@convex-dev/rag 0.3.0 → 0.3.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +463 -121
- package/dist/client/defaultChunker.d.ts.map +1 -1
- package/dist/client/defaultChunker.js +47 -16
- package/dist/client/defaultChunker.js.map +1 -1
- package/dist/client/fileUtils.d.ts +4 -2
- package/dist/client/fileUtils.d.ts.map +1 -1
- package/dist/client/fileUtils.js +5 -3
- package/dist/client/fileUtils.js.map +1 -1
- package/dist/client/index.d.ts +19 -15
- package/dist/client/index.d.ts.map +1 -1
- package/dist/client/index.js +15 -11
- package/dist/client/index.js.map +1 -1
- package/dist/component/_generated/api.d.ts +11 -4
- package/dist/component/chunks.d.ts +1 -0
- package/dist/component/chunks.d.ts.map +1 -1
- package/dist/component/chunks.js +2 -1
- package/dist/component/chunks.js.map +1 -1
- package/dist/component/entries.d.ts +8 -8
- package/dist/component/entries.d.ts.map +1 -1
- package/dist/component/entries.js +30 -17
- package/dist/component/entries.js.map +1 -1
- package/dist/component/namespaces.d.ts +3 -3
- package/dist/component/namespaces.js +4 -4
- package/dist/component/namespaces.js.map +1 -1
- package/dist/component/schema.d.ts +31 -31
- package/dist/shared.d.ts +28 -11
- package/dist/shared.d.ts.map +1 -1
- package/dist/shared.js +2 -1
- package/dist/shared.js.map +1 -1
- package/package.json +1 -6
- package/src/client/defaultChunker.test.ts +1 -1
- package/src/client/defaultChunker.ts +73 -17
- package/src/client/fileUtils.ts +8 -4
- package/src/client/index.test.ts +28 -24
- package/src/client/index.ts +30 -24
- package/src/component/_generated/api.d.ts +11 -4
- package/src/component/chunks.test.ts +2 -0
- package/src/component/chunks.ts +2 -1
- package/src/component/entries.test.ts +16 -16
- package/src/component/entries.ts +31 -19
- package/src/component/namespaces.ts +4 -4
- package/src/shared.ts +15 -7
package/README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
# Convex RAG Component
|
|
2
2
|
|
|
3
|
-
[](https://badge.fury.io/js/@convex-dev%2Frag)
|
|
4
4
|
|
|
5
5
|
<!-- START: Include on https://convex.dev/components -->
|
|
6
6
|
|
|
@@ -57,25 +57,15 @@ import { RAG } from "@convex-dev/rag";
|
|
|
57
57
|
// Any AI SDK model that supports embeddings will work.
|
|
58
58
|
import { openai } from "@ai-sdk/openai";
|
|
59
59
|
|
|
60
|
-
const rag = new RAG
|
|
61
|
-
filterNames: ["category", "contentType", "categoryAndType"],
|
|
60
|
+
const rag = new RAG(components.rag, {
|
|
62
61
|
textEmbeddingModel: openai.embedding("text-embedding-3-small"),
|
|
63
|
-
embeddingDimension: 1536,
|
|
62
|
+
embeddingDimension: 1536, // Needs to match your embedding model
|
|
64
63
|
});
|
|
65
|
-
|
|
66
|
-
// Optional: Add type safety to your filters.
|
|
67
|
-
type FilterTypes = {
|
|
68
|
-
category: string;
|
|
69
|
-
contentType: string;
|
|
70
|
-
categoryAndType: { category: string; contentType: string };
|
|
71
|
-
};
|
|
72
64
|
```
|
|
73
65
|
|
|
74
|
-
##
|
|
66
|
+
## Add context to RAG
|
|
75
67
|
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
Add content with text chunks.
|
|
68
|
+
Add content with text chunks. Each call to `add` will create a new **entry**.
|
|
79
69
|
It will embed the chunks automatically if you don't provide them.
|
|
80
70
|
|
|
81
71
|
```ts
|
|
@@ -85,103 +75,15 @@ export const add = action({
|
|
|
85
75
|
// Add the text to a namespace shared by all users.
|
|
86
76
|
await rag.add(ctx, {
|
|
87
77
|
namespace: "all-users",
|
|
88
|
-
|
|
89
|
-
});
|
|
90
|
-
},
|
|
91
|
-
});
|
|
92
|
-
```
|
|
93
|
-
|
|
94
|
-
### Add Entries with filters from a URL
|
|
95
|
-
|
|
96
|
-
Here's a simple example fetching content from a URL to add.
|
|
97
|
-
|
|
98
|
-
It also adds filters to the entry, so you can search for it later by
|
|
99
|
-
category, contentType, or both.
|
|
100
|
-
|
|
101
|
-
```ts
|
|
102
|
-
export const add = action({
|
|
103
|
-
args: { url: v.string(), category: v.string() },
|
|
104
|
-
handler: async (ctx, { url, category }) => {
|
|
105
|
-
const response = await fetch(url);
|
|
106
|
-
const content = await response.text();
|
|
107
|
-
const contentType = response.headers.get("content-type");
|
|
108
|
-
|
|
109
|
-
const { entryId } = await rag.add(ctx, {
|
|
110
|
-
namespace: "global", // namespace can be any string
|
|
111
|
-
key: url,
|
|
112
|
-
chunks: content.split("\n\n"),
|
|
113
|
-
filterValues: [
|
|
114
|
-
{ name: "category", value: category },
|
|
115
|
-
{ name: "contentType", value: contentType },
|
|
116
|
-
// To get an AND filter, use a filter with a more complex value.
|
|
117
|
-
{ name: "categoryAndType", value: { category, contentType } },
|
|
118
|
-
],
|
|
78
|
+
text,
|
|
119
79
|
});
|
|
120
|
-
|
|
121
|
-
return { entryId };
|
|
122
80
|
},
|
|
123
81
|
});
|
|
124
82
|
```
|
|
125
83
|
|
|
126
|
-
|
|
127
|
-
See below for more details.
|
|
84
|
+
See below for how to chunk the text yourself or add content asynchronously, e.g. to handle large files.
|
|
128
85
|
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
For large files, you can upload them to file storage, then provide a chunker
|
|
132
|
-
action to split them into chunks.
|
|
133
|
-
|
|
134
|
-
In `convex/http.ts`:
|
|
135
|
-
```ts
|
|
136
|
-
import { corsRouter } from "convex-helpers/server/cors";
|
|
137
|
-
import { httpRouter } from "convex/server";
|
|
138
|
-
import { internal } from "./_generated/api.js";
|
|
139
|
-
import { DataModel } from "./_generated/dataModel.js";
|
|
140
|
-
import { httpAction } from "./_generated/server.js";
|
|
141
|
-
import { rag } from "./example.js";
|
|
142
|
-
|
|
143
|
-
const cors = corsRouter(httpRouter());
|
|
144
|
-
|
|
145
|
-
cors.route({
|
|
146
|
-
path: "/upload",
|
|
147
|
-
method: "POST",
|
|
148
|
-
handler: httpAction(async (ctx, request) => {
|
|
149
|
-
const storageId = await ctx.storage.store(await request.blob());
|
|
150
|
-
await rag.addAsync(ctx, {
|
|
151
|
-
namespace: "all-files",
|
|
152
|
-
chunkerAction: internal.http.chunkerAction,
|
|
153
|
-
onComplete: internal.http.handleEntryComplete,
|
|
154
|
-
metadata: { storageId },
|
|
155
|
-
});
|
|
156
|
-
return new Response();
|
|
157
|
-
}),
|
|
158
|
-
});
|
|
159
|
-
|
|
160
|
-
export const chunkerAction = rag.defineChunkerAction(async (ctx, args) => {
|
|
161
|
-
const storageId = args.entry.metadata!.storageId;
|
|
162
|
-
const file = await ctx.storage.get(storageId);
|
|
163
|
-
const text = await new TextDecoder().decode(await file!.arrayBuffer());
|
|
164
|
-
return { chunks: text.split("\n\n") };
|
|
165
|
-
});
|
|
166
|
-
|
|
167
|
-
export const handleEntryComplete = rag.defineOnComplete<DataModel>(
|
|
168
|
-
async (ctx, { replacedEntry, entry, namespace, error }) => {
|
|
169
|
-
if (error) {
|
|
170
|
-
await rag.delete(ctx, { entryId: entry.entryId });
|
|
171
|
-
return;
|
|
172
|
-
}
|
|
173
|
-
// You can associate the entry with your own data here. This will commit
|
|
174
|
-
// in the same transaction as the entry becoming ready.
|
|
175
|
-
}
|
|
176
|
-
);
|
|
177
|
-
|
|
178
|
-
export default cors.http;
|
|
179
|
-
```
|
|
180
|
-
|
|
181
|
-
You can upload files directly to a Convex action, httpAction, or upload url.
|
|
182
|
-
See the [docs](https://docs.convex.dev/file-storage/upload-files) for details.
|
|
183
|
-
|
|
184
|
-
### Semantic Search
|
|
86
|
+
## Semantic Search
|
|
185
87
|
|
|
186
88
|
Search across content with vector similarity
|
|
187
89
|
|
|
@@ -202,7 +104,7 @@ export const search = action({
|
|
|
202
104
|
const { results, text, entries } = await rag.search(ctx, {
|
|
203
105
|
namespace: "global",
|
|
204
106
|
query: args.query,
|
|
205
|
-
limit: 10
|
|
107
|
+
limit: 10,
|
|
206
108
|
vectorScoreThreshold: 0.5, // Only return results with a score >= 0.5
|
|
207
109
|
});
|
|
208
110
|
|
|
@@ -211,15 +113,93 @@ export const search = action({
|
|
|
211
113
|
});
|
|
212
114
|
```
|
|
213
115
|
|
|
214
|
-
|
|
116
|
+
## Generate a response based on RAG context
|
|
117
|
+
|
|
118
|
+
Once you have searched for the context, you can use it with an LLM.
|
|
119
|
+
|
|
120
|
+
Generally you'll already be using something to make LLM requests, e.g.
|
|
121
|
+
the [Agent Component](https://www.convex.dev/components/agent),
|
|
122
|
+
which tracks the message history for you.
|
|
123
|
+
See the [Agent Component docs](https://docs.convex.dev/agents)
|
|
124
|
+
for more details on doing RAG with the Agent Component.
|
|
125
|
+
|
|
126
|
+
However, if you just want a one-off response, you can use the `generateText`
|
|
127
|
+
function as a convenience.
|
|
128
|
+
|
|
129
|
+
This will automatically search for relevant entries and use them as context
|
|
130
|
+
for the LLM, using default formatting.
|
|
131
|
+
|
|
132
|
+
The arguments to `generateText` are compatible with all arguments to
|
|
133
|
+
`generateText` from the AI SDK.
|
|
134
|
+
|
|
135
|
+
```ts
|
|
136
|
+
export const askQuestion = action({
|
|
137
|
+
args: {
|
|
138
|
+
prompt: v.string(),
|
|
139
|
+
},
|
|
140
|
+
handler: async (ctx, args) => {
|
|
141
|
+
const userId = await getAuthUserId(ctx);
|
|
142
|
+
const { text, context } = await rag.generateText(ctx, {
|
|
143
|
+
search: { namespace: userId, limit: 10 },
|
|
144
|
+
prompt: args.prompt,
|
|
145
|
+
model: openai.chat("gpt-4o-mini"),
|
|
146
|
+
});
|
|
147
|
+
return { answer: text, context };
|
|
148
|
+
},
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
Note: You can specify any of the search options available on `rag.search`.
|
|
152
|
+
|
|
153
|
+
## Filtered Search
|
|
154
|
+
|
|
155
|
+
You can provide filters when adding content and use them to search.
|
|
156
|
+
To do this, you'll need to give the RAG component a list of the filter names.
|
|
157
|
+
You can optionally provide a type parameter for type safety (no runtime validation).
|
|
158
|
+
|
|
159
|
+
Note: these filters can be OR'd together when searching. In order to get an AND,
|
|
160
|
+
you provide a filter with a more complex value, such as `categoryAndType` below.
|
|
161
|
+
|
|
162
|
+
```ts
|
|
163
|
+
// convex/example.ts
|
|
164
|
+
import { components } from "./_generated/api";
|
|
165
|
+
import { RAG } from "@convex-dev/rag";
|
|
166
|
+
// Any AI SDK model that supports embeddings will work.
|
|
167
|
+
import { openai } from "@ai-sdk/openai";
|
|
168
|
+
|
|
169
|
+
// Optional: Add type safety to your filters.
|
|
170
|
+
type FilterTypes = {
|
|
171
|
+
category: string;
|
|
172
|
+
contentType: string;
|
|
173
|
+
categoryAndType: { category: string; contentType: string };
|
|
174
|
+
};
|
|
175
|
+
|
|
176
|
+
const rag = new RAG<FilterTypes>(components.rag, {
|
|
177
|
+
textEmbeddingModel: openai.embedding("text-embedding-3-small"),
|
|
178
|
+
embeddingDimension: 1536, // Needs to match your embedding model
|
|
179
|
+
filterNames: ["category", "contentType", "categoryAndType"],
|
|
180
|
+
});
|
|
181
|
+
```
|
|
182
|
+
|
|
183
|
+
Adding content with filters:
|
|
184
|
+
|
|
185
|
+
```ts
|
|
186
|
+
await rag.add(ctx, {
|
|
187
|
+
namespace: "global",
|
|
188
|
+
text,
|
|
189
|
+
filterValues: [
|
|
190
|
+
{ name: "category", value: "news" },
|
|
191
|
+
{ name: "contentType", value: "article" },
|
|
192
|
+
{ name: "categoryAndType", value: { category: "news", contentType: "article" } },
|
|
193
|
+
],
|
|
194
|
+
});
|
|
195
|
+
```
|
|
215
196
|
|
|
216
197
|
Search with metadata filters:
|
|
217
198
|
|
|
218
199
|
```ts
|
|
219
|
-
export const
|
|
200
|
+
export const searchForNewsOrSports = action({
|
|
220
201
|
args: {
|
|
221
202
|
query: v.string(),
|
|
222
|
-
category: v.string(),
|
|
223
203
|
},
|
|
224
204
|
handler: async (ctx, args) => {
|
|
225
205
|
const userId = await getUserId(ctx);
|
|
@@ -228,7 +208,10 @@ export const searchByCategory = action({
|
|
|
228
208
|
const results = await rag.search(ctx, {
|
|
229
209
|
namespace: userId,
|
|
230
210
|
query: args.query,
|
|
231
|
-
filters: [
|
|
211
|
+
filters: [
|
|
212
|
+
{ name: "category", value: "news" },
|
|
213
|
+
{ name: "category", value: "sports" },
|
|
214
|
+
],
|
|
232
215
|
limit: 10,
|
|
233
216
|
});
|
|
234
217
|
|
|
@@ -277,14 +260,14 @@ export const searchWithContext = action({
|
|
|
277
260
|
});
|
|
278
261
|
```
|
|
279
262
|
|
|
280
|
-
|
|
263
|
+
## Formatting results
|
|
281
264
|
|
|
282
265
|
Formatting the results for use in a prompt depends a bit on the use case.
|
|
283
266
|
By default, the results will be sorted by score, not necessarily in the order
|
|
284
267
|
they appear in the original text. You may want to sort them by the order they
|
|
285
268
|
appear in the original text so they follow the flow of the original document.
|
|
286
269
|
|
|
287
|
-
For
|
|
270
|
+
For convenience, the `text` field of the search results is a string formatted
|
|
288
271
|
with `...` separating non-sequential chunks, `---` separating entries, and
|
|
289
272
|
`# Title:` at each entry boundary (if titles are available).
|
|
290
273
|
|
|
@@ -294,14 +277,18 @@ console.log(text);
|
|
|
294
277
|
```
|
|
295
278
|
|
|
296
279
|
```txt
|
|
297
|
-
|
|
280
|
+
## Title 1:
|
|
298
281
|
Chunk 1 contents
|
|
299
282
|
Chunk 2 contents
|
|
283
|
+
|
|
300
284
|
...
|
|
285
|
+
|
|
301
286
|
Chunk 8 contents
|
|
302
287
|
Chunk 9 contents
|
|
288
|
+
|
|
303
289
|
---
|
|
304
|
-
|
|
290
|
+
|
|
291
|
+
## Title 2:
|
|
305
292
|
Chunk 4 contents
|
|
306
293
|
Chunk 5 contents
|
|
307
294
|
```
|
|
@@ -350,22 +337,377 @@ await generateText({
|
|
|
350
337
|
});
|
|
351
338
|
```
|
|
352
339
|
|
|
340
|
+
## Using keys to gracefully replace content
|
|
341
|
+
|
|
342
|
+
When you add content to a namespace, you can provide a `key` to uniquely identify the content.
|
|
343
|
+
If you add content with the same key, it will make a new entry to replace the old one.
|
|
344
|
+
|
|
345
|
+
```ts
|
|
346
|
+
await rag.add(ctx, { namespace: userId, key: "my-file.txt", text });
|
|
347
|
+
```
|
|
348
|
+
|
|
349
|
+
When a new document is added, it will start with a status of "pending" while
|
|
350
|
+
it chunks, embeds, and inserts the data into the database.
|
|
351
|
+
Once all data is inserted, it will iterate over the chunks and swap the old
|
|
352
|
+
content embeddings with the new ones, and then update the status to "ready",
|
|
353
|
+
marking the previous version as "replaced".
|
|
354
|
+
|
|
355
|
+
The old content is kept around by default, so in-flight searches will get
|
|
356
|
+
results for old vector search results.
|
|
357
|
+
See below for more details on deleting.
|
|
358
|
+
|
|
359
|
+
This means that if searches are happening while the document is being added,
|
|
360
|
+
they will see the old content results
|
|
361
|
+
This is useful if you want to add content to a namespace and then immediately
|
|
362
|
+
search for it, or if you want to add content to a namespace and then immediately
|
|
363
|
+
add more content to the same namespace.
|
|
364
|
+
|
|
365
|
+
## Using your own content splitter
|
|
366
|
+
|
|
367
|
+
By default, the component uses the `defaultChunker` to split the content into chunks.
|
|
368
|
+
You can pass in your own content chunks to the `add` or `addAsync` functions.
|
|
369
|
+
|
|
370
|
+
```ts
|
|
371
|
+
const chunks = await textSplitter.split(content);
|
|
372
|
+
await rag.add(ctx, { namespace: "global", chunks });
|
|
373
|
+
```
|
|
374
|
+
|
|
375
|
+
Note: The `textSplitter` here could be LangChain, Mastra, or something custom.
|
|
376
|
+
The simplest version makes an array of strings like `content.split("\n")`.
|
|
377
|
+
|
|
378
|
+
Note: you can pass in an async iterator instead of an array to handle large content.
|
|
379
|
+
Or use the `addAsync` function (see below).
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
## Providing custom embeddings per-chunk
|
|
383
|
+
|
|
384
|
+
In addition to the text, you can provide your own embeddings for each chunk.
|
|
385
|
+
|
|
386
|
+
This can be beneficial if you want to embed something other than the chunk
|
|
387
|
+
contents, e.g. a summary of each chunk.
|
|
388
|
+
|
|
389
|
+
```ts
|
|
390
|
+
const chunks = await textSplitter.split(content);
|
|
391
|
+
const chunksWithEmbeddings = await Promise.all(chunks.map(async chunk => {
|
|
392
|
+
return {
|
|
393
|
+
...chunk,
|
|
394
|
+
embedding: await embedSummary(chunk)
|
|
395
|
+
}
|
|
396
|
+
}));
|
|
397
|
+
await rag.add(ctx, { namespace: "global", chunks });
|
|
398
|
+
```
|
|
399
|
+
|
|
400
|
+
## Add Entries Asynchronously using File Storage
|
|
401
|
+
|
|
402
|
+
For large files, you can upload them to file storage, then provide a chunker
|
|
403
|
+
action to split them into chunks.
|
|
404
|
+
|
|
405
|
+
In `convex/http.ts`:
|
|
406
|
+
```ts
|
|
407
|
+
import { corsRouter } from "convex-helpers/server/cors";
|
|
408
|
+
import { httpRouter } from "convex/server";
|
|
409
|
+
import { internal } from "./_generated/api.js";
|
|
410
|
+
import { DataModel } from "./_generated/dataModel.js";
|
|
411
|
+
import { httpAction } from "./_generated/server.js";
|
|
412
|
+
import { rag } from "./example.js";
|
|
413
|
+
|
|
414
|
+
const cors = corsRouter(httpRouter());
|
|
415
|
+
|
|
416
|
+
cors.route({
|
|
417
|
+
path: "/upload",
|
|
418
|
+
method: "POST",
|
|
419
|
+
handler: httpAction(async (ctx, request) => {
|
|
420
|
+
const storageId = await ctx.storage.store(await request.blob());
|
|
421
|
+
await rag.addAsync(ctx, {
|
|
422
|
+
namespace: "all-files",
|
|
423
|
+
chunkerAction: internal.http.chunkerAction,
|
|
424
|
+
onComplete: internal.foo.docComplete, // See next section
|
|
425
|
+
metadata: { storageId },
|
|
426
|
+
});
|
|
427
|
+
return new Response();
|
|
428
|
+
}),
|
|
429
|
+
});
|
|
430
|
+
|
|
431
|
+
export const chunkerAction = rag.defineChunkerAction(async (ctx, args) => {
|
|
432
|
+
const storageId = args.entry.metadata!.storageId;
|
|
433
|
+
const file = await ctx.storage.get(storageId);
|
|
434
|
+
const text = await new TextDecoder().decode(await file!.arrayBuffer());
|
|
435
|
+
return { chunks: text.split("\n\n") };
|
|
436
|
+
});
|
|
437
|
+
|
|
438
|
+
export default cors.http;
|
|
439
|
+
```
|
|
440
|
+
|
|
441
|
+
You can upload files directly to a Convex action, httpAction, or upload url.
|
|
442
|
+
See the [docs](https://docs.convex.dev/file-storage/upload-files) for details.
|
|
443
|
+
|
|
444
|
+
### OnComplete Handling
|
|
445
|
+
|
|
446
|
+
You can register an `onComplete` handler when adding content that will be called
|
|
447
|
+
when the entry is ready, or if there was an error or it was replaced before it
|
|
448
|
+
finished.
|
|
449
|
+
|
|
450
|
+
```ts
|
|
451
|
+
// in an action
|
|
452
|
+
await rag.add(ctx, { namespace, text, onComplete: internal.foo.docComplete });
|
|
453
|
+
|
|
454
|
+
// in convex/foo.ts
|
|
455
|
+
export const docComplete = rag.defineOnComplete<DataModel>(
|
|
456
|
+
async (ctx, { replacedEntry, entry, namespace, error }) => {
|
|
457
|
+
if (error) {
|
|
458
|
+
await rag.delete(ctx, { entryId: entry.entryId });
|
|
459
|
+
return;
|
|
460
|
+
}
|
|
461
|
+
if (replacedEntry) {
|
|
462
|
+
await rag.delete(ctx, { entryId: replacedEntry.entryId });
|
|
463
|
+
}
|
|
464
|
+
// You can associate the entry with your own data here. This will commit
|
|
465
|
+
// in the same transaction as the entry becoming ready.
|
|
466
|
+
}
|
|
467
|
+
);
|
|
468
|
+
```
|
|
469
|
+
|
|
470
|
+
### Add Entries with filters from a URL
|
|
471
|
+
|
|
472
|
+
Here's a simple example fetching content from a URL to add.
|
|
473
|
+
|
|
474
|
+
It also adds filters to the entry, so you can search for it later by
|
|
475
|
+
category, contentType, or both.
|
|
476
|
+
|
|
477
|
+
```ts
|
|
478
|
+
export const add = action({
|
|
479
|
+
args: { url: v.string(), category: v.string() },
|
|
480
|
+
handler: async (ctx, { url, category }) => {
|
|
481
|
+
const response = await fetch(url);
|
|
482
|
+
const content = await response.text();
|
|
483
|
+
const contentType = response.headers.get("content-type");
|
|
484
|
+
|
|
485
|
+
const { entryId } = await rag.add(ctx, {
|
|
486
|
+
namespace: "global", // namespace can be any string
|
|
487
|
+
key: url,
|
|
488
|
+
chunks: content.split("\n\n"),
|
|
489
|
+
filterValues: [
|
|
490
|
+
{ name: "category", value: category },
|
|
491
|
+
{ name: "contentType", value: contentType },
|
|
492
|
+
// To get an AND filter, use a filter with a more complex value.
|
|
493
|
+
{ name: "categoryAndType", value: { category, contentType } },
|
|
494
|
+
],
|
|
495
|
+
});
|
|
496
|
+
|
|
497
|
+
return { entryId };
|
|
498
|
+
},
|
|
499
|
+
});
|
|
500
|
+
```
|
|
501
|
+
|
|
353
502
|
### Lifecycle Management
|
|
354
503
|
|
|
355
|
-
|
|
504
|
+
You can delete the old content by calling `rag.delete` with the entryId of the
|
|
505
|
+
old version.
|
|
506
|
+
|
|
507
|
+
Generally you'd do this:
|
|
508
|
+
|
|
509
|
+
1. When using `rag.add` with a key returns a `replacedEntry`.
|
|
510
|
+
1. When your `onComplete` handler provides a non-null `replacedEntry` argument.
|
|
511
|
+
1. Periodically by querying:
|
|
356
512
|
|
|
357
513
|
```ts
|
|
358
|
-
|
|
359
|
-
|
|
514
|
+
// in convex/crons.ts
|
|
515
|
+
import { cronJobs } from "convex/server";
|
|
516
|
+
import { internal } from "./_generated/api.js";
|
|
517
|
+
import { internalMutation } from "./_generated/server.js";
|
|
518
|
+
import { v } from "convex/values";
|
|
519
|
+
import { rag } from "./example.js";
|
|
520
|
+
import { assert } from "convex-helpers";
|
|
521
|
+
|
|
522
|
+
const WEEK = 7 * 24 * 60 * 60 * 1000;
|
|
523
|
+
|
|
524
|
+
export const deleteOldContent = internalMutation({
|
|
525
|
+
args: { cursor: v.optional(v.string()) },
|
|
360
526
|
handler: async (ctx, args) => {
|
|
361
|
-
await rag.
|
|
362
|
-
|
|
527
|
+
const toDelete = await rag.list(ctx, {
|
|
528
|
+
status: "replaced",
|
|
529
|
+
paginationOpts: { cursor: args.cursor ?? null, numItems: 100 },
|
|
530
|
+
});
|
|
531
|
+
|
|
532
|
+
for (const entry of toDelete.page) {
|
|
533
|
+
assert(entry.status === "replaced");
|
|
534
|
+
if (entry.replacedAt >= Date.now() - WEEK) {
|
|
535
|
+
return; // we're done when we catch up to a week ago
|
|
536
|
+
}
|
|
537
|
+
await rag.delete(ctx, { entryId: entry.entryId });
|
|
538
|
+
}
|
|
539
|
+
if (!toDelete.isDone) {
|
|
540
|
+
await ctx.scheduler.runAfter(0, internal.example.deleteOldContent, {
|
|
541
|
+
cursor: toDelete.continueCursor,
|
|
542
|
+
});
|
|
543
|
+
}
|
|
544
|
+
},
|
|
545
|
+
});
|
|
546
|
+
|
|
547
|
+
// See example/convex/crons.ts for a complete example.
|
|
548
|
+
const crons = cronJobs();
|
|
549
|
+
crons.interval("deleteOldContent", { hours: 1 }, internal.crons.deleteOldContent, {});
|
|
550
|
+
export default crons;
|
|
551
|
+
```
|
|
552
|
+
|
|
553
|
+
## Working with types
|
|
554
|
+
|
|
555
|
+
You can use the provided types to validate and store data.
|
|
556
|
+
`import { ... } from "@convex-dev/rag";`
|
|
557
|
+
|
|
558
|
+
Types for the various elements:
|
|
559
|
+
|
|
560
|
+
`Entry`, `EntryFilter`, `SearchEntry`, `SearchResult`
|
|
561
|
+
|
|
562
|
+
- `SearchEntry` is an `Entry` with a `text` field including the combined search
|
|
563
|
+
results for that entry, whereas a `SearchResult` is a specific chunk result,
|
|
564
|
+
along with surrounding chunks.
|
|
565
|
+
|
|
566
|
+
`EntryId`, `NamespaceId`
|
|
567
|
+
|
|
568
|
+
- While the `EntryId` and `NamespaceId` are strings under the hood, they are
|
|
569
|
+
given more specific types to make it easier to use them correctly.
|
|
570
|
+
|
|
571
|
+
Validators can be used in `args` and schema table definitions:
|
|
572
|
+
`vEntry`, `vEntryId`, `vNamespaceId`, `vSearchEntry`, `vSearchResult`
|
|
573
|
+
|
|
574
|
+
e.g. `defineTable({ myDocTitle: v.string(), entryId: vEntryId })`
|
|
575
|
+
|
|
576
|
+
The validators for the branded IDs will only validate they are strings,
|
|
577
|
+
but will have the more specific types, to provide type safety.
|
|
578
|
+
|
|
579
|
+
## Utility Functions
|
|
580
|
+
|
|
581
|
+
In addition to the function on the `rag` instance, there are other utilities
|
|
582
|
+
provided:
|
|
583
|
+
|
|
584
|
+
### `defaultChunker`
|
|
585
|
+
|
|
586
|
+
This is the default chunker used by the `add` and `addAsync` functions.
|
|
587
|
+
|
|
588
|
+
It is customizable, but by default:
|
|
589
|
+
- It tries to break up the text into paragraphs between 100-1k characters.
|
|
590
|
+
- It will combine paragraphs to meet the minimum character count (100).
|
|
591
|
+
- It will break up paragraphs into separate lines to keep it under 1k.
|
|
592
|
+
- It will not split up a single line unless it's longer than 10k characters.
|
|
593
|
+
|
|
594
|
+
```ts
|
|
595
|
+
import { defaultChunker } from "@convex-dev/rag";
|
|
596
|
+
|
|
597
|
+
const chunks = defaultChunker(text, {
|
|
598
|
+
// these are the defaults
|
|
599
|
+
minLines: 1,
|
|
600
|
+
minCharsSoftLimit: 100,
|
|
601
|
+
maxCharsSoftLimit: 1000,
|
|
602
|
+
maxCharsHardLimit: 10000,
|
|
603
|
+
delimiter: "\n\n",
|
|
604
|
+
});
|
|
605
|
+
```
|
|
606
|
+
|
|
607
|
+
### `hybridRank`
|
|
608
|
+
|
|
609
|
+
This is an implementation of "Reciprocal Rank Fusion" for ranking search results
|
|
610
|
+
based on multiple scoring arrays. The premise is that if both arrays of results
|
|
611
|
+
are sorted by score, the best results show up near the top of both arrays and
|
|
612
|
+
should be preferred over results higher in one but much lower in the other.
|
|
613
|
+
|
|
614
|
+
```ts
|
|
615
|
+
import { hybridRank } from "@convex-dev/rag";
|
|
616
|
+
|
|
617
|
+
const textSearchResults = [id1, id2, id3];
|
|
618
|
+
const vectorSearchResults = [id2, id3, id1];
|
|
619
|
+
const results = hybridRank([
|
|
620
|
+
textSearchResults,
|
|
621
|
+
vectorSearchResults,
|
|
622
|
+
]);
|
|
623
|
+
// results = [id2, id1, id3]
|
|
624
|
+
```
|
|
625
|
+
|
|
626
|
+
It can take more than two arrays, and you can provide weights for each array.
|
|
627
|
+
|
|
628
|
+
```ts
|
|
629
|
+
|
|
630
|
+
const recentSearchResults = [id5, id4, id3];
|
|
631
|
+
const results = hybridRank([
|
|
632
|
+
textSearchResults,
|
|
633
|
+
vectorSearchResults,
|
|
634
|
+
recentSearchResults,
|
|
635
|
+
], {
|
|
636
|
+
weights: [2, 1, 3], // prefer recent results more than text or vector
|
|
637
|
+
});
|
|
638
|
+
// results = [ id3, id5, id1, id2, id4 ]
|
|
639
|
+
```
|
|
640
|
+
|
|
641
|
+
To have it more biased towards the top few results, you can set the `k` value
|
|
642
|
+
to a lower number (10 by default).
|
|
643
|
+
|
|
644
|
+
```ts
|
|
645
|
+
const results = hybridRank([
|
|
646
|
+
textSearchResults,
|
|
647
|
+
vectorSearchResults,
|
|
648
|
+
recentSearchResults,
|
|
649
|
+
], { k: 1 });
|
|
650
|
+
// results = [ id5, id1, id3, id2, id4 ]
|
|
651
|
+
```
|
|
652
|
+
|
|
653
|
+
### `contentHashFromArrayBuffer`
|
|
654
|
+
|
|
655
|
+
This generates the hash of a file's contents, which can be used to avoid
|
|
656
|
+
adding the same file twice.
|
|
657
|
+
|
|
658
|
+
Note: doing `blob.arrayBuffer()` will consume the blob's data, so you'll need
|
|
659
|
+
to make a new blob to use it after calling this function.
|
|
660
|
+
|
|
661
|
+
```ts
|
|
662
|
+
import { contentHashFromArrayBuffer } from "@convex-dev/rag";
|
|
663
|
+
|
|
664
|
+
export const addFile = action({
|
|
665
|
+
args: { bytes: v.bytes() },
|
|
666
|
+
handler: async (ctx, { bytes }) => {
|
|
667
|
+
|
|
668
|
+
const hash = await contentHashFromArrayBuffer(bytes);
|
|
669
|
+
|
|
670
|
+
const existing = await rag.findEntryByContentHash(ctx, {
|
|
671
|
+
namespace: "global",
|
|
672
|
+
key: "my-file.txt",
|
|
673
|
+
contentHash: hash,
|
|
363
674
|
});
|
|
675
|
+
if (existing) {
|
|
676
|
+
console.log("File contents are the same, skipping");
|
|
677
|
+
return;
|
|
678
|
+
}
|
|
679
|
+
const blob = new Blob([bytes], { type: "text/plain" });
|
|
680
|
+
//...
|
|
364
681
|
},
|
|
365
682
|
});
|
|
366
683
|
```
|
|
367
684
|
|
|
685
|
+
### `guessMimeTypeFromExtension`
|
|
686
|
+
|
|
687
|
+
This guesses the mime type of a file from its extension.
|
|
688
|
+
|
|
689
|
+
```ts
|
|
690
|
+
import { guessMimeTypeFromExtension } from "@convex-dev/rag";
|
|
691
|
+
|
|
692
|
+
const mimeType = guessMimeTypeFromExtension("my-file.mjs");
|
|
693
|
+
console.log(mimeType); // "text/javascript"
|
|
694
|
+
```
|
|
695
|
+
|
|
696
|
+
### `guessMimeTypeFromContents`
|
|
697
|
+
|
|
698
|
+
This guesses the mime type of a file from the first few bytes of its contents.
|
|
699
|
+
|
|
700
|
+
```ts
|
|
701
|
+
import { guessMimeTypeFromContents } from "@convex-dev/rag";
|
|
702
|
+
|
|
703
|
+
const mimeType = guessMimeTypeFromContents(await file.arrayBuffer());
|
|
704
|
+
```
|
|
705
|
+
|
|
706
|
+
### Example Usage
|
|
707
|
+
|
|
368
708
|
See more example usage in [example.ts](./example/convex/example.ts).
|
|
369
709
|
|
|
370
|
-
|
|
710
|
+
### Running the example
|
|
711
|
+
|
|
712
|
+
Run the example with `npm i && npm run setup && npm run example`.
|
|
371
713
|
<!-- END: Include on https://convex.dev/components -->
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"defaultChunker.d.ts","sourceRoot":"","sources":["../../src/client/defaultChunker.ts"],"names":[],"mappings":"AAAA;;;;;GAKG;AACH,wBAAgB,cAAc,CAC5B,IAAI,EAAE,MAAM,EACZ,EACE,QAAY,EACZ,iBAAuB,EACvB,iBAAwB,EACxB,iBAAyB,EACzB,SAAkB,GACnB,GAAE;IACD,QAAQ,CAAC,EAAE,MAAM,CAAC;IAClB,iBAAiB,CAAC,EAAE,MAAM,CAAC;IAC3B,iBAAiB,CAAC,EAAE,MAAM,CAAC;IAC3B,iBAAiB,CAAC,EAAE,MAAM,CAAC;IAC3B,SAAS,CAAC,EAAE,MAAM,CAAC;CACf,GACL,MAAM,EAAE,
|
|
1
|
+
{"version":3,"file":"defaultChunker.d.ts","sourceRoot":"","sources":["../../src/client/defaultChunker.ts"],"names":[],"mappings":"AAAA;;;;;GAKG;AACH,wBAAgB,cAAc,CAC5B,IAAI,EAAE,MAAM,EACZ,EACE,QAAY,EACZ,iBAAuB,EACvB,iBAAwB,EACxB,iBAAyB,EACzB,SAAkB,GACnB,GAAE;IACD,QAAQ,CAAC,EAAE,MAAM,CAAC;IAClB,iBAAiB,CAAC,EAAE,MAAM,CAAC;IAC3B,iBAAiB,CAAC,EAAE,MAAM,CAAC;IAC3B,iBAAiB,CAAC,EAAE,MAAM,CAAC;IAC3B,SAAS,CAAC,EAAE,MAAM,CAAC;CACf,GACL,MAAM,EAAE,CA6HV;AA4FD,eAAe,cAAc,CAAC"}
|