@chainfuse/types 2.9.1 → 2.10.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -367,6 +367,7 @@ export declare const workersAiCatalog: {
|
|
|
367
367
|
readonly created_at: "2024-12-06 17:09:18.338";
|
|
368
368
|
readonly tags: readonly [];
|
|
369
369
|
readonly properties: {
|
|
370
|
+
readonly async_queue: true;
|
|
370
371
|
readonly context_window: 24000;
|
|
371
372
|
readonly price: readonly [{
|
|
372
373
|
readonly unit: "per M input tokens";
|
|
@@ -403,6 +404,26 @@ export declare const workersAiCatalog: {
|
|
|
403
404
|
readonly context_window: 4096;
|
|
404
405
|
readonly terms: "https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-AWQ";
|
|
405
406
|
};
|
|
407
|
+
}, {
|
|
408
|
+
readonly id: "51b71d5b-8bc0-4489-a107-95e542b69914";
|
|
409
|
+
readonly source: 1;
|
|
410
|
+
readonly name: "@cf/qwen/qwen2.5-coder-32b-instruct";
|
|
411
|
+
readonly description: "Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:";
|
|
412
|
+
readonly created_at: "2025-02-27 00:31:43.829";
|
|
413
|
+
readonly tags: readonly [];
|
|
414
|
+
readonly properties: {
|
|
415
|
+
readonly context_window: 32768;
|
|
416
|
+
readonly price: readonly [{
|
|
417
|
+
readonly unit: "per M input tokens";
|
|
418
|
+
readonly price: 0.66;
|
|
419
|
+
readonly currency: "USD";
|
|
420
|
+
}, {
|
|
421
|
+
readonly unit: "per M output tokens";
|
|
422
|
+
readonly price: 1;
|
|
423
|
+
readonly currency: "USD";
|
|
424
|
+
}];
|
|
425
|
+
readonly lora: true;
|
|
426
|
+
};
|
|
406
427
|
}, {
|
|
407
428
|
readonly id: "4c3a544e-da47-4336-9cea-c7cbfab33f16";
|
|
408
429
|
readonly source: 1;
|
|
@@ -517,6 +538,26 @@ export declare const workersAiCatalog: {
|
|
|
517
538
|
readonly context_window: 32000;
|
|
518
539
|
readonly info: "https://huggingface.co/qwen/qwen1.5-1.8b-chat";
|
|
519
540
|
};
|
|
541
|
+
}, {
|
|
542
|
+
readonly id: "31690291-ebdc-4f98-bcfc-a44844e215b7";
|
|
543
|
+
readonly source: 1;
|
|
544
|
+
readonly name: "@cf/mistralai/mistral-small-3.1-24b-instruct";
|
|
545
|
+
readonly description: "Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) adds state-of-the-art vision understanding and enhances long context capabilities up to 128k tokens without compromising text performance. With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.";
|
|
546
|
+
readonly created_at: "2025-03-18 03:28:37.890";
|
|
547
|
+
readonly tags: readonly [];
|
|
548
|
+
readonly properties: {
|
|
549
|
+
readonly context_window: 128000;
|
|
550
|
+
readonly price: readonly [{
|
|
551
|
+
readonly unit: "per M input tokens";
|
|
552
|
+
readonly price: 0.35;
|
|
553
|
+
readonly currency: "USD";
|
|
554
|
+
}, {
|
|
555
|
+
readonly unit: "per M output tokens";
|
|
556
|
+
readonly price: 0.56;
|
|
557
|
+
readonly currency: "USD";
|
|
558
|
+
}];
|
|
559
|
+
readonly function_calling: true;
|
|
560
|
+
};
|
|
520
561
|
}, {
|
|
521
562
|
readonly id: "31097538-a3ff-4e6e-bb56-ad0e1f428b61";
|
|
522
563
|
readonly source: 1;
|
|
@@ -642,15 +683,56 @@ export declare const workersAiCatalog: {
|
|
|
642
683
|
readonly context_window: 131000;
|
|
643
684
|
readonly price: readonly [{
|
|
644
685
|
readonly unit: "per M input tokens";
|
|
645
|
-
readonly price: 0;
|
|
686
|
+
readonly price: 0.27;
|
|
646
687
|
readonly currency: "USD";
|
|
647
688
|
}, {
|
|
648
689
|
readonly unit: "per M output tokens";
|
|
649
|
-
readonly price: 0;
|
|
690
|
+
readonly price: 0.85;
|
|
650
691
|
readonly currency: "USD";
|
|
651
692
|
}];
|
|
693
|
+
readonly function_calling: true;
|
|
652
694
|
readonly terms: "https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE";
|
|
653
695
|
};
|
|
696
|
+
}, {
|
|
697
|
+
readonly id: "053d5ac0-861b-4d3b-8501-e58d00417ef8";
|
|
698
|
+
readonly source: 1;
|
|
699
|
+
readonly name: "@cf/google/gemma-3-12b-it";
|
|
700
|
+
readonly description: "Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Gemma 3 models are multimodal, handling text and image input and generating text output, with a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions.";
|
|
701
|
+
readonly created_at: "2025-03-18 03:58:02.423";
|
|
702
|
+
readonly tags: readonly [];
|
|
703
|
+
readonly properties: {
|
|
704
|
+
readonly context_window: 80000;
|
|
705
|
+
readonly price: readonly [{
|
|
706
|
+
readonly unit: "per M input tokens";
|
|
707
|
+
readonly price: 0.35;
|
|
708
|
+
readonly currency: "USD";
|
|
709
|
+
}, {
|
|
710
|
+
readonly unit: "per M output tokens";
|
|
711
|
+
readonly price: 0.56;
|
|
712
|
+
readonly currency: "USD";
|
|
713
|
+
}];
|
|
714
|
+
readonly lora: true;
|
|
715
|
+
};
|
|
716
|
+
}, {
|
|
717
|
+
readonly id: "02c16efa-29f5-4304-8e6c-3d188889f875";
|
|
718
|
+
readonly source: 1;
|
|
719
|
+
readonly name: "@cf/qwen/qwq-32b";
|
|
720
|
+
readonly description: "QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.";
|
|
721
|
+
readonly created_at: "2025-03-05 21:52:40.974";
|
|
722
|
+
readonly tags: readonly [];
|
|
723
|
+
readonly properties: {
|
|
724
|
+
readonly context_window: 24000;
|
|
725
|
+
readonly price: readonly [{
|
|
726
|
+
readonly unit: "per M input tokens";
|
|
727
|
+
readonly price: 0.66;
|
|
728
|
+
readonly currency: "USD";
|
|
729
|
+
}, {
|
|
730
|
+
readonly unit: "per M output tokens";
|
|
731
|
+
readonly price: 1;
|
|
732
|
+
readonly currency: "USD";
|
|
733
|
+
}];
|
|
734
|
+
readonly lora: true;
|
|
735
|
+
};
|
|
654
736
|
}];
|
|
655
737
|
};
|
|
656
738
|
readonly 'Text Embeddings': {
|
|
@@ -416,6 +416,7 @@ export const workersAiCatalog = {
|
|
|
416
416
|
created_at: '2024-12-06 17:09:18.338',
|
|
417
417
|
tags: [],
|
|
418
418
|
properties: {
|
|
419
|
+
async_queue: true,
|
|
419
420
|
context_window: 24000,
|
|
420
421
|
price: [
|
|
421
422
|
{
|
|
@@ -458,6 +459,30 @@ export const workersAiCatalog = {
|
|
|
458
459
|
terms: 'https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-AWQ',
|
|
459
460
|
},
|
|
460
461
|
},
|
|
462
|
+
{
|
|
463
|
+
id: '51b71d5b-8bc0-4489-a107-95e542b69914',
|
|
464
|
+
source: 1,
|
|
465
|
+
name: '@cf/qwen/qwen2.5-coder-32b-instruct',
|
|
466
|
+
description: 'Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:',
|
|
467
|
+
created_at: '2025-02-27 00:31:43.829',
|
|
468
|
+
tags: [],
|
|
469
|
+
properties: {
|
|
470
|
+
context_window: 32768,
|
|
471
|
+
price: [
|
|
472
|
+
{
|
|
473
|
+
unit: 'per M input tokens',
|
|
474
|
+
price: 0.66,
|
|
475
|
+
currency: 'USD',
|
|
476
|
+
},
|
|
477
|
+
{
|
|
478
|
+
unit: 'per M output tokens',
|
|
479
|
+
price: 1,
|
|
480
|
+
currency: 'USD',
|
|
481
|
+
},
|
|
482
|
+
],
|
|
483
|
+
lora: true,
|
|
484
|
+
},
|
|
485
|
+
},
|
|
461
486
|
{
|
|
462
487
|
id: '4c3a544e-da47-4336-9cea-c7cbfab33f16',
|
|
463
488
|
source: 1,
|
|
@@ -586,6 +611,30 @@ export const workersAiCatalog = {
|
|
|
586
611
|
info: 'https://huggingface.co/qwen/qwen1.5-1.8b-chat',
|
|
587
612
|
},
|
|
588
613
|
},
|
|
614
|
+
{
|
|
615
|
+
id: '31690291-ebdc-4f98-bcfc-a44844e215b7',
|
|
616
|
+
source: 1,
|
|
617
|
+
name: '@cf/mistralai/mistral-small-3.1-24b-instruct',
|
|
618
|
+
description: 'Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) adds state-of-the-art vision understanding and enhances long context capabilities up to 128k tokens without compromising text performance. With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.',
|
|
619
|
+
created_at: '2025-03-18 03:28:37.890',
|
|
620
|
+
tags: [],
|
|
621
|
+
properties: {
|
|
622
|
+
context_window: 128000,
|
|
623
|
+
price: [
|
|
624
|
+
{
|
|
625
|
+
unit: 'per M input tokens',
|
|
626
|
+
price: 0.35,
|
|
627
|
+
currency: 'USD',
|
|
628
|
+
},
|
|
629
|
+
{
|
|
630
|
+
unit: 'per M output tokens',
|
|
631
|
+
price: 0.56,
|
|
632
|
+
currency: 'USD',
|
|
633
|
+
},
|
|
634
|
+
],
|
|
635
|
+
function_calling: true,
|
|
636
|
+
},
|
|
637
|
+
},
|
|
589
638
|
{
|
|
590
639
|
id: '31097538-a3ff-4e6e-bb56-ad0e1f428b61',
|
|
591
640
|
source: 1,
|
|
@@ -726,18 +775,67 @@ export const workersAiCatalog = {
|
|
|
726
775
|
price: [
|
|
727
776
|
{
|
|
728
777
|
unit: 'per M input tokens',
|
|
729
|
-
price: 0,
|
|
778
|
+
price: 0.27,
|
|
730
779
|
currency: 'USD',
|
|
731
780
|
},
|
|
732
781
|
{
|
|
733
782
|
unit: 'per M output tokens',
|
|
734
|
-
price: 0,
|
|
783
|
+
price: 0.85,
|
|
735
784
|
currency: 'USD',
|
|
736
785
|
},
|
|
737
786
|
],
|
|
787
|
+
function_calling: true,
|
|
738
788
|
terms: 'https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE',
|
|
739
789
|
},
|
|
740
790
|
},
|
|
791
|
+
{
|
|
792
|
+
id: '053d5ac0-861b-4d3b-8501-e58d00417ef8',
|
|
793
|
+
source: 1,
|
|
794
|
+
name: '@cf/google/gemma-3-12b-it',
|
|
795
|
+
description: 'Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Gemma 3 models are multimodal, handling text and image input and generating text output, with a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions.',
|
|
796
|
+
created_at: '2025-03-18 03:58:02.423',
|
|
797
|
+
tags: [],
|
|
798
|
+
properties: {
|
|
799
|
+
context_window: 80000,
|
|
800
|
+
price: [
|
|
801
|
+
{
|
|
802
|
+
unit: 'per M input tokens',
|
|
803
|
+
price: 0.35,
|
|
804
|
+
currency: 'USD',
|
|
805
|
+
},
|
|
806
|
+
{
|
|
807
|
+
unit: 'per M output tokens',
|
|
808
|
+
price: 0.56,
|
|
809
|
+
currency: 'USD',
|
|
810
|
+
},
|
|
811
|
+
],
|
|
812
|
+
lora: true,
|
|
813
|
+
},
|
|
814
|
+
},
|
|
815
|
+
{
|
|
816
|
+
id: '02c16efa-29f5-4304-8e6c-3d188889f875',
|
|
817
|
+
source: 1,
|
|
818
|
+
name: '@cf/qwen/qwq-32b',
|
|
819
|
+
description: 'QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.',
|
|
820
|
+
created_at: '2025-03-05 21:52:40.974',
|
|
821
|
+
tags: [],
|
|
822
|
+
properties: {
|
|
823
|
+
context_window: 24000,
|
|
824
|
+
price: [
|
|
825
|
+
{
|
|
826
|
+
unit: 'per M input tokens',
|
|
827
|
+
price: 0.66,
|
|
828
|
+
currency: 'USD',
|
|
829
|
+
},
|
|
830
|
+
{
|
|
831
|
+
unit: 'per M output tokens',
|
|
832
|
+
price: 1,
|
|
833
|
+
currency: 'USD',
|
|
834
|
+
},
|
|
835
|
+
],
|
|
836
|
+
lora: true,
|
|
837
|
+
},
|
|
838
|
+
},
|
|
741
839
|
],
|
|
742
840
|
},
|
|
743
841
|
'Text Embeddings': {
|
|
@@ -12,7 +12,7 @@ type cloudflareFilteredModelPossibilitiesRaw<M extends cloudflareModelTypes = cl
|
|
|
12
12
|
type cloudflareFilteredModelPossibilities<M extends cloudflareModelTypes = cloudflareModelTypes, K extends cloudflareModelPossibilitiesProperties<M> = cloudflareModelPossibilitiesProperties<M>, V extends cloudflareModelPossibilitiesRaw<M>['properties'][K] = any> = cloudflareFilteredModelPossibilitiesRaw<M, K, V>['name'];
|
|
13
13
|
export declare const enabledCloudflareLlmEmbeddingProviders: cloudflareModelPossibilities<'Text Embeddings'>[];
|
|
14
14
|
export declare const enabledCloudflareLlmProviders: cloudflareModelPossibilities<'Text Generation'>[];
|
|
15
|
-
export declare const enabledCloudflareLlmFunctionProviders: ("@cf/meta/llama-3.3-70b-instruct-fp8-fast" | "@hf/nousresearch/hermes-2-pro-mistral-7b")[];
|
|
15
|
+
export declare const enabledCloudflareLlmFunctionProviders: ("@cf/meta/llama-3.3-70b-instruct-fp8-fast" | "@hf/nousresearch/hermes-2-pro-mistral-7b" | "@cf/mistralai/mistral-small-3.1-24b-instruct" | "@cf/meta/llama-4-scout-17b-16e-instruct")[];
|
|
16
16
|
export declare const enabledCloudflareLlmImageProviders: cloudflareModelPossibilities<'Text-to-Image'>[];
|
|
17
17
|
export type CloudflareModelsEnum<M extends cloudflareModelTypes = cloudflareModelTypes> = {
|
|
18
18
|
[K in cloudflareModelPossibilities<M>]: `workersai:${K}`;
|
package/dist/index.d.ts
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import { z } from 'zod';
|
|
1
2
|
export * from './ai-tools/index.js';
|
|
2
3
|
export * from './d0/index.js';
|
|
3
4
|
export * from './d1/index.js';
|
|
@@ -50,7 +51,7 @@ export interface ExternallyResolvablePromise<T> {
|
|
|
50
51
|
export type UndefinedProperties<T extends object> = {
|
|
51
52
|
[P in keyof T]: undefined;
|
|
52
53
|
};
|
|
53
|
-
export type CustomLogCallback = (message?: any, ...optionalParams: any[]) => void;
|
|
54
|
+
export type CustomLogCallback = (message?: any, ...optionalParams: any[]) => PromiseLike<void> | void;
|
|
54
55
|
export type CustomLoging = boolean | CustomLogCallback;
|
|
55
56
|
/**
|
|
56
57
|
* @link https://developers.cloudflare.com/durable-objects/reference/data-location/#restrict-durable-objects-to-a-jurisdiction
|
|
@@ -73,3 +74,11 @@ export declare enum DOLocations {
|
|
|
73
74
|
'Africa' = "afr",
|
|
74
75
|
'Middle East' = "me"
|
|
75
76
|
}
|
|
77
|
+
/**
|
|
78
|
+
* @link https://zod.dev/?id=json-type
|
|
79
|
+
*/
|
|
80
|
+
declare const literalSchema: z.ZodUnion<[z.ZodString, z.ZodNumber, z.ZodBoolean, z.ZodNull]>;
|
|
81
|
+
type Json = z.infer<typeof literalSchema> | {
|
|
82
|
+
[key: string]: Json;
|
|
83
|
+
} | Json[];
|
|
84
|
+
export declare const jsonSchema: z.ZodType<Json>;
|
package/dist/index.js
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import { z } from 'zod';
|
|
1
2
|
export * from './ai-tools/index.js';
|
|
2
3
|
export * from './d0/index.js';
|
|
3
4
|
export * from './d1/index.js';
|
|
@@ -25,3 +26,8 @@ export var DOLocations;
|
|
|
25
26
|
DOLocations["Africa"] = "afr";
|
|
26
27
|
DOLocations["Middle East"] = "me";
|
|
27
28
|
})(DOLocations || (DOLocations = {}));
|
|
29
|
+
/**
|
|
30
|
+
* @link https://zod.dev/?id=json-type
|
|
31
|
+
*/
|
|
32
|
+
const literalSchema = z.union([z.string(), z.number(), z.boolean(), z.null()]);
|
|
33
|
+
export const jsonSchema = z.lazy(() => z.union([literalSchema, z.array(jsonSchema), z.record(jsonSchema)]));
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@chainfuse/types",
|
|
3
|
-
"version": "2.
|
|
3
|
+
"version": "2.10.1",
|
|
4
4
|
"description": "",
|
|
5
5
|
"author": "ChainFuse",
|
|
6
6
|
"homepage": "https://github.com/ChainFuse/packages/tree/main/packages/types#readme",
|
|
@@ -91,11 +91,11 @@
|
|
|
91
91
|
"prettier": "@demosjarco/prettier-config",
|
|
92
92
|
"dependencies": {
|
|
93
93
|
"validator": "^13.15.0",
|
|
94
|
-
"zod": "^3.24.
|
|
94
|
+
"zod": "^3.24.3"
|
|
95
95
|
},
|
|
96
96
|
"devDependencies": {
|
|
97
|
-
"@cloudflare/workers-types": "^4.
|
|
98
|
-
"@types/validator": "^13.
|
|
97
|
+
"@cloudflare/workers-types": "^4.20250417.0",
|
|
98
|
+
"@types/validator": "^13.15.0"
|
|
99
99
|
},
|
|
100
|
-
"gitHead": "
|
|
100
|
+
"gitHead": "ed937523841735fb5d944dfe1a5bc8d396a601c5"
|
|
101
101
|
}
|