@bigbinary/neeto-icons-rn 1.20.57 → 1.20.58
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/misc/Daily.js +15 -17
- package/dist/misc/Discover.js +2228 -25
- package/dist/misc/Edge.js +5 -5
- package/dist/misc/FacebookPixel.js +5 -33
- package/dist/misc/Firefox.js +18 -18
- package/dist/misc/Gmail.js +21 -23
- package/dist/misc/Google.js +219 -20
- package/dist/misc/GoogleAnalytics.js +15 -28
- package/dist/misc/GoogleMeet.js +34 -18
- package/dist/misc/GoogleSheets.js +28 -26
- package/dist/misc/Instagram.js +37 -17
- package/dist/misc/Jcb.js +103 -26
- package/dist/misc/Jitsi.js +202 -215
- package/dist/misc/Linear.js +10 -18
- package/dist/misc/Mastercard.js +2 -2
- package/dist/misc/Microsoft.js +11 -20
- package/dist/misc/Outlook.js +225 -20
- package/dist/misc/Safari.js +94 -94
- package/dist/misc/Shopify.js +2 -2
- package/dist/misc/Slack.js +17 -20
- package/dist/misc/Teams.js +76 -20
- package/dist/misc/Telnyx.js +21 -38
- package/dist/misc/Trello.js +23 -17
- package/dist/misc/Twilio.js +5 -20
- package/dist/misc/UnionPay.js +33 -29
- package/dist/misc/Upi.js +29 -29
- package/dist/misc/Visa.js +40 -23
- package/dist/misc/Whatsapp.js +43 -25
- package/dist/misc/Wordpress.js +1 -1
- package/dist/misc/Zoom.js +16 -18
- package/package.json +1 -1
package/dist/misc/Instagram.js
CHANGED
|
@@ -1,32 +1,52 @@
|
|
|
1
1
|
import * as React from "react";
|
|
2
|
-
import Svg, {
|
|
2
|
+
import Svg, { Path, Defs, RadialGradient, Stop } from "react-native-svg";
|
|
3
3
|
const SvgInstagram = (props) => (
|
|
4
4
|
<Svg
|
|
5
5
|
fill="none"
|
|
6
6
|
xmlns="http://www.w3.org/2000/svg"
|
|
7
|
-
xmlnsXlink="http://www.w3.org/1999/xlink"
|
|
8
7
|
viewBox="0 0 100 100"
|
|
9
8
|
width={props.size}
|
|
10
9
|
height={props.size}
|
|
11
10
|
{...props}
|
|
12
11
|
>
|
|
13
|
-
<
|
|
12
|
+
<Path
|
|
13
|
+
d="M50.7546 4C31.2414 4 25.5345 4.02013 24.4252 4.11215C20.4207 4.44502 17.9289 5.07552 15.2142 6.42712C13.1221 7.46597 11.4722 8.67018 9.8438 10.3582C6.87821 13.4367 5.08087 17.224 4.43024 21.726C4.11391 23.9115 4.02189 24.3573 4.0032 35.5209C3.99601 39.2421 4.0032 44.1394 4.0032 50.7083C4.0032 70.2058 4.02476 75.9069 4.11822 77.014C4.44174 80.9107 5.05284 83.3622 6.34691 86.0438C8.82004 91.177 13.5434 95.0305 19.108 96.4684C21.0347 96.9644 23.1627 97.2376 25.8947 97.367C27.0522 97.4173 38.8498 97.4533 50.6547 97.4533C62.4596 97.4533 74.2644 97.4389 75.3932 97.3814C78.5565 97.2326 80.3933 96.986 82.4243 96.4612C85.1834 95.7536 87.7549 94.4523 89.959 92.648C92.1631 90.8437 93.9467 88.5801 95.1854 86.0151C96.4543 83.3982 97.0977 80.8531 97.3889 77.16C97.4522 76.3548 97.4788 63.5168 97.4788 50.6961C97.4788 37.8732 97.45 25.059 97.3867 24.2538C97.092 20.5009 96.4485 17.9775 95.1386 15.3102C94.0638 13.1268 92.8704 11.4963 91.1378 9.8291C88.0464 6.87573 84.2648 5.0784 79.7578 4.42848C77.5744 4.11287 77.1395 4.01941 65.9672 4H50.7546Z"
|
|
14
|
+
fill="url(#paint0_radial_790_6048)"
|
|
15
|
+
/>
|
|
16
|
+
<Path
|
|
17
|
+
d="M50.7546 4C31.2414 4 25.5345 4.02013 24.4252 4.11215C20.4207 4.44502 17.9289 5.07552 15.2142 6.42712C13.1221 7.46597 11.4722 8.67018 9.8438 10.3582C6.87821 13.4367 5.08087 17.224 4.43024 21.726C4.11391 23.9115 4.02189 24.3573 4.0032 35.5209C3.99601 39.2421 4.0032 44.1394 4.0032 50.7083C4.0032 70.2058 4.02476 75.9069 4.11822 77.014C4.44174 80.9107 5.05284 83.3622 6.34691 86.0438C8.82004 91.177 13.5434 95.0305 19.108 96.4684C21.0347 96.9644 23.1627 97.2376 25.8947 97.367C27.0522 97.4173 38.8498 97.4533 50.6547 97.4533C62.4596 97.4533 74.2644 97.4389 75.3932 97.3814C78.5565 97.2326 80.3933 96.986 82.4243 96.4612C85.1834 95.7536 87.7549 94.4523 89.959 92.648C92.1631 90.8437 93.9467 88.5801 95.1854 86.0151C96.4543 83.3982 97.0977 80.8531 97.3889 77.16C97.4522 76.3548 97.4788 63.5168 97.4788 50.6961C97.4788 37.8732 97.45 25.059 97.3867 24.2538C97.092 20.5009 96.4485 17.9775 95.1386 15.3102C94.0638 13.1268 92.8704 11.4963 91.1378 9.8291C88.0464 6.87573 84.2648 5.0784 79.7578 4.42848C77.5744 4.11287 77.1395 4.01941 65.9672 4H50.7546Z"
|
|
18
|
+
fill="url(#paint1_radial_790_6048)"
|
|
19
|
+
/>
|
|
20
|
+
<Path
|
|
21
|
+
d="M50.5109 16C41.1389 16 39.9627 16.041 36.2818 16.2085C32.6081 16.3767 30.1004 16.9583 27.9062 17.8117C25.6366 18.6931 23.7113 19.8722 21.7932 21.791C19.8736 23.7091 18.6946 25.6344 17.8103 27.9034C16.9547 30.0983 16.3724 32.6066 16.2071 36.2789C16.0431 39.9599 16 41.1367 16 50.5087C16 59.8807 16.0417 61.0533 16.2085 64.7343C16.3774 68.408 16.9591 70.9156 17.8117 73.1098C18.6938 75.3795 19.8729 77.3048 21.7917 79.2229C23.7091 81.1424 25.6344 82.3244 27.9026 83.2058C30.0983 84.0592 32.6066 84.6408 36.2796 84.809C39.9606 84.9765 41.136 85.0175 50.5073 85.0175C59.88 85.0175 61.0526 84.9765 64.7335 84.809C68.4073 84.6408 70.9178 84.0592 73.1134 83.2058C75.3824 82.3244 77.3048 81.1424 79.2222 79.2229C81.1417 77.3048 82.3208 75.3795 83.2051 73.1105C84.0534 70.9156 84.6357 68.4073 84.8083 64.735C84.9736 61.054 85.0168 59.8807 85.0168 50.5087C85.0168 41.1367 84.9736 39.9606 84.8083 36.2796C84.6357 32.6059 84.0534 30.0983 83.2051 27.9041C82.3208 25.6344 81.1417 23.7091 79.2222 21.791C77.3026 19.8715 75.3831 18.6924 73.1113 17.8117C70.9113 16.9583 68.4023 16.3767 64.7285 16.2085C61.0476 16.041 59.8757 16 50.5008 16H50.5109ZM47.4152 22.2188C48.334 22.2173 49.3592 22.2188 50.5109 22.2188C59.7247 22.2188 60.8168 22.2518 64.4553 22.4172C67.8199 22.571 69.646 23.1332 70.8624 23.6056C72.4728 24.2311 73.621 24.9787 74.8281 26.1866C76.0359 27.3944 76.7836 28.5446 77.4105 30.1551C77.8828 31.3701 78.4457 33.1961 78.5989 36.5607C78.7642 40.1985 78.8002 41.2913 78.8002 50.5008C78.8002 59.7104 78.7642 60.8031 78.5989 64.4409C78.445 67.8055 77.8828 69.6316 77.4105 70.8466C76.785 72.457 76.0359 73.6037 74.8281 74.8108C73.6203 76.0186 72.4736 76.7663 70.8624 77.3918C69.6474 77.8663 67.8199 78.427 64.4553 78.5809C60.8175 78.7462 59.7247 78.7822 50.5109 78.7822C41.2963 78.7822 40.2043 78.7462 36.5665 78.5809C33.2019 78.4256 31.3758 77.8634 30.1587 77.3911C28.5482 76.7656 27.398 76.0179 26.1901 74.8101C24.9823 73.6023 24.2347 72.4549 23.6077 70.8437C23.1354 69.6287 22.5725 67.8027 22.4193 64.4381C22.254 60.8003 22.2209 59.7075 22.2209 50.4922C22.2209 41.2769 22.254 40.1899 22.4193 36.5521C22.5732 33.1875 23.1354 31.3614 23.6077 30.145C24.2332 28.5346 24.9823 27.3843 26.1901 26.1765C27.398 24.9687 28.5482 24.221 30.1587 23.5941C31.3751 23.1196 33.2019 22.5588 36.5665 22.4042C39.7499 22.2605 40.9836 22.2173 47.4152 22.2101V22.2188ZM68.9314 27.9487C68.1123 27.9487 67.3116 28.1916 66.6306 28.6466C65.9496 29.1017 65.4188 29.7486 65.1054 30.5053C64.792 31.2621 64.7101 32.0948 64.87 32.8981C65.0299 33.7014 65.4245 34.4393 66.0037 35.0184C66.583 35.5975 67.321 35.9917 68.1244 36.1514C68.9278 36.311 69.7604 36.2288 70.5171 35.9151C71.2738 35.6015 71.9204 35.0705 72.3752 34.3893C72.8301 33.7081 73.0727 32.9073 73.0724 32.0883C73.0724 29.8021 71.2176 27.9472 68.9314 27.9472V27.9487ZM50.5109 32.7871C40.7241 32.7871 32.7892 40.7219 32.7892 50.5087C32.7892 60.2956 40.7241 68.2268 50.5109 68.2268C60.2977 68.2268 68.2304 60.2956 68.2304 50.5087C68.2304 40.7219 60.2977 32.7871 50.5109 32.7871ZM50.5109 39.0058C56.8634 39.0058 62.0138 44.1555 62.0138 50.5087C62.0138 56.8612 56.8634 62.0117 50.5109 62.0117C44.1577 62.0117 39.008 56.8612 39.008 50.5087C39.008 44.1555 44.1577 39.0058 50.5109 39.0058Z"
|
|
22
|
+
fill="white"
|
|
23
|
+
/>
|
|
14
24
|
<Defs>
|
|
15
|
-
<
|
|
16
|
-
id="
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
25
|
+
<RadialGradient
|
|
26
|
+
id="paint0_radial_790_6048"
|
|
27
|
+
cx={0}
|
|
28
|
+
cy={0}
|
|
29
|
+
r={1}
|
|
30
|
+
gradientUnits="userSpaceOnUse"
|
|
31
|
+
gradientTransform="translate(28.8304 104.651) rotate(-90) scale(92.6191 86.1665)"
|
|
20
32
|
>
|
|
21
|
-
<
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
xlinkHref=""
|
|
29
|
-
|
|
33
|
+
<Stop stopColor="#FFDD55" />
|
|
34
|
+
<Stop offset={0.1} stopColor="#FFDD55" />
|
|
35
|
+
<Stop offset={0.5} stopColor="#FF543E" />
|
|
36
|
+
<Stop offset={1} stopColor="#C837AB" />
|
|
37
|
+
</RadialGradient>
|
|
38
|
+
<RadialGradient
|
|
39
|
+
id="paint1_radial_790_6048"
|
|
40
|
+
cx={0}
|
|
41
|
+
cy={0}
|
|
42
|
+
r={1}
|
|
43
|
+
gradientTransform="matrix(8.12832 40.5958 -167.38 33.5142 -11.6582 10.7322)"
|
|
44
|
+
gradientUnits="userSpaceOnUse"
|
|
45
|
+
>
|
|
46
|
+
<Stop stopColor="#3771C8" />
|
|
47
|
+
<Stop offset={0.128} stopColor="#3771C8" />
|
|
48
|
+
<Stop offset={1} stopColor="#6600FF" stopOpacity={0} />
|
|
49
|
+
</RadialGradient>
|
|
30
50
|
</Defs>
|
|
31
51
|
</Svg>
|
|
32
52
|
);
|
package/dist/misc/Jcb.js
CHANGED
|
@@ -1,41 +1,118 @@
|
|
|
1
1
|
import * as React from "react";
|
|
2
|
-
import Svg, {
|
|
2
|
+
import Svg, {
|
|
3
|
+
G,
|
|
4
|
+
Path,
|
|
5
|
+
Defs,
|
|
6
|
+
LinearGradient,
|
|
7
|
+
Stop,
|
|
8
|
+
ClipPath,
|
|
9
|
+
Rect,
|
|
10
|
+
} from "react-native-svg";
|
|
3
11
|
const SvgJcb = (props) => (
|
|
4
12
|
<Svg
|
|
5
13
|
fill="none"
|
|
6
14
|
xmlns="http://www.w3.org/2000/svg"
|
|
7
|
-
xmlnsXlink="http://www.w3.org/1999/xlink"
|
|
8
15
|
viewBox="0 0 100 100"
|
|
9
16
|
width={props.size}
|
|
10
17
|
height={props.size}
|
|
11
18
|
{...props}
|
|
12
19
|
>
|
|
13
|
-
<
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
+
<G clipPath="url(#clip0_790_6061)">
|
|
21
|
+
<Path
|
|
22
|
+
d="M98 72.0668C98 80.2737 91.3194 86.9805 83.0863 86.9805H2V27.933C2 19.7262 8.68062 13.0193 16.9137 13.0193H98V72.0668Z"
|
|
23
|
+
fill="white"
|
|
24
|
+
/>
|
|
25
|
+
<Path
|
|
26
|
+
d="M71.5925 56.9168H77.7463C77.93 56.9168 78.3257 56.8643 78.5094 56.8643C79.6925 56.6281 80.6919 55.5762 80.6919 54.1025C80.6919 52.6831 79.6925 51.6293 78.5094 51.3406C78.3257 51.2881 77.9825 51.2881 77.7463 51.2881H71.5925V56.9168Z"
|
|
27
|
+
fill="url(#paint0_linear_790_6061)"
|
|
28
|
+
/>
|
|
29
|
+
<Path
|
|
30
|
+
d="M77.0638 18.0183C71.1988 18.0183 66.3856 22.7789 66.3856 28.6964V39.7964H81.4569C81.7981 39.7964 82.22 39.7964 82.5088 39.8489C85.9025 40.0327 88.4263 41.7952 88.4263 44.8458C88.4263 47.2383 86.7163 49.3177 83.5606 49.7114V49.8164C87.0331 50.0527 89.6619 51.9989 89.6619 54.9708C89.6619 58.2052 86.7163 60.3108 82.85 60.3108H66.3069V82.0102H81.9819C87.8469 82.0102 92.66 77.2496 92.66 71.3321V18.0183H77.0638Z"
|
|
31
|
+
fill="url(#paint1_linear_790_6061)"
|
|
32
|
+
/>
|
|
33
|
+
<Path
|
|
34
|
+
d="M79.9307 45.5281C79.9307 44.1087 78.9313 43.1881 77.7482 43.0025C77.6432 43.0025 77.3282 42.95 77.1688 42.95H71.5925V48.1043H77.1688C77.3525 48.1043 77.6957 48.1043 77.7482 48.0518C78.9313 47.8962 79.9307 46.9493 79.9307 45.5281Z"
|
|
35
|
+
fill="url(#paint2_linear_790_6061)"
|
|
36
|
+
/>
|
|
37
|
+
<Path
|
|
38
|
+
d="M18.0181 18.0183C12.1531 18.0183 7.34 22.7789 7.34 28.6964V55.0496C10.3381 56.5233 13.4412 57.4421 16.5462 57.4421C20.255 57.4421 22.2275 55.2071 22.2275 52.1546V39.7402H31.3812V52.1021C31.3812 56.9152 28.3831 60.8339 18.23 60.8339C12.0762 60.8339 7.26312 59.4933 7.26312 59.4933V81.9539H22.9381C28.8031 81.9539 33.6162 77.1933 33.6162 71.2758V18.0183H18.0181Z"
|
|
39
|
+
fill="url(#paint3_linear_790_6061)"
|
|
40
|
+
/>
|
|
41
|
+
<Path
|
|
42
|
+
d="M47.5269 18.0183C41.6619 18.0183 36.8488 22.7789 36.8488 28.6964V42.6633C39.5581 40.3758 44.24 38.9021 51.815 39.2696C55.865 39.4533 60.2056 40.5577 60.2056 40.5577V45.0821C58.0231 43.9777 55.445 42.9783 52.1056 42.7421C46.3456 42.3221 42.8994 45.1346 42.8994 50.0808C42.8994 55.0777 46.3719 57.8921 52.1056 57.4196C55.445 57.1833 58.0231 56.1314 60.2056 55.0796V59.6039C60.2056 59.6039 55.9194 60.7083 51.815 60.8921C44.24 61.2333 39.5581 59.7877 36.8488 57.4983V82.0908H52.5238C58.3888 82.0908 63.2019 77.3302 63.2019 71.4127V18.0183H47.5269Z"
|
|
43
|
+
fill="url(#paint4_linear_790_6061)"
|
|
44
|
+
/>
|
|
45
|
+
</G>
|
|
20
46
|
<Defs>
|
|
21
|
-
<
|
|
22
|
-
id="
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
47
|
+
<LinearGradient
|
|
48
|
+
id="paint0_linear_790_6061"
|
|
49
|
+
x1={66.3616}
|
|
50
|
+
y1={54.1024}
|
|
51
|
+
x2={92.7307}
|
|
52
|
+
y2={54.1024}
|
|
53
|
+
gradientUnits="userSpaceOnUse"
|
|
26
54
|
>
|
|
27
|
-
<
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
/>
|
|
31
|
-
</
|
|
32
|
-
<
|
|
33
|
-
id="
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
xlinkHref=""
|
|
38
|
-
|
|
55
|
+
<Stop stopColor="#007940" />
|
|
56
|
+
<Stop offset={0.2285} stopColor="#00873F" />
|
|
57
|
+
<Stop offset={0.7433} stopColor="#40A737" />
|
|
58
|
+
<Stop offset={1} stopColor="#5CB531" />
|
|
59
|
+
</LinearGradient>
|
|
60
|
+
<LinearGradient
|
|
61
|
+
id="paint1_linear_790_6061"
|
|
62
|
+
x1={66.3615}
|
|
63
|
+
y1={50.0129}
|
|
64
|
+
x2={92.7153}
|
|
65
|
+
y2={50.0129}
|
|
66
|
+
gradientUnits="userSpaceOnUse"
|
|
67
|
+
>
|
|
68
|
+
<Stop stopColor="#007940" />
|
|
69
|
+
<Stop offset={0.2285} stopColor="#00873F" />
|
|
70
|
+
<Stop offset={0.7433} stopColor="#40A737" />
|
|
71
|
+
<Stop offset={1} stopColor="#5CB531" />
|
|
72
|
+
</LinearGradient>
|
|
73
|
+
<LinearGradient
|
|
74
|
+
id="paint2_linear_790_6061"
|
|
75
|
+
x1={66.3621}
|
|
76
|
+
y1={45.5288}
|
|
77
|
+
x2={92.7309}
|
|
78
|
+
y2={45.5288}
|
|
79
|
+
gradientUnits="userSpaceOnUse"
|
|
80
|
+
>
|
|
81
|
+
<Stop stopColor="#007940" />
|
|
82
|
+
<Stop offset={0.2285} stopColor="#00873F" />
|
|
83
|
+
<Stop offset={0.7433} stopColor="#40A737" />
|
|
84
|
+
<Stop offset={1} stopColor="#5CB531" />
|
|
85
|
+
</LinearGradient>
|
|
86
|
+
<LinearGradient
|
|
87
|
+
id="paint3_linear_790_6061"
|
|
88
|
+
x1={7.32732}
|
|
89
|
+
y1={49.9857}
|
|
90
|
+
x2={34.1046}
|
|
91
|
+
y2={49.9857}
|
|
92
|
+
gradientUnits="userSpaceOnUse"
|
|
93
|
+
>
|
|
94
|
+
<Stop stopColor="#1F286F" />
|
|
95
|
+
<Stop offset={0.4751} stopColor="#004E94" />
|
|
96
|
+
<Stop offset={0.8261} stopColor="#0066B1" />
|
|
97
|
+
<Stop offset={1} stopColor="#006FBC" />
|
|
98
|
+
</LinearGradient>
|
|
99
|
+
<LinearGradient
|
|
100
|
+
id="paint4_linear_790_6061"
|
|
101
|
+
x1={36.7053}
|
|
102
|
+
y1={50.0537}
|
|
103
|
+
x2={62.7123}
|
|
104
|
+
y2={50.0537}
|
|
105
|
+
gradientUnits="userSpaceOnUse"
|
|
106
|
+
>
|
|
107
|
+
<Stop stopColor="#6C2C2F" />
|
|
108
|
+
<Stop offset={0.1735} stopColor="#882730" />
|
|
109
|
+
<Stop offset={0.5731} stopColor="#BE1833" />
|
|
110
|
+
<Stop offset={0.8585} stopColor="#DC0436" />
|
|
111
|
+
<Stop offset={1} stopColor="#E60039" />
|
|
112
|
+
</LinearGradient>
|
|
113
|
+
<ClipPath id="clip0_790_6061">
|
|
114
|
+
<Rect width={96} height={96} fill="white" transform="translate(2 2)" />
|
|
115
|
+
</ClipPath>
|
|
39
116
|
</Defs>
|
|
40
117
|
</Svg>
|
|
41
118
|
);
|