@chainfuse/types 1.7.2 → 1.7.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -471,6 +471,54 @@ export declare const workersAiCatalog: {
471
471
  };
472
472
  }];
473
473
  };
474
+ readonly 'Text Embeddings': {
475
+ readonly id: "0137cdcf-162a-4108-94f2-1ca59e8c65ee";
476
+ readonly description: "Feature extraction models transform raw data into numerical features that can be processed while preserving the information in the original dataset. These models are ideal as part of building vector search applications or Retrieval Augmented Generation workflows with Large Language Models (LLM).";
477
+ readonly models: readonly [{
478
+ readonly id: "eed32bc1-8775-4985-89ce-dd1405508ad8";
479
+ readonly source: 1;
480
+ readonly name: "@cf/baai/bge-m3";
481
+ readonly description: "Multi-Functionality, Multi-Linguality, and Multi-Granularity embeddings model.";
482
+ readonly tags: readonly [];
483
+ readonly properties: {};
484
+ }, {
485
+ readonly id: "57fbd08a-a4c4-411c-910d-b9459ff36c20";
486
+ readonly source: 1;
487
+ readonly name: "@cf/baai/bge-small-en-v1.5";
488
+ readonly description: "BAAI general embedding (Small) model that transforms any given text into a 384-dimensional vector";
489
+ readonly tags: readonly [];
490
+ readonly properties: {
491
+ readonly beta: true;
492
+ readonly info: "https://huggingface.co/BAAI/bge-base-en-v1.5";
493
+ readonly max_input_tokens: 512;
494
+ readonly output_dimensions: 384;
495
+ };
496
+ }, {
497
+ readonly id: "429b9e8b-d99e-44de-91ad-706cf8183658";
498
+ readonly source: 1;
499
+ readonly name: "@cf/baai/bge-base-en-v1.5";
500
+ readonly description: "BAAI general embedding (Base) model that transforms any given text into a 768-dimensional vector";
501
+ readonly tags: readonly [];
502
+ readonly properties: {
503
+ readonly beta: true;
504
+ readonly info: "https://huggingface.co/BAAI/bge-base-en-v1.5";
505
+ readonly max_input_tokens: 512;
506
+ readonly output_dimensions: 768;
507
+ };
508
+ }, {
509
+ readonly id: "01bc2fb0-4bca-4598-b985-d2584a3f46c0";
510
+ readonly source: 1;
511
+ readonly name: "@cf/baai/bge-large-en-v1.5";
512
+ readonly description: "BAAI general embedding (Large) model that transforms any given text into a 1024-dimensional vector";
513
+ readonly tags: readonly [];
514
+ readonly properties: {
515
+ readonly beta: true;
516
+ readonly info: "https://huggingface.co/BAAI/bge-base-en-v1.5";
517
+ readonly max_input_tokens: 512;
518
+ readonly output_dimensions: 1024;
519
+ };
520
+ }];
521
+ };
474
522
  readonly 'Text Classification': {
475
523
  readonly id: "19606750-23ed-4371-aab2-c20349b53a60";
476
524
  readonly description: "Sentiment analysis or text classification is a common NLP task that classifies a text input into labels or classes.";
@@ -484,6 +532,13 @@ export declare const workersAiCatalog: {
484
532
  readonly beta: true;
485
533
  readonly info: "https://huggingface.co/Intel/distilbert-base-uncased-finetuned-sst-2-english-int8-static";
486
534
  };
535
+ }, {
536
+ readonly id: "145337e7-cec3-4ebb-8e78-16ddfc75e580";
537
+ readonly source: 1;
538
+ readonly name: "@cf/baai/bge-reranker-base";
539
+ readonly description: "Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. And the score can be mapped to a float value in [0,1] by sigmoid function.\n\n";
540
+ readonly tags: readonly [];
541
+ readonly properties: {};
487
542
  }];
488
543
  };
489
544
  readonly 'Object Detection': {
@@ -500,6 +555,18 @@ export declare const workersAiCatalog: {
500
555
  };
501
556
  }];
502
557
  };
558
+ readonly 'Text-to-Speech': {
559
+ readonly id: "b52660a1-9a95-4ab2-8b1d-f232be34604a";
560
+ readonly description: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.";
561
+ readonly models: readonly [{
562
+ readonly id: "c837b2ac-4d9b-4d37-8811-34de60f0c44f";
563
+ readonly source: 1;
564
+ readonly name: "@cf/myshell-ai/melotts";
565
+ readonly description: "MeloTTS is a high-quality multi-lingual text-to-speech library by MyShell.ai.";
566
+ readonly tags: readonly [];
567
+ readonly properties: {};
568
+ }];
569
+ };
503
570
  readonly 'Automatic Speech Recognition': {
504
571
  readonly id: "dfce1c48-2a81-462e-a7fd-de97ce985207";
505
572
  readonly description: "Automatic speech recognition (ASR) models convert a speech signal, typically an audio input, to text.";
@@ -528,9 +595,7 @@ export declare const workersAiCatalog: {
528
595
  readonly name: "@cf/openai/whisper-large-v3-turbo";
529
596
  readonly description: "Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. ";
530
597
  readonly tags: readonly [];
531
- readonly properties: {
532
- readonly beta: true;
533
- };
598
+ readonly properties: {};
534
599
  }];
535
600
  };
536
601
  readonly 'Image-to-Text': {
@@ -654,47 +719,6 @@ export declare const workersAiCatalog: {
654
719
  };
655
720
  }];
656
721
  };
657
- readonly 'Text Embeddings': {
658
- readonly id: "0137cdcf-162a-4108-94f2-1ca59e8c65ee";
659
- readonly description: "Feature extraction models transform raw data into numerical features that can be processed while preserving the information in the original dataset. These models are ideal as part of building vector search applications or Retrieval Augmented Generation workflows with Large Language Models (LLM).";
660
- readonly models: readonly [{
661
- readonly id: "57fbd08a-a4c4-411c-910d-b9459ff36c20";
662
- readonly source: 1;
663
- readonly name: "@cf/baai/bge-small-en-v1.5";
664
- readonly description: "BAAI general embedding (Small) model that transforms any given text into a 384-dimensional vector";
665
- readonly tags: readonly [];
666
- readonly properties: {
667
- readonly beta: true;
668
- readonly info: "https://huggingface.co/BAAI/bge-base-en-v1.5";
669
- readonly max_input_tokens: 512;
670
- readonly output_dimensions: 384;
671
- };
672
- }, {
673
- readonly id: "429b9e8b-d99e-44de-91ad-706cf8183658";
674
- readonly source: 1;
675
- readonly name: "@cf/baai/bge-base-en-v1.5";
676
- readonly description: "BAAI general embedding (Base) model that transforms any given text into a 768-dimensional vector";
677
- readonly tags: readonly [];
678
- readonly properties: {
679
- readonly beta: true;
680
- readonly info: "https://huggingface.co/BAAI/bge-base-en-v1.5";
681
- readonly max_input_tokens: 512;
682
- readonly output_dimensions: 768;
683
- };
684
- }, {
685
- readonly id: "01bc2fb0-4bca-4598-b985-d2584a3f46c0";
686
- readonly source: 1;
687
- readonly name: "@cf/baai/bge-large-en-v1.5";
688
- readonly description: "BAAI general embedding (Large) model that transforms any given text into a 1024-dimensional vector";
689
- readonly tags: readonly [];
690
- readonly properties: {
691
- readonly beta: true;
692
- readonly info: "https://huggingface.co/BAAI/bge-base-en-v1.5";
693
- readonly max_input_tokens: 512;
694
- readonly output_dimensions: 1024;
695
- };
696
- }];
697
- };
698
722
  readonly Summarization: {
699
723
  readonly id: "6f4e65d8-da0f-40d2-9aa4-db582a5a04fd";
700
724
  readonly description: "Summarization is the task of producing a shorter version of a document while preserving its important information. Some models can extract text from the original input, while other models can generate entirely new text.";
@@ -515,6 +515,59 @@ export const workersAiCatalog = {
515
515
  },
516
516
  ],
517
517
  },
518
+ 'Text Embeddings': {
519
+ id: '0137cdcf-162a-4108-94f2-1ca59e8c65ee',
520
+ description: 'Feature extraction models transform raw data into numerical features that can be processed while preserving the information in the original dataset. These models are ideal as part of building vector search applications or Retrieval Augmented Generation workflows with Large Language Models (LLM).',
521
+ models: [
522
+ {
523
+ id: 'eed32bc1-8775-4985-89ce-dd1405508ad8',
524
+ source: 1,
525
+ name: '@cf/baai/bge-m3',
526
+ description: 'Multi-Functionality, Multi-Linguality, and Multi-Granularity embeddings model.',
527
+ tags: [],
528
+ properties: {},
529
+ },
530
+ {
531
+ id: '57fbd08a-a4c4-411c-910d-b9459ff36c20',
532
+ source: 1,
533
+ name: '@cf/baai/bge-small-en-v1.5',
534
+ description: 'BAAI general embedding (Small) model that transforms any given text into a 384-dimensional vector',
535
+ tags: [],
536
+ properties: {
537
+ beta: true,
538
+ info: 'https://huggingface.co/BAAI/bge-base-en-v1.5',
539
+ max_input_tokens: 512,
540
+ output_dimensions: 384,
541
+ },
542
+ },
543
+ {
544
+ id: '429b9e8b-d99e-44de-91ad-706cf8183658',
545
+ source: 1,
546
+ name: '@cf/baai/bge-base-en-v1.5',
547
+ description: 'BAAI general embedding (Base) model that transforms any given text into a 768-dimensional vector',
548
+ tags: [],
549
+ properties: {
550
+ beta: true,
551
+ info: 'https://huggingface.co/BAAI/bge-base-en-v1.5',
552
+ max_input_tokens: 512,
553
+ output_dimensions: 768,
554
+ },
555
+ },
556
+ {
557
+ id: '01bc2fb0-4bca-4598-b985-d2584a3f46c0',
558
+ source: 1,
559
+ name: '@cf/baai/bge-large-en-v1.5',
560
+ description: 'BAAI general embedding (Large) model that transforms any given text into a 1024-dimensional vector',
561
+ tags: [],
562
+ properties: {
563
+ beta: true,
564
+ info: 'https://huggingface.co/BAAI/bge-base-en-v1.5',
565
+ max_input_tokens: 512,
566
+ output_dimensions: 1024,
567
+ },
568
+ },
569
+ ],
570
+ },
518
571
  'Text Classification': {
519
572
  id: '19606750-23ed-4371-aab2-c20349b53a60',
520
573
  description: 'Sentiment analysis or text classification is a common NLP task that classifies a text input into labels or classes.',
@@ -530,6 +583,14 @@ export const workersAiCatalog = {
530
583
  info: 'https://huggingface.co/Intel/distilbert-base-uncased-finetuned-sst-2-english-int8-static',
531
584
  },
532
585
  },
586
+ {
587
+ id: '145337e7-cec3-4ebb-8e78-16ddfc75e580',
588
+ source: 1,
589
+ name: '@cf/baai/bge-reranker-base',
590
+ description: 'Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. And the score can be mapped to a float value in [0,1] by sigmoid function.\n\n',
591
+ tags: [],
592
+ properties: {},
593
+ },
533
594
  ],
534
595
  },
535
596
  'Object Detection': {
@@ -548,6 +609,20 @@ export const workersAiCatalog = {
548
609
  },
549
610
  ],
550
611
  },
612
+ 'Text-to-Speech': {
613
+ id: 'b52660a1-9a95-4ab2-8b1d-f232be34604a',
614
+ description: 'Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.',
615
+ models: [
616
+ {
617
+ id: 'c837b2ac-4d9b-4d37-8811-34de60f0c44f',
618
+ source: 1,
619
+ name: '@cf/myshell-ai/melotts',
620
+ description: 'MeloTTS is a high-quality multi-lingual text-to-speech library by MyShell.ai.',
621
+ tags: [],
622
+ properties: {},
623
+ },
624
+ ],
625
+ },
551
626
  'Automatic Speech Recognition': {
552
627
  id: 'dfce1c48-2a81-462e-a7fd-de97ce985207',
553
628
  description: 'Automatic speech recognition (ASR) models convert a speech signal, typically an audio input, to text.',
@@ -579,9 +654,7 @@ export const workersAiCatalog = {
579
654
  name: '@cf/openai/whisper-large-v3-turbo',
580
655
  description: 'Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. ',
581
656
  tags: [],
582
- properties: {
583
- beta: true,
584
- },
657
+ properties: {},
585
658
  },
586
659
  ],
587
660
  },
@@ -720,51 +793,6 @@ export const workersAiCatalog = {
720
793
  },
721
794
  ],
722
795
  },
723
- 'Text Embeddings': {
724
- id: '0137cdcf-162a-4108-94f2-1ca59e8c65ee',
725
- description: 'Feature extraction models transform raw data into numerical features that can be processed while preserving the information in the original dataset. These models are ideal as part of building vector search applications or Retrieval Augmented Generation workflows with Large Language Models (LLM).',
726
- models: [
727
- {
728
- id: '57fbd08a-a4c4-411c-910d-b9459ff36c20',
729
- source: 1,
730
- name: '@cf/baai/bge-small-en-v1.5',
731
- description: 'BAAI general embedding (Small) model that transforms any given text into a 384-dimensional vector',
732
- tags: [],
733
- properties: {
734
- beta: true,
735
- info: 'https://huggingface.co/BAAI/bge-base-en-v1.5',
736
- max_input_tokens: 512,
737
- output_dimensions: 384,
738
- },
739
- },
740
- {
741
- id: '429b9e8b-d99e-44de-91ad-706cf8183658',
742
- source: 1,
743
- name: '@cf/baai/bge-base-en-v1.5',
744
- description: 'BAAI general embedding (Base) model that transforms any given text into a 768-dimensional vector',
745
- tags: [],
746
- properties: {
747
- beta: true,
748
- info: 'https://huggingface.co/BAAI/bge-base-en-v1.5',
749
- max_input_tokens: 512,
750
- output_dimensions: 768,
751
- },
752
- },
753
- {
754
- id: '01bc2fb0-4bca-4598-b985-d2584a3f46c0',
755
- source: 1,
756
- name: '@cf/baai/bge-large-en-v1.5',
757
- description: 'BAAI general embedding (Large) model that transforms any given text into a 1024-dimensional vector',
758
- tags: [],
759
- properties: {
760
- beta: true,
761
- info: 'https://huggingface.co/BAAI/bge-base-en-v1.5',
762
- max_input_tokens: 512,
763
- output_dimensions: 1024,
764
- },
765
- },
766
- ],
767
- },
768
796
  Summarization: {
769
797
  id: '6f4e65d8-da0f-40d2-9aa4-db582a5a04fd',
770
798
  description: 'Summarization is the task of producing a shorter version of a document while preserving its important information. Some models can extract text from the original input, while other models can generate entirely new text.',
@@ -590,6 +590,13 @@ export type type_mc_safety = aiProviders<'Text Generation'>;
590
590
  export declare const possibilities_mc_embedding: readonly [...{
591
591
  name: "Azure_OpenAi_Embed3_Large" | "Azure_OpenAi_Embed3_Small";
592
592
  }[], {
593
+ readonly id: "eed32bc1-8775-4985-89ce-dd1405508ad8";
594
+ readonly source: 1;
595
+ readonly name: "@cf/baai/bge-m3";
596
+ readonly description: "Multi-Functionality, Multi-Linguality, and Multi-Granularity embeddings model.";
597
+ readonly tags: readonly [];
598
+ readonly properties: {};
599
+ }, {
593
600
  readonly id: "57fbd08a-a4c4-411c-910d-b9459ff36c20";
594
601
  readonly source: 1;
595
602
  readonly name: "@cf/baai/bge-small-en-v1.5";
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@chainfuse/types",
3
- "version": "1.7.2",
3
+ "version": "1.7.3",
4
4
  "description": "",
5
5
  "author": "ChainFuse",
6
6
  "homepage": "https://github.com/ChainFuse/packages/tree/main/packages/types#readme",
@@ -86,8 +86,8 @@
86
86
  },
87
87
  "prettier": "@demosjarco/prettier-config",
88
88
  "devDependencies": {
89
- "@cloudflare/workers-types": "^4.20250312.0",
89
+ "@cloudflare/workers-types": "^4.20250319.0",
90
90
  "@types/json-schema": "^7.0.15"
91
91
  },
92
- "gitHead": "d79fa61a8407c01c134b9190f9f787260ba4add1"
92
+ "gitHead": "afa550b265b1815397b3c8f81939c601ff09ae7e"
93
93
  }