@chenchaolong/plugin-vllm 0.0.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +68 -0
- package/dist/_assets/vllm-color.svg +1 -0
- package/dist/i18n.d.ts +4 -0
- package/dist/i18n.d.ts.map +1 -0
- package/dist/i18n.js +12 -0
- package/dist/index.d.ts +6 -0
- package/dist/index.d.ts.map +1 -0
- package/dist/index.js +41 -0
- package/dist/llm/llm.d.ts +11 -0
- package/dist/llm/llm.d.ts.map +1 -0
- package/dist/llm/llm.js +62 -0
- package/dist/provider.strategy.d.ts +10 -0
- package/dist/provider.strategy.d.ts.map +1 -0
- package/dist/provider.strategy.js +25 -0
- package/dist/rerank/rerank.d.ts +9 -0
- package/dist/rerank/rerank.d.ts.map +1 -0
- package/dist/rerank/rerank.js +41 -0
- package/dist/text-embedding/text-embedding.d.ts +11 -0
- package/dist/text-embedding/text-embedding.d.ts.map +1 -0
- package/dist/text-embedding/text-embedding.js +48 -0
- package/dist/types.d.ts +41 -0
- package/dist/types.d.ts.map +1 -0
- package/dist/types.js +25 -0
- package/dist/vllm.d.ts +13 -0
- package/dist/vllm.d.ts.map +1 -0
- package/dist/vllm.js +46 -0
- package/dist/vllm.yaml +196 -0
- package/package.json +51 -0
- package/src/i18n/en-US.json +5 -0
- package/src/i18n/en.json +5 -0
- package/src/i18n/zh-Hans.json +5 -0
package/README.md
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
# Xpert Plugin: vLLM
|
|
2
|
+
|
|
3
|
+
## Overview
|
|
4
|
+
|
|
5
|
+
`@chenchaolong/plugin-vllm` provides a model adapter for connecting vLLM inference services to the [XpertAI](https://github.com/xpert-ai/xpert) platform. The plugin communicates with vLLM clusters via an OpenAI-compatible API, enabling agents to invoke conversational models, embedding models, vision-enhanced models, and reranking models within a unified XpertAI agentic workflow.
|
|
6
|
+
|
|
7
|
+
## Core Features
|
|
8
|
+
|
|
9
|
+
- Provides the `VLLMPlugin` NestJS module, which automatically registers model providers, lifecycle logging, and configuration validation logic.
|
|
10
|
+
- Wraps vLLM's conversational/inference capabilities as XpertAI's `LargeLanguageModel` via `VLLMLargeLanguageModel`, supporting function calling, streaming output, and agent token statistics.
|
|
11
|
+
- Exposes `VLLMTextEmbeddingModel`, reusing LangChain's `OpenAIEmbeddings` to generate vector representations for knowledge base retrieval.
|
|
12
|
+
- Integrates `VLLMRerankModel`, leveraging the OpenAI-compatible rerank API to improve retrieval result ranking.
|
|
13
|
+
- Supports declaring capabilities such as vision, function calling, and streaming mode in plugin metadata, allowing flexible configuration of different vLLM deployments in the console.
|
|
14
|
+
|
|
15
|
+
## Installation
|
|
16
|
+
|
|
17
|
+
```bash
|
|
18
|
+
npm install @chenchaolong/plugin-vllm
|
|
19
|
+
```
|
|
20
|
+
|
|
21
|
+
> **Peer Dependencies**: The host project must also provide libraries such as `@xpert-ai/plugin-sdk`, `@nestjs/common`, `@metad/contracts`, `@langchain/openai`, `lodash-es`, `chalk`, and `zod`. Please refer to `package.json` for version requirements.
|
|
22
|
+
|
|
23
|
+
## Enabling in XpertAI
|
|
24
|
+
|
|
25
|
+
1. Add the plugin package to your system dependencies and ensure it is resolvable by Node.js.
|
|
26
|
+
2. Before starting the service, declare the plugin in your environment variables:
|
|
27
|
+
```bash
|
|
28
|
+
PLUGINS=@chenchaolong/plugin-vllm
|
|
29
|
+
```
|
|
30
|
+
3. Add a new model provider in the XpertAI admin interface or configuration file, and select `vllm`.
|
|
31
|
+
|
|
32
|
+
## Credentials & Model Configuration
|
|
33
|
+
|
|
34
|
+
The form fields defined in `vllm.yaml` cover common deployment scenarios:
|
|
35
|
+
|
|
36
|
+
| Field | Description |
|
|
37
|
+
| --- | --- |
|
|
38
|
+
| `api_key` | vLLM service access token (leave blank if the service does not require authentication). |
|
|
39
|
+
| `endpoint_url` | Required. The base URL of the vLLM OpenAI-compatible API, e.g., `https://vllm.example.com/v1`. |
|
|
40
|
+
| `endpoint_model_name` | Specify explicitly if the model name on the server differs from the logical model name in XpertAI. |
|
|
41
|
+
| `mode` | Choose between `chat` or `completion` inference modes. |
|
|
42
|
+
| `context_size` / `max_tokens_to_sample` | Control the context window and generation length. |
|
|
43
|
+
| `agent_though_support`, `function_calling_type`, `stream_function_calling`, `vision_support` | Indicate whether the model supports agent thought exposure, function/tool calling, streaming function calling, and multimodal input, to inform UI capability hints. |
|
|
44
|
+
| `stream_mode_delimiter` | Customize the paragraph delimiter for streaming output. |
|
|
45
|
+
|
|
46
|
+
After saving the configuration, the plugin will call the `validateCredentials` method in the background, making a minimal request to the vLLM service to ensure the credentials are valid.
|
|
47
|
+
|
|
48
|
+
## Model Capabilities
|
|
49
|
+
|
|
50
|
+
- **Conversational Models**: Uses `ChatOAICompatReasoningModel` to proxy the vLLM OpenAI API, supporting message history, function calling, and streaming output.
|
|
51
|
+
- **Embedding Models**: Relies on LangChain's `OpenAIEmbeddings` for knowledge base vectorization and retrieval-augmented generation.
|
|
52
|
+
- **Reranking Models**: Wraps `OpenAICompatibleReranker` to semantically rerank recall results.
|
|
53
|
+
- **Vision Models**: If the vLLM inference service supports multimodal (text+image) input, enable `vision_support` in the configuration to declare multimodal capabilities to the frontend.
|
|
54
|
+
|
|
55
|
+
## Development & Debugging
|
|
56
|
+
|
|
57
|
+
From the repository root, enter the `xpertai/` directory and use Nx commands to build and test:
|
|
58
|
+
|
|
59
|
+
```bash
|
|
60
|
+
npx nx build @chenchaolong/plugin-vllm
|
|
61
|
+
npx nx test @chenchaolong/plugin-vllm
|
|
62
|
+
```
|
|
63
|
+
|
|
64
|
+
Build artifacts are output to `dist/` by default. Jest configuration is in `jest.config.ts` for writing and running unit tests.
|
|
65
|
+
|
|
66
|
+
## License
|
|
67
|
+
|
|
68
|
+
This project follows the [AGPL-3.0 License](../../../LICENSE) found at the root of the repository.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
<svg height="1em" style="flex:none;line-height:1" viewBox="0 0 24 24" width="1em" xmlns="http://www.w3.org/2000/svg"><title>vLLM</title><path d="M0 4.973h9.324V23L0 4.973z" fill="#FDB515"></path><path d="M13.986 4.351L22.378 0l-6.216 23H9.324l4.662-18.649z" fill="#30A2FF"></path></svg>
|
package/dist/i18n.d.ts
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"i18n.d.ts","sourceRoot":"","sources":["../src/i18n.ts"],"names":[],"mappings":"AACA,OAAO,EAAwB,QAAQ,EAAE,MAAM,SAAS,CAAC;AAGzD,wBAAgB,SAAS,CAAC,GAAG,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,QAAQ,UAIxD;AAED,wBAAgB,QAAQ,CAAC,SAAS,EAAE,MAAM,GAAG,IAAI,CAIhD"}
|
package/dist/i18n.js
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
import { createI18nInstance, RequestContext } from '@xpert-ai/plugin-sdk';
|
|
2
|
+
let i18nObject = null;
|
|
3
|
+
export function translate(key, options) {
|
|
4
|
+
options = options || {};
|
|
5
|
+
options.lng = options.lng || RequestContext.getLanguageCode();
|
|
6
|
+
return i18nObject?.t(key, options) || key;
|
|
7
|
+
}
|
|
8
|
+
export function initI18n(pluginDir) {
|
|
9
|
+
createI18nInstance(pluginDir).then((i18n) => {
|
|
10
|
+
i18nObject = i18n;
|
|
11
|
+
});
|
|
12
|
+
}
|
package/dist/index.d.ts
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
1
|
+
import type { XpertPlugin } from '@xpert-ai/plugin-sdk';
|
|
2
|
+
import { z } from 'zod';
|
|
3
|
+
declare const ConfigSchema: z.ZodObject<{}, "strip", z.ZodTypeAny, {}, {}>;
|
|
4
|
+
declare const plugin: XpertPlugin<z.infer<typeof ConfigSchema>>;
|
|
5
|
+
export default plugin;
|
|
6
|
+
//# sourceMappingURL=index.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../src/index.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,WAAW,EAAE,MAAM,sBAAsB,CAAC;AAIxD,OAAO,EAAE,CAAC,EAAE,MAAM,KAAK,CAAC;AAaxB,QAAA,MAAM,YAAY,gDAChB,CAAC;AAEH,QAAA,MAAM,MAAM,EAAE,WAAW,CAAC,CAAC,CAAC,KAAK,CAAC,OAAO,YAAY,CAAC,CA4BrD,CAAC;AAEF,eAAe,MAAM,CAAC"}
|
package/dist/index.js
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
import { readFileSync } from 'fs';
|
|
2
|
+
import { fileURLToPath } from 'url';
|
|
3
|
+
import { dirname, join } from 'path';
|
|
4
|
+
import { z } from 'zod';
|
|
5
|
+
import { SvgIcon } from './types.js';
|
|
6
|
+
import { VLLMPlugin } from './vllm.js';
|
|
7
|
+
import { initI18n } from './i18n.js';
|
|
8
|
+
const __filename = fileURLToPath(import.meta.url);
|
|
9
|
+
const __dirname = dirname(__filename);
|
|
10
|
+
const packageJson = JSON.parse(readFileSync(join(__dirname, '../package.json'), 'utf8'));
|
|
11
|
+
const ConfigSchema = z.object({});
|
|
12
|
+
const plugin = {
|
|
13
|
+
meta: {
|
|
14
|
+
name: packageJson.name,
|
|
15
|
+
version: packageJson.version,
|
|
16
|
+
category: 'model',
|
|
17
|
+
icon: {
|
|
18
|
+
type: 'svg',
|
|
19
|
+
value: SvgIcon
|
|
20
|
+
},
|
|
21
|
+
displayName: 'vLLM',
|
|
22
|
+
description: 'Provide connector for vLLM models',
|
|
23
|
+
keywords: ['vLLM', 'model'],
|
|
24
|
+
author: 'XpertAI',
|
|
25
|
+
},
|
|
26
|
+
config: {
|
|
27
|
+
schema: ConfigSchema,
|
|
28
|
+
},
|
|
29
|
+
register(ctx) {
|
|
30
|
+
ctx.logger.log('register VLLM plugin');
|
|
31
|
+
initI18n(join(__dirname, '../src'));
|
|
32
|
+
return { module: VLLMPlugin, global: true };
|
|
33
|
+
},
|
|
34
|
+
async onStart(ctx) {
|
|
35
|
+
ctx.logger.log('VLLM plugin started');
|
|
36
|
+
},
|
|
37
|
+
async onStop(ctx) {
|
|
38
|
+
ctx.logger.log('VLLM plugin stopped');
|
|
39
|
+
},
|
|
40
|
+
};
|
|
41
|
+
export default plugin;
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
import { ICopilotModel } from '@metad/contracts';
|
|
2
|
+
import { ChatOAICompatReasoningModel, LargeLanguageModel, TChatModelOptions } from '@xpert-ai/plugin-sdk';
|
|
3
|
+
import { VLLMProviderStrategy } from '../provider.strategy.js';
|
|
4
|
+
import { VLLMModelCredentials } from '../types.js';
|
|
5
|
+
export declare class VLLMLargeLanguageModel extends LargeLanguageModel {
|
|
6
|
+
#private;
|
|
7
|
+
constructor(modelProvider: VLLMProviderStrategy);
|
|
8
|
+
validateCredentials(model: string, credentials: VLLMModelCredentials): Promise<void>;
|
|
9
|
+
getChatModel(copilotModel: ICopilotModel, options?: TChatModelOptions): ChatOAICompatReasoningModel;
|
|
10
|
+
}
|
|
11
|
+
//# sourceMappingURL=llm.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"llm.d.ts","sourceRoot":"","sources":["../../src/llm/llm.ts"],"names":[],"mappings":"AACA,OAAO,EAAmB,aAAa,EAAE,MAAM,kBAAkB,CAAA;AAEjE,OAAO,EACL,2BAA2B,EAG3B,kBAAkB,EAClB,iBAAiB,EAClB,MAAM,sBAAsB,CAAA;AAE7B,OAAO,EAAE,oBAAoB,EAAE,MAAM,yBAAyB,CAAA;AAC9D,OAAO,EAAsB,oBAAoB,EAAE,MAAM,aAAa,CAAA;AAGtE,qBACa,sBAAuB,SAAQ,kBAAkB;;gBAGhD,aAAa,EAAE,oBAAoB;IAIzC,mBAAmB,CAAC,KAAK,EAAE,MAAM,EAAE,WAAW,EAAE,oBAAoB,GAAG,OAAO,CAAC,IAAI,CAAC;IAkBjF,YAAY,CAAC,YAAY,EAAE,aAAa,EAAE,OAAO,CAAC,EAAE,iBAAiB;CA4B/E"}
|
package/dist/llm/llm.js
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
var _a;
|
|
2
|
+
var VLLMLargeLanguageModel_1;
|
|
3
|
+
import { __decorate, __metadata } from "tslib";
|
|
4
|
+
import { ChatOpenAI } from '@langchain/openai';
|
|
5
|
+
import { AiModelTypeEnum } from '@metad/contracts';
|
|
6
|
+
import { Injectable, Logger } from '@nestjs/common';
|
|
7
|
+
import { ChatOAICompatReasoningModel, CredentialsValidateFailedError, getErrorMessage, LargeLanguageModel } from '@xpert-ai/plugin-sdk';
|
|
8
|
+
import { isNil, omitBy } from 'lodash-es';
|
|
9
|
+
import { VLLMProviderStrategy } from '../provider.strategy.js';
|
|
10
|
+
import { toCredentialKwargs } from '../types.js';
|
|
11
|
+
import { translate } from '../i18n.js';
|
|
12
|
+
let VLLMLargeLanguageModel = VLLMLargeLanguageModel_1 = class VLLMLargeLanguageModel extends LargeLanguageModel {
|
|
13
|
+
#logger = new Logger(VLLMLargeLanguageModel_1.name);
|
|
14
|
+
constructor(modelProvider) {
|
|
15
|
+
super(modelProvider, AiModelTypeEnum.LLM);
|
|
16
|
+
}
|
|
17
|
+
async validateCredentials(model, credentials) {
|
|
18
|
+
try {
|
|
19
|
+
const chatModel = new ChatOpenAI({
|
|
20
|
+
...toCredentialKwargs(credentials, model),
|
|
21
|
+
temperature: 0,
|
|
22
|
+
maxTokens: 5
|
|
23
|
+
});
|
|
24
|
+
await chatModel.invoke([
|
|
25
|
+
{
|
|
26
|
+
role: 'human',
|
|
27
|
+
content: `Hi`
|
|
28
|
+
}
|
|
29
|
+
]);
|
|
30
|
+
}
|
|
31
|
+
catch (err) {
|
|
32
|
+
throw new CredentialsValidateFailedError(getErrorMessage(err));
|
|
33
|
+
}
|
|
34
|
+
}
|
|
35
|
+
getChatModel(copilotModel, options) {
|
|
36
|
+
const { handleLLMTokens, modelProperties } = options ?? {};
|
|
37
|
+
const { copilot } = copilotModel;
|
|
38
|
+
if (!modelProperties) {
|
|
39
|
+
throw new Error(translate('Error.ModelCredentialsMissing', { model: copilotModel.model }));
|
|
40
|
+
}
|
|
41
|
+
const params = toCredentialKwargs(modelProperties, copilotModel.model);
|
|
42
|
+
const fields = omitBy({
|
|
43
|
+
...params,
|
|
44
|
+
streaming: copilotModel.options?.['streaming'] ?? true,
|
|
45
|
+
// include token usage in the stream. this will include an additional chunk at the end of the stream with the token usage.
|
|
46
|
+
streamUsage: true
|
|
47
|
+
}, isNil);
|
|
48
|
+
return new ChatOAICompatReasoningModel({
|
|
49
|
+
...fields,
|
|
50
|
+
verbose: options?.verbose,
|
|
51
|
+
callbacks: [
|
|
52
|
+
...this.createHandleUsageCallbacks(copilot, params.model, modelProperties, handleLLMTokens),
|
|
53
|
+
this.createHandleLLMErrorCallbacks(fields, this.#logger)
|
|
54
|
+
]
|
|
55
|
+
});
|
|
56
|
+
}
|
|
57
|
+
};
|
|
58
|
+
VLLMLargeLanguageModel = VLLMLargeLanguageModel_1 = __decorate([
|
|
59
|
+
Injectable(),
|
|
60
|
+
__metadata("design:paramtypes", [VLLMProviderStrategy])
|
|
61
|
+
], VLLMLargeLanguageModel);
|
|
62
|
+
export { VLLMLargeLanguageModel };
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
import { Logger } from '@nestjs/common';
|
|
2
|
+
import { ModelProvider } from '@xpert-ai/plugin-sdk';
|
|
3
|
+
import { VLLMModelCredentials } from './types.js';
|
|
4
|
+
export declare class VLLMProviderStrategy extends ModelProvider {
|
|
5
|
+
logger: Logger;
|
|
6
|
+
validateProviderCredentials(credentials: VLLMModelCredentials): Promise<void>;
|
|
7
|
+
getBaseUrl(credentials: VLLMModelCredentials): string;
|
|
8
|
+
getAuthorization(credentials: VLLMModelCredentials): string;
|
|
9
|
+
}
|
|
10
|
+
//# sourceMappingURL=provider.strategy.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"provider.strategy.d.ts","sourceRoot":"","sources":["../src/provider.strategy.ts"],"names":[],"mappings":"AAAA,OAAO,EAAc,MAAM,EAAE,MAAM,gBAAgB,CAAA;AACnD,OAAO,EAA2B,aAAa,EAAE,MAAM,sBAAsB,CAAA;AAC7E,OAAO,EAAQ,oBAAoB,EAAE,MAAM,YAAY,CAAA;AAEvD,qBAEa,oBAAqB,SAAQ,aAAa;IAC5C,MAAM,SAAwC;IAExC,2BAA2B,CAAC,WAAW,EAAE,oBAAoB,GAAG,OAAO,CAAC,IAAI,CAAC;IAI5F,UAAU,CAAC,WAAW,EAAE,oBAAoB,GAAG,MAAM;IAIrD,gBAAgB,CAAC,WAAW,EAAE,oBAAoB,GAAG,MAAM;CAG5D"}
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
var VLLMProviderStrategy_1;
|
|
2
|
+
import { __decorate } from "tslib";
|
|
3
|
+
import { Injectable, Logger } from '@nestjs/common';
|
|
4
|
+
import { AIModelProviderStrategy, ModelProvider } from '@xpert-ai/plugin-sdk';
|
|
5
|
+
import { VLLM } from './types.js';
|
|
6
|
+
let VLLMProviderStrategy = VLLMProviderStrategy_1 = class VLLMProviderStrategy extends ModelProvider {
|
|
7
|
+
constructor() {
|
|
8
|
+
super(...arguments);
|
|
9
|
+
this.logger = new Logger(VLLMProviderStrategy_1.name);
|
|
10
|
+
}
|
|
11
|
+
async validateProviderCredentials(credentials) {
|
|
12
|
+
// No validation needed for vLLM
|
|
13
|
+
}
|
|
14
|
+
getBaseUrl(credentials) {
|
|
15
|
+
return credentials.endpoint_url;
|
|
16
|
+
}
|
|
17
|
+
getAuthorization(credentials) {
|
|
18
|
+
return `Bearer ${credentials.api_key}`;
|
|
19
|
+
}
|
|
20
|
+
};
|
|
21
|
+
VLLMProviderStrategy = VLLMProviderStrategy_1 = __decorate([
|
|
22
|
+
Injectable(),
|
|
23
|
+
AIModelProviderStrategy(VLLM)
|
|
24
|
+
], VLLMProviderStrategy);
|
|
25
|
+
export { VLLMProviderStrategy };
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
import { ICopilotModel } from '@metad/contracts';
|
|
2
|
+
import { IRerank, RerankModel, TChatModelOptions } from '@xpert-ai/plugin-sdk';
|
|
3
|
+
import { VLLMProviderStrategy } from '../provider.strategy.js';
|
|
4
|
+
export declare class VLLMRerankModel extends RerankModel {
|
|
5
|
+
constructor(modelProvider: VLLMProviderStrategy);
|
|
6
|
+
validateCredentials(model: string, credentials: Record<string, any>): Promise<void>;
|
|
7
|
+
getReranker(copilotModel: ICopilotModel, options?: TChatModelOptions): Promise<IRerank>;
|
|
8
|
+
}
|
|
9
|
+
//# sourceMappingURL=rerank.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"rerank.d.ts","sourceRoot":"","sources":["../../src/rerank/rerank.ts"],"names":[],"mappings":"AAAA,OAAO,EAAmB,aAAa,EAAE,MAAM,kBAAkB,CAAA;AAEjE,OAAO,EAEL,OAAO,EAEP,WAAW,EACX,iBAAiB,EAElB,MAAM,sBAAsB,CAAA;AAC7B,OAAO,EAAE,oBAAoB,EAAE,MAAM,yBAAyB,CAAA;AAG9D,qBACa,eAAgB,SAAQ,WAAW;gBAClC,aAAa,EAAE,oBAAoB;IAIhC,mBAAmB,CAAC,KAAK,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,CAAC;IAcnE,WAAW,CAAC,YAAY,EAAE,aAAa,EAAE,OAAO,CAAC,EAAE,iBAAiB,GAAG,OAAO,CAAC,OAAO,CAAC;CAcvG"}
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
import { __decorate, __metadata } from "tslib";
|
|
2
|
+
import { AiModelTypeEnum } from '@metad/contracts';
|
|
3
|
+
import { Injectable } from '@nestjs/common';
|
|
4
|
+
import { getErrorMessage, OpenAICompatibleReranker, RerankModel } from '@xpert-ai/plugin-sdk';
|
|
5
|
+
import { VLLMProviderStrategy } from '../provider.strategy.js';
|
|
6
|
+
import { translate } from '../i18n.js';
|
|
7
|
+
let VLLMRerankModel = class VLLMRerankModel extends RerankModel {
|
|
8
|
+
constructor(modelProvider) {
|
|
9
|
+
super(modelProvider, AiModelTypeEnum.RERANK);
|
|
10
|
+
}
|
|
11
|
+
async validateCredentials(model, credentials) {
|
|
12
|
+
const _credentials = credentials ?? {};
|
|
13
|
+
const reranker = new OpenAICompatibleReranker({
|
|
14
|
+
endpointUrl: _credentials.endpoint_url,
|
|
15
|
+
apiKey: _credentials.api_key,
|
|
16
|
+
endpointModelName: _credentials.endpoint_model_name
|
|
17
|
+
});
|
|
18
|
+
try {
|
|
19
|
+
await reranker.rerank([], 'test', { model });
|
|
20
|
+
}
|
|
21
|
+
catch (error) {
|
|
22
|
+
throw new Error(`Reranker credentials validation failed: ${getErrorMessage(error)}`);
|
|
23
|
+
}
|
|
24
|
+
}
|
|
25
|
+
async getReranker(copilotModel, options) {
|
|
26
|
+
const credentials = options?.modelProperties;
|
|
27
|
+
if (!credentials) {
|
|
28
|
+
throw new Error(translate('Error.ModelCredentialsMissing', { model: copilotModel.model }));
|
|
29
|
+
}
|
|
30
|
+
return new OpenAICompatibleReranker({
|
|
31
|
+
endpointUrl: credentials.endpoint_url,
|
|
32
|
+
apiKey: credentials.api_key,
|
|
33
|
+
endpointModelName: credentials.endpoint_model_name || copilotModel.model
|
|
34
|
+
});
|
|
35
|
+
}
|
|
36
|
+
};
|
|
37
|
+
VLLMRerankModel = __decorate([
|
|
38
|
+
Injectable(),
|
|
39
|
+
__metadata("design:paramtypes", [VLLMProviderStrategy])
|
|
40
|
+
], VLLMRerankModel);
|
|
41
|
+
export { VLLMRerankModel };
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
import { OpenAIEmbeddings } from '@langchain/openai';
|
|
2
|
+
import { ICopilotModel } from '@metad/contracts';
|
|
3
|
+
import { VLLMModelCredentials } from '../types.js';
|
|
4
|
+
import { TChatModelOptions, TextEmbeddingModelManager } from '@xpert-ai/plugin-sdk';
|
|
5
|
+
import { VLLMProviderStrategy } from '../provider.strategy.js';
|
|
6
|
+
export declare class VLLMTextEmbeddingModel extends TextEmbeddingModelManager {
|
|
7
|
+
constructor(modelProvider: VLLMProviderStrategy);
|
|
8
|
+
getEmbeddingInstance(copilotModel: ICopilotModel, options?: TChatModelOptions): OpenAIEmbeddings;
|
|
9
|
+
validateCredentials(model: string, credentials: VLLMModelCredentials): Promise<void>;
|
|
10
|
+
}
|
|
11
|
+
//# sourceMappingURL=text-embedding.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"text-embedding.d.ts","sourceRoot":"","sources":["../../src/text-embedding/text-embedding.ts"],"names":[],"mappings":"AAAA,OAAO,EAAE,gBAAgB,EAAE,MAAM,mBAAmB,CAAA;AACpD,OAAO,EAAmB,aAAa,EAAE,MAAM,kBAAkB,CAAA;AAEjE,OAAO,EAAsB,oBAAoB,EAAE,MAAM,aAAa,CAAA;AACtE,OAAO,EAAmD,iBAAiB,EAAE,yBAAyB,EAAE,MAAM,sBAAsB,CAAA;AACpI,OAAO,EAAE,oBAAoB,EAAE,MAAM,yBAAyB,CAAA;AAG9D,qBACa,sBAAuB,SAAQ,yBAAyB;gBACxD,aAAa,EAAE,oBAAoB;IAI/C,oBAAoB,CAAC,YAAY,EAAE,aAAa,EAAE,OAAO,CAAC,EAAE,iBAAiB,GAAG,gBAAgB;IAqB1F,mBAAmB,CAAC,KAAK,EAAE,MAAM,EAAE,WAAW,EAAE,oBAAoB,GAAG,OAAO,CAAC,IAAI,CAAC;CAe1F"}
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
import { __decorate, __metadata } from "tslib";
|
|
2
|
+
import { OpenAIEmbeddings } from '@langchain/openai';
|
|
3
|
+
import { AiModelTypeEnum } from '@metad/contracts';
|
|
4
|
+
import { Injectable } from '@nestjs/common';
|
|
5
|
+
import { toCredentialKwargs } from '../types.js';
|
|
6
|
+
import { CredentialsValidateFailedError, getErrorMessage, TextEmbeddingModelManager } from '@xpert-ai/plugin-sdk';
|
|
7
|
+
import { VLLMProviderStrategy } from '../provider.strategy.js';
|
|
8
|
+
import { translate } from '../i18n.js';
|
|
9
|
+
let VLLMTextEmbeddingModel = class VLLMTextEmbeddingModel extends TextEmbeddingModelManager {
|
|
10
|
+
constructor(modelProvider) {
|
|
11
|
+
super(modelProvider, AiModelTypeEnum.TEXT_EMBEDDING);
|
|
12
|
+
}
|
|
13
|
+
getEmbeddingInstance(copilotModel, options) {
|
|
14
|
+
const { copilot } = copilotModel;
|
|
15
|
+
const { modelProvider } = copilot;
|
|
16
|
+
if (!options?.modelProperties) {
|
|
17
|
+
throw new Error(translate('Error.ModelCredentialsMissing', { model: copilotModel.model }));
|
|
18
|
+
}
|
|
19
|
+
const params = toCredentialKwargs({
|
|
20
|
+
...(modelProvider.credentials ?? {}),
|
|
21
|
+
...options.modelProperties,
|
|
22
|
+
}, copilotModel.model || copilotModel.copilot.copilotModel?.model);
|
|
23
|
+
return new OpenAIEmbeddings({
|
|
24
|
+
...params,
|
|
25
|
+
// batchSize: 512, // Default value if omitted is 512. Max is 2048
|
|
26
|
+
});
|
|
27
|
+
}
|
|
28
|
+
async validateCredentials(model, credentials) {
|
|
29
|
+
try {
|
|
30
|
+
// transform credentials to kwargs for model instance
|
|
31
|
+
const params = toCredentialKwargs(credentials, model);
|
|
32
|
+
const embeddings = new OpenAIEmbeddings({
|
|
33
|
+
...params,
|
|
34
|
+
// batchSize: 512, // Default value if omitted is 512. Max is 2048
|
|
35
|
+
});
|
|
36
|
+
// call embedding model
|
|
37
|
+
await embeddings.embedQuery('ping');
|
|
38
|
+
}
|
|
39
|
+
catch (ex) {
|
|
40
|
+
throw new CredentialsValidateFailedError(getErrorMessage(ex));
|
|
41
|
+
}
|
|
42
|
+
}
|
|
43
|
+
};
|
|
44
|
+
VLLMTextEmbeddingModel = __decorate([
|
|
45
|
+
Injectable(),
|
|
46
|
+
__metadata("design:paramtypes", [VLLMProviderStrategy])
|
|
47
|
+
], VLLMTextEmbeddingModel);
|
|
48
|
+
export { VLLMTextEmbeddingModel };
|
package/dist/types.d.ts
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
import { ClientOptions } from "@langchain/openai";
|
|
2
|
+
export declare const VLLM = "vllm";
|
|
3
|
+
export declare const SvgIcon = "<svg height=\"1em\" style=\"flex:none;line-height:1\" viewBox=\"0 0 24 24\" width=\"1em\" xmlns=\"http://www.w3.org/2000/svg\"><title>vLLM</title><path d=\"M0 4.973h9.324V23L0 4.973z\" fill=\"#FDB515\"></path><path d=\"M13.986 4.351L22.378 0l-6.216 23H9.324l4.662-18.649z\" fill=\"#30A2FF\"></path></svg>";
|
|
4
|
+
export type VLLMModelCredentials = {
|
|
5
|
+
api_key: string;
|
|
6
|
+
endpoint_url?: string;
|
|
7
|
+
endpoint_model_name?: string;
|
|
8
|
+
mode?: 'completion' | 'chat';
|
|
9
|
+
context_size?: number;
|
|
10
|
+
max_tokens_to_sample?: number;
|
|
11
|
+
agent_though_support?: 'supported' | 'unsupported';
|
|
12
|
+
function_calling_type?: 'function_call' | 'tool_call' | 'no_call';
|
|
13
|
+
stream_function_calling?: 'supported' | 'unsupported';
|
|
14
|
+
vision_support?: 'supported' | 'unsupported';
|
|
15
|
+
stream_mode_delimiter?: string;
|
|
16
|
+
thinking?: boolean;
|
|
17
|
+
};
|
|
18
|
+
export declare function toCredentialKwargs(credentials: VLLMModelCredentials, model: string): {
|
|
19
|
+
modelKwargs: {};
|
|
20
|
+
configuration: ClientOptions;
|
|
21
|
+
temperature: number;
|
|
22
|
+
maxTokens?: number;
|
|
23
|
+
maxCompletionTokens?: number;
|
|
24
|
+
topP: number;
|
|
25
|
+
frequencyPenalty: number;
|
|
26
|
+
presencePenalty: number;
|
|
27
|
+
n: number;
|
|
28
|
+
logitBias?: Record<string, number>;
|
|
29
|
+
user?: string;
|
|
30
|
+
streaming: boolean;
|
|
31
|
+
streamUsage?: boolean;
|
|
32
|
+
modelName: string;
|
|
33
|
+
model: import("@langchain/openai").OpenAIChatModelId;
|
|
34
|
+
stop?: string[];
|
|
35
|
+
stopSequences?: string[];
|
|
36
|
+
timeout?: number;
|
|
37
|
+
openAIApiKey?: string;
|
|
38
|
+
apiKey?: string;
|
|
39
|
+
verbosity?: import("@langchain/openai").OpenAIVerbosityParam;
|
|
40
|
+
};
|
|
41
|
+
//# sourceMappingURL=types.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"types.d.ts","sourceRoot":"","sources":["../src/types.ts"],"names":[],"mappings":"AAAA,OAAO,EAAE,aAAa,EAAmB,MAAM,mBAAmB,CAAC;AAEnE,eAAO,MAAM,IAAI,SAAS,CAAC;AAC3B,eAAO,MAAM,OAAO,qTAAmS,CAAA;AAEvT,MAAM,MAAM,oBAAoB,GAAG;IAC/B,OAAO,EAAE,MAAM,CAAC;IAChB,YAAY,CAAC,EAAE,MAAM,CAAC;IACzB,mBAAmB,CAAC,EAAE,MAAM,CAAC;IAC7B,IAAI,CAAC,EAAE,YAAY,GAAG,MAAM,CAAC;IAC7B,YAAY,CAAC,EAAE,MAAM,CAAC;IACtB,oBAAoB,CAAC,EAAE,MAAM,CAAC;IAC9B,oBAAoB,CAAC,EAAE,WAAW,GAAG,aAAa,CAAC;IACnD,qBAAqB,CAAC,EAAE,eAAe,GAAG,WAAW,GAAG,SAAS,CAAC;IAClE,uBAAuB,CAAC,EAAE,WAAW,GAAG,aAAa,CAAC;IACtD,cAAc,CAAC,EAAE,WAAW,GAAG,aAAa,CAAC;IAC7C,qBAAqB,CAAC,EAAE,MAAM,CAAC;IAC/B,QAAQ,CAAC,EAAE,OAAO,CAAC;CACnB,CAAA;AAGD,wBAAgB,kBAAkB,CAAC,WAAW,EAAE,oBAAoB,EAAE,KAAK,EAAE,MAAM;;;;;;;;;;;;;;;;;;;;;;EAyBlF"}
|
package/dist/types.js
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
export const VLLM = 'vllm';
|
|
2
|
+
export const SvgIcon = `<svg height="1em" style="flex:none;line-height:1" viewBox="0 0 24 24" width="1em" xmlns="http://www.w3.org/2000/svg"><title>vLLM</title><path d="M0 4.973h9.324V23L0 4.973z" fill="#FDB515"></path><path d="M13.986 4.351L22.378 0l-6.216 23H9.324l4.662-18.649z" fill="#30A2FF"></path></svg>`;
|
|
3
|
+
export function toCredentialKwargs(credentials, model) {
|
|
4
|
+
const credentialsKwargs = {
|
|
5
|
+
apiKey: credentials.api_key || 'no-key-required',
|
|
6
|
+
model: credentials.endpoint_model_name || model,
|
|
7
|
+
};
|
|
8
|
+
const configuration = {};
|
|
9
|
+
if (credentials.endpoint_url) {
|
|
10
|
+
const openaiApiBase = credentials.endpoint_url.replace(/\/$/, '');
|
|
11
|
+
configuration.baseURL = openaiApiBase;
|
|
12
|
+
}
|
|
13
|
+
// Handle thinking mode parameter
|
|
14
|
+
// Pass thinking parameter through modelKwargs for ChatOAICompatReasoningModel
|
|
15
|
+
const modelKwargs = {};
|
|
16
|
+
if (credentials.thinking != null) {
|
|
17
|
+
modelKwargs['chat_template_kwargs'] ??= {};
|
|
18
|
+
modelKwargs['chat_template_kwargs']['enable_thinking'] = !!credentials.thinking;
|
|
19
|
+
}
|
|
20
|
+
return {
|
|
21
|
+
...credentialsKwargs,
|
|
22
|
+
modelKwargs,
|
|
23
|
+
configuration
|
|
24
|
+
};
|
|
25
|
+
}
|
package/dist/vllm.d.ts
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
import { IOnPluginBootstrap, IOnPluginDestroy } from '@xpert-ai/plugin-sdk';
|
|
2
|
+
export declare class VLLMPlugin implements IOnPluginBootstrap, IOnPluginDestroy {
|
|
3
|
+
private logEnabled;
|
|
4
|
+
/**
|
|
5
|
+
* Called when the plugin is being initialized.
|
|
6
|
+
*/
|
|
7
|
+
onPluginBootstrap(): void | Promise<void>;
|
|
8
|
+
/**
|
|
9
|
+
* Called when the plugin is being destroyed.
|
|
10
|
+
*/
|
|
11
|
+
onPluginDestroy(): void | Promise<void>;
|
|
12
|
+
}
|
|
13
|
+
//# sourceMappingURL=vllm.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"vllm.d.ts","sourceRoot":"","sources":["../src/vllm.ts"],"names":[],"mappings":"AAAA,OAAO,EAAqB,kBAAkB,EAAE,gBAAgB,EAAE,MAAM,sBAAsB,CAAC;AAQ/F,qBAaa,UAAW,YAAW,kBAAkB,EAAE,gBAAgB;IAEtE,OAAO,CAAC,UAAU,CAAQ;IAE1B;;OAEG;IACH,iBAAiB,IAAI,IAAI,GAAG,OAAO,CAAC,IAAI,CAAC;IAMzC;;OAEG;IACH,eAAe,IAAI,IAAI,GAAG,OAAO,CAAC,IAAI,CAAC;CAKvC"}
|
package/dist/vllm.js
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
var VLLMPlugin_1;
|
|
2
|
+
import { __decorate } from "tslib";
|
|
3
|
+
import { XpertServerPlugin } from '@xpert-ai/plugin-sdk';
|
|
4
|
+
import { ConfigModule } from '@nestjs/config';
|
|
5
|
+
import chalk from 'chalk';
|
|
6
|
+
import { VLLMProviderStrategy } from './provider.strategy.js';
|
|
7
|
+
import { VLLMLargeLanguageModel } from './llm/llm.js';
|
|
8
|
+
import { VLLMRerankModel } from './rerank/rerank.js';
|
|
9
|
+
import { VLLMTextEmbeddingModel } from './text-embedding/text-embedding.js';
|
|
10
|
+
let VLLMPlugin = VLLMPlugin_1 = class VLLMPlugin {
|
|
11
|
+
constructor() {
|
|
12
|
+
// We disable by default additional logging for each event to avoid cluttering the logs
|
|
13
|
+
this.logEnabled = true;
|
|
14
|
+
}
|
|
15
|
+
/**
|
|
16
|
+
* Called when the plugin is being initialized.
|
|
17
|
+
*/
|
|
18
|
+
onPluginBootstrap() {
|
|
19
|
+
if (this.logEnabled) {
|
|
20
|
+
console.log(chalk.green(`${VLLMPlugin_1.name} is being bootstrapped...`));
|
|
21
|
+
}
|
|
22
|
+
}
|
|
23
|
+
/**
|
|
24
|
+
* Called when the plugin is being destroyed.
|
|
25
|
+
*/
|
|
26
|
+
onPluginDestroy() {
|
|
27
|
+
if (this.logEnabled) {
|
|
28
|
+
console.log(chalk.green(`${VLLMPlugin_1.name} is being destroyed...`));
|
|
29
|
+
}
|
|
30
|
+
}
|
|
31
|
+
};
|
|
32
|
+
VLLMPlugin = VLLMPlugin_1 = __decorate([
|
|
33
|
+
XpertServerPlugin({
|
|
34
|
+
/**
|
|
35
|
+
* An array of modules that will be imported and registered with the plugin.
|
|
36
|
+
*/
|
|
37
|
+
imports: [ConfigModule],
|
|
38
|
+
providers: [
|
|
39
|
+
VLLMProviderStrategy,
|
|
40
|
+
VLLMLargeLanguageModel,
|
|
41
|
+
VLLMRerankModel,
|
|
42
|
+
VLLMTextEmbeddingModel
|
|
43
|
+
]
|
|
44
|
+
})
|
|
45
|
+
], VLLMPlugin);
|
|
46
|
+
export { VLLMPlugin };
|
package/dist/vllm.yaml
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
1
|
+
provider: vllm
|
|
2
|
+
label:
|
|
3
|
+
en_US: Vllm
|
|
4
|
+
description:
|
|
5
|
+
en_US: Models provided by vllm with guided inference supported.
|
|
6
|
+
zh_Hans: Vllm openai guided 支持
|
|
7
|
+
icon_small:
|
|
8
|
+
en_US: vllm-color.svg
|
|
9
|
+
background: "#E5E7EB"
|
|
10
|
+
supported_model_types:
|
|
11
|
+
- llm
|
|
12
|
+
- text-embedding
|
|
13
|
+
- rerank
|
|
14
|
+
configurate_methods:
|
|
15
|
+
- customizable-model
|
|
16
|
+
model_credential_schema:
|
|
17
|
+
model:
|
|
18
|
+
label:
|
|
19
|
+
en_US: Model Name
|
|
20
|
+
zh_Hans: 模型名称
|
|
21
|
+
placeholder:
|
|
22
|
+
en_US: Enter your model name
|
|
23
|
+
zh_Hans: 输入模型名称
|
|
24
|
+
credential_form_schemas:
|
|
25
|
+
- variable: api_key
|
|
26
|
+
label:
|
|
27
|
+
en_US: API Key
|
|
28
|
+
type: secret-input
|
|
29
|
+
required: false
|
|
30
|
+
placeholder:
|
|
31
|
+
zh_Hans: 在此输入您的 API Key
|
|
32
|
+
en_US: Enter your API Key
|
|
33
|
+
- variable: endpoint_url
|
|
34
|
+
label:
|
|
35
|
+
zh_Hans: API endpoint URL
|
|
36
|
+
en_US: API endpoint URL
|
|
37
|
+
type: text-input
|
|
38
|
+
required: true
|
|
39
|
+
placeholder:
|
|
40
|
+
zh_Hans: Base URL, e.g. https://api.openai.com/v1
|
|
41
|
+
en_US: Base URL, e.g. https://api.openai.com/v1
|
|
42
|
+
- variable: endpoint_model_name
|
|
43
|
+
label:
|
|
44
|
+
zh_Hans: API endpoint中的模型名称
|
|
45
|
+
en_US: model name for API endpoint
|
|
46
|
+
type: text-input
|
|
47
|
+
required: false
|
|
48
|
+
placeholder:
|
|
49
|
+
zh_Hans: endpoint model name, e.g. chatgpt4.0
|
|
50
|
+
en_US: endpoint model name, e.g. chatgpt4.0
|
|
51
|
+
- variable: mode
|
|
52
|
+
show_on:
|
|
53
|
+
- variable: __model_type
|
|
54
|
+
value: llm
|
|
55
|
+
label:
|
|
56
|
+
en_US: Completion mode
|
|
57
|
+
type: select
|
|
58
|
+
required: false
|
|
59
|
+
default: chat
|
|
60
|
+
placeholder:
|
|
61
|
+
zh_Hans: 选择对话类型
|
|
62
|
+
en_US: Select completion mode
|
|
63
|
+
options:
|
|
64
|
+
- value: completion
|
|
65
|
+
label:
|
|
66
|
+
en_US: Completion
|
|
67
|
+
zh_Hans: 补全
|
|
68
|
+
- value: chat
|
|
69
|
+
label:
|
|
70
|
+
en_US: Chat
|
|
71
|
+
zh_Hans: 对话
|
|
72
|
+
- variable: context_size
|
|
73
|
+
label:
|
|
74
|
+
zh_Hans: 模型上下文长度
|
|
75
|
+
en_US: Model context size
|
|
76
|
+
required: true
|
|
77
|
+
show_on:
|
|
78
|
+
- variable: __model_type
|
|
79
|
+
value: llm
|
|
80
|
+
type: text-input
|
|
81
|
+
default: '4096'
|
|
82
|
+
placeholder:
|
|
83
|
+
zh_Hans: 在此输入您的模型上下文长度
|
|
84
|
+
en_US: Enter your Model context size
|
|
85
|
+
- variable: max_tokens_to_sample
|
|
86
|
+
label:
|
|
87
|
+
zh_Hans: 最大 token 上限
|
|
88
|
+
en_US: Upper bound for max tokens
|
|
89
|
+
show_on:
|
|
90
|
+
- variable: __model_type
|
|
91
|
+
value: llm
|
|
92
|
+
default: '4096'
|
|
93
|
+
type: text-input
|
|
94
|
+
- variable: agent_though_support
|
|
95
|
+
show_on:
|
|
96
|
+
- variable: __model_type
|
|
97
|
+
value: llm
|
|
98
|
+
label:
|
|
99
|
+
en_US: Agent Thought
|
|
100
|
+
type: select
|
|
101
|
+
required: false
|
|
102
|
+
default: not_supported
|
|
103
|
+
options:
|
|
104
|
+
- value: supported
|
|
105
|
+
label:
|
|
106
|
+
en_US: Support
|
|
107
|
+
zh_Hans: 支持
|
|
108
|
+
- value: not_supported
|
|
109
|
+
label:
|
|
110
|
+
en_US: Not Support
|
|
111
|
+
zh_Hans: 不支持
|
|
112
|
+
- variable: function_calling_type
|
|
113
|
+
show_on:
|
|
114
|
+
- variable: __model_type
|
|
115
|
+
value: llm
|
|
116
|
+
label:
|
|
117
|
+
en_US: Function calling
|
|
118
|
+
type: select
|
|
119
|
+
required: false
|
|
120
|
+
default: no_call
|
|
121
|
+
options:
|
|
122
|
+
- value: function_call
|
|
123
|
+
label:
|
|
124
|
+
en_US: Function Call
|
|
125
|
+
zh_Hans: Function Call
|
|
126
|
+
- value: tool_call
|
|
127
|
+
label:
|
|
128
|
+
en_US: Tool Call
|
|
129
|
+
zh_Hans: Tool Call
|
|
130
|
+
- value: no_call
|
|
131
|
+
label:
|
|
132
|
+
en_US: Not Support
|
|
133
|
+
zh_Hans: 不支持
|
|
134
|
+
- variable: stream_function_calling
|
|
135
|
+
show_on:
|
|
136
|
+
- variable: __model_type
|
|
137
|
+
value: llm
|
|
138
|
+
label:
|
|
139
|
+
en_US: Stream function calling
|
|
140
|
+
type: select
|
|
141
|
+
required: false
|
|
142
|
+
default: not_supported
|
|
143
|
+
options:
|
|
144
|
+
- value: supported
|
|
145
|
+
label:
|
|
146
|
+
en_US: Support
|
|
147
|
+
zh_Hans: 支持
|
|
148
|
+
- value: not_supported
|
|
149
|
+
label:
|
|
150
|
+
en_US: Not Support
|
|
151
|
+
zh_Hans: 不支持
|
|
152
|
+
- variable: vision_support
|
|
153
|
+
show_on:
|
|
154
|
+
- variable: __model_type
|
|
155
|
+
value: llm
|
|
156
|
+
label:
|
|
157
|
+
zh_Hans: Vision 支持
|
|
158
|
+
en_US: Vision Support
|
|
159
|
+
type: select
|
|
160
|
+
required: false
|
|
161
|
+
default: no_support
|
|
162
|
+
options:
|
|
163
|
+
- value: support
|
|
164
|
+
label:
|
|
165
|
+
en_US: Support
|
|
166
|
+
zh_Hans: 支持
|
|
167
|
+
- value: no_support
|
|
168
|
+
label:
|
|
169
|
+
en_US: Not Support
|
|
170
|
+
zh_Hans: 不支持
|
|
171
|
+
- variable: stream_mode_delimiter
|
|
172
|
+
label:
|
|
173
|
+
zh_Hans: 流模式返回结果的分隔符
|
|
174
|
+
en_US: Delimiter for streaming results
|
|
175
|
+
show_on:
|
|
176
|
+
- variable: __model_type
|
|
177
|
+
value: llm
|
|
178
|
+
default: '\n\n'
|
|
179
|
+
type: text-input
|
|
180
|
+
- variable: thinking
|
|
181
|
+
label:
|
|
182
|
+
zh_Hans: 思考模式
|
|
183
|
+
en_US: Thinking Mode
|
|
184
|
+
show_on:
|
|
185
|
+
- variable: __model_type
|
|
186
|
+
value: llm
|
|
187
|
+
type: boolean
|
|
188
|
+
default: false
|
|
189
|
+
help:
|
|
190
|
+
zh_Hans: 是否启用思考模式
|
|
191
|
+
en_US: Enable thinking mode
|
|
192
|
+
extra:
|
|
193
|
+
python:
|
|
194
|
+
provider_source: provider/vllm.py
|
|
195
|
+
model_sources:
|
|
196
|
+
- "models/llm/llm.py"
|
package/package.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
{
|
|
2
|
+
"name": "@chenchaolong/plugin-vllm",
|
|
3
|
+
"version": "0.0.4",
|
|
4
|
+
"author": {
|
|
5
|
+
"name": "XpertAI",
|
|
6
|
+
"url": "https://xpertai.cn"
|
|
7
|
+
},
|
|
8
|
+
"license": "AGPL-3.0",
|
|
9
|
+
"repository": {
|
|
10
|
+
"type": "git",
|
|
11
|
+
"url": "https://github.com/xpert-ai/xpert-plugins.git"
|
|
12
|
+
},
|
|
13
|
+
"bugs": {
|
|
14
|
+
"url": "https://github.com/xpert-ai/xpert-plugins/issues"
|
|
15
|
+
},
|
|
16
|
+
"type": "module",
|
|
17
|
+
"main": "./dist/index.js",
|
|
18
|
+
"module": "./dist/index.js",
|
|
19
|
+
"types": "./dist/index.d.ts",
|
|
20
|
+
"exports": {
|
|
21
|
+
"./package.json": "./package.json",
|
|
22
|
+
".": {
|
|
23
|
+
"@xpert-plugins-starter/source": "./src/index.ts",
|
|
24
|
+
"types": "./dist/index.d.ts",
|
|
25
|
+
"import": "./dist/index.js",
|
|
26
|
+
"default": "./dist/index.js"
|
|
27
|
+
}
|
|
28
|
+
},
|
|
29
|
+
"files": [
|
|
30
|
+
"dist",
|
|
31
|
+
"src/i18n",
|
|
32
|
+
"!**/*.tsbuildinfo"
|
|
33
|
+
],
|
|
34
|
+
"scripts": {
|
|
35
|
+
"prepack": "node ./scripts/copy-assets.mjs"
|
|
36
|
+
},
|
|
37
|
+
"dependencies": {
|
|
38
|
+
"tslib": "^2.3.0"
|
|
39
|
+
},
|
|
40
|
+
"peerDependencies": {
|
|
41
|
+
"@langchain/openai": "0.6.9",
|
|
42
|
+
"@metad/contracts": "^3.6.1",
|
|
43
|
+
"@nestjs/common": "^11.1.6",
|
|
44
|
+
"@nestjs/config": "^4.0.2",
|
|
45
|
+
"@xpert-ai/plugin-sdk": "^3.6.3",
|
|
46
|
+
"i18next": "25.6.0",
|
|
47
|
+
"lodash-es": "4.17.21",
|
|
48
|
+
"chalk": "4.1.2",
|
|
49
|
+
"zod": "3.25.67"
|
|
50
|
+
}
|
|
51
|
+
}
|
package/src/i18n/en.json
ADDED