@cdklabs/cdk-ecs-codedeploy 0.0.11 → 0.0.13

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. package/.jsii +3 -3
  2. package/lib/ecs-appspec/index.js +1 -1
  3. package/lib/ecs-deployment/index.js +1 -1
  4. package/node_modules/aws-sdk/CHANGELOG.md +20 -1
  5. package/node_modules/aws-sdk/README.md +1 -1
  6. package/node_modules/aws-sdk/apis/athena-2017-05-18.min.json +3 -1
  7. package/node_modules/aws-sdk/apis/batch-2016-08-10.min.json +6 -0
  8. package/node_modules/aws-sdk/apis/ec2-2016-11-15.min.json +90 -83
  9. package/node_modules/aws-sdk/apis/ec2-2016-11-15.paginators.json +3 -0
  10. package/node_modules/aws-sdk/apis/ecs-2014-11-13.min.json +178 -159
  11. package/node_modules/aws-sdk/apis/kinesis-video-webrtc-storage-2018-05-10.examples.json +5 -0
  12. package/node_modules/aws-sdk/apis/kinesis-video-webrtc-storage-2018-05-10.min.json +49 -0
  13. package/node_modules/aws-sdk/apis/kinesis-video-webrtc-storage-2018-05-10.paginators.json +4 -0
  14. package/node_modules/aws-sdk/apis/kinesisvideo-2017-09-30.min.json +96 -12
  15. package/node_modules/aws-sdk/apis/kinesisvideo-2017-09-30.paginators.json +6 -0
  16. package/node_modules/aws-sdk/apis/lookoutequipment-2020-12-15.min.json +2 -1
  17. package/node_modules/aws-sdk/apis/medialive-2017-10-14.min.json +247 -201
  18. package/node_modules/aws-sdk/apis/metadata.json +4 -0
  19. package/node_modules/aws-sdk/apis/nimble-2020-08-01.min.json +283 -140
  20. package/node_modules/aws-sdk/apis/nimble-2020-08-01.paginators.json +5 -0
  21. package/node_modules/aws-sdk/apis/rds-2014-10-31.min.json +3 -0
  22. package/node_modules/aws-sdk/apis/route53domains-2014-05-15.min.json +159 -91
  23. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +646 -556
  24. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.paginators.json +6 -0
  25. package/node_modules/aws-sdk/clients/all.d.ts +1 -0
  26. package/node_modules/aws-sdk/clients/all.js +2 -1
  27. package/node_modules/aws-sdk/clients/athena.d.ts +4 -4
  28. package/node_modules/aws-sdk/clients/batch.d.ts +13 -5
  29. package/node_modules/aws-sdk/clients/ec2.d.ts +52 -38
  30. package/node_modules/aws-sdk/clients/ecs.d.ts +19 -1
  31. package/node_modules/aws-sdk/clients/kinesisvideo.d.ts +109 -5
  32. package/node_modules/aws-sdk/clients/kinesisvideowebrtcstorage.d.ts +66 -0
  33. package/node_modules/aws-sdk/clients/kinesisvideowebrtcstorage.js +18 -0
  34. package/node_modules/aws-sdk/clients/lookoutequipment.d.ts +4 -0
  35. package/node_modules/aws-sdk/clients/medialive.d.ts +47 -4
  36. package/node_modules/aws-sdk/clients/nimble.d.ts +319 -123
  37. package/node_modules/aws-sdk/clients/rds.d.ts +5 -1
  38. package/node_modules/aws-sdk/clients/resourceexplorer2.d.ts +6 -6
  39. package/node_modules/aws-sdk/clients/route53domains.d.ts +227 -37
  40. package/node_modules/aws-sdk/clients/sagemaker.d.ts +202 -21
  41. package/node_modules/aws-sdk/clients/transcribeservice.d.ts +1 -1
  42. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +2 -2
  43. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +56 -19
  44. package/node_modules/aws-sdk/dist/aws-sdk.js +545 -349
  45. package/node_modules/aws-sdk/dist/aws-sdk.min.js +71 -71
  46. package/node_modules/aws-sdk/lib/config_service_placeholders.d.ts +2 -0
  47. package/node_modules/aws-sdk/lib/core.js +1 -1
  48. package/node_modules/aws-sdk/package.json +1 -1
  49. package/package.json +5 -5
@@ -181,11 +181,11 @@ declare class SageMaker extends Service {
181
181
  */
182
182
  createEndpointConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointConfigOutput) => void): Request<SageMaker.Types.CreateEndpointConfigOutput, AWSError>;
183
183
  /**
184
- * Creates an SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model. The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant. When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to experiments, trials, trial components and then use the Search API to search for the tags. To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API. To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
184
+ * Creates a SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model. In the Studio UI, trials are referred to as run groups and trial components are referred to as runs. The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant. When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to experiments, trials, trial components and then use the Search API to search for the tags. To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API. To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
185
185
  */
186
186
  createExperiment(params: SageMaker.Types.CreateExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateExperimentResponse) => void): Request<SageMaker.Types.CreateExperimentResponse, AWSError>;
187
187
  /**
188
- * Creates an SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model. The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant. When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to experiments, trials, trial components and then use the Search API to search for the tags. To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API. To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
188
+ * Creates a SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model. In the Studio UI, trials are referred to as run groups and trial components are referred to as runs. The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant. When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to experiments, trials, trial components and then use the Search API to search for the tags. To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API. To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
189
189
  */
190
190
  createExperiment(callback?: (err: AWSError, data: SageMaker.Types.CreateExperimentResponse) => void): Request<SageMaker.Types.CreateExperimentResponse, AWSError>;
191
191
  /**
@@ -1380,6 +1380,14 @@ declare class SageMaker extends Service {
1380
1380
  * Lists the machine learning algorithms that have been created.
1381
1381
  */
1382
1382
  listAlgorithms(callback?: (err: AWSError, data: SageMaker.Types.ListAlgorithmsOutput) => void): Request<SageMaker.Types.ListAlgorithmsOutput, AWSError>;
1383
+ /**
1384
+ * Lists the aliases of a specified image or image version.
1385
+ */
1386
+ listAliases(params: SageMaker.Types.ListAliasesRequest, callback?: (err: AWSError, data: SageMaker.Types.ListAliasesResponse) => void): Request<SageMaker.Types.ListAliasesResponse, AWSError>;
1387
+ /**
1388
+ * Lists the aliases of a specified image or image version.
1389
+ */
1390
+ listAliases(callback?: (err: AWSError, data: SageMaker.Types.ListAliasesResponse) => void): Request<SageMaker.Types.ListAliasesResponse, AWSError>;
1383
1391
  /**
1384
1392
  * Lists the AppImageConfigs in your account and their properties. The list can be filtered by creation time or modified time, and whether the AppImageConfig name contains a specified string.
1385
1393
  */
@@ -2260,6 +2268,14 @@ declare class SageMaker extends Service {
2260
2268
  * Updates the properties of a SageMaker image. To change the image's tags, use the AddTags and DeleteTags APIs.
2261
2269
  */
2262
2270
  updateImage(callback?: (err: AWSError, data: SageMaker.Types.UpdateImageResponse) => void): Request<SageMaker.Types.UpdateImageResponse, AWSError>;
2271
+ /**
2272
+ * Updates the properties of a SageMaker image version.
2273
+ */
2274
+ updateImageVersion(params: SageMaker.Types.UpdateImageVersionRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateImageVersionResponse) => void): Request<SageMaker.Types.UpdateImageVersionResponse, AWSError>;
2275
+ /**
2276
+ * Updates the properties of a SageMaker image version.
2277
+ */
2278
+ updateImageVersion(callback?: (err: AWSError, data: SageMaker.Types.UpdateImageVersionResponse) => void): Request<SageMaker.Types.UpdateImageVersionResponse, AWSError>;
2263
2279
  /**
2264
2280
  * Updates an inference experiment that you created. The status of the inference experiment has to be either Created, Running. For more information on the status of an inference experiment, see DescribeInferenceExperimentResponse$Status.
2265
2281
  */
@@ -3176,7 +3192,7 @@ declare namespace SageMaker {
3176
3192
  export type AutoMLJobName = string;
3177
3193
  export interface AutoMLJobObjective {
3178
3194
  /**
3179
- * The name of the objective metric used to measure the predictive quality of a machine learning system. This metric is optimized during training to provide the best estimate for model parameter values from data. Here are the options: MSE: The mean squared error (MSE) is the average of the squared differences between the predicted and actual values. It is used for regression. MSE values are always positive: the better a model is at predicting the actual values, the smaller the MSE value is. When the data contains outliers, they tend to dominate the MSE, which might cause subpar prediction performance. Accuracy: The ratio of the number of correctly classified items to the total number of (correctly and incorrectly) classified items. It is used for binary and multiclass classification. It measures how close the predicted class values are to the actual values. Accuracy values vary between zero and one: one indicates perfect accuracy and zero indicates perfect inaccuracy. F1: The F1 score is the harmonic mean of the precision and recall. It is used for binary classification into classes traditionally referred to as positive and negative. Predictions are said to be true when they match their actual (correct) class and false when they do not. Precision is the ratio of the true positive predictions to all positive predictions (including the false positives) in a data set and measures the quality of the prediction when it predicts the positive class. Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances and measures how completely a model predicts the actual class members in a data set. The standard F1 score weighs precision and recall equally. But which metric is paramount typically depends on specific aspects of a problem. F1 scores vary between zero and one: one indicates the best possible performance and zero the worst. AUC: The area under the curve (AUC) metric is used to compare and evaluate binary classification by algorithms such as logistic regression that return probabilities. A threshold is needed to map the probabilities into classifications. The relevant curve is the receiver operating characteristic curve that plots the true positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of the threshold value, above which a prediction is considered positive. Increasing the threshold results in fewer false positives but more false negatives. AUC is the area under this receiver operating characteristic curve and so provides an aggregated measure of the model performance across all possible classification thresholds. The AUC score can also be interpreted as the probability that a randomly selected positive data point is more likely to be predicted positive than a randomly selected negative example. AUC scores vary between zero and one: a score of one indicates perfect accuracy and a score of one half indicates that the prediction is not better than a random classifier. Values under one half predict less accurately than a random predictor. But such consistently bad predictors can simply be inverted to obtain better than random predictors. F1macro: The F1macro score applies F1 scoring to multiclass classification. In this context, you have multiple classes to predict. You just calculate the precision and recall for each class as you did for the positive class in binary classification. Then, use these values to calculate the F1 score for each class and average them to obtain the F1macro score. F1macro scores vary between zero and one: one indicates the best possible performance and zero the worst. If you do not specify a metric explicitly, the default behavior is to automatically use: MSE: for regression. F1: for binary classification Accuracy: for multiclass classification.
3195
+ * The name of the objective metric used to measure the predictive quality of a machine learning system. This metric is optimized during training to provide the best estimate for model parameter values from data. Here are the options: Accuracy The ratio of the number of correctly classified items to the total number of (correctly and incorrectly) classified items. It is used for both binary and multiclass classification. Accuracy measures how close the predicted class values are to the actual values. Values for accuracy metrics vary between zero (0) and one (1). A value of 1 indicates perfect accuracy, and 0 indicates perfect inaccuracy. AUC The area under the curve (AUC) metric is used to compare and evaluate binary classification by algorithms that return probabilities, such as logistic regression. To map the probabilities into classifications, these are compared against a threshold value. The relevant curve is the receiver operating characteristic curve (ROC curve). The ROC curve plots the true positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of the threshold value, above which a prediction is considered positive. Increasing the threshold results in fewer false positives, but more false negatives. AUC is the area under this ROC curve. Therefore, AUC provides an aggregated measure of the model performance across all possible classification thresholds. AUC scores vary between 0 and 1. A score of 1 indicates perfect accuracy, and a score of one half (0.5) indicates that the prediction is not better than a random classifier. BalancedAccuracy BalancedAccuracy is a metric that measures the ratio of accurate predictions to all predictions. This ratio is calculated after normalizing true positives (TP) and true negatives (TN) by the total number of positive (P) and negative (N) values. It is used in both binary and multiclass classification and is defined as follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1. BalancedAccuracy gives a better measure of accuracy when the number of positives or negatives differ greatly from each other in an imbalanced dataset. For example, when only 1% of email is spam. F1 The F1 score is the harmonic mean of the precision and recall, defined as follows: F1 = 2 * (precision * recall) / (precision + recall). It is used for binary classification into classes traditionally referred to as positive and negative. Predictions are said to be true when they match their actual (correct) class, and false when they do not. Precision is the ratio of the true positive predictions to all positive predictions, and it includes the false positives in a dataset. Precision measures the quality of the prediction when it predicts the positive class. Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances. Recall measures how completely a model predicts the actual class members in a dataset. F1 scores vary between 0 and 1. A score of 1 indicates the best possible performance, and 0 indicates the worst. F1macro The F1macro score applies F1 scoring to multiclass classification problems. It does this by calculating the precision and recall, and then taking their harmonic mean to calculate the F1 score for each class. Lastly, the F1macro averages the individual scores to obtain the F1macro score. F1macro scores vary between 0 and 1. A score of 1 indicates the best possible performance, and 0 indicates the worst. MAE The mean absolute error (MAE) is a measure of how different the predicted and actual values are, when they're averaged over all values. MAE is commonly used in regression analysis to understand model prediction error. If there is linear regression, MAE represents the average distance from a predicted line to the actual value. MAE is defined as the sum of absolute errors divided by the number of observations. Values range from 0 to infinity, with smaller numbers indicating a better model fit to the data. MSE The mean squared error (MSE) is the average of the squared differences between the predicted and actual values. It is used for regression. MSE values are always positive. The better a model is at predicting the actual values, the smaller the MSE value is Precision Precision measures how well an algorithm predicts the true positives (TP) out of all of the positives that it identifies. It is defined as follows: Precision = TP/(TP+FP), with values ranging from zero (0) to one (1), and is used in binary classification. Precision is an important metric when the cost of a false positive is high. For example, the cost of a false positive is very high if an airplane safety system is falsely deemed safe to fly. A false positive (FP) reflects a positive prediction that is actually negative in the data. PrecisionMacro The precision macro computes precision for multiclass classification problems. It does this by calculating precision for each class and averaging scores to obtain precision for several classes. PrecisionMacro scores range from zero (0) to one (1). Higher scores reflect the model's ability to predict true positives (TP) out of all of the positives that it identifies, averaged across multiple classes. R2 R2, also known as the coefficient of determination, is used in regression to quantify how much a model can explain the variance of a dependent variable. Values range from one (1) to negative one (-1). Higher numbers indicate a higher fraction of explained variability. R2 values close to zero (0) indicate that very little of the dependent variable can be explained by the model. Negative values indicate a poor fit and that the model is outperformed by a constant function. For linear regression, this is a horizontal line. Recall Recall measures how well an algorithm correctly predicts all of the true positives (TP) in a dataset. A true positive is a positive prediction that is also an actual positive value in the data. Recall is defined as follows: Recall = TP/(TP+FN), with values ranging from 0 to 1. Higher scores reflect a better ability of the model to predict true positives (TP) in the data, and is used in binary classification. Recall is important when testing for cancer because it's used to find all of the true positives. A false positive (FP) reflects a positive prediction that is actually negative in the data. It is often insufficient to measure only recall, because predicting every output as a true positive will yield a perfect recall score. RecallMacro The RecallMacro computes recall for multiclass classification problems by calculating recall for each class and averaging scores to obtain recall for several classes. RecallMacro scores range from 0 to 1. Higher scores reflect the model's ability to predict true positives (TP) in a dataset. Whereas, a true positive reflects a positive prediction that is also an actual positive value in the data. It is often insufficient to measure only recall, because predicting every output as a true positive will yield a perfect recall score. RMSE Root mean squared error (RMSE) measures the square root of the squared difference between predicted and actual values, and it's averaged over all values. It is used in regression analysis to understand model prediction error. It's an important metric to indicate the presence of large model errors and outliers. Values range from zero (0) to infinity, with smaller numbers indicating a better model fit to the data. RMSE is dependent on scale, and should not be used to compare datasets of different sizes. If you do not specify a metric explicitly, the default behavior is to automatically use: MSE: for regression. F1: for binary classification Accuracy: for multiclass classification.
3180
3196
  */
3181
3197
  MetricName: AutoMLMetricEnum;
3182
3198
  }
@@ -3229,7 +3245,7 @@ declare namespace SageMaker {
3229
3245
  PartialFailureReasons?: AutoMLPartialFailureReasons;
3230
3246
  }
3231
3247
  export type AutoMLMaxResults = number;
3232
- export type AutoMLMetricEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|string;
3248
+ export type AutoMLMetricEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|string;
3233
3249
  export type AutoMLMetricExtendedEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|"LogLoss"|"InferenceLatency"|string;
3234
3250
  export type AutoMLMode = "AUTO"|"ENSEMBLING"|"HYPERPARAMETER_TUNING"|string;
3235
3251
  export type AutoMLNameContains = string;
@@ -4799,7 +4815,7 @@ declare namespace SageMaker {
4799
4815
  */
4800
4816
  ImageName: ImageName;
4801
4817
  /**
4802
- * The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.
4818
+ * The ARN of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.
4803
4819
  */
4804
4820
  RoleArn: RoleArn;
4805
4821
  /**
@@ -4809,7 +4825,7 @@ declare namespace SageMaker {
4809
4825
  }
4810
4826
  export interface CreateImageResponse {
4811
4827
  /**
4812
- * The Amazon Resource Name (ARN) of the image.
4828
+ * The ARN of the image.
4813
4829
  */
4814
4830
  ImageArn?: ImageArn;
4815
4831
  }
@@ -4826,10 +4842,42 @@ declare namespace SageMaker {
4826
4842
  * The ImageName of the Image to create a version of.
4827
4843
  */
4828
4844
  ImageName: ImageName;
4845
+ /**
4846
+ * A list of aliases created with the image version.
4847
+ */
4848
+ Aliases?: SageMakerImageVersionAliases;
4849
+ /**
4850
+ * The stability of the image version, specified by the maintainer. NOT_PROVIDED: The maintainers did not provide a status for image version stability. STABLE: The image version is stable. TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
4851
+ */
4852
+ VendorGuidance?: VendorGuidance;
4853
+ /**
4854
+ * Indicates SageMaker job type compatibility. TRAINING: The image version is compatible with SageMaker training jobs. INFERENCE: The image version is compatible with SageMaker inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker notebook kernels.
4855
+ */
4856
+ JobType?: JobType;
4857
+ /**
4858
+ * The machine learning framework vended in the image version.
4859
+ */
4860
+ MLFramework?: MLFramework;
4861
+ /**
4862
+ * The supported programming language and its version.
4863
+ */
4864
+ ProgrammingLang?: ProgrammingLang;
4865
+ /**
4866
+ * Indicates CPU or GPU compatibility. CPU: The image version is compatible with CPU. GPU: The image version is compatible with GPU.
4867
+ */
4868
+ Processor?: Processor;
4869
+ /**
4870
+ * Indicates Horovod compatibility.
4871
+ */
4872
+ Horovod?: Horovod;
4873
+ /**
4874
+ * The maintainer description of the image version.
4875
+ */
4876
+ ReleaseNotes?: ReleaseNotes;
4829
4877
  }
4830
4878
  export interface CreateImageVersionResponse {
4831
4879
  /**
4832
- * The Amazon Resource Name (ARN) of the image version.
4880
+ * The ARN of the image version.
4833
4881
  */
4834
4882
  ImageVersionArn?: ImageVersionArn;
4835
4883
  }
@@ -6385,13 +6433,17 @@ declare namespace SageMaker {
6385
6433
  }
6386
6434
  export interface DeleteImageVersionRequest {
6387
6435
  /**
6388
- * The name of the image.
6436
+ * The name of the image to delete.
6389
6437
  */
6390
6438
  ImageName: ImageName;
6391
6439
  /**
6392
6440
  * The version to delete.
6393
6441
  */
6394
- Version: ImageVersionNumber;
6442
+ Version?: ImageVersionNumber;
6443
+ /**
6444
+ * The alias of the image to delete.
6445
+ */
6446
+ Alias?: SageMakerImageVersionAlias;
6395
6447
  }
6396
6448
  export interface DeleteImageVersionResponse {
6397
6449
  }
@@ -6955,7 +7007,7 @@ declare namespace SageMaker {
6955
7007
  */
6956
7008
  PartialFailureReasons?: AutoMLPartialFailureReasons;
6957
7009
  /**
6958
- * Returns the job's best AutoMLCandidate.
7010
+ * The best model candidate selected by SageMaker Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.
6959
7011
  */
6960
7012
  BestCandidate?: AutoMLCandidate;
6961
7013
  /**
@@ -8067,7 +8119,7 @@ declare namespace SageMaker {
8067
8119
  */
8068
8120
  FailureReason?: FailureReason;
8069
8121
  /**
8070
- * The Amazon Resource Name (ARN) of the image.
8122
+ * The ARN of the image.
8071
8123
  */
8072
8124
  ImageArn?: ImageArn;
8073
8125
  /**
@@ -8083,7 +8135,7 @@ declare namespace SageMaker {
8083
8135
  */
8084
8136
  LastModifiedTime?: Timestamp;
8085
8137
  /**
8086
- * The Amazon Resource Name (ARN) of the IAM role that enables Amazon SageMaker to perform tasks on your behalf.
8138
+ * The ARN of the IAM role that enables Amazon SageMaker to perform tasks on your behalf.
8087
8139
  */
8088
8140
  RoleArn?: RoleArn;
8089
8141
  }
@@ -8096,6 +8148,10 @@ declare namespace SageMaker {
8096
8148
  * The version of the image. If not specified, the latest version is described.
8097
8149
  */
8098
8150
  Version?: ImageVersionNumber;
8151
+ /**
8152
+ * The alias of the image version.
8153
+ */
8154
+ Alias?: SageMakerImageVersionAlias;
8099
8155
  }
8100
8156
  export interface DescribeImageVersionResponse {
8101
8157
  /**
@@ -8115,7 +8171,7 @@ declare namespace SageMaker {
8115
8171
  */
8116
8172
  FailureReason?: FailureReason;
8117
8173
  /**
8118
- * The Amazon Resource Name (ARN) of the image the version is based on.
8174
+ * The ARN of the image the version is based on.
8119
8175
  */
8120
8176
  ImageArn?: ImageArn;
8121
8177
  /**
@@ -8134,6 +8190,34 @@ declare namespace SageMaker {
8134
8190
  * The version number.
8135
8191
  */
8136
8192
  Version?: ImageVersionNumber;
8193
+ /**
8194
+ * The stability of the image version specified by the maintainer. NOT_PROVIDED: The maintainers did not provide a status for image version stability. STABLE: The image version is stable. TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
8195
+ */
8196
+ VendorGuidance?: VendorGuidance;
8197
+ /**
8198
+ * Indicates SageMaker job type compatibility. TRAINING: The image version is compatible with SageMaker training jobs. INFERENCE: The image version is compatible with SageMaker inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker notebook kernels.
8199
+ */
8200
+ JobType?: JobType;
8201
+ /**
8202
+ * The machine learning framework vended in the image version.
8203
+ */
8204
+ MLFramework?: MLFramework;
8205
+ /**
8206
+ * The supported programming language and its version.
8207
+ */
8208
+ ProgrammingLang?: ProgrammingLang;
8209
+ /**
8210
+ * Indicates CPU or GPU compatibility. CPU: The image version is compatible with CPU. GPU: The image version is compatible with GPU.
8211
+ */
8212
+ Processor?: Processor;
8213
+ /**
8214
+ * Indicates Horovod compatibility.
8215
+ */
8216
+ Horovod?: Horovod;
8217
+ /**
8218
+ * The maintainer description of the image version.
8219
+ */
8220
+ ReleaseNotes?: ReleaseNotes;
8137
8221
  }
8138
8222
  export interface DescribeInferenceExperimentRequest {
8139
8223
  /**
@@ -9623,7 +9707,7 @@ declare namespace SageMaker {
9623
9707
  */
9624
9708
  LineageGroupArn?: LineageGroupArn;
9625
9709
  /**
9626
- * A list of the Amazon Resource Name (ARN) and, if applicable, job type for multiple sources of an experiment run.
9710
+ * A list of ARNs and, if applicable, job types for multiple sources of an experiment run.
9627
9711
  */
9628
9712
  Sources?: TrialComponentSources;
9629
9713
  }
@@ -10607,7 +10691,7 @@ declare namespace SageMaker {
10607
10691
  export type ExperimentArn = string;
10608
10692
  export interface ExperimentConfig {
10609
10693
  /**
10610
- * The name of an existing experiment to associate the trial component with.
10694
+ * The name of an existing experiment to associate with the trial component.
10611
10695
  */
10612
10696
  ExperimentName?: ExperimentEntityName;
10613
10697
  /**
@@ -10619,7 +10703,7 @@ declare namespace SageMaker {
10619
10703
  */
10620
10704
  TrialComponentDisplayName?: ExperimentEntityName;
10621
10705
  /**
10622
- * The name of the experiment run to associate the trial component with.
10706
+ * The name of the experiment run to associate with the trial component.
10623
10707
  */
10624
10708
  RunName?: ExperimentEntityName;
10625
10709
  }
@@ -11092,6 +11176,7 @@ declare namespace SageMaker {
11092
11176
  export type Group = string;
11093
11177
  export type Groups = Group[];
11094
11178
  export type HookParameters = {[key: string]: ConfigValue};
11179
+ export type Horovod = boolean;
11095
11180
  export type HubArn = string;
11096
11181
  export type HubContentArn = string;
11097
11182
  export interface HubContentDependency {
@@ -11525,7 +11610,7 @@ declare namespace SageMaker {
11525
11610
  */
11526
11611
  ResourceLimits: ResourceLimits;
11527
11612
  /**
11528
- * The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against .your chosen objective metric.
11613
+ * The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
11529
11614
  */
11530
11615
  ParameterRanges?: ParameterRanges;
11531
11616
  /**
@@ -11721,7 +11806,7 @@ declare namespace SageMaker {
11721
11806
  */
11722
11807
  FailureReason?: FailureReason;
11723
11808
  /**
11724
- * The Amazon Resource Name (ARN) of the image.
11809
+ * The ARN of the image.
11725
11810
  */
11726
11811
  ImageArn: ImageArn;
11727
11812
  /**
@@ -11771,7 +11856,7 @@ declare namespace SageMaker {
11771
11856
  */
11772
11857
  FailureReason?: FailureReason;
11773
11858
  /**
11774
- * The Amazon Resource Name (ARN) of the image the version is based on.
11859
+ * The ARN of the image the version is based on.
11775
11860
  */
11776
11861
  ImageArn: ImageArn;
11777
11862
  /**
@@ -12127,6 +12212,7 @@ declare namespace SageMaker {
12127
12212
  export type JobDurationInSeconds = number;
12128
12213
  export type JobReferenceCode = string;
12129
12214
  export type JobReferenceCodeContains = string;
12215
+ export type JobType = "TRAINING"|"INFERENCE"|"NOTEBOOK_KERNEL"|string;
12130
12216
  export type JoinSource = "Input"|"None"|string;
12131
12217
  export type JsonContentType = string;
12132
12218
  export type JsonContentTypes = JsonContentType[];
@@ -12533,6 +12619,38 @@ declare namespace SageMaker {
12533
12619
  */
12534
12620
  NextToken?: NextToken;
12535
12621
  }
12622
+ export interface ListAliasesRequest {
12623
+ /**
12624
+ * The name of the image.
12625
+ */
12626
+ ImageName: ImageName;
12627
+ /**
12628
+ * The alias of the image version.
12629
+ */
12630
+ Alias?: SageMakerImageVersionAlias;
12631
+ /**
12632
+ * The version of the image. If image version is not specified, the aliases of all versions of the image are listed.
12633
+ */
12634
+ Version?: ImageVersionNumber;
12635
+ /**
12636
+ * The maximum number of aliases to return.
12637
+ */
12638
+ MaxResults?: MaxResults;
12639
+ /**
12640
+ * If the previous call to ListAliases didn't return the full set of aliases, the call returns a token for retrieving the next set of aliases.
12641
+ */
12642
+ NextToken?: NextToken;
12643
+ }
12644
+ export interface ListAliasesResponse {
12645
+ /**
12646
+ * A list of SageMaker image version aliases.
12647
+ */
12648
+ SageMakerImageVersionAliases?: SageMakerImageVersionAliases;
12649
+ /**
12650
+ * A token for getting the next set of aliases, if more aliases exist.
12651
+ */
12652
+ NextToken?: NextToken;
12653
+ }
12536
12654
  export interface ListAppImageConfigsRequest {
12537
12655
  /**
12538
12656
  * The maximum number of AppImageConfigs to return in the response. The default value is 10.
@@ -15514,6 +15632,7 @@ declare namespace SageMaker {
15514
15632
  }
15515
15633
  export type ListWorkteamsSortByOptions = "Name"|"CreateDate"|string;
15516
15634
  export type Long = number;
15635
+ export type MLFramework = string;
15517
15636
  export type MaxAutoMLJobRuntimeInSeconds = number;
15518
15637
  export type MaxCandidates = number;
15519
15638
  export type MaxConcurrentInvocationsPerInstance = number;
@@ -18026,6 +18145,7 @@ declare namespace SageMaker {
18026
18145
  MaxRuntimeInSeconds: ProcessingMaxRuntimeInSeconds;
18027
18146
  }
18028
18147
  export type ProcessingVolumeSizeInGB = number;
18148
+ export type Processor = "CPU"|"GPU"|string;
18029
18149
  export type ProductId = string;
18030
18150
  export type ProductListings = String[];
18031
18151
  export interface ProductionVariant {
@@ -18247,6 +18367,7 @@ declare namespace SageMaker {
18247
18367
  export type ProfilingIntervalInMilliseconds = number;
18248
18368
  export type ProfilingParameters = {[key: string]: ConfigValue};
18249
18369
  export type ProfilingStatus = "Enabled"|"Disabled"|string;
18370
+ export type ProgrammingLang = string;
18250
18371
  export interface Project {
18251
18372
  /**
18252
18373
  * The Amazon Resource Name (ARN) of the project.
@@ -18757,6 +18878,7 @@ declare namespace SageMaker {
18757
18878
  */
18758
18879
  Arn?: String256;
18759
18880
  }
18881
+ export type ReleaseNotes = string;
18760
18882
  export interface RenderUiTemplateRequest {
18761
18883
  /**
18762
18884
  * A Template object containing the worker UI template to render.
@@ -18965,6 +19087,8 @@ declare namespace SageMaker {
18965
19087
  ResolvedOutputS3Uri?: S3Uri;
18966
19088
  }
18967
19089
  export type S3Uri = string;
19090
+ export type SageMakerImageVersionAlias = string;
19091
+ export type SageMakerImageVersionAliases = SageMakerImageVersionAlias[];
18968
19092
  export type SagemakerServicecatalogStatus = "Enabled"|"Disabled"|string;
18969
19093
  export type SamplingPercentage = number;
18970
19094
  export interface ScheduleConfig {
@@ -20843,16 +20967,72 @@ declare namespace SageMaker {
20843
20967
  */
20844
20968
  ImageName: ImageName;
20845
20969
  /**
20846
- * The new Amazon Resource Name (ARN) for the IAM role that enables Amazon SageMaker to perform tasks on your behalf.
20970
+ * The new ARN for the IAM role that enables Amazon SageMaker to perform tasks on your behalf.
20847
20971
  */
20848
20972
  RoleArn?: RoleArn;
20849
20973
  }
20850
20974
  export interface UpdateImageResponse {
20851
20975
  /**
20852
- * The Amazon Resource Name (ARN) of the image.
20976
+ * The ARN of the image.
20853
20977
  */
20854
20978
  ImageArn?: ImageArn;
20855
20979
  }
20980
+ export interface UpdateImageVersionRequest {
20981
+ /**
20982
+ * The name of the image.
20983
+ */
20984
+ ImageName: ImageName;
20985
+ /**
20986
+ * The alias of the image version.
20987
+ */
20988
+ Alias?: SageMakerImageVersionAlias;
20989
+ /**
20990
+ * The version of the image.
20991
+ */
20992
+ Version?: ImageVersionNumber;
20993
+ /**
20994
+ * A list of aliases to add.
20995
+ */
20996
+ AliasesToAdd?: SageMakerImageVersionAliases;
20997
+ /**
20998
+ * A list of aliases to delete.
20999
+ */
21000
+ AliasesToDelete?: SageMakerImageVersionAliases;
21001
+ /**
21002
+ * The availability of the image version specified by the maintainer. NOT_PROVIDED: The maintainers did not provide a status for image version stability. STABLE: The image version is stable. TO_BE_ARCHIVED: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. ARCHIVED: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
21003
+ */
21004
+ VendorGuidance?: VendorGuidance;
21005
+ /**
21006
+ * Indicates SageMaker job type compatibility. TRAINING: The image version is compatible with SageMaker training jobs. INFERENCE: The image version is compatible with SageMaker inference jobs. NOTEBOOK_KERNEL: The image version is compatible with SageMaker notebook kernels.
21007
+ */
21008
+ JobType?: JobType;
21009
+ /**
21010
+ * The machine learning framework vended in the image version.
21011
+ */
21012
+ MLFramework?: MLFramework;
21013
+ /**
21014
+ * The supported programming language and its version.
21015
+ */
21016
+ ProgrammingLang?: ProgrammingLang;
21017
+ /**
21018
+ * Indicates CPU or GPU compatibility. CPU: The image version is compatible with CPU. GPU: The image version is compatible with GPU.
21019
+ */
21020
+ Processor?: Processor;
21021
+ /**
21022
+ * Indicates Horovod compatibility.
21023
+ */
21024
+ Horovod?: Horovod;
21025
+ /**
21026
+ * The maintainer description of the image version.
21027
+ */
21028
+ ReleaseNotes?: ReleaseNotes;
21029
+ }
21030
+ export interface UpdateImageVersionResponse {
21031
+ /**
21032
+ * The ARN of the image version.
21033
+ */
21034
+ ImageVersionArn?: ImageVersionArn;
21035
+ }
20856
21036
  export interface UpdateInferenceExperimentRequest {
20857
21037
  /**
20858
21038
  * The name of the inference experiment to be updated.
@@ -21414,6 +21594,7 @@ declare namespace SageMaker {
21414
21594
  export type VariantStatus = "Creating"|"Updating"|"Deleting"|"ActivatingTraffic"|"Baking"|string;
21415
21595
  export type VariantStatusMessage = string;
21416
21596
  export type VariantWeight = number;
21597
+ export type VendorGuidance = "NOT_PROVIDED"|"STABLE"|"TO_BE_ARCHIVED"|"ARCHIVED"|string;
21417
21598
  export type VersionId = string;
21418
21599
  export type VersionedArnOrName = string;
21419
21600
  export interface Vertex {
@@ -953,7 +953,7 @@ declare namespace TranscribeService {
953
953
  }
954
954
  export type KMSEncryptionContextMap = {[key: string]: NonEmptyString};
955
955
  export type KMSKeyId = string;
956
- export type LanguageCode = "af-ZA"|"ar-AE"|"ar-SA"|"da-DK"|"de-CH"|"de-DE"|"en-AB"|"en-AU"|"en-GB"|"en-IE"|"en-IN"|"en-US"|"en-WL"|"es-ES"|"es-US"|"fa-IR"|"fr-CA"|"fr-FR"|"he-IL"|"hi-IN"|"id-ID"|"it-IT"|"ja-JP"|"ko-KR"|"ms-MY"|"nl-NL"|"pt-BR"|"pt-PT"|"ru-RU"|"ta-IN"|"te-IN"|"tr-TR"|"zh-CN"|"zh-TW"|"th-TH"|"en-ZA"|"en-NZ"|string;
956
+ export type LanguageCode = "af-ZA"|"ar-AE"|"ar-SA"|"da-DK"|"de-CH"|"de-DE"|"en-AB"|"en-AU"|"en-GB"|"en-IE"|"en-IN"|"en-US"|"en-WL"|"es-ES"|"es-US"|"fa-IR"|"fr-CA"|"fr-FR"|"he-IL"|"hi-IN"|"id-ID"|"it-IT"|"ja-JP"|"ko-KR"|"ms-MY"|"nl-NL"|"pt-BR"|"pt-PT"|"ru-RU"|"ta-IN"|"te-IN"|"tr-TR"|"zh-CN"|"zh-TW"|"th-TH"|"en-ZA"|"en-NZ"|"vi-VN"|"sv-SE"|string;
957
957
  export interface LanguageCodeItem {
958
958
  /**
959
959
  * Provides the language code for each language identified in your media.