@chainfuse/types 2.2.0 → 2.2.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -9,6 +9,7 @@ export const workersAiCatalog = {
9
9
  source: 1,
10
10
  name: '@cf/qwen/qwen1.5-0.5b-chat',
11
11
  description: 'Qwen1.5 is the improved version of Qwen, the large language model series developed by Alibaba Cloud.',
12
+ created_at: '2024-02-27 18:23:37.344',
12
13
  tags: [],
13
14
  properties: {
14
15
  beta: true,
@@ -21,6 +22,7 @@ export const workersAiCatalog = {
21
22
  source: 1,
22
23
  name: '@cf/google/gemma-2b-it-lora',
23
24
  description: 'This is a Gemma-2B base model that Cloudflare dedicates for inference with LoRA adapters. Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models.',
25
+ created_at: '2024-04-02 00:19:34.669',
24
26
  tags: [],
25
27
  properties: {
26
28
  beta: true,
@@ -33,6 +35,7 @@ export const workersAiCatalog = {
33
35
  source: 2,
34
36
  name: '@hf/nexusflow/starling-lm-7b-beta',
35
37
  description: 'We introduce Starling-LM-7B-beta, an open large language model (LLM) trained by Reinforcement Learning from AI Feedback (RLAIF). Starling-LM-7B-beta is trained from Openchat-3.5-0106 with our new reward model Nexusflow/Starling-RM-34B and policy optimization method Fine-Tuning Language Models from Human Preferences (PPO).',
38
+ created_at: '2024-04-01 23:49:31.797',
36
39
  tags: [],
37
40
  properties: {
38
41
  beta: true,
@@ -48,8 +51,19 @@ export const workersAiCatalog = {
48
51
  source: 1,
49
52
  name: '@cf/meta/llama-3-8b-instruct',
50
53
  description: 'Generation over generation, Meta Llama 3 demonstrates state-of-the-art performance on a wide range of industry benchmarks and offers new capabilities, including improved reasoning.',
54
+ created_at: '2024-04-18 20:31:47.273',
51
55
  tags: [],
52
56
  properties: {
57
+ price: [
58
+ {
59
+ unit: 'per M input tokens',
60
+ price: '$0.28',
61
+ },
62
+ {
63
+ unit: 'per M output tokens',
64
+ price: '$0.83',
65
+ },
66
+ ],
53
67
  context_window: 7968,
54
68
  info: 'https://llama.meta.com',
55
69
  terms: 'https://llama.meta.com/llama3/license/#',
@@ -60,8 +74,19 @@ export const workersAiCatalog = {
60
74
  source: 1,
61
75
  name: '@cf/meta/llama-3.2-3b-instruct',
62
76
  description: 'The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks.',
77
+ created_at: '2024-09-25 20:05:43.986',
63
78
  tags: [],
64
79
  properties: {
80
+ price: [
81
+ {
82
+ unit: 'per M input tokens',
83
+ price: '$0.051',
84
+ },
85
+ {
86
+ unit: 'per M output tokens',
87
+ price: '$0.34',
88
+ },
89
+ ],
65
90
  context_window: 128000,
66
91
  terms: 'https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE',
67
92
  },
@@ -71,6 +96,7 @@ export const workersAiCatalog = {
71
96
  source: 2,
72
97
  name: '@hf/thebloke/llamaguard-7b-awq',
73
98
  description: 'Llama Guard is a model for classifying the safety of LLM prompts and responses, using a taxonomy of safety risks.\n',
99
+ created_at: '2024-02-06 18:13:59.060',
74
100
  tags: [],
75
101
  properties: {
76
102
  beta: true,
@@ -82,6 +108,7 @@ export const workersAiCatalog = {
82
108
  source: 2,
83
109
  name: '@hf/thebloke/neural-chat-7b-v3-1-awq',
84
110
  description: 'This model is a fine-tuned 7B parameter LLM on the Intel Gaudi 2 processor from the mistralai/Mistral-7B-v0.1 on the open source dataset Open-Orca/SlimOrca.',
111
+ created_at: '2024-02-06 18:12:30.722',
85
112
  tags: [],
86
113
  properties: {
87
114
  beta: true,
@@ -93,14 +120,27 @@ export const workersAiCatalog = {
93
120
  source: 1,
94
121
  name: '@cf/meta/llama-guard-3-8b',
95
122
  description: 'Llama Guard 3 is a Llama-3.1-8B pretrained model, fine-tuned for content safety classification. Similar to previous versions, it can be used to classify content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM – it generates text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated.',
123
+ created_at: '2025-01-22 23:26:23.495',
96
124
  tags: [],
97
- properties: {},
125
+ properties: {
126
+ price: [
127
+ {
128
+ unit: 'per M input tokens',
129
+ price: '$0.48',
130
+ },
131
+ {
132
+ unit: 'per M output tokens',
133
+ price: '$0.030',
134
+ },
135
+ ],
136
+ },
98
137
  },
99
138
  {
100
139
  id: 'ca54bcd6-0d98-4739-9b3b-5c8b4402193d',
101
140
  source: 1,
102
141
  name: '@cf/meta/llama-2-7b-chat-fp16',
103
142
  description: 'Full precision (fp16) generative text model with 7 billion parameters from Meta',
143
+ created_at: '2023-11-07 11:54:20.229',
104
144
  tags: [],
105
145
  properties: {
106
146
  beta: true,
@@ -114,6 +154,7 @@ export const workersAiCatalog = {
114
154
  source: 1,
115
155
  name: '@cf/mistral/mistral-7b-instruct-v0.1',
116
156
  description: 'Instruct fine-tuned version of the Mistral-7b generative text model with 7 billion parameters',
157
+ created_at: '2023-11-07 11:54:20.229',
117
158
  tags: [],
118
159
  properties: {
119
160
  beta: true,
@@ -127,6 +168,7 @@ export const workersAiCatalog = {
127
168
  source: 1,
128
169
  name: '@cf/mistral/mistral-7b-instruct-v0.2-lora',
129
170
  description: 'The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2.',
171
+ created_at: '2024-04-01 22:14:40.529',
130
172
  tags: [],
131
173
  properties: {
132
174
  beta: true,
@@ -139,6 +181,7 @@ export const workersAiCatalog = {
139
181
  source: 1,
140
182
  name: '@cf/tinyllama/tinyllama-1.1b-chat-v1.0',
141
183
  description: 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. This is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T.',
184
+ created_at: '2024-02-27 18:25:37.524',
142
185
  tags: [],
143
186
  properties: {
144
187
  beta: true,
@@ -151,6 +194,7 @@ export const workersAiCatalog = {
151
194
  source: 2,
152
195
  name: '@hf/mistral/mistral-7b-instruct-v0.2',
153
196
  description: 'The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2. Mistral-7B-v0.2 has the following changes compared to Mistral-7B-v0.1: 32k context window (vs 8k context in v0.1), rope-theta = 1e6, and no Sliding-Window Attention.',
197
+ created_at: '2024-04-02 13:00:59.244',
154
198
  tags: [],
155
199
  properties: {
156
200
  beta: true,
@@ -167,6 +211,7 @@ export const workersAiCatalog = {
167
211
  source: 1,
168
212
  name: '@cf/fblgit/una-cybertron-7b-v2-bf16',
169
213
  description: "Cybertron 7B v2 is a 7B MistralAI based model, best on it's series. It was trained with SFT, DPO and UNA (Unified Neural Alignment) on multiple datasets.",
214
+ created_at: '2024-04-24 14:37:19.494',
170
215
  tags: [],
171
216
  properties: {
172
217
  beta: true,
@@ -178,9 +223,19 @@ export const workersAiCatalog = {
178
223
  source: 1,
179
224
  name: '@cf/deepseek-ai/deepseek-r1-distill-qwen-32b',
180
225
  description: 'DeepSeek-R1-Distill-Qwen-32B is a model distilled from DeepSeek-R1 based on Qwen2.5. It outperforms OpenAI-o1-mini across various benchmarks, achieving new state-of-the-art results for dense models.',
226
+ created_at: '2025-01-22 19:48:55.776',
181
227
  tags: [],
182
228
  properties: {
183
- context_window: 80000,
229
+ price: [
230
+ {
231
+ unit: 'per M input tokens',
232
+ price: '$0.50',
233
+ },
234
+ {
235
+ unit: 'per M output tokens',
236
+ price: '$4.88',
237
+ },
238
+ ],
184
239
  terms: 'https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE',
185
240
  },
186
241
  },
@@ -189,6 +244,7 @@ export const workersAiCatalog = {
189
244
  source: 1,
190
245
  name: '@cf/thebloke/discolm-german-7b-v1-awq',
191
246
  description: 'DiscoLM German 7b is a Mistral-based large language model with a focus on German-language applications. AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization.',
247
+ created_at: '2024-02-27 18:23:05.178',
192
248
  tags: [],
193
249
  properties: {
194
250
  beta: true,
@@ -201,6 +257,7 @@ export const workersAiCatalog = {
201
257
  source: 1,
202
258
  name: '@cf/meta/llama-2-7b-chat-int8',
203
259
  description: 'Quantized (int8) generative text model with 7 billion parameters from Meta',
260
+ created_at: '2023-09-25 19:21:11.898',
204
261
  tags: [],
205
262
  properties: {
206
263
  context_window: 8192,
@@ -211,8 +268,19 @@ export const workersAiCatalog = {
211
268
  source: 1,
212
269
  name: '@cf/meta/llama-3.1-8b-instruct-fp8',
213
270
  description: 'Llama 3.1 8B quantized to FP8 precision',
271
+ created_at: '2024-07-25 17:28:43.328',
214
272
  tags: [],
215
273
  properties: {
274
+ price: [
275
+ {
276
+ unit: 'per M input tokens',
277
+ price: '$0.15',
278
+ },
279
+ {
280
+ unit: 'per M output tokens',
281
+ price: '$0.29',
282
+ },
283
+ ],
216
284
  context_window: 32000,
217
285
  terms: 'https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE',
218
286
  },
@@ -222,6 +290,7 @@ export const workersAiCatalog = {
222
290
  source: 2,
223
291
  name: '@hf/thebloke/mistral-7b-instruct-v0.1-awq',
224
292
  description: 'Mistral 7B Instruct v0.1 AWQ is an efficient, accurate and blazing-fast low-bit weight quantized Mistral variant.',
293
+ created_at: '2023-11-24 00:27:15.869',
225
294
  tags: [],
226
295
  properties: {
227
296
  beta: true,
@@ -234,6 +303,7 @@ export const workersAiCatalog = {
234
303
  source: 1,
235
304
  name: '@cf/qwen/qwen1.5-7b-chat-awq',
236
305
  description: 'Qwen1.5 is the improved version of Qwen, the large language model series developed by Alibaba Cloud. AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization.',
306
+ created_at: '2024-02-27 18:24:11.709',
237
307
  tags: [],
238
308
  properties: {
239
309
  beta: true,
@@ -246,8 +316,19 @@ export const workersAiCatalog = {
246
316
  source: 1,
247
317
  name: '@cf/meta/llama-3.2-1b-instruct',
248
318
  description: 'The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks.',
319
+ created_at: '2024-09-25 21:36:32.050',
249
320
  tags: [],
250
321
  properties: {
322
+ price: [
323
+ {
324
+ unit: 'per M input tokens',
325
+ price: '$0.027',
326
+ },
327
+ {
328
+ unit: 'per M output tokens',
329
+ price: '$0.20',
330
+ },
331
+ ],
251
332
  context_window: 60000,
252
333
  terms: 'https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE',
253
334
  },
@@ -257,6 +338,7 @@ export const workersAiCatalog = {
257
338
  source: 2,
258
339
  name: '@hf/thebloke/llama-2-13b-chat-awq',
259
340
  description: 'Llama 2 13B Chat AWQ is an efficient, accurate and blazing-fast low-bit weight quantized Llama 2 variant.',
341
+ created_at: '2023-11-24 00:27:15.869',
260
342
  tags: [],
261
343
  properties: {
262
344
  beta: true,
@@ -269,6 +351,7 @@ export const workersAiCatalog = {
269
351
  source: 2,
270
352
  name: '@hf/thebloke/deepseek-coder-6.7b-base-awq',
271
353
  description: 'Deepseek Coder is composed of a series of code language models, each trained from scratch on 2T tokens, with a composition of 87% code and 13% natural language in both English and Chinese.',
354
+ created_at: '2024-02-06 18:16:27.183',
272
355
  tags: [],
273
356
  properties: {
274
357
  beta: true,
@@ -281,6 +364,7 @@ export const workersAiCatalog = {
281
364
  source: 1,
282
365
  name: '@cf/meta-llama/llama-2-7b-chat-hf-lora',
283
366
  description: 'This is a Llama2 base model that Cloudflare dedicated for inference with LoRA adapters. Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. ',
367
+ created_at: '2024-04-02 00:17:18.579',
284
368
  tags: [],
285
369
  properties: {
286
370
  beta: true,
@@ -293,8 +377,19 @@ export const workersAiCatalog = {
293
377
  source: 1,
294
378
  name: '@cf/meta/llama-3.3-70b-instruct-fp8-fast',
295
379
  description: 'Llama 3.3 70B quantized to fp8 precision, optimized to be faster.',
380
+ created_at: '2024-12-06 17:09:18.338',
296
381
  tags: [],
297
382
  properties: {
383
+ price: [
384
+ {
385
+ unit: 'per M input tokens',
386
+ price: '$0.29',
387
+ },
388
+ {
389
+ unit: 'per M output tokens',
390
+ price: '$2.25',
391
+ },
392
+ ],
298
393
  context_window: 24000,
299
394
  function_calling: true,
300
395
  terms: 'https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE',
@@ -305,6 +400,7 @@ export const workersAiCatalog = {
305
400
  source: 2,
306
401
  name: '@hf/thebloke/openhermes-2.5-mistral-7b-awq',
307
402
  description: 'OpenHermes 2.5 Mistral 7B is a state of the art Mistral Fine-tune, a continuation of OpenHermes 2 model, which trained on additional code datasets.',
403
+ created_at: '2024-02-06 18:04:22.846',
308
404
  tags: [],
309
405
  properties: {
310
406
  beta: true,
@@ -316,6 +412,7 @@ export const workersAiCatalog = {
316
412
  source: 2,
317
413
  name: '@hf/thebloke/deepseek-coder-6.7b-instruct-awq',
318
414
  description: 'Deepseek Coder is composed of a series of code language models, each trained from scratch on 2T tokens, with a composition of 87% code and 13% natural language in both English and Chinese.',
415
+ created_at: '2024-02-06 18:18:27.462',
319
416
  tags: [],
320
417
  properties: {
321
418
  beta: true,
@@ -328,6 +425,7 @@ export const workersAiCatalog = {
328
425
  source: 1,
329
426
  name: '@cf/deepseek-ai/deepseek-math-7b-instruct',
330
427
  description: 'DeepSeekMath-Instruct 7B is a mathematically instructed tuning model derived from DeepSeekMath-Base 7B. DeepSeekMath is initialized with DeepSeek-Coder-v1.5 7B and continues pre-training on math-related tokens sourced from Common Crawl, together with natural language and code data for 500B tokens.',
428
+ created_at: '2024-02-27 17:54:17.459',
331
429
  tags: [],
332
430
  properties: {
333
431
  beta: true,
@@ -341,6 +439,7 @@ export const workersAiCatalog = {
341
439
  source: 1,
342
440
  name: '@cf/tiiuae/falcon-7b-instruct',
343
441
  description: 'Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by TII based on Falcon-7B and finetuned on a mixture of chat/instruct datasets.',
442
+ created_at: '2024-02-27 18:21:15.796',
344
443
  tags: [],
345
444
  properties: {
346
445
  beta: true,
@@ -353,6 +452,7 @@ export const workersAiCatalog = {
353
452
  source: 2,
354
453
  name: '@hf/nousresearch/hermes-2-pro-mistral-7b',
355
454
  description: 'Hermes 2 Pro on Mistral 7B is the new flagship 7B Hermes! Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house.',
455
+ created_at: '2024-04-01 23:45:53.800',
356
456
  tags: [],
357
457
  properties: {
358
458
  beta: true,
@@ -366,8 +466,19 @@ export const workersAiCatalog = {
366
466
  source: 1,
367
467
  name: '@cf/meta/llama-3.1-8b-instruct',
368
468
  description: 'The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models. The Llama 3.1 instruction tuned text only models are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.',
469
+ created_at: '2024-07-18 22:53:33.746',
369
470
  tags: [],
370
471
  properties: {
472
+ price: [
473
+ {
474
+ unit: 'per M input tokens',
475
+ price: '$0.28',
476
+ },
477
+ {
478
+ unit: 'per M output tokens',
479
+ price: '$0.83',
480
+ },
481
+ ],
371
482
  context_window: 7968,
372
483
  terms: 'https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE',
373
484
  },
@@ -377,8 +488,19 @@ export const workersAiCatalog = {
377
488
  source: 1,
378
489
  name: '@cf/meta/llama-3.1-8b-instruct-awq',
379
490
  description: 'Quantized (int4) generative text model with 8 billion parameters from Meta.\n',
491
+ created_at: '2024-07-25 17:46:04.304',
380
492
  tags: [],
381
493
  properties: {
494
+ price: [
495
+ {
496
+ unit: 'per M input tokens',
497
+ price: '$0.12',
498
+ },
499
+ {
500
+ unit: 'per M output tokens',
501
+ price: '$0.27',
502
+ },
503
+ ],
382
504
  context_window: 8192,
383
505
  terms: 'https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE',
384
506
  },
@@ -388,6 +510,7 @@ export const workersAiCatalog = {
388
510
  source: 2,
389
511
  name: '@hf/thebloke/zephyr-7b-beta-awq',
390
512
  description: 'Zephyr 7B Beta AWQ is an efficient, accurate and blazing-fast low-bit weight quantized Zephyr model variant.',
513
+ created_at: '2023-11-24 00:27:15.869',
391
514
  tags: [],
392
515
  properties: {
393
516
  beta: true,
@@ -400,6 +523,7 @@ export const workersAiCatalog = {
400
523
  source: 1,
401
524
  name: '@cf/google/gemma-7b-it-lora',
402
525
  description: ' This is a Gemma-7B base model that Cloudflare dedicates for inference with LoRA adapters. Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models.',
526
+ created_at: '2024-04-02 00:20:19.633',
403
527
  tags: [],
404
528
  properties: {
405
529
  beta: true,
@@ -412,6 +536,7 @@ export const workersAiCatalog = {
412
536
  source: 1,
413
537
  name: '@cf/qwen/qwen1.5-1.8b-chat',
414
538
  description: 'Qwen1.5 is the improved version of Qwen, the large language model series developed by Alibaba Cloud.',
539
+ created_at: '2024-02-27 18:30:31.723',
415
540
  tags: [],
416
541
  properties: {
417
542
  beta: true,
@@ -424,8 +549,19 @@ export const workersAiCatalog = {
424
549
  source: 1,
425
550
  name: '@cf/meta/llama-3-8b-instruct-awq',
426
551
  description: 'Quantized (int4) generative text model with 8 billion parameters from Meta.',
552
+ created_at: '2024-05-09 23:32:47.584',
427
553
  tags: [],
428
554
  properties: {
555
+ price: [
556
+ {
557
+ unit: 'per M input tokens',
558
+ price: '$0.12',
559
+ },
560
+ {
561
+ unit: 'per M output tokens',
562
+ price: '$0.27',
563
+ },
564
+ ],
429
565
  context_window: 8192,
430
566
  info: 'https://llama.meta.com',
431
567
  terms: 'https://llama.meta.com/llama3/license/#',
@@ -436,8 +572,19 @@ export const workersAiCatalog = {
436
572
  source: 1,
437
573
  name: '@cf/meta/llama-3.2-11b-vision-instruct',
438
574
  description: ' The Llama 3.2-Vision instruction-tuned models are optimized for visual recognition, image reasoning, captioning, and answering general questions about an image.',
575
+ created_at: '2024-09-25 05:36:04.547',
439
576
  tags: [],
440
577
  properties: {
578
+ price: [
579
+ {
580
+ unit: 'per M input tokens',
581
+ price: '$0.049',
582
+ },
583
+ {
584
+ unit: 'per M output tokens',
585
+ price: '$0.68',
586
+ },
587
+ ],
441
588
  terms: 'https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE',
442
589
  },
443
590
  },
@@ -446,6 +593,7 @@ export const workersAiCatalog = {
446
593
  source: 1,
447
594
  name: '@cf/defog/sqlcoder-7b-2',
448
595
  description: 'This model is intended to be used by non-technical users to understand data inside their SQL databases. ',
596
+ created_at: '2024-02-27 18:18:46.095',
449
597
  tags: [],
450
598
  properties: {
451
599
  beta: true,
@@ -459,6 +607,7 @@ export const workersAiCatalog = {
459
607
  source: 1,
460
608
  name: '@cf/microsoft/phi-2',
461
609
  description: 'Phi-2 is a Transformer-based model with a next-word prediction objective, trained on 1.4T tokens from multiple passes on a mixture of Synthetic and Web datasets for NLP and coding.',
610
+ created_at: '2024-02-27 18:26:21.126',
462
611
  tags: [],
463
612
  properties: {
464
613
  beta: true,
@@ -471,6 +620,7 @@ export const workersAiCatalog = {
471
620
  source: 2,
472
621
  name: '@hf/meta-llama/meta-llama-3-8b-instruct',
473
622
  description: 'Generation over generation, Meta Llama 3 demonstrates state-of-the-art performance on a wide range of industry benchmarks and offers new capabilities, including improved reasoning.\t',
623
+ created_at: '2024-05-22 18:21:04.371',
474
624
  tags: [],
475
625
  properties: {
476
626
  context_window: 8192,
@@ -481,6 +631,7 @@ export const workersAiCatalog = {
481
631
  source: 2,
482
632
  name: '@hf/google/gemma-7b-it',
483
633
  description: 'Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants.',
634
+ created_at: '2024-04-01 23:51:35.866',
484
635
  tags: [],
485
636
  properties: {
486
637
  beta: true,
@@ -495,6 +646,7 @@ export const workersAiCatalog = {
495
646
  source: 1,
496
647
  name: '@cf/qwen/qwen1.5-14b-chat-awq',
497
648
  description: 'Qwen1.5 is the improved version of Qwen, the large language model series developed by Alibaba Cloud. AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization.',
649
+ created_at: '2024-02-27 18:24:45.316',
498
650
  tags: [],
499
651
  properties: {
500
652
  beta: true,
@@ -507,6 +659,7 @@ export const workersAiCatalog = {
507
659
  source: 1,
508
660
  name: '@cf/openchat/openchat-3.5-0106',
509
661
  description: 'OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning.',
662
+ created_at: '2024-02-27 18:20:39.169',
510
663
  tags: [],
511
664
  properties: {
512
665
  beta: true,
@@ -525,6 +678,7 @@ export const workersAiCatalog = {
525
678
  source: 1,
526
679
  name: '@cf/baai/bge-m3',
527
680
  description: 'Multi-Functionality, Multi-Linguality, and Multi-Granularity embeddings model.',
681
+ created_at: '2024-05-22 19:27:09.781',
528
682
  tags: [],
529
683
  properties: {},
530
684
  },
@@ -533,6 +687,7 @@ export const workersAiCatalog = {
533
687
  source: 1,
534
688
  name: '@cf/baai/bge-small-en-v1.5',
535
689
  description: 'BAAI general embedding (Small) model that transforms any given text into a 384-dimensional vector',
690
+ created_at: '2023-11-07 15:43:58.042',
536
691
  tags: [],
537
692
  properties: {
538
693
  beta: true,
@@ -546,6 +701,7 @@ export const workersAiCatalog = {
546
701
  source: 1,
547
702
  name: '@cf/baai/bge-base-en-v1.5',
548
703
  description: 'BAAI general embedding (Base) model that transforms any given text into a 768-dimensional vector',
704
+ created_at: '2023-09-25 19:21:11.898',
549
705
  tags: [],
550
706
  properties: {
551
707
  beta: true,
@@ -559,6 +715,7 @@ export const workersAiCatalog = {
559
715
  source: 1,
560
716
  name: '@cf/baai/bge-large-en-v1.5',
561
717
  description: 'BAAI general embedding (Large) model that transforms any given text into a 1024-dimensional vector',
718
+ created_at: '2023-11-07 15:43:58.042',
562
719
  tags: [],
563
720
  properties: {
564
721
  beta: true,
@@ -578,6 +735,7 @@ export const workersAiCatalog = {
578
735
  source: 1,
579
736
  name: '@cf/huggingface/distilbert-sst-2-int8',
580
737
  description: 'Distilled BERT model that was finetuned on SST-2 for sentiment classification',
738
+ created_at: '2023-09-25 19:21:11.898',
581
739
  tags: [],
582
740
  properties: {
583
741
  beta: true,
@@ -589,6 +747,7 @@ export const workersAiCatalog = {
589
747
  source: 1,
590
748
  name: '@cf/baai/bge-reranker-base',
591
749
  description: 'Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. And the score can be mapped to a float value in [0,1] by sigmoid function.\n\n',
750
+ created_at: '2025-02-14 12:28:19.009',
592
751
  tags: [],
593
752
  properties: {},
594
753
  },
@@ -603,6 +762,7 @@ export const workersAiCatalog = {
603
762
  source: 1,
604
763
  name: '@cf/facebook/detr-resnet-50',
605
764
  description: 'DEtection TRansformer (DETR) model trained end-to-end on COCO 2017 object detection (118k annotated images).',
765
+ created_at: '2024-02-27 17:43:51.922',
606
766
  tags: [],
607
767
  properties: {
608
768
  beta: true,
@@ -619,6 +779,7 @@ export const workersAiCatalog = {
619
779
  source: 1,
620
780
  name: '@cf/myshell-ai/melotts',
621
781
  description: 'MeloTTS is a high-quality multi-lingual text-to-speech library by MyShell.ai.',
782
+ created_at: '2024-07-19 15:51:04.819',
622
783
  tags: [],
623
784
  properties: {},
624
785
  },
@@ -633,6 +794,7 @@ export const workersAiCatalog = {
633
794
  source: 1,
634
795
  name: '@cf/openai/whisper',
635
796
  description: 'Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multitasking model that can perform multilingual speech recognition, speech translation, and language identification.',
797
+ created_at: '2023-09-25 19:21:11.898',
636
798
  tags: [],
637
799
  properties: {
638
800
  beta: true,
@@ -644,6 +806,7 @@ export const workersAiCatalog = {
644
806
  source: 1,
645
807
  name: '@cf/openai/whisper-tiny-en',
646
808
  description: 'Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalize to many datasets and domains without the need for fine-tuning. This is the English-only version of the Whisper Tiny model which was trained on the task of speech recognition.',
809
+ created_at: '2024-04-22 20:59:02.731',
647
810
  tags: [],
648
811
  properties: {
649
812
  beta: true,
@@ -654,8 +817,16 @@ export const workersAiCatalog = {
654
817
  source: 1,
655
818
  name: '@cf/openai/whisper-large-v3-turbo',
656
819
  description: 'Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. ',
820
+ created_at: '2024-05-22 00:02:18.656',
657
821
  tags: [],
658
- properties: {},
822
+ properties: {
823
+ price: [
824
+ {
825
+ unit: 'per audio minute',
826
+ price: '$0.00051',
827
+ },
828
+ ],
829
+ },
659
830
  },
660
831
  ],
661
832
  },
@@ -668,6 +839,7 @@ export const workersAiCatalog = {
668
839
  source: 1,
669
840
  name: '@cf/llava-hf/llava-1.5-7b-hf',
670
841
  description: 'LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture.',
842
+ created_at: '2024-05-01 18:00:39.971',
671
843
  tags: [],
672
844
  properties: {
673
845
  beta: true,
@@ -678,6 +850,7 @@ export const workersAiCatalog = {
678
850
  source: 1,
679
851
  name: '@cf/unum/uform-gen2-qwen-500m',
680
852
  description: 'UForm-Gen is a small generative vision-language model primarily designed for Image Captioning and Visual Question Answering. The model was pre-trained on the internal image captioning dataset and fine-tuned on public instructions datasets: SVIT, LVIS, VQAs datasets.',
853
+ created_at: '2024-02-27 18:28:52.485',
681
854
  tags: [],
682
855
  properties: {
683
856
  beta: true,
@@ -695,6 +868,7 @@ export const workersAiCatalog = {
695
868
  source: 1,
696
869
  name: '@cf/runwayml/stable-diffusion-v1-5-inpainting',
697
870
  description: 'Stable Diffusion Inpainting is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input, with the extra capability of inpainting the pictures by using a mask.',
871
+ created_at: '2024-02-27 17:23:57.528',
698
872
  tags: [],
699
873
  properties: {
700
874
  beta: true,
@@ -707,6 +881,7 @@ export const workersAiCatalog = {
707
881
  source: 1,
708
882
  name: '@cf/black-forest-labs/flux-1-schnell',
709
883
  description: 'FLUX.1 [schnell] is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions. ',
884
+ created_at: '2024-08-29 16:37:39.541',
710
885
  tags: [],
711
886
  properties: {},
712
887
  },
@@ -715,6 +890,7 @@ export const workersAiCatalog = {
715
890
  source: 1,
716
891
  name: '@cf/bytedance/stable-diffusion-xl-lightning',
717
892
  description: 'SDXL-Lightning is a lightning-fast text-to-image generation model. It can generate high-quality 1024px images in a few steps.',
893
+ created_at: '2024-02-27 17:41:29.578',
718
894
  tags: [],
719
895
  properties: {
720
896
  beta: true,
@@ -726,6 +902,7 @@ export const workersAiCatalog = {
726
902
  source: 1,
727
903
  name: '@cf/lykon/dreamshaper-8-lcm',
728
904
  description: 'Stable Diffusion model that has been fine-tuned to be better at photorealism without sacrificing range.',
905
+ created_at: '2024-02-27 17:40:38.881',
729
906
  tags: [],
730
907
  properties: {
731
908
  beta: true,
@@ -737,6 +914,7 @@ export const workersAiCatalog = {
737
914
  source: 1,
738
915
  name: '@cf/stabilityai/stable-diffusion-xl-base-1.0',
739
916
  description: 'Diffusion-based text-to-image generative model by Stability AI. Generates and modify images based on text prompts.',
917
+ created_at: '2023-11-10 10:54:43.694',
740
918
  tags: [],
741
919
  properties: {
742
920
  beta: true,
@@ -749,6 +927,7 @@ export const workersAiCatalog = {
749
927
  source: 1,
750
928
  name: '@cf/runwayml/stable-diffusion-v1-5-img2img',
751
929
  description: 'Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images. Img2img generate a new image from an input image with Stable Diffusion. ',
930
+ created_at: '2024-02-27 17:32:28.581',
752
931
  tags: [],
753
932
  properties: {
754
933
  beta: true,
@@ -767,6 +946,7 @@ export const workersAiCatalog = {
767
946
  source: 1,
768
947
  name: '@cf/microsoft/resnet-50',
769
948
  description: '50 layers deep image classification CNN trained on more than 1M images from ImageNet',
949
+ created_at: '2023-09-25 19:21:11.898',
770
950
  tags: [],
771
951
  properties: {
772
952
  beta: true,
@@ -784,6 +964,7 @@ export const workersAiCatalog = {
784
964
  source: 1,
785
965
  name: '@cf/meta/m2m100-1.2b',
786
966
  description: 'Multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation',
967
+ created_at: '2023-09-25 19:21:11.898',
787
968
  tags: [],
788
969
  properties: {
789
970
  beta: true,
@@ -803,6 +984,7 @@ export const workersAiCatalog = {
803
984
  source: 1,
804
985
  name: '@cf/facebook/bart-large-cnn',
805
986
  description: 'BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. You can use this model for text summarization.',
987
+ created_at: '2024-02-27 18:28:11.833',
806
988
  tags: [],
807
989
  properties: {
808
990
  beta: true,
package/dist/wf/index.js CHANGED
@@ -1,4 +1,4 @@
1
- import isHexadecimal from 'validator/es/lib/isHexadecimal';
1
+ import isHexadecimal from 'validator/es/lib/isHexadecimal.js';
2
2
  import { z } from 'zod';
3
3
  export const ZodUuidExportInput = z.union([
4
4
  // PrefixedUuid