@baidumap/mapv-three 1.2.0 → 1.2.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3504,6 +3504,76 @@ uniform float animationPeriod;
3504
3504
  uniform float maxScale;
3505
3505
  uniform float minScale;
3506
3506
  uniform bool opacityGradient;
3507
+ #endif`, animation_label_vertex = `#define GLSLIFY 1
3508
+ // \u5BF9\u975Einstance\u5BF9\u8C61\u6DFB\u52A0\u52A8\u753B
3509
+ #ifdef ENABLE_ANIMATION_SCALE
3510
+ float scaleRatio = mod(elapsedTime, animationPeriod) / animationPeriod;
3511
+ if (animationPeriodOffset) {
3512
+ scaleRatio = mod(scaleRatio, 1.0);
3513
+ }
3514
+
3515
+ vScale *= 1.0 + (targetScale - 1.0) * scaleRatio;
3516
+
3517
+ if (opacityGradient) {
3518
+ if (targetScale > 1.0) {
3519
+ opacityRatio = 1.0 - (targetScale - 1.0) * scaleRatio;
3520
+ } else {
3521
+ opacityRatio = 1.0 + (targetScale - 1.0) * scaleRatio;
3522
+ }
3523
+ }
3524
+
3525
+ #endif
3526
+
3527
+ #ifdef ENABLE_ANIMATION_JUMP
3528
+ float jumpRatio = mod(elapsedTime, animationJumpPeriod) / animationJumpPeriod;
3529
+ if (animationPeriodOffset) {
3530
+ jumpRatio = mod(jumpRatio, 1.0);
3531
+ }
3532
+ if (jumpRatio <= 0.5) {
3533
+ jumpRatio *= 2.0;
3534
+ jumpRatio = jumpRatio * jumpRatio * jumpRatio;
3535
+ } else {
3536
+ jumpRatio = (1.0 - jumpRatio) * 2.0;
3537
+ jumpRatio = jumpRatio * jumpRatio * jumpRatio;
3538
+ }
3539
+
3540
+ float jumpHeight = jumpRatio * animationJumpHeight;
3541
+ #endif
3542
+
3543
+ #ifdef ENABLE_ANIMATION_ROTATE
3544
+ float rotateRatio = mod(elapsedTime, animationRotatePeriod) / animationRotatePeriod;
3545
+ if (animationPeriodOffset) {
3546
+ rotateRatio = mod(rotateRatio, 1.0);
3547
+ }
3548
+ float rotation = rotateRatio * 6.28;
3549
+ #endif
3550
+
3551
+ #ifdef ENABLE_ANIMATION_BREATH
3552
+ float scaleRatio = mod(elapsedTime, animationPeriod) / animationPeriod;
3553
+ if (animationPeriodOffset) {
3554
+ scaleRatio = mod(scaleRatio, 1.0);
3555
+ }
3556
+ float repeatNum = scaleRatio / 0.25;
3557
+ float scaleFactor = mod(scaleRatio, 0.25) / 0.25;
3558
+ float scaleNum = scaleFactor * (maxScale - 1.0);
3559
+ float balance = (maxScale + minScale) / 2.0;
3560
+
3561
+ if (repeatNum > 1.0 && repeatNum < 3.0) {
3562
+ // \u4E0B\u964D
3563
+ if (repeatNum < 2.0) {
3564
+ scaleNum = (1.0 - scaleFactor) * (maxScale - balance);
3565
+ } else {
3566
+ scaleNum = -scaleFactor * (balance - minScale);
3567
+ }
3568
+ } else if (repeatNum >= 3.0) {
3569
+ scaleNum = -(1.0 - scaleFactor) * (balance - minScale);
3570
+ }
3571
+
3572
+ vScale *= balance + scaleNum;
3573
+
3574
+ if (opacityGradient) {
3575
+ opacityRatio = (balance + scaleNum) / maxScale;
3576
+ }
3507
3577
  #endif`, mrt_output_pars_fragment = `#define GLSLIFY 1
3508
3578
  #ifndef DISABLE_MRT
3509
3579
  // layout(location = 1) out highp vec4 pc_fragColor1;
@@ -3937,7 +4007,7 @@ if (_tileEditableValue == 1.0) {
3937
4007
  }, overridePresetMaterials = () => {
3938
4008
  MeshBasicMaterial.prototype.emissiveIntensity = 1, ShaderLib.basic.uniforms.emissive = { value: new Color(0) }, ShaderLib.basic.uniforms.isEmissive = { value: !1 };
3939
4009
  }, addExtraShaderChunks = () => {
3940
- ShaderChunk.mvt_uniform_zoomunits_pars = uniform_zoomunits_pars, ShaderChunk.mvt_extra_vertex_utils = extra_vertex_utils, ShaderChunk.mvt_selective_pars_vertex = selective_pars_vertex, ShaderChunk.mvt_selective_vertex = selective_vertex, ShaderChunk.mvt_selective_pars_fragment = selective_pars_fragment, ShaderChunk.mvt_selective_fragment = selective_fragment, ShaderChunk.mvt_keepsize_pars_vertex = keepsize_pars_vertex, ShaderChunk.mvt_keepsize_vertex = keepsize_vertex, ShaderChunk.mvt_emissive_pars_fragment = emissive_pars_fragment, ShaderChunk.mvt_emissive_fragment = emissive_fragment, ShaderChunk.mvt_override_standard_emissivemap_pars_fragment = override_standard_emissivemap_pars_fragment, ShaderChunk.mvt_override_standard_emissivemap_fragment = override_standard_emissivemap_fragment, ShaderChunk.mvt_override_basic_color_pars_fragment = override_basic_color_pars_fragment, ShaderChunk.mvt_override_basic_color_fragment = override_basic_color_fragment, ShaderChunk.mvt_animation_pars_vertex = animation_pars_vertex, ShaderChunk.mvt_animation_vertex = animation_vertex, ShaderChunk.mvt_mrt_output_pars_fragment = mrt_output_pars_fragment, ShaderChunk.mvt_mrt_output_fragment = mrt_output_fragment, ShaderChunk.mvt_nmrt_output_pars_fragment = nmrt_output_pars_fragment, ShaderChunk.mvt_nmrt_output_fragment = nmrt_output_fragment, ShaderChunk.mvt_extra_meshbasic_frag_pars = extra_meshbasic_frag_pars, ShaderChunk.mvt_clip_pars_vertex = clip_pars_vertex, ShaderChunk.mvt_clip_vertex = clip_vertex, ShaderChunk.mvt_clip_pars_fragment = clip_pars_fragment, ShaderChunk.mvt_clip_fragment = clip_fragment, ShaderChunk.mvt_depth_packing = depth_packing, ShaderChunk.mvt_depth_range_pars_fragment = depth_range_pars_fragment, ShaderChunk.mvt_depth_range_fragment = depth_range_fragment, ShaderChunk.output_fragment = output_fragment, ShaderChunk.output_pars_fragment = output_pars_fragment;
4010
+ ShaderChunk.mvt_uniform_zoomunits_pars = uniform_zoomunits_pars, ShaderChunk.mvt_extra_vertex_utils = extra_vertex_utils, ShaderChunk.mvt_selective_pars_vertex = selective_pars_vertex, ShaderChunk.mvt_selective_vertex = selective_vertex, ShaderChunk.mvt_selective_pars_fragment = selective_pars_fragment, ShaderChunk.mvt_selective_fragment = selective_fragment, ShaderChunk.mvt_keepsize_pars_vertex = keepsize_pars_vertex, ShaderChunk.mvt_keepsize_vertex = keepsize_vertex, ShaderChunk.mvt_emissive_pars_fragment = emissive_pars_fragment, ShaderChunk.mvt_emissive_fragment = emissive_fragment, ShaderChunk.mvt_override_standard_emissivemap_pars_fragment = override_standard_emissivemap_pars_fragment, ShaderChunk.mvt_override_standard_emissivemap_fragment = override_standard_emissivemap_fragment, ShaderChunk.mvt_override_basic_color_pars_fragment = override_basic_color_pars_fragment, ShaderChunk.mvt_override_basic_color_fragment = override_basic_color_fragment, ShaderChunk.mvt_animation_pars_vertex = animation_pars_vertex, ShaderChunk.mvt_animation_vertex = animation_vertex, ShaderChunk.mvt_animation_label_vertex = animation_label_vertex, ShaderChunk.mvt_mrt_output_pars_fragment = mrt_output_pars_fragment, ShaderChunk.mvt_mrt_output_fragment = mrt_output_fragment, ShaderChunk.mvt_nmrt_output_pars_fragment = nmrt_output_pars_fragment, ShaderChunk.mvt_nmrt_output_fragment = nmrt_output_fragment, ShaderChunk.mvt_extra_meshbasic_frag_pars = extra_meshbasic_frag_pars, ShaderChunk.mvt_clip_pars_vertex = clip_pars_vertex, ShaderChunk.mvt_clip_vertex = clip_vertex, ShaderChunk.mvt_clip_pars_fragment = clip_pars_fragment, ShaderChunk.mvt_clip_fragment = clip_fragment, ShaderChunk.mvt_depth_packing = depth_packing, ShaderChunk.mvt_depth_range_pars_fragment = depth_range_pars_fragment, ShaderChunk.mvt_depth_range_fragment = depth_range_fragment, ShaderChunk.output_fragment = output_fragment, ShaderChunk.output_pars_fragment = output_pars_fragment;
3941
4011
  }, overrideShaders = function() {
3942
4012
  addExtraShaderChunks(), overridePresetMaterials();
3943
4013
  };
@@ -4046,18 +4116,18 @@ function requirePunycode() {
4046
4116
  return Z(fe + (T + 1) * Be / (Be + G));
4047
4117
  }
4048
4118
  function ae(Be) {
4049
- var Ge = [], we = Be.length, fe, Me = 0, Xe = R, Re = L, Ve, De, Ke, Ye, $e, Ue, Je, Oe, gg;
4119
+ var Ge = [], we = Be.length, fe, Me = 0, Xe = R, Re = L, Ve, De, Ke, Ee, $e, Ue, Je, Oe, gg;
4050
4120
  for (Ve = Be.lastIndexOf(D), Ve < 0 && (Ve = 0), De = 0; De < Ve; ++De)
4051
4121
  Be.charCodeAt(De) >= 128 && J("not-basic"), Ge.push(Be.charCodeAt(De));
4052
4122
  for (Ke = Ve > 0 ? Ve + 1 : 0; Ke < we; ) {
4053
- for (Ye = Me, $e = 1, Ue = h; Ke >= we && J("invalid-input"), Je = V(Be.charCodeAt(Ke++)), (Je >= h || Je > Z((l - Me) / $e)) && J("overflow"), Me += Je * $e, Oe = Ue <= Re ? u : Ue >= Re + S ? S : Ue - Re, !(Je < Oe); Ue += h)
4123
+ for (Ee = Me, $e = 1, Ue = h; Ke >= we && J("invalid-input"), Je = V(Be.charCodeAt(Ke++)), (Je >= h || Je > Z((l - Me) / $e)) && J("overflow"), Me += Je * $e, Oe = Ue <= Re ? u : Ue >= Re + S ? S : Ue - Re, !(Je < Oe); Ue += h)
4054
4124
  gg = h - Oe, $e > Z(l / gg) && J("overflow"), $e *= gg;
4055
- fe = Ge.length + 1, Re = j(Me - Ye, fe, Ye == 0), Z(Me / fe) > l - Xe && J("overflow"), Xe += Z(Me / fe), Me %= fe, Ge.splice(Me++, 0, Xe);
4125
+ fe = Ge.length + 1, Re = j(Me - Ee, fe, Ee == 0), Z(Me / fe) > l - Xe && J("overflow"), Xe += Z(Me / fe), Me %= fe, Ge.splice(Me++, 0, Xe);
4056
4126
  }
4057
4127
  return U(Ge);
4058
4128
  }
4059
4129
  function re(Be) {
4060
- var Ge, we, fe, Me, Xe, Re, Ve, De, Ke, Ye, $e, Ue = [], Je, Oe, gg, ze;
4130
+ var Ge, we, fe, Me, Xe, Re, Ve, De, Ke, Ee, $e, Ue = [], Je, Oe, gg, ze;
4061
4131
  for (Be = Ie(Be), Je = Be.length, Ge = R, we = 0, Xe = L, Re = 0; Re < Je; ++Re)
4062
4132
  $e = Be[Re], $e < 128 && Ue.push(te($e));
4063
4133
  for (fe = Me = Ue.length, Me && Ue.push(D); fe < Je; ) {
@@ -4065,9 +4135,9 @@ function requirePunycode() {
4065
4135
  $e = Be[Re], $e >= Ge && $e < Ve && (Ve = $e);
4066
4136
  for (Oe = fe + 1, Ve - Ge > Z((l - we) / Oe) && J("overflow"), we += (Ve - Ge) * Oe, Ge = Ve, Re = 0; Re < Je; ++Re)
4067
4137
  if ($e = Be[Re], $e < Ge && ++we > l && J("overflow"), $e == Ge) {
4068
- for (De = we, Ke = h; Ye = Ke <= Xe ? u : Ke >= Xe + S ? S : Ke - Xe, !(De < Ye); Ke += h)
4069
- ze = De - Ye, gg = h - Ye, Ue.push(
4070
- te(k(Ye + ze % gg, 0))
4138
+ for (De = we, Ke = h; Ee = Ke <= Xe ? u : Ke >= Xe + S ? S : Ke - Xe, !(De < Ee); Ke += h)
4139
+ ze = De - Ee, gg = h - Ee, Ue.push(
4140
+ te(k(Ee + ze % gg, 0))
4071
4141
  ), De = Z(ze / gg);
4072
4142
  Ue.push(te(k(De, 0))), Xe = j(we, Oe, fe == Me), we = 0, ++fe;
4073
4143
  }
@@ -12927,21 +12997,21 @@ class SimplexNoise {
12927
12997
  De < 0 ? a = 0 : (De *= De, a = De * De * this.dot3(this.grad3[Me], Ie, U, V));
12928
12998
  let Ke = 0.6 - k * k - j * j - ae * ae;
12929
12999
  Ke < 0 ? c = 0 : (Ke *= Ke, c = Ke * Ke * this.dot3(this.grad3[Xe], k, j, ae));
12930
- let Ye = 0.6 - re * re - he * he - ue * ue;
12931
- return Ye < 0 ? l = 0 : (Ye *= Ye, l = Ye * Ye * this.dot3(this.grad3[Re], re, he, ue)), 32 * (o + a + c + l);
13000
+ let Ee = 0.6 - re * re - he * he - ue * ue;
13001
+ return Ee < 0 ? l = 0 : (Ee *= Ee, l = Ee * Ee * this.dot3(this.grad3[Re], re, he, ue)), 32 * (o + a + c + l);
12932
13002
  }
12933
13003
  noise4d(i, e, s, o) {
12934
13004
  const a = this.grad4, c = this.simplex, l = this.perm, h = (Math.sqrt(5) - 1) / 4, u = (5 - Math.sqrt(5)) / 20;
12935
13005
  let S, G, b, L, R;
12936
- const D = (i + e + s + o) * h, W = Math.floor(i + D), z = Math.floor(e + D), H = Math.floor(s + D), w = Math.floor(o + D), T = (W + z + H + w) * u, Z = W - T, te = z - T, q = H - T, J = w - T, $ = i - Z, ie = e - te, Ie = s - q, U = o - J, V = $ > ie ? 32 : 0, k = $ > Ie ? 16 : 0, j = ie > Ie ? 8 : 0, ae = $ > U ? 4 : 0, re = ie > U ? 2 : 0, he = Ie > U ? 1 : 0, ue = V + k + j + ae + re + he, Be = c[ue][0] >= 3 ? 1 : 0, Ge = c[ue][1] >= 3 ? 1 : 0, we = c[ue][2] >= 3 ? 1 : 0, fe = c[ue][3] >= 3 ? 1 : 0, Me = c[ue][0] >= 2 ? 1 : 0, Xe = c[ue][1] >= 2 ? 1 : 0, Re = c[ue][2] >= 2 ? 1 : 0, Ve = c[ue][3] >= 2 ? 1 : 0, De = c[ue][0] >= 1 ? 1 : 0, Ke = c[ue][1] >= 1 ? 1 : 0, Ye = c[ue][2] >= 1 ? 1 : 0, $e = c[ue][3] >= 1 ? 1 : 0, Ue = $ - Be + u, Je = ie - Ge + u, Oe = Ie - we + u, gg = U - fe + u, ze = $ - Me + 2 * u, bg = ie - Xe + 2 * u, ig = Ie - Re + 2 * u, Cg = U - Ve + 2 * u, Bg = $ - De + 3 * u, sg = ie - Ke + 3 * u, hg = Ie - Ye + 3 * u, Qg = U - $e + 3 * u, Ig = $ - 1 + 4 * u, rg = ie - 1 + 4 * u, cg = Ie - 1 + 4 * u, ag = U - 1 + 4 * u, ng = W & 255, CI = z & 255, sI = H & 255, oI = w & 255, VI = l[ng + l[CI + l[sI + l[oI]]]] % 32, OI = l[ng + Be + l[CI + Ge + l[sI + we + l[oI + fe]]]] % 32, $g = l[ng + Me + l[CI + Xe + l[sI + Re + l[oI + Ve]]]] % 32, GI = l[ng + De + l[CI + Ke + l[sI + Ye + l[oI + $e]]]] % 32, _e = l[ng + 1 + l[CI + 1 + l[sI + 1 + l[oI + 1]]]] % 32;
13006
+ const D = (i + e + s + o) * h, W = Math.floor(i + D), z = Math.floor(e + D), H = Math.floor(s + D), w = Math.floor(o + D), T = (W + z + H + w) * u, Z = W - T, te = z - T, q = H - T, J = w - T, $ = i - Z, ie = e - te, Ie = s - q, U = o - J, V = $ > ie ? 32 : 0, k = $ > Ie ? 16 : 0, j = ie > Ie ? 8 : 0, ae = $ > U ? 4 : 0, re = ie > U ? 2 : 0, he = Ie > U ? 1 : 0, ue = V + k + j + ae + re + he, Be = c[ue][0] >= 3 ? 1 : 0, Ge = c[ue][1] >= 3 ? 1 : 0, we = c[ue][2] >= 3 ? 1 : 0, fe = c[ue][3] >= 3 ? 1 : 0, Me = c[ue][0] >= 2 ? 1 : 0, Xe = c[ue][1] >= 2 ? 1 : 0, Re = c[ue][2] >= 2 ? 1 : 0, Ve = c[ue][3] >= 2 ? 1 : 0, De = c[ue][0] >= 1 ? 1 : 0, Ke = c[ue][1] >= 1 ? 1 : 0, Ee = c[ue][2] >= 1 ? 1 : 0, $e = c[ue][3] >= 1 ? 1 : 0, Ue = $ - Be + u, Je = ie - Ge + u, Oe = Ie - we + u, gg = U - fe + u, ze = $ - Me + 2 * u, bg = ie - Xe + 2 * u, ig = Ie - Re + 2 * u, Cg = U - Ve + 2 * u, Bg = $ - De + 3 * u, sg = ie - Ke + 3 * u, hg = Ie - Ee + 3 * u, Qg = U - $e + 3 * u, Ig = $ - 1 + 4 * u, rg = ie - 1 + 4 * u, cg = Ie - 1 + 4 * u, ag = U - 1 + 4 * u, ng = W & 255, CI = z & 255, sI = H & 255, oI = w & 255, VI = l[ng + l[CI + l[sI + l[oI]]]] % 32, OI = l[ng + Be + l[CI + Ge + l[sI + we + l[oI + fe]]]] % 32, $g = l[ng + Me + l[CI + Xe + l[sI + Re + l[oI + Ve]]]] % 32, GI = l[ng + De + l[CI + Ke + l[sI + Ee + l[oI + $e]]]] % 32, _e = l[ng + 1 + l[CI + 1 + l[sI + 1 + l[oI + 1]]]] % 32;
12937
13007
  let Dg = 0.6 - $ * $ - ie * ie - Ie * Ie - U * U;
12938
13008
  Dg < 0 ? S = 0 : (Dg *= Dg, S = Dg * Dg * this.dot4(a[VI], $, ie, Ie, U));
12939
13009
  let Ug = 0.6 - Ue * Ue - Je * Je - Oe * Oe - gg * gg;
12940
13010
  Ug < 0 ? G = 0 : (Ug *= Ug, G = Ug * Ug * this.dot4(a[OI], Ue, Je, Oe, gg));
12941
13011
  let AI = 0.6 - ze * ze - bg * bg - ig * ig - Cg * Cg;
12942
13012
  AI < 0 ? b = 0 : (AI *= AI, b = AI * AI * this.dot4(a[$g], ze, bg, ig, Cg));
12943
- let Eg = 0.6 - Bg * Bg - sg * sg - hg * hg - Qg * Qg;
12944
- Eg < 0 ? L = 0 : (Eg *= Eg, L = Eg * Eg * this.dot4(a[GI], Bg, sg, hg, Qg));
13013
+ let Yg = 0.6 - Bg * Bg - sg * sg - hg * hg - Qg * Qg;
13014
+ Yg < 0 ? L = 0 : (Yg *= Yg, L = Yg * Yg * this.dot4(a[GI], Bg, sg, hg, Qg));
12945
13015
  let Fg = 0.6 - Ig * Ig - rg * rg - cg * cg - ag * ag;
12946
13016
  return Fg < 0 ? R = 0 : (Fg *= Fg, R = Fg * Fg * this.dot4(a[_e], Ig, rg, cg, ag)), 27 * (S + G + b + L + R);
12947
13017
  }
@@ -16516,7 +16586,7 @@ var proj4Src = { exports: {} };
16516
16586
  var N = new De(M);
16517
16587
  return N.output();
16518
16588
  }
16519
- function Ye(M, N, Y) {
16589
+ function Ee(M, N, Y) {
16520
16590
  Array.isArray(N) && (Y.unshift(N), N = null);
16521
16591
  var P = N ? {} : M, ee = Y.reduce(function(Ce, oe) {
16522
16592
  return $e(oe, Ce), Ce;
@@ -16575,7 +16645,7 @@ var proj4Src = { exports: {} };
16575
16645
  case "VERT_CS":
16576
16646
  case "VERTCRS":
16577
16647
  case "VERTICALCRS":
16578
- M[0] = ["name", M[0]], Ye(N, Y, M);
16648
+ M[0] = ["name", M[0]], Ee(N, Y, M);
16579
16649
  return;
16580
16650
  case "COMPD_CS":
16581
16651
  case "COMPOUNDCRS":
@@ -16591,13 +16661,13 @@ var proj4Src = { exports: {} };
16591
16661
  case "GEODETICDATUM":
16592
16662
  case "ENGCRS":
16593
16663
  case "ENGINEERINGCRS":
16594
- M[0] = ["name", M[0]], Ye(N, Y, M), N[Y].type = Y;
16664
+ M[0] = ["name", M[0]], Ee(N, Y, M), N[Y].type = Y;
16595
16665
  return;
16596
16666
  default:
16597
16667
  for (P = -1; ++P < M.length; )
16598
16668
  if (!Array.isArray(M[P]))
16599
16669
  return $e(M, N[Y]);
16600
- return Ye(N, Y, M);
16670
+ return Ee(N, Y, M);
16601
16671
  }
16602
16672
  }
16603
16673
  var Ue = 0.017453292519943295;
@@ -16871,7 +16941,7 @@ var proj4Src = { exports: {} };
16871
16941
  var M = this.b / this.a;
16872
16942
  this.es = 1 - M * M, "x0" in this || (this.x0 = 0), "y0" in this || (this.y0 = 0), this.e = Math.sqrt(this.es), this.lat_ts ? this.sphere ? this.k0 = Math.cos(this.lat_ts) : this.k0 = $g(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) : this.k0 || (this.k ? this.k0 = this.k : this.k0 = 1);
16873
16943
  }
16874
- function Eg(M) {
16944
+ function Yg(M) {
16875
16945
  var N = M.x, Y = M.y;
16876
16946
  if (Y * H > 90 && Y * H < -90 && N * H > 180 && N * H < -180)
16877
16947
  return null;
@@ -16899,7 +16969,7 @@ var proj4Src = { exports: {} };
16899
16969
  }
16900
16970
  var AC = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "Mercator_Variant_A", "merc"], rC = {
16901
16971
  init: AI,
16902
- forward: Eg,
16972
+ forward: Yg,
16903
16973
  inverse: Fg,
16904
16974
  names: AC
16905
16975
  };
@@ -18828,7 +18898,7 @@ var proj4Src = { exports: {} };
18828
18898
  if (typeof M != "number" || M !== M || !isFinite(M))
18829
18899
  throw new TypeError("coordinates must be finite numbers");
18830
18900
  }
18831
- function YC(M, N) {
18901
+ function EC(M, N) {
18832
18902
  return (M.datum.datum_type === s || M.datum.datum_type === o || M.datum.datum_type === a) && N.datumCode !== "WGS84" || (N.datum.datum_type === s || N.datum.datum_type === o || N.datum.datum_type === a) && M.datumCode !== "WGS84";
18833
18903
  }
18834
18904
  function Lt(M, N, Y, P) {
@@ -18840,7 +18910,7 @@ var proj4Src = { exports: {} };
18840
18910
  m: Y.m
18841
18911
  };
18842
18912
  var Ce = Y.z !== void 0;
18843
- if (xC(Y), M.datum && N.datum && YC(M, N) && (ee = new BI("WGS84"), Y = Lt(M, ee, Y, P), M = ee), P && M.axis !== "enu" && (Y = Di(M, !1, Y)), M.projName === "longlat")
18913
+ if (xC(Y), M.datum && N.datum && EC(M, N) && (ee = new BI("WGS84"), Y = Lt(M, ee, Y, P), M = ee), P && M.axis !== "enu" && (Y = Di(M, !1, Y)), M.projName === "longlat")
18844
18914
  Y = {
18845
18915
  x: Y.x * z,
18846
18916
  y: Y.y * z,
@@ -18894,7 +18964,7 @@ var proj4Src = { exports: {} };
18894
18964
  }
18895
18965
  }, P && (ee.oProj = N), ee);
18896
18966
  }
18897
- var xi = 6, Yi = "AJSAJS", vi = "AFAFAF", FI = 65, eI = 73, rI = 79, jI = 86, qI = 90, EC = {
18967
+ var xi = 6, Yi = "AJSAJS", vi = "AFAFAF", FI = 65, eI = 73, rI = 79, jI = 86, qI = 90, YC = {
18898
18968
  forward: ki,
18899
18969
  inverse: vC,
18900
18970
  toPoint: Qi
@@ -19371,11 +19441,11 @@ northing meters` + M;
19371
19441
  var ne = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2)), ce = Math.log(Math.tan(Math.PI / 4 + M / 2)), Se = Math.log((1 + oe * N) / (1 - oe * N));
19372
19442
  this.K = ne - this.alpha * ce + this.alpha * oe / 2 * Se;
19373
19443
  }
19374
- function Ys(M) {
19444
+ function Es(M) {
19375
19445
  var N = Math.log(Math.tan(Math.PI / 4 - M.y / 2)), Y = this.e / 2 * Math.log((1 + this.e * Math.sin(M.y)) / (1 - this.e * Math.sin(M.y))), P = -this.alpha * (N + Y) + this.K, ee = 2 * (Math.atan(Math.exp(P)) - Math.PI / 4), Ce = this.alpha * (M.x - this.lambda0), oe = Math.atan(Math.sin(Ce) / (Math.sin(this.b0) * Math.tan(ee) + Math.cos(this.b0) * Math.cos(Ce))), ne = Math.asin(Math.cos(this.b0) * Math.sin(ee) - Math.sin(this.b0) * Math.cos(ee) * Math.cos(Ce));
19376
19446
  return M.y = this.R / 2 * Math.log((1 + Math.sin(ne)) / (1 - Math.sin(ne))) + this.y0, M.x = this.R * oe + this.x0, M;
19377
19447
  }
19378
- function Es(M) {
19448
+ function Ys(M) {
19379
19449
  for (var N = M.x - this.x0, Y = M.y - this.y0, P = N / this.R, ee = 2 * (Math.atan(Math.exp(Y / this.R)) - Math.PI / 4), Ce = Math.asin(Math.cos(this.b0) * Math.sin(ee) + Math.sin(this.b0) * Math.cos(ee) * Math.cos(P)), oe = Math.atan(Math.sin(P) / (Math.cos(this.b0) * Math.cos(P) - Math.sin(this.b0) * Math.tan(ee))), ne = this.lambda0 + oe / this.alpha, ce = 0, Se = Ce, be = -1e3, ye = 0; Math.abs(Se - be) > 1e-7; ) {
19380
19450
  if (++ye > 20)
19381
19451
  return;
@@ -19385,10 +19455,10 @@ northing meters` + M;
19385
19455
  }
19386
19456
  var vs = ["somerc"], ks = {
19387
19457
  init: xs,
19388
- forward: Ys,
19389
- inverse: Es,
19458
+ forward: Es,
19459
+ inverse: Ys,
19390
19460
  names: vs
19391
- }, YI = 1e-7;
19461
+ }, EI = 1e-7;
19392
19462
  function Ps(M) {
19393
19463
  var N = ["Hotine_Oblique_Mercator", "Hotine_Oblique_Mercator_variant_A", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin"], Y = typeof M.projName == "object" ? Object.keys(M.projName)[0] : M.projName;
19394
19464
  return "no_uoff" in M || "no_off" in M || N.indexOf(Y) !== -1 || N.indexOf(Li(Y)) !== -1;
@@ -19401,7 +19471,7 @@ northing meters` + M;
19401
19471
  var eg = !1;
19402
19472
  if ("rectified_grid_angle" in this && (eg = !0), je && (Qe = this.alpha), eg && (be = this.rectified_grid_angle), je || eg)
19403
19473
  me = this.longc;
19404
- else if (Le = this.long1, Ze = this.lat1, He = this.long2, Ne = this.lat2, Math.abs(Ze - Ne) <= YI || (M = Math.abs(Ze)) <= YI || Math.abs(M - b) <= YI || Math.abs(Math.abs(this.lat0) - b) <= YI || Math.abs(Math.abs(Ne) - b) <= YI)
19474
+ else if (Le = this.long1, Ze = this.lat1, He = this.long2, Ne = this.lat2, Math.abs(Ze - Ne) <= EI || (M = Math.abs(Ze)) <= EI || Math.abs(M - b) <= EI || Math.abs(Math.abs(this.lat0) - b) <= EI || Math.abs(Math.abs(Ne) - b) <= EI)
19405
19475
  throw new Error();
19406
19476
  var Mg = 1 - this.es;
19407
19477
  N = Math.sqrt(Mg), Math.abs(this.lat0) > W ? (ne = Math.sin(this.lat0), Y = Math.cos(this.lat0), M = 1 - this.es * ne * ne, this.B = Y * Y, this.B = Math.sqrt(1 + this.es * this.B * this.B / Mg), this.A = this.B * this.k0 * N / M, P = this.B * N / (Y * Math.sqrt(M)), ee = P * P - 1, ee <= 0 ? ee = 0 : (ee = Math.sqrt(ee), this.lat0 < 0 && (ee = -ee)), this.E = ee += P, this.E *= Math.pow(Dg(this.e, this.lat0, ne), this.B)) : (this.B = 1 / N, this.A = this.k0, this.E = P = ee = 1), je || eg ? (je ? (ye = Math.asin(Math.sin(Qe) / P), eg || (be = Qe)) : (ye = be, Qe = Math.asin(P * Math.sin(ye))), this.lam0 = me - Math.asin(0.5 * (ee - 1 / ee) * Math.tan(ye)) / this.B) : (Ce = Math.pow(Dg(this.e, Ze, Math.sin(Ze)), this.B), oe = Math.pow(Dg(this.e, Ne, Math.sin(Ne)), this.B), ee = this.E / Ce, ce = (oe - Ce) / (oe + Ce), Se = this.E * this.E, Se = (Se - oe * Ce) / (Se + oe * Ce), M = Le - He, M < -Math.pi ? He -= T : M > Math.pi && (He += T), this.lam0 = _e(0.5 * (Le + He) - Math.atan(Se * Math.tan(0.5 * this.B * (Le - He)) / ce) / this.B), ye = Math.atan(2 * Math.sin(this.B * _e(Le - this.lam0)) / (ee - 1 / ee)), be = Qe = Math.asin(P * Math.sin(ye))), this.singam = Math.sin(ye), this.cosgam = Math.cos(ye), this.sinrot = Math.sin(be), this.cosrot = Math.cos(be), this.rB = 1 / this.B, this.ArB = this.A * this.rB, this.BrA = 1 / this.ArB, this.no_off ? this.u_0 = 0 : (this.u_0 = Math.abs(this.ArB * Math.atan(Math.sqrt(P * P - 1) / Math.cos(Qe))), this.lat0 < 0 && (this.u_0 = -this.u_0)), ee = 0.5 * ye, this.v_pole_n = this.ArB * Math.log(Math.tan(w - ee)), this.v_pole_s = this.ArB * Math.log(Math.tan(w + ee));
@@ -19411,7 +19481,7 @@ northing meters` + M;
19411
19481
  if (M.x = M.x - this.lam0, Math.abs(Math.abs(M.y) - b) > W) {
19412
19482
  if (oe = this.E / Math.pow(Dg(this.e, M.y, Math.sin(M.y)), this.B), ne = 1 / oe, Y = 0.5 * (oe - ne), P = 0.5 * (oe + ne), Ce = Math.sin(this.B * M.x), ee = (Y * this.singam - Ce * this.cosgam) / P, Math.abs(Math.abs(ee) - 1) < W)
19413
19483
  throw new Error();
19414
- Se = 0.5 * this.ArB * Math.log((1 - ee) / (1 + ee)), ne = Math.cos(this.B * M.x), Math.abs(ne) < YI ? ce = this.A * M.x : ce = this.ArB * Math.atan2(Y * this.cosgam + Ce * this.singam, ne);
19484
+ Se = 0.5 * this.ArB * Math.log((1 - ee) / (1 + ee)), ne = Math.cos(this.B * M.x), Math.abs(ne) < EI ? ce = this.A * M.x : ce = this.ArB * Math.atan2(Y * this.cosgam + Ce * this.singam, ne);
19415
19485
  } else
19416
19486
  Se = M.y > 0 ? this.v_pole_n : this.v_pole_s, ce = this.ArB * M.y;
19417
19487
  return this.no_rot ? (N.x = ce, N.y = Se) : (ce -= this.u_0, N.x = Se * this.cosrot + ce * this.sinrot, N.y = ce * this.cosrot - Se * this.sinrot), N.x = this.a * N.x + this.x0, N.y = this.a * N.y + this.y0, N;
@@ -19738,7 +19808,7 @@ northing meters` + M;
19738
19808
  inverse: Fo,
19739
19809
  names: zo
19740
19810
  };
19741
- function Yo(M, N) {
19811
+ function Eo(M, N) {
19742
19812
  var Y = 1 - (1 - M * M) / (2 * M) * Math.log((1 - M) / (1 + M));
19743
19813
  if (Math.abs(Math.abs(N) - Y) < 1e-6)
19744
19814
  return N < 0 ? -1 * b : b;
@@ -19747,7 +19817,7 @@ northing meters` + M;
19747
19817
  return P;
19748
19818
  return NaN;
19749
19819
  }
19750
- function Eo() {
19820
+ function Yo() {
19751
19821
  this.sphere || (this.k0 = $g(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)));
19752
19822
  }
19753
19823
  function vo(M) {
@@ -19763,10 +19833,10 @@ northing meters` + M;
19763
19833
  function ko(M) {
19764
19834
  M.x -= this.x0, M.y -= this.y0;
19765
19835
  var N, Y;
19766
- return this.sphere ? (N = _e(this.long0 + M.x / this.a / Math.cos(this.lat_ts)), Y = Math.asin(M.y / this.a * Math.cos(this.lat_ts))) : (Y = Yo(this.e, 2 * M.y * this.k0 / this.a), N = _e(this.long0 + M.x / (this.a * this.k0))), M.x = N, M.y = Y, M;
19836
+ return this.sphere ? (N = _e(this.long0 + M.x / this.a / Math.cos(this.lat_ts)), Y = Math.asin(M.y / this.a * Math.cos(this.lat_ts))) : (Y = Eo(this.e, 2 * M.y * this.k0 / this.a), N = _e(this.long0 + M.x / (this.a * this.k0))), M.x = N, M.y = Y, M;
19767
19837
  }
19768
19838
  var Po = ["cea"], Qo = {
19769
- init: Eo,
19839
+ init: Yo,
19770
19840
  forward: vo,
19771
19841
  inverse: ko,
19772
19842
  names: Po
@@ -20113,85 +20183,85 @@ northing meters` + M;
20113
20183
  };
20114
20184
  }(Y.Accumulator, Y.Math), Y.Geodesic = {}, Y.GeodesicLine = {}, Y.PolygonArea = {}, function(P, ee, Ce, oe, ne) {
20115
20185
  var ce = 6, Se = ce, be = ce, ye = ce, me = ye, Le, He, Ze = 20, Ne = Ze + oe.digits + 10, Qe = oe.epsilon, je = 200 * Qe, eg = Math.sqrt(Qe), Mg = Qe, Tg = 1e3 * eg, Vg = 0, Jg = 31, Og = 32640, cI, lI, dI, mI, pI, KI, ZI, kI, QI;
20116
- P.tiny_ = Math.sqrt(Number.MIN_VALUE / Number.EPSILON), P.nC1_ = ce, P.nC1p_ = ce, P.nC2_ = ce, P.nC3_ = ce, P.nC4_ = ce, Le = P.nC3_ * (P.nC3_ - 1) / 2, He = P.nC4_ * (P.nC4_ + 1) / 2, P.CAP_C1 = 1 << 0, P.CAP_C1p = 1 << 1, P.CAP_C2 = 1 << 2, P.CAP_C3 = 1 << 3, P.CAP_C4 = 1 << 4, P.NONE = 0, P.ARC = 1 << 6, P.LATITUDE = 1 << 7 | Vg, P.LONGITUDE = 1 << 8 | P.CAP_C3, P.AZIMUTH = 1 << 9 | Vg, P.DISTANCE = 1 << 10 | P.CAP_C1, P.STANDARD = P.LATITUDE | P.LONGITUDE | P.AZIMUTH | P.DISTANCE, P.DISTANCE_IN = 1 << 11 | P.CAP_C1 | P.CAP_C1p, P.REDUCEDLENGTH = 1 << 12 | P.CAP_C1 | P.CAP_C2, P.GEODESICSCALE = 1 << 13 | P.CAP_C1 | P.CAP_C2, P.AREA = 1 << 14 | P.CAP_C4, P.ALL = Og | Jg, P.LONG_UNROLL = 1 << 15, P.OUT_MASK = Og | P.LONG_UNROLL, P.SinCosSeries = function(We, Ee, ke, ve) {
20117
- var Te = ve.length, Fe = Te - (We ? 1 : 0), qe = 2 * (ke - Ee) * (ke + Ee), mg = Fe & 1 ? ve[--Te] : 0, Lg = 0;
20186
+ P.tiny_ = Math.sqrt(Number.MIN_VALUE / Number.EPSILON), P.nC1_ = ce, P.nC1p_ = ce, P.nC2_ = ce, P.nC3_ = ce, P.nC4_ = ce, Le = P.nC3_ * (P.nC3_ - 1) / 2, He = P.nC4_ * (P.nC4_ + 1) / 2, P.CAP_C1 = 1 << 0, P.CAP_C1p = 1 << 1, P.CAP_C2 = 1 << 2, P.CAP_C3 = 1 << 3, P.CAP_C4 = 1 << 4, P.NONE = 0, P.ARC = 1 << 6, P.LATITUDE = 1 << 7 | Vg, P.LONGITUDE = 1 << 8 | P.CAP_C3, P.AZIMUTH = 1 << 9 | Vg, P.DISTANCE = 1 << 10 | P.CAP_C1, P.STANDARD = P.LATITUDE | P.LONGITUDE | P.AZIMUTH | P.DISTANCE, P.DISTANCE_IN = 1 << 11 | P.CAP_C1 | P.CAP_C1p, P.REDUCEDLENGTH = 1 << 12 | P.CAP_C1 | P.CAP_C2, P.GEODESICSCALE = 1 << 13 | P.CAP_C1 | P.CAP_C2, P.AREA = 1 << 14 | P.CAP_C4, P.ALL = Og | Jg, P.LONG_UNROLL = 1 << 15, P.OUT_MASK = Og | P.LONG_UNROLL, P.SinCosSeries = function(We, Ye, ke, ve) {
20187
+ var Te = ve.length, Fe = Te - (We ? 1 : 0), qe = 2 * (ke - Ye) * (ke + Ye), mg = Fe & 1 ? ve[--Te] : 0, Lg = 0;
20118
20188
  for (Fe = Math.floor(Fe / 2); Fe--; )
20119
20189
  Lg = qe * mg - Lg + ve[--Te], mg = qe * Lg - mg + ve[--Te];
20120
- return We ? 2 * Ee * ke * mg : ke * (mg - Lg);
20121
- }, cI = function(We, Ee) {
20122
- var ke, ve = oe.sq(We), Te = oe.sq(Ee), Fe = (ve + Te - 1) / 6, qe, mg, Lg, og, fg, tg, ug, Sg, Pe, lg, Gg;
20190
+ return We ? 2 * Ye * ke * mg : ke * (mg - Lg);
20191
+ }, cI = function(We, Ye) {
20192
+ var ke, ve = oe.sq(We), Te = oe.sq(Ye), Fe = (ve + Te - 1) / 6, qe, mg, Lg, og, fg, tg, ug, Sg, Pe, lg, Gg;
20123
20193
  return Te === 0 && Fe <= 0 ? ke = 0 : (qe = ve * Te / 4, mg = oe.sq(Fe), Lg = Fe * mg, og = qe * (qe + 2 * Lg), fg = Fe, og >= 0 ? (tg = qe + Lg, tg += tg < 0 ? -Math.sqrt(og) : Math.sqrt(og), ug = oe.cbrt(tg), fg += ug + (ug !== 0 ? mg / ug : 0)) : (Sg = Math.atan2(Math.sqrt(-og), -(qe + Lg)), fg += 2 * Fe * Math.cos(Sg / 3)), Pe = Math.sqrt(oe.sq(fg) + Te), lg = fg < 0 ? Te / (Pe - fg) : fg + Pe, Gg = (lg - Te) / (2 * Pe), ke = lg / (Math.sqrt(lg + oe.sq(Gg)) + Gg)), ke;
20124
20194
  }, lI = [1, 4, 64, 0, 256], P.A1m1f = function(We) {
20125
- var Ee = Math.floor(Se / 2), ke = oe.polyval(Ee, lI, 0, oe.sq(We)) / lI[Ee + 1];
20195
+ var Ye = Math.floor(Se / 2), ke = oe.polyval(Ye, lI, 0, oe.sq(We)) / lI[Ye + 1];
20126
20196
  return (ke + We) / (1 - We);
20127
- }, dI = [-1, 6, -16, 32, -9, 64, -128, 2048, 9, -16, 768, 3, -5, 512, -7, 1280, -7, 2048], P.C1f = function(We, Ee) {
20197
+ }, dI = [-1, 6, -16, 32, -9, 64, -128, 2048, 9, -16, 768, 3, -5, 512, -7, 1280, -7, 2048], P.C1f = function(We, Ye) {
20128
20198
  var ke = oe.sq(We), ve = We, Te = 0, Fe, qe;
20129
20199
  for (Fe = 1; Fe <= P.nC1_; ++Fe)
20130
- qe = Math.floor((P.nC1_ - Fe) / 2), Ee[Fe] = ve * oe.polyval(qe, dI, Te, ke) / dI[Te + qe + 1], Te += qe + 2, ve *= We;
20131
- }, mI = [205, -432, 768, 1536, 4005, -4736, 3840, 12288, -225, 116, 384, -7173, 2695, 7680, 3467, 7680, 38081, 61440], P.C1pf = function(We, Ee) {
20200
+ qe = Math.floor((P.nC1_ - Fe) / 2), Ye[Fe] = ve * oe.polyval(qe, dI, Te, ke) / dI[Te + qe + 1], Te += qe + 2, ve *= We;
20201
+ }, mI = [205, -432, 768, 1536, 4005, -4736, 3840, 12288, -225, 116, 384, -7173, 2695, 7680, 3467, 7680, 38081, 61440], P.C1pf = function(We, Ye) {
20132
20202
  var ke = oe.sq(We), ve = We, Te = 0, Fe, qe;
20133
20203
  for (Fe = 1; Fe <= P.nC1p_; ++Fe)
20134
- qe = Math.floor((P.nC1p_ - Fe) / 2), Ee[Fe] = ve * oe.polyval(qe, mI, Te, ke) / mI[Te + qe + 1], Te += qe + 2, ve *= We;
20204
+ qe = Math.floor((P.nC1p_ - Fe) / 2), Ye[Fe] = ve * oe.polyval(qe, mI, Te, ke) / mI[Te + qe + 1], Te += qe + 2, ve *= We;
20135
20205
  }, pI = [-11, -28, -192, 0, 256], P.A2m1f = function(We) {
20136
- var Ee = Math.floor(be / 2), ke = oe.polyval(Ee, pI, 0, oe.sq(We)) / pI[Ee + 1];
20206
+ var Ye = Math.floor(be / 2), ke = oe.polyval(Ye, pI, 0, oe.sq(We)) / pI[Ye + 1];
20137
20207
  return (ke - We) / (1 + We);
20138
- }, KI = [1, 2, 16, 32, 35, 64, 384, 2048, 15, 80, 768, 7, 35, 512, 63, 1280, 77, 2048], P.C2f = function(We, Ee) {
20208
+ }, KI = [1, 2, 16, 32, 35, 64, 384, 2048, 15, 80, 768, 7, 35, 512, 63, 1280, 77, 2048], P.C2f = function(We, Ye) {
20139
20209
  var ke = oe.sq(We), ve = We, Te = 0, Fe, qe;
20140
20210
  for (Fe = 1; Fe <= P.nC2_; ++Fe)
20141
- qe = Math.floor((P.nC2_ - Fe) / 2), Ee[Fe] = ve * oe.polyval(qe, KI, Te, ke) / KI[Te + qe + 1], Te += qe + 2, ve *= We;
20142
- }, P.Geodesic = function(We, Ee) {
20143
- if (this.a = We, this.f = Ee, this._f1 = 1 - this.f, this._e2 = this.f * (2 - this.f), this._ep2 = this._e2 / oe.sq(this._f1), this._n = this.f / (2 - this.f), this._b = this.a * this._f1, this._c2 = (oe.sq(this.a) + oe.sq(this._b) * (this._e2 === 0 ? 1 : (this._e2 > 0 ? oe.atanh(Math.sqrt(this._e2)) : Math.atan(Math.sqrt(-this._e2))) / Math.sqrt(Math.abs(this._e2)))) / 2, this._etol2 = 0.1 * eg / Math.sqrt(Math.max(1e-3, Math.abs(this.f)) * Math.min(1, 1 - this.f / 2) / 2), !(isFinite(this.a) && this.a > 0))
20211
+ qe = Math.floor((P.nC2_ - Fe) / 2), Ye[Fe] = ve * oe.polyval(qe, KI, Te, ke) / KI[Te + qe + 1], Te += qe + 2, ve *= We;
20212
+ }, P.Geodesic = function(We, Ye) {
20213
+ if (this.a = We, this.f = Ye, this._f1 = 1 - this.f, this._e2 = this.f * (2 - this.f), this._ep2 = this._e2 / oe.sq(this._f1), this._n = this.f / (2 - this.f), this._b = this.a * this._f1, this._c2 = (oe.sq(this.a) + oe.sq(this._b) * (this._e2 === 0 ? 1 : (this._e2 > 0 ? oe.atanh(Math.sqrt(this._e2)) : Math.atan(Math.sqrt(-this._e2))) / Math.sqrt(Math.abs(this._e2)))) / 2, this._etol2 = 0.1 * eg / Math.sqrt(Math.max(1e-3, Math.abs(this.f)) * Math.min(1, 1 - this.f / 2) / 2), !(isFinite(this.a) && this.a > 0))
20144
20214
  throw new Error("Equatorial radius is not positive");
20145
20215
  if (!(isFinite(this._b) && this._b > 0))
20146
20216
  throw new Error("Polar semi-axis is not positive");
20147
20217
  this._A3x = new Array(me), this._C3x = new Array(Le), this._C4x = new Array(He), this.A3coeff(), this.C3coeff(), this.C4coeff();
20148
20218
  }, ZI = [-3, 128, -2, -3, 64, -1, -3, -1, 16, 3, -1, -2, 8, 1, -1, 2, 1, 1], P.Geodesic.prototype.A3coeff = function() {
20149
- var We = 0, Ee = 0, ke, ve;
20219
+ var We = 0, Ye = 0, ke, ve;
20150
20220
  for (ke = ye - 1; ke >= 0; --ke)
20151
- ve = Math.min(ye - ke - 1, ke), this._A3x[Ee++] = oe.polyval(ve, ZI, We, this._n) / ZI[We + ve + 1], We += ve + 2;
20221
+ ve = Math.min(ye - ke - 1, ke), this._A3x[Ye++] = oe.polyval(ve, ZI, We, this._n) / ZI[We + ve + 1], We += ve + 2;
20152
20222
  }, kI = [3, 128, 2, 5, 128, -1, 3, 3, 64, -1, 0, 1, 8, -1, 1, 4, 5, 256, 1, 3, 128, -3, -2, 3, 64, 1, -3, 2, 32, 7, 512, -10, 9, 384, 5, -9, 5, 192, 7, 512, -14, 7, 512, 21, 2560], P.Geodesic.prototype.C3coeff = function() {
20153
- var We = 0, Ee = 0, ke, ve, Te;
20223
+ var We = 0, Ye = 0, ke, ve, Te;
20154
20224
  for (ke = 1; ke < P.nC3_; ++ke)
20155
20225
  for (ve = P.nC3_ - 1; ve >= ke; --ve)
20156
- Te = Math.min(P.nC3_ - ve - 1, ve), this._C3x[Ee++] = oe.polyval(Te, kI, We, this._n) / kI[We + Te + 1], We += Te + 2;
20226
+ Te = Math.min(P.nC3_ - ve - 1, ve), this._C3x[Ye++] = oe.polyval(Te, kI, We, this._n) / kI[We + Te + 1], We += Te + 2;
20157
20227
  }, QI = [97, 15015, 1088, 156, 45045, -224, -4784, 1573, 45045, -10656, 14144, -4576, -858, 45045, 64, 624, -4576, 6864, -3003, 15015, 100, 208, 572, 3432, -12012, 30030, 45045, 1, 9009, -2944, 468, 135135, 5792, 1040, -1287, 135135, 5952, -11648, 9152, -2574, 135135, -64, -624, 4576, -6864, 3003, 135135, 8, 10725, 1856, -936, 225225, -8448, 4992, -1144, 225225, -1440, 4160, -4576, 1716, 225225, -136, 63063, 1024, -208, 105105, 3584, -3328, 1144, 315315, -128, 135135, -2560, 832, 405405, 128, 99099], P.Geodesic.prototype.C4coeff = function() {
20158
- var We = 0, Ee = 0, ke, ve, Te;
20228
+ var We = 0, Ye = 0, ke, ve, Te;
20159
20229
  for (ke = 0; ke < P.nC4_; ++ke)
20160
20230
  for (ve = P.nC4_ - 1; ve >= ke; --ve)
20161
- Te = P.nC4_ - ve - 1, this._C4x[Ee++] = oe.polyval(Te, QI, We, this._n) / QI[We + Te + 1], We += Te + 2;
20231
+ Te = P.nC4_ - ve - 1, this._C4x[Ye++] = oe.polyval(Te, QI, We, this._n) / QI[We + Te + 1], We += Te + 2;
20162
20232
  }, P.Geodesic.prototype.A3f = function(We) {
20163
20233
  return oe.polyval(me - 1, this._A3x, 0, We);
20164
- }, P.Geodesic.prototype.C3f = function(We, Ee) {
20234
+ }, P.Geodesic.prototype.C3f = function(We, Ye) {
20165
20235
  var ke = 1, ve = 0, Te, Fe;
20166
20236
  for (Te = 1; Te < P.nC3_; ++Te)
20167
- Fe = P.nC3_ - Te - 1, ke *= We, Ee[Te] = ke * oe.polyval(Fe, this._C3x, ve, We), ve += Fe + 1;
20168
- }, P.Geodesic.prototype.C4f = function(We, Ee) {
20237
+ Fe = P.nC3_ - Te - 1, ke *= We, Ye[Te] = ke * oe.polyval(Fe, this._C3x, ve, We), ve += Fe + 1;
20238
+ }, P.Geodesic.prototype.C4f = function(We, Ye) {
20169
20239
  var ke = 1, ve = 0, Te, Fe;
20170
20240
  for (Te = 0; Te < P.nC4_; ++Te)
20171
- Fe = P.nC4_ - Te - 1, Ee[Te] = ke * oe.polyval(Fe, this._C4x, ve, We), ve += Fe + 1, ke *= We;
20172
- }, P.Geodesic.prototype.Lengths = function(We, Ee, ke, ve, Te, Fe, qe, mg, Lg, og, fg, tg, ug) {
20241
+ Fe = P.nC4_ - Te - 1, Ye[Te] = ke * oe.polyval(Fe, this._C4x, ve, We), ve += Fe + 1, ke *= We;
20242
+ }, P.Geodesic.prototype.Lengths = function(We, Ye, ke, ve, Te, Fe, qe, mg, Lg, og, fg, tg, ug) {
20173
20243
  fg &= P.OUT_MASK;
20174
20244
  var Sg = {}, Pe = 0, lg = 0, Gg = 0, Kg = 0, Zg, Hg, Ng, zg, vg;
20175
20245
  if (fg & (P.DISTANCE | P.REDUCEDLENGTH | P.GEODESICSCALE) && (Gg = P.A1m1f(We), P.C1f(We, tg), fg & (P.REDUCEDLENGTH | P.GEODESICSCALE) && (Kg = P.A2m1f(We), P.C2f(We, ug), Pe = Gg - Kg, Kg = 1 + Kg), Gg = 1 + Gg), fg & P.DISTANCE)
20176
- Zg = P.SinCosSeries(!0, Fe, qe, tg) - P.SinCosSeries(!0, ke, ve, tg), Sg.s12b = Gg * (Ee + Zg), fg & (P.REDUCEDLENGTH | P.GEODESICSCALE) && (Hg = P.SinCosSeries(!0, Fe, qe, ug) - P.SinCosSeries(!0, ke, ve, ug), lg = Pe * Ee + (Gg * Zg - Kg * Hg));
20246
+ Zg = P.SinCosSeries(!0, Fe, qe, tg) - P.SinCosSeries(!0, ke, ve, tg), Sg.s12b = Gg * (Ye + Zg), fg & (P.REDUCEDLENGTH | P.GEODESICSCALE) && (Hg = P.SinCosSeries(!0, Fe, qe, ug) - P.SinCosSeries(!0, ke, ve, ug), lg = Pe * Ye + (Gg * Zg - Kg * Hg));
20177
20247
  else if (fg & (P.REDUCEDLENGTH | P.GEODESICSCALE)) {
20178
20248
  for (Ng = 1; Ng <= P.nC2_; ++Ng)
20179
20249
  ug[Ng] = Gg * tg[Ng] - Kg * ug[Ng];
20180
- lg = Pe * Ee + (P.SinCosSeries(!0, Fe, qe, ug) - P.SinCosSeries(!0, ke, ve, ug));
20250
+ lg = Pe * Ye + (P.SinCosSeries(!0, Fe, qe, ug) - P.SinCosSeries(!0, ke, ve, ug));
20181
20251
  }
20182
20252
  return fg & P.REDUCEDLENGTH && (Sg.m0 = Pe, Sg.m12b = mg * (ve * Fe) - Te * (ke * qe) - ve * qe * lg), fg & P.GEODESICSCALE && (zg = ve * qe + ke * Fe, vg = this._ep2 * (Lg - og) * (Lg + og) / (Te + mg), Sg.M12 = zg + (vg * Fe - qe * lg) * ke / Te, Sg.M21 = zg - (vg * ke - ve * lg) * Fe / mg), Sg;
20183
- }, P.Geodesic.prototype.InverseStart = function(We, Ee, ke, ve, Te, Fe, qe, mg, Lg, og, fg) {
20184
- var tg = {}, ug = ve * Ee - Te * We, Sg = Te * Ee + ve * We, Pe, lg, Gg, Kg, Zg, Hg, Ng, zg, vg, pg, Ag, dg, Wg, kg, HI, XI, ht, SI, yg, II, jg, tI, aI;
20185
- return tg.sig12 = -1, Pe = ve * Ee, Pe += Te * We, lg = Sg >= 0 && ug < 0.5 && Te * qe < 0.5, lg ? (Kg = oe.sq(We + ve), Kg /= Kg + oe.sq(Ee + Te), tg.dnm = Math.sqrt(1 + this._ep2 * Kg), Gg = qe / (this._f1 * tg.dnm), Zg = Math.sin(Gg), Hg = Math.cos(Gg)) : (Zg = mg, Hg = Lg), tg.salp1 = Te * Zg, tg.calp1 = Hg >= 0 ? ug + Te * We * oe.sq(Zg) / (1 + Hg) : Pe - Te * We * oe.sq(Zg) / (1 - Hg), zg = oe.hypot(tg.salp1, tg.calp1), vg = We * ve + Ee * Te * Hg, lg && zg < this._etol2 ? (tg.salp2 = Ee * Zg, tg.calp2 = ug - Ee * ve * (Hg >= 0 ? oe.sq(Zg) / (1 + Hg) : 1 - Hg), Ng = oe.hypot(tg.salp2, tg.calp2), tg.salp2 /= Ng, tg.calp2 /= Ng, tg.sig12 = Math.atan2(zg, vg)) : Math.abs(this._n) > 0.1 || vg >= 0 || zg >= 6 * Math.abs(this._n) * Math.PI * oe.sq(Ee) || (aI = Math.atan2(-mg, -Lg), this.f >= 0 ? (kg = oe.sq(We) * this._ep2, HI = kg / (2 * (1 + Math.sqrt(1 + kg)) + kg), dg = this.f * Ee * this.A3f(HI) * Math.PI, Wg = dg * Ee, pg = aI / dg, Ag = Pe / Wg) : (XI = Te * Ee - ve * We, ht = Math.atan2(Pe, XI), II = this.Lengths(this._n, Math.PI + ht, We, -Ee, ke, ve, Te, Fe, Ee, Te, P.REDUCEDLENGTH, og, fg), SI = II.m12b, yg = II.m0, pg = -1 + SI / (Ee * Te * yg * Math.PI), Wg = pg < -0.01 ? Pe / pg : -this.f * oe.sq(Ee) * Math.PI, dg = Wg / Ee, Ag = qe / dg), Ag > -je && pg > -1 - Tg ? this.f >= 0 ? (tg.salp1 = Math.min(1, -pg), tg.calp1 = -Math.sqrt(1 - oe.sq(tg.salp1))) : (tg.calp1 = Math.max(pg > -je ? 0 : -1, pg), tg.salp1 = Math.sqrt(1 - oe.sq(tg.calp1))) : (jg = cI(pg, Ag), tI = dg * (this.f >= 0 ? -pg * jg / (1 + jg) : -Ag * (1 + jg) / jg), Zg = Math.sin(tI), Hg = -Math.cos(tI), tg.salp1 = Te * Zg, tg.calp1 = Pe - Te * We * oe.sq(Zg) / (1 - Hg))), tg.salp1 <= 0 ? (tg.salp1 = 1, tg.calp1 = 0) : (Ng = oe.hypot(tg.salp1, tg.calp1), tg.salp1 /= Ng, tg.calp1 /= Ng), tg;
20186
- }, P.Geodesic.prototype.Lambda12 = function(We, Ee, ke, ve, Te, Fe, qe, mg, Lg, og, fg, tg, ug, Sg) {
20253
+ }, P.Geodesic.prototype.InverseStart = function(We, Ye, ke, ve, Te, Fe, qe, mg, Lg, og, fg) {
20254
+ var tg = {}, ug = ve * Ye - Te * We, Sg = Te * Ye + ve * We, Pe, lg, Gg, Kg, Zg, Hg, Ng, zg, vg, pg, Ag, dg, Wg, kg, HI, XI, ht, SI, yg, II, jg, tI, aI;
20255
+ return tg.sig12 = -1, Pe = ve * Ye, Pe += Te * We, lg = Sg >= 0 && ug < 0.5 && Te * qe < 0.5, lg ? (Kg = oe.sq(We + ve), Kg /= Kg + oe.sq(Ye + Te), tg.dnm = Math.sqrt(1 + this._ep2 * Kg), Gg = qe / (this._f1 * tg.dnm), Zg = Math.sin(Gg), Hg = Math.cos(Gg)) : (Zg = mg, Hg = Lg), tg.salp1 = Te * Zg, tg.calp1 = Hg >= 0 ? ug + Te * We * oe.sq(Zg) / (1 + Hg) : Pe - Te * We * oe.sq(Zg) / (1 - Hg), zg = oe.hypot(tg.salp1, tg.calp1), vg = We * ve + Ye * Te * Hg, lg && zg < this._etol2 ? (tg.salp2 = Ye * Zg, tg.calp2 = ug - Ye * ve * (Hg >= 0 ? oe.sq(Zg) / (1 + Hg) : 1 - Hg), Ng = oe.hypot(tg.salp2, tg.calp2), tg.salp2 /= Ng, tg.calp2 /= Ng, tg.sig12 = Math.atan2(zg, vg)) : Math.abs(this._n) > 0.1 || vg >= 0 || zg >= 6 * Math.abs(this._n) * Math.PI * oe.sq(Ye) || (aI = Math.atan2(-mg, -Lg), this.f >= 0 ? (kg = oe.sq(We) * this._ep2, HI = kg / (2 * (1 + Math.sqrt(1 + kg)) + kg), dg = this.f * Ye * this.A3f(HI) * Math.PI, Wg = dg * Ye, pg = aI / dg, Ag = Pe / Wg) : (XI = Te * Ye - ve * We, ht = Math.atan2(Pe, XI), II = this.Lengths(this._n, Math.PI + ht, We, -Ye, ke, ve, Te, Fe, Ye, Te, P.REDUCEDLENGTH, og, fg), SI = II.m12b, yg = II.m0, pg = -1 + SI / (Ye * Te * yg * Math.PI), Wg = pg < -0.01 ? Pe / pg : -this.f * oe.sq(Ye) * Math.PI, dg = Wg / Ye, Ag = qe / dg), Ag > -je && pg > -1 - Tg ? this.f >= 0 ? (tg.salp1 = Math.min(1, -pg), tg.calp1 = -Math.sqrt(1 - oe.sq(tg.salp1))) : (tg.calp1 = Math.max(pg > -je ? 0 : -1, pg), tg.salp1 = Math.sqrt(1 - oe.sq(tg.calp1))) : (jg = cI(pg, Ag), tI = dg * (this.f >= 0 ? -pg * jg / (1 + jg) : -Ag * (1 + jg) / jg), Zg = Math.sin(tI), Hg = -Math.cos(tI), tg.salp1 = Te * Zg, tg.calp1 = Pe - Te * We * oe.sq(Zg) / (1 - Hg))), tg.salp1 <= 0 ? (tg.salp1 = 1, tg.calp1 = 0) : (Ng = oe.hypot(tg.salp1, tg.calp1), tg.salp1 /= Ng, tg.calp1 /= Ng), tg;
20256
+ }, P.Geodesic.prototype.Lambda12 = function(We, Ye, ke, ve, Te, Fe, qe, mg, Lg, og, fg, tg, ug, Sg) {
20187
20257
  var Pe = {}, lg, Gg, Kg, Zg, Hg, Ng, zg, vg, pg, Ag, dg, Wg, kg;
20188
- return We === 0 && mg === 0 && (mg = -P.tiny_), Gg = qe * Ee, Kg = oe.hypot(mg, qe * We), Pe.ssig1 = We, Zg = Gg * We, Pe.csig1 = Hg = mg * Ee, lg = oe.hypot(Pe.ssig1, Pe.csig1), Pe.ssig1 /= lg, Pe.csig1 /= lg, Pe.salp2 = Te !== Ee ? Gg / Te : qe, Pe.calp2 = Te !== Ee || Math.abs(ve) !== -We ? Math.sqrt(oe.sq(mg * Ee) + (Ee < -We ? (Te - Ee) * (Ee + Te) : (We - ve) * (We + ve))) / Te : Math.abs(mg), Pe.ssig2 = ve, Ng = Gg * ve, Pe.csig2 = zg = Pe.calp2 * Te, lg = oe.hypot(Pe.ssig2, Pe.csig2), Pe.ssig2 /= lg, Pe.csig2 /= lg, Pe.sig12 = Math.atan2(Math.max(0, Pe.csig1 * Pe.ssig2 - Pe.ssig1 * Pe.csig2), Pe.csig1 * Pe.csig2 + Pe.ssig1 * Pe.ssig2), vg = Math.max(0, Hg * Ng - Zg * zg), pg = Hg * zg + Zg * Ng, dg = Math.atan2(vg * og - pg * Lg, pg * og + vg * Lg), Wg = oe.sq(Kg) * this._ep2, Pe.eps = Wg / (2 * (1 + Math.sqrt(1 + Wg)) + Wg), this.C3f(Pe.eps, Sg), Ag = P.SinCosSeries(!0, Pe.ssig2, Pe.csig2, Sg) - P.SinCosSeries(!0, Pe.ssig1, Pe.csig1, Sg), Pe.domg12 = -this.f * this.A3f(Pe.eps) * Gg * (Pe.sig12 + Ag), Pe.lam12 = dg + Pe.domg12, fg && (Pe.calp2 === 0 ? Pe.dlam12 = -2 * this._f1 * ke / We : (kg = this.Lengths(Pe.eps, Pe.sig12, Pe.ssig1, Pe.csig1, ke, Pe.ssig2, Pe.csig2, Fe, Ee, Te, P.REDUCEDLENGTH, tg, ug), Pe.dlam12 = kg.m12b, Pe.dlam12 *= this._f1 / (Pe.calp2 * Te))), Pe;
20189
- }, P.Geodesic.prototype.Inverse = function(We, Ee, ke, ve, Te) {
20258
+ return We === 0 && mg === 0 && (mg = -P.tiny_), Gg = qe * Ye, Kg = oe.hypot(mg, qe * We), Pe.ssig1 = We, Zg = Gg * We, Pe.csig1 = Hg = mg * Ye, lg = oe.hypot(Pe.ssig1, Pe.csig1), Pe.ssig1 /= lg, Pe.csig1 /= lg, Pe.salp2 = Te !== Ye ? Gg / Te : qe, Pe.calp2 = Te !== Ye || Math.abs(ve) !== -We ? Math.sqrt(oe.sq(mg * Ye) + (Ye < -We ? (Te - Ye) * (Ye + Te) : (We - ve) * (We + ve))) / Te : Math.abs(mg), Pe.ssig2 = ve, Ng = Gg * ve, Pe.csig2 = zg = Pe.calp2 * Te, lg = oe.hypot(Pe.ssig2, Pe.csig2), Pe.ssig2 /= lg, Pe.csig2 /= lg, Pe.sig12 = Math.atan2(Math.max(0, Pe.csig1 * Pe.ssig2 - Pe.ssig1 * Pe.csig2), Pe.csig1 * Pe.csig2 + Pe.ssig1 * Pe.ssig2), vg = Math.max(0, Hg * Ng - Zg * zg), pg = Hg * zg + Zg * Ng, dg = Math.atan2(vg * og - pg * Lg, pg * og + vg * Lg), Wg = oe.sq(Kg) * this._ep2, Pe.eps = Wg / (2 * (1 + Math.sqrt(1 + Wg)) + Wg), this.C3f(Pe.eps, Sg), Ag = P.SinCosSeries(!0, Pe.ssig2, Pe.csig2, Sg) - P.SinCosSeries(!0, Pe.ssig1, Pe.csig1, Sg), Pe.domg12 = -this.f * this.A3f(Pe.eps) * Gg * (Pe.sig12 + Ag), Pe.lam12 = dg + Pe.domg12, fg && (Pe.calp2 === 0 ? Pe.dlam12 = -2 * this._f1 * ke / We : (kg = this.Lengths(Pe.eps, Pe.sig12, Pe.ssig1, Pe.csig1, ke, Pe.ssig2, Pe.csig2, Fe, Ye, Te, P.REDUCEDLENGTH, tg, ug), Pe.dlam12 = kg.m12b, Pe.dlam12 *= this._f1 / (Pe.calp2 * Te))), Pe;
20259
+ }, P.Geodesic.prototype.Inverse = function(We, Ye, ke, ve, Te) {
20190
20260
  var Fe, qe;
20191
- return Te || (Te = P.STANDARD), Te === P.LONG_UNROLL && (Te |= P.STANDARD), Te &= P.OUT_MASK, Fe = this.InverseInt(We, Ee, ke, ve, Te), qe = Fe.vals, Te & P.AZIMUTH && (qe.azi1 = oe.atan2d(Fe.salp1, Fe.calp1), qe.azi2 = oe.atan2d(Fe.salp2, Fe.calp2)), qe;
20192
- }, P.Geodesic.prototype.InverseInt = function(We, Ee, ke, ve, Te) {
20193
- var Fe = {}, qe, mg, Lg, og, fg, tg, ug, Sg, Pe, lg, Gg, Kg, Zg, Hg, Ng, zg, vg, pg, Ag, dg, Wg, kg, HI, XI, ht, SI, yg, II, jg, tI, aI, Dt, Tt, UI, TI, ut, Bt, mt, pt, Vt, ri, _I, ci, Wt, li, di, hi, sC, ui, zt, Bi, xt, oC, Yt, nC, aC, St, Et, Gt, mi, pi, vt, kt, yi, Gi;
20194
- if (Fe.lat1 = We = oe.LatFix(We), Fe.lat2 = ke = oe.LatFix(ke), We = oe.AngRound(We), ke = oe.AngRound(ke), qe = oe.AngDiff(Ee, ve), mg = qe.e, qe = qe.d, Te & P.LONG_UNROLL ? (Fe.lon1 = Ee, Fe.lon2 = Ee + qe + mg) : (Fe.lon1 = oe.AngNormalize(Ee), Fe.lon2 = oe.AngNormalize(ve)), Lg = oe.copysign(1, qe), qe *= Lg, mg *= Lg, Ng = qe * oe.degree, og = oe.sincosde(qe, mg), zg = og.s, vg = og.c, mg = 180 - qe - mg, fg = Math.abs(We) < Math.abs(ke) || isNaN(ke) ? -1 : 1, fg < 0 && (Lg *= -1, [ke, We] = [We, ke]), tg = oe.copysign(1, -We), We *= tg, ke *= tg, og = oe.sincosd(We), ug = this._f1 * og.s, Sg = og.c, og = oe.hypot(ug, Sg), ug /= og, Sg /= og, Sg = Math.max(P.tiny_, Sg), og = oe.sincosd(ke), Pe = this._f1 * og.s, lg = og.c, og = oe.hypot(Pe, lg), Pe /= og, lg /= og, lg = Math.max(P.tiny_, lg), Sg < -ug ? lg === Sg && (Pe = oe.copysign(ug, Pe)) : Math.abs(Pe) === -ug && (lg = Sg), Zg = Math.sqrt(1 + this._ep2 * oe.sq(ug)), Hg = Math.sqrt(1 + this._ep2 * oe.sq(Pe)), HI = new Array(P.nC1_ + 1), XI = new Array(P.nC2_ + 1), ht = new Array(P.nC3_), SI = We === -90 || zg === 0, SI && (Ag = vg, dg = zg, Wg = 1, kg = 0, II = ug, jg = Ag * Sg, tI = Pe, aI = Wg * lg, pg = Math.atan2(Math.max(0, jg * tI - II * aI), jg * aI + II * tI), yg = this.Lengths(this._n, pg, II, jg, Zg, tI, aI, Hg, Sg, lg, Te | P.DISTANCE | P.REDUCEDLENGTH, HI, XI), Gg = yg.s12b, Kg = yg.m12b, Te & P.GEODESICSCALE && (Fe.M12 = yg.M12, Fe.M21 = yg.M21), pg < 1 || Kg >= 0 ? ((pg < 3 * P.tiny_ || pg < Qe && (Gg < 0 || Kg < 0)) && (pg = Kg = Gg = 0), Kg *= this._b, Gg *= this._b, Fe.a12 = pg / oe.degree) : SI = !1), St = 2, !SI && ug === 0 && (this.f <= 0 || mg >= this.f * 180))
20261
+ return Te || (Te = P.STANDARD), Te === P.LONG_UNROLL && (Te |= P.STANDARD), Te &= P.OUT_MASK, Fe = this.InverseInt(We, Ye, ke, ve, Te), qe = Fe.vals, Te & P.AZIMUTH && (qe.azi1 = oe.atan2d(Fe.salp1, Fe.calp1), qe.azi2 = oe.atan2d(Fe.salp2, Fe.calp2)), qe;
20262
+ }, P.Geodesic.prototype.InverseInt = function(We, Ye, ke, ve, Te) {
20263
+ var Fe = {}, qe, mg, Lg, og, fg, tg, ug, Sg, Pe, lg, Gg, Kg, Zg, Hg, Ng, zg, vg, pg, Ag, dg, Wg, kg, HI, XI, ht, SI, yg, II, jg, tI, aI, Dt, Tt, UI, TI, ut, Bt, mt, pt, Vt, ri, _I, ci, Wt, li, di, hi, sC, ui, zt, Bi, xt, oC, Et, nC, aC, St, Yt, Gt, mi, pi, vt, kt, yi, Gi;
20264
+ if (Fe.lat1 = We = oe.LatFix(We), Fe.lat2 = ke = oe.LatFix(ke), We = oe.AngRound(We), ke = oe.AngRound(ke), qe = oe.AngDiff(Ye, ve), mg = qe.e, qe = qe.d, Te & P.LONG_UNROLL ? (Fe.lon1 = Ye, Fe.lon2 = Ye + qe + mg) : (Fe.lon1 = oe.AngNormalize(Ye), Fe.lon2 = oe.AngNormalize(ve)), Lg = oe.copysign(1, qe), qe *= Lg, mg *= Lg, Ng = qe * oe.degree, og = oe.sincosde(qe, mg), zg = og.s, vg = og.c, mg = 180 - qe - mg, fg = Math.abs(We) < Math.abs(ke) || isNaN(ke) ? -1 : 1, fg < 0 && (Lg *= -1, [ke, We] = [We, ke]), tg = oe.copysign(1, -We), We *= tg, ke *= tg, og = oe.sincosd(We), ug = this._f1 * og.s, Sg = og.c, og = oe.hypot(ug, Sg), ug /= og, Sg /= og, Sg = Math.max(P.tiny_, Sg), og = oe.sincosd(ke), Pe = this._f1 * og.s, lg = og.c, og = oe.hypot(Pe, lg), Pe /= og, lg /= og, lg = Math.max(P.tiny_, lg), Sg < -ug ? lg === Sg && (Pe = oe.copysign(ug, Pe)) : Math.abs(Pe) === -ug && (lg = Sg), Zg = Math.sqrt(1 + this._ep2 * oe.sq(ug)), Hg = Math.sqrt(1 + this._ep2 * oe.sq(Pe)), HI = new Array(P.nC1_ + 1), XI = new Array(P.nC2_ + 1), ht = new Array(P.nC3_), SI = We === -90 || zg === 0, SI && (Ag = vg, dg = zg, Wg = 1, kg = 0, II = ug, jg = Ag * Sg, tI = Pe, aI = Wg * lg, pg = Math.atan2(Math.max(0, jg * tI - II * aI), jg * aI + II * tI), yg = this.Lengths(this._n, pg, II, jg, Zg, tI, aI, Hg, Sg, lg, Te | P.DISTANCE | P.REDUCEDLENGTH, HI, XI), Gg = yg.s12b, Kg = yg.m12b, Te & P.GEODESICSCALE && (Fe.M12 = yg.M12, Fe.M21 = yg.M21), pg < 1 || Kg >= 0 ? ((pg < 3 * P.tiny_ || pg < Qe && (Gg < 0 || Kg < 0)) && (pg = Kg = Gg = 0), Kg *= this._b, Gg *= this._b, Fe.a12 = pg / oe.degree) : SI = !1), St = 2, !SI && ug === 0 && (this.f <= 0 || mg >= this.f * 180))
20195
20265
  Ag = Wg = 0, dg = kg = 1, Gg = this.a * Ng, pg = Tt = Ng / this._f1, Kg = this._b * Math.sin(pg), Te & P.GEODESICSCALE && (Fe.M12 = Fe.M21 = Math.cos(pg)), Fe.a12 = qe / this._f1;
20196
20266
  else if (!SI)
20197
20267
  if (yg = this.InverseStart(ug, Sg, Zg, Pe, lg, Hg, Ng, zg, vg, HI, XI), pg = yg.sig12, dg = yg.salp1, Ag = yg.calp1, pg >= 0)
@@ -20204,28 +20274,28 @@ northing meters` + M;
20204
20274
  }
20205
20275
  dg = (ut + mt) / 2, Ag = (Bt + pt) / 2, og = oe.hypot(dg, Ag), dg /= og, Ag /= og, Vt = !1, ri = Math.abs(ut - dg) + (Bt - Ag) < Mg || Math.abs(dg - mt) + (Ag - pt) < Mg;
20206
20276
  }
20207
- sC = Te | (Te & (P.REDUCEDLENGTH | P.GEODESICSCALE) ? P.DISTANCE : P.NONE), yg = this.Lengths(Dt, pg, II, jg, Zg, tI, aI, Hg, Sg, lg, sC, HI, XI), Gg = yg.s12b, Kg = yg.m12b, Te & P.GEODESICSCALE && (Fe.M12 = yg.M12, Fe.M21 = yg.M21), Kg *= this._b, Gg *= this._b, Fe.a12 = pg / oe.degree, Te & P.AREA && (yi = Math.sin(Gt), Gi = Math.cos(Gt), St = zg * Gi - vg * yi, Et = vg * Gi + zg * yi);
20277
+ sC = Te | (Te & (P.REDUCEDLENGTH | P.GEODESICSCALE) ? P.DISTANCE : P.NONE), yg = this.Lengths(Dt, pg, II, jg, Zg, tI, aI, Hg, Sg, lg, sC, HI, XI), Gg = yg.s12b, Kg = yg.m12b, Te & P.GEODESICSCALE && (Fe.M12 = yg.M12, Fe.M21 = yg.M21), Kg *= this._b, Gg *= this._b, Fe.a12 = pg / oe.degree, Te & P.AREA && (yi = Math.sin(Gt), Gi = Math.cos(Gt), St = zg * Gi - vg * yi, Yt = vg * Gi + zg * yi);
20208
20278
  }
20209
- return Te & P.DISTANCE && (Fe.s12 = 0 + Gg), Te & P.REDUCEDLENGTH && (Fe.m12 = 0 + Kg), Te & P.AREA && (ui = dg * Sg, zt = oe.hypot(Ag, dg * ug), zt !== 0 && ui !== 0 ? (II = ug, jg = Ag * Sg, tI = Pe, aI = Wg * lg, xt = oe.sq(zt) * this._ep2, Dt = xt / (2 * (1 + Math.sqrt(1 + xt)) + xt), oC = oe.sq(this.a) * zt * ui * this._e2, og = oe.hypot(II, jg), II /= og, jg /= og, og = oe.hypot(tI, aI), tI /= og, aI /= og, Yt = new Array(P.nC4_), this.C4f(Dt, Yt), nC = P.SinCosSeries(!1, II, jg, Yt), aC = P.SinCosSeries(!1, tI, aI, Yt), Fe.S12 = oC * (aC - nC)) : Fe.S12 = 0, !SI && St == 2 && (St = Math.sin(Tt), Et = Math.cos(Tt)), !SI && Et > -0.7071 && Pe - ug < 1.75 ? (Gt = 1 + Et, mi = 1 + Sg, pi = 1 + lg, Bi = 2 * Math.atan2(St * (ug * pi + Pe * mi), Gt * (ug * Pe + mi * pi))) : (vt = kg * Ag - Wg * dg, kt = Wg * Ag + kg * dg, vt === 0 && kt < 0 && (vt = P.tiny_ * Ag, kt = -1), Bi = Math.atan2(vt, kt)), Fe.S12 += this._c2 * Bi, Fe.S12 *= fg * Lg * tg, Fe.S12 += 0), fg < 0 && ([kg, dg] = [dg, kg], [Wg, Ag] = [Ag, Wg], Te & P.GEODESICSCALE && ([Fe.M21, Fe.M12] = [Fe.M12, Fe.M21])), dg *= fg * Lg, Ag *= fg * tg, kg *= fg * Lg, Wg *= fg * tg, { vals: Fe, salp1: dg, calp1: Ag, salp2: kg, calp2: Wg };
20210
- }, P.Geodesic.prototype.GenDirect = function(We, Ee, ke, ve, Te, Fe) {
20279
+ return Te & P.DISTANCE && (Fe.s12 = 0 + Gg), Te & P.REDUCEDLENGTH && (Fe.m12 = 0 + Kg), Te & P.AREA && (ui = dg * Sg, zt = oe.hypot(Ag, dg * ug), zt !== 0 && ui !== 0 ? (II = ug, jg = Ag * Sg, tI = Pe, aI = Wg * lg, xt = oe.sq(zt) * this._ep2, Dt = xt / (2 * (1 + Math.sqrt(1 + xt)) + xt), oC = oe.sq(this.a) * zt * ui * this._e2, og = oe.hypot(II, jg), II /= og, jg /= og, og = oe.hypot(tI, aI), tI /= og, aI /= og, Et = new Array(P.nC4_), this.C4f(Dt, Et), nC = P.SinCosSeries(!1, II, jg, Et), aC = P.SinCosSeries(!1, tI, aI, Et), Fe.S12 = oC * (aC - nC)) : Fe.S12 = 0, !SI && St == 2 && (St = Math.sin(Tt), Yt = Math.cos(Tt)), !SI && Yt > -0.7071 && Pe - ug < 1.75 ? (Gt = 1 + Yt, mi = 1 + Sg, pi = 1 + lg, Bi = 2 * Math.atan2(St * (ug * pi + Pe * mi), Gt * (ug * Pe + mi * pi))) : (vt = kg * Ag - Wg * dg, kt = Wg * Ag + kg * dg, vt === 0 && kt < 0 && (vt = P.tiny_ * Ag, kt = -1), Bi = Math.atan2(vt, kt)), Fe.S12 += this._c2 * Bi, Fe.S12 *= fg * Lg * tg, Fe.S12 += 0), fg < 0 && ([kg, dg] = [dg, kg], [Wg, Ag] = [Ag, Wg], Te & P.GEODESICSCALE && ([Fe.M21, Fe.M12] = [Fe.M12, Fe.M21])), dg *= fg * Lg, Ag *= fg * tg, kg *= fg * Lg, Wg *= fg * tg, { vals: Fe, salp1: dg, calp1: Ag, salp2: kg, calp2: Wg };
20280
+ }, P.Geodesic.prototype.GenDirect = function(We, Ye, ke, ve, Te, Fe) {
20211
20281
  var qe;
20212
- return Fe ? Fe === P.LONG_UNROLL && (Fe |= P.STANDARD) : Fe = P.STANDARD, ve || (Fe |= P.DISTANCE_IN), qe = new ee.GeodesicLine(this, We, Ee, ke, Fe), qe.GenPosition(ve, Te, Fe);
20213
- }, P.Geodesic.prototype.Direct = function(We, Ee, ke, ve, Te) {
20214
- return this.GenDirect(We, Ee, ke, !1, ve, Te);
20215
- }, P.Geodesic.prototype.ArcDirect = function(We, Ee, ke, ve, Te) {
20216
- return this.GenDirect(We, Ee, ke, !0, ve, Te);
20217
- }, P.Geodesic.prototype.Line = function(We, Ee, ke, ve) {
20218
- return new ee.GeodesicLine(this, We, Ee, ke, ve);
20219
- }, P.Geodesic.prototype.DirectLine = function(We, Ee, ke, ve, Te) {
20220
- return this.GenDirectLine(We, Ee, ke, !1, ve, Te);
20221
- }, P.Geodesic.prototype.ArcDirectLine = function(We, Ee, ke, ve, Te) {
20222
- return this.GenDirectLine(We, Ee, ke, !0, ve, Te);
20223
- }, P.Geodesic.prototype.GenDirectLine = function(We, Ee, ke, ve, Te, Fe) {
20282
+ return Fe ? Fe === P.LONG_UNROLL && (Fe |= P.STANDARD) : Fe = P.STANDARD, ve || (Fe |= P.DISTANCE_IN), qe = new ee.GeodesicLine(this, We, Ye, ke, Fe), qe.GenPosition(ve, Te, Fe);
20283
+ }, P.Geodesic.prototype.Direct = function(We, Ye, ke, ve, Te) {
20284
+ return this.GenDirect(We, Ye, ke, !1, ve, Te);
20285
+ }, P.Geodesic.prototype.ArcDirect = function(We, Ye, ke, ve, Te) {
20286
+ return this.GenDirect(We, Ye, ke, !0, ve, Te);
20287
+ }, P.Geodesic.prototype.Line = function(We, Ye, ke, ve) {
20288
+ return new ee.GeodesicLine(this, We, Ye, ke, ve);
20289
+ }, P.Geodesic.prototype.DirectLine = function(We, Ye, ke, ve, Te) {
20290
+ return this.GenDirectLine(We, Ye, ke, !1, ve, Te);
20291
+ }, P.Geodesic.prototype.ArcDirectLine = function(We, Ye, ke, ve, Te) {
20292
+ return this.GenDirectLine(We, Ye, ke, !0, ve, Te);
20293
+ }, P.Geodesic.prototype.GenDirectLine = function(We, Ye, ke, ve, Te, Fe) {
20224
20294
  var qe;
20225
- return Fe || (Fe = P.STANDARD | P.DISTANCE_IN), ve || (Fe |= P.DISTANCE_IN), qe = new ee.GeodesicLine(this, We, Ee, ke, Fe), qe.GenSetDistance(ve, Te), qe;
20226
- }, P.Geodesic.prototype.InverseLine = function(We, Ee, ke, ve, Te) {
20295
+ return Fe || (Fe = P.STANDARD | P.DISTANCE_IN), ve || (Fe |= P.DISTANCE_IN), qe = new ee.GeodesicLine(this, We, Ye, ke, Fe), qe.GenSetDistance(ve, Te), qe;
20296
+ }, P.Geodesic.prototype.InverseLine = function(We, Ye, ke, ve, Te) {
20227
20297
  var Fe, qe, mg;
20228
- return Te || (Te = P.STANDARD | P.DISTANCE_IN), Fe = this.InverseInt(We, Ee, ke, ve, P.ARC), mg = oe.atan2d(Fe.salp1, Fe.calp1), Te & (P.OUT_MASK & P.DISTANCE_IN) && (Te |= P.DISTANCE), qe = new ee.GeodesicLine(this, We, Ee, mg, Te, Fe.salp1, Fe.calp1), qe.SetArc(Fe.vals.a12), qe;
20298
+ return Te || (Te = P.STANDARD | P.DISTANCE_IN), Fe = this.InverseInt(We, Ye, ke, ve, P.ARC), mg = oe.atan2d(Fe.salp1, Fe.calp1), Te & (P.OUT_MASK & P.DISTANCE_IN) && (Te |= P.DISTANCE), qe = new ee.GeodesicLine(this, We, Ye, mg, Te, Fe.salp1, Fe.calp1), qe.SetArc(Fe.vals.a12), qe;
20229
20299
  }, P.Geodesic.prototype.Polygon = function(We) {
20230
20300
  return new Ce.PolygonArea(this, We);
20231
20301
  }, P.WGS84 = new P.Geodesic(ne.WGS84.a, ne.WGS84.f);
@@ -20234,8 +20304,8 @@ northing meters` + M;
20234
20304
  var Le, He, Ze, Ne, Qe, je;
20235
20305
  be || (be = P.STANDARD | P.DISTANCE_IN), this.a = oe.a, this.f = oe.f, this._b = oe._b, this._c2 = oe._c2, this._f1 = oe._f1, this.caps = be | P.LATITUDE | P.AZIMUTH | P.LONG_UNROLL, this.lat1 = Ce.LatFix(ne), this.lon1 = ce, typeof ye > "u" || typeof me > "u" ? (this.azi1 = Ce.AngNormalize(Se), Le = Ce.sincosd(Ce.AngRound(this.azi1)), this.salp1 = Le.s, this.calp1 = Le.c) : (this.azi1 = Se, this.salp1 = ye, this.calp1 = me), Le = Ce.sincosd(Ce.AngRound(this.lat1)), Ze = this._f1 * Le.s, He = Le.c, Le = Ce.hypot(Ze, He), Ze /= Le, He /= Le, He = Math.max(P.tiny_, He), this._dn1 = Math.sqrt(1 + oe._ep2 * Ce.sq(Ze)), this._salp0 = this.salp1 * He, this._calp0 = Ce.hypot(this.calp1, this.salp1 * Ze), this._ssig1 = Ze, this._somg1 = this._salp0 * Ze, this._csig1 = this._comg1 = Ze !== 0 || this.calp1 !== 0 ? He * this.calp1 : 1, Le = Ce.hypot(this._ssig1, this._csig1), this._ssig1 /= Le, this._csig1 /= Le, this._k2 = Ce.sq(this._calp0) * oe._ep2, Ne = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2), this.caps & P.CAP_C1 && (this._A1m1 = P.A1m1f(Ne), this._C1a = new Array(P.nC1_ + 1), P.C1f(Ne, this._C1a), this._B11 = P.SinCosSeries(!0, this._ssig1, this._csig1, this._C1a), Qe = Math.sin(this._B11), je = Math.cos(this._B11), this._stau1 = this._ssig1 * je + this._csig1 * Qe, this._ctau1 = this._csig1 * je - this._ssig1 * Qe), this.caps & P.CAP_C1p && (this._C1pa = new Array(P.nC1p_ + 1), P.C1pf(Ne, this._C1pa)), this.caps & P.CAP_C2 && (this._A2m1 = P.A2m1f(Ne), this._C2a = new Array(P.nC2_ + 1), P.C2f(Ne, this._C2a), this._B21 = P.SinCosSeries(!0, this._ssig1, this._csig1, this._C2a)), this.caps & P.CAP_C3 && (this._C3a = new Array(P.nC3_), oe.C3f(Ne, this._C3a), this._A3c = -this.f * this._salp0 * oe.A3f(Ne), this._B31 = P.SinCosSeries(!0, this._ssig1, this._csig1, this._C3a)), this.caps & P.CAP_C4 && (this._C4a = new Array(P.nC4_), oe.C4f(Ne, this._C4a), this._A4 = Ce.sq(this.a) * this._calp0 * this._salp0 * oe._e2, this._B41 = P.SinCosSeries(!1, this._ssig1, this._csig1, this._C4a)), this.a13 = this.s13 = NaN;
20236
20306
  }, ee.GeodesicLine.prototype.GenPosition = function(oe, ne, ce) {
20237
- var Se = {}, be, ye, me, Le, He, Ze, Ne, Qe, je, eg, Mg, Tg, Vg, Jg, Og, cI, lI, dI, mI, pI, KI, ZI, kI, QI, We, Ee, ke, ve, Te;
20238
- return ce ? ce === P.LONG_UNROLL && (ce |= P.STANDARD) : ce = P.STANDARD, ce &= this.caps & P.OUT_MASK, Se.lat1 = this.lat1, Se.azi1 = this.azi1, Se.lon1 = ce & P.LONG_UNROLL ? this.lon1 : Ce.AngNormalize(this.lon1), oe ? Se.a12 = ne : Se.s12 = ne, oe || this.caps & P.DISTANCE_IN & P.OUT_MASK ? (Le = 0, He = 0, oe ? (be = ne * Ce.degree, Ee = Ce.sincosd(ne), ye = Ee.s, me = Ee.c) : (Qe = ne / (this._b * (1 + this._A1m1)), je = Math.sin(Qe), eg = Math.cos(Qe), Le = -P.SinCosSeries(!0, this._stau1 * eg + this._ctau1 * je, this._ctau1 * eg - this._stau1 * je, this._C1pa), be = Qe - (Le - this._B11), ye = Math.sin(be), me = Math.cos(be), Math.abs(this.f) > 0.01 && (Ze = this._ssig1 * me + this._csig1 * ye, Ne = this._csig1 * me - this._ssig1 * ye, Le = P.SinCosSeries(!0, Ze, Ne, this._C1a), Mg = (1 + this._A1m1) * (be + (Le - this._B11)) - ne / this._b, be = be - Mg / Math.sqrt(1 + this._k2 * Ce.sq(Ze)), ye = Math.sin(be), me = Math.cos(be))), Ze = this._ssig1 * me + this._csig1 * ye, Ne = this._csig1 * me - this._ssig1 * ye, ZI = Math.sqrt(1 + this._k2 * Ce.sq(Ze)), ce & (P.DISTANCE | P.REDUCEDLENGTH | P.GEODESICSCALE) && ((oe || Math.abs(this.f) > 0.01) && (Le = P.SinCosSeries(!0, Ze, Ne, this._C1a)), He = (1 + this._A1m1) * (Le - this._B11)), cI = this._calp0 * Ze, lI = Ce.hypot(this._salp0, this._calp0 * Ne), lI === 0 && (lI = Ne = P.tiny_), pI = this._salp0, KI = this._calp0 * Ne, oe && ce & P.DISTANCE && (Se.s12 = this._b * ((1 + this._A1m1) * be + He)), ce & P.LONGITUDE && (dI = this._salp0 * Ze, mI = Ne, Og = Ce.copysign(1, this._salp0), Tg = ce & P.LONG_UNROLL ? Og * (be - (Math.atan2(Ze, Ne) - Math.atan2(this._ssig1, this._csig1)) + (Math.atan2(Og * dI, mI) - Math.atan2(Og * this._somg1, this._comg1))) : Math.atan2(dI * this._comg1 - mI * this._somg1, mI * this._comg1 + dI * this._somg1), Vg = Tg + this._A3c * (be + (P.SinCosSeries(!0, Ze, Ne, this._C3a) - this._B31)), Jg = Vg / Ce.degree, Se.lon2 = ce & P.LONG_UNROLL ? this.lon1 + Jg : Ce.AngNormalize(Ce.AngNormalize(this.lon1) + Ce.AngNormalize(Jg))), ce & P.LATITUDE && (Se.lat2 = Ce.atan2d(cI, this._f1 * lI)), ce & P.AZIMUTH && (Se.azi2 = Ce.atan2d(pI, KI)), ce & (P.REDUCEDLENGTH | P.GEODESICSCALE) && (kI = P.SinCosSeries(!0, Ze, Ne, this._C2a), QI = (1 + this._A2m1) * (kI - this._B21), We = (this._A1m1 - this._A2m1) * be + (He - QI), ce & P.REDUCEDLENGTH && (Se.m12 = this._b * (ZI * (this._csig1 * Ze) - this._dn1 * (this._ssig1 * Ne) - this._csig1 * Ne * We)), ce & P.GEODESICSCALE && (Ee = this._k2 * (Ze - this._ssig1) * (Ze + this._ssig1) / (this._dn1 + ZI), Se.M12 = me + (Ee * Ze - Ne * We) * this._ssig1 / this._dn1, Se.M21 = me - (Ee * this._ssig1 - this._csig1 * We) * Ze / ZI)), ce & P.AREA && (ke = P.SinCosSeries(!1, Ze, Ne, this._C4a), this._calp0 === 0 || this._salp0 === 0 ? (ve = pI * this.calp1 - KI * this.salp1, Te = KI * this.calp1 + pI * this.salp1) : (ve = this._calp0 * this._salp0 * (me <= 0 ? this._csig1 * (1 - me) + ye * this._ssig1 : ye * (this._csig1 * ye / (1 + me) + this._ssig1)), Te = Ce.sq(this._salp0) + Ce.sq(this._calp0) * this._csig1 * Ne), Se.S12 = this._c2 * Math.atan2(ve, Te) + this._A4 * (ke - this._B41)), oe || (Se.a12 = be / Ce.degree), Se) : (Se.a12 = NaN, Se);
20307
+ var Se = {}, be, ye, me, Le, He, Ze, Ne, Qe, je, eg, Mg, Tg, Vg, Jg, Og, cI, lI, dI, mI, pI, KI, ZI, kI, QI, We, Ye, ke, ve, Te;
20308
+ return ce ? ce === P.LONG_UNROLL && (ce |= P.STANDARD) : ce = P.STANDARD, ce &= this.caps & P.OUT_MASK, Se.lat1 = this.lat1, Se.azi1 = this.azi1, Se.lon1 = ce & P.LONG_UNROLL ? this.lon1 : Ce.AngNormalize(this.lon1), oe ? Se.a12 = ne : Se.s12 = ne, oe || this.caps & P.DISTANCE_IN & P.OUT_MASK ? (Le = 0, He = 0, oe ? (be = ne * Ce.degree, Ye = Ce.sincosd(ne), ye = Ye.s, me = Ye.c) : (Qe = ne / (this._b * (1 + this._A1m1)), je = Math.sin(Qe), eg = Math.cos(Qe), Le = -P.SinCosSeries(!0, this._stau1 * eg + this._ctau1 * je, this._ctau1 * eg - this._stau1 * je, this._C1pa), be = Qe - (Le - this._B11), ye = Math.sin(be), me = Math.cos(be), Math.abs(this.f) > 0.01 && (Ze = this._ssig1 * me + this._csig1 * ye, Ne = this._csig1 * me - this._ssig1 * ye, Le = P.SinCosSeries(!0, Ze, Ne, this._C1a), Mg = (1 + this._A1m1) * (be + (Le - this._B11)) - ne / this._b, be = be - Mg / Math.sqrt(1 + this._k2 * Ce.sq(Ze)), ye = Math.sin(be), me = Math.cos(be))), Ze = this._ssig1 * me + this._csig1 * ye, Ne = this._csig1 * me - this._ssig1 * ye, ZI = Math.sqrt(1 + this._k2 * Ce.sq(Ze)), ce & (P.DISTANCE | P.REDUCEDLENGTH | P.GEODESICSCALE) && ((oe || Math.abs(this.f) > 0.01) && (Le = P.SinCosSeries(!0, Ze, Ne, this._C1a)), He = (1 + this._A1m1) * (Le - this._B11)), cI = this._calp0 * Ze, lI = Ce.hypot(this._salp0, this._calp0 * Ne), lI === 0 && (lI = Ne = P.tiny_), pI = this._salp0, KI = this._calp0 * Ne, oe && ce & P.DISTANCE && (Se.s12 = this._b * ((1 + this._A1m1) * be + He)), ce & P.LONGITUDE && (dI = this._salp0 * Ze, mI = Ne, Og = Ce.copysign(1, this._salp0), Tg = ce & P.LONG_UNROLL ? Og * (be - (Math.atan2(Ze, Ne) - Math.atan2(this._ssig1, this._csig1)) + (Math.atan2(Og * dI, mI) - Math.atan2(Og * this._somg1, this._comg1))) : Math.atan2(dI * this._comg1 - mI * this._somg1, mI * this._comg1 + dI * this._somg1), Vg = Tg + this._A3c * (be + (P.SinCosSeries(!0, Ze, Ne, this._C3a) - this._B31)), Jg = Vg / Ce.degree, Se.lon2 = ce & P.LONG_UNROLL ? this.lon1 + Jg : Ce.AngNormalize(Ce.AngNormalize(this.lon1) + Ce.AngNormalize(Jg))), ce & P.LATITUDE && (Se.lat2 = Ce.atan2d(cI, this._f1 * lI)), ce & P.AZIMUTH && (Se.azi2 = Ce.atan2d(pI, KI)), ce & (P.REDUCEDLENGTH | P.GEODESICSCALE) && (kI = P.SinCosSeries(!0, Ze, Ne, this._C2a), QI = (1 + this._A2m1) * (kI - this._B21), We = (this._A1m1 - this._A2m1) * be + (He - QI), ce & P.REDUCEDLENGTH && (Se.m12 = this._b * (ZI * (this._csig1 * Ze) - this._dn1 * (this._ssig1 * Ne) - this._csig1 * Ne * We)), ce & P.GEODESICSCALE && (Ye = this._k2 * (Ze - this._ssig1) * (Ze + this._ssig1) / (this._dn1 + ZI), Se.M12 = me + (Ye * Ze - Ne * We) * this._ssig1 / this._dn1, Se.M21 = me - (Ye * this._ssig1 - this._csig1 * We) * Ze / ZI)), ce & P.AREA && (ke = P.SinCosSeries(!1, Ze, Ne, this._C4a), this._calp0 === 0 || this._salp0 === 0 ? (ve = pI * this.calp1 - KI * this.salp1, Te = KI * this.calp1 + pI * this.salp1) : (ve = this._calp0 * this._salp0 * (me <= 0 ? this._csig1 * (1 - me) + ye * this._ssig1 : ye * (this._csig1 * ye / (1 + me) + this._ssig1)), Te = Ce.sq(this._salp0) + Ce.sq(this._calp0) * this._csig1 * Ne), Se.S12 = this._c2 * Math.atan2(ve, Te) + this._A4 * (ke - this._B41)), oe || (Se.a12 = be / Ce.degree), Se) : (Se.a12 = NaN, Se);
20239
20309
  }, ee.GeodesicLine.prototype.Position = function(oe, ne) {
20240
20310
  return this.GenPosition(!1, oe, ne);
20241
20311
  }, ee.GeodesicLine.prototype.ArcPosition = function(oe, ne) {
@@ -20298,16 +20368,16 @@ northing meters` + M;
20298
20368
  var N = M.x, Y = M.y, P = Math.sin(M.y), ee = Math.cos(M.y), Ce = _e(N - this.long0), oe, ne, ce, Se, be, ye, me, Le, He, Ze, Ne, Qe, je, eg, Mg;
20299
20369
  return this.sphere ? Math.abs(this.sin_p12 - 1) <= W ? (M.x = this.x0 + this.a * (b - Y) * Math.sin(Ce), M.y = this.y0 - this.a * (b - Y) * Math.cos(Ce), M) : Math.abs(this.sin_p12 + 1) <= W ? (M.x = this.x0 + this.a * (b + Y) * Math.sin(Ce), M.y = this.y0 + this.a * (b + Y) * Math.cos(Ce), M) : (He = this.sin_p12 * P + this.cos_p12 * ee * Math.cos(Ce), me = Math.acos(He), Le = me ? me / Math.sin(me) : 1, M.x = this.x0 + this.a * Le * ee * Math.sin(Ce), M.y = this.y0 + this.a * Le * (this.cos_p12 * P - this.sin_p12 * ee * Math.cos(Ce)), M) : (oe = $I(this.es), ne = et(this.es), ce = It(this.es), Se = tt(this.es), Math.abs(this.sin_p12 - 1) <= W ? (be = this.a * qg(oe, ne, ce, Se, b), ye = this.a * qg(oe, ne, ce, Se, Y), M.x = this.x0 + (be - ye) * Math.sin(Ce), M.y = this.y0 - (be - ye) * Math.cos(Ce), M) : Math.abs(this.sin_p12 + 1) <= W ? (be = this.a * qg(oe, ne, ce, Se, b), ye = this.a * qg(oe, ne, ce, Se, Y), M.x = this.x0 + (be + ye) * Math.sin(Ce), M.y = this.y0 + (be + ye) * Math.cos(Ce), M) : Math.abs(N) < W && Math.abs(Y - this.lat0) < W ? (M.x = M.y = 0, M) : (Ze = this.lat0 / z, Ne = this.long0 / z, Qe = Y / z, je = N / z, eg = this.g.Inverse(Ze, Ne, Qe, je, this.g.AZIMUTH), Mg = eg.azi1 * z, M.x = eg.s12 * Math.sin(Mg), M.y = eg.s12 * Math.cos(Mg), M));
20300
20370
  }
20301
- function Yn(M) {
20371
+ function En(M) {
20302
20372
  M.x -= this.x0, M.y -= this.y0;
20303
20373
  var N, Y, P, ee, Ce, oe, ne, ce, Se, be, ye, me, Le, He, Ze, Ne, Qe, je;
20304
20374
  return this.sphere ? (N = Math.sqrt(M.x * M.x + M.y * M.y), N > 2 * b * this.a ? void 0 : (Y = N / this.a, P = Math.sin(Y), ee = Math.cos(Y), Ce = this.long0, Math.abs(N) <= W ? oe = this.lat0 : (oe = LI(ee * this.sin_p12 + M.y * P * this.cos_p12 / N), ne = Math.abs(this.lat0) - b, Math.abs(ne) <= W ? this.lat0 >= 0 ? Ce = _e(this.long0 + Math.atan2(M.x, -M.y)) : Ce = _e(this.long0 - Math.atan2(-M.x, M.y)) : Ce = _e(this.long0 + Math.atan2(M.x * P, N * this.cos_p12 * ee - M.y * this.sin_p12 * P))), M.x = Ce, M.y = oe, M)) : (ce = $I(this.es), Se = et(this.es), be = It(this.es), ye = tt(this.es), Math.abs(this.sin_p12 - 1) <= W ? (me = this.a * qg(ce, Se, be, ye, b), N = Math.sqrt(M.x * M.x + M.y * M.y), Le = me - N, oe = Ht(Le / this.a, ce, Se, be, ye), Ce = _e(this.long0 + Math.atan2(M.x, -1 * M.y)), M.x = Ce, M.y = oe, M) : Math.abs(this.sin_p12 + 1) <= W ? (me = this.a * qg(ce, Se, be, ye, b), N = Math.sqrt(M.x * M.x + M.y * M.y), Le = N - me, oe = Ht(Le / this.a, ce, Se, be, ye), Ce = _e(this.long0 + Math.atan2(M.x, M.y)), M.x = Ce, M.y = oe, M) : (He = this.lat0 / z, Ze = this.long0 / z, Ne = Math.atan2(M.x, M.y) / z, Qe = Math.sqrt(M.x * M.x + M.y * M.y), je = this.g.Direct(He, Ze, Ne, Qe, this.g.STANDARD), M.x = je.lon2 * z, M.y = je.lat2 * z, M));
20305
20375
  }
20306
- var En = ["Azimuthal_Equidistant", "aeqd"], vn = {
20376
+ var Yn = ["Azimuthal_Equidistant", "aeqd"], vn = {
20307
20377
  init: zn,
20308
20378
  forward: xn,
20309
- inverse: Yn,
20310
- names: En
20379
+ inverse: En,
20380
+ names: Yn
20311
20381
  };
20312
20382
  function kn() {
20313
20383
  this.sin_p14 = Math.sin(this.lat0), this.cos_p14 = Math.cos(this.lat0);
@@ -20349,7 +20419,7 @@ northing meters` + M;
20349
20419
  Ce = b + Y, P >= w && P <= b + w ? (ce.value = wg.AREA_0, ee = -P + b) : P < w && P >= -w ? (ce.value = wg.AREA_1, ee = -P) : P < -w && P >= -(b + w) ? (ce.value = wg.AREA_2, ee = -P - b) : (ce.value = wg.AREA_3, ee = P > 0 ? -P + Z : -P - Z);
20350
20420
  else {
20351
20421
  var Se, be, ye, me, Le, He, Ze;
20352
- this.face === Rg.RIGHT ? P = EI(P, +b) : this.face === Rg.BACK ? P = EI(P, 3.14159265359) : this.face === Rg.LEFT && (P = EI(P, -b)), me = Math.sin(Y), Le = Math.cos(Y), He = Math.sin(P), Ze = Math.cos(P), Se = Le * Ze, be = Le * He, ye = me, this.face === Rg.FRONT ? (Ce = Math.acos(Se), ee = Xt(Ce, ye, be, ce)) : this.face === Rg.RIGHT ? (Ce = Math.acos(be), ee = Xt(Ce, ye, -Se, ce)) : this.face === Rg.BACK ? (Ce = Math.acos(-Se), ee = Xt(Ce, ye, -be, ce)) : this.face === Rg.LEFT ? (Ce = Math.acos(-be), ee = Xt(Ce, ye, Se, ce)) : (Ce = ee = 0, ce.value = wg.AREA_0);
20422
+ this.face === Rg.RIGHT ? P = YI(P, +b) : this.face === Rg.BACK ? P = YI(P, 3.14159265359) : this.face === Rg.LEFT && (P = YI(P, -b)), me = Math.sin(Y), Le = Math.cos(Y), He = Math.sin(P), Ze = Math.cos(P), Se = Le * Ze, be = Le * He, ye = me, this.face === Rg.FRONT ? (Ce = Math.acos(Se), ee = Xt(Ce, ye, be, ce)) : this.face === Rg.RIGHT ? (Ce = Math.acos(be), ee = Xt(Ce, ye, -Se, ce)) : this.face === Rg.BACK ? (Ce = Math.acos(-Se), ee = Xt(Ce, ye, -be, ce)) : this.face === Rg.LEFT ? (Ce = Math.acos(-be), ee = Xt(Ce, ye, Se, ce)) : (Ce = ee = 0, ce.value = wg.AREA_0);
20353
20423
  }
20354
20424
  return ne = Math.atan(12 / Z * (ee + Math.acos(Math.sin(ee) * Math.cos(w)) - b)), oe = Math.sqrt((1 - Math.cos(Ce)) / (Math.cos(ne) * Math.cos(ne)) / (1 - Math.cos(Math.atan(1 / Math.cos(ee))))), ce.value === wg.AREA_1 ? ne += b : ce.value === wg.AREA_2 ? ne += Z : ce.value === wg.AREA_3 && (ne += 1.5 * Z), N.x = oe * Math.cos(ne), N.y = oe * Math.sin(ne), N.x = N.x * this.a + this.x0, N.y = N.y * this.a + this.y0, M.x = N.x, M.y = N.y, M;
20355
20425
  }
@@ -20361,7 +20431,7 @@ northing meters` + M;
20361
20431
  Se = Math.acos(ce), N.phi = Se - b, ye.value === wg.AREA_0 ? N.lam = -ne + b : ye.value === wg.AREA_1 ? N.lam = -ne : ye.value === wg.AREA_2 ? N.lam = -ne - b : N.lam = ne < 0 ? -ne - Z : -ne + Z;
20362
20432
  else {
20363
20433
  var me, Le, He;
20364
- me = ce, be = me * me, be >= 1 ? He = 0 : He = Math.sqrt(1 - be) * Math.sin(ne), be += He * He, be >= 1 ? Le = 0 : Le = Math.sqrt(1 - be), ye.value === wg.AREA_1 ? (be = Le, Le = -He, He = be) : ye.value === wg.AREA_2 ? (Le = -Le, He = -He) : ye.value === wg.AREA_3 && (be = Le, Le = He, He = -be), this.face === Rg.RIGHT ? (be = me, me = -Le, Le = be) : this.face === Rg.BACK ? (me = -me, Le = -Le) : this.face === Rg.LEFT && (be = me, me = Le, Le = -be), N.phi = Math.acos(-He) - b, N.lam = Math.atan2(Le, me), this.face === Rg.RIGHT ? N.lam = EI(N.lam, -b) : this.face === Rg.BACK ? N.lam = EI(N.lam, -3.14159265359) : this.face === Rg.LEFT && (N.lam = EI(N.lam, +b));
20434
+ me = ce, be = me * me, be >= 1 ? He = 0 : He = Math.sqrt(1 - be) * Math.sin(ne), be += He * He, be >= 1 ? Le = 0 : Le = Math.sqrt(1 - be), ye.value === wg.AREA_1 ? (be = Le, Le = -He, He = be) : ye.value === wg.AREA_2 ? (Le = -Le, He = -He) : ye.value === wg.AREA_3 && (be = Le, Le = He, He = -be), this.face === Rg.RIGHT ? (be = me, me = -Le, Le = be) : this.face === Rg.BACK ? (me = -me, Le = -Le) : this.face === Rg.LEFT && (be = me, me = Le, Le = -be), N.phi = Math.acos(-He) - b, N.lam = Math.atan2(Le, me), this.face === Rg.RIGHT ? N.lam = YI(N.lam, -b) : this.face === Rg.BACK ? N.lam = YI(N.lam, -3.14159265359) : this.face === Rg.LEFT && (N.lam = YI(N.lam, +b));
20365
20435
  }
20366
20436
  if (this.es !== 0) {
20367
20437
  var Ze, Ne, Qe;
@@ -20373,7 +20443,7 @@ northing meters` + M;
20373
20443
  var ee;
20374
20444
  return M < W ? (P.value = wg.AREA_0, ee = 0) : (ee = Math.atan2(N, Y), Math.abs(ee) <= w ? P.value = wg.AREA_0 : ee > w && ee <= b + w ? (P.value = wg.AREA_1, ee -= b) : ee > b + w || ee <= -(b + w) ? (P.value = wg.AREA_2, ee = ee >= 0 ? ee - Z : ee + Z) : (P.value = wg.AREA_3, ee += b)), ee;
20375
20445
  }
20376
- function EI(M, N) {
20446
+ function YI(M, N) {
20377
20447
  var Y = M + N;
20378
20448
  return Y < -3.14159265359 ? Y += T : Y > 3.14159265359 && (Y -= T), Y;
20379
20449
  }
@@ -20694,7 +20764,7 @@ northing meters` + M;
20694
20764
  function Ta(M) {
20695
20765
  M.Proj.projections.add(Kt), M.Proj.projections.add(Zt), M.Proj.projections.add(ws), M.Proj.projections.add(Ns), M.Proj.projections.add(zs), M.Proj.projections.add(ks), M.Proj.projections.add(Os), M.Proj.projections.add(go), M.Proj.projections.add(so), M.Proj.projections.add(ro), M.Proj.projections.add(Zo), M.Proj.projections.add(To), M.Proj.projections.add(xo), M.Proj.projections.add(Qo), M.Proj.projections.add(jo), M.Proj.projections.add(tn), M.Proj.projections.add(an), M.Proj.projections.add(dn), M.Proj.projections.add(yn), M.Proj.projections.add(Mn), M.Proj.projections.add(Xn), M.Proj.projections.add(Vn), M.Proj.projections.add(vn), M.Proj.projections.add(_n), M.Proj.projections.add($n), M.Proj.projections.add(oa), M.Proj.projections.add(ca), M.Proj.projections.add(Ba), M.Proj.projections.add(Ga), M.Proj.projections.add(La), M.Proj.projections.add(Da);
20696
20766
  }
20697
- return nI.defaultDatum = "WGS84", nI.Proj = BI, nI.WGS84 = new nI.Proj("WGS84"), nI.Point = zI, nI.toPoint = Vi, nI.defs = Ig, nI.nadgrid = wC, nI.transform = Lt, nI.mgrs = EC, nI.version = "2.17.0", Ta(nI), nI;
20767
+ return nI.defaultDatum = "WGS84", nI.Proj = BI, nI.WGS84 = new nI.Proj("WGS84"), nI.Point = zI, nI.toPoint = Vi, nI.defs = Ig, nI.nadgrid = wC, nI.transform = Lt, nI.mgrs = YC, nI.version = "2.17.0", Ta(nI), nI;
20698
20768
  });
20699
20769
  })(proj4Src);
20700
20770
  const proj4 = proj4Src.exports;
@@ -22403,6 +22473,8 @@ attribute vec2 offset;
22403
22473
  varying vec2 v_uv;
22404
22474
  varying float v_type;
22405
22475
  varying float v_iconOpacity;
22476
+ varying float vScale;
22477
+ varying float opacityRatio;
22406
22478
 
22407
22479
  varying vec4 vStrokeStyles;
22408
22480
  varying vec4 vFillStyles;
@@ -22446,10 +22518,16 @@ vec3 transformCoord(vec3 coord, vec2 size, float corner, float rotateZ) {
22446
22518
  #include <logdepthbuf_pars_vertex>
22447
22519
  #include <mvt_keepsize_pars_vertex>
22448
22520
  #include <mvt_extra_vertex_utils>
22521
+ #include <mvt_animation_pars_vertex>
22449
22522
  void main() {
22450
22523
  v_uv = uv;
22451
22524
  v_type = type;
22452
22525
 
22526
+ opacityRatio = 1.0;
22527
+ vScale = 1.0;
22528
+
22529
+ #include <mvt_animation_label_vertex>
22530
+
22453
22531
  mat4 currentInstanceMatrix = mat4(1.0);
22454
22532
  vec3 currentPosition = position;
22455
22533
  #ifdef IS_GLOBE
@@ -22463,6 +22541,10 @@ void main() {
22463
22541
  currentPosition = vec3(0.0, 0.0, 0.0);
22464
22542
  #endif
22465
22543
 
22544
+ #ifdef ENABLE_ANIMATION_JUMP
22545
+ currentPosition.z += jumpHeight;
22546
+ #endif
22547
+
22466
22548
  vec4 worldPosition = (modelMatrix * currentInstanceMatrix * vec4(currentPosition, 1.0));
22467
22549
 
22468
22550
  #ifdef RENDER_IN_POSTPROCESS
@@ -22479,8 +22561,8 @@ void main() {
22479
22561
  v_iconOpacity = fillStyles.w;
22480
22562
  // vec4 worldPosition = modelMatrix * vec4(position, 1.0);
22481
22563
  if (u_flat) {
22482
- float hw = wh.x * 0.5;
22483
- float hh = wh.y * 0.5;
22564
+ float hw = wh.x * 0.5 * vScale;
22565
+ float hh = wh.y * 0.5 * vScale;
22484
22566
 
22485
22567
  if (keepSize) {
22486
22568
  float pixelSize = getPixelSize(worldPosition.xyz);
@@ -22488,6 +22570,9 @@ void main() {
22488
22570
  hh *= pixelSize;
22489
22571
  }
22490
22572
 
22573
+ #ifdef ENABLE_ANIMATION_ROTATE
22574
+ iconRotateZ += rotation;
22575
+ #endif
22491
22576
  vec3 current = transformCoord(currentPosition, vec2(hw, hh), pIndex, -iconRotateZ);
22492
22577
 
22493
22578
  gl_Position = projectionMatrix * modelViewMatrix * currentInstanceMatrix * vec4(current, 1.0);
@@ -22500,12 +22585,12 @@ void main() {
22500
22585
  float w = gl_Position.w;
22501
22586
  gl_Position /= w;
22502
22587
 
22503
- float hw = wh.x / resolution.x;
22504
- float hh = wh.y / resolution.y;
22588
+ float hw = wh.x / resolution.x * vScale;
22589
+ float hh = wh.y / resolution.y * vScale;
22505
22590
 
22506
22591
  float pixelSize = getPixelSize(worldPosition.xyz);
22507
- float iconOffsetX = offset.x * 2.0 / resolution.x;
22508
- float iconOffsetY = offset.y * 2.0 / resolution.y;
22592
+ float iconOffsetX = offset.x * 2.0 / resolution.x * vScale;
22593
+ float iconOffsetY = offset.y * 2.0 / resolution.y * vScale;
22509
22594
  if (!keepSize) {
22510
22595
  hw = hw / pixelSize;
22511
22596
  hh = hh / pixelSize;
@@ -22550,12 +22635,12 @@ void main() {
22550
22635
  textRotateZ += PI;
22551
22636
  }
22552
22637
  // TODO \u652F\u6301offset
22553
- float hw = wh.x * 0.5;
22554
- float hh = wh.y * 0.5;
22638
+ float hw = wh.x * 0.5 * vScale;
22639
+ float hh = wh.y * 0.5 * vScale;
22555
22640
 
22556
22641
  float pixelSize = getPixelSize(worldPosition.xyz);
22557
- float xOffset = offset.x;
22558
- float yOffset = offset.y;
22642
+ float xOffset = offset.x * vScale;
22643
+ float yOffset = offset.y * vScale;
22559
22644
  if (keepSize) {
22560
22645
  hw = hw * pixelSize;
22561
22646
  hh = hh * pixelSize;
@@ -22564,8 +22649,10 @@ void main() {
22564
22649
  yOffset *= pixelSize;
22565
22650
  }
22566
22651
 
22652
+ #ifdef ENABLE_ANIMATION_ROTATE
22653
+ textRotateZ += rotation;
22654
+ #endif
22567
22655
  vec3 transformedPoint = transformCoord(currentPosition, vec2(xOffset, yOffset), 2.0, -textRotateZ);
22568
-
22569
22656
  vec3 current = transformCoord(transformedPoint, vec2(hw, hh), pIndex, -textRotateZ);
22570
22657
 
22571
22658
  gl_Position = projectionMatrix * modelViewMatrix * currentInstanceMatrix * vec4(current, 1.0);
@@ -22581,11 +22668,11 @@ void main() {
22581
22668
  float w = pos.w;
22582
22669
  vec3 screen = pos.xyz / w;
22583
22670
 
22584
- float hw = wh.x / resolution.x;
22585
- float hh = wh.y / resolution.y;
22671
+ float hw = wh.x / resolution.x * vScale;
22672
+ float hh = wh.y / resolution.y * vScale;
22586
22673
 
22587
- float textOffsetX = offset.x * 2.0 / resolution.x;
22588
- float textOffsetY = offset.y * 2.0 / resolution.y;
22674
+ float textOffsetX = offset.x * 2.0 / resolution.x * vScale;
22675
+ float textOffsetY = offset.y * 2.0 / resolution.y * vScale;
22589
22676
  if (!keepSize) {
22590
22677
  float pixelSize = getPixelSize(worldPosition.xyz);
22591
22678
  hw = hw / pixelSize;
@@ -22733,9 +22820,169 @@ class CommonShaderMaterial extends ShaderMaterial {
22733
22820
  this.setValues(e);
22734
22821
  }
22735
22822
  }
22736
- const uniforms$s = UniformsUtils.merge([
22823
+ const commonUniforms = {
22824
+ height: { value: 0 },
22825
+ size: { value: 1 },
22826
+ size3: { value: [1, 1, 1] },
22827
+ resolution: { value: [1, 1] },
22828
+ zoomUnits: { value: 1 },
22829
+ color: { value: [1, 0, 0] },
22830
+ opacity: { value: 1 }
22831
+ }, animationUnifroms = {
22832
+ animationRotatePeriod: { value: 4e3 },
22833
+ animationJumpPeriod: { value: 4e3 },
22834
+ animationJumpHeight: { value: 30 },
22835
+ animationPeriodOffset: { value: !1 },
22836
+ animationEffect: { value: !0 },
22837
+ animationEffectPeriod: { value: 4e3 },
22838
+ animationPeriod: { value: 4e3 }
22839
+ }, defineCommonProperties = (r) => {
22840
+ Object.defineProperties(r, {
22841
+ color: {
22842
+ get: function() {
22843
+ return this.uniforms.color.value;
22844
+ },
22845
+ set: function(i) {
22846
+ this.uniforms.color.value = normalizeColor(i);
22847
+ }
22848
+ },
22849
+ height: {
22850
+ get: function() {
22851
+ return this.uniforms.height.value;
22852
+ },
22853
+ set: function(i) {
22854
+ this.uniforms.height.value = i;
22855
+ }
22856
+ },
22857
+ size: {
22858
+ get: function() {
22859
+ return this.uniforms.size.value;
22860
+ },
22861
+ set: function(i) {
22862
+ this.uniforms.size.value = i;
22863
+ }
22864
+ },
22865
+ size3: {
22866
+ get: function() {
22867
+ return this.uniforms.size3.value;
22868
+ },
22869
+ set: function(i) {
22870
+ Array.isArray(i) && i.length === 3 && (this.uniforms.size3.value = i);
22871
+ }
22872
+ },
22873
+ useSize3: {
22874
+ get: function() {
22875
+ return this.defines.USE_SIZE3;
22876
+ },
22877
+ set: function(i) {
22878
+ i === this.defines.USE_SIZE3 && (this.defines.USE_SIZE3 = !!i), this.needsUpdate = !0;
22879
+ }
22880
+ },
22881
+ opacity: {
22882
+ get: function() {
22883
+ return this.uniforms.opacity.value;
22884
+ },
22885
+ set: function(i) {
22886
+ this.uniforms.opacity.value = i;
22887
+ }
22888
+ }
22889
+ });
22890
+ }, defineAnimationProperties = (r) => {
22891
+ Object.defineProperties(r, {
22892
+ animationRotate: {
22893
+ get: function() {
22894
+ return !!this.defines.ENABLE_ANIMATION_ROTATE;
22895
+ },
22896
+ set: function(i) {
22897
+ i !== this.animationRotate && (i ? this.defines.ENABLE_ANIMATION_ROTATE = !0 : delete this.defines.ENABLE_ANIMATION_ROTATE, this.needsUpdate = !0);
22898
+ }
22899
+ },
22900
+ animationRotatePeriod: {
22901
+ get: function() {
22902
+ return this.uniforms.animationRotatePeriod.value;
22903
+ },
22904
+ set: function(i) {
22905
+ this.uniforms.animationRotatePeriod.value = i;
22906
+ }
22907
+ },
22908
+ animationJump: {
22909
+ get: function() {
22910
+ return !!this.defines.ENABLE_ANIMATION_JUMP;
22911
+ },
22912
+ set: function(i) {
22913
+ i !== this.animationJump && (i ? this.defines.ENABLE_ANIMATION_JUMP = !0 : delete this.defines.ENABLE_ANIMATION_JUMP, this.needsUpdate = !0);
22914
+ }
22915
+ },
22916
+ animationJumpPeriod: {
22917
+ get: function() {
22918
+ return this.uniforms.animationJumpPeriod.value;
22919
+ },
22920
+ set: function(i) {
22921
+ this.uniforms.animationJumpPeriod.value = i;
22922
+ }
22923
+ },
22924
+ animationJumpHeight: {
22925
+ get: function() {
22926
+ return this.uniforms.animationJumpHeight.value;
22927
+ },
22928
+ set: function(i) {
22929
+ this.uniforms.animationJumpHeight.value = i;
22930
+ }
22931
+ },
22932
+ animationPeriodOffset: {
22933
+ get: function() {
22934
+ return this.uniforms.animationPeriodOffset.value;
22935
+ },
22936
+ set: function(i) {
22937
+ this.uniforms.animationPeriodOffset.value = i;
22938
+ }
22939
+ },
22940
+ animationEffect: {
22941
+ get: function() {
22942
+ return this.uniforms.animationEffect.value;
22943
+ },
22944
+ set: function(i) {
22945
+ this.uniforms.animationEffect.value = i;
22946
+ }
22947
+ },
22948
+ animationEffectPeriod: {
22949
+ get: function() {
22950
+ return this.uniforms.animationEffectPeriod.value;
22951
+ },
22952
+ set: function(i) {
22953
+ this.uniforms.animationEffectPeriod.value = i;
22954
+ }
22955
+ },
22956
+ animationScale: {
22957
+ get: function() {
22958
+ return !!this.defines.ENABLE_ANIMATION_SCALE;
22959
+ },
22960
+ set: function(i) {
22961
+ i !== this.animationScale && (i ? this.defines.ENABLE_ANIMATION_SCALE = !0 : delete this.defines.ENABLE_ANIMATION_SCALE, this.needsUpdate = !0);
22962
+ }
22963
+ },
22964
+ animationBreath: {
22965
+ get: function() {
22966
+ return !!this.defines.ENABLE_ANIMATION_BREATH;
22967
+ },
22968
+ set: function(i) {
22969
+ i !== this.animationBreath && (i ? this.defines.ENABLE_ANIMATION_BREATH = !0 : delete this.defines.ENABLE_ANIMATION_BREATH, this.needsUpdate = !0);
22970
+ }
22971
+ },
22972
+ animationPeriod: {
22973
+ get: function() {
22974
+ return this.uniforms.animationPeriod.value;
22975
+ },
22976
+ set: function(i) {
22977
+ this.uniforms.animationPeriod.value = i;
22978
+ }
22979
+ }
22980
+ });
22981
+ }, uniforms$s = UniformsUtils.merge([
22737
22982
  UniformsLib.fog,
22738
22983
  selectiveUniforms,
22984
+ commonUniforms,
22985
+ animationUnifroms,
22739
22986
  {
22740
22987
  spriteMap: { value: null },
22741
22988
  textMap: { value: null },
@@ -22743,6 +22990,10 @@ const uniforms$s = UniformsUtils.merge([
22743
22990
  useMap: { value: !1 },
22744
22991
  pixelOffset: { value: [0, 0] },
22745
22992
  positionOffset: { value: [0, 0, 0] },
22993
+ targetScale: { value: 2 },
22994
+ minScale: { value: 0 },
22995
+ maxScale: { value: 2 },
22996
+ opacityGradient: { value: !1 },
22746
22997
  opacity: { value: 1 },
22747
22998
  keepSize: {
22748
22999
  value: !0
@@ -22766,7 +23017,7 @@ const uniforms$s = UniformsUtils.merge([
22766
23017
  ]), textureLoader$b = new TextureLoader();
22767
23018
  class SymbolMaterial extends CommonShaderMaterial {
22768
23019
  constructor(i) {
22769
- super(), this.name = "SymbolMaterial", this.vertexShader = vertexShader$t, this.fragmentShader = fragmentShader$r, this.transparent = !0, this.depthTest = !1, this._mapSrc = "", Object.assign(this.uniforms, UniformsUtils.clone(uniforms$s)), defineMaterialKeepSizeProperties(this), defineMaterialAliasProperties(this, [
23020
+ super(), this.name = "SymbolMaterial", this.vertexShader = vertexShader$t, this.fragmentShader = fragmentShader$r, this.transparent = !0, this.depthTest = !1, this._mapSrc = "", Object.assign(this.uniforms, UniformsUtils.clone(uniforms$s)), defineCommonProperties(this), defineAnimationProperties(this), defineMaterialKeepSizeProperties(this), defineMaterialAliasProperties(this, [
22770
23021
  ["flat", "u_flat"]
22771
23022
  ]), defineMaterialBoolDefineProperties(this, [
22772
23023
  ["isRenderInPostprocess", "RENDER_IN_POSTPROCESS"],
@@ -25671,7 +25922,7 @@ class EventThrottle {
25671
25922
  return this._isBusy;
25672
25923
  }
25673
25924
  }
25674
- const Yg = class {
25925
+ const Eg = class {
25675
25926
  constructor(i) {
25676
25927
  K(this, "_mouse", new Vector2$1());
25677
25928
  K(this, "_mousePosition", new Vector2$1());
@@ -25703,7 +25954,7 @@ const Yg = class {
25703
25954
  for (const te of s)
25704
25955
  !z || !z[te] || z[te].length === 0 || D.push(te);
25705
25956
  const H = z && Object.keys(z) || [];
25706
- (H.includes(Yg.EVENT_NAME_MOUSE_ENTER) || H.includes(Yg.EVENT_NAME_MOUSE_LEAVE)) && (W = !0), G.isEventEntitySupported ? R = new EntityProxy(G, u) : R = null;
25957
+ (H.includes(Eg.EVENT_NAME_MOUSE_ENTER) || H.includes(Eg.EVENT_NAME_MOUSE_LEAVE)) && (W = !0), G.isEventEntitySupported ? R = new EntityProxy(G, u) : R = null;
25707
25958
  let w = !1, T = !1, Z = null;
25708
25959
  if (W)
25709
25960
  if (h.set(G, R), !this._lastMouseEnterLeaveObjects.has(G))
@@ -25713,9 +25964,9 @@ const Yg = class {
25713
25964
  G.isEventEntitySupported && !this._isSameEntity(R, te) && (w = !0, T = !0, Z = te);
25714
25965
  }
25715
25966
  for (const te of D) {
25716
- if (L[te] || te === Yg.EVENT_NAME_MOUSE_ENTER && !w)
25967
+ if (L[te] || te === Eg.EVENT_NAME_MOUSE_ENTER && !w)
25717
25968
  continue;
25718
- if (te === Yg.EVENT_NAME_MOUSE_LEAVE) {
25969
+ if (te === Eg.EVENT_NAME_MOUSE_LEAVE) {
25719
25970
  if (!T)
25720
25971
  continue;
25721
25972
  Z && (R = Z);
@@ -25733,25 +25984,25 @@ const Yg = class {
25733
25984
  return s !== void 0 && s === o;
25734
25985
  });
25735
25986
  K(this, "_handlePointerDown", (i) => {
25736
- this._eventThrottle.putEvent(Yg.EVENT_NAME_POINTER_DOWN, i), this._engine.requestRender();
25987
+ this._eventThrottle.putEvent(Eg.EVENT_NAME_POINTER_DOWN, i), this._engine.requestRender();
25737
25988
  });
25738
25989
  K(this, "_handlePointerUp", (i) => {
25739
- this._eventThrottle.putEvent(Yg.EVENT_NAME_POINTER_UP, i), this._engine.requestRender();
25990
+ this._eventThrottle.putEvent(Eg.EVENT_NAME_POINTER_UP, i), this._engine.requestRender();
25740
25991
  });
25741
25992
  K(this, "_handleClick", (i) => {
25742
- this._eventThrottle.putEvent(Yg.EVENT_NAME_CLICK, i), this._engine.requestRender();
25993
+ this._eventThrottle.putEvent(Eg.EVENT_NAME_CLICK, i), this._engine.requestRender();
25743
25994
  });
25744
25995
  K(this, "_handleDblClick", (i) => {
25745
- this._eventThrottle.putEvent(Yg.EVENT_NAME_DOUBLE_CLICK, i), this._engine.requestRender();
25996
+ this._eventThrottle.putEvent(Eg.EVENT_NAME_DOUBLE_CLICK, i), this._engine.requestRender();
25746
25997
  });
25747
25998
  K(this, "_handleRightClick", (i) => {
25748
- this._eventThrottle.putEvent(Yg.EVENT_NAME_RIGHT_CLICK, i), this._engine.requestRender();
25999
+ this._eventThrottle.putEvent(Eg.EVENT_NAME_RIGHT_CLICK, i), this._engine.requestRender();
25749
26000
  });
25750
26001
  K(this, "_handleRightDblClick", (i) => {
25751
- this._eventThrottle.putEvent(Yg.EVENT_NAME_RIGHT_DOUBLE_CLICK, i), this._engine.requestRender();
26002
+ this._eventThrottle.putEvent(Eg.EVENT_NAME_RIGHT_DOUBLE_CLICK, i), this._engine.requestRender();
25752
26003
  });
25753
26004
  K(this, "_handleMouseMove", (i) => {
25754
- this._eventThrottle.putEvent(Yg.EVENT_NAME_MOUSE_MOVE, i), this._eventThrottle.putEvent(Yg.EVENT_NAME_MOUSE_ENTER, i), this._eventThrottle.putEvent(Yg.EVENT_NAME_MOUSE_LEAVE, i), this._engine.requestRender();
26005
+ this._eventThrottle.putEvent(Eg.EVENT_NAME_MOUSE_MOVE, i), this._eventThrottle.putEvent(Eg.EVENT_NAME_MOUSE_ENTER, i), this._eventThrottle.putEvent(Eg.EVENT_NAME_MOUSE_LEAVE, i), this._engine.requestRender();
25755
26006
  });
25756
26007
  K(this, "_updateMouse", (i) => {
25757
26008
  const e = this._engine, s = e.map.getResolution();
@@ -25774,9 +26025,9 @@ const Yg = class {
25774
26025
  for (const [o, a] of s)
25775
26026
  if (!e.has(o)) {
25776
26027
  const c = o._listeners;
25777
- if (!c || !c[Yg.EVENT_NAME_MOUSE_LEAVE] || c[Yg.EVENT_NAME_MOUSE_LEAVE].length === 0)
26028
+ if (!c || !c[Eg.EVENT_NAME_MOUSE_LEAVE] || c[Eg.EVENT_NAME_MOUSE_LEAVE].length === 0)
25778
26029
  continue;
25779
- const l = i[Yg.EVENT_NAME_MOUSE_MOVE], h = c[Yg.EVENT_NAME_MOUSE_LEAVE], u = new EventParams(this._engine, l, a);
26030
+ const l = i[Eg.EVENT_NAME_MOUSE_MOVE], h = c[Eg.EVENT_NAME_MOUSE_LEAVE], u = new EventParams(this._engine, l, a);
25780
26031
  u.target = o, u.currentTarget = o, u.intersection = a && a.intersection, this._executeCallbacks(h, u);
25781
26032
  }
25782
26033
  }
@@ -25828,7 +26079,7 @@ const Yg = class {
25828
26079
  dispose() {
25829
26080
  }
25830
26081
  };
25831
- let EngineEvent = Yg;
26082
+ let EngineEvent = Eg;
25832
26083
  K(EngineEvent, "EVENT_NAME_CLICK", "click"), K(EngineEvent, "EVENT_NAME_DOUBLE_CLICK", "dblclick"), K(EngineEvent, "EVENT_NAME_RIGHT_CLICK", "rightclick"), K(EngineEvent, "EVENT_NAME_RIGHT_DOUBLE_CLICK", "rightdblclick"), K(EngineEvent, "EVENT_NAME_MOUSE_MOVE", "mousemove"), K(EngineEvent, "EVENT_NAME_MOUSE_ENTER", "mouseenter"), K(EngineEvent, "EVENT_NAME_MOUSE_LEAVE", "mouseleave"), K(EngineEvent, "EVENT_NAME_POINTER_DOWN", "pointerdown"), K(EngineEvent, "EVENT_NAME_POINTER_UP", "pointerup");
25833
26084
  const _raycaster$6 = new CustomRaycaster(), _defaultPickEventNames = [
25834
26085
  EngineEvent.EVENT_NAME_CLICK,
@@ -30510,7 +30761,7 @@ async function handleZoom(r, i, e, s, o, a) {
30510
30761
  fe,
30511
30762
  U
30512
30763
  );
30513
- const Ye = scratchPan;
30764
+ const Ee = scratchPan;
30514
30765
  Cartesian3.multiplyByScalar(
30515
30766
  Cartesian3.add(
30516
30767
  Cartesian3.multiplyByScalar(
@@ -30526,8 +30777,8 @@ async function handleZoom(r, i, e, s, o, a) {
30526
30777
  scratchCartesian$3
30527
30778
  ),
30528
30779
  fe,
30529
- Ye
30530
- ), Cartesian3.add(U, Ye, U), Cartesian3.normalize(j, De), Cartesian3.normalize(
30780
+ Ee
30781
+ ), Cartesian3.add(U, Ee, U), Cartesian3.normalize(j, De), Cartesian3.normalize(
30531
30782
  Cartesian3.cross(De, Ke, scratchCartesian$3),
30532
30783
  ae
30533
30784
  );
@@ -35064,7 +35315,7 @@ class RasterSurfaceTileManager extends SurfaceTileManager {
35064
35315
  u.push(""), z = !0;
35065
35316
  }
35066
35317
  }
35067
- z ? l++ : W || c++;
35318
+ z && S.length === 0 ? l++ : W || c++;
35068
35319
  }
35069
35320
  const G = u.join("|");
35070
35321
  let b = DATA_STATE_CAN_RENDER;
@@ -38796,16 +39047,17 @@ class EngineMap extends EventDispatcher {
38796
39047
  let a = o.provider;
38797
39048
  if (a === null || (a || (a = new BaiduVectorTileProvider()), !a))
38798
39049
  return;
38799
- let c = null, l = null;
39050
+ let c = null, l = null, h;
38800
39051
  if (a.isVectorTileProvider)
38801
- l = a;
39052
+ l = a, h = null;
38802
39053
  else if (a.isImageryTileProvider)
38803
39054
  c = a;
38804
39055
  else
38805
39056
  throw new Error("invalid tile provider");
38806
39057
  this._mapView = this._engine.add(new MapView({
38807
39058
  vectorProvider: l,
38808
- imageryProvider: c
39059
+ imageryProvider: c,
39060
+ terrainProvider: h
38809
39061
  }));
38810
39062
  }
38811
39063
  setCenter(e) {
@@ -60530,165 +60782,7 @@ class GeoInstancedPointMesh extends GeoInstancedMesh {
60530
60782
  super.computeInstanceMorphMatrix(e);
60531
60783
  }
60532
60784
  }
60533
- const commonUniforms = {
60534
- height: { value: 0 },
60535
- size: { value: 1 },
60536
- size3: { value: [1, 1, 1] },
60537
- resolution: { value: [1, 1] },
60538
- zoomUnits: { value: 1 },
60539
- color: { value: [1, 0, 0] },
60540
- opacity: { value: 1 }
60541
- }, animationUnifroms = {
60542
- animationRotatePeriod: { value: 4e3 },
60543
- animationJumpPeriod: { value: 4e3 },
60544
- animationJumpHeight: { value: 30 },
60545
- animationPeriodOffset: { value: !1 },
60546
- animationEffect: { value: !0 },
60547
- animationEffectPeriod: { value: 4e3 },
60548
- animationPeriod: { value: 4e3 }
60549
- }, defineCommonProperties = (r) => {
60550
- Object.defineProperties(r, {
60551
- color: {
60552
- get: function() {
60553
- return this.uniforms.color.value;
60554
- },
60555
- set: function(i) {
60556
- this.uniforms.color.value = normalizeColor(i);
60557
- }
60558
- },
60559
- height: {
60560
- get: function() {
60561
- return this.uniforms.height.value;
60562
- },
60563
- set: function(i) {
60564
- this.uniforms.height.value = i;
60565
- }
60566
- },
60567
- size: {
60568
- get: function() {
60569
- return this.uniforms.size.value;
60570
- },
60571
- set: function(i) {
60572
- this.uniforms.size.value = i;
60573
- }
60574
- },
60575
- size3: {
60576
- get: function() {
60577
- return this.uniforms.size3.value;
60578
- },
60579
- set: function(i) {
60580
- Array.isArray(i) && i.length === 3 && (this.uniforms.size3.value = i);
60581
- }
60582
- },
60583
- useSize3: {
60584
- get: function() {
60585
- return this.defines.USE_SIZE3;
60586
- },
60587
- set: function(i) {
60588
- i === this.defines.USE_SIZE3 && (this.defines.USE_SIZE3 = !!i), this.needsUpdate = !0;
60589
- }
60590
- },
60591
- opacity: {
60592
- get: function() {
60593
- return this.uniforms.opacity.value;
60594
- },
60595
- set: function(i) {
60596
- this.uniforms.opacity.value = i;
60597
- }
60598
- }
60599
- });
60600
- }, defineAnimationProperties = (r) => {
60601
- Object.defineProperties(r, {
60602
- animationRotate: {
60603
- get: function() {
60604
- return !!this.defines.ENABLE_ANIMATION_ROTATE;
60605
- },
60606
- set: function(i) {
60607
- i !== this.animationRotate && (i ? this.defines.ENABLE_ANIMATION_ROTATE = !0 : delete this.defines.ENABLE_ANIMATION_ROTATE, this.needsUpdate = !0);
60608
- }
60609
- },
60610
- animationRotatePeriod: {
60611
- get: function() {
60612
- return this.uniforms.animationRotatePeriod.value;
60613
- },
60614
- set: function(i) {
60615
- this.uniforms.animationRotatePeriod.value = i;
60616
- }
60617
- },
60618
- animationJump: {
60619
- get: function() {
60620
- return !!this.defines.ENABLE_ANIMATION_JUMP;
60621
- },
60622
- set: function(i) {
60623
- i !== this.animationJump && (i ? this.defines.ENABLE_ANIMATION_JUMP = !0 : delete this.defines.ENABLE_ANIMATION_JUMP, this.needsUpdate = !0);
60624
- }
60625
- },
60626
- animationJumpPeriod: {
60627
- get: function() {
60628
- return this.uniforms.animationJumpPeriod.value;
60629
- },
60630
- set: function(i) {
60631
- this.uniforms.animationJumpPeriod.value = i;
60632
- }
60633
- },
60634
- animationJumpHeight: {
60635
- get: function() {
60636
- return this.uniforms.animationJumpHeight.value;
60637
- },
60638
- set: function(i) {
60639
- this.uniforms.animationJumpHeight.value = i;
60640
- }
60641
- },
60642
- animationPeriodOffset: {
60643
- get: function() {
60644
- return this.uniforms.animationPeriodOffset.value;
60645
- },
60646
- set: function(i) {
60647
- this.uniforms.animationPeriodOffset.value = i;
60648
- }
60649
- },
60650
- animationEffect: {
60651
- get: function() {
60652
- return this.uniforms.animationEffect.value;
60653
- },
60654
- set: function(i) {
60655
- this.uniforms.animationEffect.value = i;
60656
- }
60657
- },
60658
- animationEffectPeriod: {
60659
- get: function() {
60660
- return this.uniforms.animationEffectPeriod.value;
60661
- },
60662
- set: function(i) {
60663
- this.uniforms.animationEffectPeriod.value = i;
60664
- }
60665
- },
60666
- animationScale: {
60667
- get: function() {
60668
- return !!this.defines.ENABLE_ANIMATION_SCALE;
60669
- },
60670
- set: function(i) {
60671
- i !== this.animationScale && (i ? this.defines.ENABLE_ANIMATION_SCALE = !0 : delete this.defines.ENABLE_ANIMATION_SCALE, this.needsUpdate = !0);
60672
- }
60673
- },
60674
- animationBreath: {
60675
- get: function() {
60676
- return !!this.defines.ENABLE_ANIMATION_BREATH;
60677
- },
60678
- set: function(i) {
60679
- i !== this.animationBreath && (i ? this.defines.ENABLE_ANIMATION_BREATH = !0 : delete this.defines.ENABLE_ANIMATION_BREATH, this.needsUpdate = !0);
60680
- }
60681
- },
60682
- animationPeriod: {
60683
- get: function() {
60684
- return this.uniforms.animationPeriod.value;
60685
- },
60686
- set: function(i) {
60687
- this.uniforms.animationPeriod.value = i;
60688
- }
60689
- }
60690
- });
60691
- }, uniforms$i = UniformsUtils.merge([
60785
+ const uniforms$i = UniformsUtils.merge([
60692
60786
  UniformsLib.fog,
60693
60787
  commonUniforms,
60694
60788
  animationUnifroms,
@@ -65149,16 +65243,16 @@ class Text extends GeoMesh {
65149
65243
  Ve + 3,
65150
65244
  Ve + 2
65151
65245
  );
65152
- const De = Ge.x / b, Ke = (Ge.x + Ge.w) / b, Ye = (Ge.y + Ge.h) / L, $e = Ge.y / L;
65246
+ const De = Ge.x / b, Ke = (Ge.x + Ge.w) / b, Ee = (Ge.y + Ge.h) / L, $e = Ge.y / L;
65153
65247
  D.push(
65154
65248
  De,
65155
- Ye,
65249
+ Ee,
65156
65250
  De,
65157
65251
  $e,
65158
65252
  Ke,
65159
65253
  $e,
65160
65254
  Ke,
65161
- Ye
65255
+ Ee
65162
65256
  ), w.push(Ge.index, Ge.index, Ge.index, Ge.index), this.parameters.vertexRotateZs && T.push(Ge.rotateZ, Ge.rotateZ, Ge.rotateZ, Ge.rotateZ);
65163
65257
  }
65164
65258
  a.restore();
@@ -65781,7 +65875,7 @@ class SDFText extends GeoGroup {
65781
65875
  } = ae || {}, Re = Array.from(j).map((sg) => sg + he), Ve = this._letterSpacing * this._fontSettings.fontSize, {
65782
65876
  x: De,
65783
65877
  y: Ke,
65784
- rowWidth: Ye,
65878
+ rowWidth: Ee,
65785
65879
  rowNum: $e,
65786
65880
  heightSize: Ue,
65787
65881
  textHeights: Je,
@@ -65812,13 +65906,13 @@ class SDFText extends GeoGroup {
65812
65906
  null,
65813
65907
  a
65814
65908
  ), a.elements[12] = 0, a.elements[13] = 0, a.elements[14] = 0;
65815
- for (let Eg = 0; Eg < 4; Eg++)
65909
+ for (let Yg = 0; Yg < 4; Yg++)
65816
65910
  for (let Fg = 0; Fg < 16; Fg++)
65817
65911
  W.push(a.elements[Fg]);
65818
65912
  }
65819
65913
  if (G.push(0, 1, 2, 3), this.alignRotate) {
65820
- const Eg = Je[sg], Fg = Cg + Eg / 2 - Bg;
65821
- Cg += Eg, w.push(
65914
+ const Yg = Je[sg], Fg = Cg + Yg / 2 - Bg;
65915
+ Cg += Yg, w.push(
65822
65916
  Fg,
65823
65917
  Fg,
65824
65918
  Fg,
@@ -65869,7 +65963,7 @@ class SDFText extends GeoGroup {
65869
65963
  oI,
65870
65964
  VI
65871
65965
  );
65872
- const $g = (1 - TEXT_ALIGN[this.textAlign]) * (Oe - Ye[sg]) / 2, GI = Xe[0] * re + fe, _e = Xe[1] * re + Me, Dg = (0 - 1) * Oe / 2 + $g + De[sg] + GI, Ug = gg / $e * ($e - 1) / 2 - Ke[sg] + _e, AI = re * (ng / this._fontSettings.fontSize);
65966
+ const $g = (1 - TEXT_ALIGN[this.textAlign]) * (Oe - Ee[sg]) / 2, GI = Xe[0] * re + fe, _e = Xe[1] * re + Me, Dg = (0 - 1) * Oe / 2 + $g + De[sg] + GI, Ug = gg / $e * ($e - 1) / 2 - Ke[sg] + _e, AI = re * (ng / this._fontSettings.fontSize);
65873
65967
  if (H.push(
65874
65968
  AI,
65875
65969
  re,
@@ -65918,8 +66012,8 @@ class SDFText extends GeoGroup {
65918
66012
  Ge[1],
65919
66013
  Ge[2]
65920
66014
  ), this.parameters.vertexRotateZs && z.push(we, we, we, we), this._enableFade) {
65921
- const Eg = Ie.fadeOpacity || 1e-3, Fg = Ie.fadeSince || 0;
65922
- T.push(Eg, Eg, Eg, Eg), Z.push(Fg, Fg, Fg, Fg);
66015
+ const Yg = Ie.fadeOpacity || 1e-3, Fg = Ie.fadeSince || 0;
66016
+ T.push(Yg, Yg, Yg, Yg), Z.push(Fg, Fg, Fg, Fg);
65923
66017
  }
65924
66018
  ig++;
65925
66019
  }
@@ -68070,8 +68164,8 @@ class FatLineGeometry extends ShadowVolumeLineGeometry {
68070
68164
  for (let fe = 0; fe < c - 1; fe++) {
68071
68165
  if (p0Scratch.fromArray(s[fe]), p1Scratch$2.fromArray(s[fe + 1]), k.crossVectors(p0Scratch, p1Scratch$2).normalize(), fe < c - 2) {
68072
68166
  Ellipsoid.WGS84.geodeticSurfaceNormal(p1Scratch$2, ue), p2Scratch$2.fromArray(s[fe + 2]), j.crossVectors(p1Scratch$2, p2Scratch$2).normalize();
68073
- const { isFlip: Ye } = computeVertexMiterNormal(p0Scratch, p1Scratch$2, p2Scratch$2, ue, Be);
68074
- Ge = Be, re.curFlip = !Ye;
68167
+ const { isFlip: Ee } = computeVertexMiterNormal(p0Scratch, p1Scratch$2, p2Scratch$2, ue, Be);
68168
+ Ge = Be, re.curFlip = !Ee;
68075
68169
  } else
68076
68170
  Ge = k;
68077
68171
  const Me = ae || k;
@@ -68141,8 +68235,8 @@ class FatLineGeometry extends ShadowVolumeLineGeometry {
68141
68235
  const Ge = negativeNormalScratch.copy(b).negate(), we = D ? negativeMiterScratch.copy(D).negate() : void 0, fe = W.last, Me = W.next;
68142
68236
  let Xe = b, Re = Ge, Ve = w, De = w;
68143
68237
  re ? (Re = we, De = fe) : (Xe = D || b, Ve = fe);
68144
- let Ke = Be / 3, Ye = a.cartographicToCartesian(k, cartesian);
68145
- if (Ye.toArray(h, Be), Xe.toArray(H, Be), T[Ke] = te, $[Ke * 2] = te, $[Ke * 2 + 1] = 0, Z[Ke * 2] = Ve, Z[Ke * 2 + 1] = -1, ie[Ke] = 1, Be += 3, Ke = Be / 3, Ye.toArray(h, Be), Re.toArray(H, Be), Z[Ke * 2] = De, Z[Ke * 2 + 1] = -1, T[Ke] = te, $[Ke * 2] = te, $[Ke * 2 + 1] = 1, ie[Ke] = 1, Be += 3, V > 1) {
68238
+ let Ke = Be / 3, Ee = a.cartographicToCartesian(k, cartesian);
68239
+ if (Ee.toArray(h, Be), Xe.toArray(H, Be), T[Ke] = te, $[Ke * 2] = te, $[Ke * 2 + 1] = 0, Z[Ke * 2] = Ve, Z[Ke * 2 + 1] = -1, ie[Ke] = 1, Be += 3, Ke = Be / 3, Ee.toArray(h, Be), Re.toArray(H, Be), Z[Ke * 2] = De, Z[Ke * 2 + 1] = -1, T[Ke] = te, $[Ke * 2] = te, $[Ke * 2 + 1] = 1, ie[Ke] = 1, Be += 3, V > 1) {
68146
68240
  const Oe = ellipsoidGeodesic.interpolateUsingSurfaceDistance(
68147
68241
  ue,
68148
68242
  cartoNext
@@ -68159,7 +68253,7 @@ class FatLineGeometry extends ShadowVolumeLineGeometry {
68159
68253
  ), V === Oe + 1 ? $e = j : ($e = ellipsoidGeodesic.interpolateUsingSurfaceDistance(
68160
68254
  (Oe + 1) * ue,
68161
68255
  cartoNext
68162
- ), $e.z = ae[Oe + 1]), carto3.z = ae[Oe], cartesianPrev.copy(cartesian), Ye = a.cartographicToCartesian(carto3, cartesian), a.cartographicToCartesian($e, cartesianNext), Ke = Be / 3, Ye.toArray(h, Be), b.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = 1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 0, ie[Ke] = -1, Be += 3, Ke = Be / 3, Ye.toArray(h, Be), Ge.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = 1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 1, ie[Ke] = -1, Be += 3, Ke = Be / 3, Ye.toArray(h, Be), b.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = -1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 0, ie[Ke] = 1, Be += 3, Ke = Be / 3, Ye.toArray(h, Be), Ge.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = -1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 1, ie[Ke] = 1, Be += 3;
68256
+ ), $e.z = ae[Oe + 1]), carto3.z = ae[Oe], cartesianPrev.copy(cartesian), Ee = a.cartographicToCartesian(carto3, cartesian), a.cartographicToCartesian($e, cartesianNext), Ke = Be / 3, Ee.toArray(h, Be), b.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = 1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 0, ie[Ke] = -1, Be += 3, Ke = Be / 3, Ee.toArray(h, Be), Ge.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = 1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 1, ie[Ke] = -1, Be += 3, Ke = Be / 3, Ee.toArray(h, Be), b.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = -1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 0, ie[Ke] = 1, Be += 3, Ke = Be / 3, Ee.toArray(h, Be), Ge.toArray(H, Be), Z[Ke * 2] = w, Z[Ke * 2 + 1] = -1, cartesianPrev.toArray(u, Be), cartesianNext.toArray(S, Be), T[Ke] = te + Oe * ue, $[Ke * 2] = te + Oe * ue, $[Ke * 2 + 1] = 1, ie[Ke] = 1, Be += 3;
68163
68257
  const Ue = ellipsoidGeodesic.surfaceDistance;
68164
68258
  cartesianOffset.subVectors(cartesian, cartesianNext), cartesianOffset.add(cartesian), a.cartographicToCartesian(j, cartesian2);
68165
68259
  const Je = R ? negativeMiterScratch.copy(R).negate() : void 0;
@@ -69526,14 +69620,14 @@ var inSphere = { exports: {} };
69526
69620
  }
69527
69621
  function b(H, w, T, Z) {
69528
69622
  function te(q, J, $, ie, Ie) {
69529
- var U = H(T(q[0], q[0]), H(T(q[1], q[1]), T(q[2], q[2]))), V = Z(U, J[0]), k = Z(U, $[0]), j = Z(U, ie[0]), ae = Z(U, Ie[0]), re = H(T(J[0], J[0]), H(T(J[1], J[1]), T(J[2], J[2]))), he = Z(re, q[0]), ue = Z(re, $[0]), Be = Z(re, ie[0]), Ge = Z(re, Ie[0]), we = H(T($[0], $[0]), H(T($[1], $[1]), T($[2], $[2]))), fe = Z(we, q[0]), Me = Z(we, J[0]), Xe = Z(we, ie[0]), Re = Z(we, Ie[0]), Ve = H(T(ie[0], ie[0]), H(T(ie[1], ie[1]), T(ie[2], ie[2]))), De = Z(Ve, q[0]), Ke = Z(Ve, J[0]), Ye = Z(Ve, $[0]), $e = Z(Ve, Ie[0]), Ue = H(T(Ie[0], Ie[0]), H(T(Ie[1], Ie[1]), T(Ie[2], Ie[2]))), Je = Z(Ue, q[0]), Oe = Z(Ue, J[0]), gg = Z(Ue, $[0]), ze = Z(Ue, ie[0]), bg = H(H(H(Z(H(Z(w(ze, $e), $[1]), H(Z(w(gg, Re), -ie[1]), Z(w(Ye, Xe), Ie[1]))), J[2]), H(Z(H(Z(w(ze, $e), J[1]), H(Z(w(Oe, Ge), -ie[1]), Z(w(Ke, Be), Ie[1]))), -$[2]), Z(H(Z(w(gg, Re), J[1]), H(Z(w(Oe, Ge), -$[1]), Z(w(Me, ue), Ie[1]))), ie[2]))), H(Z(H(Z(w(Ye, Xe), J[1]), H(Z(w(Ke, Be), -$[1]), Z(w(Me, ue), ie[1]))), -Ie[2]), H(Z(H(Z(w(ze, $e), J[1]), H(Z(w(Oe, Ge), -ie[1]), Z(w(Ke, Be), Ie[1]))), q[2]), Z(H(Z(w(ze, $e), q[1]), H(Z(w(Je, ae), -ie[1]), Z(w(De, j), Ie[1]))), -J[2])))), H(H(Z(H(Z(w(Oe, Ge), q[1]), H(Z(w(Je, ae), -J[1]), Z(w(he, V), Ie[1]))), ie[2]), H(Z(H(Z(w(Ke, Be), q[1]), H(Z(w(De, j), -J[1]), Z(w(he, V), ie[1]))), -Ie[2]), Z(H(Z(w(Ye, Xe), J[1]), H(Z(w(Ke, Be), -$[1]), Z(w(Me, ue), ie[1]))), q[2]))), H(Z(H(Z(w(Ye, Xe), q[1]), H(Z(w(De, j), -$[1]), Z(w(fe, k), ie[1]))), -J[2]), H(Z(H(Z(w(Ke, Be), q[1]), H(Z(w(De, j), -J[1]), Z(w(he, V), ie[1]))), $[2]), Z(H(Z(w(Me, ue), q[1]), H(Z(w(fe, k), -J[1]), Z(w(he, V), $[1]))), -ie[2]))))), ig = H(H(H(Z(H(Z(w(ze, $e), $[1]), H(Z(w(gg, Re), -ie[1]), Z(w(Ye, Xe), Ie[1]))), q[2]), Z(H(Z(w(ze, $e), q[1]), H(Z(w(Je, ae), -ie[1]), Z(w(De, j), Ie[1]))), -$[2])), H(Z(H(Z(w(gg, Re), q[1]), H(Z(w(Je, ae), -$[1]), Z(w(fe, k), Ie[1]))), ie[2]), Z(H(Z(w(Ye, Xe), q[1]), H(Z(w(De, j), -$[1]), Z(w(fe, k), ie[1]))), -Ie[2]))), H(H(Z(H(Z(w(gg, Re), J[1]), H(Z(w(Oe, Ge), -$[1]), Z(w(Me, ue), Ie[1]))), q[2]), Z(H(Z(w(gg, Re), q[1]), H(Z(w(Je, ae), -$[1]), Z(w(fe, k), Ie[1]))), -J[2])), H(Z(H(Z(w(Oe, Ge), q[1]), H(Z(w(Je, ae), -J[1]), Z(w(he, V), Ie[1]))), $[2]), Z(H(Z(w(Me, ue), q[1]), H(Z(w(fe, k), -J[1]), Z(w(he, V), $[1]))), -Ie[2])))), Cg = w(bg, ig);
69623
+ var U = H(T(q[0], q[0]), H(T(q[1], q[1]), T(q[2], q[2]))), V = Z(U, J[0]), k = Z(U, $[0]), j = Z(U, ie[0]), ae = Z(U, Ie[0]), re = H(T(J[0], J[0]), H(T(J[1], J[1]), T(J[2], J[2]))), he = Z(re, q[0]), ue = Z(re, $[0]), Be = Z(re, ie[0]), Ge = Z(re, Ie[0]), we = H(T($[0], $[0]), H(T($[1], $[1]), T($[2], $[2]))), fe = Z(we, q[0]), Me = Z(we, J[0]), Xe = Z(we, ie[0]), Re = Z(we, Ie[0]), Ve = H(T(ie[0], ie[0]), H(T(ie[1], ie[1]), T(ie[2], ie[2]))), De = Z(Ve, q[0]), Ke = Z(Ve, J[0]), Ee = Z(Ve, $[0]), $e = Z(Ve, Ie[0]), Ue = H(T(Ie[0], Ie[0]), H(T(Ie[1], Ie[1]), T(Ie[2], Ie[2]))), Je = Z(Ue, q[0]), Oe = Z(Ue, J[0]), gg = Z(Ue, $[0]), ze = Z(Ue, ie[0]), bg = H(H(H(Z(H(Z(w(ze, $e), $[1]), H(Z(w(gg, Re), -ie[1]), Z(w(Ee, Xe), Ie[1]))), J[2]), H(Z(H(Z(w(ze, $e), J[1]), H(Z(w(Oe, Ge), -ie[1]), Z(w(Ke, Be), Ie[1]))), -$[2]), Z(H(Z(w(gg, Re), J[1]), H(Z(w(Oe, Ge), -$[1]), Z(w(Me, ue), Ie[1]))), ie[2]))), H(Z(H(Z(w(Ee, Xe), J[1]), H(Z(w(Ke, Be), -$[1]), Z(w(Me, ue), ie[1]))), -Ie[2]), H(Z(H(Z(w(ze, $e), J[1]), H(Z(w(Oe, Ge), -ie[1]), Z(w(Ke, Be), Ie[1]))), q[2]), Z(H(Z(w(ze, $e), q[1]), H(Z(w(Je, ae), -ie[1]), Z(w(De, j), Ie[1]))), -J[2])))), H(H(Z(H(Z(w(Oe, Ge), q[1]), H(Z(w(Je, ae), -J[1]), Z(w(he, V), Ie[1]))), ie[2]), H(Z(H(Z(w(Ke, Be), q[1]), H(Z(w(De, j), -J[1]), Z(w(he, V), ie[1]))), -Ie[2]), Z(H(Z(w(Ee, Xe), J[1]), H(Z(w(Ke, Be), -$[1]), Z(w(Me, ue), ie[1]))), q[2]))), H(Z(H(Z(w(Ee, Xe), q[1]), H(Z(w(De, j), -$[1]), Z(w(fe, k), ie[1]))), -J[2]), H(Z(H(Z(w(Ke, Be), q[1]), H(Z(w(De, j), -J[1]), Z(w(he, V), ie[1]))), $[2]), Z(H(Z(w(Me, ue), q[1]), H(Z(w(fe, k), -J[1]), Z(w(he, V), $[1]))), -ie[2]))))), ig = H(H(H(Z(H(Z(w(ze, $e), $[1]), H(Z(w(gg, Re), -ie[1]), Z(w(Ee, Xe), Ie[1]))), q[2]), Z(H(Z(w(ze, $e), q[1]), H(Z(w(Je, ae), -ie[1]), Z(w(De, j), Ie[1]))), -$[2])), H(Z(H(Z(w(gg, Re), q[1]), H(Z(w(Je, ae), -$[1]), Z(w(fe, k), Ie[1]))), ie[2]), Z(H(Z(w(Ee, Xe), q[1]), H(Z(w(De, j), -$[1]), Z(w(fe, k), ie[1]))), -Ie[2]))), H(H(Z(H(Z(w(gg, Re), J[1]), H(Z(w(Oe, Ge), -$[1]), Z(w(Me, ue), Ie[1]))), q[2]), Z(H(Z(w(gg, Re), q[1]), H(Z(w(Je, ae), -$[1]), Z(w(fe, k), Ie[1]))), -J[2])), H(Z(H(Z(w(Oe, Ge), q[1]), H(Z(w(Je, ae), -J[1]), Z(w(he, V), Ie[1]))), $[2]), Z(H(Z(w(Me, ue), q[1]), H(Z(w(fe, k), -J[1]), Z(w(he, V), $[1]))), -Ie[2])))), Cg = w(bg, ig);
69530
69624
  return Cg[Cg.length - 1];
69531
69625
  }
69532
69626
  return te;
69533
69627
  }
69534
69628
  function L(H, w, T, Z) {
69535
69629
  function te(q, J, $, ie, Ie, U) {
69536
- var V = H(H(T(q[0], q[0]), T(q[1], q[1])), H(T(q[2], q[2]), T(q[3], q[3]))), k = Z(V, J[0]), j = Z(V, $[0]), ae = Z(V, ie[0]), re = Z(V, Ie[0]), he = Z(V, U[0]), ue = H(H(T(J[0], J[0]), T(J[1], J[1])), H(T(J[2], J[2]), T(J[3], J[3]))), Be = Z(ue, q[0]), Ge = Z(ue, $[0]), we = Z(ue, ie[0]), fe = Z(ue, Ie[0]), Me = Z(ue, U[0]), Xe = H(H(T($[0], $[0]), T($[1], $[1])), H(T($[2], $[2]), T($[3], $[3]))), Re = Z(Xe, q[0]), Ve = Z(Xe, J[0]), De = Z(Xe, ie[0]), Ke = Z(Xe, Ie[0]), Ye = Z(Xe, U[0]), $e = H(H(T(ie[0], ie[0]), T(ie[1], ie[1])), H(T(ie[2], ie[2]), T(ie[3], ie[3]))), Ue = Z($e, q[0]), Je = Z($e, J[0]), Oe = Z($e, $[0]), gg = Z($e, Ie[0]), ze = Z($e, U[0]), bg = H(H(T(Ie[0], Ie[0]), T(Ie[1], Ie[1])), H(T(Ie[2], Ie[2]), T(Ie[3], Ie[3]))), ig = Z(bg, q[0]), Cg = Z(bg, J[0]), Bg = Z(bg, $[0]), sg = Z(bg, ie[0]), hg = Z(bg, U[0]), Qg = H(H(T(U[0], U[0]), T(U[1], U[1])), H(T(U[2], U[2]), T(U[3], U[3]))), Ig = Z(Qg, q[0]), rg = Z(Qg, J[0]), cg = Z(Qg, $[0]), ag = Z(Qg, ie[0]), ng = Z(Qg, Ie[0]), CI = H(H(H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), $[2]), Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), -U[2]))), J[3]), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -U[2]))), -$[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), -U[2]))), ie[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), J[2]), Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -U[2]))), -Ie[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), J[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -Ie[2]))), U[3])), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -U[2]))), q[3]), Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -U[2]))), -J[3])))), H(H(H(Z(H(H(Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), Ie[2]), Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), -U[2]))), ie[3]), Z(H(H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -U[2]))), -Ie[3])), H(Z(H(H(Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -Ie[2]))), U[3]), Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), J[2]), Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -U[2]))), q[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -U[2]))), -J[3]), Z(H(H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -U[2]))), $[3])), H(Z(H(H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), q[2]), Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -U[2]))), -ie[3]), Z(H(H(Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), q[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -J[2])), H(Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -ie[2]))), U[3]))))), sI = H(H(H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), $[2]), Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), -U[2]))), q[3]), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -U[2]))), -$[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -U[2]))), ie[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ye), -ie[1]), Z(w(Oe, De), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -U[2]))), -Ie[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -Ie[2]))), U[3])), H(Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), -U[2]))), q[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ye), -Ie[1]), Z(w(Bg, Ke), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -U[2]))), -J[3])))), H(H(H(Z(H(H(Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), Ie[2]), Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), -U[2]))), $[3]), Z(H(H(Z(H(Z(w(cg, Ye), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), q[2]), Z(H(Z(w(cg, Ye), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -U[2]))), -Ie[3])), H(Z(H(H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), q[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -Ie[2]))), U[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), J[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -Ie[2]))), q[3]))), H(H(Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -Ie[2]))), -J[3]), Z(H(H(Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -Ie[2]))), $[3])), H(Z(H(H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), q[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -Ie[2]))), -ie[3]), Z(H(H(Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), q[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -J[2])), H(Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -ie[2]))), Ie[3]))))), oI = w(CI, sI);
69630
+ var V = H(H(T(q[0], q[0]), T(q[1], q[1])), H(T(q[2], q[2]), T(q[3], q[3]))), k = Z(V, J[0]), j = Z(V, $[0]), ae = Z(V, ie[0]), re = Z(V, Ie[0]), he = Z(V, U[0]), ue = H(H(T(J[0], J[0]), T(J[1], J[1])), H(T(J[2], J[2]), T(J[3], J[3]))), Be = Z(ue, q[0]), Ge = Z(ue, $[0]), we = Z(ue, ie[0]), fe = Z(ue, Ie[0]), Me = Z(ue, U[0]), Xe = H(H(T($[0], $[0]), T($[1], $[1])), H(T($[2], $[2]), T($[3], $[3]))), Re = Z(Xe, q[0]), Ve = Z(Xe, J[0]), De = Z(Xe, ie[0]), Ke = Z(Xe, Ie[0]), Ee = Z(Xe, U[0]), $e = H(H(T(ie[0], ie[0]), T(ie[1], ie[1])), H(T(ie[2], ie[2]), T(ie[3], ie[3]))), Ue = Z($e, q[0]), Je = Z($e, J[0]), Oe = Z($e, $[0]), gg = Z($e, Ie[0]), ze = Z($e, U[0]), bg = H(H(T(Ie[0], Ie[0]), T(Ie[1], Ie[1])), H(T(Ie[2], Ie[2]), T(Ie[3], Ie[3]))), ig = Z(bg, q[0]), Cg = Z(bg, J[0]), Bg = Z(bg, $[0]), sg = Z(bg, ie[0]), hg = Z(bg, U[0]), Qg = H(H(T(U[0], U[0]), T(U[1], U[1])), H(T(U[2], U[2]), T(U[3], U[3]))), Ig = Z(Qg, q[0]), rg = Z(Qg, J[0]), cg = Z(Qg, $[0]), ag = Z(Qg, ie[0]), ng = Z(Qg, Ie[0]), CI = H(H(H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), $[2]), Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), -U[2]))), J[3]), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -U[2]))), -$[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), -U[2]))), ie[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), J[2]), Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -U[2]))), -Ie[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), J[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -Ie[2]))), U[3])), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -U[2]))), q[3]), Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -U[2]))), -J[3])))), H(H(H(Z(H(H(Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), Ie[2]), Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), -U[2]))), ie[3]), Z(H(H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -U[2]))), -Ie[3])), H(Z(H(H(Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -Ie[2]))), U[3]), Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), J[2]), Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -U[2]))), q[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -U[2]))), -J[3]), Z(H(H(Z(H(Z(w(ag, ze), J[1]), H(Z(w(rg, Me), -ie[1]), Z(w(Je, we), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -U[2]))), $[3])), H(Z(H(H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), q[2]), Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -U[2]))), -ie[3]), Z(H(H(Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), q[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -J[2])), H(Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -ie[2]))), U[3]))))), sI = H(H(H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), $[2]), Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), -U[2]))), q[3]), H(Z(H(H(Z(H(Z(w(ng, hg), ie[1]), H(Z(w(ag, ze), -Ie[1]), Z(w(sg, gg), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -ie[2])), H(Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), Ie[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -U[2]))), -$[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -U[2]))), ie[3]))), H(H(Z(H(H(Z(H(Z(w(ag, ze), $[1]), H(Z(w(cg, Ee), -ie[1]), Z(w(Oe, De), U[1]))), q[2]), Z(H(Z(w(ag, ze), q[1]), H(Z(w(Ig, he), -ie[1]), Z(w(Ue, ae), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -U[2]))), -Ie[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -Ie[2]))), U[3])), H(Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), J[2]), Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), -U[2]))), q[3]), Z(H(H(Z(H(Z(w(ng, hg), $[1]), H(Z(w(cg, Ee), -Ie[1]), Z(w(Bg, Ke), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -$[2])), H(Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), Ie[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -U[2]))), -J[3])))), H(H(H(Z(H(H(Z(H(Z(w(ng, hg), J[1]), H(Z(w(rg, Me), -Ie[1]), Z(w(Cg, fe), U[1]))), q[2]), Z(H(Z(w(ng, hg), q[1]), H(Z(w(Ig, he), -Ie[1]), Z(w(ig, re), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), Ie[2]), Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), -U[2]))), $[3]), Z(H(H(Z(H(Z(w(cg, Ee), J[1]), H(Z(w(rg, Me), -$[1]), Z(w(Ve, Ge), U[1]))), q[2]), Z(H(Z(w(cg, Ee), q[1]), H(Z(w(Ig, he), -$[1]), Z(w(Re, j), U[1]))), -J[2])), H(Z(H(Z(w(rg, Me), q[1]), H(Z(w(Ig, he), -J[1]), Z(w(Be, k), U[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -U[2]))), -Ie[3])), H(Z(H(H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), q[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -Ie[2]))), U[3]), Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), J[2]), Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), -Ie[2]))), q[3]))), H(H(Z(H(H(Z(H(Z(w(sg, gg), $[1]), H(Z(w(Bg, Ke), -ie[1]), Z(w(Oe, De), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -$[2])), H(Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), ie[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -Ie[2]))), -J[3]), Z(H(H(Z(H(Z(w(sg, gg), J[1]), H(Z(w(Cg, fe), -ie[1]), Z(w(Je, we), Ie[1]))), q[2]), Z(H(Z(w(sg, gg), q[1]), H(Z(w(ig, re), -ie[1]), Z(w(Ue, ae), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), ie[2]), Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), -Ie[2]))), $[3])), H(Z(H(H(Z(H(Z(w(Bg, Ke), J[1]), H(Z(w(Cg, fe), -$[1]), Z(w(Ve, Ge), Ie[1]))), q[2]), Z(H(Z(w(Bg, Ke), q[1]), H(Z(w(ig, re), -$[1]), Z(w(Re, j), Ie[1]))), -J[2])), H(Z(H(Z(w(Cg, fe), q[1]), H(Z(w(ig, re), -J[1]), Z(w(Be, k), Ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -Ie[2]))), -ie[3]), Z(H(H(Z(H(Z(w(Oe, De), J[1]), H(Z(w(Je, we), -$[1]), Z(w(Ve, Ge), ie[1]))), q[2]), Z(H(Z(w(Oe, De), q[1]), H(Z(w(Ue, ae), -$[1]), Z(w(Re, j), ie[1]))), -J[2])), H(Z(H(Z(w(Je, we), q[1]), H(Z(w(Ue, ae), -J[1]), Z(w(Be, k), ie[1]))), $[2]), Z(H(Z(w(Ve, Ge), q[1]), H(Z(w(Re, j), -J[1]), Z(w(Be, k), $[1]))), -ie[2]))), Ie[3]))))), oI = w(CI, sI);
69537
69631
  return oI[oI.length - 1];
69538
69632
  }
69539
69633
  return te;
@@ -69800,8 +69894,8 @@ const subdivisionV0Scratch = new Vector3$1(), subdivisionV1Scratch = new Vector3
69800
69894
  Z,
69801
69895
  subdivisionS2Scratch
69802
69896
  ), fe = Cartesian3.magnitudeSquared(Cartesian3.subtract(Be, Ge, subdivisionMidScratch)), Me = Cartesian3.magnitudeSquared(Cartesian3.subtract(Ge, we, subdivisionMidScratch)), Xe = Cartesian3.magnitudeSquared(Cartesian3.subtract(we, Be, subdivisionMidScratch)), Re = Math.max(fe, Me, Xe);
69803
- let Ve, De, Ke, Ye;
69804
- l && Re > q ? fe === Re ? (Ve = `${Math.min(ie, $)} ${Math.max(ie, $)}`, S = w[Ve], S == null ? (De = Cartesian3.add(Ie, U, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S, Ye = (k + j) * 0.5, R.push(Ye), T[Ve] = Ye, h && (Ke = Cartesian2.add(re, he, subdivisionMidScratch), Cartesian2.multiplyByScalar(Ke, 0.5, Ke), L.push(Ke.x, Ke.y))) : Ye = T[Ve], u.push(ie, S, J), u.push(S, $, J)) : Me === Re ? (Ve = `${Math.min($, J)} ${Math.max($, J)}`, S = w[Ve], S ? Ye = T[Ve] : (De = Cartesian3.add(U, V, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S, Ye = (j + ae) * 0.5, R.push(Ye), T[Ve] = Ye, h && (Ke = Cartesian2.add(he, ue, subdivisionMidScratch), Cartesian2.multiplyByScalar(Ke, 0.5, Ke), L.push(Ke.x, Ke.y))), u.push($, S, ie), u.push(S, J, ie)) : Xe === Re && (Ve = `${Math.min(J, ie)} ${Math.max(J, ie)}`, S = w[Ve], S ? Ye = T[Ve] : (De = Cartesian3.add(V, Ie, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S, Ye = (ae + k) * 0.5, R.push(Ye), T[Ve] = Ye, h && (Ke = Cartesian2.add(ue, re, subdivisionMidScratch), Cartesian2.multiplyByScalar(Ke, 0.5, Ke), L.push(Ke.x, Ke.y))), u.push(J, S, $), u.push(S, ie, $)) : (H.push(ie + o), H.push($ + o), H.push(J + o));
69897
+ let Ve, De, Ke, Ee;
69898
+ l && Re > q ? fe === Re ? (Ve = `${Math.min(ie, $)} ${Math.max(ie, $)}`, S = w[Ve], S == null ? (De = Cartesian3.add(Ie, U, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S, Ee = (k + j) * 0.5, R.push(Ee), T[Ve] = Ee, h && (Ke = Cartesian2.add(re, he, subdivisionMidScratch), Cartesian2.multiplyByScalar(Ke, 0.5, Ke), L.push(Ke.x, Ke.y))) : Ee = T[Ve], u.push(ie, S, J), u.push(S, $, J)) : Me === Re ? (Ve = `${Math.min($, J)} ${Math.max($, J)}`, S = w[Ve], S ? Ee = T[Ve] : (De = Cartesian3.add(U, V, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S, Ee = (j + ae) * 0.5, R.push(Ee), T[Ve] = Ee, h && (Ke = Cartesian2.add(he, ue, subdivisionMidScratch), Cartesian2.multiplyByScalar(Ke, 0.5, Ke), L.push(Ke.x, Ke.y))), u.push($, S, ie), u.push(S, J, ie)) : Xe === Re && (Ve = `${Math.min(J, ie)} ${Math.max(J, ie)}`, S = w[Ve], S ? Ee = T[Ve] : (De = Cartesian3.add(V, Ie, subdivisionMidScratch), Cartesian3.multiplyByScalar(De, 0.5, De), b.push(De.x, De.y, De.z), S = b.length / 3 - 1, w[Ve] = S, Ee = (ae + k) * 0.5, R.push(Ee), T[Ve] = Ee, h && (Ke = Cartesian2.add(ue, re, subdivisionMidScratch), Cartesian2.multiplyByScalar(Ke, 0.5, Ke), L.push(Ke.x, Ke.y))), u.push(J, S, $), u.push(S, ie, $)) : (H.push(ie + o), H.push($ + o), H.push(J + o));
69805
69899
  }
69806
69900
  return {
69807
69901
  subdividedPositions: b,
@@ -70058,16 +70152,16 @@ class PolygonGeometry extends BufferGeometry {
70058
70152
  Me
70059
70153
  );
70060
70154
  let Ke = Xe.length;
70061
- const Ye = h.length, $e = [];
70155
+ const Ee = h.length, $e = [];
70062
70156
  let Ue = 0;
70063
70157
  if (fe) {
70064
70158
  for (let ze = 0; ze < Ke; ze += 3)
70065
- T.fromArray(Xe, ze), s.geodeticSurfaceNormal(T, H), Z = s.scaleToGeodeticSurface(T, Z), Ue = De[ze / 3], this.extrudeValue && !this.perPositionHeight && (Ue = 0), w = Cartesian3.multiplyByScalar(H, this._zOffset + $ + Ue, w), w = Cartesian3.add(Z, w, w), $e[ze] = w.x, $e[ze + 1] = w.y, $e[ze + 2] = w.z, h[ze + Ye] = H.x, h[ze + 1 + Ye] = H.y, h[ze + 2 + Ye] = H.z, a.push($, this._encodeConcave(!1, !1, !1));
70159
+ T.fromArray(Xe, ze), s.geodeticSurfaceNormal(T, H), Z = s.scaleToGeodeticSurface(T, Z), Ue = De[ze / 3], this.extrudeValue && !this.perPositionHeight && (Ue = 0), w = Cartesian3.multiplyByScalar(H, this._zOffset + $ + Ue, w), w = Cartesian3.add(Z, w, w), $e[ze] = w.x, $e[ze + 1] = w.y, $e[ze + 2] = w.z, h[ze + Ee] = H.x, h[ze + 1 + Ee] = H.y, h[ze + 2 + Ee] = H.z, a.push($, this._encodeConcave(!1, !1, !1));
70066
70160
  pushInBatches(o, $e), pushInBatches(c, Ve), pushInBatches(u, Re);
70067
70161
  } else {
70068
70162
  for (let ze = 0; ze < Be.length; ze++) {
70069
70163
  const bg = Be[ze], ig = ae[ze];
70070
- s.geodeticSurfaceNormal(bg, H), h[ze * 3 + Ye] = H.x, h[ze * 3 + 1 + Ye] = H.y, h[ze * 3 + 2 + Ye] = H.z, Z = Cartesian3.clone(bg, Z), w = Cartesian3.multiplyByScalar(H, this._zOffset + U[ze] + $, w), w = Cartesian3.add(Z, w, w), $e[ze * 3] = w.x, $e[ze * 3 + 1] = w.y, $e[ze * 3 + 2] = w.z, a.push($, this._encodeConcave(!1, !1, !1)), u.push(ig.x, ig.y);
70164
+ s.geodeticSurfaceNormal(bg, H), h[ze * 3 + Ee] = H.x, h[ze * 3 + 1 + Ee] = H.y, h[ze * 3 + 2 + Ee] = H.z, Z = Cartesian3.clone(bg, Z), w = Cartesian3.multiplyByScalar(H, this._zOffset + U[ze] + $, w), w = Cartesian3.add(Z, w, w), $e[ze * 3] = w.x, $e[ze * 3 + 1] = w.y, $e[ze * 3 + 2] = w.z, a.push($, this._encodeConcave(!1, !1, !1)), u.push(ig.x, ig.y);
70071
70165
  }
70072
70166
  o.push(...$e), c.push(...ue);
70073
70167
  }
@@ -71761,7 +71855,7 @@ class WaterMaterial extends CommonShaderMaterial {
71761
71855
  }
71762
71856
  }
71763
71857
  injectStyle(styleSheet);
71764
- window.MAPVTHREE_VERSION = "1.2.0";
71858
+ window.MAPVTHREE_VERSION = "1.2.1";
71765
71859
  window._disable_hmt || (window._hmt = window._hmt || [], function() {
71766
71860
  let r = document.createElement("script");
71767
71861
  r.src = "https://hm.baidu.com/hm.js?1baab79677df9b34e5e6db4315726094";