
- var e, t, s, r, u, h, W, m, D, B, E, H, A, Y, _, $, ee;
1195
- l(this, P, new De(
1196
- new Ge(
1204
+ Le = function() {
1205
+ var e, t, s, r, q, h, c, u, D, B, E, H, A, Y, _, $, ee, pe;
1206
+ l(this, z, new Ee(
1207
+ new Be(
1197
1208
  this.rendererManager,
1198
1209
  this.debugManager,
1199
- i(this, v).currentImage.src,
1200
- i(this, v).currentImage.resolution.width,
1201
- i(this, v).currentImage.resolution.height,
1202
- ((e = i(this, v).currentImage.pixel) == null ? void 0 : e.size) ?? 1
1210
+ i(this, m).currentImage.src,
1211
+ i(this, m).currentImage.resolution.width,
1212
+ i(this, m).currentImage.resolution.height,
1213
+ ((e = i(this, m).currentImage.pixel) == null ? void 0 : e.size) ?? 1,
1214
+ ((t = i(this, m).currentImage.pixel) == null ? void 0 : t.alphaTest) ?? 0.1
1203
1215
  ),
1204
- new Be(
1216
+ new He(
1205
1217
  this.rendererManager,
1206
- new He(
1218
+ new Ae(
1207
1219
  this.debugManager,
1208
- i(this, v).currentImage.resolution.width,
1209
- i(this, v).currentImage.resolution.height,
1210
- ((t = i(this, S).pointer) == null ? void 0 : t.src) ?? Ae,
1211
- ((s = i(this, S).pointer) == null ? void 0 : s.size) ?? 0.15,
1212
- ((u = (r = i(this, S).pointer) == null ? void 0 : r.trailing) == null ? void 0 : u.factor) ?? 0.01
1220
+ i(this, m).currentImage.resolution.width,
1221
+ i(this, m).currentImage.resolution.height,
1222
+ ((s = i(this, S).pointer) == null ? void 0 : s.src) ?? _e,
1223
+ ((r = i(this, S).pointer) == null ? void 0 : r.size) ?? 0.15,
1224
+ ((h = (q = i(this, S).pointer) == null ? void 0 : q.trailing) == null ? void 0 : h.factor) ?? 0.01
1213
1225
  )
1214
1226
  ),
1215
1227
  this.rendererManager,
1216
1228
  this.debugManager,
1217
- ((W = (h = i(this, v).currentImage.motion) == null ? void 0 : h.noise) == null ? void 0 : W.src) ?? _e,
1218
- ((D = (m = i(this, v).currentImage.motion) == null ? void 0 : m.noise) == null ? void 0 : D.frequency) ?? 0.05,
1219
- ((E = (B = i(this, v).currentImage.motion) == null ? void 0 : B.noise) == null ? void 0 : E.amplitude) ?? 3,
1220
- ((Y = (A = (H = i(this, v).currentImage.pixel) == null ? void 0 : H.motion) == null ? void 0 : A.displacement) == null ? void 0 : Y.frequency) ?? 5,
1221
- ((ee = ($ = (_ = i(this, v).currentImage.pixel) == null ? void 0 : _.motion) == null ? void 0 : $.displacement) == null ? void 0 : ee.amplitude) ?? 4
1229
+ ((u = (c = i(this, m).currentImage.motion) == null ? void 0 : c.noise) == null ? void 0 : u.src) ?? $e,
1230
+ ((B = (D = i(this, m).currentImage.motion) == null ? void 0 : D.noise) == null ? void 0 : B.frequency) ?? 0.05,
1231
+ ((H = (E = i(this, m).currentImage.motion) == null ? void 0 : E.noise) == null ? void 0 : H.amplitude) ?? 3,
1232
+ ((_ = (Y = (A = i(this, m).currentImage.pixel) == null ? void 0 : A.motion) == null ? void 0 : Y.displacement) == null ? void 0 : _.frequency) ?? 5,
1233
+ ((pe = (ee = ($ = i(this, m).currentImage.pixel) == null ? void 0 : $.motion) == null ? void 0 : ee.displacement) == null ? void 0 : pe.amplitude) ?? 4
1222
1234
  ));
1223
1235
  }, /**
1224
1236
  * Init debug manager
1225
1237
  *
1226
1238
  * @returns {void}
1227
1239
  */
1228
- Le = function() {
1229
- this.debugManager = new ke();
1240
+ Te = function() {
1241
+ this.debugManager = new je();
1230
1242
  }, /**
1231
1243
  * Init DOM
1232
1244
  *
1233
1245
  * @param {string} containerSelector
1234
1246
  * @returns {void}
1235
1247
  */
1236
- Te = function(e) {
1248
+ Oe = function(e) {
1237
1249
  const t = document.querySelector(e);
1238
1250
  t == null || t.appendChild(this.rendererManager.renderer.domElement), t == null || t.appendChild(this.debugManager.element);
1239
1251
  };
1240
1252
  export {
1241
- si as default
1253
+ ni as default
1242
1254
  };
1243
1255
  //# sourceMappingURL=img2pxl.js.map