@chainfuse/types 2.9.0 → 2.10.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -235,7 +235,6 @@ export declare const workersAiCatalog: {
|
|
|
235
235
|
readonly price: 4.88;
|
|
236
236
|
readonly currency: "USD";
|
|
237
237
|
}];
|
|
238
|
-
readonly lora: true;
|
|
239
238
|
readonly terms: "https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE";
|
|
240
239
|
};
|
|
241
240
|
}, {
|
|
@@ -368,6 +367,7 @@ export declare const workersAiCatalog: {
|
|
|
368
367
|
readonly created_at: "2024-12-06 17:09:18.338";
|
|
369
368
|
readonly tags: readonly [];
|
|
370
369
|
readonly properties: {
|
|
370
|
+
readonly async_queue: true;
|
|
371
371
|
readonly context_window: 24000;
|
|
372
372
|
readonly price: readonly [{
|
|
373
373
|
readonly unit: "per M input tokens";
|
|
@@ -404,6 +404,26 @@ export declare const workersAiCatalog: {
|
|
|
404
404
|
readonly context_window: 4096;
|
|
405
405
|
readonly terms: "https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-AWQ";
|
|
406
406
|
};
|
|
407
|
+
}, {
|
|
408
|
+
readonly id: "51b71d5b-8bc0-4489-a107-95e542b69914";
|
|
409
|
+
readonly source: 1;
|
|
410
|
+
readonly name: "@cf/qwen/qwen2.5-coder-32b-instruct";
|
|
411
|
+
readonly description: "Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:";
|
|
412
|
+
readonly created_at: "2025-02-27 00:31:43.829";
|
|
413
|
+
readonly tags: readonly [];
|
|
414
|
+
readonly properties: {
|
|
415
|
+
readonly context_window: 32768;
|
|
416
|
+
readonly price: readonly [{
|
|
417
|
+
readonly unit: "per M input tokens";
|
|
418
|
+
readonly price: 0.66;
|
|
419
|
+
readonly currency: "USD";
|
|
420
|
+
}, {
|
|
421
|
+
readonly unit: "per M output tokens";
|
|
422
|
+
readonly price: 1;
|
|
423
|
+
readonly currency: "USD";
|
|
424
|
+
}];
|
|
425
|
+
readonly lora: true;
|
|
426
|
+
};
|
|
407
427
|
}, {
|
|
408
428
|
readonly id: "4c3a544e-da47-4336-9cea-c7cbfab33f16";
|
|
409
429
|
readonly source: 1;
|
|
@@ -518,6 +538,25 @@ export declare const workersAiCatalog: {
|
|
|
518
538
|
readonly context_window: 32000;
|
|
519
539
|
readonly info: "https://huggingface.co/qwen/qwen1.5-1.8b-chat";
|
|
520
540
|
};
|
|
541
|
+
}, {
|
|
542
|
+
readonly id: "31690291-ebdc-4f98-bcfc-a44844e215b7";
|
|
543
|
+
readonly source: 1;
|
|
544
|
+
readonly name: "@cf/mistralai/mistral-small-3.1-24b-instruct";
|
|
545
|
+
readonly description: "Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) adds state-of-the-art vision understanding and enhances long context capabilities up to 128k tokens without compromising text performance. With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.";
|
|
546
|
+
readonly created_at: "2025-03-18 03:28:37.890";
|
|
547
|
+
readonly tags: readonly [];
|
|
548
|
+
readonly properties: {
|
|
549
|
+
readonly context_window: 128000;
|
|
550
|
+
readonly price: readonly [{
|
|
551
|
+
readonly unit: "per M input tokens";
|
|
552
|
+
readonly price: 0.35;
|
|
553
|
+
readonly currency: "USD";
|
|
554
|
+
}, {
|
|
555
|
+
readonly unit: "per M output tokens";
|
|
556
|
+
readonly price: 0.56;
|
|
557
|
+
readonly currency: "USD";
|
|
558
|
+
}];
|
|
559
|
+
};
|
|
521
560
|
}, {
|
|
522
561
|
readonly id: "31097538-a3ff-4e6e-bb56-ad0e1f428b61";
|
|
523
562
|
readonly source: 1;
|
|
@@ -652,6 +691,46 @@ export declare const workersAiCatalog: {
|
|
|
652
691
|
}];
|
|
653
692
|
readonly terms: "https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE";
|
|
654
693
|
};
|
|
694
|
+
}, {
|
|
695
|
+
readonly id: "053d5ac0-861b-4d3b-8501-e58d00417ef8";
|
|
696
|
+
readonly source: 1;
|
|
697
|
+
readonly name: "@cf/google/gemma-3-12b-it";
|
|
698
|
+
readonly description: "Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Gemma 3 models are multimodal, handling text and image input and generating text output, with a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions.";
|
|
699
|
+
readonly created_at: "2025-03-18 03:58:02.423";
|
|
700
|
+
readonly tags: readonly [];
|
|
701
|
+
readonly properties: {
|
|
702
|
+
readonly context_window: 1280000;
|
|
703
|
+
readonly price: readonly [{
|
|
704
|
+
readonly unit: "per M input tokens";
|
|
705
|
+
readonly price: 0.35;
|
|
706
|
+
readonly currency: "USD";
|
|
707
|
+
}, {
|
|
708
|
+
readonly unit: "per M output tokens";
|
|
709
|
+
readonly price: 0.56;
|
|
710
|
+
readonly currency: "USD";
|
|
711
|
+
}];
|
|
712
|
+
readonly lora: true;
|
|
713
|
+
};
|
|
714
|
+
}, {
|
|
715
|
+
readonly id: "02c16efa-29f5-4304-8e6c-3d188889f875";
|
|
716
|
+
readonly source: 1;
|
|
717
|
+
readonly name: "@cf/qwen/qwq-32b";
|
|
718
|
+
readonly description: "QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.";
|
|
719
|
+
readonly created_at: "2025-03-05 21:52:40.974";
|
|
720
|
+
readonly tags: readonly [];
|
|
721
|
+
readonly properties: {
|
|
722
|
+
readonly context_window: 24000;
|
|
723
|
+
readonly price: readonly [{
|
|
724
|
+
readonly unit: "per M input tokens";
|
|
725
|
+
readonly price: 0.66;
|
|
726
|
+
readonly currency: "USD";
|
|
727
|
+
}, {
|
|
728
|
+
readonly unit: "per M output tokens";
|
|
729
|
+
readonly price: 1;
|
|
730
|
+
readonly currency: "USD";
|
|
731
|
+
}];
|
|
732
|
+
readonly lora: true;
|
|
733
|
+
};
|
|
655
734
|
}];
|
|
656
735
|
};
|
|
657
736
|
readonly 'Text Embeddings': {
|
|
@@ -665,6 +744,7 @@ export declare const workersAiCatalog: {
|
|
|
665
744
|
readonly created_at: "2024-05-22 19:27:09.781";
|
|
666
745
|
readonly tags: readonly [];
|
|
667
746
|
readonly properties: {
|
|
747
|
+
readonly async_queue: true;
|
|
668
748
|
readonly price: readonly [{
|
|
669
749
|
readonly unit: "per M input tokens";
|
|
670
750
|
readonly price: 0.012;
|
|
@@ -679,6 +759,7 @@ export declare const workersAiCatalog: {
|
|
|
679
759
|
readonly created_at: "2023-11-07 15:43:58.042";
|
|
680
760
|
readonly tags: readonly [];
|
|
681
761
|
readonly properties: {
|
|
762
|
+
readonly async_queue: true;
|
|
682
763
|
readonly price: readonly [{
|
|
683
764
|
readonly unit: "per M input tokens";
|
|
684
765
|
readonly price: 0.02;
|
|
@@ -696,6 +777,7 @@ export declare const workersAiCatalog: {
|
|
|
696
777
|
readonly created_at: "2023-09-25 19:21:11.898";
|
|
697
778
|
readonly tags: readonly [];
|
|
698
779
|
readonly properties: {
|
|
780
|
+
readonly async_queue: true;
|
|
699
781
|
readonly price: readonly [{
|
|
700
782
|
readonly unit: "per M input tokens";
|
|
701
783
|
readonly price: 0.067;
|
|
@@ -713,6 +795,7 @@ export declare const workersAiCatalog: {
|
|
|
713
795
|
readonly created_at: "2023-11-07 15:43:58.042";
|
|
714
796
|
readonly tags: readonly [];
|
|
715
797
|
readonly properties: {
|
|
798
|
+
readonly async_queue: true;
|
|
716
799
|
readonly price: readonly [{
|
|
717
800
|
readonly unit: "per M input tokens";
|
|
718
801
|
readonly price: 0.2;
|
|
@@ -999,6 +1082,7 @@ export declare const workersAiCatalog: {
|
|
|
999
1082
|
readonly created_at: "2023-09-25 19:21:11.898";
|
|
1000
1083
|
readonly tags: readonly [];
|
|
1001
1084
|
readonly properties: {
|
|
1085
|
+
readonly async_queue: true;
|
|
1002
1086
|
readonly price: readonly [{
|
|
1003
1087
|
readonly unit: "per M input tokens";
|
|
1004
1088
|
readonly price: 0.34;
|
|
@@ -268,7 +268,6 @@ export const workersAiCatalog = {
|
|
|
268
268
|
currency: 'USD',
|
|
269
269
|
},
|
|
270
270
|
],
|
|
271
|
-
lora: true,
|
|
272
271
|
terms: 'https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE',
|
|
273
272
|
},
|
|
274
273
|
},
|
|
@@ -417,6 +416,7 @@ export const workersAiCatalog = {
|
|
|
417
416
|
created_at: '2024-12-06 17:09:18.338',
|
|
418
417
|
tags: [],
|
|
419
418
|
properties: {
|
|
419
|
+
async_queue: true,
|
|
420
420
|
context_window: 24000,
|
|
421
421
|
price: [
|
|
422
422
|
{
|
|
@@ -459,6 +459,30 @@ export const workersAiCatalog = {
|
|
|
459
459
|
terms: 'https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-AWQ',
|
|
460
460
|
},
|
|
461
461
|
},
|
|
462
|
+
{
|
|
463
|
+
id: '51b71d5b-8bc0-4489-a107-95e542b69914',
|
|
464
|
+
source: 1,
|
|
465
|
+
name: '@cf/qwen/qwen2.5-coder-32b-instruct',
|
|
466
|
+
description: 'Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:',
|
|
467
|
+
created_at: '2025-02-27 00:31:43.829',
|
|
468
|
+
tags: [],
|
|
469
|
+
properties: {
|
|
470
|
+
context_window: 32768,
|
|
471
|
+
price: [
|
|
472
|
+
{
|
|
473
|
+
unit: 'per M input tokens',
|
|
474
|
+
price: 0.66,
|
|
475
|
+
currency: 'USD',
|
|
476
|
+
},
|
|
477
|
+
{
|
|
478
|
+
unit: 'per M output tokens',
|
|
479
|
+
price: 1,
|
|
480
|
+
currency: 'USD',
|
|
481
|
+
},
|
|
482
|
+
],
|
|
483
|
+
lora: true,
|
|
484
|
+
},
|
|
485
|
+
},
|
|
462
486
|
{
|
|
463
487
|
id: '4c3a544e-da47-4336-9cea-c7cbfab33f16',
|
|
464
488
|
source: 1,
|
|
@@ -587,6 +611,29 @@ export const workersAiCatalog = {
|
|
|
587
611
|
info: 'https://huggingface.co/qwen/qwen1.5-1.8b-chat',
|
|
588
612
|
},
|
|
589
613
|
},
|
|
614
|
+
{
|
|
615
|
+
id: '31690291-ebdc-4f98-bcfc-a44844e215b7',
|
|
616
|
+
source: 1,
|
|
617
|
+
name: '@cf/mistralai/mistral-small-3.1-24b-instruct',
|
|
618
|
+
description: 'Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) adds state-of-the-art vision understanding and enhances long context capabilities up to 128k tokens without compromising text performance. With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.',
|
|
619
|
+
created_at: '2025-03-18 03:28:37.890',
|
|
620
|
+
tags: [],
|
|
621
|
+
properties: {
|
|
622
|
+
context_window: 128000,
|
|
623
|
+
price: [
|
|
624
|
+
{
|
|
625
|
+
unit: 'per M input tokens',
|
|
626
|
+
price: 0.35,
|
|
627
|
+
currency: 'USD',
|
|
628
|
+
},
|
|
629
|
+
{
|
|
630
|
+
unit: 'per M output tokens',
|
|
631
|
+
price: 0.56,
|
|
632
|
+
currency: 'USD',
|
|
633
|
+
},
|
|
634
|
+
],
|
|
635
|
+
},
|
|
636
|
+
},
|
|
590
637
|
{
|
|
591
638
|
id: '31097538-a3ff-4e6e-bb56-ad0e1f428b61',
|
|
592
639
|
source: 1,
|
|
@@ -739,6 +786,54 @@ export const workersAiCatalog = {
|
|
|
739
786
|
terms: 'https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE',
|
|
740
787
|
},
|
|
741
788
|
},
|
|
789
|
+
{
|
|
790
|
+
id: '053d5ac0-861b-4d3b-8501-e58d00417ef8',
|
|
791
|
+
source: 1,
|
|
792
|
+
name: '@cf/google/gemma-3-12b-it',
|
|
793
|
+
description: 'Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Gemma 3 models are multimodal, handling text and image input and generating text output, with a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions.',
|
|
794
|
+
created_at: '2025-03-18 03:58:02.423',
|
|
795
|
+
tags: [],
|
|
796
|
+
properties: {
|
|
797
|
+
context_window: 1280000,
|
|
798
|
+
price: [
|
|
799
|
+
{
|
|
800
|
+
unit: 'per M input tokens',
|
|
801
|
+
price: 0.35,
|
|
802
|
+
currency: 'USD',
|
|
803
|
+
},
|
|
804
|
+
{
|
|
805
|
+
unit: 'per M output tokens',
|
|
806
|
+
price: 0.56,
|
|
807
|
+
currency: 'USD',
|
|
808
|
+
},
|
|
809
|
+
],
|
|
810
|
+
lora: true,
|
|
811
|
+
},
|
|
812
|
+
},
|
|
813
|
+
{
|
|
814
|
+
id: '02c16efa-29f5-4304-8e6c-3d188889f875',
|
|
815
|
+
source: 1,
|
|
816
|
+
name: '@cf/qwen/qwq-32b',
|
|
817
|
+
description: 'QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.',
|
|
818
|
+
created_at: '2025-03-05 21:52:40.974',
|
|
819
|
+
tags: [],
|
|
820
|
+
properties: {
|
|
821
|
+
context_window: 24000,
|
|
822
|
+
price: [
|
|
823
|
+
{
|
|
824
|
+
unit: 'per M input tokens',
|
|
825
|
+
price: 0.66,
|
|
826
|
+
currency: 'USD',
|
|
827
|
+
},
|
|
828
|
+
{
|
|
829
|
+
unit: 'per M output tokens',
|
|
830
|
+
price: 1,
|
|
831
|
+
currency: 'USD',
|
|
832
|
+
},
|
|
833
|
+
],
|
|
834
|
+
lora: true,
|
|
835
|
+
},
|
|
836
|
+
},
|
|
742
837
|
],
|
|
743
838
|
},
|
|
744
839
|
'Text Embeddings': {
|
|
@@ -753,6 +848,7 @@ export const workersAiCatalog = {
|
|
|
753
848
|
created_at: '2024-05-22 19:27:09.781',
|
|
754
849
|
tags: [],
|
|
755
850
|
properties: {
|
|
851
|
+
async_queue: true,
|
|
756
852
|
price: [
|
|
757
853
|
{
|
|
758
854
|
unit: 'per M input tokens',
|
|
@@ -770,6 +866,7 @@ export const workersAiCatalog = {
|
|
|
770
866
|
created_at: '2023-11-07 15:43:58.042',
|
|
771
867
|
tags: [],
|
|
772
868
|
properties: {
|
|
869
|
+
async_queue: true,
|
|
773
870
|
price: [
|
|
774
871
|
{
|
|
775
872
|
unit: 'per M input tokens',
|
|
@@ -790,6 +887,7 @@ export const workersAiCatalog = {
|
|
|
790
887
|
created_at: '2023-09-25 19:21:11.898',
|
|
791
888
|
tags: [],
|
|
792
889
|
properties: {
|
|
890
|
+
async_queue: true,
|
|
793
891
|
price: [
|
|
794
892
|
{
|
|
795
893
|
unit: 'per M input tokens',
|
|
@@ -810,6 +908,7 @@ export const workersAiCatalog = {
|
|
|
810
908
|
created_at: '2023-11-07 15:43:58.042',
|
|
811
909
|
tags: [],
|
|
812
910
|
properties: {
|
|
911
|
+
async_queue: true,
|
|
813
912
|
price: [
|
|
814
913
|
{
|
|
815
914
|
unit: 'per M input tokens',
|
|
@@ -1148,6 +1247,7 @@ export const workersAiCatalog = {
|
|
|
1148
1247
|
created_at: '2023-09-25 19:21:11.898',
|
|
1149
1248
|
tags: [],
|
|
1150
1249
|
properties: {
|
|
1250
|
+
async_queue: true,
|
|
1151
1251
|
price: [
|
|
1152
1252
|
{
|
|
1153
1253
|
unit: 'per M input tokens',
|
package/dist/index.d.ts
CHANGED
|
@@ -50,7 +50,7 @@ export interface ExternallyResolvablePromise<T> {
|
|
|
50
50
|
export type UndefinedProperties<T extends object> = {
|
|
51
51
|
[P in keyof T]: undefined;
|
|
52
52
|
};
|
|
53
|
-
export type CustomLogCallback = (message?: any, ...optionalParams: any[]) => void;
|
|
53
|
+
export type CustomLogCallback = (message?: any, ...optionalParams: any[]) => PromiseLike<void> | void;
|
|
54
54
|
export type CustomLoging = boolean | CustomLogCallback;
|
|
55
55
|
/**
|
|
56
56
|
* @link https://developers.cloudflare.com/durable-objects/reference/data-location/#restrict-durable-objects-to-a-jurisdiction
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@chainfuse/types",
|
|
3
|
-
"version": "2.
|
|
3
|
+
"version": "2.10.0",
|
|
4
4
|
"description": "",
|
|
5
5
|
"author": "ChainFuse",
|
|
6
6
|
"homepage": "https://github.com/ChainFuse/packages/tree/main/packages/types#readme",
|
|
@@ -94,8 +94,8 @@
|
|
|
94
94
|
"zod": "^3.24.2"
|
|
95
95
|
},
|
|
96
96
|
"devDependencies": {
|
|
97
|
-
"@cloudflare/workers-types": "^4.
|
|
97
|
+
"@cloudflare/workers-types": "^4.20250410.0",
|
|
98
98
|
"@types/validator": "^13.12.3"
|
|
99
99
|
},
|
|
100
|
-
"gitHead": "
|
|
100
|
+
"gitHead": "c480462d073b3d89c915eb003b0ba789fe79d414"
|
|
101
101
|
}
|