@bonnard/cli 0.2.6 → 0.2.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -2,24 +2,26 @@
2
2
 
3
3
  The Bonnard CLI (`bon`) takes you from zero to a deployed semantic layer in minutes. Define metrics in YAML, validate locally, deploy, and query — from your terminal or AI coding agent.
4
4
 
5
- ## Install
6
-
7
- ```bash
8
- npm install -g @bonnard/cli
9
- ```
10
-
11
- Requires Node.js 20+.
5
+ **Open source** — [view source on GitHub](https://github.com/meal-inc/bonnard-cli)
12
6
 
13
7
  ## Quick start
14
8
 
15
9
  ```bash
16
- bon init # Create project structure + agent templates
10
+ npx @bonnard/cli init # Create project structure + agent templates
17
11
  bon datasource add --demo # Add demo dataset (no warehouse needed)
18
12
  bon validate # Check syntax
19
13
  bon login # Authenticate with Bonnard
20
14
  bon deploy -m "Initial deploy" # Deploy to Bonnard
21
15
  ```
22
16
 
17
+ No install needed — `npx` runs the CLI directly. Or install globally for shorter commands:
18
+
19
+ ```bash
20
+ npm install -g @bonnard/cli
21
+ ```
22
+
23
+ Requires Node.js 20+.
24
+
23
25
  ## Commands
24
26
 
25
27
  | Command | Description |
package/dist/bin/bon.mjs CHANGED
@@ -2698,11 +2698,11 @@ async function showOverview(client) {
2698
2698
  console.log(pc.dim(" bon metabase explore collections"));
2699
2699
  console.log(pc.dim(" bon metabase explore cards"));
2700
2700
  console.log(pc.dim(" bon metabase explore dashboards"));
2701
- console.log(pc.dim(" bon metabase explore card <id>"));
2702
- console.log(pc.dim(" bon metabase explore dashboard <id>"));
2703
- console.log(pc.dim(" bon metabase explore database <id>"));
2704
- console.log(pc.dim(" bon metabase explore table <id>"));
2705
- console.log(pc.dim(" bon metabase explore collection <id>"));
2701
+ console.log(pc.dim(" bon metabase explore card <id-or-name>"));
2702
+ console.log(pc.dim(" bon metabase explore dashboard <id-or-name>"));
2703
+ console.log(pc.dim(" bon metabase explore database <id-or-name>"));
2704
+ console.log(pc.dim(" bon metabase explore table <id-or-name>"));
2705
+ console.log(pc.dim(" bon metabase explore collection <id-or-name>"));
2706
2706
  }
2707
2707
  async function showDatabases(client) {
2708
2708
  const databases = await client.getDatabases();
@@ -2778,7 +2778,7 @@ async function showCards(client) {
2778
2778
  console.log();
2779
2779
  }
2780
2780
  if (models.length === 0 && metrics.length === 0 && questions.length === 0) console.log(pc.dim(" No cards found."));
2781
- console.log(pc.dim("View details: bon metabase explore card <id>"));
2781
+ console.log(pc.dim("View details: bon metabase explore card <id-or-name>"));
2782
2782
  }
2783
2783
  async function showCardDetail(client, id) {
2784
2784
  const card = await client.getCard(id);
@@ -2835,7 +2835,7 @@ async function showDashboards(client) {
2835
2835
  console.log(` ${pc.dim(padColumn("ID", 6))}${pc.dim("NAME")}`);
2836
2836
  for (const d of active) console.log(` ${padColumn(String(d.id), 6)}${d.name}`);
2837
2837
  console.log();
2838
- console.log(pc.dim("View details: bon metabase explore dashboard <id>"));
2838
+ console.log(pc.dim("View details: bon metabase explore dashboard <id-or-name>"));
2839
2839
  }
2840
2840
  async function showDashboardDetail(client, id) {
2841
2841
  const [dashboard, allCards] = await Promise.all([client.getDashboard(id), client.getCards()]);
@@ -2895,7 +2895,7 @@ async function showDatabaseDetail(client, id) {
2895
2895
  }
2896
2896
  console.log();
2897
2897
  }
2898
- console.log(pc.dim("View table fields: bon metabase explore table <id>"));
2898
+ console.log(pc.dim("View table fields: bon metabase explore table <id-or-name>"));
2899
2899
  }
2900
2900
  function classifyFieldType(field) {
2901
2901
  const bt = field.base_type || "";
@@ -3008,8 +3008,105 @@ async function showCollectionDetail(client, id) {
3008
3008
  console.log();
3009
3009
  }
3010
3010
  if (cardItems.length === 0 && dashboardItems.length === 0) console.log(pc.dim(" No items in this collection."));
3011
- console.log(pc.dim("View card SQL: bon metabase explore card <id>"));
3012
- console.log(pc.dim("View dashboard: bon metabase explore dashboard <id>"));
3011
+ console.log(pc.dim("View card SQL: bon metabase explore card <id-or-name>"));
3012
+ console.log(pc.dim("View dashboard: bon metabase explore dashboard <id-or-name>"));
3013
+ }
3014
+ function isNumericId(value) {
3015
+ return /^\d+$/.test(value);
3016
+ }
3017
+ function showDisambiguation(resource, matches) {
3018
+ console.error(pc.yellow(`Multiple ${resource}s match that name:\n`));
3019
+ for (const m of matches) console.log(` ${padColumn(String(m.id), 8)}${m.label}`);
3020
+ console.log();
3021
+ console.log(pc.dim(`Use the numeric ID to be specific: bon metabase explore ${resource} <id>`));
3022
+ process.exit(1);
3023
+ }
3024
+ async function resolveCardId(client, input) {
3025
+ if (isNumericId(input)) return parseInt(input, 10);
3026
+ const cards = await client.getCards();
3027
+ const needle = input.toLowerCase();
3028
+ const matches = cards.filter((c) => c.name?.toLowerCase().includes(needle));
3029
+ if (matches.length === 0) {
3030
+ console.error(pc.red(`No card found matching "${input}"`));
3031
+ process.exit(1);
3032
+ }
3033
+ if (matches.length === 1) return matches[0].id;
3034
+ showDisambiguation("card", matches.map((c) => ({
3035
+ id: c.id,
3036
+ label: c.name
3037
+ })));
3038
+ }
3039
+ async function resolveDashboardId(client, input) {
3040
+ if (isNumericId(input)) return parseInt(input, 10);
3041
+ const dashboards = await client.getDashboards();
3042
+ const needle = input.toLowerCase();
3043
+ const matches = dashboards.filter((d) => d.name?.toLowerCase().includes(needle));
3044
+ if (matches.length === 0) {
3045
+ console.error(pc.red(`No dashboard found matching "${input}"`));
3046
+ process.exit(1);
3047
+ }
3048
+ if (matches.length === 1) return matches[0].id;
3049
+ showDisambiguation("dashboard", matches.map((d) => ({
3050
+ id: d.id,
3051
+ label: d.name
3052
+ })));
3053
+ }
3054
+ async function resolveDatabaseId(client, input) {
3055
+ if (isNumericId(input)) return parseInt(input, 10);
3056
+ const databases = await client.getDatabases();
3057
+ const needle = input.toLowerCase();
3058
+ const matches = databases.filter((d) => d.name?.toLowerCase().includes(needle));
3059
+ if (matches.length === 0) {
3060
+ console.error(pc.red(`No database found matching "${input}"`));
3061
+ process.exit(1);
3062
+ }
3063
+ if (matches.length === 1) return matches[0].id;
3064
+ showDisambiguation("database", matches.map((d) => ({
3065
+ id: d.id,
3066
+ label: `${d.name} (${d.engine})`
3067
+ })));
3068
+ }
3069
+ async function resolveTableId(client, input) {
3070
+ if (isNumericId(input)) return parseInt(input, 10);
3071
+ const databases = await client.getDatabases();
3072
+ const needle = input.toLowerCase();
3073
+ const matches = [];
3074
+ for (const db of databases) {
3075
+ const meta = await client.getDatabaseMetadata(db.id);
3076
+ for (const t of meta.tables) {
3077
+ if (t.visibility_type === "hidden" || t.visibility_type === "retired") continue;
3078
+ if (t.name.toLowerCase().includes(needle)) matches.push({
3079
+ id: t.id,
3080
+ name: t.name,
3081
+ schema: t.schema,
3082
+ dbName: db.name
3083
+ });
3084
+ }
3085
+ }
3086
+ if (matches.length === 0) {
3087
+ console.error(pc.red(`No table found matching "${input}"`));
3088
+ process.exit(1);
3089
+ }
3090
+ if (matches.length === 1) return matches[0].id;
3091
+ showDisambiguation("table", matches.map((m) => ({
3092
+ id: m.id,
3093
+ label: `${m.dbName} / ${m.schema}.${m.name}`
3094
+ })));
3095
+ }
3096
+ async function resolveCollectionId(client, input) {
3097
+ if (isNumericId(input)) return parseInt(input, 10);
3098
+ const collections = await client.getCollections();
3099
+ const needle = input.toLowerCase();
3100
+ const matches = collections.filter((c) => typeof c.id === "number" && c.name?.toLowerCase().includes(needle));
3101
+ if (matches.length === 0) {
3102
+ console.error(pc.red(`No collection found matching "${input}"`));
3103
+ process.exit(1);
3104
+ }
3105
+ if (matches.length === 1) return matches[0].id;
3106
+ showDisambiguation("collection", matches.map((c) => ({
3107
+ id: c.id,
3108
+ label: c.name
3109
+ })));
3013
3110
  }
3014
3111
  const RESOURCES = [
3015
3112
  "databases",
@@ -3047,71 +3144,41 @@ async function metabaseExploreCommand(resource, id) {
3047
3144
  case "dashboards":
3048
3145
  await showDashboards(client);
3049
3146
  break;
3050
- case "card": {
3147
+ case "card":
3051
3148
  if (!id) {
3052
- console.error(pc.red("Card ID required: bon metabase explore card <id>"));
3149
+ console.error(pc.red("Usage: bon metabase explore card <id-or-name>"));
3053
3150
  process.exit(1);
3054
3151
  }
3055
- const cardId = parseInt(id, 10);
3056
- if (isNaN(cardId)) {
3057
- console.error(pc.red(`Invalid card ID: ${id}`));
3058
- process.exit(1);
3059
- }
3060
- await showCardDetail(client, cardId);
3152
+ await showCardDetail(client, await resolveCardId(client, id));
3061
3153
  break;
3062
- }
3063
- case "dashboard": {
3154
+ case "dashboard":
3064
3155
  if (!id) {
3065
- console.error(pc.red("Dashboard ID required: bon metabase explore dashboard <id>"));
3156
+ console.error(pc.red("Usage: bon metabase explore dashboard <id-or-name>"));
3066
3157
  process.exit(1);
3067
3158
  }
3068
- const dashId = parseInt(id, 10);
3069
- if (isNaN(dashId)) {
3070
- console.error(pc.red(`Invalid dashboard ID: ${id}`));
3071
- process.exit(1);
3072
- }
3073
- await showDashboardDetail(client, dashId);
3159
+ await showDashboardDetail(client, await resolveDashboardId(client, id));
3074
3160
  break;
3075
- }
3076
- case "database": {
3161
+ case "database":
3077
3162
  if (!id) {
3078
- console.error(pc.red("Database ID required: bon metabase explore database <id>"));
3079
- process.exit(1);
3080
- }
3081
- const dbId = parseInt(id, 10);
3082
- if (isNaN(dbId)) {
3083
- console.error(pc.red(`Invalid database ID: ${id}`));
3163
+ console.error(pc.red("Usage: bon metabase explore database <id-or-name>"));
3084
3164
  process.exit(1);
3085
3165
  }
3086
- await showDatabaseDetail(client, dbId);
3166
+ await showDatabaseDetail(client, await resolveDatabaseId(client, id));
3087
3167
  break;
3088
- }
3089
- case "table": {
3168
+ case "table":
3090
3169
  if (!id) {
3091
- console.error(pc.red("Table ID required: bon metabase explore table <id>"));
3170
+ console.error(pc.red("Usage: bon metabase explore table <id-or-name>"));
3092
3171
  process.exit(1);
3093
3172
  }
3094
- const tableId = parseInt(id, 10);
3095
- if (isNaN(tableId)) {
3096
- console.error(pc.red(`Invalid table ID: ${id}`));
3097
- process.exit(1);
3098
- }
3099
- await showTableDetail(client, tableId);
3173
+ await showTableDetail(client, await resolveTableId(client, id));
3100
3174
  break;
3101
- }
3102
- case "collection": {
3175
+ case "collection":
3103
3176
  if (!id) {
3104
- console.error(pc.red("Collection ID required: bon metabase explore collection <id>"));
3177
+ console.error(pc.red("Usage: bon metabase explore collection <id-or-name>"));
3105
3178
  process.exit(1);
3106
3179
  }
3107
- const colId = parseInt(id, 10);
3108
- if (isNaN(colId)) {
3109
- console.error(pc.red(`Invalid collection ID: ${id}`));
3110
- process.exit(1);
3111
- }
3112
- await showCollectionDetail(client, colId);
3180
+ await showCollectionDetail(client, await resolveCollectionId(client, id));
3113
3181
  break;
3114
- }
3115
3182
  }
3116
3183
  } catch (err) {
3117
3184
  if (err instanceof MetabaseApiError) {
@@ -3454,10 +3521,10 @@ function buildReport(data) {
3454
3521
  report += `5. **Collection Structure** → Map collections to views (one view per business domain)\n`;
3455
3522
  report += `6. **Table Inventory** → Use field classification (dims/measures/time) to build each cube\n\n`;
3456
3523
  report += `Drill deeper with:\n`;
3457
- report += `- \`bon metabase explore table <id>\` — field types and classification\n`;
3458
- report += `- \`bon metabase explore card <id>\` — SQL and columns\n`;
3459
- report += `- \`bon metabase explore collection <id>\` — cards in a collection\n`;
3460
- report += `- \`bon metabase explore database <id>\` — schemas and tables\n\n`;
3524
+ report += `- \`bon metabase explore table <id-or-name>\` — field types and classification\n`;
3525
+ report += `- \`bon metabase explore card <id-or-name>\` — SQL and columns\n`;
3526
+ report += `- \`bon metabase explore collection <id-or-name>\` — cards in a collection\n`;
3527
+ report += `- \`bon metabase explore database <id-or-name>\` — schemas and tables\n\n`;
3461
3528
  report += `## Summary\n\n`;
3462
3529
  report += `| Metric | Count |\n|--------|-------|\n`;
3463
3530
  report += `| Databases | ${databases.length} |\n`;
@@ -3497,7 +3564,7 @@ function buildReport(data) {
3497
3564
  report += "```\n\n";
3498
3565
  report += `## Top ${topCards.length} Cards by Activity\n\n`;
3499
3566
  report += `Ranked by view count, weighted by recency. Cards not used in the last ${INACTIVE_MONTHS} months are penalized 90%.\n`;
3500
- report += `Use \`bon metabase explore card <id>\` to view SQL and column details for any card.\n\n`;
3567
+ report += `Use \`bon metabase explore card <id-or-name>\` to view SQL and column details for any card.\n\n`;
3501
3568
  report += `| Rank | ID | Views | Last Used | Active | Pattern | Type | Display | Collection | Name |\n`;
3502
3569
  report += `|------|----|-------|-----------|--------|---------|------|---------|------------|------|\n`;
3503
3570
  for (let i = 0; i < topCards.length; i++) {
@@ -3555,8 +3622,18 @@ function buildReport(data) {
3555
3622
  const sortedRefs = Array.from(globalTableRefs.entries()).sort((a, b) => b[1] - a[1]).slice(0, 20);
3556
3623
  report += `## Most Referenced Tables (from SQL)\n\n`;
3557
3624
  report += `Tables most frequently referenced in FROM/JOIN clauses across all cards.\n\n`;
3558
- report += `| Table | References |\n|-------|------------|\n`;
3559
- for (const [table, count] of sortedRefs) report += `| ${table} | ${count} |\n`;
3625
+ const tableIdByRef = /* @__PURE__ */ new Map();
3626
+ for (const db of databases) for (const t of db.tables) {
3627
+ const qualified = `${t.schema}.${t.name}`.toLowerCase();
3628
+ const unqualified = t.name.toLowerCase();
3629
+ if (!tableIdByRef.has(qualified)) tableIdByRef.set(qualified, t.id);
3630
+ if (!tableIdByRef.has(unqualified)) tableIdByRef.set(unqualified, t.id);
3631
+ }
3632
+ report += `| ID | Table | References |\n|------|-------|------------|\n`;
3633
+ for (const [table, count] of sortedRefs) {
3634
+ const tid = tableIdByRef.get(table);
3635
+ report += `| ${tid ?? "—"} | ${table} | ${count} |\n`;
3636
+ }
3560
3637
  report += `\n`;
3561
3638
  }
3562
3639
  const fieldIdLookup = /* @__PURE__ */ new Map();
@@ -3656,9 +3733,9 @@ function buildReport(data) {
3656
3733
  report += `### ${db.name} / ${schema} (${referenced.length} referenced`;
3657
3734
  if (unreferenced > 0) report += `, ${unreferenced} unreferenced`;
3658
3735
  report += `)\n\n`;
3659
- report += `| Table | Fields | Dims | Measures | Time | Refs |\n`;
3660
- report += `|-------|--------|------|----------|------|------|\n`;
3661
- for (const s of referenced) report += `| ${s.name} | ${s.fieldCount} | ${s.dimensions} | ${s.measures} | ${s.timeDimensions} | ${s.refCount} |\n`;
3736
+ report += `| ID | Table | Fields | Dims | Measures | Time | Refs |\n`;
3737
+ report += `|------|-------|--------|------|----------|------|------|\n`;
3738
+ for (const s of referenced) report += `| ${s.id} | ${s.name} | ${s.fieldCount} | ${s.dimensions} | ${s.measures} | ${s.timeDimensions} | ${s.refCount} |\n`;
3662
3739
  if (unreferenced > 0) skippedTables += unreferenced;
3663
3740
  report += `\n`;
3664
3741
  }
@@ -4,6 +4,22 @@
4
4
 
5
5
  The Bonnard CLI (`bon`) takes you from zero to a deployed semantic layer in minutes. Initialize a project, connect your warehouse, define metrics in YAML, validate locally, and deploy — all from your terminal or your AI coding agent.
6
6
 
7
+ ## Install
8
+
9
+ Run directly with `npx` — no install needed:
10
+
11
+ ```bash
12
+ npx @bonnard/cli init
13
+ ```
14
+
15
+ Or install globally for shorter commands:
16
+
17
+ ```bash
18
+ npm install -g @bonnard/cli
19
+ ```
20
+
21
+ Requires Node.js 20+.
22
+
7
23
  ## Agent-ready from the start
8
24
 
9
25
  `bon init` generates context files for your AI coding tools automatically:
@@ -1,4 +1,4 @@
1
- # dashboards.components
1
+ # Components
2
2
 
3
3
  > Chart and display components for rendering query results in dashboards.
4
4
 
@@ -6,6 +6,15 @@
6
6
 
7
7
  Components are self-closing HTML-style tags that render query results as charts, tables, or KPI cards. Each component takes a `data` prop referencing a named query.
8
8
 
9
+ Choose the component that best fits your data:
10
+
11
+ - **BigValue** — single KPI number (total revenue, order count)
12
+ - **LineChart** — trends over time
13
+ - **BarChart** — comparing categories (vertical or horizontal)
14
+ - **AreaChart** — cumulative or stacked trends
15
+ - **PieChart** — proportional breakdown (best with 5-7 slices)
16
+ - **DataTable** — detailed rows for drilling into data
17
+
9
18
  ## Syntax
10
19
 
11
20
  ```markdown
@@ -32,53 +41,68 @@ Displays a single KPI metric as a large number.
32
41
  | `data` | query ref | Yes | Query name (should return a single row) |
33
42
  | `value` | string | Yes | Measure field name to display |
34
43
  | `title` | string | No | Label above the value |
44
+ | `fmt` | string | No | Format preset or Excel code (e.g. `fmt="eur2"`, `fmt="$#,##0.00"`) |
35
45
 
36
46
  ### LineChart
37
47
 
38
- Renders a line chart, typically for time series.
48
+ Renders a line chart, typically for time series. Supports multiple y columns and series splitting.
39
49
 
40
50
  ```markdown
41
51
  <LineChart data={monthly_revenue} x="created_at" y="total_revenue" title="Revenue Trend" />
52
+ <LineChart data={trend} x="date" y="revenue,cases" />
53
+ <LineChart data={revenue_by_type} x="created_at" y="total_revenue" series="type" />
42
54
  ```
43
55
 
44
56
  | Prop | Type | Required | Description |
45
57
  |------|------|----------|-------------|
46
58
  | `data` | query ref | Yes | Query name |
47
59
  | `x` | string | Yes | Field for x-axis (typically a time dimension) |
48
- | `y` | string | Yes | Field for y-axis (typically a measure) |
60
+ | `y` | string | Yes | Field(s) for y-axis. Comma-separated for multiple (e.g. `y="revenue,cases"`) |
49
61
  | `title` | string | No | Chart title |
62
+ | `series` | string | No | Column to split data into separate colored lines |
63
+ | `type` | string | No | `"stacked"` for stacked lines (default: no stacking) |
64
+ | `yFmt` | string | No | Format preset or Excel code for tooltip values (e.g. `yFmt="eur2"`) |
50
65
 
51
66
  ### BarChart
52
67
 
53
- Renders a vertical bar chart. Add `horizontal` for horizontal bars.
68
+ Renders a vertical bar chart. Add `horizontal` for horizontal bars. Supports multi-series with stacked or grouped display.
54
69
 
55
70
  ```markdown
56
71
  <BarChart data={revenue_by_city} x="city" y="total_revenue" />
57
72
  <BarChart data={revenue_by_city} x="city" y="total_revenue" horizontal />
73
+ <BarChart data={revenue_by_type} x="month" y="total_revenue" series="type" />
74
+ <BarChart data={revenue_by_type} x="month" y="total_revenue" series="type" type="grouped" />
58
75
  ```
59
76
 
60
77
  | Prop | Type | Required | Description |
61
78
  |------|------|----------|-------------|
62
79
  | `data` | query ref | Yes | Query name |
63
80
  | `x` | string | Yes | Field for category axis |
64
- | `y` | string | Yes | Field for value axis |
81
+ | `y` | string | Yes | Field(s) for value axis. Comma-separated for multiple (e.g. `y="revenue,cases"`) |
65
82
  | `title` | string | No | Chart title |
66
83
  | `horizontal` | boolean | No | Render as horizontal bar chart |
84
+ | `series` | string | No | Column to split data into separate colored bars |
85
+ | `type` | string | No | `"stacked"` (default) or `"grouped"` for multi-series display |
86
+ | `yFmt` | string | No | Format preset or Excel code for tooltip values (e.g. `yFmt="usd"`) |
67
87
 
68
88
  ### AreaChart
69
89
 
70
- Renders a filled area chart.
90
+ Renders a filled area chart. Supports series splitting and stacked areas.
71
91
 
72
92
  ```markdown
73
93
  <AreaChart data={monthly_revenue} x="created_at" y="total_revenue" />
94
+ <AreaChart data={revenue_by_source} x="created_at" y="total_revenue" series="source" type="stacked" />
74
95
  ```
75
96
 
76
97
  | Prop | Type | Required | Description |
77
98
  |------|------|----------|-------------|
78
99
  | `data` | query ref | Yes | Query name |
79
100
  | `x` | string | Yes | Field for x-axis |
80
- | `y` | string | Yes | Field for y-axis |
101
+ | `y` | string | Yes | Field(s) for y-axis. Comma-separated for multiple (e.g. `y="revenue,cases"`) |
81
102
  | `title` | string | No | Chart title |
103
+ | `series` | string | No | Column to split data into separate colored areas |
104
+ | `type` | string | No | `"stacked"` for stacked areas (default: no stacking) |
105
+ | `yFmt` | string | No | Format preset or Excel code for tooltip values (e.g. `yFmt="pct1"`) |
82
106
 
83
107
  ### PieChart
84
108
 
@@ -97,11 +121,13 @@ Renders a pie/donut chart.
97
121
 
98
122
  ### DataTable
99
123
 
100
- Renders query results as a table.
124
+ Renders query results as a sortable, paginated table. Click any column header to sort ascending/descending.
101
125
 
102
126
  ```markdown
103
127
  <DataTable data={top_products} />
104
128
  <DataTable data={top_products} columns="name,revenue,count" />
129
+ <DataTable data={top_products} rows="25" />
130
+ <DataTable data={top_products} rows="all" />
105
131
  ```
106
132
 
107
133
  | Prop | Type | Required | Description |
@@ -109,8 +135,28 @@ Renders query results as a table.
109
135
  | `data` | query ref | Yes | Query name |
110
136
  | `columns` | string | No | Comma-separated list of columns to show (default: all) |
111
137
  | `title` | string | No | Table title |
138
+ | `fmt` | string | No | Column format map: `fmt="revenue:eur2,date:shortdate"` |
139
+ | `rows` | string | No | Rows per page. Default `10`. Use `rows="all"` to disable pagination. |
140
+
141
+ **Sorting:** Click a column header to sort ascending. Click again to sort descending. Null values always sort to the end. Numbers sort numerically, strings sort case-insensitively.
142
+
143
+ **Formatting:** Numbers right-align with tabular figures. Dates auto-detect and won't wrap. Use `fmt` for explicit formatting per column.
144
+
145
+ ## Layout
146
+
147
+ ### Auto BigValue Grouping
148
+
149
+ Consecutive `<BigValue>` components are automatically wrapped in a responsive grid — no `<Grid>` tag needed:
150
+
151
+ ```markdown
152
+ <BigValue data={total_revenue} value="total_revenue" title="Revenue" />
153
+ <BigValue data={order_count} value="count" title="Orders" />
154
+ <BigValue data={avg_order} value="avg_order_value" title="Avg Order" />
155
+ ```
156
+
157
+ This renders as a 3-column row. The grid auto-sizes up to 4 columns based on the number of consecutive BigValues. For more control, use an explicit `<Grid>` tag.
112
158
 
113
- ## Layout: Grid
159
+ ### Grid
114
160
 
115
161
  Wrap components in a `<Grid>` tag to arrange them in columns:
116
162
 
@@ -126,12 +172,56 @@ Wrap components in a `<Grid>` tag to arrange them in columns:
126
172
  |------|------|---------|-------------|
127
173
  | `cols` | string | `"2"` | Number of columns in the grid |
128
174
 
175
+ ## Formatting
176
+
177
+ Values are auto-formatted by default — numbers get locale grouping (1,234.56), dates display as "13 Jan 2025", and nulls show as "—". Override with named presets for common currencies and percentages, or use raw Excel format codes for full control.
178
+
179
+ ### Format Presets
180
+
181
+ | Preset | Excel code | Example output |
182
+ |--------|-----------|---------------|
183
+ | `num0` | `#,##0` | 1,234 |
184
+ | `num1` | `#,##0.0` | 1,234.6 |
185
+ | `num2` | `#,##0.00` | 1,234.56 |
186
+ | `usd` | `$#,##0` | $1,234 |
187
+ | `usd2` | `$#,##0.00` | $1,234.56 |
188
+ | `eur` | `#,##0 "€"` | 1,234 € |
189
+ | `eur2` | `#,##0.00 "€"` | 1,234.56 € |
190
+ | `gbp` | `£#,##0` | £1,234 |
191
+ | `gbp2` | `£#,##0.00` | £1,234.56 |
192
+ | `chf` | `"CHF "#,##0` | CHF 1,234 |
193
+ | `chf2` | `"CHF "#,##0.00` | CHF 1,234.56 |
194
+ | `pct` | `0%` | 45% |
195
+ | `pct1` | `0.0%` | 45.1% |
196
+ | `pct2` | `0.00%` | 45.12% |
197
+ | `shortdate` | `d mmm yyyy` | 13 Jan 2025 |
198
+ | `longdate` | `d mmmm yyyy` | 13 January 2025 |
199
+ | `monthyear` | `mmm yyyy` | Jan 2025 |
200
+
201
+ Any string that isn't a preset name is treated as a raw Excel format code (ECMA-376). For example: `fmt="revenue:$#,##0.00"`.
202
+
203
+ Note: Percentage presets (`pct`, `pct1`, `pct2`) multiply by 100 per Excel convention — 0.45 displays as "45%".
204
+
205
+ ### Usage Examples
206
+
207
+ ```markdown
208
+ <!-- BigValue with currency -->
209
+ <BigValue data={total_revenue} value="total_revenue" title="Revenue" fmt="eur2" />
210
+
211
+ <!-- DataTable with per-column formatting -->
212
+ <DataTable data={sales} fmt="total_revenue:usd2,created_at:shortdate,margin:pct1" />
213
+
214
+ <!-- Chart with formatted tooltips -->
215
+ <BarChart data={monthly} x="month" y="revenue" yFmt="usd" />
216
+ <LineChart data={trend} x="date" y="growth" yFmt="pct1" />
217
+ ```
218
+
129
219
  ## Field Names
130
220
 
131
221
  Component field names (e.g. `x="city"`, `value="total_revenue"`) use the **unqualified** measure or dimension name — the same names defined in your cube. For example, if your cube has `measures: [{ name: total_revenue, ... }]`, use `value="total_revenue"`.
132
222
 
133
223
  ## See Also
134
224
 
135
- - dashboards.queries
136
- - dashboards.examples
137
- - dashboards
225
+ - [Queries](dashboards.queries) — query syntax and properties
226
+ - [Examples](dashboards.examples) — complete dashboard examples
227
+ - [Dashboards](dashboards) — overview and deployment
@@ -1,10 +1,10 @@
1
- # dashboards.examples
1
+ # Examples
2
2
 
3
3
  > Complete dashboard examples showing common patterns.
4
4
 
5
5
  ## Revenue Overview Dashboard
6
6
 
7
- A KPI + trend + breakdown dashboard:
7
+ The most common dashboard pattern: KPI cards at the top for at-a-glance metrics, a time series chart for trends, and a bar chart with data table for category breakdown.
8
8
 
9
9
  ```markdown
10
10
  ---
@@ -64,7 +64,7 @@ orderBy:
64
64
 
65
65
  ## Sales Pipeline Dashboard
66
66
 
67
- Filtered data with pie chart:
67
+ A status-focused dashboard using a pie chart for proportional breakdown, a horizontal bar chart for ranking, and filters to drill into a specific segment.
68
68
 
69
69
  ```markdown
70
70
  ---
@@ -114,6 +114,161 @@ filters:
114
114
  <AreaChart data={completed_trend} x="created_at" y="total_revenue" title="Completed Order Revenue" />
115
115
  ```
116
116
 
117
+ ## Multi-Series Dashboard
118
+
119
+ When you need to compare segments side-by-side, use the `series` prop to split data by a dimension into colored segments. This example shows stacked bars, grouped bars, multi-line, and stacked area — all from the same data.
120
+
121
+ ```markdown
122
+ ---
123
+ title: Revenue by Channel
124
+ description: Multi-series charts showing revenue breakdown by sales channel
125
+ ---
126
+
127
+ # Revenue by Channel
128
+
129
+ ` ``query revenue_by_channel
130
+ cube: orders
131
+ measures: [total_revenue]
132
+ dimensions: [channel]
133
+ timeDimension:
134
+ dimension: created_at
135
+ granularity: month
136
+ dateRange: [2025-01-01, 2025-12-31]
137
+ ` ``
138
+
139
+ ## Stacked Bar (default)
140
+
141
+ <BarChart data={revenue_by_channel} x="created_at" y="total_revenue" series="channel" title="Revenue by Channel" />
142
+
143
+ ## Grouped Bar
144
+
145
+ <BarChart data={revenue_by_channel} x="created_at" y="total_revenue" series="channel" type="grouped" title="Revenue by Channel (Grouped)" />
146
+
147
+ ## Multi-Line
148
+
149
+ ` ``query trend
150
+ cube: orders
151
+ measures: [total_revenue, count]
152
+ timeDimension:
153
+ dimension: created_at
154
+ granularity: month
155
+ dateRange: [2025-01-01, 2025-12-31]
156
+ ` ``
157
+
158
+ <LineChart data={trend} x="created_at" y="total_revenue,count" title="Revenue vs Orders" />
159
+
160
+ ## Stacked Area by Channel
161
+
162
+ <AreaChart data={revenue_by_channel} x="created_at" y="total_revenue" series="channel" type="stacked" title="Revenue by Channel" />
163
+ ```
164
+
165
+ ## Formatted Dashboard
166
+
167
+ Use format presets to display currencies, percentages, and number styles consistently across KPIs, charts, and tables.
168
+
169
+ ```markdown
170
+ ---
171
+ title: Sales Performance
172
+ description: Formatted revenue metrics and trends
173
+ ---
174
+
175
+ # Sales Performance
176
+
177
+ ` ``query totals
178
+ cube: orders
179
+ measures: [total_revenue, count, avg_order_value]
180
+ ` ``
181
+
182
+ <Grid cols="3">
183
+ <BigValue data={totals} value="total_revenue" title="Revenue" fmt="eur2" />
184
+ <BigValue data={totals} value="count" title="Orders" fmt="num0" />
185
+ <BigValue data={totals} value="avg_order_value" title="Avg Order" fmt="eur2" />
186
+ </Grid>
187
+
188
+ ## Revenue Trend
189
+
190
+ ` ``query monthly
191
+ cube: orders
192
+ measures: [total_revenue]
193
+ timeDimension:
194
+ dimension: created_at
195
+ granularity: month
196
+ dateRange: [2025-01-01, 2025-12-31]
197
+ ` ``
198
+
199
+ <LineChart data={monthly} x="created_at" y="total_revenue" title="Monthly Revenue" yFmt="eur" />
200
+
201
+ ## Detail Table
202
+
203
+ ` ``query details
204
+ cube: orders
205
+ measures: [total_revenue, count]
206
+ dimensions: [category]
207
+ orderBy:
208
+ total_revenue: desc
209
+ ` ``
210
+
211
+ <DataTable data={details} fmt="total_revenue:eur2,count:num0" />
212
+ ```
213
+
214
+ ## Interactive Dashboard
215
+
216
+ Combine a DateRange picker and Dropdown filter to let viewers explore the data. Filter state syncs to the URL, so shared links preserve the exact filtered view.
217
+
218
+ ```markdown
219
+ ---
220
+ title: Interactive Sales
221
+ description: Sales dashboard with date and channel filters
222
+ ---
223
+
224
+ # Interactive Sales
225
+
226
+ <DateRange name="period" default="last-6-months" label="Time Period" />
227
+ <Dropdown name="channel" dimension="channel" data={channels} queries="trend,by_city" label="Channel" />
228
+
229
+ ` ``query channels
230
+ cube: orders
231
+ dimensions: [channel]
232
+ ` ``
233
+
234
+ ` ``query kpis
235
+ cube: orders
236
+ measures: [total_revenue, count]
237
+ ` ``
238
+
239
+ <Grid cols="2">
240
+ <BigValue data={kpis} value="total_revenue" title="Revenue" fmt="eur2" />
241
+ <BigValue data={kpis} value="count" title="Orders" fmt="num0" />
242
+ </Grid>
243
+
244
+ ## Revenue Trend
245
+
246
+ ` ``query trend
247
+ cube: orders
248
+ measures: [total_revenue]
249
+ timeDimension:
250
+ dimension: created_at
251
+ granularity: month
252
+ ` ``
253
+
254
+ <LineChart data={trend} x="created_at" y="total_revenue" title="Monthly Revenue" yFmt="eur" />
255
+
256
+ ## By City
257
+
258
+ ` ``query by_city
259
+ cube: orders
260
+ measures: [total_revenue]
261
+ dimensions: [city]
262
+ orderBy:
263
+ total_revenue: desc
264
+ limit: 10
265
+ ` ``
266
+
267
+ <BarChart data={by_city} x="city" y="total_revenue" title="Top Cities" yFmt="eur" />
268
+ ```
269
+
270
+ The `<DateRange>` automatically applies to all queries with a `timeDimension` (here: `trend`). The `<Dropdown>` filters `trend` and `by_city` by channel. The `channels` query populates the dropdown and is never filtered by it.
271
+
117
272
  ## Tips
118
273
 
119
274
  - **Start with KPIs**: Use `BigValue` in a `Grid` at the top for key metrics
@@ -122,9 +277,11 @@ filters:
122
277
  - **Name queries descriptively**: `monthly_revenue` is better than `q1`
123
278
  - **Limit large datasets**: Add `limit` to dimension queries to avoid oversized charts
124
279
  - **Time series**: Always use `timeDimension` with `granularity` for time-based charts
280
+ - **Multi-series**: Use `series="column"` to split data by a dimension. For bars, default is stacked; use `type="grouped"` for side-by-side
281
+ - **Multiple y columns**: Use comma-separated values like `y="revenue,cases"` to show multiple measures on one chart
125
282
 
126
283
  ## See Also
127
284
 
128
- - dashboards
129
- - dashboards.queries
130
- - dashboards.components
285
+ - [Dashboards](dashboards) — overview and deployment
286
+ - [Queries](dashboards.queries) — query syntax and properties
287
+ - [Components](dashboards.components) — chart and display components
@@ -0,0 +1,179 @@
1
+ # Inputs
2
+
3
+ > Interactive filter inputs for dashboards — date range pickers and dropdown selectors.
4
+
5
+ ## Overview
6
+
7
+ Inputs add interactivity to dashboards. They render as a filter bar above the charts and re-execute queries when values change. Inspired by Evidence.dev's inputs pattern, adapted for the Cube semantic layer.
8
+
9
+ Two input types are available:
10
+
11
+ - **DateRange** — preset date range picker that overrides `timeDimension.dateRange`
12
+ - **Dropdown** — dimension value selector that adds/replaces filters
13
+
14
+ ## DateRange
15
+
16
+ Renders a date range preset picker. When changed, overrides `timeDimension.dateRange` on targeted queries.
17
+
18
+ ```markdown
19
+ <DateRange name="period" default="last-6-months" label="Time Period" />
20
+ ```
21
+
22
+ ### Props
23
+
24
+ | Prop | Type | Required | Description |
25
+ |------|------|----------|-------------|
26
+ | `name` | string | Yes | Unique input name |
27
+ | `default` | preset key | No | Initial preset (default: `last-6-months`) |
28
+ | `label` | string | No | Label shown above the picker |
29
+ | `queries` | string | No | Comma-separated query names to target |
30
+
31
+ ### Targeting
32
+
33
+ Targeting lets you control which queries a filter affects — useful when some charts should stay fixed while others respond to filter changes.
34
+
35
+ - **No `queries` prop** — applies to ALL queries that have a `timeDimension`
36
+ - **With `queries` prop** — only applies to the listed queries
37
+
38
+ ### Presets
39
+
40
+ | Key | Label |
41
+ |-----|-------|
42
+ | `last-7-days` | Last 7 Days |
43
+ | `last-30-days` | Last 30 Days |
44
+ | `last-3-months` | Last 3 Months |
45
+ | `last-6-months` | Last 6 Months |
46
+ | `last-12-months` | Last 12 Months |
47
+ | `month-to-date` | Month to Date |
48
+ | `year-to-date` | Year to Date |
49
+ | `last-year` | Last Year |
50
+ | `all-time` | All Time |
51
+
52
+ ## Dropdown
53
+
54
+ Renders a dropdown selector populated from a query's dimension values. Adds a filter on the specified dimension to targeted queries.
55
+
56
+ ```markdown
57
+ <Dropdown name="channel" dimension="channel" data={channels} queries="main,trend" label="Channel" />
58
+ ```
59
+
60
+ ### Props
61
+
62
+ | Prop | Type | Required | Description |
63
+ |------|------|----------|-------------|
64
+ | `name` | string | Yes | Unique input name |
65
+ | `dimension` | string | Yes | Dimension to filter on |
66
+ | `data` | query ref | Yes | Query that provides the dropdown options |
67
+ | `queries` | string | Yes | Comma-separated query names to filter |
68
+ | `label` | string | No | Label shown above the dropdown |
69
+ | `default` | string | No | Initial selected value (default: All) |
70
+
71
+ ### Behavior
72
+
73
+ - Always includes an "All" option that removes the filter
74
+ - The dropdown's own `data` query is never filtered by itself (prevents circular dependencies)
75
+ - `queries` is required — the dropdown only filters explicitly listed queries
76
+
77
+ ## Examples
78
+
79
+ ### DateRange only
80
+
81
+ ```markdown
82
+ ---
83
+ title: Revenue Trends
84
+ ---
85
+
86
+ <DateRange name="period" default="last-6-months" label="Time Period" />
87
+
88
+ ` ``query monthly_revenue
89
+ cube: orders
90
+ measures: [total_revenue]
91
+ timeDimension:
92
+ dimension: created_at
93
+ granularity: month
94
+ ` ``
95
+
96
+ <LineChart data={monthly_revenue} x="created_at" y="total_revenue" />
97
+ ```
98
+
99
+ The DateRange automatically applies to `monthly_revenue` because it has a `timeDimension`. No hardcoded `dateRange` needed in the query.
100
+
101
+ ### Dropdown with query binding
102
+
103
+ ```markdown
104
+ ---
105
+ title: Sales by Channel
106
+ ---
107
+
108
+ ` ``query channels
109
+ cube: orders
110
+ dimensions: [channel]
111
+ ` ``
112
+
113
+ <Dropdown name="ch" dimension="channel" data={channels} queries="main" label="Channel" />
114
+
115
+ ` ``query main
116
+ cube: orders
117
+ measures: [total_revenue]
118
+ dimensions: [city]
119
+ ` ``
120
+
121
+ <BarChart data={main} x="city" y="total_revenue" />
122
+ ```
123
+
124
+ ### Combined inputs
125
+
126
+ ```markdown
127
+ ---
128
+ title: Sales Dashboard
129
+ ---
130
+
131
+ <DateRange name="period" default="last-6-months" label="Time Period" />
132
+ <Dropdown name="channel" dimension="channel" data={channels} queries="trend,by_city" label="Channel" />
133
+
134
+ ` ``query channels
135
+ cube: orders
136
+ dimensions: [channel]
137
+ ` ``
138
+
139
+ ` ``query trend
140
+ cube: orders
141
+ measures: [total_revenue]
142
+ timeDimension:
143
+ dimension: created_at
144
+ granularity: month
145
+ ` ``
146
+
147
+ <LineChart data={trend} x="created_at" y="total_revenue" />
148
+
149
+ ` ``query by_city
150
+ cube: orders
151
+ measures: [total_revenue]
152
+ dimensions: [city]
153
+ ` ``
154
+
155
+ <BarChart data={by_city} x="city" y="total_revenue" />
156
+ ```
157
+
158
+ Both inputs work together: the DateRange scopes the time window on `trend` (which has a timeDimension), and the Dropdown filters both `trend` and `by_city` by channel.
159
+
160
+ ## Shareable URLs
161
+
162
+ Input values automatically sync to URL query params. When a user changes a filter, the URL updates to reflect the current state — for example:
163
+
164
+ ```
165
+ /dashboards/sales?period=last-30-days&channel=Online
166
+ ```
167
+
168
+ - **Default values are omitted** from the URL for clean links
169
+ - **Sharing a URL** preserves the current filter state — recipients see exactly the same filtered view
170
+ - **Refreshing the page** restores the active filters from the URL
171
+ - The **Copy Link** button in the dashboard header copies the full URL including filter params
172
+
173
+ DateRange inputs store the preset key (e.g. `last-30-days`), so shared URLs stay relative to today. Dropdown inputs store the selected value string.
174
+
175
+ ## See Also
176
+
177
+ - [Dashboards](dashboards) — overview and deployment
178
+ - [Components](dashboards.components) — chart and display components
179
+ - [Examples](dashboards.examples) — complete dashboard examples
@@ -1,10 +1,12 @@
1
- # dashboards
1
+ # Dashboards
2
2
 
3
3
  > Build interactive dashboards from markdown with embedded semantic layer queries.
4
4
 
5
5
  ## Overview
6
6
 
7
- Dashboards are markdown files with YAML frontmatter, query blocks, and chart components. Write them as `.md` files, deploy with `bon dashboard deploy`, and view them in the Bonnard web app.
7
+ Dashboards let your team track key metrics without leaving the Bonnard app. Define queries once in markdown, deploy them, and every viewer gets live, governed data — no separate BI tool needed. Filters, formatting, and layout are all declared in the same file.
8
+
9
+ A dashboard is a markdown file with YAML frontmatter, query blocks, and chart components. Write it as a `.md` file, deploy with `bon dashboard deploy`, and view it in the Bonnard web app.
8
10
 
9
11
  ## Format
10
12
 
@@ -60,6 +62,8 @@ slug: revenue-dashboard # Optional (derived from title if omitted)
60
62
 
61
63
  ## Deployment
62
64
 
65
+ Deploy from the command line or via MCP tools. Each deploy auto-versions the dashboard so you can roll back if needed.
66
+
63
67
  ```bash
64
68
  # Deploy a single dashboard
65
69
  bon dashboard deploy revenue.md
@@ -76,8 +80,38 @@ bon dashboard remove revenue-dashboard
76
80
 
77
81
  Via MCP tools, agents can use `deploy_dashboard` with the markdown content as a string.
78
82
 
83
+ ## Versioning
84
+
85
+ Every deployment auto-increments the version number and saves a snapshot. You can view version history and restore previous versions:
86
+
87
+ ```bash
88
+ # Via MCP tools:
89
+ # get_dashboard with version parameter to fetch a specific version
90
+ # deploy_dashboard with slug + restore_version to roll back
91
+ ```
92
+
93
+ Restoring a version creates a new version (e.g. restoring v2 from v5 creates v6 with v2's content). Version history is never deleted — only `remove_dashboard` deletes all history.
94
+
95
+ ## Sharing
96
+
97
+ Dashboard viewers include a **Share** menu in the header with:
98
+
99
+ - **Copy link** — copies the current URL including any active filter state
100
+ - **Print to PDF** — opens the browser print dialog for PDF export
101
+
102
+ Filter state (DateRange presets, Dropdown selections) is encoded in URL query params, so shared links preserve the exact filtered view the sender was looking at.
103
+
104
+ ## Governance
105
+
106
+ Dashboard queries respect the same governance policies as all other queries. When a user views a dashboard:
107
+
108
+ - **View-level access** — users only see data from views their governance groups allow
109
+ - **Row-level filtering** — user attributes (e.g. region, department) automatically filter query results
110
+ - All org members see the same dashboard list, but may see different data depending on their governance context
111
+
79
112
  ## See Also
80
113
 
81
- - dashboards.queries
82
- - dashboards.components
83
- - dashboards.examples
114
+ - [Queries](dashboards.queries) — query syntax and properties
115
+ - [Components](dashboards.components) — chart and display components
116
+ - [Inputs](dashboards.inputs) — interactive filters
117
+ - [Examples](dashboards.examples) — complete dashboard examples
@@ -1,10 +1,12 @@
1
- # dashboards.queries
1
+ # Queries
2
2
 
3
3
  > Define data queries in dashboard markdown using YAML code fences.
4
4
 
5
5
  ## Overview
6
6
 
7
- Query blocks fetch data from the semantic layer. Each query has a unique name and maps to a `QueryOptions` shape. Query results are referenced by chart components using `data={query_name}`.
7
+ Each query fetches data from your semantic layer and makes it available to chart components. Queries use the same measures and dimensions defined in your cubes and views field names stay consistent whether you're querying from a dashboard, MCP, or the API.
8
+
9
+ Query blocks have a unique name and map to a `QueryOptions` shape. Components reference them using `data={query_name}`. Field names are unqualified — use `count` not `orders.count` — because the `cube` property provides the context.
8
10
 
9
11
  ## Syntax
10
12
 
@@ -112,6 +114,6 @@ filters:
112
114
 
113
115
  ## See Also
114
116
 
115
- - dashboards.components
116
- - dashboards
117
- - workflow.query
117
+ - [Components](dashboards.components) — chart and display components
118
+ - [Dashboards](dashboards) — overview and deployment
119
+ - [Querying](querying) — query format reference
@@ -6,7 +6,7 @@
6
6
 
7
7
  Views are facades that expose selected measures and dimensions from one or more cubes. They define which data is available to consumers, control join paths, and organize members into logical groups.
8
8
 
9
- **Views should represent how a team thinks about data**, not mirror your warehouse tables. Name views by what they answer (`sales_pipeline`, `customer_insights`) rather than what table they wrap (`orders_view`, `users_view`). A good semantic layer has 5-10 focused views, not 30+ thin wrappers.
9
+ **Views should represent how a team thinks about data**, not mirror your warehouse tables. Name views by what they answer (`sales_pipeline`, `customer_insights`) rather than what table they wrap (`orders_view`, `users_view`). Build as many views as your audiences need, but make each one purposeful — governance policies control which views each user or role can access.
10
10
 
11
11
  ## Example
12
12
 
@@ -30,10 +30,11 @@ If you have a BI tool (Metabase, Looker, Tableau), your top dashboards
30
30
  by view count are the best source of real questions. If not, ask each team:
31
31
  "What 3 numbers do you check every week?"
32
32
 
33
- **Why this matters:** A semantic layer built from questions has 5-10 focused
34
- views. One built from tables has 30+ views that agents struggle to choose
35
- between. Fewer, well-scoped views with clear descriptions outperform
36
- comprehensive but undifferentiated coverage.
33
+ **Why this matters:** A semantic layer built from questions produces focused,
34
+ audience-scoped views. One built from tables produces generic views that agents
35
+ struggle to choose between. Governance policies control which views each user
36
+ or role can access, so build as many views as your audiences need — but make
37
+ each one purposeful with clear descriptions.
37
38
 
38
39
  ## Principle 2: Views Are for Audiences, Not Tables
39
40
 
@@ -29,10 +29,11 @@ If you have a BI tool (Metabase, Looker, Tableau), your top dashboards
29
29
  by view count are the best source of real questions. If not, ask each team:
30
30
  "What 3 numbers do you check every week?"
31
31
 
32
- **Why this matters:** A semantic layer built from questions has 5-10 focused
33
- views. One built from tables has 30+ views that agents struggle to choose
34
- between. Fewer, well-scoped views with clear descriptions outperform
35
- comprehensive but undifferentiated coverage.
32
+ **Why this matters:** A semantic layer built from questions produces focused,
33
+ audience-scoped views. One built from tables produces generic views that agents
34
+ struggle to choose between. Governance policies control which views each user
35
+ or role can access, so build as many views as your audiences need — but make
36
+ each one purposeful with clear descriptions.
36
37
 
37
38
  ## Principle 2: Views Are for Audiences, Not Tables
38
39
 
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@bonnard/cli",
3
- "version": "0.2.6",
3
+ "version": "0.2.8",
4
4
  "type": "module",
5
5
  "bin": {
6
6
  "bon": "./dist/bin/bon.mjs"
@@ -9,7 +9,7 @@
9
9
  "dist"
10
10
  ],
11
11
  "scripts": {
12
- "build": "tsdown src/bin/bon.ts --format esm --out-dir dist/bin && cp -r src/templates dist/ && mkdir -p dist/docs/topics dist/docs/schemas && cp ../content/index.md dist/docs/_index.md && cp ../content/overview.md ../content/getting-started.md dist/docs/topics/ && cp ../content/modeling/*.md dist/docs/topics/",
12
+ "build": "tsdown src/bin/bon.ts --format esm --out-dir dist/bin && cp -r src/templates dist/ && mkdir -p dist/docs/topics dist/docs/schemas && cp ../content/index.md dist/docs/_index.md && cp ../content/overview.md ../content/getting-started.md dist/docs/topics/ && cp ../content/modeling/*.md dist/docs/topics/ && cp ../content/dashboards/*.md dist/docs/topics/",
13
13
  "dev": "tsdown src/bin/bon.ts --format esm --out-dir dist/bin --watch",
14
14
  "test": "vitest run"
15
15
  },
@@ -27,6 +27,11 @@
27
27
  "tsdown": "^0.20.1",
28
28
  "vitest": "^2.0.0"
29
29
  },
30
+ "repository": {
31
+ "type": "git",
32
+ "url": "https://github.com/meal-inc/bonnard-cli.git"
33
+ },
34
+ "license": "MIT",
30
35
  "engines": {
31
36
  "node": ">=20.0.0"
32
37
  }