@cronicorn/mcp-server 1.6.1 → 1.7.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +144 -0
- package/dist/docs/core-concepts.md +0 -6
- package/dist/docs/developers/quick-start.md +0 -5
- package/dist/docs/developers/workspace-structure.md +0 -5
- package/dist/docs/introduction.md +34 -50
- package/dist/docs/mcp-server.md +127 -0
- package/dist/docs/quick-start.md +0 -13
- package/dist/docs/technical/configuration-and-constraints.md +0 -6
- package/dist/docs/technical/coordinating-multiple-endpoints.md +0 -6
- package/dist/docs/technical/how-ai-adaptation-works.md +0 -6
- package/dist/docs/technical/how-scheduling-works.md +0 -6
- package/dist/docs/technical/reference.md +0 -8
- package/dist/docs/technical/system-architecture.md +0 -8
- package/dist/docs/use-cases.md +208 -0
- package/dist/index.js +630 -0
- package/dist/index.js.map +1 -1
- package/package.json +1 -1
- package/dist/docs/mcp-server/troubleshooting.md +0 -82
|
@@ -0,0 +1,208 @@
|
|
|
1
|
+
---
|
|
2
|
+
id: use-cases
|
|
3
|
+
title: Use Cases & Examples
|
|
4
|
+
description: Real-world scenarios showing how Cronicorn adapts to your application needs
|
|
5
|
+
tags:
|
|
6
|
+
- user
|
|
7
|
+
- examples
|
|
8
|
+
sidebar_position: 3
|
|
9
|
+
mcp:
|
|
10
|
+
uri: file:///docs/use-cases.md
|
|
11
|
+
mimeType: text/markdown
|
|
12
|
+
priority: 0.8
|
|
13
|
+
---
|
|
14
|
+
|
|
15
|
+
# Use Cases & Examples
|
|
16
|
+
|
|
17
|
+
Cronicorn's adaptive scheduling shines in scenarios where static cron jobs fall short. Here are real-world examples across different industries.
|
|
18
|
+
|
|
19
|
+
## E-Commerce: Flash Sale Monitoring
|
|
20
|
+
|
|
21
|
+
You're running a Black Friday sale and traffic spikes 5× normal volume. Your checkout system needs close monitoring, but you don't want to manually adjust schedules every hour.
|
|
22
|
+
|
|
23
|
+
**Setup:**
|
|
24
|
+
|
|
25
|
+
| Endpoint | Baseline | Purpose |
|
|
26
|
+
|----------|----------|---------|
|
|
27
|
+
| Traffic Monitor | Every 5 min | Track visitors and page load times |
|
|
28
|
+
| Order Processor Health | Every 3 min | Monitor checkout performance |
|
|
29
|
+
| Inventory Sync Check | Every 10 min | Ensure stock accuracy |
|
|
30
|
+
|
|
31
|
+
**What Happens:**
|
|
32
|
+
|
|
33
|
+
- **9am (sale starts)**: Traffic surges detected. AI tightens monitoring to every 30 seconds for the next hour.
|
|
34
|
+
- **10am (struggling)**: Slow pages detected. AI activates cache warm-up (one-shot) and increases monitoring.
|
|
35
|
+
- **11am (recovering)**: Performance stabilizes. AI gradually relaxes back to baseline over 30 minutes.
|
|
36
|
+
- **2pm (stable)**: All endpoints return to normal 3-10 minute intervals.
|
|
37
|
+
|
|
38
|
+
**Result**: Your team gets real-time visibility during the surge without manual schedule changes. The system backs off automatically when things stabilize.
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
## Marketing: Content Publishing & Engagement Tracking
|
|
42
|
+
|
|
43
|
+
You publish blog posts and want to monitor engagement closely for the first 24 hours, then back off to daily checks.
|
|
44
|
+
|
|
45
|
+
**Setup:**
|
|
46
|
+
|
|
47
|
+
| Endpoint | Baseline | Behavior |
|
|
48
|
+
|----------|----------|----------|
|
|
49
|
+
| Publish Post | Cron: "0 9 * * MON" | Publishes every Monday at 9am |
|
|
50
|
+
| Track Analytics | Every 30 min | Page views, time on page |
|
|
51
|
+
| Check Email Opens | Every hour | Newsletter engagement |
|
|
52
|
+
| Promote Top Posts | Paused | Activates when engagement crosses threshold |
|
|
53
|
+
|
|
54
|
+
**What Happens:**
|
|
55
|
+
|
|
56
|
+
- **Monday 9am**: Post publishes on schedule
|
|
57
|
+
- **9am-6pm**: AI tightens analytics tracking to every 5 minutes (fresh content gets attention)
|
|
58
|
+
- **Tuesday-Friday**: AI relaxes to hourly checks (engagement is stable)
|
|
59
|
+
- **Friday**: High engagement detected, AI activates promotional boost endpoint
|
|
60
|
+
- **Next Monday**: Analytics reset to baseline 30 min intervals
|
|
61
|
+
|
|
62
|
+
**Result**: You get real-time engagement data when it matters most, without paying for excessive API calls once traffic stabilizes.
|
|
63
|
+
|
|
64
|
+
## DevOps: Infrastructure Health & Auto-Remediation
|
|
65
|
+
|
|
66
|
+
Your SaaS platform runs background monitoring that should attempt automatic fixes before paging engineers at 2am.
|
|
67
|
+
|
|
68
|
+
**Setup:**
|
|
69
|
+
|
|
70
|
+
- **Health checks** run continuously: API latency, error rates, database connections, queue depth
|
|
71
|
+
- **Investigation endpoints** start paused: slow query logs, memory profilers, distributed traces
|
|
72
|
+
- **Remediation actions** fire as one-shots: restart unhealthy pods, flush caches, scale workers
|
|
73
|
+
- **Alerts** escalate intelligently: Slack ops → Slack support → PagerDuty on-call
|
|
74
|
+
|
|
75
|
+
**What Happens:**
|
|
76
|
+
|
|
77
|
+
1. Database latency increases above threshold
|
|
78
|
+
2. AI activates slow query investigation (was paused)
|
|
79
|
+
3. Investigation identifies problematic query
|
|
80
|
+
4. System fires one-shot remediation to kill long-running queries
|
|
81
|
+
5. If fixed: Alert sent to Slack, investigation pauses again
|
|
82
|
+
6. If not fixed after 3 attempts: Page on-call engineer
|
|
83
|
+
|
|
84
|
+
**Result**: Most issues self-heal without waking anyone up. Engineers only get paged when automation can't resolve the problem.
|
|
85
|
+
|
|
86
|
+
## Data Engineering: ETL Pipeline Coordination
|
|
87
|
+
|
|
88
|
+
You run nightly data syncs from Salesforce, transform the data, and load it into your warehouse. The transformation step should only run after extraction succeeds.
|
|
89
|
+
|
|
90
|
+
**Setup:**
|
|
91
|
+
|
|
92
|
+
| Endpoint | Schedule | Notes |
|
|
93
|
+
|----------|----------|-------|
|
|
94
|
+
| Extract from Salesforce | Cron: "0 2 * * *" | Daily at 2am |
|
|
95
|
+
| Transform Records | Paused | Activates only after extraction |
|
|
96
|
+
| Load to Warehouse | Paused | Activates after transformation |
|
|
97
|
+
| Check Pipeline Lag | Every 2 min | Monitors data freshness |
|
|
98
|
+
|
|
99
|
+
**What Happens:**
|
|
100
|
+
|
|
101
|
+
- **2:00am**: Salesforce extraction starts
|
|
102
|
+
- **2:15am**: Extraction completes successfully. AI activates transformation endpoint for immediate one-shot run.
|
|
103
|
+
- **2:20am**: Transformation finishes. AI activates warehouse load for one-shot run.
|
|
104
|
+
- **2:25am**: Full pipeline complete. Investigation endpoints pause until tomorrow.
|
|
105
|
+
- **If extraction fails**: Transformation and loading stay paused. Alert fires.
|
|
106
|
+
|
|
107
|
+
**Result**: You coordinate complex dependencies without writing custom orchestration code. Each step waits for upstream success.
|
|
108
|
+
|
|
109
|
+
## SaaS Operations: Usage Monitoring & Billing
|
|
110
|
+
|
|
111
|
+
You need to track customer API usage hourly, send quota warnings at specific thresholds, and generate invoices monthly.
|
|
112
|
+
|
|
113
|
+
**Setup:**
|
|
114
|
+
|
|
115
|
+
- **Usage tracking**: Aggregate API calls every hour
|
|
116
|
+
- **Quota monitoring**: Check for overages every 10 minutes
|
|
117
|
+
- **Warning emails**: One-shot sends at 80%, 90%, 100% of quota
|
|
118
|
+
- **Invoice generation**: Cron runs on 1st of each month
|
|
119
|
+
- **Payment reminders**: Escalating sequence (3 days → 7 days → 14 days → 30 days overdue)
|
|
120
|
+
|
|
121
|
+
**What Happens:**
|
|
122
|
+
|
|
123
|
+
- **Throughout month**: Usage tracked hourly, quota checked every 10 min
|
|
124
|
+
- **Customer approaching limit**: AI fires one-shot warning emails at each threshold
|
|
125
|
+
- **1st of month at midnight**: Invoices generated for all accounts
|
|
126
|
+
- **Payment not received**: Reminder sequence starts automatically (paused between emails)
|
|
127
|
+
- **Payment received**: AI pauses further reminders
|
|
128
|
+
|
|
129
|
+
**Result**: Billing runs like clockwork with minimal manual intervention. Customers get timely warnings, and dunning sequences are fully automated.
|
|
130
|
+
|
|
131
|
+
## Web Scraping: Competitive Price Monitoring
|
|
132
|
+
|
|
133
|
+
You track competitor pricing across multiple sites, but need to respect their rate limits and adapt when they change.
|
|
134
|
+
|
|
135
|
+
**Setup:**
|
|
136
|
+
|
|
137
|
+
| Endpoint | Baseline | Constraints |
|
|
138
|
+
|----------|----------|-------------|
|
|
139
|
+
| Scrape Prices | Every 4 hours | Min: 30 min, Max: 12 hours |
|
|
140
|
+
| Validate Data | After each scrape | Checks for blocks/CAPTCHAs |
|
|
141
|
+
| Check Proxy Health | Every 5 min | Monitors rotating proxies |
|
|
142
|
+
| Alert Price Drop | Paused | Fires when competitor drops price |
|
|
143
|
+
|
|
144
|
+
**What Happens:**
|
|
145
|
+
|
|
146
|
+
- **Normal operation**: Scraping every 4 hours
|
|
147
|
+
- **Rate limit warning detected**: AI backs off to every 6 hours for next day
|
|
148
|
+
- **Competitor sale detected**: AI tightens to every 30 minutes (respects min interval)
|
|
149
|
+
- **CAPTCHA encountered**: Validation fails, AI pauses scraping for 2 hours
|
|
150
|
+
- **Proxy recovery**: Health check passes, AI resumes scraping
|
|
151
|
+
|
|
152
|
+
**Result**: You adapt to site changes automatically. Scrapers respect rate limits, pause when blocked, and intensify during competitor sales.
|
|
153
|
+
|
|
154
|
+
## Common Patterns
|
|
155
|
+
|
|
156
|
+
### Adaptive Monitoring Frequency
|
|
157
|
+
|
|
158
|
+
Start with a baseline, tighten when issues detected, relax when stable:
|
|
159
|
+
|
|
160
|
+
```
|
|
161
|
+
Baseline: Every 5 minutes
|
|
162
|
+
During issues: Every 30 seconds (respects min interval)
|
|
163
|
+
When stable: Every 15 minutes (respects max interval)
|
|
164
|
+
```
|
|
165
|
+
|
|
166
|
+
### Conditional Endpoint Activation
|
|
167
|
+
|
|
168
|
+
Keep expensive operations paused until needed:
|
|
169
|
+
|
|
170
|
+
```
|
|
171
|
+
Investigation endpoints: Paused by default
|
|
172
|
+
Activate: When health checks fail
|
|
173
|
+
Deactivate: When issues resolve or timeout expires
|
|
174
|
+
```
|
|
175
|
+
|
|
176
|
+
### One-Shot Actions with Cooldowns
|
|
177
|
+
|
|
178
|
+
Fire immediate actions that shouldn't repeat too quickly:
|
|
179
|
+
|
|
180
|
+
```
|
|
181
|
+
Cache warm-up: Fire once now, don't repeat for 15 minutes
|
|
182
|
+
Alert escalation: Send once, pause for 1 hour before next
|
|
183
|
+
Scale workers: Trigger immediately, cooldown for 20 minutes
|
|
184
|
+
```
|
|
185
|
+
|
|
186
|
+
### Calendar-Based + Adaptive Hybrid
|
|
187
|
+
|
|
188
|
+
Use cron for time-sensitive tasks, intervals for everything else:
|
|
189
|
+
|
|
190
|
+
```
|
|
191
|
+
Daily reports: Cron "0 9 * * *" (always 9am)
|
|
192
|
+
Monitoring: Interval 300000ms (adapts between min/max)
|
|
193
|
+
Monthly billing: Cron "0 0 1 * *" (1st of month)
|
|
194
|
+
```
|
|
195
|
+
|
|
196
|
+
## When to Use Cronicorn
|
|
197
|
+
|
|
198
|
+
**Great fit:**
|
|
199
|
+
- You adjust cron schedules manually based on metrics
|
|
200
|
+
- You need backoff logic after failures
|
|
201
|
+
- You want tight monitoring during critical periods
|
|
202
|
+
- You coordinate multiple dependent endpoints
|
|
203
|
+
- You respect rate limits that vary by usage
|
|
204
|
+
|
|
205
|
+
**Probably overkill:**
|
|
206
|
+
- Simple daily backup at 2am (basic cron is fine)
|
|
207
|
+
- Completely static schedules that never change
|
|
208
|
+
- Sub-second precision required (use a real-time system)
|