@cdklabs/cdk-ecs-codedeploy 0.0.7 → 0.0.9

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. package/.jsii +3 -3
  2. package/lib/ecs-appspec/index.js +1 -1
  3. package/lib/ecs-deployment/index.js +1 -1
  4. package/node_modules/aws-sdk/CHANGELOG.md +19 -1
  5. package/node_modules/aws-sdk/README.md +1 -1
  6. package/node_modules/aws-sdk/apis/appflow-2020-08-23.min.json +7 -2
  7. package/node_modules/aws-sdk/apis/backup-gateway-2021-01-01.min.json +211 -9
  8. package/node_modules/aws-sdk/apis/datasync-2018-11-09.min.json +3 -0
  9. package/node_modules/aws-sdk/apis/ecs-2014-11-13.min.json +5 -2
  10. package/node_modules/aws-sdk/apis/glue-2017-03-31.min.json +3 -0
  11. package/node_modules/aws-sdk/apis/kinesis-2013-12-02.min.json +304 -51
  12. package/node_modules/aws-sdk/apis/kinesis-2013-12-02.paginators.json +6 -3
  13. package/node_modules/aws-sdk/apis/m2-2021-04-28.min.json +4 -0
  14. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +593 -573
  15. package/node_modules/aws-sdk/apis/securityhub-2018-10-26.min.json +796 -160
  16. package/node_modules/aws-sdk/clients/appflow.d.ts +13 -0
  17. package/node_modules/aws-sdk/clients/backupgateway.d.ts +258 -0
  18. package/node_modules/aws-sdk/clients/cloudfront.d.ts +283 -283
  19. package/node_modules/aws-sdk/clients/connect.d.ts +7 -7
  20. package/node_modules/aws-sdk/clients/datasync.d.ts +64 -60
  21. package/node_modules/aws-sdk/clients/ecs.d.ts +15 -3
  22. package/node_modules/aws-sdk/clients/efs.d.ts +2 -2
  23. package/node_modules/aws-sdk/clients/eks.d.ts +21 -21
  24. package/node_modules/aws-sdk/clients/glue.d.ts +4 -0
  25. package/node_modules/aws-sdk/clients/guardduty.d.ts +4 -4
  26. package/node_modules/aws-sdk/clients/kinesis.d.ts +180 -60
  27. package/node_modules/aws-sdk/clients/location.d.ts +2 -2
  28. package/node_modules/aws-sdk/clients/m2.d.ts +81 -65
  29. package/node_modules/aws-sdk/clients/sagemaker.d.ts +76 -53
  30. package/node_modules/aws-sdk/clients/securityhub.d.ts +971 -0
  31. package/node_modules/aws-sdk/clients/translate.d.ts +10 -9
  32. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
  33. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +11 -11
  34. package/node_modules/aws-sdk/dist/aws-sdk.js +318 -59
  35. package/node_modules/aws-sdk/dist/aws-sdk.min.js +58 -58
  36. package/node_modules/aws-sdk/lib/core.js +1 -1
  37. package/node_modules/aws-sdk/package.json +1 -1
  38. package/package.json +6 -6
@@ -245,11 +245,11 @@ declare class SageMaker extends Service {
245
245
  */
246
246
  createImageVersion(callback?: (err: AWSError, data: SageMaker.Types.CreateImageVersionResponse) => void): Request<SageMaker.Types.CreateImageVersionResponse, AWSError>;
247
247
  /**
248
- * Creates an inference experiment using the configurations specified in the request. Use this API to schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests. Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration. While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
248
+ * Creates an inference experiment using the configurations specified in the request. Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests. Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration. While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
249
249
  */
250
250
  createInferenceExperiment(params: SageMaker.Types.CreateInferenceExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateInferenceExperimentResponse) => void): Request<SageMaker.Types.CreateInferenceExperimentResponse, AWSError>;
251
251
  /**
252
- * Creates an inference experiment using the configurations specified in the request. Use this API to schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests. Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration. While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
252
+ * Creates an inference experiment using the configurations specified in the request. Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests. Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration. While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
253
253
  */
254
254
  createInferenceExperiment(callback?: (err: AWSError, data: SageMaker.Types.CreateInferenceExperimentResponse) => void): Request<SageMaker.Types.CreateInferenceExperimentResponse, AWSError>;
255
255
  /**
@@ -4146,7 +4146,7 @@ declare namespace SageMaker {
4146
4146
  */
4147
4147
  DomainId: DomainId;
4148
4148
  /**
4149
- * The user profile name.
4149
+ * The user profile name. If this value is not set, then SpaceName must be set.
4150
4150
  */
4151
4151
  UserProfileName?: UserProfileName;
4152
4152
  /**
@@ -4166,7 +4166,7 @@ declare namespace SageMaker {
4166
4166
  */
4167
4167
  ResourceSpec?: ResourceSpec;
4168
4168
  /**
4169
- * The name of the space.
4169
+ * The name of the space. If this value is not set, then UserProfileName must be set.
4170
4170
  */
4171
4171
  SpaceName?: SpaceName;
4172
4172
  }
@@ -4548,7 +4548,7 @@ declare namespace SageMaker {
4548
4548
  */
4549
4549
  EndpointConfigName: EndpointConfigName;
4550
4550
  /**
4551
- * An list of ProductionVariant objects, one for each model that you want to host at this endpoint.
4551
+ * An array of ProductionVariant objects, one for each model that you want to host at this endpoint.
4552
4552
  */
4553
4553
  ProductionVariants: ProductionVariantList;
4554
4554
  DataCaptureConfig?: DataCaptureConfig;
@@ -4569,7 +4569,7 @@ declare namespace SageMaker {
4569
4569
  */
4570
4570
  ExplainerConfig?: ExplainerConfig;
4571
4571
  /**
4572
- * Array of ProductionVariant objects. There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
4572
+ * An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants. If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
4573
4573
  */
4574
4574
  ShadowProductionVariants?: ProductionVariantList;
4575
4575
  }
@@ -4646,7 +4646,7 @@ declare namespace SageMaker {
4646
4646
  */
4647
4647
  OnlineStoreConfig?: OnlineStoreConfig;
4648
4648
  /**
4649
- * Use this to configure an OfflineFeatureStore. This parameter allows you to specify: The Amazon Simple Storage Service (Amazon S3) location of an OfflineStore. A configuration for an Amazon Web Services Glue or Amazon Web Services Hive data catalog. An KMS encryption key to encrypt the Amazon S3 location used for OfflineStore. If KMS encryption key is not specified, by default we encrypt all data at rest using Amazon Web Services KMS key. By defining your bucket-level key for SSE, you can reduce Amazon Web Services KMS requests costs by up to 99 percent. To learn more about this parameter, see OfflineStoreConfig.
4649
+ * Use this to configure an OfflineFeatureStore. This parameter allows you to specify: The Amazon Simple Storage Service (Amazon S3) location of an OfflineStore. A configuration for an Amazon Web Services Glue or Amazon Web Services Hive data catalog. An KMS encryption key to encrypt the Amazon S3 location used for OfflineStore. If KMS encryption key is not specified, by default we encrypt all data at rest using Amazon Web Services KMS key. By defining your bucket-level key for SSE, you can reduce Amazon Web Services KMS requests costs by up to 99 percent. Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg. To learn more about this parameter, see OfflineStoreConfig.
4650
4650
  */
4651
4651
  OfflineStoreConfig?: OfflineStoreConfig;
4652
4652
  /**
@@ -4843,7 +4843,7 @@ declare namespace SageMaker {
4843
4843
  */
4844
4844
  Type: InferenceExperimentType;
4845
4845
  /**
4846
- * The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically concludes after 7 days.
4846
+ * The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.
4847
4847
  */
4848
4848
  Schedule?: InferenceExperimentSchedule;
4849
4849
  /**
@@ -4851,7 +4851,7 @@ declare namespace SageMaker {
4851
4851
  */
4852
4852
  Description?: InferenceExperimentDescription;
4853
4853
  /**
4854
- * The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images.
4854
+ * The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
4855
4855
  */
4856
4856
  RoleArn: RoleArn;
4857
4857
  /**
@@ -4859,15 +4859,15 @@ declare namespace SageMaker {
4859
4859
  */
4860
4860
  EndpointName: EndpointName;
4861
4861
  /**
4862
- * Array of ModelVariantConfigSummary objects. There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for the corresponding variant.
4862
+ * An array of ModelVariantConfig objects. There is one for each variant in the inference experiment. Each ModelVariantConfig object in the array describes the infrastructure configuration for the corresponding variant.
4863
4863
  */
4864
4864
  ModelVariants: ModelVariantConfigList;
4865
4865
  /**
4866
- * The storage configuration for the inference experiment. This is an optional parameter that you can use for data capture. For more information, see Capture data.
4866
+ * The Amazon S3 location and configuration for storing inference request and response data. This is an optional parameter that you can use for data capture. For more information, see Capture data.
4867
4867
  */
4868
4868
  DataStorageConfig?: InferenceExperimentDataStorageConfig;
4869
4869
  /**
4870
- * Shows which variant is the production variant and which variant is the shadow variant. For the shadow variant, also shows the sampling percentage.
4870
+ * The configuration of ShadowMode inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.
4871
4871
  */
4872
4872
  ShadowModeConfig: ShadowModeConfig;
4873
4873
  /**
@@ -5948,7 +5948,7 @@ declare namespace SageMaker {
5948
5948
  */
5949
5949
  DestinationS3Uri: DestinationS3Uri;
5950
5950
  /**
5951
- * The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
5951
+ * The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
5952
5952
  */
5953
5953
  KmsKeyId?: KmsKeyId;
5954
5954
  /**
@@ -6197,7 +6197,7 @@ declare namespace SageMaker {
6197
6197
  */
6198
6198
  DomainId: DomainId;
6199
6199
  /**
6200
- * The user profile name.
6200
+ * The user profile name. If this value is not set, then SpaceName must be set.
6201
6201
  */
6202
6202
  UserProfileName?: UserProfileName;
6203
6203
  /**
@@ -6209,7 +6209,7 @@ declare namespace SageMaker {
6209
6209
  */
6210
6210
  AppName: AppName;
6211
6211
  /**
6212
- * The name of the space.
6212
+ * The name of the space. If this value is not set, then UserProfileName must be set.
6213
6213
  */
6214
6214
  SpaceName?: SpaceName;
6215
6215
  }
@@ -6786,7 +6786,7 @@ declare namespace SageMaker {
6786
6786
  */
6787
6787
  DomainId: DomainId;
6788
6788
  /**
6789
- * The user profile name.
6789
+ * The user profile name. If this value is not set, then SpaceName must be set.
6790
6790
  */
6791
6791
  UserProfileName?: UserProfileName;
6792
6792
  /**
@@ -6848,7 +6848,7 @@ declare namespace SageMaker {
6848
6848
  */
6849
6849
  ResourceSpec?: ResourceSpec;
6850
6850
  /**
6851
- * The name of the space.
6851
+ * The name of the space. If this value is not set, then UserProfileName must be set.
6852
6852
  */
6853
6853
  SpaceName?: SpaceName;
6854
6854
  }
@@ -7537,7 +7537,7 @@ declare namespace SageMaker {
7537
7537
  */
7538
7538
  ExplainerConfig?: ExplainerConfig;
7539
7539
  /**
7540
- * Array of ProductionVariant objects. There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
7540
+ * An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.
7541
7541
  */
7542
7542
  ShadowProductionVariants?: ProductionVariantList;
7543
7543
  }
@@ -7561,7 +7561,7 @@ declare namespace SageMaker {
7561
7561
  */
7562
7562
  EndpointConfigName: EndpointConfigName;
7563
7563
  /**
7564
- * An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.
7564
+ * An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.
7565
7565
  */
7566
7566
  ProductionVariants?: ProductionVariantSummaryList;
7567
7567
  DataCaptureConfig?: DataCaptureConfigSummary;
@@ -7598,7 +7598,7 @@ declare namespace SageMaker {
7598
7598
  */
7599
7599
  ExplainerConfig?: ExplainerConfig;
7600
7600
  /**
7601
- * Array of ProductionVariant objects. There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
7601
+ * An array of ProductionVariantSummary objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.
7602
7602
  */
7603
7603
  ShadowProductionVariants?: ProductionVariantSummaryList;
7604
7604
  }
@@ -7690,7 +7690,7 @@ declare namespace SageMaker {
7690
7690
  */
7691
7691
  OnlineStoreConfig?: OnlineStoreConfig;
7692
7692
  /**
7693
- * The configuration of the OfflineStore, inducing the S3 location of the OfflineStore, Amazon Web Services Glue or Amazon Web Services Hive data catalogue configurations, and the security configuration.
7693
+ * The configuration of the offline store. It includes the following configurations: Amazon S3 location of the offline store. Configuration of the Glue data catalog. Table format of the offline store. Option to disable the automatic creation of a Glue table for the offline store. Encryption configuration.
7694
7694
  */
7695
7695
  OfflineStoreConfig?: OfflineStoreConfig;
7696
7696
  /**
@@ -8159,11 +8159,11 @@ declare namespace SageMaker {
8159
8159
  */
8160
8160
  Schedule?: InferenceExperimentSchedule;
8161
8161
  /**
8162
- * The status of the inference experiment. The following are the possible statuses for an inference experiment: Creating - Amazon SageMaker is creating your experiment. Created - Amazon SageMaker has finished creating your experiment and it will begin at the scheduled time. Updating - When you make changes to your experiment, your experiment shows as updating. Starting - Amazon SageMaker is beginning your experiment. Running - Your experiment is in progress. Stopping - Amazon SageMaker is stopping your experiment. Completed - Your experiment has completed. Cancelled - When you conclude your experiment early, it shows as canceled.
8162
+ * The status of the inference experiment. The following are the possible statuses for an inference experiment: Creating - Amazon SageMaker is creating your experiment. Created - Amazon SageMaker has finished the creation of your experiment and will begin the experiment at the scheduled time. Updating - When you make changes to your experiment, your experiment shows as updating. Starting - Amazon SageMaker is beginning your experiment. Running - Your experiment is in progress. Stopping - Amazon SageMaker is stopping your experiment. Completed - Your experiment has completed. Cancelled - When you conclude your experiment early using the StopInferenceExperiment API, or if any operation fails with an unexpected error, it shows as cancelled.
8163
8163
  */
8164
8164
  Status: InferenceExperimentStatus;
8165
8165
  /**
8166
- * The error message for the inference experiment status result.
8166
+ * The error message or client-specified Reason from the StopInferenceExperiment API, that explains the status of the inference experiment.
8167
8167
  */
8168
8168
  StatusReason?: InferenceExperimentStatusReason;
8169
8169
  /**
@@ -8175,7 +8175,7 @@ declare namespace SageMaker {
8175
8175
  */
8176
8176
  CreationTime?: Timestamp;
8177
8177
  /**
8178
- * The timestamp at which the inference experiment was completed or will complete.
8178
+ * The timestamp at which the inference experiment was completed.
8179
8179
  */
8180
8180
  CompletionTime?: Timestamp;
8181
8181
  /**
@@ -8183,7 +8183,7 @@ declare namespace SageMaker {
8183
8183
  */
8184
8184
  LastModifiedTime?: Timestamp;
8185
8185
  /**
8186
- * The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images.
8186
+ * The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
8187
8187
  */
8188
8188
  RoleArn?: RoleArn;
8189
8189
  /**
@@ -8191,15 +8191,15 @@ declare namespace SageMaker {
8191
8191
  */
8192
8192
  EndpointMetadata: EndpointMetadata;
8193
8193
  /**
8194
- * Array of ModelVariantConfigSummary objects. There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for deploying the corresponding variant.
8194
+ * An array of ModelVariantConfigSummary objects. There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for deploying the corresponding variant.
8195
8195
  */
8196
8196
  ModelVariants: ModelVariantConfigSummaryList;
8197
8197
  /**
8198
- * The Amazon S3 storage configuration for the inference experiment.
8198
+ * The Amazon S3 location and configuration for storing inference request and response data.
8199
8199
  */
8200
8200
  DataStorageConfig?: InferenceExperimentDataStorageConfig;
8201
8201
  /**
8202
- * Shows which variant is a production variant and which variant is a shadow variant. For shadow variants, also shows the sampling percentage.
8202
+ * The configuration of ShadowMode inference experiment type, which shows the production variant that takes all the inference requests, and the shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant it also shows the percentage of requests that Amazon SageMaker replicates.
8203
8203
  */
8204
8204
  ShadowModeConfig?: ShadowModeConfig;
8205
8205
  /**
@@ -10380,7 +10380,7 @@ declare namespace SageMaker {
10380
10380
  */
10381
10381
  Tags?: TagList;
10382
10382
  /**
10383
- * Array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
10383
+ * A list of the shadow variants hosted on the endpoint. Each shadow variant is a model in shadow mode with production traffic replicated from the proudction variant.
10384
10384
  */
10385
10385
  ShadowProductionVariants?: ProductionVariantSummaryList;
10386
10386
  }
@@ -10481,7 +10481,7 @@ declare namespace SageMaker {
10481
10481
  */
10482
10482
  EndpointStatus?: EndpointStatus;
10483
10483
  /**
10484
- * If the status of the endpoint is Failed, this provides the reason why it failed.
10484
+ * If the status of the endpoint is Failed, or the status is InService but update operation fails, this provides the reason why it failed.
10485
10485
  */
10486
10486
  FailureReason?: FailureReason;
10487
10487
  }
@@ -11517,15 +11517,15 @@ declare namespace SageMaker {
11517
11517
  */
11518
11518
  StrategyConfig?: HyperParameterTuningJobStrategyConfig;
11519
11519
  /**
11520
- * The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.
11520
+ * The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
11521
11521
  */
11522
11522
  HyperParameterTuningJobObjective?: HyperParameterTuningJobObjective;
11523
11523
  /**
11524
- * The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
11524
+ * The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
11525
11525
  */
11526
11526
  ResourceLimits: ResourceLimits;
11527
11527
  /**
11528
- * The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.
11528
+ * The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against .your chosen objective metric.
11529
11529
  */
11530
11530
  ParameterRanges?: ParameterRanges;
11531
11531
  /**
@@ -11536,6 +11536,10 @@ declare namespace SageMaker {
11536
11536
  * The tuning job's completion criteria.
11537
11537
  */
11538
11538
  TuningJobCompletionCriteria?: TuningJobCompletionCriteria;
11539
+ /**
11540
+ * A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.
11541
+ */
11542
+ RandomSeed?: RandomSeed;
11539
11543
  }
11540
11544
  export type HyperParameterTuningJobName = string;
11541
11545
  export interface HyperParameterTuningJobObjective {
@@ -11860,11 +11864,11 @@ declare namespace SageMaker {
11860
11864
  export type InferenceExperimentArn = string;
11861
11865
  export interface InferenceExperimentDataStorageConfig {
11862
11866
  /**
11863
- * The Amazon S3 bucket where the inference experiment data is stored.
11867
+ * The Amazon S3 bucket where the inference request and response data is stored.
11864
11868
  */
11865
11869
  Destination: DestinationS3Uri;
11866
11870
  /**
11867
- * The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data when uploading to Amazon S3.
11871
+ * The Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.
11868
11872
  */
11869
11873
  KmsKey?: KmsKeyId;
11870
11874
  ContentType?: CaptureContentTypeHeader;
@@ -11923,7 +11927,7 @@ declare namespace SageMaker {
11923
11927
  */
11924
11928
  LastModifiedTime: Timestamp;
11925
11929
  /**
11926
- * The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images.
11930
+ * The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
11927
11931
  */
11928
11932
  RoleArn?: RoleArn;
11929
11933
  }
@@ -12599,11 +12603,11 @@ declare namespace SageMaker {
12599
12603
  */
12600
12604
  DomainIdEquals?: DomainId;
12601
12605
  /**
12602
- * A parameter to search by user profile name.
12606
+ * A parameter to search by user profile name. If SpaceNameEquals is set, then this value cannot be set.
12603
12607
  */
12604
12608
  UserProfileNameEquals?: UserProfileName;
12605
12609
  /**
12606
- * A parameter to search by space name.
12610
+ * A parameter to search by space name. If UserProfileNameEquals is set, then this value cannot be set.
12607
12611
  */
12608
12612
  SpaceNameEquals?: SpaceName;
12609
12613
  }
@@ -16533,7 +16537,7 @@ declare namespace SageMaker {
16533
16537
  export type ModelVariantActionMap = {[key: string]: ModelVariantAction};
16534
16538
  export interface ModelVariantConfig {
16535
16539
  /**
16536
- * The name of the model.
16540
+ * The name of the Amazon SageMaker Model entity.
16537
16541
  */
16538
16542
  ModelName: ModelName;
16539
16543
  /**
@@ -16548,7 +16552,7 @@ declare namespace SageMaker {
16548
16552
  export type ModelVariantConfigList = ModelVariantConfig[];
16549
16553
  export interface ModelVariantConfigSummary {
16550
16554
  /**
16551
- * The name of the model.
16555
+ * The name of the Amazon SageMaker Model entity.
16552
16556
  */
16553
16557
  ModelName: ModelName;
16554
16558
  /**
@@ -16560,7 +16564,7 @@ declare namespace SageMaker {
16560
16564
  */
16561
16565
  InfrastructureConfig: ModelInfrastructureConfig;
16562
16566
  /**
16563
- * The status of the deployment.
16567
+ * The status of deployment for the model variant on the hosted inference endpoint. Creating - Amazon SageMaker is preparing the model variant on the hosted inference endpoint. InService - The model variant is running on the hosted inference endpoint. Updating - Amazon SageMaker is updating the model variant on the hosted inference endpoint. Deleting - Amazon SageMaker is deleting the model variant on the hosted inference endpoint. Deleted - The model variant has been deleted on the hosted inference endpoint. This can only happen after stopping the experiment.
16564
16568
  */
16565
16569
  Status: ModelVariantStatus;
16566
16570
  }
@@ -17171,7 +17175,7 @@ declare namespace SageMaker {
17171
17175
  */
17172
17176
  DataCatalogConfig?: DataCatalogConfig;
17173
17177
  /**
17174
- * Format for the offline store feature group. Iceberg is the optimal format for feature groups shared between offline and online stores.
17178
+ * Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg.
17175
17179
  */
17176
17180
  TableFormat?: TableFormat;
17177
17181
  }
@@ -17397,7 +17401,7 @@ declare namespace SageMaker {
17397
17401
  */
17398
17402
  EndpointConfigName: EndpointConfigName;
17399
17403
  /**
17400
- * List of PendingProductionVariantSummary objects.
17404
+ * An array of PendingProductionVariantSummary objects, one for each model hosted behind this endpoint for the in-progress deployment.
17401
17405
  */
17402
17406
  ProductionVariants?: PendingProductionVariantSummaryList;
17403
17407
  /**
@@ -17405,7 +17409,7 @@ declare namespace SageMaker {
17405
17409
  */
17406
17410
  StartTime?: Timestamp;
17407
17411
  /**
17408
- * Array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
17412
+ * An array of PendingProductionVariantSummary objects, one for each model hosted behind this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants for the in-progress deployment.
17409
17413
  */
17410
17414
  ShadowProductionVariants?: PendingProductionVariantSummaryList;
17411
17415
  }
@@ -18530,13 +18534,14 @@ declare namespace SageMaker {
18530
18534
  DefaultResourceSpec?: ResourceSpec;
18531
18535
  }
18532
18536
  export type RStudioServerProUserGroup = "R_STUDIO_ADMIN"|"R_STUDIO_USER"|string;
18537
+ export type RandomSeed = number;
18533
18538
  export interface RealTimeInferenceConfig {
18534
18539
  /**
18535
- * The number of instances of the type specified by InstanceType.
18540
+ * The instance type the model is deployed to.
18536
18541
  */
18537
18542
  InstanceType: InstanceType;
18538
18543
  /**
18539
- * The instance type the model is deployed to.
18544
+ * The number of instances of the type specified by InstanceType.
18540
18545
  */
18541
18546
  InstanceCount: TaskCount;
18542
18547
  }
@@ -18622,6 +18627,10 @@ declare namespace SageMaker {
18622
18627
  * Existing customer endpoints on which to run an Inference Recommender job.
18623
18628
  */
18624
18629
  Endpoints?: Endpoints;
18630
+ /**
18631
+ * Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.
18632
+ */
18633
+ VpcConfig?: RecommendationJobVpcConfig;
18625
18634
  }
18626
18635
  export type RecommendationJobName = string;
18627
18636
  export interface RecommendationJobOutputConfig {
@@ -18668,6 +18677,20 @@ declare namespace SageMaker {
18668
18677
  export type RecommendationJobSupportedContentTypes = String[];
18669
18678
  export type RecommendationJobSupportedInstanceTypes = String[];
18670
18679
  export type RecommendationJobType = "Default"|"Advanced"|string;
18680
+ export interface RecommendationJobVpcConfig {
18681
+ /**
18682
+ * The VPC security group IDs. IDs have the form of sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
18683
+ */
18684
+ SecurityGroupIds: RecommendationJobVpcSecurityGroupIds;
18685
+ /**
18686
+ * The ID of the subnets in the VPC to which you want to connect your model.
18687
+ */
18688
+ Subnets: RecommendationJobVpcSubnets;
18689
+ }
18690
+ export type RecommendationJobVpcSecurityGroupId = string;
18691
+ export type RecommendationJobVpcSecurityGroupIds = RecommendationJobVpcSecurityGroupId[];
18692
+ export type RecommendationJobVpcSubnetId = string;
18693
+ export type RecommendationJobVpcSubnets = RecommendationJobVpcSubnetId[];
18671
18694
  export interface RecommendationMetrics {
18672
18695
  /**
18673
18696
  * Defines the cost per hour for the instance.
@@ -18799,7 +18822,7 @@ declare namespace SageMaker {
18799
18822
  export type ResourceArn = string;
18800
18823
  export interface ResourceConfig {
18801
18824
  /**
18802
- * The ML compute instance type.
18825
+ * The ML compute instance type. SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022. Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances (ml.p4de.24xlarge) to reduce model training time. The ml.p4de.24xlarge instances are available in the following Amazon Web Services Regions. US East (N. Virginia) (us-east-1) US West (Oregon) (us-west-2) To request quota limit increase and start using P4de instances, contact the SageMaker Training service team through your account team.
18803
18826
  */
18804
18827
  InstanceType?: TrainingInstanceType;
18805
18828
  /**
@@ -19158,7 +19181,7 @@ declare namespace SageMaker {
19158
19181
  export type SessionExpirationDurationInSeconds = number;
19159
19182
  export interface ShadowModeConfig {
19160
19183
  /**
19161
- * The name of the production variant.
19184
+ * The name of the production variant, which takes all the inference requests.
19162
19185
  */
19163
19186
  SourceModelVariantName: ModelVariantName;
19164
19187
  /**
@@ -19172,7 +19195,7 @@ declare namespace SageMaker {
19172
19195
  */
19173
19196
  ShadowModelVariantName: ModelVariantName;
19174
19197
  /**
19175
- * The percentage of inference requests that are replicated to the shadow variant.
19198
+ * The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.
19176
19199
  */
19177
19200
  SamplingPercentage: Percentage;
19178
19201
  }
@@ -19387,7 +19410,7 @@ declare namespace SageMaker {
19387
19410
  */
19388
19411
  ModelVariantActions: ModelVariantActionMap;
19389
19412
  /**
19390
- * Array of ModelVariantConfig objects. There is one for each variant that you want to deploy after the inference experiment stops. Each ModelVariantConfig describes the infrastructure configuration for deploying the corresponding variant.
19413
+ * An array of ModelVariantConfig objects. There is one for each variant that you want to deploy after the inference experiment stops. Each ModelVariantConfig describes the infrastructure configuration for deploying the corresponding variant.
19391
19414
  */
19392
19415
  DesiredModelVariants?: ModelVariantConfigList;
19393
19416
  /**
@@ -20844,15 +20867,15 @@ declare namespace SageMaker {
20844
20867
  */
20845
20868
  Description?: InferenceExperimentDescription;
20846
20869
  /**
20847
- * Array of ModelVariantConfigSummary objects. There is one for each variant, whose infrastructure configuration you want to update.
20870
+ * An array of ModelVariantConfig objects. There is one for each variant, whose infrastructure configuration you want to update.
20848
20871
  */
20849
20872
  ModelVariants?: ModelVariantConfigList;
20850
20873
  /**
20851
- * The Amazon S3 storage configuration for the inference experiment.
20874
+ * The Amazon S3 location and configuration for storing inference request and response data.
20852
20875
  */
20853
20876
  DataStorageConfig?: InferenceExperimentDataStorageConfig;
20854
20877
  /**
20855
- * The Amazon S3 storage configuration for the inference experiment.
20878
+ * The configuration of ShadowMode inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.
20856
20879
  */
20857
20880
  ShadowModeConfig?: ShadowModeConfig;
20858
20881
  }