@baidumap/mapv-three 1.2.0 → 1.2.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/mapvthree.module.js
CHANGED
|
@@ -3504,6 +3504,76 @@ uniform float animationPeriod;
|
|
|
3504
3504
|
uniform float maxScale;
|
|
3505
3505
|
uniform float minScale;
|
|
3506
3506
|
uniform bool opacityGradient;
|
|
3507
|
+
#endif`, animation_label_vertex = `#define GLSLIFY 1
|
|
3508
|
+
// \u5BF9\u975Einstance\u5BF9\u8C61\u6DFB\u52A0\u52A8\u753B
|
|
3509
|
+
#ifdef ENABLE_ANIMATION_SCALE
|
|
3510
|
+
float scaleRatio = mod(elapsedTime, animationPeriod) / animationPeriod;
|
|
3511
|
+
if (animationPeriodOffset) {
|
|
3512
|
+
scaleRatio = mod(scaleRatio, 1.0);
|
|
3513
|
+
}
|
|
3514
|
+
|
|
3515
|
+
vScale *= 1.0 + (targetScale - 1.0) * scaleRatio;
|
|
3516
|
+
|
|
3517
|
+
if (opacityGradient) {
|
|
3518
|
+
if (targetScale > 1.0) {
|
|
3519
|
+
opacityRatio = 1.0 - (targetScale - 1.0) * scaleRatio;
|
|
3520
|
+
} else {
|
|
3521
|
+
opacityRatio = 1.0 + (targetScale - 1.0) * scaleRatio;
|
|
3522
|
+
}
|
|
3523
|
+
}
|
|
3524
|
+
|
|
3525
|
+
#endif
|
|
3526
|
+
|
|
3527
|
+
#ifdef ENABLE_ANIMATION_JUMP
|
|
3528
|
+
float jumpRatio = mod(elapsedTime, animationJumpPeriod) / animationJumpPeriod;
|
|
3529
|
+
if (animationPeriodOffset) {
|
|
3530
|
+
jumpRatio = mod(jumpRatio, 1.0);
|
|
3531
|
+
}
|
|
3532
|
+
if (jumpRatio <= 0.5) {
|
|
3533
|
+
jumpRatio *= 2.0;
|
|
3534
|
+
jumpRatio = jumpRatio * jumpRatio * jumpRatio;
|
|
3535
|
+
} else {
|
|
3536
|
+
jumpRatio = (1.0 - jumpRatio) * 2.0;
|
|
3537
|
+
jumpRatio = jumpRatio * jumpRatio * jumpRatio;
|
|
3538
|
+
}
|
|
3539
|
+
|
|
3540
|
+
float jumpHeight = jumpRatio * animationJumpHeight;
|
|
3541
|
+
#endif
|
|
3542
|
+
|
|
3543
|
+
#ifdef ENABLE_ANIMATION_ROTATE
|
|
3544
|
+
float rotateRatio = mod(elapsedTime, animationRotatePeriod) / animationRotatePeriod;
|
|
3545
|
+
if (animationPeriodOffset) {
|
|
3546
|
+
rotateRatio = mod(rotateRatio, 1.0);
|
|
3547
|
+
}
|
|
3548
|
+
float rotation = rotateRatio * 6.28;
|
|
3549
|
+
#endif
|
|
3550
|
+
|
|
3551
|
+
#ifdef ENABLE_ANIMATION_BREATH
|
|
3552
|
+
float scaleRatio = mod(elapsedTime, animationPeriod) / animationPeriod;
|
|
3553
|
+
if (animationPeriodOffset) {
|
|
3554
|
+
scaleRatio = mod(scaleRatio, 1.0);
|
|
3555
|
+
}
|
|
3556
|
+
float repeatNum = scaleRatio / 0.25;
|
|
3557
|
+
float scaleFactor = mod(scaleRatio, 0.25) / 0.25;
|
|
3558
|
+
float scaleNum = scaleFactor * (maxScale - 1.0);
|
|
3559
|
+
float balance = (maxScale + minScale) / 2.0;
|
|
3560
|
+
|
|
3561
|
+
if (repeatNum > 1.0 && repeatNum < 3.0) {
|
|
3562
|
+
// \u4E0B\u964D
|
|
3563
|
+
if (repeatNum < 2.0) {
|
|
3564
|
+
scaleNum = (1.0 - scaleFactor) * (maxScale - balance);
|
|
3565
|
+
} else {
|
|
3566
|
+
scaleNum = -scaleFactor * (balance - minScale);
|
|
3567
|
+
}
|
|
3568
|
+
} else if (repeatNum >= 3.0) {
|
|
3569
|
+
scaleNum = -(1.0 - scaleFactor) * (balance - minScale);
|
|
3570
|
+
}
|
|
3571
|
+
|
|
3572
|
+
vScale *= balance + scaleNum;
|
|
3573
|
+
|
|
3574
|
+
if (opacityGradient) {
|
|
3575
|
+
opacityRatio = (balance + scaleNum) / maxScale;
|
|
3576
|
+
}
|
|
3507
3577
|
#endif`, mrt_output_pars_fragment = `#define GLSLIFY 1
|
|
3508
3578
|
#ifndef DISABLE_MRT
|
|
3509
3579
|
// layout(location = 1) out highp vec4 pc_fragColor1;
|
|
@@ -3937,7 +4007,7 @@ if (_tileEditableValue == 1.0) {
|
|
|
3937
4007
|
}, overridePresetMaterials = () => {
|
|
3938
4008
|
MeshBasicMaterial.prototype.emissiveIntensity = 1, ShaderLib.basic.uniforms.emissive = { value: new Color(0) }, ShaderLib.basic.uniforms.isEmissive = { value: !1 };
|
|
3939
4009
|
}, addExtraShaderChunks = () => {
|
|
3940
|
-
ShaderChunk.mvt_uniform_zoomunits_pars = uniform_zoomunits_pars, ShaderChunk.mvt_extra_vertex_utils = extra_vertex_utils, ShaderChunk.mvt_selective_pars_vertex = selective_pars_vertex, ShaderChunk.mvt_selective_vertex = selective_vertex, ShaderChunk.mvt_selective_pars_fragment = selective_pars_fragment, ShaderChunk.mvt_selective_fragment = selective_fragment, ShaderChunk.mvt_keepsize_pars_vertex = keepsize_pars_vertex, ShaderChunk.mvt_keepsize_vertex = keepsize_vertex, ShaderChunk.mvt_emissive_pars_fragment = emissive_pars_fragment, ShaderChunk.mvt_emissive_fragment = emissive_fragment, ShaderChunk.mvt_override_standard_emissivemap_pars_fragment = override_standard_emissivemap_pars_fragment, ShaderChunk.mvt_override_standard_emissivemap_fragment = override_standard_emissivemap_fragment, ShaderChunk.mvt_override_basic_color_pars_fragment = override_basic_color_pars_fragment, ShaderChunk.mvt_override_basic_color_fragment = override_basic_color_fragment, ShaderChunk.mvt_animation_pars_vertex = animation_pars_vertex, ShaderChunk.mvt_animation_vertex = animation_vertex, ShaderChunk.mvt_mrt_output_pars_fragment = mrt_output_pars_fragment, ShaderChunk.mvt_mrt_output_fragment = mrt_output_fragment, ShaderChunk.mvt_nmrt_output_pars_fragment = nmrt_output_pars_fragment, ShaderChunk.mvt_nmrt_output_fragment = nmrt_output_fragment, ShaderChunk.mvt_extra_meshbasic_frag_pars = extra_meshbasic_frag_pars, ShaderChunk.mvt_clip_pars_vertex = clip_pars_vertex, ShaderChunk.mvt_clip_vertex = clip_vertex, ShaderChunk.mvt_clip_pars_fragment = clip_pars_fragment, ShaderChunk.mvt_clip_fragment = clip_fragment, ShaderChunk.mvt_depth_packing = depth_packing, ShaderChunk.mvt_depth_range_pars_fragment = depth_range_pars_fragment, ShaderChunk.mvt_depth_range_fragment = depth_range_fragment, ShaderChunk.output_fragment = output_fragment, ShaderChunk.output_pars_fragment = output_pars_fragment;
|
|
4010
|
+
ShaderChunk.mvt_uniform_zoomunits_pars = uniform_zoomunits_pars, ShaderChunk.mvt_extra_vertex_utils = extra_vertex_utils, ShaderChunk.mvt_selective_pars_vertex = selective_pars_vertex, ShaderChunk.mvt_selective_vertex = selective_vertex, ShaderChunk.mvt_selective_pars_fragment = selective_pars_fragment, ShaderChunk.mvt_selective_fragment = selective_fragment, ShaderChunk.mvt_keepsize_pars_vertex = keepsize_pars_vertex, ShaderChunk.mvt_keepsize_vertex = keepsize_vertex, ShaderChunk.mvt_emissive_pars_fragment = emissive_pars_fragment, ShaderChunk.mvt_emissive_fragment = emissive_fragment, ShaderChunk.mvt_override_standard_emissivemap_pars_fragment = override_standard_emissivemap_pars_fragment, ShaderChunk.mvt_override_standard_emissivemap_fragment = override_standard_emissivemap_fragment, ShaderChunk.mvt_override_basic_color_pars_fragment = override_basic_color_pars_fragment, ShaderChunk.mvt_override_basic_color_fragment = override_basic_color_fragment, ShaderChunk.mvt_animation_pars_vertex = animation_pars_vertex, ShaderChunk.mvt_animation_vertex = animation_vertex, ShaderChunk.mvt_animation_label_vertex = animation_label_vertex, ShaderChunk.mvt_mrt_output_pars_fragment = mrt_output_pars_fragment, ShaderChunk.mvt_mrt_output_fragment = mrt_output_fragment, ShaderChunk.mvt_nmrt_output_pars_fragment = nmrt_output_pars_fragment, ShaderChunk.mvt_nmrt_output_fragment = nmrt_output_fragment, ShaderChunk.mvt_extra_meshbasic_frag_pars = extra_meshbasic_frag_pars, ShaderChunk.mvt_clip_pars_vertex = clip_pars_vertex, ShaderChunk.mvt_clip_vertex = clip_vertex, ShaderChunk.mvt_clip_pars_fragment = clip_pars_fragment, ShaderChunk.mvt_clip_fragment = clip_fragment, ShaderChunk.mvt_depth_packing = depth_packing, ShaderChunk.mvt_depth_range_pars_fragment = depth_range_pars_fragment, ShaderChunk.mvt_depth_range_fragment = depth_range_fragment, ShaderChunk.output_fragment = output_fragment, ShaderChunk.output_pars_fragment = output_pars_fragment;
|
|
3941
4011
|
}, overrideShaders = function() {
|
|
3942
4012
|
addExtraShaderChunks(), overridePresetMaterials();
|
|
3943
4013
|
};
|
|
@@ -4046,18 +4116,18 @@ function requirePunycode() {
|
|
|
4046
4116
|
return Z(fe + (T + 1) * Be / (Be + G));
|
|
4047
4117
|
}
|
|
4048
4118
|
function ae(Be) {
|
|
4049
|
-
var Ge = [], we = Be.length, fe, Me = 0, Xe = R, Re = L, Ve, De, Ke,
|
|
4119
|
+
var Ge = [], we = Be.length, fe, Me = 0, Xe = R, Re = L, Ve, De, Ke, Ee, $e, Ue, Je, Oe, gg;
|
|
4050
4120
|
for (Ve = Be.lastIndexOf(D), Ve < 0 && (Ve = 0), De = 0; De < Ve; ++De)
|
|
4051
4121
|
Be.charCodeAt(De) >= 128 && J("not-basic"), Ge.push(Be.charCodeAt(De));
|
|
4052
4122
|
for (Ke = Ve > 0 ? Ve + 1 : 0; Ke < we; ) {
|
|
4053
|
-
for (
|
|
4123
|
+
for (Ee = Me, $e = 1, Ue = h; Ke >= we && J("invalid-input"), Je = V(Be.charCodeAt(Ke++)), (Je >= h || Je > Z((l - Me) / $e)) && J("overflow"), Me += Je * $e, Oe = Ue <= Re ? u : Ue >= Re + S ? S : Ue - Re, !(Je < Oe); Ue += h)
|
|
4054
4124
|
gg = h - Oe, $e > Z(l / gg) && J("overflow"), $e *= gg;
|
|
4055
|
-
fe = Ge.length + 1, Re = j(Me -
|
|
4125
|
+
fe = Ge.length + 1, Re = j(Me - Ee, fe, Ee == 0), Z(Me / fe) > l - Xe && J("overflow"), Xe += Z(Me / fe), Me %= fe, Ge.splice(Me++, 0, Xe);
|
|
4056
4126
|
}
|
|
4057
4127
|
return U(Ge);
|
|
4058
4128
|
}
|
|
4059
4129
|
function re(Be) {
|
|
4060
|
-
var Ge, we, fe, Me, Xe, Re, Ve, De, Ke,
|
|
4130
|
+
var Ge, we, fe, Me, Xe, Re, Ve, De, Ke, Ee, $e, Ue = [], Je, Oe, gg, ze;
|
|
4061
4131
|
for (Be = Ie(Be), Je = Be.length, Ge = R, we = 0, Xe = L, Re = 0; Re < Je; ++Re)
|
|
4062
4132
|
$e = Be[Re], $e < 128 && Ue.push(te($e));
|
|
4063
4133
|
for (fe = Me = Ue.length, Me && Ue.push(D); fe < Je; ) {
|
|
@@ -4065,9 +4135,9 @@ function requirePunycode() {
|
|
|
4065
4135
|
$e = Be[Re], $e >= Ge && $e < Ve && (Ve = $e);
|
|
4066
4136
|
for (Oe = fe + 1, Ve - Ge > Z((l - we) / Oe) && J("overflow"), we += (Ve - Ge) * Oe, Ge = Ve, Re = 0; Re < Je; ++Re)
|
|
4067
4137
|
if ($e = Be[Re], $e < Ge && ++we > l && J("overflow"), $e == Ge) {
|
|
4068
|
-
for (De = we, Ke = h;
|
|
4069
|
-
ze = De -
|
|
4070
|
-
te(k(
|
|
4138
|
+
for (De = we, Ke = h; Ee = Ke <= Xe ? u : Ke >= Xe + S ? S : Ke - Xe, !(De < Ee); Ke += h)
|
|
4139
|
+
ze = De - Ee, gg = h - Ee, Ue.push(
|
|
4140
|
+
te(k(Ee + ze % gg, 0))
|
|
4071
4141
|
), De = Z(ze / gg);
|
|
4072
4142
|
Ue.push(te(k(De, 0))), Xe = j(we, Oe, fe == Me), we = 0, ++fe;
|
|
4073
4143
|
}
|
|
@@ -12927,21 +12997,21 @@ class SimplexNoise {
|
|
|
12927
12997
|
De < 0 ? a = 0 : (De *= De, a = De * De * this.dot3(this.grad3[Me], Ie, U, V));
|
|
12928
12998
|
let Ke = 0.6 - k * k - j * j - ae * ae;
|
|
12929
12999
|
Ke < 0 ? c = 0 : (Ke *= Ke, c = Ke * Ke * this.dot3(this.grad3[Xe], k, j, ae));
|
|
12930
|
-
let
|
|
12931
|
-
return
|
|
13000
|
+
let Ee = 0.6 - re * re - he * he - ue * ue;
|
|
13001
|
+
return Ee < 0 ? l = 0 : (Ee *= Ee, l = Ee * Ee * this.dot3(this.grad3[Re], re, he, ue)), 32 * (o + a + c + l);
|
|
12932
13002
|
}
|
|
12933
13003
|
noise4d(i, e, s, o) {
|
|
12934
13004
|
const a = this.grad4, c = this.simplex, l = this.perm, h = (Math.sqrt(5) - 1) / 4, u = (5 - Math.sqrt(5)) / 20;
|
|
12935
13005
|
let S, G, b, L, R;
|
|
12936
|
-
const D = (i + e + s + o) * h, W = Math.floor(i + D), z = Math.floor(e + D), H = Math.floor(s + D), w = Math.floor(o + D), T = (W + z + H + w) * u, Z = W - T, te = z - T, q = H - T, J = w - T, $ = i - Z, ie = e - te, Ie = s - q, U = o - J, V = $ > ie ? 32 : 0, k = $ > Ie ? 16 : 0, j = ie > Ie ? 8 : 0, ae = $ > U ? 4 : 0, re = ie > U ? 2 : 0, he = Ie > U ? 1 : 0, ue = V + k + j + ae + re + he, Be = c[ue][0] >= 3 ? 1 : 0, Ge = c[ue][1] >= 3 ? 1 : 0, we = c[ue][2] >= 3 ? 1 : 0, fe = c[ue][3] >= 3 ? 1 : 0, Me = c[ue][0] >= 2 ? 1 : 0, Xe = c[ue][1] >= 2 ? 1 : 0, Re = c[ue][2] >= 2 ? 1 : 0, Ve = c[ue][3] >= 2 ? 1 : 0, De = c[ue][0] >= 1 ? 1 : 0, Ke = c[ue][1] >= 1 ? 1 : 0,
|
|
13006
|
+
const D = (i + e + s + o) * h, W = Math.floor(i + D), z = Math.floor(e + D), H = Math.floor(s + D), w = Math.floor(o + D), T = (W + z + H + w) * u, Z = W - T, te = z - T, q = H - T, J = w - T, $ = i - Z, ie = e - te, Ie = s - q, U = o - J, V = $ > ie ? 32 : 0, k = $ > Ie ? 16 : 0, j = ie > Ie ? 8 : 0, ae = $ > U ? 4 : 0, re = ie > U ? 2 : 0, he = Ie > U ? 1 : 0, ue = V + k + j + ae + re + he, Be = c[ue][0] >= 3 ? 1 : 0, Ge = c[ue][1] >= 3 ? 1 : 0, we = c[ue][2] >= 3 ? 1 : 0, fe = c[ue][3] >= 3 ? 1 : 0, Me = c[ue][0] >= 2 ? 1 : 0, Xe = c[ue][1] >= 2 ? 1 : 0, Re = c[ue][2] >= 2 ? 1 : 0, Ve = c[ue][3] >= 2 ? 1 : 0, De = c[ue][0] >= 1 ? 1 : 0, Ke = c[ue][1] >= 1 ? 1 : 0, Ee = c[ue][2] >= 1 ? 1 : 0, $e = c[ue][3] >= 1 ? 1 : 0, Ue = $ - Be + u, Je = ie - Ge + u, Oe = Ie - we + u, gg = U - fe + u, ze = $ - Me + 2 * u, bg = ie - Xe + 2 * u, ig = Ie - Re + 2 * u, Cg = U - Ve + 2 * u, Bg = $ - De + 3 * u, sg = ie - Ke + 3 * u, hg = Ie - Ee + 3 * u, Qg = U - $e + 3 * u, Ig = $ - 1 + 4 * u, rg = ie - 1 + 4 * u, cg = Ie - 1 + 4 * u, ag = U - 1 + 4 * u, ng = W & 255, CI = z & 255, sI = H & 255, oI = w & 255, VI = l[ng + l[CI + l[sI + l[oI]]]] % 32, OI = l[ng + Be + l[CI + Ge + l[sI + we + l[oI + fe]]]] % 32, $g = l[ng + Me + l[CI + Xe + l[sI + Re + l[oI + Ve]]]] % 32, GI = l[ng + De + l[CI + Ke + l[sI + Ee + l[oI + $e]]]] % 32, _e = l[ng + 1 + l[CI + 1 + l[sI + 1 + l[oI + 1]]]] % 32;
|
|
12937
13007
|
let Dg = 0.6 - $ * $ - ie * ie - Ie * Ie - U * U;
|
|
12938
13008
|
Dg < 0 ? S = 0 : (Dg *= Dg, S = Dg * Dg * this.dot4(a[VI], $, ie, Ie, U));
|
|
12939
13009
|
let Ug = 0.6 - Ue * Ue - Je * Je - Oe * Oe - gg * gg;
|
|
12940
13010
|
Ug < 0 ? G = 0 : (Ug *= Ug, G = Ug * Ug * this.dot4(a[OI], Ue, Je, Oe, gg));
|
|
12941
13011
|
let AI = 0.6 - ze * ze - bg * bg - ig * ig - Cg * Cg;
|
|
12942
13012
|
AI < 0 ? b = 0 : (AI *= AI, b = AI * AI * this.dot4(a[$g], ze, bg, ig, Cg));
|
|
12943
|
-
let
|
|
12944
|
-
|
|
13013
|
+
let Yg = 0.6 - Bg * Bg - sg * sg - hg * hg - Qg * Qg;
|
|
13014
|
+
Yg < 0 ? L = 0 : (Yg *= Yg, L = Yg * Yg * this.dot4(a[GI], Bg, sg, hg, Qg));
|
|
12945
13015
|
let Fg = 0.6 - Ig * Ig - rg * rg - cg * cg - ag * ag;
|
|
12946
13016
|
return Fg < 0 ? R = 0 : (Fg *= Fg, R = Fg * Fg * this.dot4(a[_e], Ig, rg, cg, ag)), 27 * (S + G + b + L + R);
|
|
12947
13017
|
}
|
|
@@ -16516,7 +16586,7 @@ var proj4Src = { exports: {} };
|
|
|
16516
16586
|
var N = new De(M);
|
|
16517
16587
|
return N.output();
|
|
16518
16588
|
}
|
|
16519
|
-
function
|
|
16589
|
+
function Ee(M, N, Y) {
|
|
16520
16590
|
Array.isArray(N) && (Y.unshift(N), N = null);
|
|
16521
16591
|
var P = N ? {} : M, ee = Y.reduce(function(Ce, oe) {
|
|
16522
16592
|
return $e(oe, Ce), Ce;
|
|
@@ -16575,7 +16645,7 @@ var proj4Src = { exports: {} };
|
|
|
16575
16645
|
case "VERT_CS":
|
|
16576
16646
|
case "VERTCRS":
|
|
16577
16647
|
case "VERTICALCRS":
|
|
16578
|
-
M[0] = ["name", M[0]],
|
|
16648
|
+
M[0] = ["name", M[0]], Ee(N, Y, M);
|
|
16579
16649
|
return;
|
|
16580
16650
|
case "COMPD_CS":
|
|
16581
16651
|
case "COMPOUNDCRS":
|
|
@@ -16591,13 +16661,13 @@ var proj4Src = { exports: {} };
|
|
|
16591
16661
|
case "GEODETICDATUM":
|
|
16592
16662
|
case "ENGCRS":
|
|
16593
16663
|
case "ENGINEERINGCRS":
|
|
16594
|
-
M[0] = ["name", M[0]],
|
|
16664
|
+
M[0] = ["name", M[0]], Ee(N, Y, M), N[Y].type = Y;
|
|
16595
16665
|
return;
|
|
16596
16666
|
default:
|
|
16597
16667
|
for (P = -1; ++P < M.length; )
|
|
16598
16668
|
if (!Array.isArray(M[P]))
|
|
16599
16669
|
return $e(M, N[Y]);
|
|
16600
|
-
return
|
|
16670
|
+
return Ee(N, Y, M);
|
|
16601
16671
|
}
|
|
16602
16672
|
}
|
|
16603
16673
|
var Ue = 0.017453292519943295;
|
|
@@ -16871,7 +16941,7 @@ var proj4Src = { exports: {} };
|
|
|
16871
16941
|
var M = this.b / this.a;
|
|
16872
16942
|
this.es = 1 - M * M, "x0" in this || (this.x0 = 0), "y0" in this || (this.y0 = 0), this.e = Math.sqrt(this.es), this.lat_ts ? this.sphere ? this.k0 = Math.cos(this.lat_ts) : this.k0 = $g(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) : this.k0 || (this.k ? this.k0 = this.k : this.k0 = 1);
|
|
16873
16943
|
}
|
|
16874
|
-
function
|
|
16944
|
+
function Yg(M) {
|
|
16875
16945
|
var N = M.x, Y = M.y;
|
|
16876
16946
|
if (Y * H > 90 && Y * H < -90 && N * H > 180 && N * H < -180)
|
|
16877
16947
|
return null;
|
|
@@ -16899,7 +16969,7 @@ var proj4Src = { exports: {} };
|
|
|
16899
16969
|
}
|
|
16900
16970
|
var AC = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "Mercator_Variant_A", "merc"], rC = {
|
|
16901
16971
|
init: AI,
|
|
16902
|
-
forward:
|
|
16972
|
+
forward: Yg,
|
|
16903
16973
|
inverse: Fg,
|
|
16904
16974
|
names: AC
|
|
16905
16975
|
};
|
|
@@ -18828,7 +18898,7 @@ var proj4Src = { exports: {} };
|
|
|
18828
18898
|
if (typeof M != "number" || M !== M || !isFinite(M))
|
|
18829
18899
|
throw new TypeError("coordinates must be finite numbers");
|
|
18830
18900
|
}
|
|
18831
|
-
function
|
|
18901
|
+
function EC(M, N) {
|
|
18832
18902
|
return (M.datum.datum_type === s || M.datum.datum_type === o || M.datum.datum_type === a) && N.datumCode !== "WGS84" || (N.datum.datum_type === s || N.datum.datum_type === o || N.datum.datum_type === a) && M.datumCode !== "WGS84";
|
|
18833
18903
|
}
|
|
18834
18904
|
function Lt(M, N, Y, P) {
|
|
@@ -18840,7 +18910,7 @@ var proj4Src = { exports: {} };
|
|
|
18840
18910
|
m: Y.m
|
|
18841
18911
|
};
|
|
18842
18912
|
var Ce = Y.z !== void 0;
|
|
18843
|
-
if (xC(Y), M.datum && N.datum &&
|
|
18913
|
+
if (xC(Y), M.datum && N.datum && EC(M, N) && (ee = new BI("WGS84"), Y = Lt(M, ee, Y, P), M = ee), P && M.axis !== "enu" && (Y = Di(M, !1, Y)), M.projName === "longlat")
|
|
18844
18914
|
Y = {
|
|
18845
18915
|
x: Y.x * z,
|
|
18846
18916
|
y: Y.y * z,
|
|
@@ -18894,7 +18964,7 @@ var proj4Src = { exports: {} };
|
|
|
18894
18964
|
}
|
|
18895
18965
|
}, P && (ee.oProj = N), ee);
|
|
18896
18966
|
}
|
|
18897
|
-
var xi = 6, Yi = "AJSAJS", vi = "AFAFAF", FI = 65, eI = 73, rI = 79, jI = 86, qI = 90,
|
|
18967
|
+
var xi = 6, Yi = "AJSAJS", vi = "AFAFAF", FI = 65, eI = 73, rI = 79, jI = 86, qI = 90, YC = {
|
|
18898
18968
|
forward: ki,
|
|
18899
18969
|
inverse: vC,
|
|
18900
18970
|
toPoint: Qi
|
|
@@ -19371,11 +19441,11 @@ northing meters` + M;
|
|
|
19371
19441
|
var ne = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2)), ce = Math.log(Math.tan(Math.PI / 4 + M / 2)), Se = Math.log((1 + oe * N) / (1 - oe * N));
|
|
19372
19442
|
this.K = ne - this.alpha * ce + this.alpha * oe / 2 * Se;
|
|
19373
19443
|
}
|
|
19374
|
-
function
|
|
19444
|
+
function Es(M) {
|
|
19375
19445
|
var N = Math.log(Math.tan(Math.PI / 4 - M.y / 2)), Y = this.e / 2 * Math.log((1 + this.e * Math.sin(M.y)) / (1 - this.e * Math.sin(M.y))), P = -this.alpha * (N + Y) + this.K, ee = 2 * (Math.atan(Math.exp(P)) - Math.PI / 4), Ce = this.alpha * (M.x - this.lambda0), oe = Math.atan(Math.sin(Ce) / (Math.sin(this.b0) * Math.tan(ee) + Math.cos(this.b0) * Math.cos(Ce))), ne = Math.asin(Math.cos(this.b0) * Math.sin(ee) - Math.sin(this.b0) * Math.cos(ee) * Math.cos(Ce));
|
|
19376
19446
|
return M.y = this.R / 2 * Math.log((1 + Math.sin(ne)) / (1 - Math.sin(ne))) + this.y0, M.x = this.R * oe + this.x0, M;
|
|
19377
19447
|
}
|
|
19378
|
-
function
|
|
19448
|
+
function Ys(M) {
|
|
19379
19449
|
for (var N = M.x - this.x0, Y = M.y - this.y0, P = N / this.R, ee = 2 * (Math.atan(Math.exp(Y / this.R)) - Math.PI / 4), Ce = Math.asin(Math.cos(this.b0) * Math.sin(ee) + Math.sin(this.b0) * Math.cos(ee) * Math.cos(P)), oe = Math.atan(Math.sin(P) / (Math.cos(this.b0) * Math.cos(P) - Math.sin(this.b0) * Math.tan(ee))), ne = this.lambda0 + oe / this.alpha, ce = 0, Se = Ce, be = -1e3, ye = 0; Math.abs(Se - be) > 1e-7; ) {
|
|
19380
19450
|
if (++ye > 20)
|
|
19381
19451
|
return;
|
|
@@ -19385,10 +19455,10 @@ northing meters` + M;
|
|
|
19385
19455
|
}
|
|
19386
19456
|
var vs = ["somerc"], ks = {
|
|
19387
19457
|
init: xs,
|
|
19388
|
-
forward:
|
|
19389
|
-
inverse:
|
|
19458
|
+
forward: Es,
|
|
19459
|
+
inverse: Ys,
|
|
19390
19460
|
names: vs
|
|
19391
|
-
},
|
|
19461
|
+
}, EI = 1e-7;
|
|
19392
19462
|
function Ps(M) {
|
|
19393
19463
|
var N = ["Hotine_Oblique_Mercator", "Hotine_Oblique_Mercator_variant_A", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin"], Y = typeof M.projName == "object" ? Object.keys(M.projName)[0] : M.projName;
|
|
19394
19464
|
return "no_uoff" in M || "no_off" in M || N.indexOf(Y) !== -1 || N.indexOf(Li(Y)) !== -1;
|
|
@@ -19401,7 +19471,7 @@ northing meters` + M;
|
|
|
19401
19471
|
var eg = !1;
|
|
19402
19472
|
if ("rectified_grid_angle" in this && (eg = !0), je && (Qe = this.alpha), eg && (be = this.rectified_grid_angle), je || eg)
|
|
19403
19473
|
me = this.longc;
|
|
19404
|
-
else if (Le = this.long1, Ze = this.lat1, He = this.long2, Ne = this.lat2, Math.abs(Ze - Ne) <=
|
|
19474
|
+
else if (Le = this.long1, Ze = this.lat1, He = this.long2, Ne = this.lat2, Math.abs(Ze - Ne) <= EI || (M = Math.abs(Ze)) <= EI || Math.abs(M - b) <= EI || Math.abs(Math.abs(this.lat0) - b) <= EI || Math.abs(Math.abs(Ne) - b) <= EI)
|
|
19405
19475
|
throw new Error();
|
|
19406
19476
|
var Mg = 1 - this.es;
|
|
19407
19477
|
N = Math.sqrt(Mg), Math.abs(this.lat0) > W ? (ne = Math.sin(this.lat0), Y = Math.cos(this.lat0), M = 1 - this.es * ne * ne, this.B = Y * Y, this.B = Math.sqrt(1 + this.es * this.B * this.B / Mg), this.A = this.B * this.k0 * N / M, P = this.B * N / (Y * Math.sqrt(M)), ee = P * P - 1, ee <= 0 ? ee = 0 : (ee = Math.sqrt(ee), this.lat0 < 0 && (ee = -ee)), this.E = ee += P, this.E *= Math.pow(Dg(this.e, this.lat0, ne), this.B)) : (this.B = 1 / N, this.A = this.k0, this.E = P = ee = 1), je || eg ? (je ? (ye = Math.asin(Math.sin(Qe) / P), eg || (be = Qe)) : (ye = be, Qe = Math.asin(P * Math.sin(ye))), this.lam0 = me - Math.asin(0.5 * (ee - 1 / ee) * Math.tan(ye)) / this.B) : (Ce = Math.pow(Dg(this.e, Ze, Math.sin(Ze)), this.B), oe = Math.pow(Dg(this.e, Ne, Math.sin(Ne)), this.B), ee = this.E / Ce, ce = (oe - Ce) / (oe + Ce), Se = this.E * this.E, Se = (Se - oe * Ce) / (Se + oe * Ce), M = Le - He, M < -Math.pi ? He -= T : M > Math.pi && (He += T), this.lam0 = _e(0.5 * (Le + He) - Math.atan(Se * Math.tan(0.5 * this.B * (Le - He)) / ce) / this.B), ye = Math.atan(2 * Math.sin(this.B * _e(Le - this.lam0)) / (ee - 1 / ee)), be = Qe = Math.asin(P * Math.sin(ye))), this.singam = Math.sin(ye), this.cosgam = Math.cos(ye), this.sinrot = Math.sin(be), this.cosrot = Math.cos(be), this.rB = 1 / this.B, this.ArB = this.A * this.rB, this.BrA = 1 / this.ArB, this.no_off ? this.u_0 = 0 : (this.u_0 = Math.abs(this.ArB * Math.atan(Math.sqrt(P * P - 1) / Math.cos(Qe))), this.lat0 < 0 && (this.u_0 = -this.u_0)), ee = 0.5 * ye, this.v_pole_n = this.ArB * Math.log(Math.tan(w - ee)), this.v_pole_s = this.ArB * Math.log(Math.tan(w + ee));
|
|
@@ -19411,7 +19481,7 @@ northing meters` + M;
|
|
|
19411
19481
|
if (M.x = M.x - this.lam0, Math.abs(Math.abs(M.y) - b) > W) {
|
|
19412
19482
|
if (oe = this.E / Math.pow(Dg(this.e, M.y, Math.sin(M.y)), this.B), ne = 1 / oe, Y = 0.5 * (oe - ne), P = 0.5 * (oe + ne), Ce = Math.sin(this.B * M.x), ee = (Y * this.singam - Ce * this.cosgam) / P, Math.abs(Math.abs(ee) - 1) < W)
|
|
19413
19483
|
throw new Error();
|
|
19414
|
-
Se = 0.5 * this.ArB * Math.log((1 - ee) / (1 + ee)), ne = Math.cos(this.B * M.x), Math.abs(ne) <
|
|
19484
|
+
Se = 0.5 * this.ArB * Math.log((1 - ee) / (1 + ee)), ne = Math.cos(this.B * M.x), Math.abs(ne) < EI ? ce = this.A * M.x : ce = this.ArB * Math.atan2(Y * this.cosgam + Ce * this.singam, ne);
|
|
19415
19485
|
} else
|
|
19416
19486
|
Se = M.y > 0 ? this.v_pole_n : this.v_pole_s, ce = this.ArB * M.y;
|
|
19417
19487
|
return this.no_rot ? (N.x = ce, N.y = Se) : (ce -= this.u_0, N.x = Se * this.cosrot + ce * this.sinrot, N.y = ce * this.cosrot - Se * this.sinrot), N.x = this.a * N.x + this.x0, N.y = this.a * N.y + this.y0, N;
|
|
@@ -19738,7 +19808,7 @@ northing meters` + M;
|
|
|
19738
19808
|
inverse: Fo,
|
|
19739
19809
|
names: zo
|
|
19740
19810
|
};
|
|
19741
|
-
function
|
|
19811
|
+
function Eo(M, N) {
|
|
19742
19812
|
var Y = 1 - (1 - M * M) / (2 * M) * Math.log((1 - M) / (1 + M));
|
|
19743
19813
|
if (Math.abs(Math.abs(N) - Y) < 1e-6)
|
|
19744
19814
|
return N < 0 ? -1 * b : b;
|
|
@@ -19747,7 +19817,7 @@ northing meters` + M;
|
|
|
19747
19817
|
return P;
|
|
19748
19818
|
return NaN;
|
|
19749
19819
|
}
|
|
19750
|
-
function
|
|
19820
|
+
function Yo() {
|
|
19751
19821
|
this.sphere || (this.k0 = $g(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)));
|
|
19752
19822
|
}
|
|
19753
19823
|
function vo(M) {
|
|
@@ -19763,10 +19833,10 @@ northing meters` + M;
|
|
|
19763
19833
|
function ko(M) {
|
|
19764
19834
|
M.x -= this.x0, M.y -= this.y0;
|
|
19765
19835
|
var N, Y;
|
|
19766
|
-
return this.sphere ? (N = _e(this.long0 + M.x / this.a / Math.cos(this.lat_ts)), Y = Math.asin(M.y / this.a * Math.cos(this.lat_ts))) : (Y =
|
|
19836
|
+
return this.sphere ? (N = _e(this.long0 + M.x / this.a / Math.cos(this.lat_ts)), Y = Math.asin(M.y / this.a * Math.cos(this.lat_ts))) : (Y = Eo(this.e, 2 * M.y * this.k0 / this.a), N = _e(this.long0 + M.x / (this.a * this.k0))), M.x = N, M.y = Y, M;
|
|
19767
19837
|
}
|
|
19768
19838
|
var Po = ["cea"], Qo = {
|
|
19769
|
-
init:
|
|
19839
|
+
init: Yo,
|
|
19770
19840
|
forward: vo,
|
|
19771
19841
|
inverse: ko,
|
|
19772
19842
|
names: Po
|
|
@@ -20113,85 +20183,85 @@ northing meters` + M;
|
|
|
20113
20183
|
};
|
|
20114
20184
|
}(Y.Accumulator, Y.Math), Y.Geodesic = {}, Y.GeodesicLine = {}, Y.PolygonArea = {}, function(P, ee, Ce, oe, ne) {
|
|
20115
20185
|
var ce = 6, Se = ce, be = ce, ye = ce, me = ye, Le, He, Ze = 20, Ne = Ze + oe.digits + 10, Qe = oe.epsilon, je = 200 * Qe, eg = Math.sqrt(Qe), Mg = Qe, Tg = 1e3 * eg, Vg = 0, Jg = 31, Og = 32640, cI, lI, dI, mI, pI, KI, ZI, kI, QI;
|
|
20116
|
-
P.tiny_ = Math.sqrt(Number.MIN_VALUE / Number.EPSILON), P.nC1_ = ce, P.nC1p_ = ce, P.nC2_ = ce, P.nC3_ = ce, P.nC4_ = ce, Le = P.nC3_ * (P.nC3_ - 1) / 2, He = P.nC4_ * (P.nC4_ + 1) / 2, P.CAP_C1 = 1 << 0, P.CAP_C1p = 1 << 1, P.CAP_C2 = 1 << 2, P.CAP_C3 = 1 << 3, P.CAP_C4 = 1 << 4, P.NONE = 0, P.ARC = 1 << 6, P.LATITUDE = 1 << 7 | Vg, P.LONGITUDE = 1 << 8 | P.CAP_C3, P.AZIMUTH = 1 << 9 | Vg, P.DISTANCE = 1 << 10 | P.CAP_C1, P.STANDARD = P.LATITUDE | P.LONGITUDE | P.AZIMUTH | P.DISTANCE, P.DISTANCE_IN = 1 << 11 | P.CAP_C1 | P.CAP_C1p, P.REDUCEDLENGTH = 1 << 12 | P.CAP_C1 | P.CAP_C2, P.GEODESICSCALE = 1 << 13 | P.CAP_C1 | P.CAP_C2, P.AREA = 1 << 14 | P.CAP_C4, P.ALL = Og | Jg, P.LONG_UNROLL = 1 << 15, P.OUT_MASK = Og | P.LONG_UNROLL, P.SinCosSeries = function(We,
|
|
20117
|
-
var Te = ve.length, Fe = Te - (We ? 1 : 0), qe = 2 * (ke -
|
|
20186
|
+
P.tiny_ = Math.sqrt(Number.MIN_VALUE / Number.EPSILON), P.nC1_ = ce, P.nC1p_ = ce, P.nC2_ = ce, P.nC3_ = ce, P.nC4_ = ce, Le = P.nC3_ * (P.nC3_ - 1) / 2, He = P.nC4_ * (P.nC4_ + 1) / 2, P.CAP_C1 = 1 << 0, P.CAP_C1p = 1 << 1, P.CAP_C2 = 1 << 2, P.CAP_C3 = 1 << 3, P.CAP_C4 = 1 << 4, P.NONE = 0, P.ARC = 1 << 6, P.LATITUDE = 1 << 7 | Vg, P.LONGITUDE = 1 << 8 | P.CAP_C3, P.AZIMUTH = 1 << 9 | Vg, P.DISTANCE = 1 << 10 | P.CAP_C1, P.STANDARD = P.LATITUDE | P.LONGITUDE | P.AZIMUTH | P.DISTANCE, P.DISTANCE_IN = 1 << 11 | P.CAP_C1 | P.CAP_C1p, P.REDUCEDLENGTH = 1 << 12 | P.CAP_C1 | P.CAP_C2, P.GEODESICSCALE = 1 << 13 | P.CAP_C1 | P.CAP_C2, P.AREA = 1 << 14 | P.CAP_C4, P.ALL = Og | Jg, P.LONG_UNROLL = 1 << 15, P.OUT_MASK = Og | P.LONG_UNROLL, P.SinCosSeries = function(We, Ye, ke, ve) {
|
|
20187
|
+
var Te = ve.length, Fe = Te - (We ? 1 : 0), qe = 2 * (ke - Ye) * (ke + Ye), mg = Fe & 1 ? ve[--Te] : 0, Lg = 0;
|
|
20118
20188
|
for (Fe = Math.floor(Fe / 2); Fe--; )
|
|
20119
20189
|
Lg = qe * mg - Lg + ve[--Te], mg = qe * Lg - mg + ve[--Te];
|
|
20120
|
-
return We ? 2 *
|
|
20121
|
-
}, cI = function(We,
|
|
20122
|
-
var ke, ve = oe.sq(We), Te = oe.sq(
|
|
20190
|
+
return We ? 2 * Ye * ke * mg : ke * (mg - Lg);
|
|
20191
|
+
}, cI = function(We, Ye) {
|
|
20192
|
+
var ke, ve = oe.sq(We), Te = oe.sq(Ye), Fe = (ve + Te - 1) / 6, qe, mg, Lg, og, fg, tg, ug, Sg, Pe, lg, Gg;
|
|
20123
20193
|
return Te === 0 && Fe <= 0 ? ke = 0 : (qe = ve * Te / 4, mg = oe.sq(Fe), Lg = Fe * mg, og = qe * (qe + 2 * Lg), fg = Fe, og >= 0 ? (tg = qe + Lg, tg += tg < 0 ? -Math.sqrt(og) : Math.sqrt(og), ug = oe.cbrt(tg), fg += ug + (ug !== 0 ? mg / ug : 0)) : (Sg = Math.atan2(Math.sqrt(-og), -(qe + Lg)), fg += 2 * Fe * Math.cos(Sg / 3)), Pe = Math.sqrt(oe.sq(fg) + Te), lg = fg < 0 ? Te / (Pe - fg) : fg + Pe, Gg = (lg - Te) / (2 * Pe), ke = lg / (Math.sqrt(lg + oe.sq(Gg)) + Gg)), ke;
|
|
20124
20194
|
}, lI = [1, 4, 64, 0, 256], P.A1m1f = function(We) {
|
|
20125
|
-
var
|
|
20195
|
+
var Ye = Math.floor(Se / 2), ke = oe.polyval(Ye, lI, 0, oe.sq(We)) / lI[Ye + 1];
|
|
20126
20196
|
return (ke + We) / (1 - We);
|
|
20127
|
-
}, dI = [-1, 6, -16, 32, -9, 64, -128, 2048, 9, -16, 768, 3, -5, 512, -7, 1280, -7, 2048], P.C1f = function(We,
|
|
20197
|
+
}, dI = [-1, 6, -16, 32, -9, 64, -128, 2048, 9, -16, 768, 3, -5, 512, -7, 1280, -7, 2048], P.C1f = function(We, Ye) {
|
|
20128
20198
|
var ke = oe.sq(We), ve = We, Te = 0, Fe, qe;
|
|
20129
20199
|
for (Fe = 1; Fe <= P.nC1_; ++Fe)
|
|
20130
|
-
qe = Math.floor((P.nC1_ - Fe) / 2),
|
|
20131
|
-
}, mI = [205, -432, 768, 1536, 4005, -4736, 3840, 12288, -225, 116, 384, -7173, 2695, 7680, 3467, 7680, 38081, 61440], P.C1pf = function(We,
|
|
20200
|
+
qe = Math.floor((P.nC1_ - Fe) / 2), Ye[Fe] = ve * oe.polyval(qe, dI, Te, ke) / dI[Te + qe + 1], Te += qe + 2, ve *= We;
|
|
20201
|
+
}, mI = [205, -432, 768, 1536, 4005, -4736, 3840, 12288, -225, 116, 384, -7173, 2695, 7680, 3467, 7680, 38081, 61440], P.C1pf = function(We, Ye) {
|
|
20132
20202
|
var ke = oe.sq(We), ve = We, Te = 0, Fe, qe;
|
|
20133
20203
|
for (Fe = 1; Fe <= P.nC1p_; ++Fe)
|
|
20134
|
-
qe = Math.floor((P.nC1p_ - Fe) / 2),
|
|
20204
|
+
qe = Math.floor((P.nC1p_ - Fe) / 2), Ye[Fe] = ve * oe.polyval(qe, mI, Te, ke) / mI[Te + qe + 1], Te += qe + 2, ve *= We;
|
|
20135
20205
|
}, pI = [-11, -28, -192, 0, 256], P.A2m1f = function(We) {
|
|
20136
|
-
var
|
|
20206
|
+
var Ye = Math.floor(be / 2), ke = oe.polyval(Ye, pI, 0, oe.sq(We)) / pI[Ye + 1];
|
|
20137
20207
|
return (ke - We) / (1 + We);
|
|
20138
|
-
}, KI = [1, 2, 16, 32, 35, 64, 384, 2048, 15, 80, 768, 7, 35, 512, 63, 1280, 77, 2048], P.C2f = function(We,
|
|
20208
|
+
}, KI = [1, 2, 16, 32, 35, 64, 384, 2048, 15, 80, 768, 7, 35, 512, 63, 1280, 77, 2048], P.C2f = function(We, Ye) {
|
|
20139
20209
|
var ke = oe.sq(We), ve = We, Te = 0, Fe, qe;
|
|
20140
20210
|
for (Fe = 1; Fe <= P.nC2_; ++Fe)
|
|
20141
|
-
qe = Math.floor((P.nC2_ - Fe) / 2),
|
|
20142
|
-
}, P.Geodesic = function(We,
|
|
20143
|
-
if (this.a = We, this.f =
|
|
20211
|
+
qe = Math.floor((P.nC2_ - Fe) / 2), Ye[Fe] = ve * oe.polyval(qe, KI, Te, ke) / KI[Te + qe + 1], Te += qe + 2, ve *= We;
|
|
20212
|
+
}, P.Geodesic = function(We, Ye) {
|
|
20213
|
+
if (this.a = We, this.f = Ye, this._f1 = 1 - this.f, this._e2 = this.f * (2 - this.f), this._ep2 = this._e2 / oe.sq(this._f1), this._n = this.f / (2 - this.f), this._b = this.a * this._f1, this._c2 = (oe.sq(this.a) + oe.sq(this._b) * (this._e2 === 0 ? 1 : (this._e2 > 0 ? oe.atanh(Math.sqrt(this._e2)) : Math.atan(Math.sqrt(-this._e2))) / Math.sqrt(Math.abs(this._e2)))) / 2, this._etol2 = 0.1 * eg / Math.sqrt(Math.max(1e-3, Math.abs(this.f)) * Math.min(1, 1 - this.f / 2) / 2), !(isFinite(this.a) && this.a > 0))
|
|
20144
20214
|
throw new Error("Equatorial radius is not positive");
|
|
20145
20215
|
if (!(isFinite(this._b) && this._b > 0))
|
|
20146
20216
|
throw new Error("Polar semi-axis is not positive");
|
|
20147
20217
|
this._A3x = new Array(me), this._C3x = new Array(Le), this._C4x = new Array(He), this.A3coeff(), this.C3coeff(), this.C4coeff();
|
|
20148
20218
|
}, ZI = [-3, 128, -2, -3, 64, -1, -3, -1, 16, 3, -1, -2, 8, 1, -1, 2, 1, 1], P.Geodesic.prototype.A3coeff = function() {
|
|
20149
|
-
var We = 0,
|
|
20219
|
+
var We = 0, Ye = 0, ke, ve;
|
|
20150
20220
|
for (ke = ye - 1; ke >= 0; --ke)
|
|
20151
|
-
ve = Math.min(ye - ke - 1, ke), this._A3x[
|
|
20221
|
+
ve = Math.min(ye - ke - 1, ke), this._A3x[Ye++] = oe.polyval(ve, ZI, We, this._n) / ZI[We + ve + 1], We += ve + 2;
|
|
20152
20222
|
}, kI = [3, 128, 2, 5, 128, -1, 3, 3, 64, -1, 0, 1, 8, -1, 1, 4, 5, 256, 1, 3, 128, -3, -2, 3, 64, 1, -3, 2, 32, 7, 512, -10, 9, 384, 5, -9, 5, 192, 7, 512, -14, 7, 512, 21, 2560], P.Geodesic.prototype.C3coeff = function() {
|
|
20153
|
-
var We = 0,
|
|
20223
|
+
var We = 0, Ye = 0, ke, ve, Te;
|
|
20154
20224
|
for (ke = 1; ke < P.nC3_; ++ke)
|
|
20155
20225
|
for (ve = P.nC3_ - 1; ve >= ke; --ve)
|
|
20156
|
-
Te = Math.min(P.nC3_ - ve - 1, ve), this._C3x[
|
|
20226
|
+
Te = Math.min(P.nC3_ - ve - 1, ve), this._C3x[Ye++] = oe.polyval(Te, kI, We, this._n) / kI[We + Te + 1], We += Te + 2;
|
|
20157
20227
|
}, QI = [97, 15015, 1088, 156, 45045, -224, -4784, 1573, 45045, -10656, 14144, -4576, -858, 45045, 64, 624, -4576, 6864, -3003, 15015, 100, 208, 572, 3432, -12012, 30030, 45045, 1, 9009, -2944, 468, 135135, 5792, 1040, -1287, 135135, 5952, -11648, 9152, -2574, 135135, -64, -624, 4576, -6864, 3003, 135135, 8, 10725, 1856, -936, 225225, -8448, 4992, -1144, 225225, -1440, 4160, -4576, 1716, 225225, -136, 63063, 1024, -208, 105105, 3584, -3328, 1144, 315315, -128, 135135, -2560, 832, 405405, 128, 99099], P.Geodesic.prototype.C4coeff = function() {
|
|
20158
|
-
var We = 0,
|
|
20228
|
+
var We = 0, Ye = 0, ke, ve, Te;
|
|
20159
20229
|
for (ke = 0; ke < P.nC4_; ++ke)
|
|
20160
20230
|
for (ve = P.nC4_ - 1; ve >= ke; --ve)
|
|
20161
|
-
Te = P.nC4_ - ve - 1, this._C4x[
|
|
20231
|
+
Te = P.nC4_ - ve - 1, this._C4x[Ye++] = oe.polyval(Te, QI, We, this._n) / QI[We + Te + 1], We += Te + 2;
|
|
20162
20232
|
}, P.Geodesic.prototype.A3f = function(We) {
|
|
20163
20233
|
return oe.polyval(me - 1, this._A3x, 0, We);
|
|
20164
|
-
}, P.Geodesic.prototype.C3f = function(We,
|
|
20234
|
+
}, P.Geodesic.prototype.C3f = function(We, Ye) {
|
|
20165
20235
|
var ke = 1, ve = 0, Te, Fe;
|
|
20166
20236
|
for (Te = 1; Te < P.nC3_; ++Te)
|
|
20167
|
-
Fe = P.nC3_ - Te - 1, ke *= We,
|
|
20168
|
-
}, P.Geodesic.prototype.C4f = function(We,
|
|
20237
|
+
Fe = P.nC3_ - Te - 1, ke *= We, Ye[Te] = ke * oe.polyval(Fe, this._C3x, ve, We), ve += Fe + 1;
|
|
20238
|
+
}, P.Geodesic.prototype.C4f = function(We, Ye) {
|
|
20169
20239
|
var ke = 1, ve = 0, Te, Fe;
|
|
20170
20240
|
for (Te = 0; Te < P.nC4_; ++Te)
|
|
20171
|
-
Fe = P.nC4_ - Te - 1,
|
|
20172
|
-
}, P.Geodesic.prototype.Lengths = function(We,
|
|
20241
|
+
Fe = P.nC4_ - Te - 1, Ye[Te] = ke * oe.polyval(Fe, this._C4x, ve, We), ve += Fe + 1, ke *= We;
|
|
20242
|
+
}, P.Geodesic.prototype.Lengths = function(We, Ye, ke, ve, Te, Fe, qe, mg, Lg, og, fg, tg, ug) {
|
|
20173
20243
|
fg &= P.OUT_MASK;
|
|
20174
20244
|
var Sg = {}, Pe = 0, lg = 0, Gg = 0, Kg = 0, Zg, Hg, Ng, zg, vg;
|
|
20175
20245
|
if (fg & (P.DISTANCE | P.REDUCEDLENGTH | P.GEODESICSCALE) && (Gg = P.A1m1f(We), P.C1f(We, tg), fg & (P.REDUCEDLENGTH | P.GEODESICSCALE) && (Kg = P.A2m1f(We), P.C2f(We, ug), Pe = Gg - Kg, Kg = 1 + Kg), Gg = 1 + Gg), fg & P.DISTANCE)
|
|
20176
|
-
Zg = P.SinCosSeries(!0, Fe, qe, tg) - P.SinCosSeries(!0, ke, ve, tg), Sg.s12b = Gg * (
|
|
20246
|
+
Zg = P.SinCosSeries(!0, Fe, qe, tg) - P.SinCosSeries(!0, ke, ve, tg), Sg.s12b = Gg * (Ye + Zg), fg & (P.REDUCEDLENGTH | P.GEODESICSCALE) && (Hg = P.SinCosSeries(!0, Fe, qe, ug) - P.SinCosSeries(!0, ke, ve, ug), lg = Pe * Ye + (Gg * Zg - Kg * Hg));
|
|
20177
20247
|
else if (fg & (P.REDUCEDLENGTH | P.GEODESICSCALE)) {
|
|
20178
20248
|
for (Ng = 1; Ng <= P.nC2_; ++Ng)
|
|
20179
20249
|
ug[Ng] = Gg * tg[Ng] - Kg * ug[Ng];
|
|
20180
|
-
lg = Pe *
|
|
20250
|
+
lg = Pe * Ye + (P.SinCosSeries(!0, Fe, qe, ug) - P.SinCosSeries(!0, ke, ve, ug));
|
|
20181
20251
|
}
|
|
20182
20252
|
return fg & P.REDUCEDLENGTH && (Sg.m0 = Pe, Sg.m12b = mg * (ve * Fe) - Te * (ke * qe) - ve * qe * lg), fg & P.GEODESICSCALE && (zg = ve * qe + ke * Fe, vg = this._ep2 * (Lg - og) * (Lg + og) / (Te + mg), Sg.M12 = zg + (vg * Fe - qe * lg) * ke / Te, Sg.M21 = zg - (vg * ke - ve * lg) * Fe / mg), Sg;
|
|
20183
|
-
}, P.Geodesic.prototype.InverseStart = function(We,
|
|
20184
|
-
var tg = {}, ug = ve *
|
|
20185
|
-
return tg.sig12 = -1, Pe = ve *
|
|
20186
|
-
}, P.Geodesic.prototype.Lambda12 = function(We,
|
|
20253
|
+
}, P.Geodesic.prototype.InverseStart = function(We, Ye, ke, ve, Te, Fe, qe, mg, Lg, og, fg) {
|
|
20254
|
+
var tg = {}, ug = ve * Ye - Te * We, Sg = Te * Ye + ve * We, Pe, lg, Gg, Kg, Zg, Hg, Ng, zg, vg, pg, Ag, dg, Wg, kg, HI, XI, ht, SI, yg, II, jg, tI, aI;
|
|
20255
|
+
return tg.sig12 = -1, Pe = ve * Ye, Pe += Te * We, lg = Sg >= 0 && ug < 0.5 && Te * qe < 0.5, lg ? (Kg = oe.sq(We + ve), Kg /= Kg + oe.sq(Ye + Te), tg.dnm = Math.sqrt(1 + this._ep2 * Kg), Gg = qe / (this._f1 * tg.dnm), Zg = Math.sin(Gg), Hg = Math.cos(Gg)) : (Zg = mg, Hg = Lg), tg.salp1 = Te * Zg, tg.calp1 = Hg >= 0 ? ug + Te * We * oe.sq(Zg) / (1 + Hg) : Pe - Te * We * oe.sq(Zg) / (1 - Hg), zg = oe.hypot(tg.salp1, tg.calp1), vg = We * ve + Ye * Te * Hg, lg && zg < this._etol2 ? (tg.salp2 = Ye * Zg, tg.calp2 = ug - Ye * ve * (Hg >= 0 ? oe.sq(Zg) / (1 + Hg) : 1 - Hg), Ng = oe.hypot(tg.salp2, tg.calp2), tg.salp2 /= Ng, tg.calp2 /= Ng, tg.sig12 = Math.atan2(zg, vg)) : Math.abs(this._n) > 0.1 || vg >= 0 || zg >= 6 * Math.abs(this._n) * Math.PI * oe.sq(Ye) || (aI = Math.atan2(-mg, -Lg), this.f >= 0 ? (kg = oe.sq(We) * this._ep2, HI = kg / (2 * (1 + Math.sqrt(1 + kg)) + kg), dg = this.f * Ye * this.A3f(HI) * Math.PI, Wg = dg * Ye, pg = aI / dg, Ag = Pe / Wg) : (XI = Te * Ye - ve * We, ht = Math.atan2(Pe, XI), II = this.Lengths(this._n, Math.PI + ht, We, -Ye, ke, ve, Te, Fe, Ye, Te, P.REDUCEDLENGTH, og, fg), SI = II.m12b, yg = II.m0, pg = -1 + SI / (Ye * Te * yg * Math.PI), Wg = pg < -0.01 ? Pe / pg : -this.f * oe.sq(Ye) * Math.PI, dg = Wg / Ye, Ag = qe / dg), Ag > -je && pg > -1 - Tg ? this.f >= 0 ? (tg.salp1 = Math.min(1, -pg), tg.calp1 = -Math.sqrt(1 - oe.sq(tg.salp1))) : (tg.calp1 = Math.max(pg > -je ? 0 : -1, pg), tg.salp1 = Math.sqrt(1 - oe.sq(tg.calp1))) : (jg = cI(pg, Ag), tI = dg * (this.f >= 0 ? -pg * jg / (1 + jg) : -Ag * (1 + jg) / jg), Zg = Math.sin(tI), Hg = -Math.cos(tI), tg.salp1 = Te * Zg, tg.calp1 = Pe - Te * We * oe.sq(Zg) / (1 - Hg))), tg.salp1 <= 0 ? (tg.salp1 = 1, tg.calp1 = 0) : (Ng = oe.hypot(tg.salp1, tg.calp1), tg.salp1 /= Ng, tg.calp1 /= Ng), tg;
|
|
20256
|
+
}, P.Geodesic.prototype.Lambda12 = function(We, Ye, ke, ve, Te, Fe, qe, mg, Lg, og, fg, tg, ug, Sg) {
|
|
20187
20257
|
var Pe = {}, lg, Gg, Kg, Zg, Hg, Ng, zg, vg, pg, Ag, dg, Wg, kg;
|
|
20188
|
-
return We === 0 && mg === 0 && (mg = -P.tiny_), Gg = qe *
|
|
20189
|
-
}, P.Geodesic.prototype.Inverse = function(We,
|
|
20258
|
+
return We === 0 && mg === 0 && (mg = -P.tiny_), Gg = qe * Ye, Kg = oe.hypot(mg, qe * We), Pe.ssig1 = We, Zg = Gg * We, Pe.csig1 = Hg = mg * Ye, lg = oe.hypot(Pe.ssig1, Pe.csig1), Pe.ssig1 /= lg, Pe.csig1 /= lg, Pe.salp2 = Te !== Ye ? Gg / Te : qe, Pe.calp2 = Te !== Ye || Math.abs(ve) !== -We ? Math.sqrt(oe.sq(mg * Ye) + (Ye < -We ? (Te - Ye) * (Ye + Te) : (We - ve) * (We + ve))) / Te : Math.abs(mg), Pe.ssig2 = ve, Ng = Gg * ve, Pe.csig2 = zg = Pe.calp2 * Te, lg = oe.hypot(Pe.ssig2, Pe.csig2), Pe.ssig2 /= lg, Pe.csig2 /= lg, Pe.sig12 = Math.atan2(Math.max(0, Pe.csig1 * Pe.ssig2 - Pe.ssig1 * Pe.csig2), Pe.csig1 * Pe.csig2 + Pe.ssig1 * Pe.ssig2), vg = Math.max(0, Hg * Ng - Zg * zg), pg = Hg * zg + Zg * Ng, dg = Math.atan2(vg * og - pg * Lg, pg * og + vg * Lg), Wg = oe.sq(Kg) * this._ep2, Pe.eps = Wg / (2 * (1 + Math.sqrt(1 + Wg)) + Wg), this.C3f(Pe.eps, Sg), Ag = P.SinCosSeries(!0, Pe.ssig2, Pe.csig2, Sg) - P.SinCosSeries(!0, Pe.ssig1, Pe.csig1, Sg), Pe.domg12 = -this.f * this.A3f(Pe.eps) * Gg * (Pe.sig12 + Ag), Pe.lam12 = dg + Pe.domg12, fg && (Pe.calp2 === 0 ? Pe.dlam12 = -2 * this._f1 * ke / We : (kg = this.Lengths(Pe.eps, Pe.sig12, Pe.ssig1, Pe.csig1, ke, Pe.ssig2, Pe.csig2, Fe, Ye, Te, P.REDUCEDLENGTH, tg, ug), Pe.dlam12 = kg.m12b, Pe.dlam12 *= this._f1 / (Pe.calp2 * Te))), Pe;
|
|
20259
|
+
}, P.Geodesic.prototype.Inverse = function(We, Ye, ke, ve, Te) {
|
|
20190
20260
|
var Fe, qe;
|
|
20191
|
-
return Te || (Te = P.STANDARD), Te === P.LONG_UNROLL && (Te |= P.STANDARD), Te &= P.OUT_MASK, Fe = this.InverseInt(We,
|
|
20192
|
-
}, P.Geodesic.prototype.InverseInt = function(We,
|
|
20193
|
-
var Fe = {}, qe, mg, Lg, og, fg, tg, ug, Sg, Pe, lg, Gg, Kg, Zg, Hg, Ng, zg, vg, pg, Ag, dg, Wg, kg, HI, XI, ht, SI, yg, II, jg, tI, aI, Dt, Tt, UI, TI, ut, Bt, mt, pt, Vt, ri, _I, ci, Wt, li, di, hi, sC, ui, zt, Bi, xt, oC,
|
|
20194
|
-
if (Fe.lat1 = We = oe.LatFix(We), Fe.lat2 = ke = oe.LatFix(ke), We = oe.AngRound(We), ke = oe.AngRound(ke), qe = oe.AngDiff(
|
|
20261
|
+
return Te || (Te = P.STANDARD), Te === P.LONG_UNROLL && (Te |= P.STANDARD), Te &= P.OUT_MASK, Fe = this.InverseInt(We, Ye, ke, ve, Te), qe = Fe.vals, Te & P.AZIMUTH && (qe.azi1 = oe.atan2d(Fe.salp1, Fe.calp1), qe.azi2 = oe.atan2d(Fe.salp2, Fe.calp2)), qe;
|
|
20262
|
+
}, P.Geodesic.prototype.InverseInt = function(We, Ye, ke, ve, Te) {
|
|
20263
|
+
var Fe = {}, qe, mg, Lg, og, fg, tg, ug, Sg, Pe, lg, Gg, Kg, Zg, Hg, Ng, zg, vg, pg, Ag, dg, Wg, kg, HI, XI, ht, SI, yg, II, jg, tI, aI, Dt, Tt, UI, TI, ut, Bt, mt, pt, Vt, ri, _I, ci, Wt, li, di, hi, sC, ui, zt, Bi, xt, oC, Et, nC, aC, St, Yt, Gt, mi, pi, vt, kt, yi, Gi;
|
|
20264
|
+
if (Fe.lat1 = We = oe.LatFix(We), Fe.lat2 = ke = oe.LatFix(ke), We = oe.AngRound(We), ke = oe.AngRound(ke), qe = oe.AngDiff(Ye, ve), mg = qe.e, qe = qe.d, Te & P.LONG_UNROLL ? (Fe.lon1 = Ye, Fe.lon2 = Ye + qe + mg) : (Fe.lon1 = oe.AngNormalize(Ye), Fe.lon2 = oe.AngNormalize(ve)), Lg = oe.copysign(1, qe), qe *= Lg, mg *= Lg, Ng = qe * oe.degree, og = oe.sincosde(qe, mg), zg = og.s, vg = og.c, mg = 180 - qe - mg, fg = Math.abs(We) < Math.abs(ke) || isNaN(ke) ? -1 : 1, fg < 0 && (Lg *= -1, [ke, We] = [We, ke]), tg = oe.copysign(1, -We), We *= tg, ke *= tg, og = oe.sincosd(We), ug = this._f1 * og.s, Sg = og.c, og = oe.hypot(ug, Sg), ug /= og, Sg /= og, Sg = Math.max(P.tiny_, Sg), og = oe.sincosd(ke), Pe = this._f1 * og.s, lg = og.c, og = oe.hypot(Pe, lg), Pe /= og, lg /= og, lg = Math.max(P.tiny_, lg), Sg < -ug ? lg === Sg && (Pe = oe.copysign(ug, Pe)) : Math.abs(Pe) === -ug && (lg = Sg), Zg = Math.sqrt(1 + this._ep2 * oe.sq(ug)), Hg = Math.sqrt(1 + this._ep2 * oe.sq(Pe)), HI = new Array(P.nC1_ + 1), XI = new Array(P.nC2_ + 1), ht = new Array(P.nC3_), SI = We === -90 || zg === 0, SI && (Ag = vg, dg = zg, Wg = 1, kg = 0, II = ug, jg = Ag * Sg, tI = Pe, aI = Wg * lg, pg = Math.atan2(Math.max(0, jg * tI - II * aI), jg * aI + II * tI), yg = this.Lengths(this._n, pg, II, jg, Zg, tI, aI, Hg, Sg, lg, Te | P.DISTANCE | P.REDUCEDLENGTH, HI, XI), Gg = yg.s12b, Kg = yg.m12b, Te & P.GEODESICSCALE && (Fe.M12 = yg.M12, Fe.M21 = yg.M21), pg < 1 || Kg >= 0 ? ((pg < 3 * P.tiny_ || pg < Qe && (Gg < 0 || Kg < 0)) && (pg = Kg = Gg = 0), Kg *= this._b, Gg *= this._b, Fe.a12 = pg / oe.degree) : SI = !1), St = 2, !SI && ug === 0 && (this.f <= 0 || mg >= this.f * 180))
|
|
20195
20265
|
Ag = Wg = 0, dg = kg = 1, Gg = this.a * Ng, pg = Tt = Ng / this._f1, Kg = this._b * Math.sin(pg), Te & P.GEODESICSCALE && (Fe.M12 = Fe.M21 = Math.cos(pg)), Fe.a12 = qe / this._f1;
|
|
20196
20266
|
else if (!SI)
|
|
20197
20267
|
if (yg = this.InverseStart(ug, Sg, Zg, Pe, lg, Hg, Ng, zg, vg, HI, XI), pg = yg.sig12, dg = yg.salp1, Ag = yg.calp1, pg >= 0)
|
|
@@ -20204,28 +20274,28 @@ northing meters` + M;
|
|
|
20204
20274
|
}
|
|
20205
20275
|
dg = (ut + mt) / 2, Ag = (Bt + pt) / 2, og = oe.hypot(dg, Ag), dg /= og, Ag /= og, Vt = !1, ri = Math.abs(ut - dg) + (Bt - Ag) < Mg || Math.abs(dg - mt) + (Ag - pt) < Mg;
|
|
20206
20276
|
}
|
|
20207
|
-
sC = Te | (Te & (P.REDUCEDLENGTH | P.GEODESICSCALE) ? P.DISTANCE : P.NONE), yg = this.Lengths(Dt, pg, II, jg, Zg, tI, aI, Hg, Sg, lg, sC, HI, XI), Gg = yg.s12b, Kg = yg.m12b, Te & P.GEODESICSCALE && (Fe.M12 = yg.M12, Fe.M21 = yg.M21), Kg *= this._b, Gg *= this._b, Fe.a12 = pg / oe.degree, Te & P.AREA && (yi = Math.sin(Gt), Gi = Math.cos(Gt), St = zg * Gi - vg * yi,
|
|
20277
|
+
sC = Te | (Te & (P.REDUCEDLENGTH | P.GEODESICSCALE) ? P.DISTANCE : P.NONE), yg = this.Lengths(Dt, pg, II, jg, Zg, tI, aI, Hg, Sg, lg, sC, HI, XI), Gg = yg.s12b, Kg = yg.m12b, Te & P.GEODESICSCALE && (Fe.M12 = yg.M12, Fe.M21 = yg.M21), Kg *= this._b, Gg *= this._b, Fe.a12 = pg / oe.degree, Te & P.AREA && (yi = Math.sin(Gt), Gi = Math.cos(Gt), St = zg * Gi - vg * yi, Yt = vg * Gi + zg * yi);
|
|
20208
20278
|
}
|
|
20209
|
-
return Te & P.DISTANCE && (Fe.s12 = 0 + Gg), Te & P.REDUCEDLENGTH && (Fe.m12 = 0 + Kg), Te & P.AREA && (ui = dg * Sg, zt = oe.hypot(Ag, dg * ug), zt !== 0 && ui !== 0 ? (II = ug, jg = Ag * Sg, tI = Pe, aI = Wg * lg, xt = oe.sq(zt) * this._ep2, Dt = xt / (2 * (1 + Math.sqrt(1 + xt)) + xt), oC = oe.sq(this.a) * zt * ui * this._e2, og = oe.hypot(II, jg), II /= og, jg /= og, og = oe.hypot(tI, aI), tI /= og, aI /= og,
|
|
20210
|
-
}, P.Geodesic.prototype.GenDirect = function(We,
|
|
20279
|
+
return Te & P.DISTANCE && (Fe.s12 = 0 + Gg), Te & P.REDUCEDLENGTH && (Fe.m12 = 0 + Kg), Te & P.AREA && (ui = dg * Sg, zt = oe.hypot(Ag, dg * ug), zt !== 0 && ui !== 0 ? (II = ug, jg = Ag * Sg, tI = Pe, aI = Wg * lg, xt = oe.sq(zt) * this._ep2, Dt = xt / (2 * (1 + Math.sqrt(1 + xt)) + xt), oC = oe.sq(this.a) * zt * ui * this._e2, og = oe.hypot(II, jg), II /= og, jg /= og, og = oe.hypot(tI, aI), tI /= og, aI /= og, Et = new Array(P.nC4_), this.C4f(Dt, Et), nC = P.SinCosSeries(!1, II, jg, Et), aC = P.SinCosSeries(!1, tI, aI, Et), Fe.S12 = oC * (aC - nC)) : Fe.S12 = 0, !SI && St == 2 && (St = Math.sin(Tt), Yt = Math.cos(Tt)), !SI && Yt > -0.7071 && Pe - ug < 1.75 ? (Gt = 1 + Yt, mi = 1 + Sg, pi = 1 + lg, Bi = 2 * Math.atan2(St * (ug * pi + Pe * mi), Gt * (ug * Pe + mi * pi))) : (vt = kg * Ag - Wg * dg, kt = Wg * Ag + kg * dg, vt === 0 && kt < 0 && (vt = P.tiny_ * Ag, kt = -1), Bi = Math.atan2(vt, kt)), Fe.S12 += this._c2 * Bi, Fe.S12 *= fg * Lg * tg, Fe.S12 += 0), fg < 0 && ([kg, dg] = [dg, kg], [Wg, Ag] = [Ag, Wg], Te & P.GEODESICSCALE && ([Fe.M21, Fe.M12] = [Fe.M12, Fe.M21])), dg *= fg * Lg, Ag *= fg * tg, kg *= fg * Lg, Wg *= fg * tg, { vals: Fe, salp1: dg, calp1: Ag, salp2: kg, calp2: Wg };
|
|
20280
|
+
}, P.Geodesic.prototype.GenDirect = function(We, Ye, ke, ve, Te, Fe) {
|
|
20211
20281
|
var qe;
|
|
20212
|
-
return Fe ? Fe === P.LONG_UNROLL && (Fe |= P.STANDARD) : Fe = P.STANDARD, ve || (Fe |= P.DISTANCE_IN), qe = new ee.GeodesicLine(this, We,
|
|
20213
|
-
}, P.Geodesic.prototype.Direct = function(We,
|
|
20214
|
-
return this.GenDirect(We,
|
|
20215
|
-
}, P.Geodesic.prototype.ArcDirect = function(We,
|
|
20216
|
-
return this.GenDirect(We,
|
|
20217
|
-
}, P.Geodesic.prototype.Line = function(We,
|
|
20218
|
-
return new ee.GeodesicLine(this, We,
|
|
20219
|
-
}, P.Geodesic.prototype.DirectLine = function(We,
|
|
20220
|
-
return this.GenDirectLine(We,
|
|
20221
|
-
}, P.Geodesic.prototype.ArcDirectLine = function(We,
|
|
20222
|
-
return this.GenDirectLine(We,
|
|
20223
|
-
}, P.Geodesic.prototype.GenDirectLine = function(We,
|
|
20282
|
+
return Fe ? Fe === P.LONG_UNROLL && (Fe |= P.STANDARD) : Fe = P.STANDARD, ve || (Fe |= P.DISTANCE_IN), qe = new ee.GeodesicLine(this, We, Ye, ke, Fe), qe.GenPosition(ve, Te, Fe);
|
|
20283
|
+
}, P.Geodesic.prototype.Direct = function(We, Ye, ke, ve, Te) {
|
|
20284
|
+
return this.GenDirect(We, Ye, ke, !1, ve, Te);
|
|
20285
|
+
}, P.Geodesic.prototype.ArcDirect = function(We, Ye, ke, ve, Te) {
|
|
20286
|
+
return this.GenDirect(We, Ye, ke, !0, ve, Te);
|
|
20287
|
+
}, P.Geodesic.prototype.Line = function(We, Ye, ke, ve) {
|
|
20288
|
+
return new ee.GeodesicLine(this, We, Ye, ke, ve);
|
|
20289
|
+
}, P.Geodesic.prototype.DirectLine = function(We, Ye, ke, ve, Te) {
|
|
20290
|
+
return this.GenDirectLine(We, Ye, ke, !1, ve, Te);
|
|
20291
|
+
}, P.Geodesic.prototype.ArcDirectLine = function(We, Ye, ke, ve, Te) {
|
|
20292
|
+
return this.GenDirectLine(We, Ye, ke, !0, ve, Te);
|
|
20293
|
+
}, P.Geodesic.prototype.GenDirectLine = function(We, Ye, ke, ve, Te, Fe) {
|
|
20224
20294
|
var qe;
|
|
20225
|
-
return Fe || (Fe = P.STANDARD | P.DISTANCE_IN), ve || (Fe |= P.DISTANCE_IN), qe = new ee.GeodesicLine(this, We,
|
|
20226
|
-
}, P.Geodesic.prototype.InverseLine = function(We,
|
|
20295
|
+
return Fe || (Fe = P.STANDARD | P.DISTANCE_IN), ve || (Fe |= P.DISTANCE_IN), qe = new ee.GeodesicLine(this, We, Ye, ke, Fe), qe.GenSetDistance(ve, Te), qe;
|
|
20296
|
+
}, P.Geodesic.prototype.InverseLine = function(We, Ye, ke, ve, Te) {
|
|
20227
20297
|
var Fe, qe, mg;
|
|
20228
|
-
return Te || (Te = P.STANDARD | P.DISTANCE_IN), Fe = this.InverseInt(We,
|
|
20298
|
+
return Te || (Te = P.STANDARD | P.DISTANCE_IN), Fe = this.InverseInt(We, Ye, ke, ve, P.ARC), mg = oe.atan2d(Fe.salp1, Fe.calp1), Te & (P.OUT_MASK & P.DISTANCE_IN) && (Te |= P.DISTANCE), qe = new ee.GeodesicLine(this, We, Ye, mg, Te, Fe.salp1, Fe.calp1), qe.SetArc(Fe.vals.a12), qe;
|
|
20229
20299
|
}, P.Geodesic.prototype.Polygon = function(We) {
|
|
20230
20300
|
return new Ce.PolygonArea(this, We);
|
|
20231
20301
|
}, P.WGS84 = new P.Geodesic(ne.WGS84.a, ne.WGS84.f);
|
|
@@ -20234,8 +20304,8 @@ northing meters` + M;
|
|
|
20234
20304
|
var Le, He, Ze, Ne, Qe, je;
|
|
20235
20305
|
be || (be = P.STANDARD | P.DISTANCE_IN), this.a = oe.a, this.f = oe.f, this._b = oe._b, this._c2 = oe._c2, this._f1 = oe._f1, this.caps = be | P.LATITUDE | P.AZIMUTH | P.LONG_UNROLL, this.lat1 = Ce.LatFix(ne), this.lon1 = ce, typeof ye > "u" || typeof me > "u" ? (this.azi1 = Ce.AngNormalize(Se), Le = Ce.sincosd(Ce.AngRound(this.azi1)), this.salp1 = Le.s, this.calp1 = Le.c) : (this.azi1 = Se, this.salp1 = ye, this.calp1 = me), Le = Ce.sincosd(Ce.AngRound(this.lat1)), Ze = this._f1 * Le.s, He = Le.c, Le = Ce.hypot(Ze, He), Ze /= Le, He /= Le, He = Math.max(P.tiny_, He), this._dn1 = Math.sqrt(1 + oe._ep2 * Ce.sq(Ze)), this._salp0 = this.salp1 * He, this._calp0 = Ce.hypot(this.calp1, this.salp1 * Ze), this._ssig1 = Ze, this._somg1 = this._salp0 * Ze, this._csig1 = this._comg1 = Ze !== 0 || this.calp1 !== 0 ? He * this.calp1 : 1, Le = Ce.hypot(this._ssig1, this._csig1), this._ssig1 /= Le, this._csig1 /= Le, this._k2 = Ce.sq(this._calp0) * oe._ep2, Ne = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2), this.caps & P.CAP_C1 && (this._A1m1 = P.A1m1f(Ne), this._C1a = new Array(P.nC1_ + 1), P.C1f(Ne, this._C1a), this._B11 = P.SinCosSeries(!0, this._ssig1, this._csig1, this._C1a), Qe = Math.sin(this._B11), je = Math.cos(this._B11), this._stau1 = this._ssig1 * je + this._csig1 * Qe, this._ctau1 = this._csig1 * je - this._ssig1 * Qe), this.caps & P.CAP_C1p && (this._C1pa = new Array(P.nC1p_ + 1), P.C1pf(Ne, this._C1pa)), this.caps & P.CAP_C2 && (this._A2m1 = P.A2m1f(Ne), this._C2a = new Array(P.nC2_ + 1), P.C2f(Ne, this._C2a), this._B21 = P.SinCosSeries(!0, this._ssig1, this._csig1, this._C2a)), this.caps & P.CAP_C3 && (this._C3a = new Array(P.nC3_), oe.C3f(Ne, this._C3a), this._A3c = -this.f * this._salp0 * oe.A3f(Ne), this._B31 = P.SinCosSeries(!0, this._ssig1, this._csig1, this._C3a)), this.caps & P.CAP_C4 && (this._C4a = new Array(P.nC4_), oe.C4f(Ne, this._C4a), this._A4 = Ce.sq(this.a) * this._calp0 * this._salp0 * oe._e2, this._B41 = P.SinCosSeries(!1, this._ssig1, this._csig1, this._C4a)), this.a13 = this.s13 = NaN;
|
|
20236
20306
|
}, ee.GeodesicLine.prototype.GenPosition = function(oe, ne, ce) {
|
|
20237
|
-
var Se = {}, be, ye, me, Le, He, Ze, Ne, Qe, je, eg, Mg, Tg, Vg, Jg, Og, cI, lI, dI, mI, pI, KI, ZI, kI, QI, We,
|
|
20238
|
-
return ce ? ce === P.LONG_UNROLL && (ce |= P.STANDARD) : ce = P.STANDARD, ce &= this.caps & P.OUT_MASK, Se.lat1 = this.lat1, Se.azi1 = this.azi1, Se.lon1 = ce & P.LONG_UNROLL ? this.lon1 : Ce.AngNormalize(this.lon1), oe ? Se.a12 = ne : Se.s12 = ne, oe || this.caps & P.DISTANCE_IN & P.OUT_MASK ? (Le = 0, He = 0, oe ? (be = ne * Ce.degree,
|
|
20307
|
+
var Se = {}, be, ye, me, Le, He, Ze, Ne, Qe, je, eg, Mg, Tg, Vg, Jg, Og, cI, lI, dI, mI, pI, KI, ZI, kI, QI, We, Ye, ke, ve, Te;
|
|
20308
|
+
return ce ? ce === P.LONG_UNROLL && (ce |= P.STANDARD) : ce = P.STANDARD, ce &= this.caps & P.OUT_MASK, Se.lat1 = this.lat1, Se.azi1 = this.azi1, Se.lon1 = ce & P.LONG_UNROLL ? this.lon1 : Ce.AngNormalize(this.lon1), oe ? Se.a12 = ne : Se.s12 = ne, oe || this.caps & P.DISTANCE_IN & P.OUT_MASK ? (Le = 0, He = 0, oe ? (be = ne * Ce.degree, Ye = Ce.sincosd(ne), ye = Ye.s, me = Ye.c) : (Qe = ne / (this._b * (1 + this._A1m1)), je = Math.sin(Qe), eg = Math.cos(Qe), Le = -P.SinCosSeries(!0, this._stau1 * eg + this._ctau1 * je, this._ctau1 * eg - this._stau1 * je, this._C1pa), be = Qe - (Le - this._B11), ye = Math.sin(be), me = Math.cos(be), Math.abs(this.f) > 0.01 && (Ze = this._ssig1 * me + this._csig1 * ye, Ne = this._csig1 * me - this._ssig1 * ye, Le = P.SinCosSeries(!0, Ze, Ne, this._C1a), Mg = (1 + this._A1m1) * (be + (Le - this._B11)) - ne / this._b, be = be - Mg / Math.sqrt(1 + this._k2 * Ce.sq(Ze)), ye = Math.sin(be), me = Math.cos(be))), Ze = this._ssig1 * me + this._csig1 * ye, Ne = this._csig1 * me - this._ssig1 * ye, ZI = Math.sqrt(1 + this._k2 * Ce.sq(Ze)), ce & (P.DISTANCE | P.REDUCEDLENGTH | P.GEODESICSCALE) && ((oe || Math.abs(this.f) > 0.01) && (Le = P.SinCosSeries(!0, Ze, Ne, this._C1a)), He = (1 + this._A1m1) * (Le - this._B11)), cI = this._calp0 * Ze, lI = Ce.hypot(this._salp0, this._calp0 * Ne), lI === 0 && (lI = Ne = P.tiny_), pI = this._salp0, KI = this._calp0 * Ne, oe && ce & P.DISTANCE && (Se.s12 = this._b * ((1 + this._A1m1) * be + He)), ce & P.LONGITUDE && (dI = this._salp0 * Ze, mI = Ne, Og = Ce.copysign(1, this._salp0), Tg = ce & P.LONG_UNROLL ? Og * (be - (Math.atan2(Ze, Ne) - Math.atan2(this._ssig1, this._csig1)) + (Math.atan2(Og * dI, mI) - Math.atan2(Og * this._somg1, this._comg1))) : Math.atan2(dI * this._comg1 - mI * this._somg1, mI * this._comg1 + dI * this._somg1), Vg = Tg + this._A3c * (be + (P.SinCosSeries(!0, Ze, Ne, this._C3a) - this._B31)), Jg = Vg / Ce.degree, Se.lon2 = ce & P.LONG_UNROLL ? this.lon1 + Jg : Ce.AngNormalize(Ce.AngNormalize(this.lon1) + Ce.AngNormalize(Jg))), ce & P.LATITUDE && (Se.lat2 = Ce.atan2d(cI, this._f1 * lI)), ce & P.AZIMUTH && (Se.azi2 = Ce.atan2d(pI, KI)), ce & (P.REDUCEDLENGTH | P.GEODESICSCALE) && (kI = P.SinCosSeries(!0, Ze, Ne, this._C2a), QI = (1 + this._A2m1) * (kI - this._B21), We = (this._A1m1 - this._A2m1) * be + (He - QI), ce & P.REDUCEDLENGTH && (Se.m12 = this._b * (ZI * (this._csig1 * Ze) - this._dn1 * (this._ssig1 * Ne) - this._csig1 * Ne * We)), ce & P.GEODESICSCALE && (Ye = this._k2 * (Ze - this._ssig1) * (Ze + this._ssig1) / (this._dn1 + ZI), Se.M12 = me + (Ye * Ze - Ne * We) * this._ssig1 / this._dn1, Se.M21 = me - (Ye * this._ssig1 - this._csig1 * We) * Ze / ZI)), ce & P.AREA && (ke = P.SinCosSeries(!1, Ze, Ne, this._C4a), this._calp0 === 0 || this._salp0 === 0 ? (ve = pI * this.calp1 - KI * this.salp1, Te = KI * this.calp1 + pI * this.salp1) : (ve = this._calp0 * this._salp0 * (me <= 0 ? this._csig1 * (1 - me) + ye * this._ssig1 : ye * (this._csig1 * ye / (1 + me) + this._ssig1)), Te = Ce.sq(this._salp0) + Ce.sq(this._calp0) * this._csig1 * Ne), Se.S12 = this._c2 * Math.atan2(ve, Te) + this._A4 * (ke - this._B41)), oe || (Se.a12 = be / Ce.degree), Se) : (Se.a12 = NaN, Se);
|
|
20239
20309
|
}, ee.GeodesicLine.prototype.Position = function(oe, ne) {
|
|
20240
20310
|
return this.GenPosition(!1, oe, ne);
|
|
20241
20311
|
}, ee.GeodesicLine.prototype.ArcPosition = function(oe, ne) {
|
|
@@ -20298,16 +20368,16 @@ northing meters` + M;
|
|
|
20298
20368
|
var N = M.x, Y = M.y, P = Math.sin(M.y), ee = Math.cos(M.y), Ce = _e(N - this.long0), oe, ne, ce, Se, be, ye, me, Le, He, Ze, Ne, Qe, je, eg, Mg;
|
|
20299
20369
|
return this.sphere ? Math.abs(this.sin_p12 - 1) <= W ? (M.x = this.x0 + this.a * (b - Y) * Math.sin(Ce), M.y = this.y0 - this.a * (b - Y) * Math.cos(Ce), M) : Math.abs(this.sin_p12 + 1) <= W ? (M.x = this.x0 + this.a * (b + Y) * Math.sin(Ce), M.y = this.y0 + this.a * (b + Y) * Math.cos(Ce), M) : (He = this.sin_p12 * P + this.cos_p12 * ee * Math.cos(Ce), me = Math.acos(He), Le = me ? me / Math.sin(me) : 1, M.x = this.x0 + this.a * Le * ee * Math.sin(Ce), M.y = this.y0 + this.a * Le * (this.cos_p12 * P - this.sin_p12 * ee * Math.cos(Ce)), M) : (oe = $I(this.es), ne = et(this.es), ce = It(this.es), Se = tt(this.es), Math.abs(this.sin_p12 - 1) <= W ? (be = this.a * qg(oe, ne, ce, Se, b), ye = this.a * qg(oe, ne, ce, Se, Y), M.x = this.x0 + (be - ye) * Math.sin(Ce), M.y = this.y0 - (be - ye) * Math.cos(Ce), M) : Math.abs(this.sin_p12 + 1) <= W ? (be = this.a * qg(oe, ne, ce, Se, b), ye = this.a * qg(oe, ne, ce, Se, Y), M.x = this.x0 + (be + ye) * Math.sin(Ce), M.y = this.y0 + (be + ye) * Math.cos(Ce), M) : Math.abs(N) < W && Math.abs(Y - this.lat0) < W ? (M.x = M.y = 0, M) : (Ze = this.lat0 / z, Ne = this.long0 / z, Qe = Y / z, je = N / z, eg = this.g.Inverse(Ze, Ne, Qe, je, this.g.AZIMUTH), Mg = eg.azi1 * z, M.x = eg.s12 * Math.sin(Mg), M.y = eg.s12 * Math.cos(Mg), M));
|
|
20300
20370
|
}
|
|
20301
|
-
function
|
|
20371
|
+
function En(M) {
|
|
20302
20372
|
M.x -= this.x0, M.y -= this.y0;
|
|
20303
20373
|
var N, Y, P, ee, Ce, oe, ne, ce, Se, be, ye, me, Le, He, Ze, Ne, Qe, je;
|
|
20304
20374
|
return this.sphere ? (N = Math.sqrt(M.x * M.x + M.y * M.y), N > 2 * b * this.a ? void 0 : (Y = N / this.a, P = Math.sin(Y), ee = Math.cos(Y), Ce = this.long0, Math.abs(N) <= W ? oe = this.lat0 : (oe = LI(ee * this.sin_p12 + M.y * P * this.cos_p12 / N), ne = Math.abs(this.lat0) - b, Math.abs(ne) <= W ? this.lat0 >= 0 ? Ce = _e(this.long0 + Math.atan2(M.x, -M.y)) : Ce = _e(this.long0 - Math.atan2(-M.x, M.y)) : Ce = _e(this.long0 + Math.atan2(M.x * P, N * this.cos_p12 * ee - M.y * this.sin_p12 * P))), M.x = Ce, M.y = oe, M)) : (ce = $I(this.es), Se = et(this.es), be = It(this.es), ye = tt(this.es), Math.abs(this.sin_p12 - 1) <= W ? (me = this.a * qg(ce, Se, be, ye, b), N = Math.sqrt(M.x * M.x + M.y * M.y), Le = me - N, oe = Ht(Le / this.a, ce, Se, be, ye), Ce = _e(this.long0 + Math.atan2(M.x, -1 * M.y)), M.x = Ce, M.y = oe, M) : Math.abs(this.sin_p12 + 1) <= W ? (me = this.a * qg(ce, Se, be, ye, b), N = Math.sqrt(M.x * M.x + M.y * M.y), Le = N - me, oe = Ht(Le / this.a, ce, Se, be, ye), Ce = _e(this.long0 + Math.atan2(M.x, M.y)), M.x = Ce, M.y = oe, M) : (He = this.lat0 / z, Ze = this.long0 / z, Ne = Math.atan2(M.x, M.y) / z, Qe = Math.sqrt(M.x * M.x + M.y * M.y), je = this.g.Direct(He, Ze, Ne, Qe, this.g.STANDARD), M.x = je.lon2 * z, M.y = je.lat2 * z, M));
|
|
20305
20375
|
}
|
|
20306
|
-
var
|
|
20376
|
+
var Yn = ["Azimuthal_Equidistant", "aeqd"], vn = {
|
|
20307
20377
|
init: zn,
|
|
20308
20378
|
forward: xn,
|
|
20309
|
-
inverse:
|
|
20310
|
-
names:
|
|
20379
|
+
inverse: En,
|
|
20380
|
+
names: Yn
|
|
20311
20381
|
};
|
|
20312
20382
|
function kn() {
|
|
20313
20383
|
this.sin_p14 = Math.sin(this.lat0), this.cos_p14 = Math.cos(this.lat0);
|
|
@@ -20349,7 +20419,7 @@ northing meters` + M;
|
|
|
20349
20419
|
Ce = b + Y, P >= w && P <= b + w ? (ce.value = wg.AREA_0, ee = -P + b) : P < w && P >= -w ? (ce.value = wg.AREA_1, ee = -P) : P < -w && P >= -(b + w) ? (ce.value = wg.AREA_2, ee = -P - b) : (ce.value = wg.AREA_3, ee = P > 0 ? -P + Z : -P - Z);
|
|
20350
20420
|
else {
|
|
20351
20421
|
var Se, be, ye, me, Le, He, Ze;
|
|
20352
|
-
this.face === Rg.RIGHT ? P =
|
|
20422
|
+
this.face === Rg.RIGHT ? P = YI(P, +b) : this.face === Rg.BACK ? P = YI(P, 3.14159265359) : this.face === Rg.LEFT && (P = YI(P, -b)), me = Math.sin(Y), Le = Math.cos(Y), He = Math.sin(P), Ze = Math.cos(P), Se = Le * Ze, be = Le * He, ye = me, this.face === Rg.FRONT ? (Ce = Math.acos(Se), ee = Xt(Ce, ye, be, ce)) : this.face === Rg.RIGHT ? (Ce = Math.acos(be), ee = Xt(Ce, ye, -Se, ce)) : this.face === Rg.BACK ? (Ce = Math.acos(-Se), ee = Xt(Ce, ye, -be, ce)) : this.face === Rg.LEFT ? (Ce = Math.acos(-be), ee = Xt(Ce, ye, Se, ce)) : (Ce = ee = 0, ce.value = wg.AREA_0);
|
|
20353
20423
|
}
|
|
20354
20424
|
return ne = Math.atan(12 / Z * (ee + Math.acos(Math.sin(ee) * Math.cos(w)) - b)), oe = Math.sqrt((1 - Math.cos(Ce)) / (Math.cos(ne) * Math.cos(ne)) / (1 - Math.cos(Math.atan(1 / Math.cos(ee))))), ce.value === wg.AREA_1 ? ne += b : ce.value === wg.AREA_2 ? ne += Z : ce.value === wg.AREA_3 && (ne += 1.5 * Z), N.x = oe * Math.cos(ne), N.y = oe * Math.sin(ne), N.x = N.x * this.a + this.x0, N.y = N.y * this.a + this.y0, M.x = N.x, M.y = N.y, M;
|
|
20355
20425
|
}
|
|
@@ -20361,7 +20431,7 @@ northing meters` + M;
|
|
|
20361
20431
|
Se = Math.acos(ce), N.phi = Se - b, ye.value === wg.AREA_0 ? N.lam = -ne + b : ye.value === wg.AREA_1 ? N.lam = -ne : ye.value === wg.AREA_2 ? N.lam = -ne - b : N.lam = ne < 0 ? -ne - Z : -ne + Z;
|
|
20362
20432
|
else {
|
|
20363
20433
|
var me, Le, He;
|
|
20364
|
-
me = ce, be = me * me, be >= 1 ? He = 0 : He = Math.sqrt(1 - be) * Math.sin(ne), be += He * He, be >= 1 ? Le = 0 : Le = Math.sqrt(1 - be), ye.value === wg.AREA_1 ? (be = Le, Le = -He, He = be) : ye.value === wg.AREA_2 ? (Le = -Le, He = -He) : ye.value === wg.AREA_3 && (be = Le, Le = He, He = -be), this.face === Rg.RIGHT ? (be = me, me = -Le, Le = be) : this.face === Rg.BACK ? (me = -me, Le = -Le) : this.face === Rg.LEFT && (be = me, me = Le, Le = -be), N.phi = Math.acos(-He) - b, N.lam = Math.atan2(Le, me), this.face === Rg.RIGHT ? N.lam =
|
|
20434
|
+
me = ce, be = me * me, be >= 1 ? He = 0 : He = Math.sqrt(1 - be) * Math.sin(ne), be += He * He, be >= 1 ? Le = 0 : Le = Math.sqrt(1 - be), ye.value === wg.AREA_1 ? (be = Le, Le = -He, He = be) : ye.value === wg.AREA_2 ? (Le = -Le, He = -He) : ye.value === wg.AREA_3 && (be = Le, Le = He, He = -be), this.face === Rg.RIGHT ? (be = me, me = -Le, Le = be) : this.face === Rg.BACK ? (me = -me, Le = -Le) : this.face === Rg.LEFT && (be = me, me = Le, Le = -be), N.phi = Math.acos(-He) - b, N.lam = Math.atan2(Le, me), this.face === Rg.RIGHT ? N.lam = YI(N.lam, -b) : this.face === Rg.BACK ? N.lam = YI(N.lam, -3.14159265359) : this.face === Rg.LEFT && (N.lam = YI(N.lam, +b));
|
|
20365
20435
|
}
|
|
20366
20436
|
if (this.es !== 0) {
|
|
20367
20437
|
var Ze, Ne, Qe;
|
|
@@ -20373,7 +20443,7 @@ northing meters` + M;
|
|
|
20373
20443
|
var ee;
|
|
20374
20444
|
return M < W ? (P.value = wg.AREA_0, ee = 0) : (ee = Math.atan2(N, Y), Math.abs(ee) <= w ? P.value = wg.AREA_0 : ee > w && ee <= b + w ? (P.value = wg.AREA_1, ee -= b) : ee > b + w || ee <= -(b + w) ? (P.value = wg.AREA_2, ee = ee >= 0 ? ee - Z : ee + Z) : (P.value = wg.AREA_3, ee += b)), ee;
|
|
20375
20445
|
}
|
|
20376
|
-
function
|
|
20446
|
+
function YI(M, N) {
|
|
20377
20447
|
var Y = M + N;
|
|
20378
20448
|
return Y < -3.14159265359 ? Y += T : Y > 3.14159265359 && (Y -= T), Y;
|
|
20379
20449
|
}
|
|
@@ -20694,7 +20764,7 @@ northing meters` + M;
|
|
|
20694
20764
|
function Ta(M) {
|
|
20695
20765
|
M.Proj.projections.add(Kt), M.Proj.projections.add(Zt), M.Proj.projections.add(ws), M.Proj.projections.add(Ns), M.Proj.projections.add(zs), M.Proj.projections.add(ks), M.Proj.projections.add(Os), M.Proj.projections.add(go), M.Proj.projections.add(so), M.Proj.projections.add(ro), M.Proj.projections.add(Zo), M.Proj.projections.add(To), M.Proj.projections.add(xo), M.Proj.projections.add(Qo), M.Proj.projections.add(jo), M.Proj.projections.add(tn), M.Proj.projections.add(an), M.Proj.projections.add(dn), M.Proj.projections.add(yn), M.Proj.projections.add(Mn), M.Proj.projections.add(Xn), M.Proj.projections.add(Vn), M.Proj.projections.add(vn), M.Proj.projections.add(_n), M.Proj.projections.add($n), M.Proj.projections.add(oa), M.Proj.projections.add(ca), M.Proj.projections.add(Ba), M.Proj.projections.add(Ga), M.Proj.projections.add(La), M.Proj.projections.add(Da);
|
|
20696
20766
|
}
|
|
20697
|
-
return nI.defaultDatum = "WGS84", nI.Proj = BI, nI.WGS84 = new nI.Proj("WGS84"), nI.Point = zI, nI.toPoint = Vi, nI.defs = Ig, nI.nadgrid = wC, nI.transform = Lt, nI.mgrs =
|
|
20767
|
+
return nI.defaultDatum = "WGS84", nI.Proj = BI, nI.WGS84 = new nI.Proj("WGS84"), nI.Point = zI, nI.toPoint = Vi, nI.defs = Ig, nI.nadgrid = wC, nI.transform = Lt, nI.mgrs = YC, nI.version = "2.17.0", Ta(nI), nI;
|
|
20698
20768
|
});
|
|
20699
20769
|
})(proj4Src);
|
|
20700
20770
|
const proj4 = proj4Src.exports;
|
|
@@ -22403,6 +22473,8 @@ attribute vec2 offset;
|
|
|
22403
22473
|
varying vec2 v_uv;
|
|
22404
22474
|
varying float v_type;
|
|
22405
22475
|
varying float v_iconOpacity;
|
|
22476
|
+
varying float vScale;
|
|
22477
|
+
varying float opacityRatio;
|
|
22406
22478
|
|
|
22407
22479
|
varying vec4 vStrokeStyles;
|
|
22408
22480
|
varying vec4 vFillStyles;
|
|
@@ -22446,10 +22518,16 @@ vec3 transformCoord(vec3 coord, vec2 size, float corner, float rotateZ) {
|
|
|
22446
22518
|
#include <logdepthbuf_pars_vertex>
|
|
22447
22519
|
#include <mvt_keepsize_pars_vertex>
|
|
22448
22520
|
#include <mvt_extra_vertex_utils>
|
|
22521
|
+
#include <mvt_animation_pars_vertex>
|
|
22449
22522
|
void main() {
|
|
22450
22523
|
v_uv = uv;
|
|
22451
22524
|
v_type = type;
|
|
22452
22525
|
|
|
22526
|
+
opacityRatio = 1.0;
|
|
22527
|
+
vScale = 1.0;
|
|
22528
|
+
|
|
22529
|
+
#include <mvt_animation_label_vertex>
|
|
22530
|
+
|
|
22453
22531
|
mat4 currentInstanceMatrix = mat4(1.0);
|
|
22454
22532
|
vec3 currentPosition = position;
|
|
22455
22533
|
#ifdef IS_GLOBE
|
|
@@ -22463,6 +22541,10 @@ void main() {
|
|
|
22463
22541
|
currentPosition = vec3(0.0, 0.0, 0.0);
|
|
22464
22542
|
#endif
|
|
22465
22543
|
|
|
22544
|
+
#ifdef ENABLE_ANIMATION_JUMP
|
|
22545
|
+
currentPosition.z += jumpHeight;
|
|
22546
|
+
#endif
|
|
22547
|
+
|
|
22466
22548
|
vec4 worldPosition = (modelMatrix * currentInstanceMatrix * vec4(currentPosition, 1.0));
|
|
22467
22549
|
|
|
22468
22550
|
#ifdef RENDER_IN_POSTPROCESS
|
|
@@ -22479,8 +22561,8 @@ void main() {
|
|
|
22479
22561
|
v_iconOpacity = fillStyles.w;
|
|
22480
22562
|
// vec4 worldPosition = modelMatrix * vec4(position, 1.0);
|
|
22481
22563
|
if (u_flat) {
|
|
22482
|
-
float hw = wh.x * 0.5;
|
|
22483
|
-
float hh = wh.y * 0.5;
|
|
22564
|
+
float hw = wh.x * 0.5 * vScale;
|
|
22565
|
+
float hh = wh.y * 0.5 * vScale;
|
|
22484
22566
|
|
|
22485
22567
|
if (keepSize) {
|
|
22486
22568
|
float pixelSize = getPixelSize(worldPosition.xyz);
|
|
@@ -22488,6 +22570,9 @@ void main() {
|
|
|
22488
22570
|
hh *= pixelSize;
|
|
22489
22571
|
}
|
|
22490
22572
|
|
|
22573
|
+
#ifdef ENABLE_ANIMATION_ROTATE
|
|
22574
|
+
iconRotateZ += rotation;
|
|
22575
|
+
#endif
|
|
22491
22576
|
vec3 current = transformCoord(currentPosition, vec2(hw, hh), pIndex, -iconRotateZ);
|
|
22492
22577
|
|
|
22493
22578
|
gl_Position = projectionMatrix * modelViewMatrix * currentInstanceMatrix * vec4(current, 1.0);
|
|
@@ -22500,12 +22585,12 @@ void main() {
|
|
|
22500
22585
|
float w = gl_Position.w;
|
|
22501
22586
|
gl_Position /= w;
|
|
22502
22587
|
|
|
22503
|
-
float hw = wh.x / resolution.x;
|
|
22504
|
-
float hh = wh.y / resolution.y;
|
|
22588
|
+
float hw = wh.x / resolution.x * vScale;
|
|
22589
|
+
float hh = wh.y / resolution.y * vScale;
|
|
22505
22590
|
|
|
22506
22591
|
float pixelSize = getPixelSize(worldPosition.xyz);
|
|
22507
|
-
float iconOffsetX = offset.x * 2.0 / resolution.x;
|
|
22508
|
-
float iconOffsetY = offset.y * 2.0 / resolution.y;
|
|
22592
|
+
float iconOffsetX = offset.x * 2.0 / resolution.x * vScale;
|
|
22593
|
+
float iconOffsetY = offset.y * 2.0 / resolution.y * vScale;
|
|
22509
22594
|
if (!keepSize) {
|
|
22510
22595
|
hw = hw / pixelSize;
|
|
22511
22596
|
hh = hh / pixelSize;
|
|
@@ -22550,12 +22635,12 @@ void main() {
|
|
|
22550
22635
|
textRotateZ += PI;
|
|
22551
22636
|
}
|
|
22552
22637
|
// TODO \u652F\u6301offset
|
|
22553
|
-
float hw = wh.x * 0.5;
|
|
22554
|
-
float hh = wh.y * 0.5;
|
|
22638
|
+
float hw = wh.x * 0.5 * vScale;
|
|
22639
|
+
float hh = wh.y * 0.5 * vScale;
|
|
22555
22640
|
|
|
22556
22641
|
float pixelSize = getPixelSize(worldPosition.xyz);
|
|
22557
|
-
float xOffset = offset.x;
|
|
22558
|
-
float yOffset = offset.y;
|
|
22642
|
+
float xOffset = offset.x * vScale;
|
|
22643
|
+
float yOffset = offset.y * vScale;
|
|
22559
22644
|
if (keepSize) {
|
|
22560
22645
|
hw = hw * pixelSize;
|
|
22561
22646
|
hh = hh * pixelSize;
|
|
@@ -22564,8 +22649,10 @@ void main() {
|
|
|
22564
22649
|
yOffset *= pixelSize;
|
|
22565
22650
|
}
|
|
22566
22651
|
|
|
22652
|
+
#ifdef ENABLE_ANIMATION_ROTATE
|
|
22653
|
+
textRotateZ += rotation;
|
|
22654
|
+
#endif
|
|
22567
22655
|
vec3 transformedPoint = transformCoord(currentPosition, vec2(xOffset, yOffset), 2.0, -textRotateZ);
|
|
22568
|
-
|
|
22569
22656
|
vec3 current = transformCoord(transformedPoint, vec2(hw, hh), pIndex, -textRotateZ);
|
|
22570
22657
|
|
|
22571
22658
|
gl_Position = projectionMatrix * modelViewMatrix * currentInstanceMatrix * vec4(current, 1.0);
|
|
@@ -22581,11 +22668,11 @@ void main() {
|
|
|
22581
22668
|
float w = pos.w;
|
|
22582
22669
|
vec3 screen = pos.xyz / w;
|
|
22583
22670
|
|
|
22584
|
-
float hw = wh.x / resolution.x;
|
|
22585
|
-
float hh = wh.y / resolution.y;
|
|
22671
|
+
float hw = wh.x / resolution.x * vScale;
|
|
22672
|
+
float hh = wh.y / resolution.y * vScale;
|
|
22586
22673
|
|
|
22587
|
-
float textOffsetX = offset.x * 2.0 / resolution.x;
|
|
22588
|
-
float textOffsetY = offset.y * 2.0 / resolution.y;
|
|
22674
|
+
float textOffsetX = offset.x * 2.0 / resolution.x * vScale;
|
|
22675
|
+
float textOffsetY = offset.y * 2.0 / resolution.y * vScale;
|
|
22589
22676
|
if (!keepSize) {
|
|
22590
22677
|
float pixelSize = getPixelSize(worldPosition.xyz);
|
|
22591
22678
|
hw = hw / pixelSize;
|
|
@@ -22733,9 +22820,169 @@ class CommonShaderMaterial extends ShaderMaterial {
|
|
|
22733
22820
|
this.setValues(e);
|
|
22734
22821
|
}
|
|
22735
22822
|
}
|
|
22736
|
-
const
|
|
22823
|
+
const commonUniforms = {
|
|
22824
|
+
height: { value: 0 },
|
|
22825
|
+
size: { value: 1 },
|
|
22826
|
+
size3: { value: [1, 1, 1] },
|
|
22827
|
+
resolution: { value: [1, 1] },
|
|
22828
|
+
zoomUnits: { value: 1 },
|
|
22829
|
+
color: { value: [1, 0, 0] },
|
|
22830
|
+
opacity: { value: 1 }
|
|
22831
|
+
}, animationUnifroms = {
|
|
22832
|
+
animationRotatePeriod: { value: 4e3 },
|
|
22833
|
+
animationJumpPeriod: { value: 4e3 },
|
|
22834
|
+
animationJumpHeight: { value: 30 },
|
|
22835
|
+
animationPeriodOffset: { value: !1 },
|
|
22836
|
+
animationEffect: { value: !0 },
|
|
22837
|
+
animationEffectPeriod: { value: 4e3 },
|
|
22838
|
+
animationPeriod: { value: 4e3 }
|
|
22839
|
+
}, defineCommonProperties = (r) => {
|
|
22840
|
+
Object.defineProperties(r, {
|
|
22841
|
+
color: {
|
|
22842
|
+
get: function() {
|
|
22843
|
+
return this.uniforms.color.value;
|
|
22844
|
+
},
|
|
22845
|
+
set: function(i) {
|
|
22846
|
+
this.uniforms.color.value = normalizeColor(i);
|
|
22847
|
+
}
|
|
22848
|
+
},
|
|
22849
|
+
height: {
|
|
22850
|
+
get: function() {
|
|
22851
|
+
return this.uniforms.height.value;
|
|
22852
|
+
},
|
|
22853
|
+
set: function(i) {
|
|
22854
|
+
this.uniforms.height.value = i;
|
|
22855
|
+
}
|
|
22856
|
+
},
|
|
22857
|
+
size: {
|
|
22858
|
+
get: function() {
|
|
22859
|
+
return this.uniforms.size.value;
|
|
22860
|
+
},
|
|
22861
|
+
set: function(i) {
|
|
22862
|
+
this.uniforms.size.value = i;
|
|
22863
|
+
}
|
|
22864
|
+
},
|
|
22865
|
+
size3: {
|
|
22866
|
+
get: function() {
|
|
22867
|
+
return this.uniforms.size3.value;
|
|
22868
|
+
},
|
|
22869
|
+
set: function(i) {
|
|
22870
|
+
Array.isArray(i) && i.length === 3 && (this.uniforms.size3.value = i);
|
|
22871
|
+
}
|
|
22872
|
+
},
|
|
22873
|
+
useSize3: {
|
|
22874
|
+
get: function() {
|
|
22875
|
+
return this.defines.USE_SIZE3;
|
|
22876
|
+
},
|
|
22877
|
+
set: function(i) {
|
|
22878
|
+
i === this.defines.USE_SIZE3 && (this.defines.USE_SIZE3 = !!i), this.needsUpdate = !0;
|
|
22879
|
+
}
|
|
22880
|
+
},
|
|
22881
|
+
opacity: {
|
|
22882
|
+
get: function() {
|
|
22883
|
+
return this.uniforms.opacity.value;
|
|
22884
|
+
},
|
|
22885
|
+
set: function(i) {
|
|
22886
|
+
this.uniforms.opacity.value = i;
|
|
22887
|
+
}
|
|
22888
|
+
}
|
|
22889
|
+
});
|
|
22890
|
+
}, defineAnimationProperties = (r) => {
|
|
22891
|
+
Object.defineProperties(r, {
|
|
22892
|
+
animationRotate: {
|
|
22893
|
+
get: function() {
|
|
22894
|
+
return !!this.defines.ENABLE_ANIMATION_ROTATE;
|
|
22895
|
+
},
|
|
22896
|
+
set: function(i) {
|
|
22897
|
+
i !== this.animationRotate && (i ? this.defines.ENABLE_ANIMATION_ROTATE = !0 : delete this.defines.ENABLE_ANIMATION_ROTATE, this.needsUpdate = !0);
|
|
22898
|
+
}
|
|
22899
|
+
},
|
|
22900
|
+
animationRotatePeriod: {
|
|
22901
|
+
get: function() {
|
|
22902
|
+
return this.uniforms.animationRotatePeriod.value;
|
|
22903
|
+
},
|
|
22904
|
+
set: function(i) {
|
|
22905
|
+
this.uniforms.animationRotatePeriod.value = i;
|
|
22906
|
+
}
|
|
22907
|
+
},
|
|
22908
|
+
animationJump: {
|
|
22909
|
+
get: function() {
|
|
22910
|
+
return !!this.defines.ENABLE_ANIMATION_JUMP;
|
|
22911
|
+
},
|
|
22912
|
+
set: function(i) {
|
|
22913
|
+
i !== this.animationJump && (i ? this.defines.ENABLE_ANIMATION_JUMP = !0 : delete this.defines.ENABLE_ANIMATION_JUMP, this.needsUpdate = !0);
|
|
22914
|
+
}
|
|
22915
|
+
},
|
|
22916
|
+
animationJumpPeriod: {
|
|
22917
|
+
get: function() {
|
|
22918
|
+
return this.uniforms.animationJumpPeriod.value;
|
|
22919
|
+
},
|
|
22920
|
+
set: function(i) {
|
|
22921
|
+
this.uniforms.animationJumpPeriod.value = i;
|
|
22922
|
+
}
|
|
22923
|
+
},
|
|
22924
|
+
animationJumpHeight: {
|
|
22925
|
+
get: function() {
|
|
22926
|
+
return this.uniforms.animationJumpHeight.value;
|
|
22927
|
+
},
|
|
22928
|
+
set: function(i) {
|
|
22929
|
+
this.uniforms.animationJumpHeight.value = i;
|
|
22930
|
+
}
|
|
22931
|
+
},
|
|
22932
|
+
animationPeriodOffset: {
|
|
22933
|
+
get: function() {
|
|
22934
|
+
return this.uniforms.animationPeriodOffset.value;
|
|
22935
|
+
},
|
|
22936
|
+
set: function(i) {
|
|
22937
|
+
this.uniforms.animationPeriodOffset.value = i;
|
|
22938
|
+
}
|
|
22939
|
+
},
|
|
22940
|
+
animationEffect: {
|
|
22941
|
+
get: function() {
|
|
22942
|
+
return this.uniforms.animationEffect.value;
|
|
22943
|
+
},
|
|
22944
|
+
set: function(i) {
|
|
22945
|
+
this.uniforms.animationEffect.value = i;
|
|
22946
|
+
}
|
|
22947
|
+
},
|
|
22948
|
+
animationEffectPeriod: {
|
|
22949
|
+
get: function() {
|
|
22950
|
+
return this.uniforms.animationEffectPeriod.value;
|
|
22951
|
+
},
|
|
22952
|
+
set: function(i) {
|
|
22953
|
+
this.uniforms.animationEffectPeriod.value = i;
|
|
22954
|
+
}
|
|
22955
|
+
},
|
|
22956
|
+
animationScale: {
|
|
22957
|
+
get: function() {
|
|
22958
|
+
return !!this.defines.ENABLE_ANIMATION_SCALE;
|
|
22959
|
+
},
|
|
22960
|
+
set: function(i) {
|
|
22961
|
+
i !== this.animationScale && (i ? this.defines.ENABLE_ANIMATION_SCALE = !0 : delete this.defines.ENABLE_ANIMATION_SCALE, this.needsUpdate = !0);
|
|
22962
|
+
}
|
|
22963
|
+
},
|
|
22964
|
+
animationBreath: {
|
|
22965
|
+
get: function() {
|
|
22966
|
+
return !!this.defines.ENABLE_ANIMATION_BREATH;
|
|
22967
|
+
},
|
|
22968
|
+
set: function(i) {
|
|
22969
|
+
i !== this.animationBreath && (i ? this.defines.ENABLE_ANIMATION_BREATH = !0 : delete this.defines.ENABLE_ANIMATION_BREATH, this.needsUpdate = !0);
|
|
22970
|
+
}
|
|
22971
|
+
},
|
|
22972
|
+
animationPeriod: {
|
|
22973
|
+
get: function() {
|
|
22974
|
+
return this.uniforms.animationPeriod.value;
|
|
22975
|
+
},
|
|
22976
|
+
set: function(i) {
|
|
22977
|
+
this.uniforms.animationPeriod.value = i;
|
|
22978
|
+
}
|
|
22979
|
+
}
|
|
22980
|
+
});
|
|
22981
|
+
}, uniforms$s = UniformsUtils.merge([
|
|
22737
22982
|
UniformsLib.fog,
|
|
22738
22983
|
selectiveUniforms,
|
|
22984
|
+
commonUniforms,
|
|
22985
|
+
animationUnifroms,
|
|
22739
22986
|
{
|
|
22740
22987
|
spriteMap: { value: null },
|
|
22741
22988
|
textMap: { value: null },
|
|
@@ -22743,6 +22990,10 @@ const uniforms$s = UniformsUtils.merge([
|
|
|
22743
22990
|
useMap: { value: !1 },
|
|
22744
22991
|
pixelOffset: { value: [0, 0] },
|
|
22745
22992
|
positionOffset: { value: [0, 0, 0] },
|
|
22993
|
+
targetScale: { value: 2 },
|
|
22994
|
+
minScale: { value: 0 },
|
|
22995
|
+
maxScale: { value: 2 },
|
|
22996
|
+
opacityGradient: { value: !1 },
|
|
22746
22997
|
opacity: { value: 1 },
|
|
22747
22998
|
keepSize: {
|
|
22748
22999
|
value: !0
|
|
@@ -22766,7 +23017,7 @@ const uniforms$s = UniformsUtils.merge([
|
|
|
22766
23017
|
]), textureLoader$b = new TextureLoader();
|
|
22767
23018
|
class SymbolMaterial extends CommonShaderMaterial {
|
|
22768
23019
|
constructor(i) {
|
|
22769
|
-
super(), this.name = "SymbolMaterial", this.vertexShader = vertexShader$t, this.fragmentShader = fragmentShader$r, this.transparent = !0, this.depthTest = !1, this._mapSrc = "", Object.assign(this.uniforms, UniformsUtils.clone(uniforms$s)), defineMaterialKeepSizeProperties(this), defineMaterialAliasProperties(this, [
|
|
23020
|
+
super(), this.name = "SymbolMaterial", this.vertexShader = vertexShader$t, this.fragmentShader = fragmentShader$r, this.transparent = !0, this.depthTest = !1, this._mapSrc = "", Object.assign(this.uniforms, UniformsUtils.clone(uniforms$s)), defineCommonProperties(this), defineAnimationProperties(this), defineMaterialKeepSizeProperties(this), defineMaterialAliasProperties(this, [
|
|
22770
23021
|
["flat", "u_flat"]
|
|
22771
23022
|
]), defineMaterialBoolDefineProperties(this, [
|
|
22772
23023
|
["isRenderInPostprocess", "RENDER_IN_POSTPROCESS"],
|
|
@@ -25671,7 +25922,7 @@ class EventThrottle {
|
|
|
25671
25922
|
return this._isBusy;
|
|
25672
25923
|
}
|
|
25673
25924
|
}
|
|
25674
|
-
const
|
|
25925
|
+
const Eg = class {
|
|
25675
25926
|
constructor(i) {
|
|
25676
25927
|
K(this, "_mouse", new Vector2$1());
|
|
25677
25928
|
K(this, "_mousePosition", new Vector2$1());
|
|
@@ -25703,7 +25954,7 @@ const Yg = class {
|
|
|
25703
25954
|
for (const te of s)
|
|
25704
25955
|
!z || !z[te] || z[te].length === 0 || D.push(te);
|
|
25705
25956
|
const H = z && Object.keys(z) || [];
|
|
25706
|
-
(H.includes(
|
|
25957
|
+
(H.includes(Eg.EVENT_NAME_MOUSE_ENTER) || H.includes(Eg.EVENT_NAME_MOUSE_LEAVE)) && (W = !0), G.isEventEntitySupported ? R = new EntityProxy(G, u) : R = null;
|
|
25707
25958
|
let w = !1, T = !1, Z = null;
|
|
25708
25959
|
if (W)
|
|
25709
25960
|
if (h.set(G, R), !this._lastMouseEnterLeaveObjects.has(G))
|
|
@@ -25713,9 +25964,9 @@ const Yg = class {
|
|
|
25713
25964
|
G.isEventEntitySupported && !this._isSameEntity(R, te) && (w = !0, T = !0, Z = te);
|
|
25714
25965
|
}
|
|
25715
25966
|
for (const te of D) {
|
|
25716
|
-
if (L[te] || te ===
|
|
25967
|
+
if (L[te] || te === Eg.EVENT_NAME_MOUSE_ENTER && !w)
|
|
25717
25968
|
continue;
|
|
25718
|
-
if (te ===
|
|
25969
|
+
if (te === Eg.EVENT_NAME_MOUSE_LEAVE) {
|
|
25719
25970
|
if (!T)
|
|
25720
25971
|
continue;
|
|
25721
25972
|
Z && (R = Z);
|
|
@@ -25733,25 +25984,25 @@ const Yg = class {
|
|
|
25733
25984
|
return s !== void 0 && s === o;
|
|
25734
25985
|
});
|
|
25735
25986
|
K(this, "_handlePointerDown", (i) => {
|
|
25736
|
-
this._eventThrottle.putEvent(
|
|
25987
|
+
this._eventThrottle.putEvent(Eg.EVENT_NAME_POINTER_DOWN, i), this._engine.requestRender();
|
|
25737
25988
|
});
|
|
25738
25989
|
K(this, "_handlePointerUp", (i) => {
|
|
25739
|
-
this._eventThrottle.putEvent(
|
|
25990
|
+
this._eventThrottle.putEvent(Eg.EVENT_NAME_POINTER_UP, i), this._engine.requestRender();
|
|
25740
25991
|
});
|
|
25741
25992
|
K(this, "_handleClick", (i) => {
|
|
25742
|
-
this._eventThrottle.putEvent(
|
|
25993
|
+
this._eventThrottle.putEvent(Eg.EVENT_NAME_CLICK, i), this._engine.requestRender();
|
|
25743
25994
|
});
|
|
25744
25995
|
K(this, "_handleDblClick", (i) => {
|
|
25745
|
-
this._eventThrottle.putEvent(
|
|
25996
|
+
this._eventThrottle.putEvent(Eg.EVENT_NAME_DOUBLE_CLICK, i), this._engine.requestRender();
|
|
25746
25997
|
});
|
|
25747
25998
|
K(this, "_handleRightClick", (i) => {
|
|
25748
|
-
this._eventThrottle.putEvent(
|
|
25999
|
+
this._eventThrottle.putEvent(Eg.EVENT_NAME_RIGHT_CLICK, i), this._engine.requestRender();
|
|
25749
26000
|
});
|
|
25750
26001
|
K(this, "_handleRightDblClick", (i) => {
|
|
25751
|
-
this._eventThrottle.putEvent(
|
|
26002
|
+
this._eventThrottle.putEvent(Eg.EVENT_NAME_RIGHT_DOUBLE_CLICK, i), this._engine.requestRender();
|
|
25752
26003
|
});
|
|
25753
26004
|
K(this, "_handleMouseMove", (i) => {
|
|
25754
|
-
this._eventThrottle.putEvent(
|
|
26005
|
+
this._eventThrottle.putEvent(Eg.EVENT_NAME_MOUSE_MOVE, i), this._eventThrottle.putEvent(Eg.EVENT_NAME_MOUSE_ENTER, i), this._eventThrottle.putEvent(Eg.EVENT_NAME_MOUSE_LEAVE, i), this._engine.requestRender();
|
|
25755
26006
|
});
|
|
25756
26007
|
K(this, "_updateMouse", (i) => {
|
|
25757
26008
|
const e = this._engine, s = e.map.getResolution();
|
|
@@ -25774,9 +26025,9 @@ const Yg = class {
|
|
|
25774
26025
|
for (const [o, a] of s)
|
|
25775
26026
|
if (!e.has(o)) {
|
|
25776
26027
|
const c = o._listeners;
|
|
25777
|
-
if (!c || !c[
|
|
26028
|
+
if (!c || !c[Eg.EVENT_NAME_MOUSE_LEAVE] || c[Eg.EVENT_NAME_MOUSE_LEAVE].length === 0)
|
|
25778
26029
|
continue;
|
|
25779
|
-
const l = i[
|
|
26030
|
+
const l = i[Eg.EVENT_NAME_MOUSE_MOVE], h = c[Eg.EVENT_NAME_MOUSE_LEAVE], u = new EventParams(this._engine, l, a);
|
|
25780
26031
|
u.target = o, u.currentTarget = o, u.intersection = a && a.intersection, this._executeCallbacks(h, u);
|
|
25781
26032
|
}
|
|
25782
26033
|
}
|
|
@@ -25828,7 +26079,7 @@ const Yg = class {
|
|
|
25828
26079
|
dispose() {
|
|
25829
26080
|
}
|
|
25830
26081
|
};
|
|
25831
|
-
let EngineEvent =
|
|
26082
|
+
let EngineEvent = Eg;
|
|
25832
26083
|
K(EngineEvent, "EVENT_NAME_CLICK", "click"), K(EngineEvent, "EVENT_NAME_DOUBLE_CLICK", "dblclick"), K(EngineEvent, "EVENT_NAME_RIGHT_CLICK", "rightclick"), K(EngineEvent, "EVENT_NAME_RIGHT_DOUBLE_CLICK", "rightdblclick"), K(EngineEvent, "EVENT_NAME_MOUSE_MOVE", "mousemove"), K(EngineEvent, "EVENT_NAME_MOUSE_ENTER", "mouseenter"), K(EngineEvent, "EVENT_NAME_MOUSE_LEAVE", "mouseleave"), K(EngineEvent, "EVENT_NAME_POINTER_DOWN", "pointerdown"), K(EngineEvent, "EVENT_NAME_POINTER_UP", "pointerup");
|
|
25833
26084
|
const _raycaster$6 = new CustomRaycaster(), _defaultPickEventNames = [
|
|
25834
26085
|
EngineEvent.EVENT_NAME_CLICK,
|
|
@@ -30510,7 +30761,7 @@ async function handleZoom(r, i, e, s, o, a) {
|
|
|
30510
30761
|
fe,
|
|
30511
30762
|
U
|
|
30512
30763
|
);
|
|
30513
|
-
const
|
|
30764
|
+
const Ee = scratchPan;
|
|
30514
30765
|
Cartesian3.multiplyByScalar(
|
|
30515
30766
|
Cartesian3.add(
|
|
30516
30767
|
Cartesian3.multiplyByScalar(
|
|
@@ -30526,8 +30777,8 @@ async function handleZoom(r, i, e, s, o, a) {
|
|
|
30526
30777
|
scratchCartesian$3
|
|
30527
30778
|
),
|
|
30528
30779
|
fe,
|
|
30529
|
-
|
|
30530
|
-
), Cartesian3.add(U,
|
|
30780
|
+
Ee
|
|
30781
|
+
), Cartesian3.add(U, Ee, U), Cartesian3.normalize(j, De), Cartesian3.normalize(
|
|
30531
30782
|
Cartesian3.cross(De, Ke, scratchCartesian$3),
|
|
30532
30783
|
ae
|
|
30533
30784
|
);
|
|
@@ -35064,7 +35315,7 @@ class RasterSurfaceTileManager extends SurfaceTileManager {
|
|
|
35064
35315
|
u.push(""), z = !0;
|
|
35065
35316
|
}
|
|
35066
35317
|
}
|
|
35067
|
-
z ? l++ : W || c++;
|
|
35318
|
+
z && S.length === 0 ? l++ : W || c++;
|
|
35068
35319
|
}
|
|
35069
35320
|
const G = u.join("|");
|
|
35070
35321
|
let b = DATA_STATE_CAN_RENDER;
|
|
@@ -38796,16 +39047,17 @@ class EngineMap extends EventDispatcher {
|
|
|
38796
39047
|
let a = o.provider;
|
|
38797
39048
|
if (a === null || (a || (a = new BaiduVectorTileProvider()), !a))
|
|
38798
39049
|
return;
|
|
38799
|
-
let c = null, l = null;
|
|
39050
|
+
let c = null, l = null, h;
|
|
38800
39051
|
if (a.isVectorTileProvider)
|
|
38801
|
-
l = a;
|
|
39052
|
+
l = a, h = null;
|
|
38802
39053
|
else if (a.isImageryTileProvider)
|
|
38803
39054
|
c = a;
|
|
38804
39055
|
else
|
|
38805
39056
|
throw new Error("invalid tile provider");
|
|
38806
39057
|
this._mapView = this._engine.add(new MapView({
|
|
38807
39058
|
vectorProvider: l,
|
|
38808
|
-
imageryProvider: c
|
|
39059
|
+
imageryProvider: c,
|
|
39060
|
+
terrainProvider: h
|
|
38809
39061
|
}));
|
|
38810
39062
|
}
|
|
38811
39063
|
setCenter(e) {
|
|
@@ -60530,165 +60782,7 @@ class GeoInstancedPointMesh extends GeoInstancedMesh {
|
|
|
60530
60782
|
super.computeInstanceMorphMatrix(e);
|
|
60531
60783
|
}
|
|
60532
60784
|
}
|
|
60533
|
-
const
|
|
60534
|
-
height: { value: 0 },
|
|
60535
|
-
size: { value: 1 },
|
|
60536
|
-
size3: { value: [1, 1, 1] },
|
|
60537
|
-
resolution: { value: [1, 1] },
|
|
60538
|
-
zoomUnits: { value: 1 },
|
|
60539
|
-
color: { value: [1, 0, 0] },
|
|
60540
|
-
opacity: { value: 1 }
|
|
60541
|
-
}, animationUnifroms = {
|
|
60542
|
-
animationRotatePeriod: { value: 4e3 },
|
|
60543
|
-
animationJumpPeriod: { value: 4e3 },
|
|
60544
|
-
animationJumpHeight: { value: 30 },
|
|
60545
|
-
animationPeriodOffset: { value: !1 },
|
|
60546
|
-
animationEffect: { value: !0 },
|
|
60547
|
-
animationEffectPeriod: { value: 4e3 },
|
|
60548
|
-
animationPeriod: { value: 4e3 }
|
|
60549
|
-
}, defineCommonProperties = (r) => {
|
|
60550
|
-
Object.defineProperties(r, {
|
|
60551
|
-
color: {
|
|
60552
|
-
get: function() {
|
|
60553
|
-
return this.uniforms.color.value;
|
|
60554
|
-
},
|
|
60555
|
-
set: function(i) {
|
|
60556
|
-
this.uniforms.color.value = normalizeColor(i);
|
|
60557
|
-
}
|
|
60558
|
-
},
|
|
60559
|
-
height: {
|
|
60560
|
-
get: function() {
|
|
60561
|
-
return this.uniforms.height.value;
|
|
60562
|
-
},
|
|
60563
|
-
set: function(i) {
|
|
60564
|
-
this.uniforms.height.value = i;
|
|
60565
|
-
}
|
|
60566
|
-
},
|
|
60567
|
-
size: {
|
|
60568
|
-
get: function() {
|
|
60569
|
-
return this.uniforms.size.value;
|
|
60570
|
-
},
|
|
60571
|
-
set: function(i) {
|
|
60572
|
-
this.uniforms.size.value = i;
|
|
60573
|
-
}
|
|
60574
|
-
},
|
|
60575
|
-
size3: {
|
|
60576
|
-
get: function() {
|
|
60577
|
-
return this.uniforms.size3.value;
|
|
60578
|
-
},
|
|
60579
|
-
set: function(i) {
|
|
60580
|
-
Array.isArray(i) && i.length === 3 && (this.uniforms.size3.value = i);
|
|
60581
|
-
}
|
|
60582
|
-
},
|
|
60583
|
-
useSize3: {
|
|
60584
|
-
get: function() {
|
|
60585
|
-
return this.defines.USE_SIZE3;
|
|
60586
|
-
},
|
|
60587
|
-
set: function(i) {
|
|
60588
|
-
i === this.defines.USE_SIZE3 && (this.defines.USE_SIZE3 = !!i), this.needsUpdate = !0;
|
|
60589
|
-
}
|
|
60590
|
-
},
|
|
60591
|
-
opacity: {
|
|
60592
|
-
get: function() {
|
|
60593
|
-
return this.uniforms.opacity.value;
|
|
60594
|
-
},
|
|
60595
|
-
set: function(i) {
|
|
60596
|
-
this.uniforms.opacity.value = i;
|
|
60597
|
-
}
|
|
60598
|
-
}
|
|
60599
|
-
});
|
|
60600
|
-
}, defineAnimationProperties = (r) => {
|
|
60601
|
-
Object.defineProperties(r, {
|
|
60602
|
-
animationRotate: {
|
|
60603
|
-
get: function() {
|
|
60604
|
-
return !!this.defines.ENABLE_ANIMATION_ROTATE;
|
|
60605
|
-
},
|
|
60606
|
-
set: function(i) {
|
|
60607
|
-
i !== this.animationRotate && (i ? this.defines.ENABLE_ANIMATION_ROTATE = !0 : delete this.defines.ENABLE_ANIMATION_ROTATE, this.needsUpdate = !0);
|
|
60608
|
-
}
|
|
60609
|
-
},
|
|
60610
|
-
animationRotatePeriod: {
|
|
60611
|
-
get: function() {
|
|
60612
|
-
return this.uniforms.animationRotatePeriod.value;
|
|
60613
|
-
},
|
|
60614
|
-
set: function(i) {
|
|
60615
|
-
this.uniforms.animationRotatePeriod.value = i;
|
|
60616
|
-
}
|
|
60617
|
-
},
|
|
60618
|
-
animationJump: {
|
|
60619
|
-
get: function() {
|
|
60620
|
-
return !!this.defines.ENABLE_ANIMATION_JUMP;
|
|
60621
|
-
},
|
|
60622
|
-
set: function(i) {
|
|
60623
|
-
i !== this.animationJump && (i ? this.defines.ENABLE_ANIMATION_JUMP = !0 : delete this.defines.ENABLE_ANIMATION_JUMP, this.needsUpdate = !0);
|
|
60624
|
-
}
|
|
60625
|
-
},
|
|
60626
|
-
animationJumpPeriod: {
|
|
60627
|
-
get: function() {
|
|
60628
|
-
return this.uniforms.animationJumpPeriod.value;
|
|
60629
|
-
},
|
|
60630
|
-
set: function(i) {
|
|
60631
|
-
this.uniforms.animationJumpPeriod.value = i;
|
|
60632
|
-
}
|
|
60633
|
-
},
|
|
60634
|
-
animationJumpHeight: {
|
|
60635
|
-
get: function() {
|
|
60636
|
-
return this.uniforms.animationJumpHeight.value;
|
|
60637
|
-
},
|
|
60638
|
-
set: function(i) {
|
|
60639
|
-
this.uniforms.animationJumpHeight.value = i;
|
|
60640
|
-
}
|
|
60641
|
-
},
|
|
60642
|
-
animationPeriodOffset: {
|
|
60643
|
-
get: function() {
|
|
60644
|
-
return this.uniforms.animationPeriodOffset.value;
|
|
60645
|
-
},
|
|
60646
|
-
set: function(i) {
|
|
60647
|
-
this.uniforms.animationPeriodOffset.value = i;
|
|
60648
|
-
}
|
|
60649
|
-
},
|
|
60650
|
-
animationEffect: {
|
|
60651
|
-
get: function() {
|
|
60652
|
-
return this.uniforms.animationEffect.value;
|
|
60653
|
-
},
|
|
60654
|
-
set: function(i) {
|
|
60655
|
-
this.uniforms.animationEffect.value = i;
|
|
60656
|
-
}
|
|
60657
|
-
},
|
|
60658
|
-
animationEffectPeriod: {
|
|
60659
|
-
get: function() {
|
|
60660
|
-
return this.uniforms.animationEffectPeriod.value;
|
|
60661
|
-
},
|
|
60662
|
-
set: function(i) {
|
|
60663
|
-
this.uniforms.animationEffectPeriod.value = i;
|
|
60664
|
-
}
|
|
60665
|
-
},
|
|
60666
|
-
animationScale: {
|
|
60667
|
-
get: function() {
|
|
60668
|
-
return !!this.defines.ENABLE_ANIMATION_SCALE;
|
|
60669
|
-
},
|
|
60670
|
-
set: function(i) {
|
|
60671
|
-
i !== this.animationScale && (i ? this.defines.ENABLE_ANIMATION_SCALE = !0 : delete this.defines.ENABLE_ANIMATION_SCALE, this.needsUpdate = !0);
|
|
60672
|
-
}
|
|
60673
|
-
},
|
|
60674
|
-
animationBreath: {
|
|
60675
|
-
get: function() {
|
|
60676
|
-
return !!this.defines.ENABLE_ANIMATION_BREATH;
|
|
60677
|
-
},
|
|
60678
|
-
set: function(i) {
|
|
60679
|
-
i !== this.animationBreath && (i ? this.defines.ENABLE_ANIMATION_BREATH = !0 : delete this.defines.ENABLE_ANIMATION_BREATH, this.needsUpdate = !0);
|
|
60680
|
-
}
|
|
60681
|
-
},
|
|
60682
|
-
animationPeriod: {
|
|
60683
|
-
get: function() {
|
|
60684
|
-
return this.uniforms.animationPeriod.value;
|
|
60685
|
-
},
|
|
60686
|
-
set: function(i) {
|
|
60687
|
-
this.uniforms.animationPeriod.value = i;
|
|
60688
|
-
}
|
|
60689
|
-
}
|
|
60690
|
-
});
|
|
60691
|
-
}, uniforms$i = UniformsUtils.merge([
|
|
60785
|
+
const uniforms$i = UniformsUtils.merge([
|
|
60692
60786
|
UniformsLib.fog,
|
|
60693
60787
|
commonUniforms,
|
|
60694
60788
|
animationUnifroms,
|
|
@@ -65149,16 +65243,16 @@ class Text extends GeoMesh {
|
|
|
65149
65243
|
Ve + 3,
|
|
65150
65244
|
Ve + 2
|
|
65151
65245
|
);
|
|
65152
|
-
const De = Ge.x / b, Ke = (Ge.x + Ge.w) / b,
|
|
65246
|
+
const De = Ge.x / b, Ke = (Ge.x + Ge.w) / b, Ee = (Ge.y + Ge.h) / L, $e = Ge.y / L;
|
|
65153
65247
|
D.push(
|
|
65154
65248
|
De,
|
|
65155
|
-
|
|
65249
|
+
Ee,
|
|
65156
65250
|
De,
|
|
65157
65251
|
$e,
|
|
65158
65252
|
Ke,
|
|
65159
65253
|
$e,
|
|
65160
65254
|
Ke,
|
|
65161
|
-
|
|
65255
|
+
Ee
|
|
65162
65256
|
), w.push(Ge.index, Ge.index, Ge.index, Ge.index), this.parameters.vertexRotateZs && T.push(Ge.rotateZ, Ge.rotateZ, Ge.rotateZ, Ge.rotateZ);
|
|
65163
65257
|
}
|
|
65164
65258
|
a.restore();
|
|
@@ -65781,7 +65875,7 @@ class SDFText extends GeoGroup {
|
|
|
65781
65875
|
} = ae || {}, Re = Array.from(j).map((sg) => sg + he), Ve = this._letterSpacing * this._fontSettings.fontSize, {
|
|
65782
65876
|
x: De,
|
|
65783
65877
|
y: Ke,
|
|
65784
|
-
rowWidth:
|
|
65878
|
+
rowWidth: Ee,
|
|
65785
65879
|
rowNum: $e,
|
|
65786
65880
|
heightSize: Ue,
|
|
65787
65881
|
textHeights: Je,
|
|
@@ -65812,13 +65906,13 @@ class SDFText extends GeoGroup {
|
|
|
65812
65906
|
null,
|
|
65813
65907
|
a
|
|
65814
65908
|
), a.elements[12] = 0, a.elements[13] = 0, a.elements[14] = 0;
|
|
65815
|
-
for (let
|
|
65909
|
+
for (let Yg = 0; Yg < 4; Yg++)
|
|
65816
65910
|
for (let Fg = 0; Fg < 16; Fg++)
|
|
65817
65911
|
W.push(a.elements[Fg]);
|
|
65818
65912
|
}
|
|
65819
65913
|
if (G.push(0, 1, 2, 3), this.alignRotate) {
|
|
65820
|
-
const
|
|
65821
|
-
Cg +=
|
|
65914
|
+
const Yg = Je[sg], Fg = Cg + Yg / 2 - Bg;
|
|
65915
|
+
Cg += Yg, w.push(
|
|
65822
65916
|
Fg,
|
|
65823
65917
|
Fg,
|
|
65824
65918
|
Fg,
|
|
@@ -65869,7 +65963,7 @@ class SDFText extends GeoGroup {
|
|
|
65869
65963
|
oI,
|
|
65870
65964
|
VI
|
|
65871
65965
|
);
|
|
65872
|
-
const $g = (1 - TEXT_ALIGN[this.textAlign]) * (Oe -
|
|
65966
|
+
const $g = (1 - TEXT_ALIGN[this.textAlign]) * (Oe - Ee[sg]) / 2, GI = Xe[0] * re + fe, _e = Xe[1] * re + Me, Dg = (0 - 1) * Oe / 2 + $g + De[sg] + GI, Ug = gg / $e * ($e - 1) / 2 - Ke[sg] + _e, AI = re * (ng / this._fontSettings.fontSize);
|
|
65873
65967
|
if (H.push(
|
|
65874
65968
|
AI,
|
|
65875
65969
|
re,
|
|
@@ -65918,8 +66012,8 @@ class SDFText extends GeoGroup {
|
|
|
65918
66012
|
Ge[1],
|
|
65919
66013
|
Ge[2]
|
|
65920
66014
|
), this.parameters.vertexRotateZs && z.push(we, we, we, we), this._enableFade) {
|
|
65921
|
-
const
|
|
65922
|
-
T.push(
|
|
66015
|
+
const Yg = Ie.fadeOpacity || 1e-3, Fg = Ie.fadeSince || 0;
|
|
66016
|
+
T.push(Yg, Yg, Yg, Yg), Z.push(Fg, Fg, Fg, Fg);
|
|
65923
66017
|
}
|
|
65924
66018
|
ig++;
|
|
65925
66019
|
}
|
|
@@ -68070,8 +68164,8 @@ class FatLineGeometry extends ShadowVolumeLineGeometry {
|
|
|
68070
68164
|
for (let fe = 0; fe < c - 1; fe++) {
|
|
68071
68165
|
if (p0Scratch.fromArray(s[fe]), p1Scratch$2.fromArray(s[fe + 1]), k.crossVectors(p0Scratch, p1Scratch$2).normalize(), fe < c - 2) {
|
|
68072
68166
|
Ellipsoid.WGS84.geodeticSurfaceNormal(p1Scratch$2, ue), p2Scratch$2.fromArray(s[fe + 2]), j.crossVectors(p1Scratch$2, p2Scratch$2).normalize();
|
|
68073
|
-
const { isFlip:
|
|
68074
|
-
Ge = Be, re.curFlip = !
|
|
68167
|
+
const { isFlip: Ee } = computeVertexMiterNormal(p0Scratch, p1Scratch$2, p2Scratch$2, ue, Be);
|
|
68168
|
+
Ge = Be, re.curFlip = !Ee;
|
|
68075
68169
|
} else
|
|
68076
68170
|
Ge = k;
|
|
68077
68171
|
const Me = ae || k;
|
|
@@ -68141,8 +68235,8 @@ class FatLineGeometry extends ShadowVolumeLineGeometry {
|
|
|
68141
68235
|
const Ge = negativeNormalScratch.copy(b).negate(), we = D ? negativeMiterScratch.copy(D).negate() : void 0, fe = W.last, Me = W.next;
|
|
68142
68236
|
let Xe = b, Re = Ge, Ve = w, De = w;
|
|
68143
68237
|
re ? (Re = we, De = fe) : (Xe = D || b, Ve = fe);
|
|
68144
|
-
let Ke = Be / 3,
|
|
68145
|
-
if (
|
|
68238
|
+
let Ke = Be / 3, Ee = a.cartographicToCartesian(k, cartesian);
|
|
68239
|
+
if (Ee.toArray(h, Be), Xe.toArray(H, Be), T[Ke] = te, $[Ke * 2] = te, $[Ke * 2 + 1] = 0, Z[Ke * 2] = Ve, Z[Ke * 2 + 1] = -1, ie[Ke] = 1, Be += 3, Ke = Be / 3, Ee.toArray(h, Be), Re.toArray(H, Be), Z[Ke * 2] = De, Z[Ke * 2 + 1] = -1, T[Ke] = te, $[Ke * 2] = te, $[Ke * 2 + 1] = 1, ie[Ke] = 1, Be += 3, V > 1) {
|
|
68146
68240
|
const Oe = ellipsoidGeodesic.interpolateUsingSurfaceDistance(
|
|
68147
68241
|
ue,
|
|
68148
68242
|
cartoNext
|
|
@@ -68159,7 +68253,7 @@ class FatLineGeometry extends ShadowVolumeLineGeometry {
|
|
|
68159
68253
|
), V === Oe + 1 ? $e = j : ($e = ellipsoidGeodesic.interpolateUsingSurfaceDistance(
|
|
68160
68254
|
(Oe + 1) * ue,
|
|
68161
68255
|
cartoNext
|
|
68162
|
-
), $e.z = ae[Oe + 1]), carto3.z = ae[Oe], cartesianPrev.copy(cartesian),
|
|
68256
|
+
), $e.z = ae[Oe + 1]), carto3.z = ae[Oe], cartesianPrev.copy(cartesian), Ee = a.cartographicToCartesian(carto3, cartesian), a.cartographicToCartesian($e, cartesianNext), Ke = Be / 3, Ee.toArray(h, Be), b.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = 1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 0, ie[Ke] = -1, Be += 3, Ke = Be / 3, Ee.toArray(h, Be), Ge.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = 1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 1, ie[Ke] = -1, Be += 3, Ke = Be / 3, Ee.toArray(h, Be), b.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = -1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 0, ie[Ke] = 1, Be += 3, Ke = Be / 3, Ee.toArray(h, Be), Ge.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = -1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 1, ie[Ke] = 1, Be += 3;
|
|
68163
68257
|
const Ue = ellipsoidGeodesic.surfaceDistance;
|
|
68164
68258
|
cartesianOffset.subVectors(cartesian, cartesianNext), cartesianOffset.add(cartesian), a.cartographicToCartesian(j, cartesian2);
|
|
68165
68259
|
const Je = R ? negativeMiterScratch.copy(R).negate() : void 0;
|
|
@@ -69526,14 +69620,14 @@ var inSphere = { exports: {} };
|
|
|
69526
69620
|
}
|
|
69527
69621
|
function b(H, w, T, Z) {
|
|
69528
69622
|
function te(q, J, $, ie, Ie) {
|
|
69529
|
-
var U = H(T(q[0], q[0]), H(T(q[1], q[1]), T(q[2], q[2]))), V = Z(U, J[0]), k = Z(U, $[0]), j = Z(U, ie[0]), ae = Z(U, Ie[0]), re = H(T(J[0], J[0]), H(T(J[1], J[1]), T(J[2], J[2]))), he = Z(re, q[0]), ue = Z(re, $[0]), Be = Z(re, ie[0]), Ge = Z(re, Ie[0]), we = H(T($[0], $[0]), H(T($[1], $[1]), T($[2], $[2]))), fe = Z(we, q[0]), Me = Z(we, J[0]), Xe = Z(we, ie[0]), Re = Z(we, Ie[0]), Ve = H(T(ie[0], ie[0]), H(T(ie[1], ie[1]), T(ie[2], ie[2]))), De = Z(Ve, q[0]), Ke = Z(Ve, J[0]),
|
|
69623
|
+
var U = H(T(q[0], q[0]), H(T(q[1], q[1]), T(q[2], q[2]))), V = Z(U, J[0]), k = Z(U, $[0]), j = Z(U, ie[0]), ae = Z(U, Ie[0]), re = H(T(J[0], J[0]), H(T(J[1], J[1]), T(J[2], J[2]))), he = Z(re, q[0]), ue = Z(re, $[0]), Be = Z(re, ie[0]), Ge = Z(re, Ie[0]), we = H(T($[0], $[0]), H(T($[1], $[1]), T($[2], $[2]))), fe = Z(we, q[0]), Me = Z(we, J[0]), Xe = Z(we, ie[0]), Re = Z(we, Ie[0]), Ve = H(T(ie[0], ie[0]), H(T(ie[1], ie[1]), T(ie[2], ie[2]))), De = Z(Ve, q[0]), Ke = Z(Ve, J[0]), Ee = Z(Ve, $[0]), $e = Z(Ve, Ie[0]), Ue = H(T(Ie[0], Ie[0]), H(T(Ie[1], Ie[1]), T(Ie[2], Ie[2]))), Je = Z(Ue, q[0]), Oe = Z(Ue, J[0]), gg = Z(Ue, $[0]), ze = Z(Ue, ie[0]), bg = H(H(H(Z(H(Z(w(ze, $e), $[1]), H(Z(w(gg, Re), -ie[1]), Z(w(Ee, Xe), Ie[1]))), J[2]), H(Z(H(Z(w(ze, $e), J[1]), H(Z(w(Oe, Ge), -ie[1]), Z(w(Ke, Be), Ie[1]))), -$[2]), Z(H(Z(w(gg, Re), J[1]), H(Z(w(Oe, Ge), -$[1]), Z(w(Me, ue), Ie[1]))), ie[2]))), H(Z(H(Z(w(Ee, Xe), J[1]), H(Z(w(Ke, Be), -$[1]), Z(w(Me, ue), ie[1]))), -Ie[2]), H(Z(H(Z(w(ze, $e), J[1]), H(Z(w(Oe, Ge), -ie[1]), Z(w(Ke, Be), Ie[1]))), q[2]), Z(H(Z(w(ze, $e), q[1]), H(Z(w(Je, ae), -ie[1]), Z(w(De, j), Ie[1]))), -J[2])))), H(H(Z(H(Z(w(Oe, Ge), q[1]), H(Z(w(Je, ae), -J[1]), Z(w(he, V), Ie[1]))), ie[2]), H(Z(H(Z(w(Ke, Be), q[1]), H(Z(w(De, j), -J[1]), Z(w(he, V), ie[1]))), -Ie[2]), Z(H(Z(w(Ee, Xe), J[1]), H(Z(w(Ke, Be), -$[1]), Z(w(Me, ue), ie[1]))), q[2]))), H(Z(H(Z(w(Ee, Xe), q[1]), H(Z(w(De, j), -$[1]), Z(w(fe, k), ie[1]))), -J[2]), H(Z(H(Z(w(Ke, Be), q[1]), H(Z(w(De, j), -J[1]), Z(w(he, V), ie[1]))), $[2]), Z(H(Z(w(Me, ue), q[1]), H(Z(w(fe, k), -J[1]), Z(w(he, V), $[1]))), -ie[2]))))), ig = H(H(H(Z(H(Z(w(ze, $e), $[1]), H(Z(w(gg, Re), -ie[1]), Z(w(Ee, Xe), Ie[1]))), q[2]), Z(H(Z(w(ze, $e), q[1]), H(Z(w(Je, ae), -ie[1]), Z(w(De, j), Ie[1]))), -$[2])), H(Z(H(Z(w(gg, Re), q[1]), H(Z(w(Je, ae), -$[1]), Z(w(fe, k), Ie[1]))), ie[2]), Z(H(Z(w(Ee, Xe), q[1]), H(Z(w(De, j), -$[1]), Z(w(fe, k), ie[1]))), -Ie[2]))), H(H(Z(H(Z(w(gg, Re), J[1]), H(Z(w(Oe, Ge), -$[1]), Z(w(Me, ue), Ie[1]))), q[2]), Z(H(Z(w(gg, Re), q[1]), H(Z(w(Je, ae), -$[1]), Z(w(fe, k), Ie[1]))), -J[2])), H(Z(H(Z(w(Oe, Ge), q[1]), H(Z(w(Je, ae), -J[1]), Z(w(he, V), Ie[1]))), $[2]), Z(H(Z(w(Me, ue), q[1]), H(Z(w(fe, k), -J[1]), Z(w(he, V), $[1]))), -Ie[2])))), Cg = w(bg, ig);
|
|
69530
69624
|
return Cg[Cg.length - 1];
|
|
69531
69625
|
}
|
|
69532
69626
|
return te;
|
|
69533
69627
|
}
|
|
69534
69628
|
function L(H, w, T, Z) {
|
|
69535
69629
|
function te(q, J, $, ie, Ie, U) {
|
|
69536
|
-
var V = H(H(T(q[0], q[0]), T(q[1], q[1])), H(T(q[2], q[2]), T(q[3], q[3]))), k = Z(V, J[0]), j = Z(V, $[0]), ae = Z(V, ie[0]), re = Z(V, Ie[0]), he = Z(V, U[0]), ue = H(H(T(J[0], J[0]), T(J[1], J[1])), H(T(J[2], J[2]), T(J[3], J[3]))), Be = Z(ue, q[0]), Ge = Z(ue, $[0]), we = Z(ue, ie[0]), fe = Z(ue, Ie[0]), Me = Z(ue, U[0]), Xe = H(H(T($[0], $[0]), T($[1], $[1])), H(T($[2], $[2]), T($[3], $[3]))), Re = Z(Xe, q[0]), Ve = Z(Xe, J[0]), De = Z(Xe, ie[0]), Ke = Z(Xe, Ie[0]), Ye = Z(Xe, U[0]), $e = H(H(T(ie[0], ie[0]), T(ie[1], ie[1])), H(T(ie[2], ie[2]), T(ie[3], ie[3]))), Ue = Z($e, q[0]), Je = Z($e, J[0]), Oe = Z($e, $[0]), gg = Z($e, Ie[0]), ze = Z($e, U[0]), bg = H(H(T(Ie[0], Ie[0]), T(Ie[1], Ie[1])), H(T(Ie[2], Ie[2]), T(Ie[3], Ie[3]))), ig = Z(bg, q[0]), Cg = Z(bg, J[0]), Bg = Z(bg, $[0]), sg = Z(bg, ie[0]), hg = Z(bg, U[0]), Qg = H(H(T(U[0], U[0]), T(U[1], U[1])), H(T(U[2], U[2]), T(U[3], U[3]))), Ig = Z(Qg, q[0]), rg = Z(Qg, J[0]), cg = Z(Qg, $[0]), ag = Z(Qg, ie[0]), ng = Z(Qg, Ie[0]), CI = H(H(H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), $[2]), Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), -U[2]))), J[3]), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -U[2]))), -$[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), -U[2]))), ie[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), J[2]), Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -U[2]))), -Ie[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), J[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -Ie[2]))), U[3])), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -U[2]))), q[3]), Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -U[2]))), -J[3])))), H(H(H(Z(H(H(Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), Ie[2]), Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), -U[2]))), ie[3]), Z(H(H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -U[2]))), -Ie[3])), H(Z(H(H(Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -Ie[2]))), U[3]), Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), J[2]), Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -U[2]))), q[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -U[2]))), -J[3]), Z(H(H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -U[2]))), $[3])), H(Z(H(H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), q[2]), Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -U[2]))), -ie[3]), Z(H(H(Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), q[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -J[2])), H(Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -ie[2]))), U[3]))))), sI = H(H(H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), $[2]), Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), -U[2]))), q[3]), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -U[2]))), -$[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -U[2]))), ie[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -U[2]))), -Ie[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -Ie[2]))), U[3])), H(Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), -U[2]))), q[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -U[2]))), -J[3])))), H(H(H(Z(H(H(Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), Ie[2]), Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), -U[2]))), $[3]), Z(H(H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), q[2]), Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -U[2]))), -Ie[3])), H(Z(H(H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), q[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -Ie[2]))), U[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), J[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -Ie[2]))), q[3]))), H(H(Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -Ie[2]))), -J[3]), Z(H(H(Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -Ie[2]))), $[3])), H(Z(H(H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), q[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -Ie[2]))), -ie[3]), Z(H(H(Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), q[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -J[2])), H(Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -ie[2]))), Ie[3]))))), oI = w(CI, sI);
|
|
69630
|
+
var V = H(H(T(q[0], q[0]), T(q[1], q[1])), H(T(q[2], q[2]), T(q[3], q[3]))), k = Z(V, J[0]), j = Z(V, $[0]), ae = Z(V, ie[0]), re = Z(V, Ie[0]), he = Z(V, U[0]), ue = H(H(T(J[0], J[0]), T(J[1], J[1])), H(T(J[2], J[2]), T(J[3], J[3]))), Be = Z(ue, q[0]), Ge = Z(ue, $[0]), we = Z(ue, ie[0]), fe = Z(ue, Ie[0]), Me = Z(ue, U[0]), Xe = H(H(T($[0], $[0]), T($[1], $[1])), H(T($[2], $[2]), T($[3], $[3]))), Re = Z(Xe, q[0]), Ve = Z(Xe, J[0]), De = Z(Xe, ie[0]), Ke = Z(Xe, Ie[0]), Ee = Z(Xe, U[0]), $e = H(H(T(ie[0], ie[0]), T(ie[1], ie[1])), H(T(ie[2], ie[2]), T(ie[3], ie[3]))), Ue = Z($e, q[0]), Je = Z($e, J[0]), Oe = Z($e, $[0]), gg = Z($e, Ie[0]), ze = Z($e, U[0]), bg = H(H(T(Ie[0], Ie[0]), T(Ie[1], Ie[1])), H(T(Ie[2], Ie[2]), T(Ie[3], Ie[3]))), ig = Z(bg, q[0]), Cg = Z(bg, J[0]), Bg = Z(bg, $[0]), sg = Z(bg, ie[0]), hg = Z(bg, U[0]), Qg = H(H(T(U[0], U[0]), T(U[1], U[1])), H(T(U[2], U[2]), T(U[3], U[3]))), Ig = Z(Qg, q[0]), rg = Z(Qg, J[0]), cg = Z(Qg, $[0]), ag = Z(Qg, ie[0]), ng = Z(Qg, Ie[0]), CI = H(H(H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), $[2]), Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), -U[2]))), J[3]), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -U[2]))), -$[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), -U[2]))), ie[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), J[2]), Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -U[2]))), -Ie[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), J[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -Ie[2]))), U[3])), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -U[2]))), q[3]), Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -U[2]))), -J[3])))), H(H(H(Z(H(H(Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), Ie[2]), Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), -U[2]))), ie[3]), Z(H(H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -U[2]))), -Ie[3])), H(Z(H(H(Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -Ie[2]))), U[3]), Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), J[2]), Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -U[2]))), q[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -U[2]))), -J[3]), Z(H(H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -U[2]))), $[3])), H(Z(H(H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), q[2]), Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -U[2]))), -ie[3]), Z(H(H(Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), q[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -J[2])), H(Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -ie[2]))), U[3]))))), sI = H(H(H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), $[2]), Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), -U[2]))), q[3]), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -U[2]))), -$[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -U[2]))), ie[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -U[2]))), -Ie[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -Ie[2]))), U[3])), H(Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), -U[2]))), q[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -U[2]))), -J[3])))), H(H(H(Z(H(H(Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), Ie[2]), Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), -U[2]))), $[3]), Z(H(H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), q[2]), Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -U[2]))), -Ie[3])), H(Z(H(H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), q[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -Ie[2]))), U[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), J[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -Ie[2]))), q[3]))), H(H(Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -Ie[2]))), -J[3]), Z(H(H(Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -Ie[2]))), $[3])), H(Z(H(H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), q[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -Ie[2]))), -ie[3]), Z(H(H(Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), q[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -J[2])), H(Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -ie[2]))), Ie[3]))))), oI = w(CI, sI);
|
|
69537
69631
|
return oI[oI.length - 1];
|
|
69538
69632
|
}
|
|
69539
69633
|
return te;
|
|
@@ -69800,8 +69894,8 @@ const subdivisionV0Scratch = new Vector3$1(), subdivisionV1Scratch = new Vector3
|
|
|
69800
69894
|
Z,
|
|
69801
69895
|
subdivisionS2Scratch
|
|
69802
69896
|
), fe = Cartesian3.magnitudeSquared(Cartesian3.subtract(Be, Ge, subdivisionMidScratch)), Me = Cartesian3.magnitudeSquared(Cartesian3.subtract(Ge, we, subdivisionMidScratch)), Xe = Cartesian3.magnitudeSquared(Cartesian3.subtract(we, Be, subdivisionMidScratch)), Re = Math.max(fe, Me, Xe);
|
|
69803
|
-
let Ve, De, Ke,
|
|
69804
|
-
l && Re > q ? fe === Re ? (Ve = `${Math.min(ie, $)} ${Math.max(ie, $)}`, S = w[Ve], S == null ? (De = Cartesian3.add(Ie, U, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S,
|
|
69897
|
+
let Ve, De, Ke, Ee;
|
|
69898
|
+
l && Re > q ? fe === Re ? (Ve = `${Math.min(ie, $)} ${Math.max(ie, $)}`, S = w[Ve], S == null ? (De = Cartesian3.add(Ie, U, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S, Ee = (k + j) * 0.5, R.push(Ee), T[Ve] = Ee, h && (Ke = Cartesian2.add(re, he, subdivisionMidScratch), Cartesian2.multiplyByScalar(Ke, 0.5, Ke), L.push(Ke.x, Ke.y))) : Ee = T[Ve], u.push(ie, S, J), u.push(S, $, J)) : Me === Re ? (Ve = `${Math.min($, J)} ${Math.max($, J)}`, S = w[Ve], S ? Ee = T[Ve] : (De = Cartesian3.add(U, V, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S, Ee = (j + ae) * 0.5, R.push(Ee), T[Ve] = Ee, h && (Ke = Cartesian2.add(he, ue, subdivisionMidScratch), Cartesian2.multiplyByScalar(Ke, 0.5, Ke), L.push(Ke.x, Ke.y))), u.push($, S, ie), u.push(S, J, ie)) : Xe === Re && (Ve = `${Math.min(J, ie)} ${Math.max(J, ie)}`, S = w[Ve], S ? Ee = T[Ve] : (De = Cartesian3.add(V, Ie, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S, Ee = (ae + k) * 0.5, R.push(Ee), T[Ve] = Ee, h && (Ke = Cartesian2.add(ue, re, subdivisionMidScratch), Cartesian2.multiplyByScalar(Ke, 0.5, Ke), L.push(Ke.x, Ke.y))), u.push(J, S, $), u.push(S, ie, $)) : (H.push(ie + o), H.push($ + o), H.push(J + o));
|
|
69805
69899
|
}
|
|
69806
69900
|
return {
|
|
69807
69901
|
subdividedPositions: b,
|
|
@@ -70058,16 +70152,16 @@ class PolygonGeometry extends BufferGeometry {
|
|
|
70058
70152
|
Me
|
|
70059
70153
|
);
|
|
70060
70154
|
let Ke = Xe.length;
|
|
70061
|
-
const
|
|
70155
|
+
const Ee = h.length, $e = [];
|
|
70062
70156
|
let Ue = 0;
|
|
70063
70157
|
if (fe) {
|
|
70064
70158
|
for (let ze = 0; ze < Ke; ze += 3)
|
|
70065
|
-
T.fromArray(Xe, ze), s.geodeticSurfaceNormal(T, H), Z = s.scaleToGeodeticSurface(T, Z), Ue = De[ze / 3], this.extrudeValue && !this.perPositionHeight && (Ue = 0), w = Cartesian3.multiplyByScalar(H, this._zOffset + $ + Ue, w), w = Cartesian3.add(Z, w, w), $e[ze] = w.x, $e[ze + 1] = w.y, $e[ze + 2] = w.z, h[ze +
|
|
70159
|
+
T.fromArray(Xe, ze), s.geodeticSurfaceNormal(T, H), Z = s.scaleToGeodeticSurface(T, Z), Ue = De[ze / 3], this.extrudeValue && !this.perPositionHeight && (Ue = 0), w = Cartesian3.multiplyByScalar(H, this._zOffset + $ + Ue, w), w = Cartesian3.add(Z, w, w), $e[ze] = w.x, $e[ze + 1] = w.y, $e[ze + 2] = w.z, h[ze + Ee] = H.x, h[ze + 1 + Ee] = H.y, h[ze + 2 + Ee] = H.z, a.push($, this._encodeConcave(!1, !1, !1));
|
|
70066
70160
|
pushInBatches(o, $e), pushInBatches(c, Ve), pushInBatches(u, Re);
|
|
70067
70161
|
} else {
|
|
70068
70162
|
for (let ze = 0; ze < Be.length; ze++) {
|
|
70069
70163
|
const bg = Be[ze], ig = ae[ze];
|
|
70070
|
-
s.geodeticSurfaceNormal(bg, H), h[ze * 3 +
|
|
70164
|
+
s.geodeticSurfaceNormal(bg, H), h[ze * 3 + Ee] = H.x, h[ze * 3 + 1 + Ee] = H.y, h[ze * 3 + 2 + Ee] = H.z, Z = Cartesian3.clone(bg, Z), w = Cartesian3.multiplyByScalar(H, this._zOffset + U[ze] + $, w), w = Cartesian3.add(Z, w, w), $e[ze * 3] = w.x, $e[ze * 3 + 1] = w.y, $e[ze * 3 + 2] = w.z, a.push($, this._encodeConcave(!1, !1, !1)), u.push(ig.x, ig.y);
|
|
70071
70165
|
}
|
|
70072
70166
|
o.push(...$e), c.push(...ue);
|
|
70073
70167
|
}
|
|
@@ -71761,7 +71855,7 @@ class WaterMaterial extends CommonShaderMaterial {
|
|
|
71761
71855
|
}
|
|
71762
71856
|
}
|
|
71763
71857
|
injectStyle(styleSheet);
|
|
71764
|
-
window.MAPVTHREE_VERSION = "1.2.
|
|
71858
|
+
window.MAPVTHREE_VERSION = "1.2.1";
|
|
71765
71859
|
window._disable_hmt || (window._hmt = window._hmt || [], function() {
|
|
71766
71860
|
let r = document.createElement("script");
|
|
71767
71861
|
r.src = "https://hm.baidu.com/hm.js?1baab79677df9b34e5e6db4315726094";
|