@buley/hexgrid-3d 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. package/.eslintrc.json +28 -0
  2. package/LICENSE +39 -0
  3. package/README.md +291 -0
  4. package/examples/basic-usage.tsx +52 -0
  5. package/package.json +65 -0
  6. package/public/hexgrid-worker.js +1763 -0
  7. package/rust/Cargo.toml +41 -0
  8. package/rust/src/lib.rs +740 -0
  9. package/rust/src/math.rs +574 -0
  10. package/rust/src/spatial.rs +245 -0
  11. package/rust/src/statistics.rs +496 -0
  12. package/src/HexGridEnhanced.ts +16 -0
  13. package/src/Snapshot.ts +1402 -0
  14. package/src/adapters.ts +65 -0
  15. package/src/algorithms/AdvancedStatistics.ts +328 -0
  16. package/src/algorithms/BayesianStatistics.ts +317 -0
  17. package/src/algorithms/FlowField.ts +126 -0
  18. package/src/algorithms/FluidSimulation.ts +99 -0
  19. package/src/algorithms/GraphAlgorithms.ts +184 -0
  20. package/src/algorithms/OutlierDetection.ts +391 -0
  21. package/src/algorithms/ParticleSystem.ts +85 -0
  22. package/src/algorithms/index.ts +13 -0
  23. package/src/compat.ts +96 -0
  24. package/src/components/HexGrid.tsx +31 -0
  25. package/src/components/NarrationOverlay.tsx +221 -0
  26. package/src/components/index.ts +2 -0
  27. package/src/features.ts +125 -0
  28. package/src/index.ts +30 -0
  29. package/src/math/HexCoordinates.ts +15 -0
  30. package/src/math/Matrix4.ts +35 -0
  31. package/src/math/Quaternion.ts +37 -0
  32. package/src/math/SpatialIndex.ts +114 -0
  33. package/src/math/Vector3.ts +69 -0
  34. package/src/math/index.ts +11 -0
  35. package/src/note-adapter.ts +124 -0
  36. package/src/ontology-adapter.ts +77 -0
  37. package/src/stores/index.ts +1 -0
  38. package/src/stores/uiStore.ts +85 -0
  39. package/src/types/index.ts +3 -0
  40. package/src/types.ts +152 -0
  41. package/src/utils/image-utils.ts +25 -0
  42. package/src/wasm/HexGridWasmWrapper.ts +753 -0
  43. package/src/wasm/index.ts +7 -0
  44. package/src/workers/hexgrid-math.ts +177 -0
  45. package/src/workers/hexgrid-worker.worker.ts +1807 -0
  46. package/tsconfig.json +18 -0
@@ -0,0 +1,1763 @@
1
+ "use strict";
2
+ /// <reference lib="webworker" />
3
+ const WORKER_ID = Math.random().toString(36).substring(7);
4
+ console.log('[hexgrid-worker] loaded id=', WORKER_ID);
5
+ const workerDebug = {
6
+ cohesionBoost: 6.0, // BOOSTED: strongly favor growth near cluster centroids to build larger regions
7
+ enableMerges: true, // ENABLED: merge small fragments into nearby larger clusters
8
+ mergeSmallComponentsThreshold: 20, // INCREASED: merge clusters of 20 hexes or fewer
9
+ mergeLogs: false,
10
+ evolutionIntervalMs: 30000,
11
+ debugLogs: false,
12
+ enableCellDeath: true, // ENABLED: allow fully surrounded cells to die and respawn with better positioning
13
+ cellDeathProbability: 0.05, // 5% chance per evolution for fully surrounded cells to reset
14
+ enableMutation: true, // ENABLED: allow dying cells to mutate into different photos
15
+ mutationProbability: 0.3, // 30% chance for a dying cell to respawn as a different photo
16
+ enableVirilityBoost: true, // ENABLED: boost infection rate based on photo velocity/upvotes
17
+ virilityMultiplier: 1.0, // Multiplier for virility effect (1.0 = normal, higher = more impact)
18
+ annealingRate: 2.0 // Multiplier for death/churn rates to help system escape local optima (1.0 = normal, higher = more reorganization)
19
+ };
20
+ // Tuning flags for cluster tiling behaviour
21
+ workerDebug.clusterPreserveAspect = true; // when true, preserve cluster aspect ratio when mapping to tile grid
22
+ workerDebug.clusterDynamicTiling = true; // when true, calculate tilesX/tilesY dynamically based on cluster aspect ratio
23
+ workerDebug.clusterAnchor = 'center'; // 'center' or 'min' (used during aspect correction)
24
+ workerDebug.clusterGlobalAlign = false; // when true, clusters snap to global tile anchor for better neighbor alignment
25
+ workerDebug.clusterUvInset = 0.0; // shrink UVs slightly to allow texture filtering/edge blending (0..0.5)
26
+ workerDebug.clusterJitter = 0.0; // small (0..0.5) fractional jitter applied to normalized coords before quantization
27
+ // adjacency mode for cluster tiling: 'hex' (6-way) or 'rect' (4-way). 'rect' gives raster-like, cohesive images
28
+ workerDebug.clusterAdjacency = 'rect';
29
+ // maximum number of tiles to allocate for a cluster when dynamically expanding (cap)
30
+ workerDebug.clusterMaxTiles = 128;
31
+ // whether to 'contain' (fit whole image within cluster bounds) or 'cover' (fill cluster and allow cropping)
32
+ workerDebug.clusterFillMode = 'contain';
33
+ // scan order for filling tiles: 'row' = left->right each row, 'serpentine' = zig-zag per row
34
+ workerDebug.clusterScanMode = 'row';
35
+ // when true, compute tile centers using hex-row parity offsets so ordering follows hex staggering
36
+ workerDebug.clusterParityAware = true;
37
+ // when true, include computed tile centers in evolved message for debug visualization
38
+ workerDebug.showTileCenters = false;
39
+ // when true, enable direct hex lattice mapping fast-path (parity-correct row/col inference)
40
+ workerDebug.clusterHexLattice = true;
41
+ // when true, horizontally nudge odd rows' UV sampling by half a tile width to compensate
42
+ // for physical hex center staggering (attempts to eliminate visible half-hex seams)
43
+ workerDebug.clusterParityUvShift = true;
44
+ // when true, compact gaps in each row of the hex lattice for more contiguous image tiles
45
+ workerDebug.clusterCompactGaps = true;
46
+ const cache = { neighborMap: new Map(), gridBounds: null, photoClusters: new Map(), connectedComponents: new Map(), gridPositions: new Map(), lastInfectionCount: 0, lastGeneration: -1, isSpherical: false, cacheReady: false };
47
+ function safePostError(err) { try {
48
+ self.postMessage({ type: 'error', error: err instanceof Error ? err.message : String(err) });
49
+ }
50
+ catch (e) { } }
51
+ function getGridBounds(positions) {
52
+ if (cache.gridBounds)
53
+ return cache.gridBounds;
54
+ let minX = Infinity, maxX = -Infinity, minY = Infinity, maxY = -Infinity;
55
+ for (const p of positions) {
56
+ if (!p)
57
+ continue;
58
+ minX = Math.min(minX, p[0]);
59
+ maxX = Math.max(maxX, p[0]);
60
+ minY = Math.min(minY, p[1]);
61
+ maxY = Math.max(maxY, p[1]);
62
+ }
63
+ cache.gridBounds = { minX, maxX, minY, maxY, width: maxX - minX, height: maxY - minY };
64
+ return cache.gridBounds;
65
+ }
66
+ function distanceBetween(a, b, bounds, isSpherical) {
67
+ let dx = b[0] - a[0];
68
+ let dy = b[1] - a[1];
69
+ if (isSpherical && bounds.width > 0 && bounds.height > 0) {
70
+ if (Math.abs(dx) > bounds.width / 2) {
71
+ dx = dx > 0 ? dx - bounds.width : dx + bounds.width;
72
+ }
73
+ if (Math.abs(dy) > bounds.height / 2) {
74
+ dy = dy > 0 ? dy - bounds.height : dy + bounds.height;
75
+ }
76
+ }
77
+ return Math.sqrt(dx * dx + dy * dy);
78
+ }
79
+ function getNeighborsCached(index, positions, hexRadius) {
80
+ // Immediate return if cached - no blocking
81
+ if (cache.neighborMap.has(index)) {
82
+ const cached = cache.neighborMap.get(index);
83
+ if (Array.isArray(cached))
84
+ return cached;
85
+ // Invalid cache entry - clear it and recompute
86
+ cache.neighborMap.delete(index);
87
+ }
88
+ // Validate inputs before computation
89
+ if (!positions || !Array.isArray(positions) || positions.length === 0) {
90
+ console.warn('[getNeighborsCached] Invalid positions array, returning empty');
91
+ return [];
92
+ }
93
+ if (typeof index !== 'number' || index < 0 || index >= positions.length) {
94
+ console.warn('[getNeighborsCached] Invalid index', index, 'for positions length', positions.length);
95
+ return [];
96
+ }
97
+ if (typeof hexRadius !== 'number' || hexRadius <= 0) {
98
+ console.warn('[getNeighborsCached] Invalid hexRadius', hexRadius);
99
+ return [];
100
+ }
101
+ const out = [];
102
+ const pos = positions[index];
103
+ if (!pos) {
104
+ console.warn('[getNeighborsCached] No position at index', index);
105
+ return out;
106
+ }
107
+ try {
108
+ const bounds = getGridBounds(positions);
109
+ const threshold = Math.sqrt(3) * hexRadius * 1.15;
110
+ const isSpherical = !!cache.isSpherical;
111
+ // Fast path: check only nearby candidates (≈6 neighbors for hex grid)
112
+ // For hex grids, each hex has at most 6 neighbors
113
+ // Limit search to reduce O(n²) to O(n)
114
+ const maxNeighbors = 10; // Safety margin for irregular grids
115
+ for (let j = 0; j < positions.length; j++) {
116
+ if (j === index)
117
+ continue;
118
+ const p2 = positions[j];
119
+ if (!p2)
120
+ continue;
121
+ const d = distanceBetween(pos, p2, bounds, isSpherical);
122
+ if (d <= threshold) {
123
+ out.push(j);
124
+ // Early exit if we found enough neighbors
125
+ if (out.length >= maxNeighbors)
126
+ break;
127
+ }
128
+ }
129
+ cache.neighborMap.set(index, out);
130
+ }
131
+ catch (e) {
132
+ console.error('[getNeighborsCached] Error computing neighbors:', e);
133
+ return [];
134
+ }
135
+ return out;
136
+ }
137
+ // Calculate UV bounds for a tile based on its grid position within a tilesX x tilesY grid
138
+ // V=1.0 represents the top of the texture in this codebase
139
+ function calculateUvBoundsFromGridPosition(gridCol, gridRow, tilesX, tilesY) {
140
+ const minU = gridCol / tilesX;
141
+ const maxU = (gridCol + 1) / tilesX;
142
+ // V=1 is top, so row 0 maps to top (maxV=1, minV=1-1/tilesY)
143
+ const minV = 1 - (gridRow + 1) / tilesY;
144
+ const maxV = 1 - gridRow / tilesY;
145
+ return [minU, minV, maxU, maxV];
146
+ }
147
+ function findConnectedComponents(indices, positions, hexRadius) {
148
+ // Immediate synchronous check - if this doesn't log, the function isn't being called or is blocked
149
+ const startMarker = performance.now();
150
+ console.log('[findConnectedComponents] FUNCTION ENTERED - indices.length=', indices.length, 'positions.length=', positions.length, 'hexRadius=', hexRadius, 'marker=', startMarker);
151
+ // Validate inputs immediately
152
+ if (!indices || !Array.isArray(indices)) {
153
+ console.error('[findConnectedComponents] Invalid indices:', indices);
154
+ return [];
155
+ }
156
+ if (!positions || !Array.isArray(positions)) {
157
+ console.error('[findConnectedComponents] Invalid positions:', positions);
158
+ return [];
159
+ }
160
+ if (typeof hexRadius !== 'number' || hexRadius <= 0) {
161
+ console.error('[findConnectedComponents] Invalid hexRadius:', hexRadius);
162
+ return [];
163
+ }
164
+ console.log('[findConnectedComponents] About to enter try block');
165
+ // Add immediate log after try block entry to confirm execution reaches here
166
+ let tryBlockEntered = false;
167
+ try {
168
+ tryBlockEntered = true;
169
+ console.log('[findConnectedComponents] ✅ TRY BLOCK ENTERED - marker=', performance.now() - startMarker, 'ms');
170
+ console.log('[findConnectedComponents] Inside try block - Starting with', indices.length, 'indices');
171
+ const set = new Set(indices);
172
+ const visited = new Set();
173
+ const comps = [];
174
+ let componentCount = 0;
175
+ for (const start of indices) {
176
+ if (visited.has(start))
177
+ continue;
178
+ componentCount++;
179
+ console.log('[findConnectedComponents] Starting component', componentCount, 'from index', start);
180
+ const q = [start];
181
+ visited.add(start);
182
+ const comp = [];
183
+ let iterations = 0;
184
+ const maxIterations = indices.length * 10; // Safety limit
185
+ while (q.length > 0) {
186
+ iterations++;
187
+ if (iterations > maxIterations) {
188
+ console.error('[findConnectedComponents] Safety limit reached! indices=', indices.length, 'component=', componentCount, 'iterations=', iterations);
189
+ break;
190
+ }
191
+ if (iterations % 100 === 0) {
192
+ console.log('[findConnectedComponents] Component', componentCount, 'iteration', iterations, 'queue length', q.length);
193
+ }
194
+ const cur = q.shift();
195
+ if (cur === undefined || cur === null) {
196
+ console.error('[findConnectedComponents] Invalid cur value:', cur);
197
+ break;
198
+ }
199
+ comp.push(cur);
200
+ try {
201
+ const neighbors = getNeighborsCached(cur, positions, hexRadius);
202
+ if (!Array.isArray(neighbors)) {
203
+ console.error('[findConnectedComponents] getNeighborsCached returned non-array:', typeof neighbors, neighbors);
204
+ continue;
205
+ }
206
+ for (const n of neighbors) {
207
+ if (typeof n !== 'number' || isNaN(n)) {
208
+ console.error('[findConnectedComponents] Invalid neighbor index:', n, 'type:', typeof n);
209
+ continue;
210
+ }
211
+ if (!visited.has(n) && set.has(n)) {
212
+ visited.add(n);
213
+ q.push(n);
214
+ }
215
+ }
216
+ }
217
+ catch (e) {
218
+ console.error('[findConnectedComponents] Error getting neighbors for index', cur, ':', e);
219
+ continue;
220
+ }
221
+ }
222
+ console.log('[findConnectedComponents] Component', componentCount, 'complete:', comp.length, 'nodes,', iterations, 'iterations');
223
+ comps.push(comp);
224
+ }
225
+ console.log('[findConnectedComponents] Complete:', comps.length, 'components found');
226
+ const elapsed = performance.now() - startMarker;
227
+ console.log('[findConnectedComponents] ✅ RETURNING - elapsed=', elapsed, 'ms, components=', comps.length);
228
+ return comps;
229
+ }
230
+ catch (e) {
231
+ const elapsed = performance.now() - startMarker;
232
+ console.error('[findConnectedComponents] ERROR after', elapsed, 'ms:', e, 'indices.length=', indices.length, 'tryBlockEntered=', tryBlockEntered);
233
+ // If we never entered the try block, something is seriously wrong
234
+ if (!tryBlockEntered) {
235
+ console.error('[findConnectedComponents] CRITICAL: Try block never entered! This suggests a hang before try block.');
236
+ }
237
+ throw e;
238
+ }
239
+ finally {
240
+ const elapsed = performance.now() - startMarker;
241
+ if (elapsed > 1000) {
242
+ console.warn('[findConnectedComponents] ⚠️ Function took', elapsed, 'ms to complete');
243
+ }
244
+ }
245
+ }
246
+ function calculatePhotoCentroids(infections, positions, hexRadius) {
247
+ try {
248
+ console.log('[calculatePhotoCentroids] Starting with', infections.size, 'infections');
249
+ const byPhoto = new Map();
250
+ for (const [idx, inf] of infections) {
251
+ if (!inf || !inf.photo)
252
+ continue;
253
+ const arr = byPhoto.get(inf.photo.id) || [];
254
+ arr.push(idx);
255
+ byPhoto.set(inf.photo.id, arr);
256
+ }
257
+ console.log('[calculatePhotoCentroids] Grouped into', byPhoto.size, 'photos');
258
+ const centroids = new Map();
259
+ let photoNum = 0;
260
+ for (const [photoId, inds] of byPhoto) {
261
+ photoNum++;
262
+ console.log('[calculatePhotoCentroids] Processing photo', photoNum, '/', byPhoto.size, 'photoId=', photoId, 'indices=', inds.length);
263
+ try {
264
+ console.log('[calculatePhotoCentroids] About to call findConnectedComponents with', inds.length, 'indices');
265
+ const callStartTime = performance.now();
266
+ let comps;
267
+ try {
268
+ // Add a pre-call validation to ensure we're not calling with invalid data
269
+ if (!inds || inds.length === 0) {
270
+ console.warn('[calculatePhotoCentroids] Empty indices array, skipping findConnectedComponents');
271
+ comps = [];
272
+ }
273
+ else if (!positions || positions.length === 0) {
274
+ console.warn('[calculatePhotoCentroids] Empty positions array, skipping findConnectedComponents');
275
+ comps = [];
276
+ }
277
+ else {
278
+ comps = findConnectedComponents(inds, positions, hexRadius);
279
+ const callElapsed = performance.now() - callStartTime;
280
+ console.log('[calculatePhotoCentroids] findConnectedComponents RETURNED with', comps.length, 'components after', callElapsed, 'ms');
281
+ }
282
+ }
283
+ catch (e) {
284
+ const callElapsed = performance.now() - callStartTime;
285
+ console.error('[calculatePhotoCentroids] findConnectedComponents threw error after', callElapsed, 'ms:', e);
286
+ // Return empty components on error to allow evolution to continue
287
+ comps = [];
288
+ }
289
+ console.log('[calculatePhotoCentroids] findConnectedComponents returned', comps.length, 'components');
290
+ console.log('[calculatePhotoCentroids] Found', comps.length, 'components for photo', photoId);
291
+ const cs = [];
292
+ for (const comp of comps) {
293
+ let sx = 0, sy = 0;
294
+ for (const i of comp) {
295
+ const p = positions[i];
296
+ if (p) {
297
+ sx += p[0];
298
+ sy += p[1];
299
+ }
300
+ }
301
+ if (comp.length > 0)
302
+ cs.push([sx / comp.length, sy / comp.length]);
303
+ }
304
+ centroids.set(photoId, cs);
305
+ }
306
+ catch (e) {
307
+ console.error('[calculatePhotoCentroids] Error processing photo', photoId, ':', e);
308
+ centroids.set(photoId, []);
309
+ }
310
+ }
311
+ console.log('[calculatePhotoCentroids] Completed, returning', centroids.size, 'photo centroids');
312
+ return centroids;
313
+ }
314
+ catch (e) {
315
+ console.error('[calculatePhotoCentroids] FATAL ERROR:', e);
316
+ throw e;
317
+ }
318
+ }
319
+ function calculateContiguity(indices, positions, hexRadius) {
320
+ const set = new Set(indices);
321
+ let total = 0;
322
+ for (const idx of indices)
323
+ for (const n of getNeighborsCached(idx, positions, hexRadius))
324
+ if (set.has(n))
325
+ total++;
326
+ return total;
327
+ }
328
+ // Assign cluster-aware grid positions so each hex in a cluster shows a different part of the image
329
+ // Returns tile centers for debug visualization when workerDebug.showTileCenters is enabled
330
+ function assignClusterGridPositions(infections, positions, hexRadius) {
331
+ var _a;
332
+ const debugCenters = [];
333
+ try {
334
+ console.log('[assignClusterGridPositions] Starting with', infections.size, 'infections');
335
+ // Group infections by photo
336
+ const byPhoto = new Map();
337
+ for (const [idx, inf] of infections) {
338
+ if (!inf || !inf.photo)
339
+ continue;
340
+ const arr = byPhoto.get(inf.photo.id) || [];
341
+ arr.push(idx);
342
+ byPhoto.set(inf.photo.id, arr);
343
+ }
344
+ console.log('[assignClusterGridPositions] Processing', byPhoto.size, 'unique photos');
345
+ // Cluster size analytics
346
+ let totalClusters = 0;
347
+ let clusterSizes = [];
348
+ // Process each photo's clusters
349
+ for (const [photoId, indices] of byPhoto) {
350
+ // Find connected components (separate clusters of the same photo)
351
+ const components = findConnectedComponents(indices, positions, hexRadius);
352
+ totalClusters += components.length;
353
+ for (const comp of components) {
354
+ if (comp && comp.length > 0)
355
+ clusterSizes.push(comp.length);
356
+ }
357
+ console.log('[assignClusterGridPositions] Photo', photoId.substring(0, 8), 'has', components.length, 'clusters, sizes:', components.map(c => c.length).join(','));
358
+ // Process each cluster separately
359
+ let clusterIndex = 0;
360
+ for (const cluster of components) {
361
+ if (!cluster || cluster.length === 0)
362
+ continue;
363
+ // Get the tiling configuration from the first infection in the cluster
364
+ const firstInf = infections.get(cluster[0]);
365
+ if (!firstInf)
366
+ continue;
367
+ // --- Hex lattice mapping fast-path -------------------------------------------------
368
+ // If enabled, derive tile coordinates directly from inferred axial-like row/col indices
369
+ // instead of using normalized bounding boxes + spatial nearest matching. This produces
370
+ // contiguous, parity-correct tiling where adjacent hexes map to adjacent UV tiles.
371
+ if (workerDebug.clusterHexLattice) {
372
+ try {
373
+ let minX = Infinity, maxX = -Infinity, minY = Infinity, maxY = -Infinity;
374
+ for (const idx of cluster) {
375
+ const p = positions[idx];
376
+ if (!p)
377
+ continue;
378
+ if (p[0] < minX)
379
+ minX = p[0];
380
+ if (p[0] > maxX)
381
+ maxX = p[0];
382
+ if (p[1] < minY)
383
+ minY = p[1];
384
+ if (p[1] > maxY)
385
+ maxY = p[1];
386
+ }
387
+ const clusterWidth = Math.max(0, maxX - minX);
388
+ const clusterHeight = Math.max(0, maxY - minY);
389
+ // Infer spacings from hexRadius (flat-top hex layout):
390
+ const horizSpacing = Math.sqrt(3) * hexRadius;
391
+ const vertSpacing = 1.5 * hexRadius;
392
+ // Build lattice coordinates (rowIndex, colIndex) respecting row parity offset.
393
+ const latticeCoords = new Map();
394
+ let minRow = Infinity, maxRow = -Infinity, minCol = Infinity, maxCol = -Infinity;
395
+ for (const id of cluster) {
396
+ const p = positions[id];
397
+ if (!p)
398
+ continue;
399
+ const rowF = (p[1] - minY) / vertSpacing;
400
+ const row = Math.round(rowF);
401
+ // Row parity offset: odd rows in generatePixelScreen are shifted +0.5 * horizSpacing.
402
+ const rowOffset = (row % 2 === 1) ? (horizSpacing * 0.5) : 0;
403
+ const colF = (p[0] - (minX + rowOffset)) / horizSpacing;
404
+ const col = Math.round(colF);
405
+ latticeCoords.set(id, { row, col });
406
+ if (row < minRow)
407
+ minRow = row;
408
+ if (row > maxRow)
409
+ maxRow = row;
410
+ if (col < minCol)
411
+ minCol = col;
412
+ if (col > maxCol)
413
+ maxCol = col;
414
+ }
415
+ const latticeRows = maxRow - minRow + 1;
416
+ const latticeCols = maxCol - minCol + 1;
417
+ // Initial tile grid matches lattice extents.
418
+ let tilesX = latticeCols;
419
+ let tilesY = latticeRows;
420
+ // If we have more hexes than lattice cells due to rounding collisions, expand.
421
+ const rawTileCount = tilesX * tilesY;
422
+ if (cluster.length > rawTileCount) {
423
+ // Simple expansion: grow columns while respecting max cap.
424
+ const MAX_TILES = typeof workerDebug.clusterMaxTiles === 'number' && workerDebug.clusterMaxTiles > 0 ? Math.floor(workerDebug.clusterMaxTiles) : 128;
425
+ while (tilesX * tilesY < cluster.length && tilesX * tilesY < MAX_TILES) {
426
+ if (tilesX <= tilesY)
427
+ tilesX++;
428
+ else
429
+ tilesY++;
430
+ }
431
+ }
432
+ console.log('[assignClusterGridPositions][hex-lattice] cluster', photoId.substring(0, 8), 'size', cluster.length, 'latticeCols', latticeCols, 'latticeRows', latticeRows, 'tilesX', tilesX, 'tilesY', tilesY);
433
+ // Build optional serpentine ordering for assignment uniqueness (not strictly needed since lattice mapping is direct)
434
+ const serpentine = (workerDebug.clusterScanMode === 'serpentine');
435
+ // Assign each infection a gridPosition derived from lattice coordinates compressed into tile grid domain.
436
+ // Enhancement: compact gaps in each row for more contiguous image mapping
437
+ const compactGaps = workerDebug.clusterCompactGaps !== false;
438
+ // Build row-by-row column mapping to handle gaps
439
+ const rowColMap = new Map(); // row -> (oldCol -> newCol)
440
+ if (compactGaps) {
441
+ for (let row = minRow; row <= maxRow; row++) {
442
+ const colsInRow = Array.from(latticeCoords.entries())
443
+ .filter(([_, lc]) => lc.row === row)
444
+ .map(([_, lc]) => lc.col)
445
+ .sort((a, b) => a - b);
446
+ const colMap = new Map();
447
+ colsInRow.forEach((oldCol, newIdx) => {
448
+ colMap.set(oldCol, newIdx);
449
+ });
450
+ rowColMap.set(row, colMap);
451
+ }
452
+ }
453
+ // Collision detection: track which tiles are occupied
454
+ const tileOccupancy = new Map(); // "col,row" -> nodeId
455
+ const tileKey = (c, r) => `${c},${r}`;
456
+ for (const id of cluster) {
457
+ const inf = infections.get(id);
458
+ if (!inf)
459
+ continue;
460
+ const lc = latticeCoords.get(id);
461
+ if (!lc)
462
+ continue;
463
+ let gridCol = compactGaps && rowColMap.has(lc.row)
464
+ ? ((_a = rowColMap.get(lc.row).get(lc.col)) !== null && _a !== void 0 ? _a : (lc.col - minCol))
465
+ : (lc.col - minCol);
466
+ let gridRow = lc.row - minRow;
467
+ if (serpentine && (gridRow % 2 === 1)) {
468
+ gridCol = (tilesX - 1) - gridCol;
469
+ }
470
+ // Clamp to valid range
471
+ if (gridCol < 0)
472
+ gridCol = 0;
473
+ if (gridCol >= tilesX)
474
+ gridCol = tilesX - 1;
475
+ if (gridRow < 0)
476
+ gridRow = 0;
477
+ if (gridRow >= tilesY)
478
+ gridRow = tilesY - 1;
479
+ // Collision resolution: if tile is occupied, find nearest free tile
480
+ const key = tileKey(gridCol, gridRow);
481
+ if (tileOccupancy.has(key)) {
482
+ const nodePos = positions[id];
483
+ let bestCol = gridCol, bestRow = gridRow;
484
+ let bestDist = Infinity;
485
+ // Search in expanding radius for free tile
486
+ for (let radius = 1; radius <= Math.max(tilesX, tilesY); radius++) {
487
+ let found = false;
488
+ for (let dc = -radius; dc <= radius; dc++) {
489
+ for (let dr = -radius; dr <= radius; dr++) {
490
+ if (Math.abs(dc) !== radius && Math.abs(dr) !== radius)
491
+ continue; // Only check perimeter
492
+ const testCol = gridCol + dc;
493
+ const testRow = gridRow + dr;
494
+ if (testCol < 0 || testCol >= tilesX || testRow < 0 || testRow >= tilesY)
495
+ continue;
496
+ const testKey = tileKey(testCol, testRow);
497
+ if (!tileOccupancy.has(testKey)) {
498
+ // Calculate distance to this tile's center
499
+ const tileU = (testCol + 0.5) / tilesX;
500
+ const tileV = (testRow + 0.5) / tilesY;
501
+ const tileCenterX = minX + tileU * clusterWidth;
502
+ const tileCenterY = minY + tileV * clusterHeight;
503
+ const dist = Math.hypot(nodePos[0] - tileCenterX, nodePos[1] - tileCenterY);
504
+ if (dist < bestDist) {
505
+ bestDist = dist;
506
+ bestCol = testCol;
507
+ bestRow = testRow;
508
+ found = true;
509
+ }
510
+ }
511
+ }
512
+ }
513
+ if (found)
514
+ break;
515
+ }
516
+ gridCol = bestCol;
517
+ gridRow = bestRow;
518
+ }
519
+ tileOccupancy.set(tileKey(gridCol, gridRow), id);
520
+ // Optionally support vertical anchor flip
521
+ if (workerDebug.clusterAnchor === 'max') {
522
+ gridRow = Math.max(0, tilesY - 1 - gridRow);
523
+ }
524
+ let uvBounds = calculateUvBoundsFromGridPosition(gridCol, gridRow, tilesX, tilesY);
525
+ const inset = Math.max(0, Math.min(0.49, Number(workerDebug.clusterUvInset) || 0));
526
+ if (inset > 0) {
527
+ const u0 = uvBounds[0], v0 = uvBounds[1], u1 = uvBounds[2], v1 = uvBounds[3];
528
+ const du = (u1 - u0) * inset;
529
+ const dv = (v1 - v0) * inset;
530
+ uvBounds = [u0 + du, v0 + dv, u1 - du, v1 - dv];
531
+ }
532
+ // Optional parity UV shift: shift odd rows horizontally by half a tile width in UV space.
533
+ // Enhanced: use precise hex geometry for sub-pixel accuracy
534
+ if (workerDebug.clusterParityUvShift && (gridRow % 2 === 1)) {
535
+ // Use actual lattice row parity from hex geometry, not tile row
536
+ const hexRowParity = lc.row % 2;
537
+ const shift = hexRowParity === 1 ? 0.5 / tilesX : 0;
538
+ let u0 = uvBounds[0] + shift;
539
+ let u1 = uvBounds[2] + shift;
540
+ // Wrap within [0,1]
541
+ if (u0 >= 1)
542
+ u0 -= 1;
543
+ if (u1 > 1)
544
+ u1 -= 1;
545
+ // Guard against pathological wrapping inversion (should not occur with shift<tileWidth)
546
+ if (u1 < u0) {
547
+ // If inverted due to wrapping edge case, clamp instead of wrap
548
+ u0 = Math.min(u0, 1 - (1 / tilesX));
549
+ u1 = Math.min(1, u0 + (1 / tilesX));
550
+ }
551
+ uvBounds = [u0, uvBounds[1], u1, uvBounds[3]];
552
+ }
553
+ infections.set(id, Object.assign(Object.assign({}, inf), { gridPosition: [gridCol, gridRow], uvBounds, tilesX, tilesY }));
554
+ }
555
+ // Advance cluster index and continue to next cluster (skip legacy logic)
556
+ clusterIndex++;
557
+ continue;
558
+ }
559
+ catch (e) {
560
+ console.warn('[assignClusterGridPositions][hex-lattice] failed, falling back to legacy path:', e);
561
+ // fall through to existing (spatial) logic
562
+ }
563
+ }
564
+ // Find the bounding box of this cluster in grid space first
565
+ let minX = Infinity, maxX = -Infinity, minY = Infinity, maxY = -Infinity;
566
+ for (const idx of cluster) {
567
+ const pos = positions[idx];
568
+ if (!pos)
569
+ continue;
570
+ minX = Math.min(minX, pos[0]);
571
+ maxX = Math.max(maxX, pos[0]);
572
+ minY = Math.min(minY, pos[1]);
573
+ maxY = Math.max(maxY, pos[1]);
574
+ }
575
+ const clusterWidth = Math.max(0, maxX - minX);
576
+ const clusterHeight = Math.max(0, maxY - minY);
577
+ console.log('[assignClusterGridPositions] Cluster bounds:', {
578
+ photoId: photoId.substring(0, 8),
579
+ clusterIndex,
580
+ hexCount: cluster.length,
581
+ minX: minX.toFixed(2),
582
+ maxX: maxX.toFixed(2),
583
+ minY: minY.toFixed(2),
584
+ maxY: maxY.toFixed(2),
585
+ width: clusterWidth.toFixed(2),
586
+ height: clusterHeight.toFixed(2)
587
+ });
588
+ // Calculate optimal tilesX and tilesY based on cluster aspect ratio
589
+ // This ensures the tile grid matches the spatial layout of the cluster
590
+ const clusterAspect = clusterHeight > 0 ? clusterWidth / clusterHeight : 1.0;
591
+ const targetTileCount = 16; // Target ~16 tiles total for good image distribution
592
+ console.log('[assignClusterGridPositions] Cluster aspect:', clusterAspect.toFixed(3), '(width/height)');
593
+ let tilesX;
594
+ let tilesY;
595
+ if (cluster.length === 1) {
596
+ // Single hexagon: use 1x1
597
+ tilesX = 1;
598
+ tilesY = 1;
599
+ }
600
+ else if (workerDebug.clusterDynamicTiling !== false) {
601
+ // Dynamic tiling: match cluster aspect ratio
602
+ // sqrt(tilesX * tilesY) = sqrt(targetTileCount)
603
+ // tilesX / tilesY = clusterAspect
604
+ // => tilesX = clusterAspect * tilesY
605
+ // => clusterAspect * tilesY * tilesY = targetTileCount
606
+ // => tilesY = sqrt(targetTileCount / clusterAspect)
607
+ tilesY = Math.max(1, Math.round(Math.sqrt(targetTileCount / clusterAspect)));
608
+ tilesX = Math.max(1, Math.round(clusterAspect * tilesY));
609
+ // Clamp to reasonable range
610
+ tilesX = Math.max(1, Math.min(8, tilesX));
611
+ tilesY = Math.max(1, Math.min(8, tilesY));
612
+ }
613
+ else {
614
+ // Fallback to fixed tiling from infection config
615
+ tilesX = Math.max(1, firstInf.tilesX || 4);
616
+ tilesY = Math.max(1, firstInf.tilesY || 4);
617
+ }
618
+ // If the cluster contains more hexes than tiles, expand the tile grid
619
+ // to avoid many hexes mapping to the same UV tile (which causes repeating
620
+ // image patches). Preserve the tile aspect ratio but scale up the total
621
+ // tile count to be at least cluster.length, clamped to a safe maximum.
622
+ try {
623
+ const currentTileCount = tilesX * tilesY;
624
+ const requiredTiles = Math.max(currentTileCount, cluster.length);
625
+ const MAX_TILES = typeof workerDebug.clusterMaxTiles === 'number' && workerDebug.clusterMaxTiles > 0 ? Math.max(1, Math.floor(workerDebug.clusterMaxTiles)) : 64;
626
+ const targetTiles = Math.min(requiredTiles, MAX_TILES);
627
+ if (targetTiles > currentTileCount) {
628
+ // preserve aspect ratio roughly: ratio = tilesX / tilesY
629
+ const ratio = tilesX / Math.max(1, tilesY);
630
+ // compute new tilesY from targetTiles and ratio
631
+ let newTilesY = Math.max(1, Math.round(Math.sqrt(targetTiles / Math.max(1e-9, ratio))));
632
+ let newTilesX = Math.max(1, Math.round(ratio * newTilesY));
633
+ // if rounding produced fewer tiles than needed, bump progressively
634
+ while (newTilesX * newTilesY < targetTiles) {
635
+ if (newTilesX <= newTilesY)
636
+ newTilesX++;
637
+ else
638
+ newTilesY++;
639
+ if (newTilesX * newTilesY >= MAX_TILES)
640
+ break;
641
+ }
642
+ // clamp to reasonable maxima
643
+ newTilesX = Math.max(1, Math.min(16, newTilesX));
644
+ newTilesY = Math.max(1, Math.min(16, newTilesY));
645
+ tilesX = newTilesX;
646
+ tilesY = newTilesY;
647
+ console.log('[assignClusterGridPositions] Expanded tile grid to', tilesX, 'x', tilesY, '=', tilesX * tilesY, 'tiles');
648
+ }
649
+ }
650
+ catch (e) {
651
+ // if anything goes wrong, keep original tilesX/tilesY
652
+ }
653
+ console.log('[assignClusterGridPositions] Final tile dimensions:', tilesX, 'x', tilesY, '=', tilesX * tilesY, 'tiles for', cluster.length, 'hexes');
654
+ // Single-hex or degenerate clusters: assign a deterministic tile so single hexes don't all use [0,0]
655
+ if (cluster.length === 1 || clusterWidth < 1e-6 || clusterHeight < 1e-6) {
656
+ const idx = cluster[0];
657
+ const inf = infections.get(idx);
658
+ if (!inf)
659
+ continue;
660
+ // Deterministic hash from index to pick a tile
661
+ const h = (idx * 2654435761) >>> 0;
662
+ const gridCol = h % tilesX;
663
+ let gridRow = ((h >>> 8) % tilesY);
664
+ // If configured, allow anchoring to the bottom of the image (flip vertical tile index)
665
+ if (workerDebug.clusterAnchor === 'max') {
666
+ gridRow = Math.max(0, tilesY - 1 - gridRow);
667
+ }
668
+ const uvBounds = calculateUvBoundsFromGridPosition(gridCol, gridRow, tilesX, tilesY);
669
+ infections.set(idx, Object.assign(Object.assign({}, inf), { gridPosition: [gridCol, gridRow], uvBounds }));
670
+ continue;
671
+ }
672
+ // Optionally preserve aspect ratio when mapping cluster to tile grid
673
+ const preserveAspect = !!workerDebug.clusterPreserveAspect;
674
+ let normMinX = minX, normMinY = minY, normWidth = clusterWidth, normHeight = clusterHeight;
675
+ if (preserveAspect) {
676
+ const clusterAspect = clusterWidth / clusterHeight;
677
+ const tileAspect = tilesX / tilesY;
678
+ const fillMode = workerDebug.clusterFillMode || 'contain';
679
+ if (fillMode === 'contain') {
680
+ // current behavior: pad shorter dimension so the whole image fits (no cropping)
681
+ if (clusterAspect > tileAspect) {
682
+ const effectiveHeight = clusterWidth / tileAspect;
683
+ const pad = effectiveHeight - clusterHeight;
684
+ if (workerDebug.clusterAnchor === 'min') {
685
+ normMinY = minY;
686
+ }
687
+ else {
688
+ normMinY = minY - pad / 2;
689
+ }
690
+ normHeight = effectiveHeight;
691
+ }
692
+ else if (clusterAspect < tileAspect) {
693
+ const effectiveWidth = clusterHeight * tileAspect;
694
+ const pad = effectiveWidth - clusterWidth;
695
+ if (workerDebug.clusterAnchor === 'min') {
696
+ normMinX = minX;
697
+ }
698
+ else {
699
+ normMinX = minX - pad / 2;
700
+ }
701
+ normWidth = effectiveWidth;
702
+ }
703
+ }
704
+ else {
705
+ // 'cover' mode: scale so tile grid fully covers cluster bounds, allowing cropping
706
+ if (clusterAspect > tileAspect) {
707
+ // cluster is wider than tile grid: scale width down (crop left/right)
708
+ const effectiveWidth = clusterHeight * tileAspect;
709
+ const crop = clusterWidth - effectiveWidth;
710
+ if (workerDebug.clusterAnchor === 'min') {
711
+ normMinX = minX + crop; // crop from right
712
+ }
713
+ else {
714
+ normMinX = minX + crop / 2;
715
+ }
716
+ normWidth = effectiveWidth;
717
+ }
718
+ else if (clusterAspect < tileAspect) {
719
+ // cluster is taller than tile grid: scale height down (crop top/bottom)
720
+ const effectiveHeight = clusterWidth / tileAspect;
721
+ const crop = clusterHeight - effectiveHeight;
722
+ if (workerDebug.clusterAnchor === 'min') {
723
+ normMinY = minY + crop;
724
+ }
725
+ else {
726
+ normMinY = minY + crop / 2;
727
+ }
728
+ normHeight = effectiveHeight;
729
+ }
730
+ }
731
+ }
732
+ // Assign grid positions using preferred-quantized -> nearest-free strategy
733
+ // Guard tiny normalized dimensions to avoid degenerate quantization
734
+ // This produces contiguous tiling for clusters and avoids many hexes
735
+ // quantizing into the same UV tile.
736
+ try {
737
+ const clusterSet = new Set(cluster);
738
+ // Helper: tile bounds check
739
+ const inTileBounds = (c, r) => c >= 0 && c < tilesX && r >= 0 && r < tilesY;
740
+ // Tile occupancy map key
741
+ const tileKey = (c, r) => `${c},${r}`;
742
+ // Pre-allocate occupancy map and assignment map
743
+ const occupied = new Map();
744
+ const assignment = new Map();
745
+ // Choose origin by cluster centroid (closest hex to centroid)
746
+ let cx = 0, cy = 0;
747
+ for (const id of cluster) {
748
+ const p = positions[id];
749
+ cx += p[0];
750
+ cy += p[1];
751
+ }
752
+ cx /= cluster.length;
753
+ cy /= cluster.length;
754
+ let originIndex = cluster[0];
755
+ let bestD = Infinity;
756
+ for (const id of cluster) {
757
+ const p = positions[id];
758
+ const d = Math.hypot(p[0] - cx, p[1] - cy);
759
+ if (d < bestD) {
760
+ bestD = d;
761
+ originIndex = id;
762
+ }
763
+ }
764
+ // Tile-first scanline assignment: build tiles in row-major order, then pick nearest unassigned node
765
+ const startCol = Math.floor(tilesX / 2);
766
+ const startRow = Math.floor(tilesY / 2);
767
+ // Ensure normalized dims aren't tiny
768
+ const MIN_NORM = 1e-6;
769
+ if (normWidth < MIN_NORM)
770
+ normWidth = MIN_NORM;
771
+ if (normHeight < MIN_NORM)
772
+ normHeight = MIN_NORM;
773
+ // Build tile list in row-major or serpentine order depending on config
774
+ const tiles = [];
775
+ const scanMode = (workerDebug.clusterScanMode || 'row');
776
+ for (let r = 0; r < tilesY; r++) {
777
+ if (scanMode === 'serpentine' && (r % 2 === 1)) {
778
+ // right-to-left on odd rows for serpentine
779
+ for (let c = tilesX - 1; c >= 0; c--)
780
+ tiles.push([c, r]);
781
+ }
782
+ else {
783
+ for (let c = 0; c < tilesX; c++)
784
+ tiles.push([c, r]);
785
+ }
786
+ }
787
+ // Helper: compute tile center in cluster-space
788
+ const parityAware = !!workerDebug.clusterParityAware;
789
+ // compute physical horizontal offset for hex parity from cluster geometry
790
+ const hexSpacingFactor = Number(workerDebug.hexSpacing) || 1;
791
+ // initial fallback spacing based on configured hexRadius
792
+ let realHorizSpacing = Math.sqrt(3) * hexRadius * hexSpacingFactor;
793
+ // Try to infer horizontal spacing from actual node positions in the cluster.
794
+ // Group nodes into approximate rows and measure adjacent x-deltas.
795
+ try {
796
+ const rowBuckets = new Map();
797
+ for (const id of cluster) {
798
+ const p = positions[id];
799
+ if (!p)
800
+ continue;
801
+ // ratio across normalized height
802
+ const ratio = (p[1] - normMinY) / Math.max(1e-9, normHeight);
803
+ let r = Math.floor(ratio * tilesY);
804
+ r = Math.max(0, Math.min(tilesY - 1, r));
805
+ const arr = rowBuckets.get(r) || [];
806
+ arr.push(p[0]);
807
+ rowBuckets.set(r, arr);
808
+ }
809
+ const diffs = [];
810
+ for (const xs of rowBuckets.values()) {
811
+ if (!xs || xs.length < 2)
812
+ continue;
813
+ xs.sort((a, b) => a - b);
814
+ for (let i = 1; i < xs.length; i++)
815
+ diffs.push(xs[i] - xs[i - 1]);
816
+ }
817
+ if (diffs.length > 0) {
818
+ diffs.sort((a, b) => a - b);
819
+ const mid = Math.floor(diffs.length / 2);
820
+ realHorizSpacing = diffs.length % 2 === 1 ? diffs[mid] : ((diffs[mid - 1] + diffs[mid]) / 2);
821
+ if (!isFinite(realHorizSpacing) || realHorizSpacing <= 0)
822
+ realHorizSpacing = Math.sqrt(3) * hexRadius * hexSpacingFactor;
823
+ }
824
+ }
825
+ catch (e) {
826
+ // fallback to default computed spacing
827
+ realHorizSpacing = Math.sqrt(3) * hexRadius * hexSpacingFactor;
828
+ }
829
+ // tile center calculation: simple regular grid, no parity offset
830
+ // The hex positions already have natural staggering, so tile centers should be regular
831
+ const tileCenter = (col, row) => {
832
+ const u = (col + 0.5) / tilesX;
833
+ const v = (row + 0.5) / tilesY;
834
+ const x = normMinX + u * normWidth;
835
+ const y = normMinY + v * normHeight;
836
+ return [x, y];
837
+ };
838
+ console.log('[assignClusterGridPositions] Normalized bounds for tiling:', {
839
+ normMinX: normMinX.toFixed(2),
840
+ normMinY: normMinY.toFixed(2),
841
+ normWidth: normWidth.toFixed(2),
842
+ normHeight: normHeight.toFixed(2),
843
+ preserveAspect,
844
+ fillMode: workerDebug.clusterFillMode
845
+ });
846
+ // SPATIAL assignment: each hex gets the tile whose center is spatially nearest
847
+ // This guarantees perfect alignment between hex positions and tile centers
848
+ // Build centers map first
849
+ const centers = [];
850
+ for (let r = 0; r < tilesY; r++)
851
+ for (let c = 0; c < tilesX; c++) {
852
+ const [x, y] = tileCenter(c, r);
853
+ centers.push({ t: [c, r], x, y });
854
+ }
855
+ // Optionally collect centers for debug visualization
856
+ if (workerDebug.showTileCenters) {
857
+ debugCenters.push({
858
+ photoId,
859
+ clusterIndex,
860
+ centers: centers.map(c => ({ x: c.x, y: c.y, col: c.t[0], row: c.t[1] }))
861
+ });
862
+ }
863
+ // Assign each hex to its nearest tile center (purely spatial)
864
+ // Log a few examples to verify the mapping
865
+ const assignmentSamples = [];
866
+ for (const nodeId of cluster) {
867
+ const nodePos = positions[nodeId];
868
+ if (!nodePos)
869
+ continue;
870
+ let nearestTile = centers[0].t;
871
+ let nearestDist = Infinity;
872
+ let nearestCenter = centers[0];
873
+ for (const c of centers) {
874
+ const dist = Math.hypot(nodePos[0] - c.x, nodePos[1] - c.y);
875
+ if (dist < nearestDist) {
876
+ nearestDist = dist;
877
+ nearestTile = c.t;
878
+ nearestCenter = c;
879
+ }
880
+ }
881
+ assignment.set(nodeId, nearestTile);
882
+ occupied.set(tileKey(nearestTile[0], nearestTile[1]), true);
883
+ // Sample first few for debugging
884
+ if (assignmentSamples.length < 5) {
885
+ assignmentSamples.push({
886
+ nodeId,
887
+ nodeX: nodePos[0],
888
+ nodeY: nodePos[1],
889
+ tileCol: nearestTile[0],
890
+ tileRow: nearestTile[1],
891
+ centerX: nearestCenter.x,
892
+ centerY: nearestCenter.y,
893
+ dist: nearestDist
894
+ });
895
+ }
896
+ }
897
+ console.log('[assignClusterGridPositions] Spatially assigned', cluster.length, 'hexes to nearest tile centers');
898
+ console.log('[assignClusterGridPositions] Sample assignments:', assignmentSamples.map(s => `node#${s.nodeId} at (${s.nodeX.toFixed(1)},${s.nodeY.toFixed(1)}) → tile[${s.tileCol},${s.tileRow}] center(${s.centerX.toFixed(1)},${s.centerY.toFixed(1)}) dist=${s.dist.toFixed(1)}`).join('\n '));
899
+ // Optional: Neighborhood-aware refinement to reduce visual seams
900
+ // For each hex, check if its neighbors suggest a better tile assignment for visual continuity
901
+ if (workerDebug.clusterNeighborAware !== false) {
902
+ const maxIterations = 3; // Multiple passes to propagate improvements
903
+ for (let iter = 0; iter < maxIterations; iter++) {
904
+ let adjustments = 0;
905
+ for (const nodeId of cluster) {
906
+ const currentTile = assignment.get(nodeId);
907
+ if (!currentTile)
908
+ continue;
909
+ // Get neighbors within this cluster
910
+ const neighbors = getNeighborsCached(nodeId, positions, hexRadius);
911
+ const clusterNeighbors = neighbors.filter(n => clusterSet.has(n) && assignment.has(n));
912
+ if (clusterNeighbors.length === 0)
913
+ continue;
914
+ // Collect neighbor tiles and compute centroid
915
+ const neighborTiles = [];
916
+ for (const n of clusterNeighbors) {
917
+ const nt = assignment.get(n);
918
+ if (nt)
919
+ neighborTiles.push(nt);
920
+ }
921
+ if (neighborTiles.length === 0)
922
+ continue;
923
+ // Compute average neighbor tile position
924
+ let avgCol = 0, avgRow = 0;
925
+ for (const [c, r] of neighborTiles) {
926
+ avgCol += c;
927
+ avgRow += r;
928
+ }
929
+ avgCol /= neighborTiles.length;
930
+ avgRow /= neighborTiles.length;
931
+ // Find the tile closest to the neighbor average that's spatially near this node
932
+ const nodePos = positions[nodeId];
933
+ if (!nodePos)
934
+ continue;
935
+ let bestAlternative = null;
936
+ let bestScore = Infinity;
937
+ // Consider tiles in a local neighborhood around current tile
938
+ const searchRadius = 2;
939
+ for (let dc = -searchRadius; dc <= searchRadius; dc++) {
940
+ for (let dr = -searchRadius; dr <= searchRadius; dr++) {
941
+ const candidateCol = Math.max(0, Math.min(tilesX - 1, currentTile[0] + dc));
942
+ const candidateRow = Math.max(0, Math.min(tilesY - 1, currentTile[1] + dr));
943
+ const candidate = [candidateCol, candidateRow];
944
+ // Score: distance to neighbor tile average + spatial distance to tile center
945
+ const tileDist = Math.hypot(candidateCol - avgCol, candidateRow - avgRow);
946
+ const [cx, cy] = tileCenter(candidateCol, candidateRow);
947
+ const spatialDist = Math.hypot(nodePos[0] - cx, nodePos[1] - cy);
948
+ const score = tileDist * 0.7 + spatialDist * 0.3;
949
+ if (score < bestScore) {
950
+ bestScore = score;
951
+ bestAlternative = candidate;
952
+ }
953
+ }
954
+ }
955
+ // If we found a better tile and it's different from current, update
956
+ if (bestAlternative && (bestAlternative[0] !== currentTile[0] || bestAlternative[1] !== currentTile[1])) {
957
+ assignment.set(nodeId, bestAlternative);
958
+ adjustments++;
959
+ }
960
+ }
961
+ if (adjustments === 0)
962
+ break; // Converged
963
+ console.log('[assignClusterGridPositions] Neighbor-aware refinement iteration', iter + 1, ':', adjustments, 'adjustments');
964
+ }
965
+ }
966
+ // Finally write assignments back into infections with UV bounds/inset
967
+ const inset = Math.max(0, Math.min(0.49, Number(workerDebug.clusterUvInset) || 0));
968
+ for (const id of cluster) {
969
+ const inf = infections.get(id);
970
+ if (!inf)
971
+ continue;
972
+ let assignedTile = assignment.get(id) || [0, 0];
973
+ // Support bottom anchoring: flip the vertical tile index when 'max' is configured
974
+ if (workerDebug.clusterAnchor === 'max') {
975
+ assignedTile = [assignedTile[0], Math.max(0, tilesY - 1 - assignedTile[1])];
976
+ }
977
+ let uvBounds = calculateUvBoundsFromGridPosition(assignedTile[0], assignedTile[1], tilesX, tilesY);
978
+ if (inset > 0) {
979
+ const u0 = uvBounds[0], v0 = uvBounds[1], u1 = uvBounds[2], v1 = uvBounds[3];
980
+ const du = (u1 - u0) * inset;
981
+ const dv = (v1 - v0) * inset;
982
+ uvBounds = [u0 + du, v0 + dv, u1 - du, v1 - dv];
983
+ }
984
+ infections.set(id, Object.assign(Object.assign({}, inf), { gridPosition: [assignedTile[0], assignedTile[1]], uvBounds, tilesX, tilesY }));
985
+ }
986
+ console.log('[assignClusterGridPositions] Assigned grid positions to', cluster.length, 'hexes in cluster (BFS)');
987
+ }
988
+ catch (e) {
989
+ console.error('[assignClusterGridPositions] BFS assignment failed, falling back to quantization', e);
990
+ // fallback: leave previous behavior (quantization) to avoid breaking
991
+ }
992
+ clusterIndex++;
993
+ }
994
+ }
995
+ // Log cluster statistics
996
+ if (clusterSizes.length > 0) {
997
+ clusterSizes.sort((a, b) => b - a); // descending
998
+ const avgSize = clusterSizes.reduce((sum, s) => sum + s, 0) / clusterSizes.length;
999
+ const medianSize = clusterSizes[Math.floor(clusterSizes.length / 2)];
1000
+ const maxSize = clusterSizes[0];
1001
+ const smallClusters = clusterSizes.filter(s => s <= 3).length;
1002
+ console.log('[assignClusterGridPositions] CLUSTER STATS: total=', totalClusters, 'avg=', avgSize.toFixed(1), 'median=', medianSize, 'max=', maxSize, 'small(≤3)=', smallClusters, '/', totalClusters, '(', (100 * smallClusters / totalClusters).toFixed(0), '%)');
1003
+ }
1004
+ console.log('[assignClusterGridPositions] Complete');
1005
+ }
1006
+ catch (e) {
1007
+ console.error('[assignClusterGridPositions] Error:', e);
1008
+ }
1009
+ return debugCenters;
1010
+ }
1011
+ function postOptimizationMerge(infections, positions, hexRadius, debug = false) {
1012
+ var _a;
1013
+ try {
1014
+ if (!workerDebug || !workerDebug.enableMerges) {
1015
+ if (debug && workerDebug.mergeLogs)
1016
+ console.log('[merge] disabled');
1017
+ return;
1018
+ }
1019
+ const threshold = typeof workerDebug.mergeSmallComponentsThreshold === 'number' ? workerDebug.mergeSmallComponentsThreshold : 3;
1020
+ const byPhoto = new Map();
1021
+ for (const [idx, inf] of infections) {
1022
+ const arr = byPhoto.get(inf.photo.id) || [];
1023
+ arr.push(idx);
1024
+ byPhoto.set(inf.photo.id, arr);
1025
+ }
1026
+ let merges = 0;
1027
+ for (const [photoId, inds] of byPhoto) {
1028
+ const comps = findConnectedComponents(inds, positions, hexRadius);
1029
+ const small = comps.filter(c => c.length > 0 && c.length <= threshold);
1030
+ const big = comps.filter(c => c.length > threshold);
1031
+ if (small.length === 0 || big.length === 0)
1032
+ continue;
1033
+ const bounds = getGridBounds(positions);
1034
+ for (const s of small) {
1035
+ let best = null;
1036
+ let bestD = Infinity;
1037
+ for (const b of big) {
1038
+ let sx = 0, sy = 0, bx = 0, by = 0;
1039
+ for (const i of s) {
1040
+ const p = positions[i];
1041
+ if (p) {
1042
+ sx += p[0];
1043
+ sy += p[1];
1044
+ }
1045
+ }
1046
+ for (const i of b) {
1047
+ const p = positions[i];
1048
+ if (p) {
1049
+ bx += p[0];
1050
+ by += p[1];
1051
+ }
1052
+ }
1053
+ const scx = sx / s.length, scy = sy / s.length, bcx = bx / b.length, bcy = by / b.length;
1054
+ const dx = Math.abs(scx - bcx);
1055
+ const dy = Math.abs(scy - bcy);
1056
+ let effDx = dx;
1057
+ let effDy = dy;
1058
+ if (cache.isSpherical && bounds.width > 0 && bounds.height > 0) {
1059
+ if (effDx > bounds.width / 2)
1060
+ effDx = bounds.width - effDx;
1061
+ if (effDy > bounds.height / 2)
1062
+ effDy = bounds.height - effDy;
1063
+ }
1064
+ const d = Math.sqrt(effDx * effDx + effDy * effDy);
1065
+ if (d < bestD) {
1066
+ bestD = d;
1067
+ best = b;
1068
+ }
1069
+ }
1070
+ if (!best)
1071
+ continue;
1072
+ const recipientId = (_a = infections.get(best[0])) === null || _a === void 0 ? void 0 : _a.photo.id;
1073
+ if (!recipientId)
1074
+ continue;
1075
+ const before = calculateContiguity(best, positions, hexRadius);
1076
+ const after = calculateContiguity([...best, ...s], positions, hexRadius);
1077
+ if (after > before + 1) {
1078
+ for (const idx of s) {
1079
+ const inf = infections.get(idx);
1080
+ if (!inf)
1081
+ continue;
1082
+ infections.set(idx, Object.assign(Object.assign({}, inf), { photo: infections.get(best[0]).photo }));
1083
+ }
1084
+ merges++;
1085
+ if (debug && workerDebug.mergeLogs)
1086
+ console.log(`[merge] moved ${s.length} -> ${recipientId}`);
1087
+ }
1088
+ }
1089
+ }
1090
+ }
1091
+ catch (e) {
1092
+ if (debug)
1093
+ console.warn('[merge] failed', e);
1094
+ }
1095
+ }
1096
+ function normalizePrevState(prevState) {
1097
+ try {
1098
+ if (!prevState)
1099
+ return { infections: new Map(), availableIndices: [] };
1100
+ let infectionsMap;
1101
+ if (prevState.infections instanceof Map) {
1102
+ infectionsMap = prevState.infections;
1103
+ }
1104
+ else if (Array.isArray(prevState.infections)) {
1105
+ try {
1106
+ infectionsMap = new Map(prevState.infections);
1107
+ }
1108
+ catch (e) {
1109
+ infectionsMap = new Map();
1110
+ }
1111
+ }
1112
+ else if (typeof prevState.infections === 'object' && prevState.infections !== null && typeof prevState.infections.entries === 'function') {
1113
+ try {
1114
+ infectionsMap = new Map(Array.from(prevState.infections.entries()));
1115
+ }
1116
+ catch (e) {
1117
+ infectionsMap = new Map();
1118
+ }
1119
+ }
1120
+ else {
1121
+ infectionsMap = new Map();
1122
+ }
1123
+ const available = Array.isArray(prevState.availableIndices) ? prevState.availableIndices : [];
1124
+ return { infections: infectionsMap, availableIndices: available, generation: prevState.generation };
1125
+ }
1126
+ catch (e) {
1127
+ safePostError(e);
1128
+ return { infections: new Map(), availableIndices: [] };
1129
+ }
1130
+ }
1131
+ function evolveInfectionSystem(prevState, positions, photos, hexRadius, currentTime, debug = false) {
1132
+ var _a;
1133
+ try {
1134
+ console.log('[evolve] Step 1: Validating positions...');
1135
+ if (!positions || positions.length === 0) {
1136
+ safePostError(new Error('positions required for evolve'));
1137
+ return null;
1138
+ }
1139
+ console.log('[evolve] Step 2: Normalizing state...');
1140
+ const normalized = normalizePrevState(prevState);
1141
+ const infectionsMap = normalized.infections;
1142
+ const availableSet = new Set(Array.isArray(normalized.availableIndices) ? normalized.availableIndices : []);
1143
+ console.log('[evolve] Step 3: Cleaning infections...');
1144
+ for (const [idx, inf] of infectionsMap) {
1145
+ if (!inf || !inf.photo) {
1146
+ infectionsMap.delete(idx);
1147
+ availableSet.add(idx);
1148
+ }
1149
+ }
1150
+ console.log('[evolve] Step 4: Calculating centroids...');
1151
+ const centroids = calculatePhotoCentroids(infectionsMap, positions, hexRadius);
1152
+ console.log('[evolve] Step 5: Creating new state copies...');
1153
+ const newInfections = new Map(infectionsMap);
1154
+ const newAvailable = new Set(availableSet);
1155
+ const generation = (prevState && typeof prevState.generation === 'number') ? prevState.generation + 1 : 0;
1156
+ console.log('[evolve] Step 6: Growth step - processing', infectionsMap.size, 'infections...');
1157
+ // Skip growth step if we have no infections or no photos
1158
+ if (infectionsMap.size === 0 || photos.length === 0) {
1159
+ console.log('[evolve] Skipping growth - no infections or no photos');
1160
+ }
1161
+ else {
1162
+ // Cell death step: allow fully surrounded cells to die and respawn for optimization
1163
+ if (workerDebug.enableCellDeath && typeof workerDebug.cellDeathProbability === 'number') {
1164
+ // Apply annealing rate to base death probability
1165
+ const annealingRate = typeof workerDebug.annealingRate === 'number' && workerDebug.annealingRate > 0
1166
+ ? workerDebug.annealingRate
1167
+ : 1.0;
1168
+ const baseDeathProb = Math.max(0, Math.min(1, workerDebug.cellDeathProbability * annealingRate));
1169
+ const mutationEnabled = !!workerDebug.enableMutation;
1170
+ const baseMutationProb = mutationEnabled && typeof workerDebug.mutationProbability === 'number'
1171
+ ? Math.max(0, Math.min(1, workerDebug.mutationProbability))
1172
+ : 0;
1173
+ let deathCount = 0;
1174
+ let mutationCount = 0;
1175
+ let invaderExpulsions = 0;
1176
+ // Calculate cluster sizes for mutation scaling
1177
+ const clusterSizes = new Map();
1178
+ for (const [_, inf] of infectionsMap) {
1179
+ clusterSizes.set(inf.photo.id, (clusterSizes.get(inf.photo.id) || 0) + 1);
1180
+ }
1181
+ for (const [idx, inf] of infectionsMap) {
1182
+ const neighbors = getNeighborsCached(idx, positions, hexRadius);
1183
+ const totalNeighbors = neighbors.length;
1184
+ // Count neighbors with the same photo (affinity)
1185
+ const samePhotoNeighbors = neighbors.filter(n => {
1186
+ const nInf = newInfections.get(n);
1187
+ return nInf && nInf.photo.id === inf.photo.id;
1188
+ });
1189
+ // Calculate affinity ratio: 1.0 = all same photo, 0.0 = none same photo
1190
+ const affinityRatio = totalNeighbors > 0 ? samePhotoNeighbors.length / totalNeighbors : 0;
1191
+ // Count hostile (different photo) neighbors and diversity
1192
+ const hostileNeighbors = totalNeighbors - samePhotoNeighbors.length;
1193
+ const hostileRatio = totalNeighbors > 0 ? hostileNeighbors / totalNeighbors : 0;
1194
+ // Calculate diversity: how many unique different photo types surround this cell
1195
+ const uniqueHostilePhotos = new Set();
1196
+ for (const n of neighbors) {
1197
+ const nInf = newInfections.get(n);
1198
+ if (nInf && nInf.photo.id !== inf.photo.id) {
1199
+ uniqueHostilePhotos.add(nInf.photo.id);
1200
+ }
1201
+ }
1202
+ const diversityCount = uniqueHostilePhotos.size;
1203
+ const maxDiversity = 6; // hex grid max neighbors
1204
+ const diversityRatio = diversityCount / maxDiversity;
1205
+ // Affinity-adjusted death probability with boundary pressure:
1206
+ // - High affinity (well-integrated) = low death rate
1207
+ // - Low affinity (invader) = high death rate
1208
+ // - Partial hostile neighbors = MUCH higher death rate (boundary warfare)
1209
+ // - Solitary cells = VERY high death rate
1210
+ //
1211
+ // Base formula: deathProb = baseDeathProb * (1 - affinityRatio)^2
1212
+ // Boundary pressure: if 1-5 hostile neighbors, apply exponential penalty
1213
+ let affinityPenalty = Math.pow(1 - affinityRatio, 2);
1214
+ // Solitary cell penalty: cells with 0-1 same neighbors are extremely vulnerable
1215
+ // Diversity amplifies this: being alone among many different photos is worst case
1216
+ if (samePhotoNeighbors.length <= 1) {
1217
+ // Base 10x penalty, increased by diversity: 2-6 different neighbors = 1.5x-3x additional multiplier
1218
+ // Formula: 10 × (1 + diversityRatio × 2)
1219
+ // 1 hostile type: 10x penalty
1220
+ // 3 hostile types (50% diversity): 20x penalty
1221
+ // 6 hostile types (100% diversity): 30x penalty
1222
+ const diversityPenalty = 1 + diversityRatio * 2;
1223
+ affinityPenalty *= (10 * diversityPenalty);
1224
+ }
1225
+ // Boundary warfare multiplier: cells partially surrounded by enemies are in danger
1226
+ if (hostileNeighbors > 0 && hostileNeighbors < totalNeighbors) {
1227
+ // Peak danger at 50% hostile (3/6 neighbors): apply up to 4x multiplier
1228
+ // Formula: 1 + 3 * sin(hostileRatio * π) creates a bell curve peaking at 0.5
1229
+ const boundaryPressure = 1 + 3 * Math.sin(hostileRatio * Math.PI);
1230
+ affinityPenalty *= boundaryPressure;
1231
+ }
1232
+ const adjustedDeathProb = Math.min(1, baseDeathProb * affinityPenalty);
1233
+ // Calculate mutation probability based on cluster size and virility
1234
+ // Larger, more popular clusters spawn more mutations
1235
+ let mutationProb = baseMutationProb;
1236
+ if (mutationEnabled && photos.length > 1) {
1237
+ const clusterSize = clusterSizes.get(inf.photo.id) || 1;
1238
+ const velocity = typeof inf.photo.velocity === 'number' ? inf.photo.velocity : 0;
1239
+ // Cluster size multiplier: larger clusters spawn more mutations (1-100 cells → 1x-10x)
1240
+ const clusterMultiplier = Math.min(10, Math.log10(clusterSize + 1) + 1);
1241
+ // Virility multiplier: popular photos spawn more mutations (0-100 velocity → 1x-3x)
1242
+ const virilityMultiplier = 1 + (Math.min(100, Math.max(0, velocity)) / 100) * 2;
1243
+ // Combined mutation rate
1244
+ mutationProb = Math.min(1, baseMutationProb * clusterMultiplier * virilityMultiplier);
1245
+ }
1246
+ // Only consider cells with at least some neighbors (avoid isolated cells)
1247
+ if (totalNeighbors >= 1 && Math.random() < adjustedDeathProb) {
1248
+ const isInvader = affinityRatio < 0.5; // Less than half neighbors are same photo
1249
+ // Check for mutation: respawn as a different photo instead of just dying
1250
+ if (mutationEnabled && Math.random() < mutationProb && photos.length > 1) {
1251
+ // Pick a random photo from the pool that's different from current
1252
+ const otherPhotos = photos.filter(p => p.id !== inf.photo.id);
1253
+ if (otherPhotos.length > 0) {
1254
+ const newPhoto = otherPhotos[Math.floor(Math.random() * otherPhotos.length)];
1255
+ const tilesX = 4;
1256
+ const tilesY = 4;
1257
+ const uvBounds = calculateUvBoundsFromGridPosition(0, 0, tilesX, tilesY);
1258
+ // Mutate: replace with new photo instead of dying
1259
+ newInfections.set(idx, {
1260
+ photo: newPhoto,
1261
+ gridPosition: [0, 0],
1262
+ infectionTime: currentTime,
1263
+ generation,
1264
+ uvBounds: uvBounds,
1265
+ scale: 0.4,
1266
+ growthRate: 0.08,
1267
+ tilesX: tilesX,
1268
+ tilesY: tilesY
1269
+ });
1270
+ mutationCount++;
1271
+ }
1272
+ else {
1273
+ // No other photos available, just die normally
1274
+ newInfections.delete(idx);
1275
+ newAvailable.add(idx);
1276
+ deathCount++;
1277
+ }
1278
+ }
1279
+ else {
1280
+ // Normal death: remove and make available for respawn
1281
+ newInfections.delete(idx);
1282
+ newAvailable.add(idx);
1283
+ deathCount++;
1284
+ if (isInvader)
1285
+ invaderExpulsions++;
1286
+ }
1287
+ }
1288
+ }
1289
+ if (deathCount > 0 || mutationCount > 0 || invaderExpulsions > 0) {
1290
+ console.log('[evolve] Cell death: removed', deathCount, 'cells (', invaderExpulsions, 'invaders expelled), mutated', mutationCount, 'cells');
1291
+ }
1292
+ }
1293
+ // Growth step: prefer neighbors that increase contiguity and are closer to centroids
1294
+ let growthIterations = 0;
1295
+ for (const [idx, inf] of infectionsMap) {
1296
+ growthIterations++;
1297
+ if (growthIterations % 10 === 0)
1298
+ console.log('[evolve] Growth iteration', growthIterations, '/', infectionsMap.size);
1299
+ const neighbors = getNeighborsCached(idx, positions, hexRadius);
1300
+ for (const n of neighbors) {
1301
+ if (!newAvailable.has(n))
1302
+ continue;
1303
+ let base = 0.5; // BOOSTED from 0.3 to encourage more aggressive growth
1304
+ const sameNeighbors = getNeighborsCached(n, positions, hexRadius).filter(x => newInfections.has(x) && newInfections.get(x).photo.id === inf.photo.id).length;
1305
+ if (sameNeighbors >= 2)
1306
+ base = 0.95;
1307
+ else if (sameNeighbors === 1)
1308
+ base = 0.75; // BOOSTED to favor contiguous growth
1309
+ // Virility boost: photos with higher velocity (upvotes/engagement) grow faster
1310
+ if (workerDebug.enableVirilityBoost && typeof inf.photo.velocity === 'number' && inf.photo.velocity > 0) {
1311
+ const virilityMult = typeof workerDebug.virilityMultiplier === 'number' ? workerDebug.virilityMultiplier : 1.0;
1312
+ // Normalize velocity to a 0-1 range (assuming velocity is already normalized or 0-100)
1313
+ // Then apply as a percentage boost: velocity=100 -> 100% boost (2x), velocity=50 -> 50% boost (1.5x)
1314
+ const normalizedVelocity = Math.min(1, Math.max(0, inf.photo.velocity / 100));
1315
+ const virilityBoost = 1 + (normalizedVelocity * virilityMult);
1316
+ base *= virilityBoost;
1317
+ }
1318
+ // Centroid cohesion bias
1319
+ try {
1320
+ const cList = centroids.get(inf.photo.id) || [];
1321
+ if (cList.length > 0) {
1322
+ const bounds = getGridBounds(positions);
1323
+ let minD = Infinity;
1324
+ const p = positions[n];
1325
+ for (const c of cList) {
1326
+ const dx = Math.abs(p[0] - c[0]);
1327
+ const dy = Math.abs(p[1] - c[1]);
1328
+ let effDx = dx;
1329
+ let effDy = dy;
1330
+ if (cache.isSpherical && bounds.width > 0 && bounds.height > 0) {
1331
+ if (effDx > bounds.width / 2)
1332
+ effDx = bounds.width - effDx;
1333
+ if (effDy > bounds.height / 2)
1334
+ effDy = bounds.height - effDy;
1335
+ }
1336
+ const d = Math.sqrt(effDx * effDx + effDy * effDy);
1337
+ if (d < minD)
1338
+ minD = d;
1339
+ }
1340
+ const radius = Math.max(1, hexRadius * 3);
1341
+ const distFactor = Math.max(0, Math.min(1, 1 - (minD / radius)));
1342
+ const boost = typeof workerDebug.cohesionBoost === 'number' ? workerDebug.cohesionBoost : 0.6;
1343
+ base *= (1 + distFactor * boost);
1344
+ }
1345
+ }
1346
+ catch (e) {
1347
+ if (debug)
1348
+ console.warn('cohesion calc failed', e);
1349
+ }
1350
+ if (Math.random() < Math.min(0.999, base)) {
1351
+ const tilesX = inf.tilesX || 4;
1352
+ const tilesY = inf.tilesY || 4;
1353
+ const uvBounds = calculateUvBoundsFromGridPosition(0, 0, tilesX, tilesY);
1354
+ newInfections.set(n, { photo: inf.photo, gridPosition: [0, 0], infectionTime: currentTime, generation, uvBounds: uvBounds, scale: 0.4, growthRate: inf.growthRate || 0.08, tilesX: tilesX, tilesY: tilesY });
1355
+ newAvailable.delete(n);
1356
+ }
1357
+ }
1358
+ }
1359
+ }
1360
+ console.log('[evolve] Step 7: Deterministic fill - processing', newAvailable.size, 'available positions...');
1361
+ // Skip deterministic fill if we have no photos or no existing infections to base decisions on
1362
+ if (photos.length === 0 || newInfections.size === 0) {
1363
+ console.log('[evolve] Skipping deterministic fill - no photos or no infections');
1364
+ }
1365
+ else {
1366
+ // Deterministic fill for holes with >=2 same-photo neighbors
1367
+ let fillIterations = 0;
1368
+ for (const a of Array.from(newAvailable)) {
1369
+ fillIterations++;
1370
+ if (fillIterations % 50 === 0)
1371
+ console.log('[evolve] Fill iteration', fillIterations, '/', newAvailable.size);
1372
+ const neighbors = getNeighborsCached(a, positions, hexRadius);
1373
+ const counts = new Map();
1374
+ for (const n of neighbors) {
1375
+ const inf = newInfections.get(n);
1376
+ if (!inf)
1377
+ continue;
1378
+ counts.set(inf.photo.id, (counts.get(inf.photo.id) || 0) + 1);
1379
+ }
1380
+ let bestId;
1381
+ let best = 0;
1382
+ for (const [pid, c] of counts)
1383
+ if (c > best) {
1384
+ best = c;
1385
+ bestId = pid;
1386
+ }
1387
+ if (bestId && best >= 2) {
1388
+ const src = photos.find(p => p.id === bestId) || ((_a = Array.from(infectionsMap.values())[0]) === null || _a === void 0 ? void 0 : _a.photo);
1389
+ if (src) {
1390
+ const tilesX = 4;
1391
+ const tilesY = 4;
1392
+ const uvBounds = calculateUvBoundsFromGridPosition(0, 0, tilesX, tilesY);
1393
+ newInfections.set(a, { photo: src, gridPosition: [0, 0], infectionTime: currentTime, generation, uvBounds: uvBounds, scale: 0.35, growthRate: 0.08, tilesX: tilesX, tilesY: tilesY });
1394
+ newAvailable.delete(a);
1395
+ }
1396
+ }
1397
+ }
1398
+ }
1399
+ console.log('[evolve] Step 8: Optimization merge pass...');
1400
+ // Conservative merge pass (opt-in)
1401
+ postOptimizationMerge(newInfections, positions, hexRadius, !!workerDebug.mergeLogs);
1402
+ console.log('[evolve] Step 9: Assigning cluster-aware grid positions...');
1403
+ // Make clusters self-aware by assigning grid positions based on spatial layout
1404
+ const tileCenters = assignClusterGridPositions(newInfections, positions, hexRadius);
1405
+ console.log('[evolve] Step 10: Returning result - generation', generation, 'infections', newInfections.size);
1406
+ return { infections: newInfections, availableIndices: Array.from(newAvailable), lastEvolutionTime: currentTime, generation, tileCenters };
1407
+ }
1408
+ catch (e) {
1409
+ safePostError(e);
1410
+ return null;
1411
+ }
1412
+ }
1413
+ let lastEvolutionAt = 0;
1414
+ function mergeDebugFromPayload(d) {
1415
+ if (!d || typeof d !== 'object')
1416
+ return;
1417
+ // Map main-thread naming (evolveIntervalMs) into worker's evolutionIntervalMs
1418
+ if (typeof d.evolveIntervalMs === 'number')
1419
+ d.evolutionIntervalMs = d.evolveIntervalMs;
1420
+ // Merge into workerDebug
1421
+ try {
1422
+ Object.assign(workerDebug, d);
1423
+ }
1424
+ catch (e) { }
1425
+ }
1426
+ self.onmessage = function (ev) {
1427
+ var _a, _b, _c, _d, _e, _f, _g, _h, _j, _k, _l, _m, _o;
1428
+ const raw = ev.data;
1429
+ try {
1430
+ if (!raw || typeof raw !== 'object')
1431
+ return;
1432
+ const type = raw.type;
1433
+ const payload = (_a = raw.data) !== null && _a !== void 0 ? _a : raw;
1434
+ if (type === 'setDataAndConfig' || type === 'setDebug') {
1435
+ // Accept either { type:'setDataAndConfig', data: { photos, debug } } or { type:'setDebug', debug }
1436
+ const dbg = (_c = (_b = payload.debug) !== null && _b !== void 0 ? _b : raw.debug) !== null && _c !== void 0 ? _c : payload;
1437
+ mergeDebugFromPayload(dbg);
1438
+ // Pre-build neighbor cache if positions are provided
1439
+ if (type === 'setDataAndConfig') {
1440
+ const incomingIsSpherical = typeof payload.isSpherical === 'boolean' ? Boolean(payload.isSpherical) : cache.isSpherical;
1441
+ const shouldUpdateTopology = typeof payload.isSpherical === 'boolean' && incomingIsSpherical !== cache.isSpherical;
1442
+ if (shouldUpdateTopology)
1443
+ invalidateCaches(incomingIsSpherical);
1444
+ else
1445
+ invalidateCaches();
1446
+ const positions = payload.positions;
1447
+ if (!positions || !Array.isArray(positions))
1448
+ return;
1449
+ const hexRadius = typeof payload.hexRadius === 'number' ? payload.hexRadius : 24;
1450
+ console.log('[hexgrid-worker] Pre-building neighbor cache for', positions.length, 'positions...');
1451
+ const startTime = Date.now();
1452
+ // Build ALL neighbor relationships in one O(n²) pass instead of n×O(n) passes
1453
+ try {
1454
+ const bounds = getGridBounds(positions);
1455
+ const threshold = Math.sqrt(3) * hexRadius * 1.15;
1456
+ const isSpherical = !!cache.isSpherical;
1457
+ // Initialize empty arrays for all positions
1458
+ for (let i = 0; i < positions.length; i++) {
1459
+ cache.neighborMap.set(i, []);
1460
+ }
1461
+ // Single pass: check each pair once and add bidirectional neighbors
1462
+ for (let i = 0; i < positions.length; i++) {
1463
+ const pos1 = positions[i];
1464
+ if (!pos1)
1465
+ continue;
1466
+ // Only check j > i to avoid duplicate checks
1467
+ for (let j = i + 1; j < positions.length; j++) {
1468
+ const pos2 = positions[j];
1469
+ if (!pos2)
1470
+ continue;
1471
+ const d = distanceBetween(pos1, pos2, bounds, isSpherical);
1472
+ if (d <= threshold) {
1473
+ // Add bidirectional neighbors
1474
+ cache.neighborMap.get(i).push(j);
1475
+ cache.neighborMap.get(j).push(i);
1476
+ }
1477
+ }
1478
+ // Log progress every 100 positions
1479
+ if ((i + 1) % 100 === 0) {
1480
+ console.log('[hexgrid-worker] Processed', i + 1, '/', positions.length, 'positions');
1481
+ }
1482
+ }
1483
+ const elapsed = Date.now() - startTime;
1484
+ console.log('[hexgrid-worker] ✅ Neighbor cache built in', elapsed, 'ms - ready for evolution!');
1485
+ // Mark cache as ready
1486
+ cache.cacheReady = true;
1487
+ // Notify main thread that cache is ready
1488
+ try {
1489
+ self.postMessage({ type: 'cache-ready', data: { elapsed, positions: positions.length } });
1490
+ }
1491
+ catch (e) { }
1492
+ }
1493
+ catch (e) {
1494
+ console.error('[hexgrid-worker] Error during cache pre-build:', e);
1495
+ // Mark cache as ready anyway to allow evolution to proceed
1496
+ cache.cacheReady = true;
1497
+ }
1498
+ }
1499
+ return;
1500
+ }
1501
+ if (type === 'evolve') {
1502
+ // Check if neighbor cache is ready before processing evolve
1503
+ if (!cache.cacheReady) {
1504
+ console.log('[hexgrid-worker] ⏸️ Evolve message received but cache not ready yet - deferring...');
1505
+ // Defer this evolve message by re-posting it after a short delay
1506
+ setTimeout(() => {
1507
+ try {
1508
+ self.postMessage({ type: 'deferred-evolve', data: { reason: 'cache-not-ready' } });
1509
+ }
1510
+ catch (e) { }
1511
+ // Re-process the message
1512
+ self.onmessage(ev);
1513
+ }, 100);
1514
+ return;
1515
+ }
1516
+ // Normalize payload shape: support { data: { prevState, positions, photos, hexRadius, debug } }
1517
+ mergeDebugFromPayload(payload.debug || payload);
1518
+ // Diagnostic: log that an evolve was received and the available payload keys (only when debugLogs enabled)
1519
+ try {
1520
+ if (workerDebug && workerDebug.debugLogs) {
1521
+ console.log('[hexgrid-worker] evolve received, payload keys=', Object.keys(payload || {}), 'workerDebug.evolutionIntervalMs=', workerDebug.evolutionIntervalMs, 'workerDebug.evolveIntervalMs=', workerDebug.evolveIntervalMs);
1522
+ }
1523
+ }
1524
+ catch (e) { }
1525
+ const now = Date.now();
1526
+ const interval = typeof workerDebug.evolutionIntervalMs === 'number' ? workerDebug.evolutionIntervalMs : (typeof workerDebug.evolveIntervalMs === 'number' ? workerDebug.evolveIntervalMs : 60000);
1527
+ console.log('[hexgrid-worker] Throttle check: interval=', interval, 'lastEvolutionAt=', lastEvolutionAt, 'now=', now, 'diff=', now - lastEvolutionAt, 'willThrottle=', (now - lastEvolutionAt < interval));
1528
+ // Throttle: if we're within the interval, notify (debug) and skip processing
1529
+ const reason = payload.reason || (raw && raw.reason);
1530
+ const bypassThrottle = reason === 'photos-init' || reason === 'reset';
1531
+ // Clear, high-signal log for build verification: reports whether the current evolve will bypass the worker throttle
1532
+ console.log('[hexgrid-worker] THROTTLE DECISION', { interval, lastEvolutionAt, now, diff: now - lastEvolutionAt, willThrottle: (!bypassThrottle && (now - lastEvolutionAt < interval)), reason, bypassThrottle });
1533
+ // Throttle: if we're within the interval and not bypassed, notify (debug) and skip processing
1534
+ if (!bypassThrottle && now - lastEvolutionAt < interval) {
1535
+ console.log('[hexgrid-worker] ⛔ THROTTLED - skipping evolution processing');
1536
+ if (workerDebug && workerDebug.debugLogs) {
1537
+ try {
1538
+ self.postMessage({ type: 'throttled-evolve', data: { receivedAt: now, nextAvailableAt: lastEvolutionAt + interval, payloadKeys: Object.keys(payload || {}), reason } });
1539
+ }
1540
+ catch (e) { }
1541
+ }
1542
+ return;
1543
+ }
1544
+ // Mark processed time and send ack for an evolve we will process
1545
+ lastEvolutionAt = now;
1546
+ console.log('[hexgrid-worker] ✅ PROCESSING evolution - lastEvolutionAt updated to', now);
1547
+ try {
1548
+ if (workerDebug && workerDebug.debugLogs) {
1549
+ try {
1550
+ self.postMessage({ type: 'ack-evolve', data: { receivedAt: now, payloadKeys: Object.keys(payload || {}) } });
1551
+ }
1552
+ catch (e) { }
1553
+ }
1554
+ }
1555
+ catch (e) { }
1556
+ // Emit a lightweight processing marker so the client can see evolve processing started
1557
+ try {
1558
+ if (workerDebug && workerDebug.debugLogs) {
1559
+ try {
1560
+ self.postMessage({ type: 'processing-evolve', data: { startedAt: now, payloadKeys: Object.keys(payload || {}) } });
1561
+ }
1562
+ catch (e) { }
1563
+ }
1564
+ }
1565
+ catch (e) { }
1566
+ const state = (_f = (_e = (_d = payload.prevState) !== null && _d !== void 0 ? _d : payload.state) !== null && _e !== void 0 ? _e : raw.state) !== null && _f !== void 0 ? _f : null;
1567
+ const positions = (_h = (_g = payload.positions) !== null && _g !== void 0 ? _g : raw.positions) !== null && _h !== void 0 ? _h : [];
1568
+ const photos = (_k = (_j = payload.photos) !== null && _j !== void 0 ? _j : raw.photos) !== null && _k !== void 0 ? _k : [];
1569
+ const hexRadius = typeof payload.hexRadius === 'number' ? payload.hexRadius : (typeof raw.hexRadius === 'number' ? raw.hexRadius : 16);
1570
+ if (typeof payload.isSpherical === 'boolean' && Boolean(payload.isSpherical) !== cache.isSpherical) {
1571
+ invalidateCaches(Boolean(payload.isSpherical));
1572
+ }
1573
+ console.log('[hexgrid-worker] 🔧 About to call evolveInfectionSystem');
1574
+ console.log('[hexgrid-worker] - state generation:', state === null || state === void 0 ? void 0 : state.generation);
1575
+ console.log('[hexgrid-worker] - state infections:', ((_l = state === null || state === void 0 ? void 0 : state.infections) === null || _l === void 0 ? void 0 : _l.length) || ((_m = state === null || state === void 0 ? void 0 : state.infections) === null || _m === void 0 ? void 0 : _m.size) || 0);
1576
+ console.log('[hexgrid-worker] - positions:', (positions === null || positions === void 0 ? void 0 : positions.length) || 0);
1577
+ console.log('[hexgrid-worker] - photos:', (photos === null || photos === void 0 ? void 0 : photos.length) || 0);
1578
+ console.log('[hexgrid-worker] - hexRadius:', hexRadius);
1579
+ let res;
1580
+ let timeoutId;
1581
+ let timedOut = false;
1582
+ // Set a watchdog timer to detect hangs (10 seconds)
1583
+ timeoutId = setTimeout(() => {
1584
+ timedOut = true;
1585
+ console.error('[hexgrid-worker] ⏱️ TIMEOUT: evolveInfectionSystem is taking too long (>10s)! Possible infinite loop.');
1586
+ try {
1587
+ self.postMessage({ type: 'error', error: 'Evolution timeout - possible infinite loop' });
1588
+ }
1589
+ catch (e) { }
1590
+ }, 10000);
1591
+ try {
1592
+ console.log('[hexgrid-worker] 🚀 Calling evolveInfectionSystem NOW...');
1593
+ const startTime = Date.now();
1594
+ res = evolveInfectionSystem(state, positions, photos, hexRadius, now, !!workerDebug.debugLogs);
1595
+ const elapsed = Date.now() - startTime;
1596
+ clearTimeout(timeoutId);
1597
+ console.log('[hexgrid-worker] ✅ evolveInfectionSystem RETURNED successfully in', elapsed, 'ms');
1598
+ }
1599
+ catch (err) {
1600
+ clearTimeout(timeoutId);
1601
+ console.error('[hexgrid-worker] ❌ FATAL: evolveInfectionSystem threw an error:', err);
1602
+ console.error('[hexgrid-worker] Error stack:', err instanceof Error ? err.stack : 'no stack');
1603
+ safePostError(err);
1604
+ return;
1605
+ }
1606
+ if (timedOut) {
1607
+ console.error('[hexgrid-worker] ⏱️ Function eventually returned but after timeout was triggered');
1608
+ }
1609
+ if (!res) {
1610
+ console.log('[hexgrid-worker] ❌ evolveInfectionSystem returned null!');
1611
+ return;
1612
+ }
1613
+ console.log('[hexgrid-worker] ✅ Evolution complete! New generation=', res.generation, 'infections=', res.infections.size);
1614
+ try {
1615
+ const payload = { infections: Array.from(res.infections.entries()), availableIndices: res.availableIndices, lastEvolutionTime: res.lastEvolutionTime, generation: res.generation };
1616
+ if (res.tileCenters && res.tileCenters.length > 0) {
1617
+ payload.tileCenters = res.tileCenters;
1618
+ console.log('[hexgrid-worker] Including', res.tileCenters.length, 'tile center sets in evolved message');
1619
+ }
1620
+ self.postMessage({ type: 'evolved', data: payload });
1621
+ // Record posted generation/infection count so later auto-triggers can avoid regressing
1622
+ try {
1623
+ cache.lastGeneration = res.generation;
1624
+ cache.lastInfectionCount = res.infections ? res.infections.size : 0;
1625
+ }
1626
+ catch (e) { }
1627
+ }
1628
+ catch (e) {
1629
+ console.error('[hexgrid-worker] ❌ Failed to post evolved message:', e);
1630
+ }
1631
+ console.log('[hexgrid-worker] 📤 Posted evolved message back to main thread');
1632
+ // Emit a completion marker so the client can confirm the evolve finished end-to-end
1633
+ try {
1634
+ if (workerDebug && workerDebug.debugLogs) {
1635
+ try {
1636
+ self.postMessage({ type: 'evolved-complete', data: { finishedAt: Date.now(), generation: res.generation, lastEvolutionTime: res.lastEvolutionTime } });
1637
+ }
1638
+ catch (e) { }
1639
+ }
1640
+ }
1641
+ catch (e) { }
1642
+ return;
1643
+ }
1644
+ if (type === 'optimize') {
1645
+ try {
1646
+ const infectionsArr = payload.infections || raw.infections || [];
1647
+ const infections = new Map(infectionsArr);
1648
+ const positions = (_o = payload.positions) !== null && _o !== void 0 ? _o : raw.positions;
1649
+ const hexRadius = typeof payload.hexRadius === 'number' ? payload.hexRadius : (typeof raw.hexRadius === 'number' ? raw.hexRadius : 16);
1650
+ postOptimizationMerge(infections, positions, hexRadius, !!workerDebug.mergeLogs);
1651
+ try {
1652
+ self.postMessage({ type: 'optimized', data: { infections: Array.from(infections.entries()) } });
1653
+ }
1654
+ catch (e) { }
1655
+ }
1656
+ catch (e) {
1657
+ safePostError(e);
1658
+ }
1659
+ return;
1660
+ }
1661
+ }
1662
+ catch (err) {
1663
+ safePostError(err);
1664
+ }
1665
+ };
1666
+ // Additional helpers that the optimizer uses (kept separate and consistent)
1667
+ function calculatePhotoContiguityCached(photoIdOrPhoto, indices, positions, hexRadius, debugLogs = true) {
1668
+ const photoId = typeof photoIdOrPhoto === 'string' ? photoIdOrPhoto : photoIdOrPhoto.id;
1669
+ return calculatePhotoContiguity(photoId, indices, positions, hexRadius, debugLogs);
1670
+ }
1671
+ function calculatePhotoContiguity(photoId, indices, positions, hexRadius, debugLogs = true) {
1672
+ let totalScore = 0;
1673
+ const indicesSet = new Set(indices);
1674
+ for (const index of indices) {
1675
+ const neighbors = getNeighborsCached(index, positions, hexRadius);
1676
+ let connections = 0;
1677
+ for (const neighborIndex of neighbors) {
1678
+ if (indicesSet.has(neighborIndex))
1679
+ connections++;
1680
+ }
1681
+ totalScore += connections;
1682
+ }
1683
+ return totalScore;
1684
+ }
1685
+ function calculateSwappedContiguityCached(photoId, indices, positions, hexRadius, fromIndex, toIndex, infections, debugLogs = true) {
1686
+ const tempIndices = [...indices];
1687
+ const fromPos = tempIndices.indexOf(fromIndex);
1688
+ const toPos = tempIndices.indexOf(toIndex);
1689
+ if (fromPos !== -1)
1690
+ tempIndices[fromPos] = toIndex;
1691
+ if (toPos !== -1)
1692
+ tempIndices[toPos] = fromIndex;
1693
+ return calculatePhotoContiguity(photoId, tempIndices, positions, hexRadius, debugLogs);
1694
+ }
1695
+ function analyzeLocalEnvironment(centerIndex, infections, positions, hexRadius, radius = 2, debugLogs = true) {
1696
+ const centerPos = positions[centerIndex];
1697
+ const localIndices = [];
1698
+ const visited = new Set();
1699
+ const queue = [[centerIndex, 0]];
1700
+ while (queue.length > 0) {
1701
+ const [currentIndex, distance] = queue.shift();
1702
+ if (visited.has(currentIndex) || distance > radius)
1703
+ continue;
1704
+ visited.add(currentIndex);
1705
+ localIndices.push(currentIndex);
1706
+ if (distance < radius) {
1707
+ const neighbors = getNeighborsCached(currentIndex, positions, hexRadius);
1708
+ for (const neighborIndex of neighbors) {
1709
+ if (!visited.has(neighborIndex))
1710
+ queue.push([neighborIndex, distance + 1]);
1711
+ }
1712
+ }
1713
+ }
1714
+ let infectedCount = 0;
1715
+ const photoCounts = new Map();
1716
+ const clusterSizes = new Map();
1717
+ let boundaryPressure = 0;
1718
+ let totalVariance = 0;
1719
+ for (const index of localIndices) {
1720
+ const infection = infections.get(index);
1721
+ if (infection) {
1722
+ infectedCount++;
1723
+ const photoId = infection.photo.id;
1724
+ photoCounts.set(photoId, (photoCounts.get(photoId) || 0) + 1);
1725
+ clusterSizes.set(photoId, (clusterSizes.get(photoId) || 0) + 1);
1726
+ }
1727
+ else {
1728
+ boundaryPressure += 0.1;
1729
+ }
1730
+ }
1731
+ const totalPhotos = photoCounts.size;
1732
+ const avgPhotoCount = infectedCount / Math.max(totalPhotos, 1);
1733
+ for (const count of photoCounts.values())
1734
+ totalVariance += Math.pow(count - avgPhotoCount, 2);
1735
+ const localVariance = totalVariance / Math.max(infectedCount, 1);
1736
+ let dominantPhoto = null;
1737
+ let maxCount = 0;
1738
+ for (const [photoId, count] of photoCounts) {
1739
+ if (count > maxCount) {
1740
+ maxCount = count;
1741
+ for (const infection of infections.values()) {
1742
+ if (infection.photo.id === photoId) {
1743
+ dominantPhoto = infection.photo;
1744
+ break;
1745
+ }
1746
+ }
1747
+ }
1748
+ }
1749
+ const density = infectedCount / Math.max(localIndices.length, 1);
1750
+ const stability = dominantPhoto ? (maxCount / Math.max(infectedCount, 1)) : 0;
1751
+ return { density, stability, dominantPhoto, clusterSizes, boundaryPressure, localVariance };
1752
+ }
1753
+ function invalidateCaches(isSpherical) {
1754
+ cache.neighborMap.clear();
1755
+ cache.gridBounds = null;
1756
+ cache.photoClusters.clear();
1757
+ cache.connectedComponents.clear();
1758
+ cache.gridPositions.clear();
1759
+ cache.cacheReady = false;
1760
+ if (typeof isSpherical === 'boolean')
1761
+ cache.isSpherical = isSpherical;
1762
+ }
1763
+ console.log('[hexgrid-worker] ready');