@brizz/sdk 0.1.2 → 0.1.3-rc.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/preload.cjs CHANGED
@@ -251,938 +251,6 @@ var import_instrumentation_pinecone = require("@traceloop/instrumentation-pineco
251
251
  var import_instrumentation_qdrant = require("@traceloop/instrumentation-qdrant");
252
252
  var import_instrumentation_together = require("@traceloop/instrumentation-together");
253
253
  var import_instrumentation_vertexai = require("@traceloop/instrumentation-vertexai");
254
-
255
- // src/internal/instrumentation/vercel-ai/instrumentation.ts
256
- var import_instrumentation = require("@opentelemetry/instrumentation");
257
-
258
- // src/internal/instrumentation/vercel-ai/patchers/base-patcher.ts
259
- var import_api2 = require("@opentelemetry/api");
260
-
261
- // src/internal/instrumentation/vercel-ai/semconv.ts
262
- var ATTR_GEN_AI_SYSTEM = "gen_ai.system";
263
- var ATTR_GEN_AI_OPERATION_NAME = "gen_ai.operation.name";
264
- var ATTR_GEN_AI_REQUEST_MODEL = "gen_ai.request.model";
265
- var ATTR_GEN_AI_REQUEST_MAX_TOKENS = "gen_ai.request.max_tokens";
266
- var ATTR_GEN_AI_REQUEST_TEMPERATURE = "gen_ai.request.temperature";
267
- var ATTR_GEN_AI_REQUEST_TOP_P = "gen_ai.request.top_p";
268
- var ATTR_GEN_AI_REQUEST_TOP_K = "gen_ai.request.top_k";
269
- var ATTR_GEN_AI_REQUEST_STOP_SEQUENCES = "gen_ai.request.stop_sequences";
270
- var ATTR_GEN_AI_REQUEST_FREQUENCY_PENALTY = "gen_ai.request.frequency_penalty";
271
- var ATTR_GEN_AI_REQUEST_PRESENCE_PENALTY = "gen_ai.request.presence_penalty";
272
- var ATTR_GEN_AI_RESPONSE_ID = "gen_ai.response.id";
273
- var ATTR_GEN_AI_RESPONSE_MODEL = "gen_ai.response.model";
274
- var ATTR_GEN_AI_RESPONSE_FINISH_REASONS = "gen_ai.response.finish_reasons";
275
- var ATTR_GEN_AI_TOKEN_TYPE = "gen_ai.token.type";
276
- var ATTR_GEN_AI_PROMPT = "gen_ai.prompt";
277
- var ATTR_GEN_AI_COMPLETION = "gen_ai.completion";
278
- var ATTR_GEN_AI_OPENAI_API_BASE = "gen_ai.openai.api_base";
279
- var ATTR_EVENT_NAME = "event.name";
280
- var EVENT_GEN_AI_USER_MESSAGE = "gen_ai.user.message";
281
- var EVENT_GEN_AI_ASSISTANT_MESSAGE = "gen_ai.assistant.message";
282
- var EVENT_GEN_AI_SYSTEM_MESSAGE = "gen_ai.system.message";
283
- var EVENT_GEN_AI_TOOL_MESSAGE = "gen_ai.tool.message";
284
- var METRIC_GEN_AI_CLIENT_OPERATION_DURATION = "gen_ai.client.operation.duration";
285
- var METRIC_GEN_AI_CLIENT_TOKEN_USAGE = "gen_ai.client.token.usage";
286
- var OPERATION_NAME_CHAT = "chat";
287
- var OPERATION_NAME_EMBEDDINGS = "embeddings";
288
- var TOKEN_TYPE_INPUT = "input";
289
- var TOKEN_TYPE_OUTPUT = "output";
290
- var PROVIDER_OPENAI = "openai";
291
- var PROVIDER_ANTHROPIC = "anthropic";
292
- var PROVIDER_GOOGLE = "google";
293
- var PROVIDER_AMAZON = "amazon";
294
- var PROVIDER_AZURE = "azure";
295
- var PROVIDER_VERCEL = "vercel";
296
- var PROVIDER_UNKNOWN = "unknown";
297
- var SPAN_NAME_GEN_AI_CHAT = "gen_ai.chat";
298
- var SPAN_NAME_GEN_AI_EMBEDDINGS = "gen_ai.embeddings";
299
-
300
- // src/internal/instrumentation/vercel-ai/utils.ts
301
- function detectProvider(model) {
302
- if (typeof model === "object" && model !== null) {
303
- const modelObj = model;
304
- if (modelObj.provider) {
305
- return {
306
- system: normalizeProviderName(modelObj.provider),
307
- apiBase: extractApiBase(modelObj)
308
- };
309
- }
310
- if (modelObj.modelId) {
311
- return detectProviderFromModelId(modelObj.modelId);
312
- }
313
- }
314
- if (typeof model === "string") {
315
- return detectProviderFromModelId(model);
316
- }
317
- return { system: PROVIDER_UNKNOWN };
318
- }
319
- function detectProviderFromModelId(modelId) {
320
- const lowerModel = modelId.toLowerCase();
321
- if (lowerModel.startsWith("gpt-") || lowerModel.startsWith("text-davinci-") || lowerModel.startsWith("text-embedding-") || lowerModel.startsWith("dall-e") || lowerModel.startsWith("whisper-") || lowerModel.startsWith("tts-")) {
322
- return { system: PROVIDER_OPENAI };
323
- }
324
- if (lowerModel.startsWith("claude-")) {
325
- return { system: PROVIDER_ANTHROPIC };
326
- }
327
- if (lowerModel.startsWith("gemini-") || lowerModel.startsWith("palm-") || lowerModel.includes("bison") || lowerModel.includes("gecko")) {
328
- return { system: PROVIDER_GOOGLE };
329
- }
330
- if (lowerModel.startsWith("amazon.") || lowerModel.startsWith("anthropic.claude-") || lowerModel.startsWith("ai21.") || lowerModel.startsWith("cohere.") || lowerModel.startsWith("meta.llama")) {
331
- return { system: PROVIDER_AMAZON };
332
- }
333
- if (lowerModel.includes("azure") || lowerModel.includes(".openai.azure.com")) {
334
- return { system: PROVIDER_AZURE };
335
- }
336
- const parts = modelId.split(/[-._/]/);
337
- if (parts.length > 0 && parts[0]) {
338
- return { system: normalizeProviderName(parts[0]) };
339
- }
340
- return { system: PROVIDER_UNKNOWN };
341
- }
342
- function normalizeProviderName(provider) {
343
- const normalized = provider.toLowerCase().trim();
344
- switch (normalized) {
345
- case "openai":
346
- case "open-ai":
347
- case "open_ai": {
348
- return PROVIDER_OPENAI;
349
- }
350
- case "anthropic":
351
- case "claude": {
352
- return PROVIDER_ANTHROPIC;
353
- }
354
- case "google":
355
- case "vertex":
356
- case "vertexai":
357
- case "vertex-ai":
358
- case "gemini": {
359
- return PROVIDER_GOOGLE;
360
- }
361
- case "amazon":
362
- case "aws":
363
- case "bedrock":
364
- case "amazon-bedrock": {
365
- return PROVIDER_AMAZON;
366
- }
367
- case "azure":
368
- case "azure-openai":
369
- case "microsoft": {
370
- return PROVIDER_AZURE;
371
- }
372
- case "vercel":
373
- case "vercel-ai": {
374
- return PROVIDER_VERCEL;
375
- }
376
- default: {
377
- return normalized;
378
- }
379
- }
380
- }
381
- function extractApiBase(model) {
382
- if (typeof model === "object" && model !== null) {
383
- const anyModel = model;
384
- return anyModel.apiBase || anyModel.baseURL || anyModel.endpoint || void 0;
385
- }
386
- return void 0;
387
- }
388
- function extractModelId(model) {
389
- if (typeof model === "string") {
390
- return model;
391
- }
392
- if (typeof model === "object" && model !== null) {
393
- return model.modelId || "unknown";
394
- }
395
- return "unknown";
396
- }
397
- function messagesToAttributes(messages, prefix, captureContent) {
398
- const attributes = {};
399
- for (const [index, msg] of messages.entries()) {
400
- const baseKey = `${prefix}.${index}`;
401
- attributes[`${baseKey}.role`] = msg.role;
402
- if (captureContent && msg.content) {
403
- if (typeof msg.content === "string") {
404
- attributes[`${baseKey}.content`] = msg.content;
405
- } else if (Array.isArray(msg.content)) {
406
- const textParts = msg.content.filter((part) => part.type === "text" && part.text).map((part) => part.text).join(" ");
407
- if (textParts) {
408
- attributes[`${baseKey}.content`] = textParts;
409
- }
410
- }
411
- }
412
- if (msg.toolInvocations && msg.toolInvocations.length > 0) {
413
- attributes[`${baseKey}.tool_calls`] = msg.toolInvocations.length;
414
- }
415
- }
416
- return attributes;
417
- }
418
- function promptToAttributes(prompt, captureContent) {
419
- const attributes = {};
420
- attributes[`${ATTR_GEN_AI_PROMPT}.0.role`] = "user";
421
- if (captureContent) {
422
- attributes[`${ATTR_GEN_AI_PROMPT}.0.content`] = prompt;
423
- }
424
- return attributes;
425
- }
426
- function completionToAttributes(text, finishReason, captureContent) {
427
- const attributes = {};
428
- attributes[`${ATTR_GEN_AI_COMPLETION}.0.role`] = "assistant";
429
- if (captureContent) {
430
- attributes[`${ATTR_GEN_AI_COMPLETION}.0.content`] = text;
431
- }
432
- if (finishReason) {
433
- attributes[`${ATTR_GEN_AI_COMPLETION}.0.finish_reason`] = finishReason;
434
- }
435
- return attributes;
436
- }
437
- function tokenUsageToAttributes(usage) {
438
- if (!usage) {
439
- return {};
440
- }
441
- const attributes = {};
442
- if (usage.inputTokens !== void 0) {
443
- attributes["gen_ai.usage.prompt_tokens"] = usage.inputTokens;
444
- attributes["gen_ai.usage.input_tokens"] = usage.inputTokens;
445
- attributes["llm.usage.prompt_tokens"] = usage.inputTokens;
446
- } else if (usage.promptTokens !== void 0) {
447
- attributes["gen_ai.usage.prompt_tokens"] = usage.promptTokens;
448
- attributes["gen_ai.usage.input_tokens"] = usage.promptTokens;
449
- attributes["llm.usage.prompt_tokens"] = usage.promptTokens;
450
- }
451
- if (usage.outputTokens !== void 0) {
452
- attributes["gen_ai.usage.completion_tokens"] = usage.outputTokens;
453
- attributes["gen_ai.usage.output_tokens"] = usage.outputTokens;
454
- attributes["llm.usage.completion_tokens"] = usage.outputTokens;
455
- } else if (usage.completionTokens !== void 0) {
456
- attributes["gen_ai.usage.completion_tokens"] = usage.completionTokens;
457
- attributes["gen_ai.usage.output_tokens"] = usage.completionTokens;
458
- attributes["llm.usage.completion_tokens"] = usage.completionTokens;
459
- }
460
- if (usage.totalTokens === void 0) {
461
- const inputTokens = usage.inputTokens || usage.promptTokens;
462
- const outputTokens = usage.outputTokens || usage.completionTokens;
463
- if (inputTokens !== void 0 && outputTokens !== void 0) {
464
- const totalTokens = inputTokens + outputTokens;
465
- attributes["gen_ai.usage.total_tokens"] = totalTokens;
466
- attributes["llm.usage.total_tokens"] = totalTokens;
467
- }
468
- } else {
469
- attributes["gen_ai.usage.total_tokens"] = usage.totalTokens;
470
- attributes["llm.usage.total_tokens"] = usage.totalTokens;
471
- }
472
- return attributes;
473
- }
474
- function shouldRecordError(error) {
475
- if (error instanceof Error) {
476
- const message = error.message.toLowerCase();
477
- if (message.includes("abort") || message.includes("cancel")) {
478
- return false;
479
- }
480
- }
481
- return true;
482
- }
483
- function getEnvBool(name) {
484
- const value = process.env[name];
485
- if (value === void 0) {
486
- return void 0;
487
- }
488
- return value.toLowerCase() === "true" || value === "1";
489
- }
490
-
491
- // src/internal/instrumentation/vercel-ai/patchers/base-patcher.ts
492
- var BasePatcher = class {
493
- constructor(context8) {
494
- this.context = context8;
495
- }
496
- createSpan(spanName, params, operationName, additionalAttributes) {
497
- const provider = detectProvider(params.model);
498
- const modelId = extractModelId(params.model);
499
- const span = this.context.tracer.startSpan(spanName, {
500
- kind: import_api2.SpanKind.CLIENT,
501
- attributes: {
502
- [ATTR_GEN_AI_SYSTEM]: provider.system,
503
- [ATTR_GEN_AI_OPERATION_NAME]: operationName,
504
- [ATTR_GEN_AI_REQUEST_MODEL]: modelId,
505
- ...params.maxTokens && { [ATTR_GEN_AI_REQUEST_MAX_TOKENS]: params.maxTokens },
506
- ...params.temperature !== void 0 && {
507
- [ATTR_GEN_AI_REQUEST_TEMPERATURE]: params.temperature
508
- },
509
- ...params.topP !== void 0 && { [ATTR_GEN_AI_REQUEST_TOP_P]: params.topP },
510
- ...params.topK !== void 0 && { [ATTR_GEN_AI_REQUEST_TOP_K]: params.topK },
511
- ...params.frequencyPenalty !== void 0 && {
512
- [ATTR_GEN_AI_REQUEST_FREQUENCY_PENALTY]: params.frequencyPenalty
513
- },
514
- ...params.presencePenalty !== void 0 && {
515
- [ATTR_GEN_AI_REQUEST_PRESENCE_PENALTY]: params.presencePenalty
516
- },
517
- ...params.stopSequences && {
518
- [ATTR_GEN_AI_REQUEST_STOP_SEQUENCES]: params.stopSequences
519
- },
520
- ...provider.apiBase && { [ATTR_GEN_AI_OPENAI_API_BASE]: provider.apiBase },
521
- ...additionalAttributes
522
- }
523
- });
524
- return { span, provider, modelId };
525
- }
526
- handleError(error, span) {
527
- if (shouldRecordError(error)) {
528
- span.recordException(error);
529
- span.setStatus({ code: import_api2.SpanStatusCode.ERROR, message: error.message });
530
- }
531
- }
532
- finalizeDuration(span, startTime, config, provider, modelId, operationName) {
533
- if (config.enableMetrics) {
534
- const duration = (globalThis.performance.now() - startTime) / 1e3;
535
- this.context.recordDurationMetric(duration, provider.system, modelId, operationName);
536
- }
537
- span.end();
538
- }
539
- };
540
-
541
- // src/internal/instrumentation/vercel-ai/patchers/generate-text-patcher.ts
542
- var import_api3 = require("@opentelemetry/api");
543
- var GenerateTextPatcher = class extends BasePatcher {
544
- patch(original) {
545
- return async (params) => {
546
- const config = this.context.getConfig();
547
- const startTime = globalThis.performance.now();
548
- const { span, provider, modelId } = this.createSpan(
549
- SPAN_NAME_GEN_AI_CHAT,
550
- params,
551
- OPERATION_NAME_CHAT
552
- );
553
- if (params.prompt) {
554
- span.setAttributes(
555
- promptToAttributes(params.prompt, config.captureMessageContent || false)
556
- );
557
- } else if (params.messages) {
558
- span.setAttributes(
559
- messagesToAttributes(
560
- params.messages,
561
- "gen_ai.prompt",
562
- config.captureMessageContent || false
563
- )
564
- );
565
- if (config.emitEvents) {
566
- this.context.emitMessageEvents(params.messages, provider.system, span);
567
- }
568
- }
569
- try {
570
- const result = await import_api3.context.with(
571
- import_api3.trace.setSpan(import_api3.context.active(), span),
572
- () => original(params)
573
- );
574
- if (result.response) {
575
- span.setAttributes({
576
- ...result.response.id && { [ATTR_GEN_AI_RESPONSE_ID]: result.response.id },
577
- ...result.response.model && { [ATTR_GEN_AI_RESPONSE_MODEL]: result.response.model }
578
- });
579
- }
580
- if (result.finishReason) {
581
- span.setAttribute(ATTR_GEN_AI_RESPONSE_FINISH_REASONS, [result.finishReason]);
582
- }
583
- span.setAttributes(
584
- completionToAttributes(
585
- result.text,
586
- result.finishReason,
587
- config.captureMessageContent || false
588
- )
589
- );
590
- const usage = result.usage || result.totalUsage || result.steps?.[0]?.usage;
591
- if (usage) {
592
- span.setAttributes(tokenUsageToAttributes(usage));
593
- if (config.enableMetrics) {
594
- this.context.recordTokenMetrics(usage, provider.system, modelId);
595
- }
596
- }
597
- if (config.emitEvents) {
598
- this.context.emitAssistantMessageEvent(result.text, provider.system, span);
599
- }
600
- span.setStatus({ code: import_api3.SpanStatusCode.OK });
601
- return result;
602
- } catch (error) {
603
- this.handleError(error, span);
604
- throw error;
605
- } finally {
606
- this.finalizeDuration(span, startTime, config, provider, modelId, OPERATION_NAME_CHAT);
607
- }
608
- };
609
- }
610
- };
611
-
612
- // src/internal/instrumentation/vercel-ai/patchers/stream-text-patcher.ts
613
- var import_api4 = require("@opentelemetry/api");
614
- var StreamTextPatcher = class extends BasePatcher {
615
- constructor(context8, streamHandler) {
616
- super(context8);
617
- this.streamHandler = streamHandler;
618
- }
619
- patch(original) {
620
- return async (params) => {
621
- const config = this.context.getConfig();
622
- const startTime = globalThis.performance.now();
623
- const { span, provider, modelId } = this.createSpan(
624
- SPAN_NAME_GEN_AI_CHAT,
625
- params,
626
- OPERATION_NAME_CHAT,
627
- { "gen_ai.streaming": true }
628
- );
629
- if (params.prompt) {
630
- span.setAttributes(
631
- promptToAttributes(params.prompt, config.captureMessageContent || false)
632
- );
633
- } else if (params.messages) {
634
- span.setAttributes(
635
- messagesToAttributes(
636
- params.messages,
637
- "gen_ai.prompt",
638
- config.captureMessageContent || false
639
- )
640
- );
641
- if (config.emitEvents) {
642
- this.context.emitMessageEvents(params.messages, provider.system, span);
643
- }
644
- }
645
- try {
646
- const stream = await import_api4.context.with(
647
- import_api4.trace.setSpan(import_api4.context.active(), span),
648
- () => original(params)
649
- );
650
- return this.streamHandler.wrapStream(stream, span, config, provider, modelId, startTime);
651
- } catch (error) {
652
- this.handleError(error, span);
653
- span.end();
654
- throw error;
655
- }
656
- };
657
- }
658
- };
659
-
660
- // src/internal/instrumentation/vercel-ai/patchers/embeddings-patcher.ts
661
- var import_api5 = require("@opentelemetry/api");
662
- var EmbeddingsPatcher = class extends BasePatcher {
663
- patch(original, isMany = false) {
664
- return async (params) => {
665
- const config = this.context.getConfig();
666
- const startTime = globalThis.performance.now();
667
- const additionalAttributes = isMany ? { "gen_ai.embeddings.count": params.values ? params.values.length : 0 } : {};
668
- const { span, provider, modelId } = this.createSpan(
669
- SPAN_NAME_GEN_AI_EMBEDDINGS,
670
- params,
671
- OPERATION_NAME_EMBEDDINGS,
672
- additionalAttributes
673
- );
674
- if (!isMany && config.captureMessageContent && params.value) {
675
- span.setAttribute("gen_ai.prompt.0.content", params.value);
676
- }
677
- try {
678
- const result = await import_api5.context.with(
679
- import_api5.trace.setSpan(import_api5.context.active(), span),
680
- () => original(params)
681
- );
682
- if (result.response) {
683
- span.setAttributes({
684
- ...result.response.id && { [ATTR_GEN_AI_RESPONSE_ID]: result.response.id },
685
- ...result.response.model && { [ATTR_GEN_AI_RESPONSE_MODEL]: result.response.model }
686
- });
687
- }
688
- if (isMany) {
689
- if (result.embeddings && result.embeddings.length > 0 && result.embeddings[0]) {
690
- span.setAttribute("gen_ai.response.embedding_dimensions", result.embeddings[0].length);
691
- }
692
- } else {
693
- if (result.embedding) {
694
- span.setAttribute("gen_ai.response.embedding_dimensions", result.embedding.length);
695
- }
696
- }
697
- if (result.usage) {
698
- span.setAttributes(tokenUsageToAttributes(result.usage));
699
- if (config.enableMetrics) {
700
- this.context.recordTokenMetrics(result.usage, provider.system, modelId);
701
- }
702
- }
703
- span.setStatus({ code: import_api5.SpanStatusCode.OK });
704
- return result;
705
- } catch (error) {
706
- this.handleError(error, span);
707
- throw error;
708
- } finally {
709
- this.finalizeDuration(span, startTime, config, provider, modelId, OPERATION_NAME_EMBEDDINGS);
710
- }
711
- };
712
- }
713
- };
714
-
715
- // src/internal/instrumentation/vercel-ai/stream-handler.ts
716
- var import_api6 = require("@opentelemetry/api");
717
- var StreamHandler = class {
718
- constructor(context8) {
719
- this.context = context8;
720
- }
721
- wrapStream(stream, span, config, provider, modelId, startTime) {
722
- const self = this;
723
- let fullText = "";
724
- let finishReason;
725
- let usage;
726
- let response;
727
- const wrappedStream = new Proxy(stream, {
728
- get(target, prop) {
729
- if (prop === Symbol.asyncIterator) {
730
- return async function* () {
731
- try {
732
- for await (const chunk of target) {
733
- if (chunk.type === "text-delta" && chunk.textDelta) {
734
- fullText += chunk.textDelta;
735
- } else if (chunk.type === "finish") {
736
- finishReason = chunk.finishReason;
737
- usage = chunk.usage;
738
- } else if (chunk.type === "response-metadata") {
739
- response = chunk.response;
740
- }
741
- yield chunk;
742
- }
743
- } finally {
744
- self.finalizeStream(
745
- span,
746
- config,
747
- provider,
748
- modelId,
749
- startTime,
750
- fullText,
751
- finishReason,
752
- usage,
753
- response
754
- );
755
- }
756
- };
757
- }
758
- if (prop === "textStream" || prop === "fullStream") {
759
- const originalStream = target[prop];
760
- return {
761
- [Symbol.asyncIterator]: async function* () {
762
- try {
763
- for await (const chunk of originalStream) {
764
- if (prop === "textStream") {
765
- fullText += chunk;
766
- }
767
- yield chunk;
768
- }
769
- } finally {
770
- const streamUsage = await target.usage.catch(() => null);
771
- if (streamUsage) {
772
- usage = streamUsage;
773
- }
774
- self.finalizeStream(
775
- span,
776
- config,
777
- provider,
778
- modelId,
779
- startTime,
780
- fullText,
781
- finishReason,
782
- usage,
783
- response
784
- );
785
- }
786
- }
787
- };
788
- }
789
- const value = target[prop];
790
- if (typeof value === "function") {
791
- return value.bind(target);
792
- }
793
- return value;
794
- }
795
- });
796
- return wrappedStream;
797
- }
798
- finalizeStream(span, config, provider, modelId, startTime, fullText, finishReason, usage, response) {
799
- if (response) {
800
- span.setAttributes({
801
- ...response.id && { [ATTR_GEN_AI_RESPONSE_ID]: response.id },
802
- ...response.model && { [ATTR_GEN_AI_RESPONSE_MODEL]: response.model }
803
- });
804
- }
805
- if (finishReason) {
806
- span.setAttribute(ATTR_GEN_AI_RESPONSE_FINISH_REASONS, [finishReason]);
807
- }
808
- if (fullText) {
809
- span.setAttributes(
810
- completionToAttributes(
811
- fullText,
812
- finishReason,
813
- config.captureMessageContent || false
814
- )
815
- );
816
- }
817
- if (usage) {
818
- span.setAttributes(tokenUsageToAttributes(usage));
819
- if (config.enableMetrics) {
820
- this.context.recordTokenMetrics(usage, provider.system, modelId);
821
- }
822
- }
823
- if (config.enableMetrics) {
824
- const duration = (performance.now() - startTime) / 1e3;
825
- this.context.recordDurationMetric(duration, provider.system, modelId, OPERATION_NAME_CHAT);
826
- }
827
- span.setStatus({ code: import_api6.SpanStatusCode.OK });
828
- span.end();
829
- }
830
- };
831
-
832
- // src/internal/instrumentation/vercel-ai/telemetry-recorder.ts
833
- var import_api7 = require("@opentelemetry/api");
834
- var import_api_logs = require("@opentelemetry/api-logs");
835
- var TelemetryRecorder = class {
836
- constructor(genaiClientOperationDuration, genaiClientTokenUsage, logger2) {
837
- this.genaiClientOperationDuration = genaiClientOperationDuration;
838
- this.genaiClientTokenUsage = genaiClientTokenUsage;
839
- this.logger = logger2;
840
- }
841
- /**
842
- * Record token usage metrics
843
- */
844
- recordTokenMetrics(usage, system, model) {
845
- if (!this.genaiClientTokenUsage) {
846
- return;
847
- }
848
- const commonAttrs = {
849
- [ATTR_GEN_AI_SYSTEM]: system,
850
- [ATTR_GEN_AI_REQUEST_MODEL]: model
851
- };
852
- const inputTokens = usage.inputTokens || usage.promptTokens;
853
- const outputTokens = usage.outputTokens || usage.completionTokens;
854
- if (inputTokens !== void 0) {
855
- this.genaiClientTokenUsage.record(inputTokens, {
856
- ...commonAttrs,
857
- [ATTR_GEN_AI_TOKEN_TYPE]: TOKEN_TYPE_INPUT
858
- });
859
- }
860
- if (outputTokens !== void 0) {
861
- this.genaiClientTokenUsage.record(outputTokens, {
862
- ...commonAttrs,
863
- [ATTR_GEN_AI_TOKEN_TYPE]: TOKEN_TYPE_OUTPUT
864
- });
865
- }
866
- }
867
- /**
868
- * Record operation duration metric
869
- */
870
- recordDurationMetric(duration, system, model, operation) {
871
- if (!this.genaiClientOperationDuration) {
872
- return;
873
- }
874
- this.genaiClientOperationDuration.record(duration, {
875
- [ATTR_GEN_AI_SYSTEM]: system,
876
- [ATTR_GEN_AI_REQUEST_MODEL]: model,
877
- [ATTR_GEN_AI_OPERATION_NAME]: operation
878
- });
879
- }
880
- /**
881
- * Emit message events
882
- */
883
- emitMessageEvents(messages, system, span) {
884
- if (!this.logger) {
885
- return;
886
- }
887
- const ctx = import_api7.trace.setSpan(import_api7.context.active(), span);
888
- for (const msg of messages) {
889
- let eventName;
890
- switch (msg.role) {
891
- case "system": {
892
- eventName = EVENT_GEN_AI_SYSTEM_MESSAGE;
893
- break;
894
- }
895
- case "user": {
896
- eventName = EVENT_GEN_AI_USER_MESSAGE;
897
- break;
898
- }
899
- case "assistant": {
900
- eventName = EVENT_GEN_AI_ASSISTANT_MESSAGE;
901
- break;
902
- }
903
- case "tool":
904
- case "function": {
905
- eventName = EVENT_GEN_AI_TOOL_MESSAGE;
906
- break;
907
- }
908
- default: {
909
- continue;
910
- }
911
- }
912
- this.logger.emit({
913
- timestamp: Date.now(),
914
- context: ctx,
915
- severityNumber: import_api_logs.SeverityNumber.INFO,
916
- attributes: {
917
- [ATTR_EVENT_NAME]: eventName,
918
- [ATTR_GEN_AI_SYSTEM]: system
919
- },
920
- body: {
921
- role: msg.role,
922
- content: typeof msg.content === "string" ? msg.content : JSON.stringify(msg.content),
923
- name: msg.name
924
- }
925
- });
926
- }
927
- }
928
- /**
929
- * Emit assistant message event
930
- */
931
- emitAssistantMessageEvent(text, system, span) {
932
- if (!this.logger) {
933
- return;
934
- }
935
- const ctx = import_api7.trace.setSpan(import_api7.context.active(), span);
936
- this.logger.emit({
937
- timestamp: Date.now(),
938
- context: ctx,
939
- severityNumber: import_api_logs.SeverityNumber.INFO,
940
- attributes: {
941
- [ATTR_EVENT_NAME]: EVENT_GEN_AI_ASSISTANT_MESSAGE,
942
- [ATTR_GEN_AI_SYSTEM]: system
943
- },
944
- body: {
945
- role: "assistant",
946
- content: text
947
- }
948
- });
949
- }
950
- };
951
-
952
- // src/internal/instrumentation/vercel-ai/instrumentation.ts
953
- var PACKAGE_NAME = "@brizz/vercel-ai-instrumentation";
954
- var PACKAGE_VERSION = "0.1.0";
955
- var VercelAIInstrumentation = class _VercelAIInstrumentation extends import_instrumentation.InstrumentationBase {
956
- _genaiClientOperationDuration;
957
- _genaiClientTokenUsage;
958
- _telemetryRecorder;
959
- _streamHandler;
960
- _patchers = /* @__PURE__ */ new Map();
961
- // Holds last patched namespace when available (reserved for future factory wrapping)
962
- _vercelAiNamespace = null;
963
- static _WRAPPED_SYMBOL = Symbol.for("brizz.vercel-ai.patched");
964
- constructor(config = {}) {
965
- super(PACKAGE_NAME, PACKAGE_VERSION, config);
966
- const cfg = this.getConfig();
967
- const envCC = getEnvBool("OTEL_INSTRUMENTATION_GENAI_CAPTURE_MESSAGE_CONTENT");
968
- if (envCC !== void 0) {
969
- cfg.captureMessageContent = envCC;
970
- }
971
- this._initializeComponents();
972
- }
973
- setConfig(config = {}) {
974
- const {
975
- captureMessageContent = true,
976
- enableMetrics = true,
977
- emitEvents = true,
978
- ...validConfig
979
- } = config;
980
- const fullConfig = {
981
- ...validConfig,
982
- captureMessageContent,
983
- enableMetrics,
984
- emitEvents
985
- };
986
- super.setConfig(fullConfig);
987
- }
988
- _initializeComponents() {
989
- this._telemetryRecorder = new TelemetryRecorder(
990
- this._genaiClientOperationDuration,
991
- this._genaiClientTokenUsage,
992
- this.logger
993
- );
994
- this._streamHandler = new StreamHandler({
995
- recordTokenMetrics: this._telemetryRecorder.recordTokenMetrics.bind(this._telemetryRecorder),
996
- recordDurationMetric: this._telemetryRecorder.recordDurationMetric.bind(
997
- this._telemetryRecorder
998
- )
999
- });
1000
- const patcherContext = {
1001
- tracer: this.tracer,
1002
- getConfig: this.getConfig.bind(this),
1003
- recordTokenMetrics: this._telemetryRecorder.recordTokenMetrics.bind(this._telemetryRecorder),
1004
- recordDurationMetric: this._telemetryRecorder.recordDurationMetric.bind(
1005
- this._telemetryRecorder
1006
- ),
1007
- emitMessageEvents: this._telemetryRecorder.emitMessageEvents.bind(this._telemetryRecorder),
1008
- emitAssistantMessageEvent: this._telemetryRecorder.emitAssistantMessageEvent.bind(
1009
- this._telemetryRecorder
1010
- )
1011
- };
1012
- this._patchers.set("generateText", new GenerateTextPatcher(patcherContext));
1013
- this._patchers.set("streamText", new StreamTextPatcher(patcherContext, this._streamHandler));
1014
- this._patchers.set("embed", new EmbeddingsPatcher(patcherContext));
1015
- this._patchers.set("embedMany", new EmbeddingsPatcher(patcherContext));
1016
- }
1017
- init() {
1018
- return [
1019
- new import_instrumentation.InstrumentationNodeModuleDefinition(
1020
- "ai",
1021
- [">=4.0.0 <6"],
1022
- (moduleExports) => {
1023
- logger.info("Starting instrumentation of Vercel AI SDK module");
1024
- this._vercelAiNamespace = moduleExports;
1025
- const patched = this._patchModuleExports(moduleExports);
1026
- return patched ?? moduleExports;
1027
- },
1028
- (moduleExports) => {
1029
- logger.debug("Uninstrumenting @vercel/ai module");
1030
- return moduleExports;
1031
- }
1032
- )
1033
- ];
1034
- }
1035
- _updateMetricInstruments() {
1036
- const config = this.getConfig();
1037
- if (!config.enableMetrics) {
1038
- return;
1039
- }
1040
- this._genaiClientOperationDuration = this.meter.createHistogram(
1041
- METRIC_GEN_AI_CLIENT_OPERATION_DURATION,
1042
- {
1043
- description: "GenAI operation duration",
1044
- unit: "s",
1045
- advice: {
1046
- explicitBucketBoundaries: [
1047
- 0.01,
1048
- 0.02,
1049
- 0.04,
1050
- 0.08,
1051
- 0.16,
1052
- 0.32,
1053
- 0.64,
1054
- 1.28,
1055
- 2.56,
1056
- 5.12,
1057
- 10.24,
1058
- 20.48,
1059
- 40.96,
1060
- 81.92
1061
- ]
1062
- }
1063
- }
1064
- );
1065
- this._genaiClientTokenUsage = this.meter.createHistogram(METRIC_GEN_AI_CLIENT_TOKEN_USAGE, {
1066
- description: "Measures number of input and output tokens used",
1067
- unit: "{token}",
1068
- advice: {
1069
- explicitBucketBoundaries: [
1070
- 1,
1071
- 4,
1072
- 16,
1073
- 64,
1074
- 256,
1075
- 1024,
1076
- 4096,
1077
- 16384,
1078
- 65536,
1079
- 262144,
1080
- 1048576,
1081
- 4194304,
1082
- 16777216,
1083
- 67108864
1084
- ]
1085
- }
1086
- });
1087
- this._telemetryRecorder = new TelemetryRecorder(
1088
- this._genaiClientOperationDuration,
1089
- this._genaiClientTokenUsage,
1090
- this.logger
1091
- );
1092
- }
1093
- /**
1094
- * Patch known AI SDK functions in-place on the provided module exports object.
1095
- * This approach is compatible with both CJS and ESM module loaders.
1096
- */
1097
- _patchModuleExports(moduleExports) {
1098
- if (!moduleExports || typeof moduleExports !== "object") {
1099
- return null;
1100
- }
1101
- let inPlacePatched = true;
1102
- const wrapFunction = (name, isEmbedMany = false) => {
1103
- const current = moduleExports[name];
1104
- if (typeof current !== "function") {
1105
- return;
1106
- }
1107
- const currentFn = current;
1108
- if (currentFn[_VercelAIInstrumentation._WRAPPED_SYMBOL]) {
1109
- return;
1110
- }
1111
- const descriptor = Object.getOwnPropertyDescriptor(moduleExports, name);
1112
- if (descriptor && (!descriptor.writable || !descriptor.configurable) && !descriptor.set) {
1113
- inPlacePatched = false;
1114
- return;
1115
- }
1116
- const patcher = this._patchers.get(name);
1117
- if (!patcher) {
1118
- return;
1119
- }
1120
- const patched = isEmbedMany ? patcher.patch(currentFn, true) : patcher.patch(currentFn);
1121
- try {
1122
- Object.defineProperty(patched, _VercelAIInstrumentation._WRAPPED_SYMBOL, {
1123
- value: true,
1124
- enumerable: false,
1125
- configurable: false
1126
- });
1127
- } catch {
1128
- }
1129
- try {
1130
- moduleExports[name] = patched;
1131
- } catch {
1132
- inPlacePatched = false;
1133
- }
1134
- };
1135
- wrapFunction("generateText");
1136
- wrapFunction("streamText");
1137
- wrapFunction("embed");
1138
- wrapFunction("embedMany", true);
1139
- if (!inPlacePatched) {
1140
- const proxiedModule = new Proxy(moduleExports, {
1141
- get: (target, prop, receiver) => {
1142
- const originalValue = Reflect.get(target, prop, receiver);
1143
- if (typeof originalValue === "function" && typeof prop === "string" && this._patchers.has(prop)) {
1144
- const patcher = this._patchers.get(prop);
1145
- const isEmbedMany = prop === "embedMany";
1146
- const wrapped = isEmbedMany ? patcher.patch(originalValue, true) : patcher.patch(originalValue);
1147
- return wrapped;
1148
- }
1149
- return originalValue;
1150
- }
1151
- });
1152
- return proxiedModule;
1153
- }
1154
- return moduleExports;
1155
- }
1156
- /**
1157
- * Manual instrumentation hook for bundlers/Next.js. Applies in-place wrapping
1158
- * on the provided module namespace.
1159
- */
1160
- manuallyInstrument(module3) {
1161
- try {
1162
- const result = this._patchModuleExports(module3);
1163
- if (result !== null) {
1164
- logger.debug("Applied manual Vercel AI instrumentation");
1165
- this._vercelAiNamespace = result;
1166
- return result;
1167
- }
1168
- logger.warn("Manual Vercel AI instrumentation received invalid module");
1169
- return module3;
1170
- } catch (error) {
1171
- logger.error(`Failed manual Vercel AI instrumentation: ${String(error)}`);
1172
- return this._vercelAiNamespace || module3;
1173
- }
1174
- }
1175
- /**
1176
- * Wrap a created provider/client instance (factory return) when possible.
1177
- * Call this from wrappers that construct provider clients (e.g., OpenAI SDK).
1178
- */
1179
- // eslint-disable-next-line @typescript-eslint/no-explicit-any
1180
- wrapFactoryReturn(instance) {
1181
- return instance;
1182
- }
1183
- };
1184
-
1185
- // src/internal/instrumentation/registry.ts
1186
254
  var InstrumentationRegistry = class _InstrumentationRegistry {
1187
255
  static instance;
1188
256
  manualModules = null;
@@ -1258,8 +326,7 @@ var InstrumentationRegistry = class _InstrumentationRegistry {
1258
326
  },
1259
327
  { class: import_instrumentation_chromadb.ChromaDBInstrumentation, name: "ChromaDB", module: this.manualModules?.chromadb },
1260
328
  { class: import_instrumentation_qdrant.QdrantInstrumentation, name: "Qdrant", module: this.manualModules?.qdrant },
1261
- { class: import_instrumentation_together.TogetherInstrumentation, name: "Together", module: this.manualModules?.together },
1262
- { class: VercelAIInstrumentation, name: "Vercel AI", module: this.manualModules?.vercelAI }
329
+ { class: import_instrumentation_together.TogetherInstrumentation, name: "Together", module: this.manualModules?.together }
1263
330
  ];
1264
331
  for (const config of instrumentationConfigs) {
1265
332
  if (config.module) {
@@ -1278,13 +345,13 @@ var InstrumentationRegistry = class _InstrumentationRegistry {
1278
345
  };
1279
346
 
1280
347
  // src/internal/log/logging.ts
1281
- var import_api_logs2 = require("@opentelemetry/api-logs");
348
+ var import_api_logs = require("@opentelemetry/api-logs");
1282
349
  var import_exporter_logs_otlp_http = require("@opentelemetry/exporter-logs-otlp-http");
1283
350
  var import_resources = require("@opentelemetry/resources");
1284
351
  var import_sdk_logs2 = require("@opentelemetry/sdk-logs");
1285
352
 
1286
353
  // src/internal/log/processors/log-processor.ts
1287
- var import_api9 = require("@opentelemetry/api");
354
+ var import_api3 = require("@opentelemetry/api");
1288
355
  var import_sdk_logs = require("@opentelemetry/sdk-logs");
1289
356
 
1290
357
  // src/internal/masking/patterns.ts
@@ -1910,10 +977,10 @@ function maskAttributes(attributes, rules, outputOriginalValue = false) {
1910
977
  }
1911
978
 
1912
979
  // src/internal/semantic-conventions.ts
1913
- var import_api8 = require("@opentelemetry/api");
980
+ var import_api2 = require("@opentelemetry/api");
1914
981
  var BRIZZ = "brizz";
1915
982
  var PROPERTIES = "properties";
1916
- var PROPERTIES_CONTEXT_KEY = (0, import_api8.createContextKey)(PROPERTIES);
983
+ var PROPERTIES_CONTEXT_KEY = (0, import_api2.createContextKey)(PROPERTIES);
1917
984
 
1918
985
  // src/internal/log/processors/log-processor.ts
1919
986
  var DEFAULT_LOG_MASKING_RULES = [
@@ -1934,7 +1001,7 @@ var BrizzSimpleLogRecordProcessor = class extends import_sdk_logs.SimpleLogRecor
1934
1001
  if (maskingConfig) {
1935
1002
  maskLog(logRecord, maskingConfig);
1936
1003
  }
1937
- const associationProperties = import_api9.context.active().getValue(PROPERTIES_CONTEXT_KEY);
1004
+ const associationProperties = import_api3.context.active().getValue(PROPERTIES_CONTEXT_KEY);
1938
1005
  if (associationProperties) {
1939
1006
  for (const [key, value] of Object.entries(associationProperties)) {
1940
1007
  logRecord.setAttribute(`${BRIZZ}.${key}`, value);
@@ -1954,7 +1021,7 @@ var BrizzBatchLogRecordProcessor = class extends import_sdk_logs.BatchLogRecordP
1954
1021
  if (maskingConfig) {
1955
1022
  maskLog(logRecord, maskingConfig);
1956
1023
  }
1957
- const associationProperties = import_api9.context.active().getValue(PROPERTIES_CONTEXT_KEY);
1024
+ const associationProperties = import_api3.context.active().getValue(PROPERTIES_CONTEXT_KEY);
1958
1025
  if (associationProperties) {
1959
1026
  for (const [key, value] of Object.entries(associationProperties)) {
1960
1027
  logRecord.setAttribute(`${BRIZZ}.${key}`, value);
@@ -2091,7 +1158,7 @@ var LoggingModule = class _LoggingModule {
2091
1158
  /**
2092
1159
  * Emit a custom event to the telemetry pipeline
2093
1160
  */
2094
- emitEvent(name, attributes, body, severityNumber = import_api_logs2.SeverityNumber.INFO) {
1161
+ emitEvent(name, attributes, body, severityNumber = import_api_logs.SeverityNumber.INFO) {
2095
1162
  logger.debug("Attempting to emit event", {
2096
1163
  name,
2097
1164
  hasAttributes: !!attributes,
@@ -2263,8 +1330,122 @@ function getMetricsReader() {
2263
1330
  var import_exporter_trace_otlp_http = require("@opentelemetry/exporter-trace-otlp-http");
2264
1331
 
2265
1332
  // src/internal/trace/processors/span-processor.ts
2266
- var import_api10 = require("@opentelemetry/api");
1333
+ var import_api4 = require("@opentelemetry/api");
2267
1334
  var import_sdk_trace_base = require("@opentelemetry/sdk-trace-base");
1335
+
1336
+ // src/internal/trace/transformations/vercel-ai.ts
1337
+ var import_ai_semantic_conventions = require("@traceloop/ai-semantic-conventions");
1338
+ var AI_GENERATE_TEXT_DO_GENERATE = "ai.generateText.doGenerate";
1339
+ var AI_STREAM_TEXT_DO_STREAM = "ai.streamText.doStream";
1340
+ var HANDLED_SPAN_NAMES = {
1341
+ [AI_GENERATE_TEXT_DO_GENERATE]: "gen_ai.chat",
1342
+ [AI_STREAM_TEXT_DO_STREAM]: "gen_ai.chat",
1343
+ "ai.streamText": "ai.streamText",
1344
+ "ai.toolCall": (span) => {
1345
+ const toolName = span.attributes["ai.toolCall.name"];
1346
+ return `${toolName}.tool`;
1347
+ }
1348
+ };
1349
+ var AI_RESPONSE_TEXT = "ai.response.text";
1350
+ var AI_PROMPT_MESSAGES = "ai.prompt.messages";
1351
+ var AI_USAGE_PROMPT_TOKENS = "ai.usage.promptTokens";
1352
+ var AI_USAGE_COMPLETION_TOKENS = "ai.usage.completionTokens";
1353
+ var AI_MODEL_PROVIDER = "ai.model.provider";
1354
+ var transformAiSdkSpanName = (span) => {
1355
+ if (span.name in HANDLED_SPAN_NAMES) {
1356
+ if (typeof HANDLED_SPAN_NAMES[span.name] === "function") {
1357
+ span.name = HANDLED_SPAN_NAMES[span.name](span);
1358
+ } else {
1359
+ span.name = HANDLED_SPAN_NAMES[span.name];
1360
+ }
1361
+ }
1362
+ };
1363
+ var transformResponseText = (attributes) => {
1364
+ if (AI_RESPONSE_TEXT in attributes) {
1365
+ attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_COMPLETIONS}.0.content`] = attributes[AI_RESPONSE_TEXT];
1366
+ attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_COMPLETIONS}.0.role`] = "assistant";
1367
+ delete attributes[AI_RESPONSE_TEXT];
1368
+ }
1369
+ };
1370
+ var transformPromptMessages = (attributes) => {
1371
+ if (AI_PROMPT_MESSAGES in attributes) {
1372
+ try {
1373
+ const messages = JSON.parse(attributes[AI_PROMPT_MESSAGES]);
1374
+ messages.forEach((msg, index) => {
1375
+ logger.debug("Transforming prompt message", { msg, type: typeof msg.content });
1376
+ if (typeof msg.content === "string") {
1377
+ attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_PROMPTS}.${index}.content`] = msg.content;
1378
+ } else {
1379
+ if (Array.isArray(msg.content) && msg.content.length > 0) {
1380
+ const lastContent = msg.content[msg.content.length - 1];
1381
+ if (lastContent.text) {
1382
+ attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_PROMPTS}.${index}.content`] = lastContent.text;
1383
+ }
1384
+ } else {
1385
+ attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_PROMPTS}.${index}.content`] = JSON.stringify(
1386
+ msg.content
1387
+ );
1388
+ }
1389
+ }
1390
+ attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_PROMPTS}.${index}.role`] = msg.role;
1391
+ });
1392
+ delete attributes[AI_PROMPT_MESSAGES];
1393
+ } catch {
1394
+ }
1395
+ }
1396
+ };
1397
+ var transformPromptTokens = (attributes) => {
1398
+ if (AI_USAGE_PROMPT_TOKENS in attributes) {
1399
+ attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_USAGE_PROMPT_TOKENS}`] = attributes[AI_USAGE_PROMPT_TOKENS];
1400
+ delete attributes[AI_USAGE_PROMPT_TOKENS];
1401
+ }
1402
+ };
1403
+ var transformCompletionTokens = (attributes) => {
1404
+ if (AI_USAGE_COMPLETION_TOKENS in attributes) {
1405
+ attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_USAGE_COMPLETION_TOKENS}`] = attributes[AI_USAGE_COMPLETION_TOKENS];
1406
+ delete attributes[AI_USAGE_COMPLETION_TOKENS];
1407
+ }
1408
+ };
1409
+ var calculateTotalTokens = (attributes) => {
1410
+ const promptTokens = attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_USAGE_PROMPT_TOKENS}`];
1411
+ const completionTokens = attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_USAGE_COMPLETION_TOKENS}`];
1412
+ if (promptTokens && completionTokens) {
1413
+ attributes[`${import_ai_semantic_conventions.SpanAttributes.LLM_USAGE_TOTAL_TOKENS}`] = Number(promptTokens) + Number(completionTokens);
1414
+ }
1415
+ };
1416
+ var transformVendor = (attributes) => {
1417
+ if (AI_MODEL_PROVIDER in attributes) {
1418
+ const vendor = attributes[AI_MODEL_PROVIDER];
1419
+ if (vendor && vendor.startsWith("openai")) {
1420
+ attributes[import_ai_semantic_conventions.SpanAttributes.LLM_SYSTEM] = "OpenAI";
1421
+ } else {
1422
+ attributes[import_ai_semantic_conventions.SpanAttributes.LLM_SYSTEM] = vendor;
1423
+ }
1424
+ delete attributes[AI_MODEL_PROVIDER];
1425
+ }
1426
+ };
1427
+ var transformAiSdkAttributes = (attributes) => {
1428
+ transformResponseText(attributes);
1429
+ transformPromptMessages(attributes);
1430
+ transformPromptTokens(attributes);
1431
+ transformCompletionTokens(attributes);
1432
+ calculateTotalTokens(attributes);
1433
+ transformVendor(attributes);
1434
+ };
1435
+ var shouldHandleSpan = (span) => {
1436
+ return span.name in HANDLED_SPAN_NAMES;
1437
+ };
1438
+ var transformAiSdkSpan = (span) => {
1439
+ logger.debug("Transforming AI SDK span", { spanName: span.name });
1440
+ if (!shouldHandleSpan(span)) {
1441
+ logger.debug("Skipping span transformation", { spanName: span.name });
1442
+ return;
1443
+ }
1444
+ transformAiSdkSpanName(span);
1445
+ transformAiSdkAttributes(span.attributes);
1446
+ };
1447
+
1448
+ // src/internal/trace/processors/span-processor.ts
2268
1449
  var DEFAULT_MASKING_RULES = [
2269
1450
  {
2270
1451
  mode: "partial",
@@ -2275,16 +1456,6 @@ var DEFAULT_MASKING_RULES = [
2275
1456
  mode: "partial",
2276
1457
  attributePattern: "gen_ai.completion",
2277
1458
  patterns: DEFAULT_PII_PATTERNS
2278
- },
2279
- {
2280
- mode: "partial",
2281
- attributePattern: "traceloop.entity.input",
2282
- patterns: DEFAULT_PII_PATTERNS
2283
- },
2284
- {
2285
- mode: "partial",
2286
- attributePattern: "traceloop.entity.output",
2287
- patterns: DEFAULT_PII_PATTERNS
2288
1459
  }
2289
1460
  ];
2290
1461
  var BrizzSimpleSpanProcessor = class extends import_sdk_trace_base.SimpleSpanProcessor {
@@ -2309,7 +1480,7 @@ var BrizzSimpleSpanProcessor = class extends import_sdk_trace_base.SimpleSpanPro
2309
1480
  if (maskingConfig) {
2310
1481
  maskSpan(span, maskingConfig);
2311
1482
  }
2312
- const associationProperties = import_api10.context.active().getValue(PROPERTIES_CONTEXT_KEY);
1483
+ const associationProperties = import_api4.context.active().getValue(PROPERTIES_CONTEXT_KEY);
2313
1484
  if (associationProperties) {
2314
1485
  for (const [key, value] of Object.entries(associationProperties)) {
2315
1486
  span.setAttribute(`${BRIZZ}.${key}`, value);
@@ -2317,6 +1488,10 @@ var BrizzSimpleSpanProcessor = class extends import_sdk_trace_base.SimpleSpanPro
2317
1488
  }
2318
1489
  super.onStart(span, parentContext);
2319
1490
  }
1491
+ onEnd(span) {
1492
+ transformAiSdkSpan(span);
1493
+ super.onEnd(span);
1494
+ }
2320
1495
  };
2321
1496
  var BrizzBatchSpanProcessor = class extends import_sdk_trace_base.BatchSpanProcessor {
2322
1497
  config;
@@ -2329,7 +1504,7 @@ var BrizzBatchSpanProcessor = class extends import_sdk_trace_base.BatchSpanProce
2329
1504
  if (maskingConfig) {
2330
1505
  maskSpan(span, maskingConfig);
2331
1506
  }
2332
- const associationProperties = import_api10.context.active().getValue(PROPERTIES_CONTEXT_KEY);
1507
+ const associationProperties = import_api4.context.active().getValue(PROPERTIES_CONTEXT_KEY);
2333
1508
  if (associationProperties) {
2334
1509
  for (const [key, value] of Object.entries(associationProperties)) {
2335
1510
  span.setAttribute(`${BRIZZ}.${key}`, value);
@@ -2337,6 +1512,10 @@ var BrizzBatchSpanProcessor = class extends import_sdk_trace_base.BatchSpanProce
2337
1512
  }
2338
1513
  super.onStart(span, parentContext);
2339
1514
  }
1515
+ onEnd(span) {
1516
+ transformAiSdkSpan(span);
1517
+ super.onEnd(span);
1518
+ }
2340
1519
  };
2341
1520
  function maskSpan(span, config) {
2342
1521
  if (!span.attributes || Object.keys(span.attributes).length === 0) {
@@ -2424,8 +1603,9 @@ var TracingModule = class _TracingModule {
2424
1603
  disableBatch: config.disableBatch,
2425
1604
  hasMasking: !!config.masking?.spanMasking
2426
1605
  });
2427
- this.spanProcessor = config.disableBatch ? new BrizzSimpleSpanProcessor(this.spanExporter, config) : new BrizzBatchSpanProcessor(this.spanExporter, config);
1606
+ const spanProcessor = config.disableBatch ? new BrizzSimpleSpanProcessor(this.spanExporter, config) : new BrizzBatchSpanProcessor(this.spanExporter, config);
2428
1607
  logger.debug("Span processor initialized successfully");
1608
+ this.spanProcessor = spanProcessor;
2429
1609
  }
2430
1610
  /**
2431
1611
  * Get the span exporter
@@ -2464,7 +1644,7 @@ function getSpanProcessor() {
2464
1644
  }
2465
1645
 
2466
1646
  // src/internal/trace/session.ts
2467
- var import_api11 = require("@opentelemetry/api");
1647
+ var import_api5 = require("@opentelemetry/api");
2468
1648
 
2469
1649
  // src/internal/sdk.ts
2470
1650
  var _Brizz = class __Brizz {