@bcts/shamir 1.0.0-alpha.10

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/src/hazmat.ts ADDED
@@ -0,0 +1,287 @@
1
+ // Ported from bc-shamir-rust/src/hazmat.rs
2
+ // GF(2^8) bitsliced polynomial operations for Shamir secret sharing
3
+
4
+ import { memzero } from "@bcts/crypto";
5
+
6
+ /**
7
+ * Convert an array of bytes into a bitsliced representation.
8
+ * Takes the first 32 bytes from x and produces 8 u32 values.
9
+ *
10
+ * @param r - Output array of 8 u32 values (bitsliced representation)
11
+ * @param x - Input array of at least 32 bytes
12
+ */
13
+ export function bitslice(r: Uint32Array, x: Uint8Array): void {
14
+ if (x.length < 32) {
15
+ throw new Error("bitslice: input must be at least 32 bytes");
16
+ }
17
+ if (r.length !== 8) {
18
+ throw new Error("bitslice: output must have 8 elements");
19
+ }
20
+
21
+ memzero(r);
22
+
23
+ for (let arrIdx = 0; arrIdx < 32; arrIdx++) {
24
+ const cur = x[arrIdx];
25
+ for (let bitIdx = 0; bitIdx < 8; bitIdx++) {
26
+ // r[bitIdx] |= ((cur & (1 << bitIdx)) >> bitIdx) << arrIdx
27
+ r[bitIdx] |= ((cur & (1 << bitIdx)) >>> bitIdx) << arrIdx;
28
+ }
29
+ }
30
+ }
31
+
32
+ /**
33
+ * Convert a bitsliced representation back to bytes.
34
+ *
35
+ * @param r - Output array of at least 32 bytes
36
+ * @param x - Input array of 8 u32 values (bitsliced representation)
37
+ */
38
+ export function unbitslice(r: Uint8Array, x: Uint32Array): void {
39
+ if (r.length < 32) {
40
+ throw new Error("unbitslice: output must be at least 32 bytes");
41
+ }
42
+ if (x.length !== 8) {
43
+ throw new Error("unbitslice: input must have 8 elements");
44
+ }
45
+
46
+ memzero(r.subarray(0, 32));
47
+
48
+ for (let bitIdx = 0; bitIdx < 8; bitIdx++) {
49
+ const cur = x[bitIdx];
50
+ for (let arrIdx = 0; arrIdx < 32; arrIdx++) {
51
+ // r[arrIdx] |= ((cur & (1 << arrIdx)) >> arrIdx) << bitIdx
52
+ r[arrIdx] |= ((cur & (1 << arrIdx)) >>> arrIdx) << bitIdx;
53
+ }
54
+ }
55
+ }
56
+
57
+ /**
58
+ * Set all 32 positions in a bitsliced array to the same byte value.
59
+ *
60
+ * @param r - Output array of 8 u32 values
61
+ * @param x - Byte value to set in all positions
62
+ */
63
+ export function bitsliceSetall(r: Uint32Array, x: number): void {
64
+ if (r.length !== 8) {
65
+ throw new Error("bitsliceSetall: output must have 8 elements");
66
+ }
67
+
68
+ for (let idx = 0; idx < 8; idx++) {
69
+ // JavaScript needs special handling for the arithmetic right shift
70
+ // This mirrors: *r = (((((x as u32) & (1u32.wrapping_shl(idx as u32)))
71
+ // .wrapping_shl(31 - idx as u32)) as i32)
72
+ // .wrapping_shr(31)) as u32;
73
+ const bit = (x >>> idx) & 1;
74
+ r[idx] = bit === 1 ? 0xffffffff : 0;
75
+ }
76
+ }
77
+
78
+ /**
79
+ * Add (XOR) r with x and store the result in r.
80
+ * In GF(2^8), addition is XOR.
81
+ *
82
+ * @param r - First operand and result
83
+ * @param x - Second operand
84
+ */
85
+ export function gf256Add(r: Uint32Array, x: Uint32Array): void {
86
+ if (r.length !== 8 || x.length !== 8) {
87
+ throw new Error("gf256Add: arrays must have 8 elements");
88
+ }
89
+
90
+ for (let i = 0; i < 8; i++) {
91
+ r[i] ^= x[i];
92
+ }
93
+ }
94
+
95
+ /**
96
+ * Safely multiply two bitsliced polynomials in GF(2^8) reduced by
97
+ * x^8 + x^4 + x^3 + x + 1. r and a may overlap, but overlapping of r
98
+ * and b will produce an incorrect result! If you need to square a polynomial
99
+ * use gf256Square instead.
100
+ *
101
+ * @param r - Result array (8 u32 values)
102
+ * @param a - First operand (may overlap with r)
103
+ * @param b - Second operand (must NOT overlap with r)
104
+ */
105
+ export function gf256Mul(r: Uint32Array, a: Uint32Array, b: Uint32Array): void {
106
+ if (r.length !== 8 || a.length !== 8 || b.length !== 8) {
107
+ throw new Error("gf256Mul: arrays must have 8 elements");
108
+ }
109
+
110
+ // Russian Peasant multiplication on two bitsliced polynomials
111
+ const a2 = new Uint32Array(a);
112
+
113
+ r[0] = a2[0] & b[0];
114
+ r[1] = a2[1] & b[0];
115
+ r[2] = a2[2] & b[0];
116
+ r[3] = a2[3] & b[0];
117
+ r[4] = a2[4] & b[0];
118
+ r[5] = a2[5] & b[0];
119
+ r[6] = a2[6] & b[0];
120
+ r[7] = a2[7] & b[0];
121
+ a2[0] ^= a2[7]; // reduce
122
+ a2[2] ^= a2[7];
123
+ a2[3] ^= a2[7];
124
+
125
+ r[0] ^= a2[7] & b[1]; // add
126
+ r[1] ^= a2[0] & b[1];
127
+ r[2] ^= a2[1] & b[1];
128
+ r[3] ^= a2[2] & b[1];
129
+ r[4] ^= a2[3] & b[1];
130
+ r[5] ^= a2[4] & b[1];
131
+ r[6] ^= a2[5] & b[1];
132
+ r[7] ^= a2[6] & b[1];
133
+ a2[7] ^= a2[6]; // reduce
134
+ a2[1] ^= a2[6];
135
+ a2[2] ^= a2[6];
136
+
137
+ r[0] ^= a2[6] & b[2]; // add
138
+ r[1] ^= a2[7] & b[2];
139
+ r[2] ^= a2[0] & b[2];
140
+ r[3] ^= a2[1] & b[2];
141
+ r[4] ^= a2[2] & b[2];
142
+ r[5] ^= a2[3] & b[2];
143
+ r[6] ^= a2[4] & b[2];
144
+ r[7] ^= a2[5] & b[2];
145
+ a2[6] ^= a2[5]; // reduce
146
+ a2[0] ^= a2[5];
147
+ a2[1] ^= a2[5];
148
+
149
+ r[0] ^= a2[5] & b[3]; // add
150
+ r[1] ^= a2[6] & b[3];
151
+ r[2] ^= a2[7] & b[3];
152
+ r[3] ^= a2[0] & b[3];
153
+ r[4] ^= a2[1] & b[3];
154
+ r[5] ^= a2[2] & b[3];
155
+ r[6] ^= a2[3] & b[3];
156
+ r[7] ^= a2[4] & b[3];
157
+ a2[5] ^= a2[4]; // reduce
158
+ a2[7] ^= a2[4];
159
+ a2[0] ^= a2[4];
160
+
161
+ r[0] ^= a2[4] & b[4]; // add
162
+ r[1] ^= a2[5] & b[4];
163
+ r[2] ^= a2[6] & b[4];
164
+ r[3] ^= a2[7] & b[4];
165
+ r[4] ^= a2[0] & b[4];
166
+ r[5] ^= a2[1] & b[4];
167
+ r[6] ^= a2[2] & b[4];
168
+ r[7] ^= a2[3] & b[4];
169
+ a2[4] ^= a2[3]; // reduce
170
+ a2[6] ^= a2[3];
171
+ a2[7] ^= a2[3];
172
+
173
+ r[0] ^= a2[3] & b[5]; // add
174
+ r[1] ^= a2[4] & b[5];
175
+ r[2] ^= a2[5] & b[5];
176
+ r[3] ^= a2[6] & b[5];
177
+ r[4] ^= a2[7] & b[5];
178
+ r[5] ^= a2[0] & b[5];
179
+ r[6] ^= a2[1] & b[5];
180
+ r[7] ^= a2[2] & b[5];
181
+ a2[3] ^= a2[2]; // reduce
182
+ a2[5] ^= a2[2];
183
+ a2[6] ^= a2[2];
184
+
185
+ r[0] ^= a2[2] & b[6]; // add
186
+ r[1] ^= a2[3] & b[6];
187
+ r[2] ^= a2[4] & b[6];
188
+ r[3] ^= a2[5] & b[6];
189
+ r[4] ^= a2[6] & b[6];
190
+ r[5] ^= a2[7] & b[6];
191
+ r[6] ^= a2[0] & b[6];
192
+ r[7] ^= a2[1] & b[6];
193
+ a2[2] ^= a2[1]; // reduce
194
+ a2[4] ^= a2[1];
195
+ a2[5] ^= a2[1];
196
+
197
+ r[0] ^= a2[1] & b[7]; // add
198
+ r[1] ^= a2[2] & b[7];
199
+ r[2] ^= a2[3] & b[7];
200
+ r[3] ^= a2[4] & b[7];
201
+ r[4] ^= a2[5] & b[7];
202
+ r[5] ^= a2[6] & b[7];
203
+ r[6] ^= a2[7] & b[7];
204
+ r[7] ^= a2[0] & b[7];
205
+ }
206
+
207
+ /**
208
+ * Square x in GF(2^8) and write the result to r.
209
+ * r and x may overlap.
210
+ *
211
+ * @param r - Result array (8 u32 values)
212
+ * @param x - Value to square
213
+ */
214
+ export function gf256Square(r: Uint32Array, x: Uint32Array): void {
215
+ if (r.length !== 8 || x.length !== 8) {
216
+ throw new Error("gf256Square: arrays must have 8 elements");
217
+ }
218
+
219
+ // Use the Freshman's Dream rule to square the polynomial
220
+ // Assignments are done from 7 downto 0, because this allows
221
+ // in-place operation (e.g. gf256Square(r, r))
222
+ const r14 = x[7];
223
+ const r12 = x[6];
224
+ let r10 = x[5];
225
+ let r8 = x[4];
226
+ r[6] = x[3];
227
+ r[4] = x[2];
228
+ r[2] = x[1];
229
+ r[0] = x[0];
230
+
231
+ // Reduce with x^8 + x^4 + x^3 + x + 1 until order is less than 8
232
+ r[7] = r14; // r[7] was 0
233
+ r[6] ^= r14;
234
+ r10 ^= r14;
235
+ // Skip, because r13 is always 0
236
+ r[4] ^= r12;
237
+ r[5] = r12; // r[5] was 0
238
+ r[7] ^= r12;
239
+ r8 ^= r12;
240
+ // Skip, because r11 is always 0
241
+ r[2] ^= r10;
242
+ r[3] = r10; // r[3] was 0
243
+ r[5] ^= r10;
244
+ r[6] ^= r10;
245
+ r[1] = r14; // r[1] was 0
246
+ r[2] ^= r14; // Substitute r9 by r14 because they will always be equal
247
+ r[4] ^= r14;
248
+ r[5] ^= r14;
249
+ r[0] ^= r8;
250
+ r[1] ^= r8;
251
+ r[3] ^= r8;
252
+ r[4] ^= r8;
253
+ }
254
+
255
+ /**
256
+ * Invert x in GF(2^8) and write the result to r.
257
+ *
258
+ * @param r - Result array (8 u32 values)
259
+ * @param x - Value to invert (will be modified)
260
+ */
261
+ export function gf256Inv(r: Uint32Array, x: Uint32Array): void {
262
+ if (r.length !== 8 || x.length !== 8) {
263
+ throw new Error("gf256Inv: arrays must have 8 elements");
264
+ }
265
+
266
+ const y = new Uint32Array(8);
267
+ const z = new Uint32Array(8);
268
+
269
+ gf256Square(y, x); // y = x^2
270
+ const y2 = new Uint32Array(y);
271
+ gf256Square(y, y2); // y = x^4
272
+ gf256Square(r, y); // r = x^8
273
+ gf256Mul(z, r, x); // z = x^9
274
+ const r2a = new Uint32Array(r);
275
+ gf256Square(r, r2a); // r = x^16
276
+ const r2b = new Uint32Array(r);
277
+ gf256Mul(r, r2b, z); // r = x^25
278
+ const r2c = new Uint32Array(r);
279
+ gf256Square(r, r2c); // r = x^50
280
+ gf256Square(z, r); // z = x^100
281
+ const z2 = new Uint32Array(z);
282
+ gf256Square(z, z2); // z = x^200
283
+ const r2d = new Uint32Array(r);
284
+ gf256Mul(r, r2d, z); // r = x^250
285
+ const r2e = new Uint32Array(r);
286
+ gf256Mul(r, r2e, y); // r = x^254
287
+ }
package/src/index.ts ADDED
@@ -0,0 +1,45 @@
1
+ // Blockchain Commons Shamir Secret Sharing
2
+ // Ported from bc-shamir-rust
3
+ //
4
+ // This is a pure TypeScript implementation of Shamir's Secret Sharing (SSS),
5
+ // a cryptographic technique in which a secret is divided into parts, called
6
+ // shares, in such a way that a threshold of several shares are needed to
7
+ // reconstruct the secret. The shares are distributed in a way that makes it
8
+ // impossible for an attacker to know anything about the secret without having
9
+ // a threshold of shares. If the number of shares is less than the threshold,
10
+ // then no information about the secret is revealed.
11
+
12
+ /**
13
+ * The minimum length of a secret.
14
+ */
15
+ export const MIN_SECRET_LEN = 16;
16
+
17
+ /**
18
+ * The maximum length of a secret.
19
+ */
20
+ export const MAX_SECRET_LEN = 32;
21
+
22
+ /**
23
+ * The maximum number of shares that can be generated from a secret.
24
+ */
25
+ export const MAX_SHARE_COUNT = 16;
26
+
27
+ // Error types
28
+ export { ShamirError, ShamirErrorType, type ShamirResult } from "./error.js";
29
+
30
+ // Main functions
31
+ export { splitSecret, recoverSecret } from "./shamir.js";
32
+
33
+ // Low-level operations (hazmat)
34
+ export {
35
+ bitslice,
36
+ unbitslice,
37
+ bitsliceSetall,
38
+ gf256Add,
39
+ gf256Mul,
40
+ gf256Square,
41
+ gf256Inv,
42
+ } from "./hazmat.js";
43
+
44
+ // Interpolation
45
+ export { interpolate } from "./interpolate.js";
@@ -0,0 +1,157 @@
1
+ // Ported from bc-shamir-rust/src/interpolate.rs
2
+
3
+ import { memzero, memzeroVecVecU8 } from "@bcts/crypto";
4
+ import { MAX_SECRET_LEN } from "./index.js";
5
+ import { bitslice, bitsliceSetall, gf256Add, gf256Inv, gf256Mul, unbitslice } from "./hazmat.js";
6
+
7
+ /**
8
+ * Calculate the lagrange basis coefficients for the lagrange polynomial
9
+ * defined by the x coordinates xc at the value x.
10
+ *
11
+ * After the function runs, the values array should hold data satisfying:
12
+ * --- (x-xc[j])
13
+ * values[i] = | | -------------
14
+ * j != i (xc[i]-xc[j])
15
+ *
16
+ * @param values - Output array for the lagrange basis values
17
+ * @param n - Number of points (length of the xc array, 0 < n <= 32)
18
+ * @param xc - Array of x components to use as interpolating points
19
+ * @param x - x coordinate to evaluate lagrange polynomials at
20
+ */
21
+ function hazmatLagrangeBasis(values: Uint8Array, n: number, xc: Uint8Array, x: number): void {
22
+ // call the contents of xc [ x0 x1 x2 ... xn-1 ]
23
+ const xx = new Uint8Array(32 + 16);
24
+ const xSlice = new Uint32Array(8);
25
+ const lxi: Uint32Array[] = [];
26
+ for (let i = 0; i < n; i++) {
27
+ lxi.push(new Uint32Array(8));
28
+ }
29
+ const numerator = new Uint32Array(8);
30
+ const denominator = new Uint32Array(8);
31
+ const temp = new Uint32Array(8);
32
+
33
+ xx.set(xc.subarray(0, n), 0);
34
+
35
+ // xx now contains bitsliced [ x0 x1 x2 ... xn-1 0 0 0 ... ]
36
+ for (let i = 0; i < n; i++) {
37
+ // lxi = bitsliced [ xi xi+1 xi+2 ... xi-1 0 0 0 ]
38
+ bitslice(lxi[i], xx.subarray(i));
39
+ xx[i + n] = xx[i];
40
+ }
41
+
42
+ bitsliceSetall(xSlice, x);
43
+ bitsliceSetall(numerator, 1);
44
+ bitsliceSetall(denominator, 1);
45
+
46
+ for (let i = 1; i < n; i++) {
47
+ temp.set(xSlice);
48
+ gf256Add(temp, lxi[i]);
49
+ // temp = [ x-xi+i x-xi+2 x-xi+3 ... x-xi x x x]
50
+ const numerator2 = new Uint32Array(numerator);
51
+ gf256Mul(numerator, numerator2, temp);
52
+
53
+ temp.set(lxi[0]);
54
+ gf256Add(temp, lxi[i]);
55
+ // temp = [x0-xi+1 x1-xi+1 x2-xi+2 ... xn-x0 0 0 0]
56
+ const denominator2 = new Uint32Array(denominator);
57
+ gf256Mul(denominator, denominator2, temp);
58
+ }
59
+
60
+ // At this stage the numerator contains
61
+ // [ num0 num1 num2 ... numn 0 0 0]
62
+ //
63
+ // where numi = prod(j, j!=i, x-xj )
64
+ //
65
+ // and the denominator contains
66
+ // [ d0 d1 d2 ... dn 0 0 0]
67
+ //
68
+ // where di = prod(j, j!=i, xi-xj)
69
+
70
+ gf256Inv(temp, denominator);
71
+
72
+ // gf256_inv uses exponentiation to calculate inverse, so the zeros end up
73
+ // remaining zeros.
74
+
75
+ // tmp = [ 1/d0 1/d1 1/d2 ... 1/dn 0 0 0]
76
+
77
+ const numerator2 = new Uint32Array(numerator);
78
+ gf256Mul(numerator, numerator2, temp);
79
+
80
+ // numerator now contains [ l_n_0(x) l_n_1(x) ... l_n_n-1(x) 0 0 0]
81
+ // use the xx array to unpack it
82
+
83
+ unbitslice(xx, numerator);
84
+
85
+ // copy results to output array
86
+ values.set(xx.subarray(0, n), 0);
87
+ }
88
+
89
+ /**
90
+ * Safely interpolate the polynomial going through
91
+ * the points (x0 [y0_0 y0_1 y0_2 ... y0_31]) , (x1 [y1_0 ...]), ...
92
+ *
93
+ * where
94
+ * xi points to [x0 x1 ... xn-1 ]
95
+ * y contains an array of pointers to 32-bit arrays of y values
96
+ * y contains [y0 y1 y2 ... yn-1]
97
+ * and each of the yi arrays contain [yi_0 yi_i ... yi_31].
98
+ *
99
+ * @param n - Number of points to interpolate
100
+ * @param xi - x coordinates for points (array of length n)
101
+ * @param yl - Length of y coordinate arrays
102
+ * @param yij - Array of n arrays of length yl
103
+ * @param x - Coordinate to interpolate at
104
+ * @returns The interpolated result of length yl
105
+ */
106
+ export function interpolate(
107
+ n: number,
108
+ xi: Uint8Array,
109
+ yl: number,
110
+ yij: Uint8Array[],
111
+ x: number,
112
+ ): Uint8Array {
113
+ // The hazmat gf256 implementation needs the y-coordinate data
114
+ // to be in 32-byte blocks
115
+ const y: Uint8Array[] = [];
116
+ for (let i = 0; i < n; i++) {
117
+ y.push(new Uint8Array(MAX_SECRET_LEN));
118
+ }
119
+ const values = new Uint8Array(MAX_SECRET_LEN);
120
+
121
+ for (let i = 0; i < n; i++) {
122
+ y[i].set(yij[i].subarray(0, yl), 0);
123
+ }
124
+
125
+ const lagrange = new Uint8Array(n);
126
+ const ySlice = new Uint32Array(8);
127
+ const resultSlice = new Uint32Array(8);
128
+ const temp = new Uint32Array(8);
129
+
130
+ hazmatLagrangeBasis(lagrange, n, xi, x);
131
+
132
+ bitsliceSetall(resultSlice, 0);
133
+
134
+ for (let i = 0; i < n; i++) {
135
+ bitslice(ySlice, y[i]);
136
+ bitsliceSetall(temp, lagrange[i]);
137
+ const temp2 = new Uint32Array(temp);
138
+ gf256Mul(temp, temp2, ySlice);
139
+ gf256Add(resultSlice, temp);
140
+ }
141
+
142
+ unbitslice(values, resultSlice);
143
+
144
+ // the calling code is only expecting yl bytes back
145
+ const result = new Uint8Array(yl);
146
+ result.set(values.subarray(0, yl), 0);
147
+
148
+ // clean up stack
149
+ memzero(lagrange);
150
+ memzero(ySlice);
151
+ memzero(resultSlice);
152
+ memzero(temp);
153
+ memzeroVecVecU8(y);
154
+ memzero(values);
155
+
156
+ return result;
157
+ }
package/src/shamir.ts ADDED
@@ -0,0 +1,185 @@
1
+ // Ported from bc-shamir-rust/src/shamir.rs
2
+
3
+ import { hmacSha256, memzero, memzeroVecVecU8 } from "@bcts/crypto";
4
+ import type { RandomNumberGenerator } from "@bcts/rand";
5
+
6
+ import { ShamirError, ShamirErrorType } from "./error.js";
7
+ import { MAX_SECRET_LEN, MAX_SHARE_COUNT, MIN_SECRET_LEN } from "./index.js";
8
+ import { interpolate } from "./interpolate.js";
9
+
10
+ const SECRET_INDEX = 255;
11
+ const DIGEST_INDEX = 254;
12
+
13
+ function createDigest(randomData: Uint8Array, sharedSecret: Uint8Array): Uint8Array {
14
+ return hmacSha256(randomData, sharedSecret);
15
+ }
16
+
17
+ function validateParameters(threshold: number, shareCount: number, secretLength: number): void {
18
+ if (shareCount > MAX_SHARE_COUNT) {
19
+ throw new ShamirError(ShamirErrorType.TooManyShares);
20
+ } else if (threshold < 1 || threshold > shareCount) {
21
+ throw new ShamirError(ShamirErrorType.InvalidThreshold);
22
+ } else if (secretLength > MAX_SECRET_LEN) {
23
+ throw new ShamirError(ShamirErrorType.SecretTooLong);
24
+ } else if (secretLength < MIN_SECRET_LEN) {
25
+ throw new ShamirError(ShamirErrorType.SecretTooShort);
26
+ } else if ((secretLength & 1) !== 0) {
27
+ throw new ShamirError(ShamirErrorType.SecretNotEvenLen);
28
+ }
29
+ }
30
+
31
+ /**
32
+ * Splits a secret into shares using the Shamir secret sharing algorithm.
33
+ *
34
+ * @param threshold - The minimum number of shares required to reconstruct the
35
+ * secret. Must be greater than or equal to 1 and less than or equal to
36
+ * shareCount.
37
+ * @param shareCount - The total number of shares to generate. Must be at least
38
+ * threshold and less than or equal to MAX_SHARE_COUNT.
39
+ * @param secret - A Uint8Array containing the secret to be split. Must be at
40
+ * least MIN_SECRET_LEN bytes long and at most MAX_SECRET_LEN bytes long.
41
+ * The length must be an even number.
42
+ * @param randomGenerator - An implementation of the RandomNumberGenerator
43
+ * interface, used to generate random data.
44
+ * @returns An array of Uint8Array representing the shares of the secret.
45
+ * @throws ShamirError if parameters are invalid
46
+ *
47
+ * @example
48
+ * ```typescript
49
+ * import { splitSecret } from "@bcts/shamir";
50
+ * import { SecureRandomNumberGenerator } from "@bcts/rand";
51
+ *
52
+ * const threshold = 2;
53
+ * const shareCount = 3;
54
+ * const secret = new TextEncoder().encode("my secret belongs to me.");
55
+ * const rng = new SecureRandomNumberGenerator();
56
+ *
57
+ * const shares = splitSecret(threshold, shareCount, secret, rng);
58
+ * console.log(shares.length); // 3
59
+ * ```
60
+ */
61
+ export function splitSecret(
62
+ threshold: number,
63
+ shareCount: number,
64
+ secret: Uint8Array,
65
+ randomGenerator: RandomNumberGenerator,
66
+ ): Uint8Array[] {
67
+ validateParameters(threshold, shareCount, secret.length);
68
+
69
+ if (threshold === 1) {
70
+ // just return shareCount copies of the secret
71
+ const result: Uint8Array[] = [];
72
+ for (let i = 0; i < shareCount; i++) {
73
+ result.push(new Uint8Array(secret));
74
+ }
75
+ return result;
76
+ } else {
77
+ const x = new Uint8Array(shareCount);
78
+ const y: Uint8Array[] = [];
79
+ for (let i = 0; i < shareCount; i++) {
80
+ y.push(new Uint8Array(secret.length));
81
+ }
82
+ let n = 0;
83
+ const result: Uint8Array[] = [];
84
+ for (let i = 0; i < shareCount; i++) {
85
+ result.push(new Uint8Array(secret.length));
86
+ }
87
+
88
+ for (let index = 0; index < threshold - 2; index++) {
89
+ randomGenerator.fillRandomData(result[index]);
90
+ x[n] = index;
91
+ y[n].set(result[index]);
92
+ n++;
93
+ }
94
+
95
+ // generate secret_length - 4 bytes worth of random data
96
+ const digest = new Uint8Array(secret.length);
97
+ randomGenerator.fillRandomData(digest.subarray(4));
98
+ // put 4 bytes of digest at the top of the digest array
99
+ const d = createDigest(digest.subarray(4), secret);
100
+ digest.set(d.subarray(0, 4), 0);
101
+ x[n] = DIGEST_INDEX;
102
+ y[n].set(digest);
103
+ n++;
104
+
105
+ x[n] = SECRET_INDEX;
106
+ y[n].set(secret);
107
+ n++;
108
+
109
+ for (let index = threshold - 2; index < shareCount; index++) {
110
+ const v = interpolate(n, x, secret.length, y, index);
111
+ result[index].set(v);
112
+ }
113
+
114
+ // clean up stack
115
+ memzero(digest);
116
+ memzero(x);
117
+ memzeroVecVecU8(y);
118
+
119
+ return result;
120
+ }
121
+ }
122
+
123
+ /**
124
+ * Recovers the secret from the given shares using the Shamir secret sharing
125
+ * algorithm.
126
+ *
127
+ * @param indexes - An array of indexes of the shares to be used for recovering
128
+ * the secret. These are the indexes of the shares returned by splitSecret.
129
+ * @param shares - An array of shares of the secret matching the indexes in
130
+ * indexes. These are the shares returned by splitSecret.
131
+ * @returns A Uint8Array representing the recovered secret.
132
+ * @throws ShamirError if parameters are invalid or checksum verification fails
133
+ *
134
+ * @example
135
+ * ```typescript
136
+ * import { recoverSecret } from "@bcts/shamir";
137
+ *
138
+ * const indexes = [0, 2];
139
+ * const shares = [
140
+ * new Uint8Array([47, 165, 102, 232, ...]),
141
+ * new Uint8Array([221, 174, 116, 201, ...]),
142
+ * ];
143
+ *
144
+ * const secret = recoverSecret(indexes, shares);
145
+ * console.log(new TextDecoder().decode(secret)); // "my secret belongs to me."
146
+ * ```
147
+ */
148
+ export function recoverSecret(indexes: number[], shares: Uint8Array[]): Uint8Array {
149
+ const threshold = shares.length;
150
+ if (threshold === 0 || indexes.length !== threshold) {
151
+ throw new ShamirError(ShamirErrorType.InvalidThreshold);
152
+ }
153
+
154
+ const shareLength = shares[0].length;
155
+ validateParameters(threshold, threshold, shareLength);
156
+
157
+ const allSameLength = shares.every((share) => share.length === shareLength);
158
+ if (!allSameLength) {
159
+ throw new ShamirError(ShamirErrorType.SharesUnequalLength);
160
+ }
161
+
162
+ if (threshold === 1) {
163
+ return new Uint8Array(shares[0]);
164
+ } else {
165
+ const indexesU8 = new Uint8Array(indexes);
166
+
167
+ const digest = interpolate(threshold, indexesU8, shareLength, shares, DIGEST_INDEX);
168
+ const secret = interpolate(threshold, indexesU8, shareLength, shares, SECRET_INDEX);
169
+ const verify = createDigest(digest.subarray(4), secret);
170
+
171
+ let valid = true;
172
+ for (let i = 0; i < 4; i++) {
173
+ valid = valid && digest[i] === verify[i];
174
+ }
175
+
176
+ memzero(digest);
177
+ memzero(verify);
178
+
179
+ if (!valid) {
180
+ throw new ShamirError(ShamirErrorType.ChecksumFailure);
181
+ }
182
+
183
+ return secret;
184
+ }
185
+ }