@azure/arm-machinelearning 2.0.1-alpha.20221026.1 → 2.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. package/CHANGELOG.md +173 -10
  2. package/dist/index.js +6417 -3094
  3. package/dist/index.js.map +1 -1
  4. package/dist/index.min.js +1 -1
  5. package/dist/index.min.js.map +1 -1
  6. package/dist-esm/samples-dev/batchDeploymentsCreateOrUpdateSample.js +1 -1
  7. package/dist-esm/samples-dev/batchDeploymentsDeleteSample.js +1 -1
  8. package/dist-esm/samples-dev/batchDeploymentsGetSample.js +1 -1
  9. package/dist-esm/samples-dev/batchDeploymentsListSample.js +1 -1
  10. package/dist-esm/samples-dev/batchDeploymentsUpdateSample.js +1 -1
  11. package/dist-esm/samples-dev/batchEndpointsCreateOrUpdateSample.js +1 -1
  12. package/dist-esm/samples-dev/batchEndpointsDeleteSample.js +1 -1
  13. package/dist-esm/samples-dev/batchEndpointsGetSample.js +1 -1
  14. package/dist-esm/samples-dev/batchEndpointsListKeysSample.js +1 -1
  15. package/dist-esm/samples-dev/batchEndpointsListSample.js +1 -1
  16. package/dist-esm/samples-dev/batchEndpointsUpdateSample.js +1 -1
  17. package/dist-esm/samples-dev/codeContainersCreateOrUpdateSample.js +1 -1
  18. package/dist-esm/samples-dev/codeContainersDeleteSample.js +1 -1
  19. package/dist-esm/samples-dev/codeContainersGetSample.js +1 -1
  20. package/dist-esm/samples-dev/codeContainersListSample.js +1 -1
  21. package/dist-esm/samples-dev/codeVersionsCreateOrUpdateSample.js +1 -1
  22. package/dist-esm/samples-dev/codeVersionsDeleteSample.js +1 -1
  23. package/dist-esm/samples-dev/codeVersionsGetSample.js +1 -1
  24. package/dist-esm/samples-dev/codeVersionsListSample.js +1 -1
  25. package/dist-esm/samples-dev/componentContainersCreateOrUpdateSample.js +1 -1
  26. package/dist-esm/samples-dev/componentContainersDeleteSample.js +1 -1
  27. package/dist-esm/samples-dev/componentContainersGetSample.js +1 -1
  28. package/dist-esm/samples-dev/componentContainersListSample.js +1 -1
  29. package/dist-esm/samples-dev/componentVersionsCreateOrUpdateSample.js +1 -1
  30. package/dist-esm/samples-dev/componentVersionsDeleteSample.js +1 -1
  31. package/dist-esm/samples-dev/componentVersionsGetSample.js +1 -1
  32. package/dist-esm/samples-dev/componentVersionsListSample.js +1 -1
  33. package/dist-esm/samples-dev/computeCreateOrUpdateSample.js +60 -8
  34. package/dist-esm/samples-dev/computeCreateOrUpdateSample.js.map +1 -1
  35. package/dist-esm/samples-dev/computeDeleteSample.js +1 -1
  36. package/dist-esm/samples-dev/computeGetSample.js +4 -4
  37. package/dist-esm/samples-dev/computeListKeysSample.js +1 -1
  38. package/dist-esm/samples-dev/computeListNodesSample.js +1 -1
  39. package/dist-esm/samples-dev/computeListSample.js +1 -1
  40. package/dist-esm/samples-dev/computeRestartSample.js +1 -1
  41. package/dist-esm/samples-dev/computeStartSample.js +1 -1
  42. package/dist-esm/samples-dev/computeStopSample.js +1 -1
  43. package/dist-esm/samples-dev/computeUpdateSample.js +1 -1
  44. package/dist-esm/samples-dev/dataContainersCreateOrUpdateSample.js +1 -1
  45. package/dist-esm/samples-dev/dataContainersDeleteSample.js +1 -1
  46. package/dist-esm/samples-dev/dataContainersGetSample.js +1 -1
  47. package/dist-esm/samples-dev/dataContainersListSample.js +1 -1
  48. package/dist-esm/samples-dev/dataVersionsCreateOrUpdateSample.js +1 -1
  49. package/dist-esm/samples-dev/dataVersionsDeleteSample.js +1 -1
  50. package/dist-esm/samples-dev/dataVersionsGetSample.js +1 -1
  51. package/dist-esm/samples-dev/dataVersionsListSample.js +1 -1
  52. package/dist-esm/samples-dev/datastoresCreateOrUpdateSample.js +4 -4
  53. package/dist-esm/samples-dev/datastoresDeleteSample.js +1 -1
  54. package/dist-esm/samples-dev/datastoresGetSample.js +1 -1
  55. package/dist-esm/samples-dev/datastoresListSample.js +1 -1
  56. package/dist-esm/samples-dev/datastoresListSecretsSample.js +1 -1
  57. package/dist-esm/samples-dev/environmentContainersCreateOrUpdateSample.js +1 -1
  58. package/dist-esm/samples-dev/environmentContainersDeleteSample.js +1 -1
  59. package/dist-esm/samples-dev/environmentContainersGetSample.js +1 -1
  60. package/dist-esm/samples-dev/environmentContainersListSample.js +1 -1
  61. package/dist-esm/samples-dev/environmentVersionsCreateOrUpdateSample.js +1 -1
  62. package/dist-esm/samples-dev/environmentVersionsDeleteSample.js +1 -1
  63. package/dist-esm/samples-dev/environmentVersionsGetSample.js +1 -1
  64. package/dist-esm/samples-dev/environmentVersionsListSample.js +1 -1
  65. package/dist-esm/samples-dev/jobsCancelSample.js +1 -1
  66. package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js +66 -3
  67. package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js.map +1 -1
  68. package/dist-esm/samples-dev/jobsDeleteSample.js +1 -1
  69. package/dist-esm/samples-dev/jobsGetSample.js +22 -3
  70. package/dist-esm/samples-dev/jobsGetSample.js.map +1 -1
  71. package/dist-esm/samples-dev/jobsListSample.js +44 -12
  72. package/dist-esm/samples-dev/jobsListSample.js.map +1 -1
  73. package/dist-esm/samples-dev/modelContainersCreateOrUpdateSample.js +1 -1
  74. package/dist-esm/samples-dev/modelContainersDeleteSample.js +1 -1
  75. package/dist-esm/samples-dev/modelContainersGetSample.js +1 -1
  76. package/dist-esm/samples-dev/modelContainersListSample.js +1 -1
  77. package/dist-esm/samples-dev/modelVersionsCreateOrUpdateSample.js +1 -1
  78. package/dist-esm/samples-dev/modelVersionsDeleteSample.js +1 -1
  79. package/dist-esm/samples-dev/modelVersionsGetSample.js +1 -1
  80. package/dist-esm/samples-dev/modelVersionsListSample.js +1 -1
  81. package/dist-esm/samples-dev/onlineDeploymentsCreateOrUpdateSample.js +2 -2
  82. package/dist-esm/samples-dev/onlineDeploymentsDeleteSample.js +1 -1
  83. package/dist-esm/samples-dev/onlineDeploymentsGetLogsSample.js +1 -1
  84. package/dist-esm/samples-dev/onlineDeploymentsGetSample.js +2 -2
  85. package/dist-esm/samples-dev/onlineDeploymentsListSample.js +1 -1
  86. package/dist-esm/samples-dev/onlineDeploymentsListSkusSample.js +2 -2
  87. package/dist-esm/samples-dev/onlineDeploymentsUpdateSample.js +2 -2
  88. package/dist-esm/samples-dev/onlineEndpointsCreateOrUpdateSample.js +1 -1
  89. package/dist-esm/samples-dev/onlineEndpointsDeleteSample.js +1 -1
  90. package/dist-esm/samples-dev/onlineEndpointsGetSample.js +1 -1
  91. package/dist-esm/samples-dev/onlineEndpointsGetTokenSample.js +1 -1
  92. package/dist-esm/samples-dev/onlineEndpointsListKeysSample.js +1 -1
  93. package/dist-esm/samples-dev/onlineEndpointsListSample.js +1 -1
  94. package/dist-esm/samples-dev/onlineEndpointsRegenerateKeysSample.js +1 -1
  95. package/dist-esm/samples-dev/onlineEndpointsUpdateSample.js +1 -1
  96. package/dist-esm/samples-dev/operationsListSample.js +1 -1
  97. package/dist-esm/samples-dev/privateEndpointConnectionsCreateOrUpdateSample.js +1 -1
  98. package/dist-esm/samples-dev/privateEndpointConnectionsDeleteSample.js +1 -1
  99. package/dist-esm/samples-dev/privateEndpointConnectionsGetSample.js +1 -1
  100. package/dist-esm/samples-dev/privateEndpointConnectionsListSample.js +1 -1
  101. package/dist-esm/samples-dev/privateLinkResourcesListSample.js +1 -1
  102. package/dist-esm/samples-dev/quotasListSample.js +1 -1
  103. package/dist-esm/samples-dev/quotasUpdateSample.js +1 -1
  104. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts +2 -0
  105. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts.map +1 -0
  106. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js +54 -0
  107. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js.map +1 -0
  108. package/dist-esm/samples-dev/schedulesDeleteSample.d.ts +2 -0
  109. package/dist-esm/samples-dev/schedulesDeleteSample.d.ts.map +1 -0
  110. package/dist-esm/samples-dev/schedulesDeleteSample.js +32 -0
  111. package/dist-esm/samples-dev/schedulesDeleteSample.js.map +1 -0
  112. package/dist-esm/samples-dev/schedulesGetSample.d.ts +2 -0
  113. package/dist-esm/samples-dev/schedulesGetSample.d.ts.map +1 -0
  114. package/dist-esm/samples-dev/schedulesGetSample.js +32 -0
  115. package/dist-esm/samples-dev/schedulesGetSample.js.map +1 -0
  116. package/dist-esm/samples-dev/schedulesListSample.d.ts +2 -0
  117. package/dist-esm/samples-dev/schedulesListSample.d.ts.map +1 -0
  118. package/dist-esm/samples-dev/schedulesListSample.js +45 -0
  119. package/dist-esm/samples-dev/schedulesListSample.js.map +1 -0
  120. package/dist-esm/samples-dev/usagesListSample.js +1 -1
  121. package/dist-esm/samples-dev/virtualMachineSizesListSample.js +1 -1
  122. package/dist-esm/samples-dev/workspaceConnectionsCreateSample.js +1 -1
  123. package/dist-esm/samples-dev/workspaceConnectionsDeleteSample.js +1 -1
  124. package/dist-esm/samples-dev/workspaceConnectionsGetSample.js +1 -1
  125. package/dist-esm/samples-dev/workspaceConnectionsListSample.js +1 -1
  126. package/dist-esm/samples-dev/workspaceFeaturesListSample.js +1 -1
  127. package/dist-esm/samples-dev/workspacesCreateOrUpdateSample.js +1 -1
  128. package/dist-esm/samples-dev/workspacesDeleteSample.js +1 -1
  129. package/dist-esm/samples-dev/workspacesDiagnoseSample.js +1 -1
  130. package/dist-esm/samples-dev/workspacesGetSample.js +1 -1
  131. package/dist-esm/samples-dev/workspacesListByResourceGroupSample.js +1 -1
  132. package/dist-esm/samples-dev/workspacesListBySubscriptionSample.js +1 -1
  133. package/dist-esm/samples-dev/workspacesListKeysSample.js +1 -1
  134. package/dist-esm/samples-dev/workspacesListNotebookAccessTokenSample.js +1 -1
  135. package/dist-esm/samples-dev/workspacesListNotebookKeysSample.js +1 -1
  136. package/dist-esm/samples-dev/workspacesListOutboundNetworkDependenciesEndpointsSample.js +1 -1
  137. package/dist-esm/samples-dev/workspacesListStorageAccountKeysSample.js +1 -1
  138. package/dist-esm/samples-dev/workspacesPrepareNotebookSample.js +1 -1
  139. package/dist-esm/samples-dev/workspacesResyncKeysSample.js +1 -1
  140. package/dist-esm/samples-dev/workspacesUpdateSample.js +1 -1
  141. package/dist-esm/src/azureMachineLearningWorkspaces.d.ts +2 -1
  142. package/dist-esm/src/azureMachineLearningWorkspaces.d.ts.map +1 -1
  143. package/dist-esm/src/azureMachineLearningWorkspaces.js +4 -3
  144. package/dist-esm/src/azureMachineLearningWorkspaces.js.map +1 -1
  145. package/dist-esm/src/models/index.d.ts +2177 -118
  146. package/dist-esm/src/models/index.d.ts.map +1 -1
  147. package/dist-esm/src/models/index.js +645 -42
  148. package/dist-esm/src/models/index.js.map +1 -1
  149. package/dist-esm/src/models/mappers.d.ts +107 -8
  150. package/dist-esm/src/models/mappers.d.ts.map +1 -1
  151. package/dist-esm/src/models/mappers.js +3218 -915
  152. package/dist-esm/src/models/mappers.js.map +1 -1
  153. package/dist-esm/src/models/parameters.d.ts +2 -0
  154. package/dist-esm/src/models/parameters.d.ts.map +1 -1
  155. package/dist-esm/src/models/parameters.js +15 -2
  156. package/dist-esm/src/models/parameters.js.map +1 -1
  157. package/dist-esm/src/operations/index.d.ts +1 -0
  158. package/dist-esm/src/operations/index.d.ts.map +1 -1
  159. package/dist-esm/src/operations/index.js +1 -0
  160. package/dist-esm/src/operations/index.js.map +1 -1
  161. package/dist-esm/src/operations/schedules.d.ts +81 -0
  162. package/dist-esm/src/operations/schedules.d.ts.map +1 -0
  163. package/dist-esm/src/operations/schedules.js +343 -0
  164. package/dist-esm/src/operations/schedules.js.map +1 -0
  165. package/dist-esm/src/operationsInterfaces/index.d.ts +1 -0
  166. package/dist-esm/src/operationsInterfaces/index.d.ts.map +1 -1
  167. package/dist-esm/src/operationsInterfaces/index.js +1 -0
  168. package/dist-esm/src/operationsInterfaces/index.js.map +1 -1
  169. package/dist-esm/src/operationsInterfaces/schedules.d.ts +56 -0
  170. package/dist-esm/src/operationsInterfaces/schedules.d.ts.map +1 -0
  171. package/dist-esm/src/operationsInterfaces/schedules.js +9 -0
  172. package/dist-esm/src/operationsInterfaces/schedules.js.map +1 -0
  173. package/package.json +6 -5
  174. package/review/arm-machinelearning.api.md +1033 -11
  175. package/src/azureMachineLearningWorkspaces.ts +6 -2
  176. package/src/models/index.ts +2662 -410
  177. package/src/models/mappers.ts +4026 -1470
  178. package/src/models/parameters.ts +18 -2
  179. package/src/operations/index.ts +1 -0
  180. package/src/operations/schedules.ts +476 -0
  181. package/src/operationsInterfaces/index.ts +1 -0
  182. package/src/operationsInterfaces/schedules.ts +109 -0
  183. package/types/arm-machinelearning.d.ts +2348 -80
  184. package/types/tsdoc-metadata.json +1 -1
@@ -7,15 +7,23 @@ export declare type DatastoreCredentialsUnion = DatastoreCredentials | AccountKe
7
7
  export declare type DatastoreSecretsUnion = DatastoreSecrets | AccountKeyDatastoreSecrets | CertificateDatastoreSecrets | SasDatastoreSecrets | ServicePrincipalDatastoreSecrets;
8
8
  export declare type IdentityConfigurationUnion = IdentityConfiguration | AmlToken | ManagedIdentity | UserIdentity;
9
9
  export declare type OnlineScaleSettingsUnion = OnlineScaleSettings | DefaultScaleSettings | TargetUtilizationScaleSettings;
10
+ export declare type ScheduleActionBaseUnion = ScheduleActionBase | EndpointScheduleAction | JobScheduleAction;
11
+ export declare type TriggerBaseUnion = TriggerBase | RecurrenceTrigger | CronTrigger;
12
+ export declare type ForecastHorizonUnion = ForecastHorizon | AutoForecastHorizon | CustomForecastHorizon;
13
+ export declare type JobOutputUnion = JobOutput | CustomModelJobOutput | MLFlowModelJobOutput | MLTableJobOutput | TritonModelJobOutput | UriFileJobOutput | UriFolderJobOutput;
14
+ export declare type AutoMLVerticalUnion = AutoMLVertical | Classification | Forecasting | ImageClassification | ImageClassificationMultilabel | ImageInstanceSegmentation | ImageObjectDetection | Regression | TextClassification | TextClassificationMultilabel | TextNer;
15
+ export declare type JobInputUnion = JobInput | MLTableJobInput | CustomModelJobInput | MLFlowModelJobInput | LiteralJobInput | TritonModelJobInput | UriFileJobInput | UriFolderJobInput;
16
+ export declare type NCrossValidationsUnion = NCrossValidations | AutoNCrossValidations | CustomNCrossValidations;
17
+ export declare type SeasonalityUnion = Seasonality | AutoSeasonality | CustomSeasonality;
18
+ export declare type TargetLagsUnion = TargetLags | AutoTargetLags | CustomTargetLags;
19
+ export declare type TargetRollingWindowSizeUnion = TargetRollingWindowSize | AutoTargetRollingWindowSize | CustomTargetRollingWindowSize;
10
20
  export declare type EarlyTerminationPolicyUnion = EarlyTerminationPolicy | BanditPolicy | MedianStoppingPolicy | TruncationSelectionPolicy;
11
21
  export declare type SamplingAlgorithmUnion = SamplingAlgorithm | BayesianSamplingAlgorithm | GridSamplingAlgorithm | RandomSamplingAlgorithm;
12
22
  export declare type DistributionConfigurationUnion = DistributionConfiguration | Mpi | PyTorch | TensorFlow;
13
- export declare type JobInputUnion = JobInput | CustomModelJobInput | LiteralJobInput | MLFlowModelJobInput | MLTableJobInput | TritonModelJobInput | UriFileJobInput | UriFolderJobInput;
14
23
  export declare type JobLimitsUnion = JobLimits | CommandJobLimits | SweepJobLimits;
15
- export declare type JobOutputUnion = JobOutput | CustomModelJobOutput | MLFlowModelJobOutput | MLTableJobOutput | TritonModelJobOutput | UriFileJobOutput | UriFolderJobOutput;
16
24
  export declare type OnlineDeploymentPropertiesUnion = OnlineDeploymentProperties | KubernetesOnlineDeployment | ManagedOnlineDeployment;
17
25
  export declare type DatastorePropertiesUnion = DatastoreProperties | AzureBlobDatastore | AzureDataLakeGen1Datastore | AzureDataLakeGen2Datastore | AzureFileDatastore;
18
- export declare type JobBasePropertiesUnion = JobBaseProperties | CommandJob | PipelineJob | SweepJob;
26
+ export declare type JobBasePropertiesUnion = JobBaseProperties | AutoMLJob | CommandJob | PipelineJob | SweepJob;
19
27
  export declare type DataVersionBasePropertiesUnion = DataVersionBaseProperties | MLTableData | UriFileDataVersion | UriFolderDataVersion;
20
28
  /** An array of operations supported by the resource provider. */
21
29
  export interface AmlOperationListResult {
@@ -651,11 +659,8 @@ export interface ComputeResourceSchema {
651
659
  export interface Compute {
652
660
  /** Polymorphic discriminator, which specifies the different types this object can be */
653
661
  computeType: "AKS" | "Kubernetes" | "AmlCompute" | "ComputeInstance" | "VirtualMachine" | "HDInsight" | "DataFactory" | "Databricks" | "DataLakeAnalytics" | "SynapseSpark";
654
- /**
655
- * Location for the underlying compute
656
- * NOTE: This property will not be serialized. It can only be populated by the server.
657
- */
658
- readonly computeLocation?: string;
662
+ /** Location for the underlying compute */
663
+ computeLocation?: string;
659
664
  /**
660
665
  * The provision state of the cluster. Valid values are Unknown, Updating, Provisioning, Succeeded, and Failed.
661
666
  * NOTE: This property will not be serialized. It can only be populated by the server.
@@ -1245,6 +1250,34 @@ export interface EndpointAuthToken {
1245
1250
  /** Access token type. */
1246
1251
  tokenType?: string;
1247
1252
  }
1253
+ /** A paginated list of Schedule entities. */
1254
+ export interface ScheduleResourceArmPaginatedResult {
1255
+ /** The link to the next page of Schedule objects. If null, there are no additional pages. */
1256
+ nextLink?: string;
1257
+ /** An array of objects of type Schedule. */
1258
+ value?: Schedule[];
1259
+ }
1260
+ export interface ScheduleActionBase {
1261
+ /** Polymorphic discriminator, which specifies the different types this object can be */
1262
+ actionType: "InvokeBatchEndpoint" | "CreateJob";
1263
+ }
1264
+ export interface TriggerBase {
1265
+ /** Polymorphic discriminator, which specifies the different types this object can be */
1266
+ triggerType: "Recurrence" | "Cron";
1267
+ /**
1268
+ * Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601.
1269
+ * Recommented format would be "2022-06-01T00:00:01"
1270
+ * If not present, the schedule will run indefinitely
1271
+ */
1272
+ endTime?: string;
1273
+ /** Specifies start time of schedule in ISO 8601 format, but without a UTC offset. */
1274
+ startTime?: string;
1275
+ /**
1276
+ * Specifies time zone in which the schedule runs.
1277
+ * TimeZone should follow Windows time zone format. Refer: https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11
1278
+ */
1279
+ timeZone?: string;
1280
+ }
1248
1281
  /** The List Aml user feature operation response. */
1249
1282
  export interface ListAmlUserFeatureResult {
1250
1283
  /**
@@ -1652,7 +1685,7 @@ export interface ScriptsToExecute {
1652
1685
  }
1653
1686
  /** Script reference */
1654
1687
  export interface ScriptReference {
1655
- /** The storage source of the script: inline, workspace. */
1688
+ /** The storage source of the script: workspace. */
1656
1689
  scriptSource?: string;
1657
1690
  /** The location of scripts in the mounted volume. */
1658
1691
  scriptData?: string;
@@ -1680,7 +1713,7 @@ export interface ComputeSchedules {
1680
1713
  /** Compute start stop schedule properties */
1681
1714
  export interface ComputeStartStopSchedule {
1682
1715
  /**
1683
- * Schedule id.
1716
+ * A system assigned id for the schedule.
1684
1717
  * NOTE: This property will not be serialized. It can only be populated by the server.
1685
1718
  */
1686
1719
  readonly id?: string;
@@ -1689,13 +1722,35 @@ export interface ComputeStartStopSchedule {
1689
1722
  * NOTE: This property will not be serialized. It can only be populated by the server.
1690
1723
  */
1691
1724
  readonly provisioningStatus?: ProvisioningStatus;
1692
- /** The compute power action. */
1725
+ /** Is the schedule enabled or disabled? */
1726
+ status?: ScheduleStatus;
1727
+ /** [Required] The compute power action. */
1693
1728
  action?: ComputePowerAction;
1729
+ /** [Required] The schedule trigger type. */
1730
+ triggerType?: TriggerType;
1731
+ /** Required if triggerType is Recurrence. */
1732
+ recurrence?: RecurrenceTrigger;
1733
+ /** Required if triggerType is Cron. */
1734
+ cron?: CronTrigger;
1735
+ /** [Deprecated] Not used any more. */
1694
1736
  schedule?: ScheduleBase;
1695
1737
  }
1738
+ export interface RecurrenceSchedule {
1739
+ /** [Required] List of hours for the schedule. */
1740
+ hours: number[];
1741
+ /** [Required] List of minutes for the schedule. */
1742
+ minutes: number[];
1743
+ /** List of month days for the schedule */
1744
+ monthDays?: number[];
1745
+ /** List of days for the schedule. */
1746
+ weekDays?: WeekDay[];
1747
+ }
1696
1748
  export interface ScheduleBase {
1749
+ /** A system assigned id for the schedule. */
1697
1750
  id?: string;
1751
+ /** The current deployment state of schedule. */
1698
1752
  provisioningStatus?: ScheduleProvisioningState;
1753
+ /** Is the schedule enabled or disabled? */
1699
1754
  status?: ScheduleStatus;
1700
1755
  }
1701
1756
  /** Defines an Aml Instance container. */
@@ -1903,6 +1958,62 @@ export interface AssetJobOutput {
1903
1958
  /** Output Asset URI. */
1904
1959
  uri?: string;
1905
1960
  }
1961
+ /** The desired maximum forecast horizon in units of time-series frequency. */
1962
+ export interface ForecastHorizon {
1963
+ /** Polymorphic discriminator, which specifies the different types this object can be */
1964
+ mode: "Auto" | "Custom";
1965
+ }
1966
+ /** Job output definition container information on where to find job output/logs. */
1967
+ export interface JobOutput {
1968
+ /** Polymorphic discriminator, which specifies the different types this object can be */
1969
+ jobOutputType: "custom_model" | "mlflow_model" | "mltable" | "triton_model" | "uri_file" | "uri_folder";
1970
+ /** Description for the output. */
1971
+ description?: string;
1972
+ }
1973
+ /**
1974
+ * AutoML vertical class.
1975
+ * Base class for AutoML verticals - TableVertical/ImageVertical/NLPVertical
1976
+ */
1977
+ export interface AutoMLVertical {
1978
+ /** Polymorphic discriminator, which specifies the different types this object can be */
1979
+ taskType: "Classification" | "Forecasting" | "ImageClassification" | "ImageClassificationMultilabel" | "ImageInstanceSegmentation" | "ImageObjectDetection" | "Regression" | "TextClassification" | "TextClassificationMultilabel" | "TextNER";
1980
+ /** Log verbosity for the job. */
1981
+ logVerbosity?: LogVerbosity;
1982
+ /**
1983
+ * Target column name: This is prediction values column.
1984
+ * Also known as label column name in context of classification tasks.
1985
+ */
1986
+ targetColumnName?: string;
1987
+ /** [Required] Training data input. */
1988
+ trainingData: MLTableJobInput;
1989
+ }
1990
+ /** Command job definition. */
1991
+ export interface JobInput {
1992
+ /** Polymorphic discriminator, which specifies the different types this object can be */
1993
+ jobInputType: "mltable" | "custom_model" | "mlflow_model" | "literal" | "triton_model" | "uri_file" | "uri_folder";
1994
+ /** Description for the input. */
1995
+ description?: string;
1996
+ }
1997
+ /** N-Cross validations value. */
1998
+ export interface NCrossValidations {
1999
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2000
+ mode: "Auto" | "Custom";
2001
+ }
2002
+ /** Forecasting seasonality. */
2003
+ export interface Seasonality {
2004
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2005
+ mode: "Auto" | "Custom";
2006
+ }
2007
+ /** The number of past periods to lag from the target column. */
2008
+ export interface TargetLags {
2009
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2010
+ mode: "Auto" | "Custom";
2011
+ }
2012
+ /** Forecasting target rolling window size. */
2013
+ export interface TargetRollingWindowSize {
2014
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2015
+ mode: "Auto" | "Custom";
2016
+ }
1906
2017
  /** Early termination policies enable canceling poor-performing runs before they complete */
1907
2018
  export interface EarlyTerminationPolicy {
1908
2019
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -1920,31 +2031,110 @@ export interface SamplingAlgorithm {
1920
2031
  /** Polymorphic discriminator, which specifies the different types this object can be */
1921
2032
  samplingAlgorithmType: "Bayesian" | "Grid" | "Random";
1922
2033
  }
2034
+ /** Training related configuration. */
2035
+ export interface TrainingSettings {
2036
+ /** Enable recommendation of DNN models. */
2037
+ enableDnnTraining?: boolean;
2038
+ /** Flag to turn on explainability on best model. */
2039
+ enableModelExplainability?: boolean;
2040
+ /** Flag for enabling onnx compatible models. */
2041
+ enableOnnxCompatibleModels?: boolean;
2042
+ /** Enable stack ensemble run. */
2043
+ enableStackEnsemble?: boolean;
2044
+ /** Enable voting ensemble run. */
2045
+ enableVoteEnsemble?: boolean;
2046
+ /**
2047
+ * During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
2048
+ * Configure this parameter with a higher value than 300 secs, if more time is needed.
2049
+ */
2050
+ ensembleModelDownloadTimeout?: string;
2051
+ /** Stack ensemble settings for stack ensemble run. */
2052
+ stackEnsembleSettings?: StackEnsembleSettings;
2053
+ }
2054
+ /** Advances setting to customize StackEnsemble run. */
2055
+ export interface StackEnsembleSettings {
2056
+ /** Optional parameters to pass to the initializer of the meta-learner. */
2057
+ stackMetaLearnerKWargs?: Record<string, unknown>;
2058
+ /** Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. */
2059
+ stackMetaLearnerTrainPercentage?: number;
2060
+ /** The meta-learner is a model trained on the output of the individual heterogeneous models. */
2061
+ stackMetaLearnerType?: StackMetaLearnerType;
2062
+ }
2063
+ /** Abstract class for AutoML tasks that use table dataset as input - such as Classification/Regression/Forecasting. */
2064
+ export interface TableVertical {
2065
+ /** Columns to use for CVSplit data. */
2066
+ cvSplitColumnNames?: string[];
2067
+ /** Featurization inputs needed for AutoML job. */
2068
+ featurizationSettings?: TableVerticalFeaturizationSettings;
2069
+ /** Execution constraints for AutoMLJob. */
2070
+ limitSettings?: TableVerticalLimitSettings;
2071
+ /**
2072
+ * Number of cross validation folds to be applied on training dataset
2073
+ * when validation dataset is not provided.
2074
+ */
2075
+ nCrossValidations?: NCrossValidationsUnion;
2076
+ /** Test data input. */
2077
+ testData?: MLTableJobInput;
2078
+ /**
2079
+ * The fraction of test dataset that needs to be set aside for validation purpose.
2080
+ * Values between (0.0 , 1.0)
2081
+ * Applied when validation dataset is not provided.
2082
+ */
2083
+ testDataSize?: number;
2084
+ /** Validation data inputs. */
2085
+ validationData?: MLTableJobInput;
2086
+ /**
2087
+ * The fraction of training dataset that needs to be set aside for validation purpose.
2088
+ * Values between (0.0 , 1.0)
2089
+ * Applied when validation dataset is not provided.
2090
+ */
2091
+ validationDataSize?: number;
2092
+ /** The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. */
2093
+ weightColumnName?: string;
2094
+ }
2095
+ /** Column transformer parameters. */
2096
+ export interface ColumnTransformer {
2097
+ /** Fields to apply transformer logic on. */
2098
+ fields?: string[];
2099
+ /**
2100
+ * Different properties to be passed to transformer.
2101
+ * Input expected is dictionary of key,value pairs in JSON format.
2102
+ */
2103
+ parameters?: Record<string, unknown>;
2104
+ }
2105
+ /** Featurization Configuration. */
2106
+ export interface FeaturizationSettings {
2107
+ /** Dataset language, useful for the text data. */
2108
+ datasetLanguage?: string;
2109
+ }
2110
+ /** Job execution constraints. */
2111
+ export interface TableVerticalLimitSettings {
2112
+ /** Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. */
2113
+ enableEarlyTermination?: boolean;
2114
+ /** Exit score for the AutoML job. */
2115
+ exitScore?: number;
2116
+ /** Maximum Concurrent iterations. */
2117
+ maxConcurrentTrials?: number;
2118
+ /** Max cores per iteration. */
2119
+ maxCoresPerTrial?: number;
2120
+ /** Number of iterations. */
2121
+ maxTrials?: number;
2122
+ /** AutoML job timeout. */
2123
+ timeout?: string;
2124
+ /** Iteration timeout. */
2125
+ trialTimeout?: string;
2126
+ }
1923
2127
  /** Base definition for job distribution configuration. */
1924
2128
  export interface DistributionConfiguration {
1925
2129
  /** Polymorphic discriminator, which specifies the different types this object can be */
1926
2130
  distributionType: "Mpi" | "PyTorch" | "TensorFlow";
1927
2131
  }
1928
- /** Command job definition. */
1929
- export interface JobInput {
1930
- /** Polymorphic discriminator, which specifies the different types this object can be */
1931
- jobInputType: "custom_model" | "literal" | "mlflow_model" | "mltable" | "triton_model" | "uri_file" | "uri_folder";
1932
- /** Description for the input. */
1933
- description?: string;
1934
- }
1935
2132
  export interface JobLimits {
1936
2133
  /** Polymorphic discriminator, which specifies the different types this object can be */
1937
2134
  jobLimitsType: "Command" | "Sweep";
1938
2135
  /** The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. */
1939
2136
  timeout?: string;
1940
2137
  }
1941
- /** Job output definition container information on where to find job output/logs. */
1942
- export interface JobOutput {
1943
- /** Polymorphic discriminator, which specifies the different types this object can be */
1944
- jobOutputType: "custom_model" | "mlflow_model" | "mltable" | "triton_model" | "uri_file" | "uri_folder";
1945
- /** Description for the output. */
1946
- description?: string;
1947
- }
1948
2138
  /** Resource requirements for each container instance within an online deployment. */
1949
2139
  export interface ContainerResourceRequirements {
1950
2140
  /** Container resource limit info: */
@@ -1969,6 +2159,289 @@ export interface ContainerResourceSettings {
1969
2159
  */
1970
2160
  memory?: string;
1971
2161
  }
2162
+ /** Forecasting specific parameters. */
2163
+ export interface ForecastingSettings {
2164
+ /**
2165
+ * Country or region for holidays for forecasting tasks.
2166
+ * These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.
2167
+ */
2168
+ countryOrRegionForHolidays?: string;
2169
+ /**
2170
+ * Number of periods between the origin time of one CV fold and the next fold. For
2171
+ * example, if `CVStepSize` = 3 for daily data, the origin time for each fold will be
2172
+ * three days apart.
2173
+ */
2174
+ cvStepSize?: number;
2175
+ /** Flag for generating lags for the numeric features with 'auto' or null. */
2176
+ featureLags?: FeatureLags;
2177
+ /** The desired maximum forecast horizon in units of time-series frequency. */
2178
+ forecastHorizon?: ForecastHorizonUnion;
2179
+ /** When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. */
2180
+ frequency?: string;
2181
+ /**
2182
+ * Set time series seasonality as an integer multiple of the series frequency.
2183
+ * If seasonality is set to 'auto', it will be inferred.
2184
+ */
2185
+ seasonality?: SeasonalityUnion;
2186
+ /** The parameter defining how if AutoML should handle short time series. */
2187
+ shortSeriesHandlingConfig?: ShortSeriesHandlingConfiguration;
2188
+ /**
2189
+ * The function to be used to aggregate the time series target column to conform to a user specified frequency.
2190
+ * If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".
2191
+ */
2192
+ targetAggregateFunction?: TargetAggregationFunction;
2193
+ /** The number of past periods to lag from the target column. */
2194
+ targetLags?: TargetLagsUnion;
2195
+ /** The number of past periods used to create a rolling window average of the target column. */
2196
+ targetRollingWindowSize?: TargetRollingWindowSizeUnion;
2197
+ /** The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. */
2198
+ timeColumnName?: string;
2199
+ /**
2200
+ * The names of columns used to group a timeseries. It can be used to create multiple series.
2201
+ * If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting.
2202
+ */
2203
+ timeSeriesIdColumnNames?: string[];
2204
+ /** Configure STL Decomposition of the time-series target column. */
2205
+ useStl?: UseStl;
2206
+ }
2207
+ /**
2208
+ * Settings used for training the model.
2209
+ * For more information on the available settings please visit the official documentation:
2210
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2211
+ */
2212
+ export interface ImageModelSettings {
2213
+ /** Settings for advanced scenarios. */
2214
+ advancedSettings?: string;
2215
+ /** Enable AMSGrad when optimizer is 'adam' or 'adamw'. */
2216
+ amsGradient?: boolean;
2217
+ /** Settings for using Augmentations. */
2218
+ augmentations?: string;
2219
+ /** Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
2220
+ beta1?: number;
2221
+ /** Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
2222
+ beta2?: number;
2223
+ /** Frequency to store model checkpoints. Must be a positive integer. */
2224
+ checkpointFrequency?: number;
2225
+ /** The pretrained checkpoint model for incremental training. */
2226
+ checkpointModel?: MLFlowModelJobInput;
2227
+ /** The id of a previous run that has a pretrained checkpoint for incremental training. */
2228
+ checkpointRunId?: string;
2229
+ /** Whether to use distributed training. */
2230
+ distributed?: boolean;
2231
+ /** Enable early stopping logic during training. */
2232
+ earlyStopping?: boolean;
2233
+ /**
2234
+ * Minimum number of epochs or validation evaluations to wait before primary metric improvement
2235
+ * is tracked for early stopping. Must be a positive integer.
2236
+ */
2237
+ earlyStoppingDelay?: number;
2238
+ /**
2239
+ * Minimum number of epochs or validation evaluations with no primary metric improvement before
2240
+ * the run is stopped. Must be a positive integer.
2241
+ */
2242
+ earlyStoppingPatience?: number;
2243
+ /** Enable normalization when exporting ONNX model. */
2244
+ enableOnnxNormalization?: boolean;
2245
+ /** Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. */
2246
+ evaluationFrequency?: number;
2247
+ /**
2248
+ * Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
2249
+ * updating the model weights while accumulating the gradients of those steps, and then using
2250
+ * the accumulated gradients to compute the weight updates. Must be a positive integer.
2251
+ */
2252
+ gradientAccumulationStep?: number;
2253
+ /**
2254
+ * Number of layers to freeze for the model. Must be a positive integer.
2255
+ * For instance, passing 2 as value for 'seresnext' means
2256
+ * freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
2257
+ * see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2258
+ */
2259
+ layersToFreeze?: number;
2260
+ /** Initial learning rate. Must be a float in the range [0, 1]. */
2261
+ learningRate?: number;
2262
+ /** Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. */
2263
+ learningRateScheduler?: LearningRateScheduler;
2264
+ /**
2265
+ * Name of the model to use for training.
2266
+ * For more information on the available models please visit the official documentation:
2267
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2268
+ */
2269
+ modelName?: string;
2270
+ /** Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. */
2271
+ momentum?: number;
2272
+ /** Enable nesterov when optimizer is 'sgd'. */
2273
+ nesterov?: boolean;
2274
+ /** Number of training epochs. Must be a positive integer. */
2275
+ numberOfEpochs?: number;
2276
+ /** Number of data loader workers. Must be a non-negative integer. */
2277
+ numberOfWorkers?: number;
2278
+ /** Type of optimizer. */
2279
+ optimizer?: StochasticOptimizer;
2280
+ /** Random seed to be used when using deterministic training. */
2281
+ randomSeed?: number;
2282
+ /** Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. */
2283
+ stepLRGamma?: number;
2284
+ /** Value of step size when learning rate scheduler is 'step'. Must be a positive integer. */
2285
+ stepLRStepSize?: number;
2286
+ /** Training batch size. Must be a positive integer. */
2287
+ trainingBatchSize?: number;
2288
+ /** Validation batch size. Must be a positive integer. */
2289
+ validationBatchSize?: number;
2290
+ /** Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. */
2291
+ warmupCosineLRCycles?: number;
2292
+ /** Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. */
2293
+ warmupCosineLRWarmupEpochs?: number;
2294
+ /** Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. */
2295
+ weightDecay?: number;
2296
+ }
2297
+ /**
2298
+ * Distribution expressions to sweep over values of model settings.
2299
+ * <example>
2300
+ * Some examples are:
2301
+ * <code>
2302
+ * ModelName = "choice('seresnext', 'resnest50')";
2303
+ * LearningRate = "uniform(0.001, 0.01)";
2304
+ * LayersToFreeze = "choice(0, 2)";
2305
+ * </code></example>
2306
+ * All distributions can be specified as distribution_name(min, max) or choice(val1, val2, ..., valn)
2307
+ * where distribution name can be: uniform, quniform, loguniform, etc
2308
+ * For more details on how to compose distribution expressions please check the documentation:
2309
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
2310
+ * For more information on the available settings please visit the official documentation:
2311
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2312
+ */
2313
+ export interface ImageModelDistributionSettings {
2314
+ /** Enable AMSGrad when optimizer is 'adam' or 'adamw'. */
2315
+ amsGradient?: string;
2316
+ /** Settings for using Augmentations. */
2317
+ augmentations?: string;
2318
+ /** Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
2319
+ beta1?: string;
2320
+ /** Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
2321
+ beta2?: string;
2322
+ /** Whether to use distributer training. */
2323
+ distributed?: string;
2324
+ /** Enable early stopping logic during training. */
2325
+ earlyStopping?: string;
2326
+ /**
2327
+ * Minimum number of epochs or validation evaluations to wait before primary metric improvement
2328
+ * is tracked for early stopping. Must be a positive integer.
2329
+ */
2330
+ earlyStoppingDelay?: string;
2331
+ /**
2332
+ * Minimum number of epochs or validation evaluations with no primary metric improvement before
2333
+ * the run is stopped. Must be a positive integer.
2334
+ */
2335
+ earlyStoppingPatience?: string;
2336
+ /** Enable normalization when exporting ONNX model. */
2337
+ enableOnnxNormalization?: string;
2338
+ /** Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. */
2339
+ evaluationFrequency?: string;
2340
+ /**
2341
+ * Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
2342
+ * updating the model weights while accumulating the gradients of those steps, and then using
2343
+ * the accumulated gradients to compute the weight updates. Must be a positive integer.
2344
+ */
2345
+ gradientAccumulationStep?: string;
2346
+ /**
2347
+ * Number of layers to freeze for the model. Must be a positive integer.
2348
+ * For instance, passing 2 as value for 'seresnext' means
2349
+ * freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
2350
+ * see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2351
+ */
2352
+ layersToFreeze?: string;
2353
+ /** Initial learning rate. Must be a float in the range [0, 1]. */
2354
+ learningRate?: string;
2355
+ /** Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. */
2356
+ learningRateScheduler?: string;
2357
+ /**
2358
+ * Name of the model to use for training.
2359
+ * For more information on the available models please visit the official documentation:
2360
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2361
+ */
2362
+ modelName?: string;
2363
+ /** Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. */
2364
+ momentum?: string;
2365
+ /** Enable nesterov when optimizer is 'sgd'. */
2366
+ nesterov?: string;
2367
+ /** Number of training epochs. Must be a positive integer. */
2368
+ numberOfEpochs?: string;
2369
+ /** Number of data loader workers. Must be a non-negative integer. */
2370
+ numberOfWorkers?: string;
2371
+ /** Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. */
2372
+ optimizer?: string;
2373
+ /** Random seed to be used when using deterministic training. */
2374
+ randomSeed?: string;
2375
+ /** Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. */
2376
+ stepLRGamma?: string;
2377
+ /** Value of step size when learning rate scheduler is 'step'. Must be a positive integer. */
2378
+ stepLRStepSize?: string;
2379
+ /** Training batch size. Must be a positive integer. */
2380
+ trainingBatchSize?: string;
2381
+ /** Validation batch size. Must be a positive integer. */
2382
+ validationBatchSize?: string;
2383
+ /** Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. */
2384
+ warmupCosineLRCycles?: string;
2385
+ /** Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. */
2386
+ warmupCosineLRWarmupEpochs?: string;
2387
+ /** Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. */
2388
+ weightDecay?: string;
2389
+ }
2390
+ /**
2391
+ * Abstract class for AutoML tasks that train image (computer vision) models -
2392
+ * such as Image Classification / Image Classification Multilabel / Image Object Detection / Image Instance Segmentation.
2393
+ */
2394
+ export interface ImageVertical {
2395
+ /** [Required] Limit settings for the AutoML job. */
2396
+ limitSettings: ImageLimitSettings;
2397
+ /** Model sweeping and hyperparameter sweeping related settings. */
2398
+ sweepSettings?: ImageSweepSettings;
2399
+ /** Validation data inputs. */
2400
+ validationData?: MLTableJobInput;
2401
+ /**
2402
+ * The fraction of training dataset that needs to be set aside for validation purpose.
2403
+ * Values between (0.0 , 1.0)
2404
+ * Applied when validation dataset is not provided.
2405
+ */
2406
+ validationDataSize?: number;
2407
+ }
2408
+ /** Limit settings for the AutoML job. */
2409
+ export interface ImageLimitSettings {
2410
+ /** Maximum number of concurrent AutoML iterations. */
2411
+ maxConcurrentTrials?: number;
2412
+ /** Maximum number of AutoML iterations. */
2413
+ maxTrials?: number;
2414
+ /** AutoML job timeout. */
2415
+ timeout?: string;
2416
+ }
2417
+ /** Model sweeping and hyperparameter sweeping related settings. */
2418
+ export interface ImageSweepSettings {
2419
+ /** Type of early termination policy. */
2420
+ earlyTermination?: EarlyTerminationPolicyUnion;
2421
+ /** [Required] Type of the hyperparameter sampling algorithms. */
2422
+ samplingAlgorithm: SamplingAlgorithmType;
2423
+ }
2424
+ /**
2425
+ * Abstract class for NLP related AutoML tasks.
2426
+ * NLP - Natural Language Processing.
2427
+ */
2428
+ export interface NlpVertical {
2429
+ /** Featurization inputs needed for AutoML job. */
2430
+ featurizationSettings?: NlpVerticalFeaturizationSettings;
2431
+ /** Execution constraints for AutoMLJob. */
2432
+ limitSettings?: NlpVerticalLimitSettings;
2433
+ /** Validation data inputs. */
2434
+ validationData?: MLTableJobInput;
2435
+ }
2436
+ /** Job execution constraints. */
2437
+ export interface NlpVerticalLimitSettings {
2438
+ /** Maximum Concurrent AutoML iterations. */
2439
+ maxConcurrentTrials?: number;
2440
+ /** Number of AutoML iterations. */
2441
+ maxTrials?: number;
2442
+ /** AutoML job timeout. */
2443
+ timeout?: string;
2444
+ }
1972
2445
  /** Optimization objective. */
1973
2446
  export interface Objective {
1974
2447
  /** [Required] Defines supported metric goals for hyperparameter tuning */
@@ -1991,7 +2464,7 @@ export interface TrialComponent {
1991
2464
  [propertyName: string]: string | null;
1992
2465
  };
1993
2466
  /** Compute Resource configuration for the job. */
1994
- resources?: ResourceConfiguration;
2467
+ resources?: JobResourceConfiguration;
1995
2468
  }
1996
2469
  /** The Private Endpoint Connection resource. */
1997
2470
  export interface PrivateEndpointConnection extends Resource {
@@ -2215,6 +2688,11 @@ export interface ModelVersion extends Resource {
2215
2688
  /** [Required] Additional attributes of the entity. */
2216
2689
  properties: ModelVersionProperties;
2217
2690
  }
2691
+ /** Azure Resource Manager resource envelope. */
2692
+ export interface Schedule extends Resource {
2693
+ /** [Required] Additional attributes of the entity. */
2694
+ properties: ScheduleProperties;
2695
+ }
2218
2696
  /** A Machine Learning compute based on AKS. */
2219
2697
  export interface Aks extends Compute, AKSSchema {
2220
2698
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -2327,6 +2805,8 @@ export interface OnlineEndpointProperties extends EndpointPropertiesBase {
2327
2805
  * NOTE: This property will not be serialized. It can only be populated by the server.
2328
2806
  */
2329
2807
  readonly provisioningState?: EndpointProvisioningState;
2808
+ /** Set to "Enabled" for endpoints that should allow public access when Private Link is enabled. */
2809
+ publicNetworkAccess?: PublicNetworkAccessType;
2330
2810
  /** Percentage of traffic from endpoint to divert to each deployment. Traffic values need to sum to 100. */
2331
2811
  traffic?: {
2332
2812
  [propertyName: string]: number;
@@ -2367,6 +2847,14 @@ export interface OutputPathAssetReference extends AssetReferenceBase {
2367
2847
  /** The path of the file/directory in the job output. */
2368
2848
  path?: string;
2369
2849
  }
2850
+ export interface DeploymentResourceConfiguration extends ResourceConfiguration {
2851
+ }
2852
+ export interface JobResourceConfiguration extends ResourceConfiguration {
2853
+ /** Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. */
2854
+ dockerArgs?: string;
2855
+ /** Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). */
2856
+ shmSize?: string;
2857
+ }
2370
2858
  /** Batch inference settings per deployment. */
2371
2859
  export interface BatchDeploymentProperties extends EndpointDeploymentPropertiesBase {
2372
2860
  /** Compute target for batch inference operation. */
@@ -2404,7 +2892,7 @@ export interface BatchDeploymentProperties extends EndpointDeploymentPropertiesB
2404
2892
  * Indicates compute configuration for the job.
2405
2893
  * If not provided, will default to the defaults defined in ResourceConfiguration.
2406
2894
  */
2407
- resources?: ResourceConfiguration;
2895
+ resources?: DeploymentResourceConfiguration;
2408
2896
  /**
2409
2897
  * Retry Settings for the batch inference operation.
2410
2898
  * If not provided, will default to the defaults defined in BatchRetrySettings.
@@ -2414,6 +2902,8 @@ export interface BatchDeploymentProperties extends EndpointDeploymentPropertiesB
2414
2902
  export interface OnlineDeploymentProperties extends EndpointDeploymentPropertiesBase {
2415
2903
  /** If true, enables Application Insights logging. */
2416
2904
  appInsightsEnabled?: boolean;
2905
+ /** If Enabled, allow egress public network access. If Disabled, this will create secure egress. Default: Enabled. */
2906
+ egressPublicNetworkAccess?: EgressPublicNetworkAccessType;
2417
2907
  /** [Required] The compute type of the endpoint. */
2418
2908
  endpointComputeType: EndpointComputeType;
2419
2909
  /** Compute instance type. */
@@ -2475,6 +2965,8 @@ export interface DatastoreProperties extends ResourceBase {
2475
2965
  }
2476
2966
  /** Base definition for a job. */
2477
2967
  export interface JobBaseProperties extends ResourceBase {
2968
+ /** ARM resource ID of the component resource. */
2969
+ componentId?: string;
2478
2970
  /** ARM resource ID of the compute resource. */
2479
2971
  computeId?: string;
2480
2972
  /** Display name of job. */
@@ -2503,6 +2995,22 @@ export interface JobBaseProperties extends ResourceBase {
2503
2995
  */
2504
2996
  readonly status?: JobStatus;
2505
2997
  }
2998
+ /** Base definition of a schedule */
2999
+ export interface ScheduleProperties extends ResourceBase {
3000
+ /** [Required] Specifies the action of the schedule */
3001
+ action: ScheduleActionBaseUnion;
3002
+ /** Display name of schedule. */
3003
+ displayName?: string;
3004
+ /** Is the schedule enabled? */
3005
+ isEnabled?: boolean;
3006
+ /**
3007
+ * Provisioning state for the schedule.
3008
+ * NOTE: This property will not be serialized. It can only be populated by the server.
3009
+ */
3010
+ readonly provisioningState?: ScheduleProvisioningStatus;
3011
+ /** [Required] Specifies the trigger details */
3012
+ trigger: TriggerBaseUnion;
3013
+ }
2506
3014
  /** Account key datastore credentials configuration. */
2507
3015
  export interface AccountKeyDatastoreCredentials extends DatastoreCredentials {
2508
3016
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -2619,12 +3127,46 @@ export interface TargetUtilizationScaleSettings extends OnlineScaleSettings {
2619
3127
  /** Target CPU usage for the autoscaler. */
2620
3128
  targetUtilizationPercentage?: number;
2621
3129
  }
2622
- export interface CustomModelJobInput extends AssetJobInput, JobInput {
3130
+ export interface EndpointScheduleAction extends ScheduleActionBase {
3131
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3132
+ actionType: "InvokeBatchEndpoint";
3133
+ /**
3134
+ * [Required] Defines Schedule action definition details.
3135
+ * <see href="TBD" />
3136
+ */
3137
+ endpointInvocationDefinition: Record<string, unknown>;
2623
3138
  }
2624
- export interface MLFlowModelJobInput extends AssetJobInput, JobInput {
3139
+ export interface JobScheduleAction extends ScheduleActionBase {
3140
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3141
+ actionType: "CreateJob";
3142
+ /** [Required] Defines Schedule action definition details. */
3143
+ jobDefinition: JobBasePropertiesUnion;
3144
+ }
3145
+ export interface RecurrenceTrigger extends TriggerBase {
3146
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3147
+ triggerType: "Recurrence";
3148
+ /** [Required] The frequency to trigger schedule. */
3149
+ frequency: RecurrenceFrequency;
3150
+ /** [Required] Specifies schedule interval in conjunction with frequency */
3151
+ interval: number;
3152
+ /** The recurrence schedule. */
3153
+ schedule?: RecurrenceSchedule;
3154
+ }
3155
+ export interface CronTrigger extends TriggerBase {
3156
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3157
+ triggerType: "Cron";
3158
+ /**
3159
+ * [Required] Specifies cron expression of schedule.
3160
+ * The expression should follow NCronTab format.
3161
+ */
3162
+ expression: string;
2625
3163
  }
2626
3164
  export interface MLTableJobInput extends AssetJobInput, JobInput {
2627
3165
  }
3166
+ export interface CustomModelJobInput extends AssetJobInput, JobInput {
3167
+ }
3168
+ export interface MLFlowModelJobInput extends AssetJobInput, JobInput {
3169
+ }
2628
3170
  export interface TritonModelJobInput extends AssetJobInput, JobInput {
2629
3171
  }
2630
3172
  export interface UriFileJobInput extends AssetJobInput, JobInput {
@@ -2643,6 +3185,158 @@ export interface UriFileJobOutput extends AssetJobOutput, JobOutput {
2643
3185
  }
2644
3186
  export interface UriFolderJobOutput extends AssetJobOutput, JobOutput {
2645
3187
  }
3188
+ /** Forecast horizon determined automatically by system. */
3189
+ export interface AutoForecastHorizon extends ForecastHorizon {
3190
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3191
+ mode: "Auto";
3192
+ }
3193
+ /** The desired maximum forecast horizon in units of time-series frequency. */
3194
+ export interface CustomForecastHorizon extends ForecastHorizon {
3195
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3196
+ mode: "Custom";
3197
+ /** [Required] Forecast horizon value. */
3198
+ value: number;
3199
+ }
3200
+ /** Classification task in AutoML Table vertical. */
3201
+ export interface Classification extends TableVertical, AutoMLVertical {
3202
+ /** Positive label for binary metrics calculation. */
3203
+ positiveLabel?: string;
3204
+ /** Primary metric for the task. */
3205
+ primaryMetric?: ClassificationPrimaryMetrics;
3206
+ /** Inputs for training phase for an AutoML Job. */
3207
+ trainingSettings?: ClassificationTrainingSettings;
3208
+ }
3209
+ /** Forecasting task in AutoML Table vertical. */
3210
+ export interface Forecasting extends TableVertical, AutoMLVertical {
3211
+ /** Forecasting task specific inputs. */
3212
+ forecastingSettings?: ForecastingSettings;
3213
+ /** Primary metric for forecasting task. */
3214
+ primaryMetric?: ForecastingPrimaryMetrics;
3215
+ /** Inputs for training phase for an AutoML Job. */
3216
+ trainingSettings?: ForecastingTrainingSettings;
3217
+ }
3218
+ /**
3219
+ * Image Classification. Multi-class image classification is used when an image is classified with only a single label
3220
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'.
3221
+ */
3222
+ export interface ImageClassification extends ImageClassificationBase, AutoMLVertical {
3223
+ /** Primary metric to optimize for this task. */
3224
+ primaryMetric?: ClassificationPrimaryMetrics;
3225
+ }
3226
+ /**
3227
+ * Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
3228
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.
3229
+ */
3230
+ export interface ImageClassificationMultilabel extends ImageClassificationBase, AutoMLVertical {
3231
+ /** Primary metric to optimize for this task. */
3232
+ primaryMetric?: ClassificationMultilabelPrimaryMetrics;
3233
+ }
3234
+ /**
3235
+ * Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
3236
+ * drawing a polygon around each object in the image.
3237
+ */
3238
+ export interface ImageInstanceSegmentation extends ImageObjectDetectionBase, AutoMLVertical {
3239
+ /** Primary metric to optimize for this task. */
3240
+ primaryMetric?: InstanceSegmentationPrimaryMetrics;
3241
+ }
3242
+ /**
3243
+ * Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
3244
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
3245
+ */
3246
+ export interface ImageObjectDetection extends ImageObjectDetectionBase, AutoMLVertical {
3247
+ /** Primary metric to optimize for this task. */
3248
+ primaryMetric?: ObjectDetectionPrimaryMetrics;
3249
+ }
3250
+ /** Regression task in AutoML Table vertical. */
3251
+ export interface Regression extends TableVertical, AutoMLVertical {
3252
+ /** Primary metric for regression task. */
3253
+ primaryMetric?: RegressionPrimaryMetrics;
3254
+ /** Inputs for training phase for an AutoML Job. */
3255
+ trainingSettings?: RegressionTrainingSettings;
3256
+ }
3257
+ /**
3258
+ * Text Classification task in AutoML NLP vertical.
3259
+ * NLP - Natural Language Processing.
3260
+ */
3261
+ export interface TextClassification extends NlpVertical, AutoMLVertical {
3262
+ /** Primary metric for Text-Classification task. */
3263
+ primaryMetric?: ClassificationPrimaryMetrics;
3264
+ }
3265
+ /**
3266
+ * Text Classification Multilabel task in AutoML NLP vertical.
3267
+ * NLP - Natural Language Processing.
3268
+ */
3269
+ export interface TextClassificationMultilabel extends NlpVertical, AutoMLVertical {
3270
+ /**
3271
+ * Primary metric for Text-Classification-Multilabel task.
3272
+ * Currently only Accuracy is supported as primary metric, hence user need not set it explicitly.
3273
+ * NOTE: This property will not be serialized. It can only be populated by the server.
3274
+ */
3275
+ readonly primaryMetric?: ClassificationMultilabelPrimaryMetrics;
3276
+ }
3277
+ /**
3278
+ * Text-NER task in AutoML NLP vertical.
3279
+ * NER - Named Entity Recognition.
3280
+ * NLP - Natural Language Processing.
3281
+ */
3282
+ export interface TextNer extends NlpVertical, AutoMLVertical {
3283
+ /**
3284
+ * Primary metric for Text-NER task.
3285
+ * Only 'Accuracy' is supported for Text-NER, so user need not set this explicitly.
3286
+ * NOTE: This property will not be serialized. It can only be populated by the server.
3287
+ */
3288
+ readonly primaryMetric?: ClassificationPrimaryMetrics;
3289
+ }
3290
+ /** Literal input type. */
3291
+ export interface LiteralJobInput extends JobInput {
3292
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3293
+ jobInputType: "literal";
3294
+ /** [Required] Literal value for the input. */
3295
+ value: string;
3296
+ }
3297
+ /** N-Cross validations determined automatically. */
3298
+ export interface AutoNCrossValidations extends NCrossValidations {
3299
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3300
+ mode: "Auto";
3301
+ }
3302
+ /** N-Cross validations are specified by user. */
3303
+ export interface CustomNCrossValidations extends NCrossValidations {
3304
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3305
+ mode: "Custom";
3306
+ /** [Required] N-Cross validations value. */
3307
+ value: number;
3308
+ }
3309
+ export interface AutoSeasonality extends Seasonality {
3310
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3311
+ mode: "Auto";
3312
+ }
3313
+ export interface CustomSeasonality extends Seasonality {
3314
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3315
+ mode: "Custom";
3316
+ /** [Required] Seasonality value. */
3317
+ value: number;
3318
+ }
3319
+ export interface AutoTargetLags extends TargetLags {
3320
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3321
+ mode: "Auto";
3322
+ }
3323
+ export interface CustomTargetLags extends TargetLags {
3324
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3325
+ mode: "Custom";
3326
+ /** [Required] Set target lags values. */
3327
+ values: number[];
3328
+ }
3329
+ /** Target lags rolling window determined automatically. */
3330
+ export interface AutoTargetRollingWindowSize extends TargetRollingWindowSize {
3331
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3332
+ mode: "Auto";
3333
+ }
3334
+ export interface CustomTargetRollingWindowSize extends TargetRollingWindowSize {
3335
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3336
+ mode: "Custom";
3337
+ /** [Required] TargetRollingWindowSize value. */
3338
+ value: number;
3339
+ }
2646
3340
  /** Defines an early termination policy based on slack criteria, and a frequency and delay interval for evaluation */
2647
3341
  export interface BanditPolicy extends EarlyTerminationPolicy {
2648
3342
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -2683,6 +3377,50 @@ export interface RandomSamplingAlgorithm extends SamplingAlgorithm {
2683
3377
  /** An optional integer to use as the seed for random number generation */
2684
3378
  seed?: number;
2685
3379
  }
3380
+ /** Classification Training related configuration. */
3381
+ export interface ClassificationTrainingSettings extends TrainingSettings {
3382
+ /** Allowed models for classification task. */
3383
+ allowedTrainingAlgorithms?: ClassificationModels[];
3384
+ /** Blocked models for classification task. */
3385
+ blockedTrainingAlgorithms?: ClassificationModels[];
3386
+ }
3387
+ /** Forecasting Training related configuration. */
3388
+ export interface ForecastingTrainingSettings extends TrainingSettings {
3389
+ /** Allowed models for forecasting task. */
3390
+ allowedTrainingAlgorithms?: ForecastingModels[];
3391
+ /** Blocked models for forecasting task. */
3392
+ blockedTrainingAlgorithms?: ForecastingModels[];
3393
+ }
3394
+ /** Regression Training related configuration. */
3395
+ export interface RegressionTrainingSettings extends TrainingSettings {
3396
+ /** Allowed models for regression task. */
3397
+ allowedTrainingAlgorithms?: RegressionModels[];
3398
+ /** Blocked models for regression task. */
3399
+ blockedTrainingAlgorithms?: RegressionModels[];
3400
+ }
3401
+ /** Featurization Configuration. */
3402
+ export interface TableVerticalFeaturizationSettings extends FeaturizationSettings {
3403
+ /** These transformers shall not be used in featurization. */
3404
+ blockedTransformers?: BlockedTransformers[];
3405
+ /** Dictionary of column name and its type (int, float, string, datetime etc). */
3406
+ columnNameAndTypes?: {
3407
+ [propertyName: string]: string | null;
3408
+ };
3409
+ /** Determines whether to use Dnn based featurizers for data featurization. */
3410
+ enableDnnFeaturization?: boolean;
3411
+ /**
3412
+ * Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
3413
+ * If 'Off' is selected then no featurization is done.
3414
+ * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
3415
+ */
3416
+ mode?: FeaturizationMode;
3417
+ /** User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. */
3418
+ transformerParams?: {
3419
+ [propertyName: string]: ColumnTransformer[] | null;
3420
+ };
3421
+ }
3422
+ export interface NlpVerticalFeaturizationSettings extends FeaturizationSettings {
3423
+ }
2686
3424
  /** MPI distribution configuration. */
2687
3425
  export interface Mpi extends DistributionConfiguration {
2688
3426
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -2706,13 +3444,6 @@ export interface TensorFlow extends DistributionConfiguration {
2706
3444
  /** Number of workers. If not specified, will default to the instance count. */
2707
3445
  workerCount?: number;
2708
3446
  }
2709
- /** Literal input type. */
2710
- export interface LiteralJobInput extends JobInput {
2711
- /** Polymorphic discriminator, which specifies the different types this object can be */
2712
- jobInputType: "literal";
2713
- /** [Required] Literal value for the input. */
2714
- value: string;
2715
- }
2716
3447
  /** Command Job limit class. */
2717
3448
  export interface CommandJobLimits extends JobLimits {
2718
3449
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -2729,6 +3460,213 @@ export interface SweepJobLimits extends JobLimits {
2729
3460
  /** Sweep Job Trial timeout value. */
2730
3461
  trialTimeout?: string;
2731
3462
  }
3463
+ /**
3464
+ * Settings used for training the model.
3465
+ * For more information on the available settings please visit the official documentation:
3466
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3467
+ */
3468
+ export interface ImageModelSettingsClassification extends ImageModelSettings {
3469
+ /** Image crop size that is input to the neural network for the training dataset. Must be a positive integer. */
3470
+ trainingCropSize?: number;
3471
+ /** Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. */
3472
+ validationCropSize?: number;
3473
+ /** Image size to which to resize before cropping for validation dataset. Must be a positive integer. */
3474
+ validationResizeSize?: number;
3475
+ /**
3476
+ * Weighted loss. The accepted values are 0 for no weighted loss.
3477
+ * 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
3478
+ */
3479
+ weightedLoss?: number;
3480
+ }
3481
+ /**
3482
+ * Settings used for training the model.
3483
+ * For more information on the available settings please visit the official documentation:
3484
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3485
+ */
3486
+ export interface ImageModelSettingsObjectDetection extends ImageModelSettings {
3487
+ /**
3488
+ * Maximum number of detections per image, for all classes. Must be a positive integer.
3489
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3490
+ */
3491
+ boxDetectionsPerImage?: number;
3492
+ /**
3493
+ * During inference, only return proposals with a classification score greater than
3494
+ * BoxScoreThreshold. Must be a float in the range[0, 1].
3495
+ */
3496
+ boxScoreThreshold?: number;
3497
+ /**
3498
+ * Image size for train and validation. Must be a positive integer.
3499
+ * Note: The training run may get into CUDA OOM if the size is too big.
3500
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3501
+ */
3502
+ imageSize?: number;
3503
+ /**
3504
+ * Maximum size of the image to be rescaled before feeding it to the backbone.
3505
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
3506
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3507
+ */
3508
+ maxSize?: number;
3509
+ /**
3510
+ * Minimum size of the image to be rescaled before feeding it to the backbone.
3511
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
3512
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3513
+ */
3514
+ minSize?: number;
3515
+ /**
3516
+ * Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
3517
+ * Note: training run may get into CUDA OOM if the model size is too big.
3518
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3519
+ */
3520
+ modelSize?: ModelSize;
3521
+ /**
3522
+ * Enable multi-scale image by varying image size by +/- 50%.
3523
+ * Note: training run may get into CUDA OOM if no sufficient GPU memory.
3524
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3525
+ */
3526
+ multiScale?: boolean;
3527
+ /** IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. */
3528
+ nmsIouThreshold?: number;
3529
+ /**
3530
+ * The grid size to use for tiling each image. Note: TileGridSize must not be
3531
+ * None to enable small object detection logic. A string containing two integers in mxn format.
3532
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3533
+ */
3534
+ tileGridSize?: string;
3535
+ /**
3536
+ * Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
3537
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3538
+ */
3539
+ tileOverlapRatio?: number;
3540
+ /**
3541
+ * The IOU threshold to use to perform NMS while merging predictions from tiles and image.
3542
+ * Used in validation/ inference. Must be float in the range [0, 1].
3543
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3544
+ */
3545
+ tilePredictionsNmsThreshold?: number;
3546
+ /** IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. */
3547
+ validationIouThreshold?: number;
3548
+ /** Metric computation method to use for validation metrics. */
3549
+ validationMetricType?: ValidationMetricType;
3550
+ }
3551
+ /**
3552
+ * Distribution expressions to sweep over values of model settings.
3553
+ * <example>
3554
+ * Some examples are:
3555
+ * <code>
3556
+ * ModelName = "choice('seresnext', 'resnest50')";
3557
+ * LearningRate = "uniform(0.001, 0.01)";
3558
+ * LayersToFreeze = "choice(0, 2)";
3559
+ * </code></example>
3560
+ * For more details on how to compose distribution expressions please check the documentation:
3561
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
3562
+ * For more information on the available settings please visit the official documentation:
3563
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3564
+ */
3565
+ export interface ImageModelDistributionSettingsClassification extends ImageModelDistributionSettings {
3566
+ /** Image crop size that is input to the neural network for the training dataset. Must be a positive integer. */
3567
+ trainingCropSize?: string;
3568
+ /** Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. */
3569
+ validationCropSize?: string;
3570
+ /** Image size to which to resize before cropping for validation dataset. Must be a positive integer. */
3571
+ validationResizeSize?: string;
3572
+ /**
3573
+ * Weighted loss. The accepted values are 0 for no weighted loss.
3574
+ * 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
3575
+ */
3576
+ weightedLoss?: string;
3577
+ }
3578
+ /**
3579
+ * Distribution expressions to sweep over values of model settings.
3580
+ * <example>
3581
+ * Some examples are:
3582
+ * <code>
3583
+ * ModelName = "choice('seresnext', 'resnest50')";
3584
+ * LearningRate = "uniform(0.001, 0.01)";
3585
+ * LayersToFreeze = "choice(0, 2)";
3586
+ * </code></example>
3587
+ * For more details on how to compose distribution expressions please check the documentation:
3588
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
3589
+ * For more information on the available settings please visit the official documentation:
3590
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3591
+ */
3592
+ export interface ImageModelDistributionSettingsObjectDetection extends ImageModelDistributionSettings {
3593
+ /**
3594
+ * Maximum number of detections per image, for all classes. Must be a positive integer.
3595
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3596
+ */
3597
+ boxDetectionsPerImage?: string;
3598
+ /**
3599
+ * During inference, only return proposals with a classification score greater than
3600
+ * BoxScoreThreshold. Must be a float in the range[0, 1].
3601
+ */
3602
+ boxScoreThreshold?: string;
3603
+ /**
3604
+ * Image size for train and validation. Must be a positive integer.
3605
+ * Note: The training run may get into CUDA OOM if the size is too big.
3606
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3607
+ */
3608
+ imageSize?: string;
3609
+ /**
3610
+ * Maximum size of the image to be rescaled before feeding it to the backbone.
3611
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
3612
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3613
+ */
3614
+ maxSize?: string;
3615
+ /**
3616
+ * Minimum size of the image to be rescaled before feeding it to the backbone.
3617
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
3618
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3619
+ */
3620
+ minSize?: string;
3621
+ /**
3622
+ * Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
3623
+ * Note: training run may get into CUDA OOM if the model size is too big.
3624
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3625
+ */
3626
+ modelSize?: string;
3627
+ /**
3628
+ * Enable multi-scale image by varying image size by +/- 50%.
3629
+ * Note: training run may get into CUDA OOM if no sufficient GPU memory.
3630
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3631
+ */
3632
+ multiScale?: string;
3633
+ /** IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. */
3634
+ nmsIouThreshold?: string;
3635
+ /**
3636
+ * The grid size to use for tiling each image. Note: TileGridSize must not be
3637
+ * None to enable small object detection logic. A string containing two integers in mxn format.
3638
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3639
+ */
3640
+ tileGridSize?: string;
3641
+ /**
3642
+ * Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
3643
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3644
+ */
3645
+ tileOverlapRatio?: string;
3646
+ /**
3647
+ * The IOU threshold to use to perform NMS while merging predictions from tiles and image.
3648
+ * Used in validation/ inference. Must be float in the range [0, 1].
3649
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3650
+ * NMS: Non-maximum suppression
3651
+ */
3652
+ tilePredictionsNmsThreshold?: string;
3653
+ /** IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. */
3654
+ validationIouThreshold?: string;
3655
+ /** Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. */
3656
+ validationMetricType?: string;
3657
+ }
3658
+ export interface ImageClassificationBase extends ImageVertical {
3659
+ /** Settings used for training the model. */
3660
+ modelSettings?: ImageModelSettingsClassification;
3661
+ /** Search space for sampling different combinations of models and their hyperparameters. */
3662
+ searchSpace?: ImageModelDistributionSettingsClassification[];
3663
+ }
3664
+ export interface ImageObjectDetectionBase extends ImageVertical {
3665
+ /** Settings used for training the model. */
3666
+ modelSettings?: ImageModelSettingsObjectDetection;
3667
+ /** Search space for sampling different combinations of models and their hyperparameters. */
3668
+ searchSpace?: ImageModelDistributionSettingsObjectDetection[];
3669
+ }
2732
3670
  export interface BatchEndpoint extends TrackedResource {
2733
3671
  /** Managed service identity (system assigned and/or user assigned identities) */
2734
3672
  identity?: ManagedServiceIdentity;
@@ -2817,11 +3755,13 @@ export interface ComponentVersionProperties extends AssetBase {
2817
3755
  export interface DataVersionBaseProperties extends AssetBase {
2818
3756
  /** [Required] Specifies the type of data. */
2819
3757
  dataType: DataType;
2820
- /** [Required] Uri of the data. Usage/meaning depends on Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20220501.Assets.DataVersionBase.DataType */
3758
+ /** [Required] Uri of the data. Usage/meaning depends on Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType */
2821
3759
  dataUri: string;
2822
3760
  }
2823
3761
  /** Environment version details. */
2824
3762
  export interface EnvironmentVersionProperties extends AssetBase {
3763
+ /** Defines if image needs to be rebuilt based on base image changes. */
3764
+ autoRebuild?: AutoRebuildSetting;
2825
3765
  /** Configuration settings for Docker build context. */
2826
3766
  build?: BuildContext;
2827
3767
  /**
@@ -2912,17 +3852,43 @@ export interface AzureFileDatastore extends DatastoreProperties {
2912
3852
  /** Indicates which identity to use to authenticate service data access to customer's storage. */
2913
3853
  serviceDataAccessAuthIdentity?: ServiceDataAccessAuthIdentity;
2914
3854
  }
2915
- /** Command job definition. */
2916
- export interface CommandJob extends JobBaseProperties {
3855
+ /**
3856
+ * AutoMLJob class.
3857
+ * Use this class for executing AutoML tasks like Classification/Regression etc.
3858
+ * See TaskType enum for all the tasks supported.
3859
+ */
3860
+ export interface AutoMLJob extends JobBaseProperties {
2917
3861
  /** Polymorphic discriminator, which specifies the different types this object can be */
2918
- jobType: "Command";
2919
- /** ARM resource ID of the code asset. */
2920
- codeId?: string;
2921
- /** [Required] The command to execute on startup of the job. eg. "python train.py" */
2922
- command: string;
2923
- /** Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. */
2924
- distribution?: DistributionConfigurationUnion;
2925
- /** [Required] The ARM resource ID of the Environment specification for the job. */
3862
+ jobType: "AutoML";
3863
+ /**
3864
+ * The ARM resource ID of the Environment specification for the job.
3865
+ * This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job.
3866
+ */
3867
+ environmentId?: string;
3868
+ /** Environment variables included in the job. */
3869
+ environmentVariables?: {
3870
+ [propertyName: string]: string | null;
3871
+ };
3872
+ /** Mapping of output data bindings used in the job. */
3873
+ outputs?: {
3874
+ [propertyName: string]: JobOutputUnion | null;
3875
+ };
3876
+ /** Compute Resource configuration for the job. */
3877
+ resources?: JobResourceConfiguration;
3878
+ /** [Required] This represents scenario which can be one of Tables/NLP/Image */
3879
+ taskDetails: AutoMLVerticalUnion;
3880
+ }
3881
+ /** Command job definition. */
3882
+ export interface CommandJob extends JobBaseProperties {
3883
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3884
+ jobType: "Command";
3885
+ /** ARM resource ID of the code asset. */
3886
+ codeId?: string;
3887
+ /** [Required] The command to execute on startup of the job. eg. "python train.py" */
3888
+ command: string;
3889
+ /** Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. */
3890
+ distribution?: DistributionConfigurationUnion;
3891
+ /** [Required] The ARM resource ID of the Environment specification for the job. */
2926
3892
  environmentId: string;
2927
3893
  /** Environment variables included in the job. */
2928
3894
  environmentVariables?: {
@@ -2944,7 +3910,7 @@ export interface CommandJob extends JobBaseProperties {
2944
3910
  */
2945
3911
  readonly parameters?: Record<string, unknown>;
2946
3912
  /** Compute Resource configuration for the job. */
2947
- resources?: ResourceConfiguration;
3913
+ resources?: JobResourceConfiguration;
2948
3914
  }
2949
3915
  /** Pipeline Job definition: defines generic to MFE attributes. */
2950
3916
  export interface PipelineJob extends JobBaseProperties {
@@ -2964,6 +3930,8 @@ export interface PipelineJob extends JobBaseProperties {
2964
3930
  };
2965
3931
  /** Pipeline settings, for things like ContinueRunOnStepFailure etc. */
2966
3932
  settings?: Record<string, unknown>;
3933
+ /** ARM resource ID of source job. */
3934
+ sourceJobId?: string;
2967
3935
  }
2968
3936
  /** Sweep job definition. */
2969
3937
  export interface SweepJob extends JobBaseProperties {
@@ -3149,6 +4117,22 @@ export interface OnlineDeploymentsCreateOrUpdateHeaders {
3149
4117
  /** URI to poll for asynchronous operation status. */
3150
4118
  azureAsyncOperation?: string;
3151
4119
  }
4120
+ /** Defines headers for Schedules_delete operation. */
4121
+ export interface SchedulesDeleteHeaders {
4122
+ /** Timeout for the client to use when polling the asynchronous operation. */
4123
+ xMsAsyncOperationTimeout?: string;
4124
+ /** URI to poll for asynchronous operation result. */
4125
+ location?: string;
4126
+ /** Duration the client should wait between requests, in seconds. */
4127
+ retryAfter?: number;
4128
+ }
4129
+ /** Defines headers for Schedules_createOrUpdate operation. */
4130
+ export interface SchedulesCreateOrUpdateHeaders {
4131
+ /** Timeout for the client to use when polling the asynchronous operation. */
4132
+ xMsAsyncOperationTimeout?: string;
4133
+ /** URI to poll for asynchronous operation status. */
4134
+ azureAsyncOperation?: string;
4135
+ }
3152
4136
  /** Known values of {@link ProvisioningState} that the service accepts. */
3153
4137
  export declare enum KnownProvisioningState {
3154
4138
  /** Unknown */
@@ -3823,6 +4807,22 @@ export declare enum KnownSecretsType {
3823
4807
  * **ServicePrincipal**
3824
4808
  */
3825
4809
  export declare type SecretsType = string;
4810
+ /** Known values of {@link AutoRebuildSetting} that the service accepts. */
4811
+ export declare enum KnownAutoRebuildSetting {
4812
+ /** Disabled */
4813
+ Disabled = "Disabled",
4814
+ /** OnBaseImageUpdate */
4815
+ OnBaseImageUpdate = "OnBaseImageUpdate"
4816
+ }
4817
+ /**
4818
+ * Defines values for AutoRebuildSetting. \
4819
+ * {@link KnownAutoRebuildSetting} can be used interchangeably with AutoRebuildSetting,
4820
+ * this enum contains the known values that the service supports.
4821
+ * ### Known values supported by the service
4822
+ * **Disabled** \
4823
+ * **OnBaseImageUpdate**
4824
+ */
4825
+ export declare type AutoRebuildSetting = string;
3826
4826
  /** Known values of {@link EnvironmentType} that the service accepts. */
3827
4827
  export declare enum KnownEnvironmentType {
3828
4828
  /** Curated */
@@ -3876,6 +4876,8 @@ export declare enum KnownIdentityConfigurationType {
3876
4876
  export declare type IdentityConfigurationType = string;
3877
4877
  /** Known values of {@link JobType} that the service accepts. */
3878
4878
  export declare enum KnownJobType {
4879
+ /** AutoML */
4880
+ AutoML = "AutoML",
3879
4881
  /** Command */
3880
4882
  Command = "Command",
3881
4883
  /** Sweep */
@@ -3888,6 +4890,7 @@ export declare enum KnownJobType {
3888
4890
  * {@link KnownJobType} can be used interchangeably with JobType,
3889
4891
  * this enum contains the known values that the service supports.
3890
4892
  * ### Known values supported by the service
4893
+ * **AutoML** \
3891
4894
  * **Command** \
3892
4895
  * **Sweep** \
3893
4896
  * **Pipeline**
@@ -3990,6 +4993,38 @@ export declare enum KnownOrderString {
3990
4993
  * **UpdatedAtAsc**
3991
4994
  */
3992
4995
  export declare type OrderString = string;
4996
+ /** Known values of {@link PublicNetworkAccessType} that the service accepts. */
4997
+ export declare enum KnownPublicNetworkAccessType {
4998
+ /** Enabled */
4999
+ Enabled = "Enabled",
5000
+ /** Disabled */
5001
+ Disabled = "Disabled"
5002
+ }
5003
+ /**
5004
+ * Defines values for PublicNetworkAccessType. \
5005
+ * {@link KnownPublicNetworkAccessType} can be used interchangeably with PublicNetworkAccessType,
5006
+ * this enum contains the known values that the service supports.
5007
+ * ### Known values supported by the service
5008
+ * **Enabled** \
5009
+ * **Disabled**
5010
+ */
5011
+ export declare type PublicNetworkAccessType = string;
5012
+ /** Known values of {@link EgressPublicNetworkAccessType} that the service accepts. */
5013
+ export declare enum KnownEgressPublicNetworkAccessType {
5014
+ /** Enabled */
5015
+ Enabled = "Enabled",
5016
+ /** Disabled */
5017
+ Disabled = "Disabled"
5018
+ }
5019
+ /**
5020
+ * Defines values for EgressPublicNetworkAccessType. \
5021
+ * {@link KnownEgressPublicNetworkAccessType} can be used interchangeably with EgressPublicNetworkAccessType,
5022
+ * this enum contains the known values that the service supports.
5023
+ * ### Known values supported by the service
5024
+ * **Enabled** \
5025
+ * **Disabled**
5026
+ */
5027
+ export declare type EgressPublicNetworkAccessType = string;
3993
5028
  /** Known values of {@link ScaleType} that the service accepts. */
3994
5029
  export declare enum KnownScaleType {
3995
5030
  /** Default */
@@ -4057,6 +5092,85 @@ export declare enum KnownKeyType {
4057
5092
  * **Secondary**
4058
5093
  */
4059
5094
  export declare type KeyType = string;
5095
+ /** Known values of {@link ScheduleListViewType} that the service accepts. */
5096
+ export declare enum KnownScheduleListViewType {
5097
+ /** EnabledOnly */
5098
+ EnabledOnly = "EnabledOnly",
5099
+ /** DisabledOnly */
5100
+ DisabledOnly = "DisabledOnly",
5101
+ /** All */
5102
+ All = "All"
5103
+ }
5104
+ /**
5105
+ * Defines values for ScheduleListViewType. \
5106
+ * {@link KnownScheduleListViewType} can be used interchangeably with ScheduleListViewType,
5107
+ * this enum contains the known values that the service supports.
5108
+ * ### Known values supported by the service
5109
+ * **EnabledOnly** \
5110
+ * **DisabledOnly** \
5111
+ * **All**
5112
+ */
5113
+ export declare type ScheduleListViewType = string;
5114
+ /** Known values of {@link ScheduleActionType} that the service accepts. */
5115
+ export declare enum KnownScheduleActionType {
5116
+ /** CreateJob */
5117
+ CreateJob = "CreateJob",
5118
+ /** InvokeBatchEndpoint */
5119
+ InvokeBatchEndpoint = "InvokeBatchEndpoint"
5120
+ }
5121
+ /**
5122
+ * Defines values for ScheduleActionType. \
5123
+ * {@link KnownScheduleActionType} can be used interchangeably with ScheduleActionType,
5124
+ * this enum contains the known values that the service supports.
5125
+ * ### Known values supported by the service
5126
+ * **CreateJob** \
5127
+ * **InvokeBatchEndpoint**
5128
+ */
5129
+ export declare type ScheduleActionType = string;
5130
+ /** Known values of {@link ScheduleProvisioningStatus} that the service accepts. */
5131
+ export declare enum KnownScheduleProvisioningStatus {
5132
+ /** Creating */
5133
+ Creating = "Creating",
5134
+ /** Updating */
5135
+ Updating = "Updating",
5136
+ /** Deleting */
5137
+ Deleting = "Deleting",
5138
+ /** Succeeded */
5139
+ Succeeded = "Succeeded",
5140
+ /** Failed */
5141
+ Failed = "Failed",
5142
+ /** Canceled */
5143
+ Canceled = "Canceled"
5144
+ }
5145
+ /**
5146
+ * Defines values for ScheduleProvisioningStatus. \
5147
+ * {@link KnownScheduleProvisioningStatus} can be used interchangeably with ScheduleProvisioningStatus,
5148
+ * this enum contains the known values that the service supports.
5149
+ * ### Known values supported by the service
5150
+ * **Creating** \
5151
+ * **Updating** \
5152
+ * **Deleting** \
5153
+ * **Succeeded** \
5154
+ * **Failed** \
5155
+ * **Canceled**
5156
+ */
5157
+ export declare type ScheduleProvisioningStatus = string;
5158
+ /** Known values of {@link TriggerType} that the service accepts. */
5159
+ export declare enum KnownTriggerType {
5160
+ /** Recurrence */
5161
+ Recurrence = "Recurrence",
5162
+ /** Cron */
5163
+ Cron = "Cron"
5164
+ }
5165
+ /**
5166
+ * Defines values for TriggerType. \
5167
+ * {@link KnownTriggerType} can be used interchangeably with TriggerType,
5168
+ * this enum contains the known values that the service supports.
5169
+ * ### Known values supported by the service
5170
+ * **Recurrence** \
5171
+ * **Cron**
5172
+ */
5173
+ export declare type TriggerType = string;
4060
5174
  /** Known values of {@link ClusterPurpose} that the service accepts. */
4061
5175
  export declare enum KnownClusterPurpose {
4062
5176
  /** FastProd */
@@ -4378,6 +5492,22 @@ export declare enum KnownProvisioningStatus {
4378
5492
  * **Failed**
4379
5493
  */
4380
5494
  export declare type ProvisioningStatus = string;
5495
+ /** Known values of {@link ScheduleStatus} that the service accepts. */
5496
+ export declare enum KnownScheduleStatus {
5497
+ /** Enabled */
5498
+ Enabled = "Enabled",
5499
+ /** Disabled */
5500
+ Disabled = "Disabled"
5501
+ }
5502
+ /**
5503
+ * Defines values for ScheduleStatus. \
5504
+ * {@link KnownScheduleStatus} can be used interchangeably with ScheduleStatus,
5505
+ * this enum contains the known values that the service supports.
5506
+ * ### Known values supported by the service
5507
+ * **Enabled** \
5508
+ * **Disabled**
5509
+ */
5510
+ export declare type ScheduleStatus = string;
4381
5511
  /** Known values of {@link ComputePowerAction} that the service accepts. */
4382
5512
  export declare enum KnownComputePowerAction {
4383
5513
  /** Start */
@@ -4394,6 +5524,62 @@ export declare enum KnownComputePowerAction {
4394
5524
  * **Stop**
4395
5525
  */
4396
5526
  export declare type ComputePowerAction = string;
5527
+ /** Known values of {@link RecurrenceFrequency} that the service accepts. */
5528
+ export declare enum KnownRecurrenceFrequency {
5529
+ /** Minute frequency */
5530
+ Minute = "Minute",
5531
+ /** Hour frequency */
5532
+ Hour = "Hour",
5533
+ /** Day frequency */
5534
+ Day = "Day",
5535
+ /** Week frequency */
5536
+ Week = "Week",
5537
+ /** Month frequency */
5538
+ Month = "Month"
5539
+ }
5540
+ /**
5541
+ * Defines values for RecurrenceFrequency. \
5542
+ * {@link KnownRecurrenceFrequency} can be used interchangeably with RecurrenceFrequency,
5543
+ * this enum contains the known values that the service supports.
5544
+ * ### Known values supported by the service
5545
+ * **Minute**: Minute frequency \
5546
+ * **Hour**: Hour frequency \
5547
+ * **Day**: Day frequency \
5548
+ * **Week**: Week frequency \
5549
+ * **Month**: Month frequency
5550
+ */
5551
+ export declare type RecurrenceFrequency = string;
5552
+ /** Known values of {@link WeekDay} that the service accepts. */
5553
+ export declare enum KnownWeekDay {
5554
+ /** Monday weekday */
5555
+ Monday = "Monday",
5556
+ /** Tuesday weekday */
5557
+ Tuesday = "Tuesday",
5558
+ /** Wednesday weekday */
5559
+ Wednesday = "Wednesday",
5560
+ /** Thursday weekday */
5561
+ Thursday = "Thursday",
5562
+ /** Friday weekday */
5563
+ Friday = "Friday",
5564
+ /** Saturday weekday */
5565
+ Saturday = "Saturday",
5566
+ /** Sunday weekday */
5567
+ Sunday = "Sunday"
5568
+ }
5569
+ /**
5570
+ * Defines values for WeekDay. \
5571
+ * {@link KnownWeekDay} can be used interchangeably with WeekDay,
5572
+ * this enum contains the known values that the service supports.
5573
+ * ### Known values supported by the service
5574
+ * **Monday**: Monday weekday \
5575
+ * **Tuesday**: Tuesday weekday \
5576
+ * **Wednesday**: Wednesday weekday \
5577
+ * **Thursday**: Thursday weekday \
5578
+ * **Friday**: Friday weekday \
5579
+ * **Saturday**: Saturday weekday \
5580
+ * **Sunday**: Sunday weekday
5581
+ */
5582
+ export declare type WeekDay = string;
4397
5583
  /** Known values of {@link ScheduleProvisioningState} that the service accepts. */
4398
5584
  export declare enum KnownScheduleProvisioningState {
4399
5585
  /** Completed */
@@ -4413,22 +5599,6 @@ export declare enum KnownScheduleProvisioningState {
4413
5599
  * **Failed**
4414
5600
  */
4415
5601
  export declare type ScheduleProvisioningState = string;
4416
- /** Known values of {@link ScheduleStatus} that the service accepts. */
4417
- export declare enum KnownScheduleStatus {
4418
- /** Enabled */
4419
- Enabled = "Enabled",
4420
- /** Disabled */
4421
- Disabled = "Disabled"
4422
- }
4423
- /**
4424
- * Defines values for ScheduleStatus. \
4425
- * {@link KnownScheduleStatus} can be used interchangeably with ScheduleStatus,
4426
- * this enum contains the known values that the service supports.
4427
- * ### Known values supported by the service
4428
- * **Enabled** \
4429
- * **Disabled**
4430
- */
4431
- export declare type ScheduleStatus = string;
4432
5602
  /** Known values of {@link Autosave} that the service accepts. */
4433
5603
  export declare enum KnownAutosave {
4434
5604
  /** None */
@@ -4606,6 +5776,245 @@ export declare enum KnownOutputDeliveryMode {
4606
5776
  * **Upload**
4607
5777
  */
4608
5778
  export declare type OutputDeliveryMode = string;
5779
+ /** Known values of {@link ForecastHorizonMode} that the service accepts. */
5780
+ export declare enum KnownForecastHorizonMode {
5781
+ /** Forecast horizon to be determined automatically. */
5782
+ Auto = "Auto",
5783
+ /** Use the custom forecast horizon. */
5784
+ Custom = "Custom"
5785
+ }
5786
+ /**
5787
+ * Defines values for ForecastHorizonMode. \
5788
+ * {@link KnownForecastHorizonMode} can be used interchangeably with ForecastHorizonMode,
5789
+ * this enum contains the known values that the service supports.
5790
+ * ### Known values supported by the service
5791
+ * **Auto**: Forecast horizon to be determined automatically. \
5792
+ * **Custom**: Use the custom forecast horizon.
5793
+ */
5794
+ export declare type ForecastHorizonMode = string;
5795
+ /** Known values of {@link JobOutputType} that the service accepts. */
5796
+ export declare enum KnownJobOutputType {
5797
+ /** UriFile */
5798
+ UriFile = "uri_file",
5799
+ /** UriFolder */
5800
+ UriFolder = "uri_folder",
5801
+ /** Mltable */
5802
+ Mltable = "mltable",
5803
+ /** CustomModel */
5804
+ CustomModel = "custom_model",
5805
+ /** MlflowModel */
5806
+ MlflowModel = "mlflow_model",
5807
+ /** TritonModel */
5808
+ TritonModel = "triton_model"
5809
+ }
5810
+ /**
5811
+ * Defines values for JobOutputType. \
5812
+ * {@link KnownJobOutputType} can be used interchangeably with JobOutputType,
5813
+ * this enum contains the known values that the service supports.
5814
+ * ### Known values supported by the service
5815
+ * **uri_file** \
5816
+ * **uri_folder** \
5817
+ * **mltable** \
5818
+ * **custom_model** \
5819
+ * **mlflow_model** \
5820
+ * **triton_model**
5821
+ */
5822
+ export declare type JobOutputType = string;
5823
+ /** Known values of {@link LogVerbosity} that the service accepts. */
5824
+ export declare enum KnownLogVerbosity {
5825
+ /** No logs emitted. */
5826
+ NotSet = "NotSet",
5827
+ /** Debug and above log statements logged. */
5828
+ Debug = "Debug",
5829
+ /** Info and above log statements logged. */
5830
+ Info = "Info",
5831
+ /** Warning and above log statements logged. */
5832
+ Warning = "Warning",
5833
+ /** Error and above log statements logged. */
5834
+ Error = "Error",
5835
+ /** Only critical statements logged. */
5836
+ Critical = "Critical"
5837
+ }
5838
+ /**
5839
+ * Defines values for LogVerbosity. \
5840
+ * {@link KnownLogVerbosity} can be used interchangeably with LogVerbosity,
5841
+ * this enum contains the known values that the service supports.
5842
+ * ### Known values supported by the service
5843
+ * **NotSet**: No logs emitted. \
5844
+ * **Debug**: Debug and above log statements logged. \
5845
+ * **Info**: Info and above log statements logged. \
5846
+ * **Warning**: Warning and above log statements logged. \
5847
+ * **Error**: Error and above log statements logged. \
5848
+ * **Critical**: Only critical statements logged.
5849
+ */
5850
+ export declare type LogVerbosity = string;
5851
+ /** Known values of {@link TaskType} that the service accepts. */
5852
+ export declare enum KnownTaskType {
5853
+ /**
5854
+ * Classification in machine learning and statistics is a supervised learning approach in which
5855
+ * the computer program learns from the data given to it and make new observations or classifications.
5856
+ */
5857
+ Classification = "Classification",
5858
+ /** Regression means to predict the value using the input data. Regression models are used to predict a continuous value. */
5859
+ Regression = "Regression",
5860
+ /**
5861
+ * Forecasting is a special kind of regression task that deals with time-series data and creates forecasting model
5862
+ * that can be used to predict the near future values based on the inputs.
5863
+ */
5864
+ Forecasting = "Forecasting",
5865
+ /**
5866
+ * Image Classification. Multi-class image classification is used when an image is classified with only a single label
5867
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'.
5868
+ */
5869
+ ImageClassification = "ImageClassification",
5870
+ /**
5871
+ * Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
5872
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.
5873
+ */
5874
+ ImageClassificationMultilabel = "ImageClassificationMultilabel",
5875
+ /**
5876
+ * Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
5877
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
5878
+ */
5879
+ ImageObjectDetection = "ImageObjectDetection",
5880
+ /**
5881
+ * Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
5882
+ * drawing a polygon around each object in the image.
5883
+ */
5884
+ ImageInstanceSegmentation = "ImageInstanceSegmentation",
5885
+ /**
5886
+ * Text classification (also known as text tagging or text categorization) is the process of sorting texts into categories.
5887
+ * Categories are mutually exclusive.
5888
+ */
5889
+ TextClassification = "TextClassification",
5890
+ /** Multilabel classification task assigns each sample to a group (zero or more) of target labels. */
5891
+ TextClassificationMultilabel = "TextClassificationMultilabel",
5892
+ /**
5893
+ * Text Named Entity Recognition a.k.a. TextNER.
5894
+ * Named Entity Recognition (NER) is the ability to take free-form text and identify the occurrences of entities such as people, locations, organizations, and more.
5895
+ */
5896
+ TextNER = "TextNER"
5897
+ }
5898
+ /**
5899
+ * Defines values for TaskType. \
5900
+ * {@link KnownTaskType} can be used interchangeably with TaskType,
5901
+ * this enum contains the known values that the service supports.
5902
+ * ### Known values supported by the service
5903
+ * **Classification**: Classification in machine learning and statistics is a supervised learning approach in which
5904
+ * the computer program learns from the data given to it and make new observations or classifications. \
5905
+ * **Regression**: Regression means to predict the value using the input data. Regression models are used to predict a continuous value. \
5906
+ * **Forecasting**: Forecasting is a special kind of regression task that deals with time-series data and creates forecasting model
5907
+ * that can be used to predict the near future values based on the inputs. \
5908
+ * **ImageClassification**: Image Classification. Multi-class image classification is used when an image is classified with only a single label
5909
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'. \
5910
+ * **ImageClassificationMultilabel**: Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
5911
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'. \
5912
+ * **ImageObjectDetection**: Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
5913
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each. \
5914
+ * **ImageInstanceSegmentation**: Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
5915
+ * drawing a polygon around each object in the image. \
5916
+ * **TextClassification**: Text classification (also known as text tagging or text categorization) is the process of sorting texts into categories.
5917
+ * Categories are mutually exclusive. \
5918
+ * **TextClassificationMultilabel**: Multilabel classification task assigns each sample to a group (zero or more) of target labels. \
5919
+ * **TextNER**: Text Named Entity Recognition a.k.a. TextNER.
5920
+ * Named Entity Recognition (NER) is the ability to take free-form text and identify the occurrences of entities such as people, locations, organizations, and more.
5921
+ */
5922
+ export declare type TaskType = string;
5923
+ /** Known values of {@link JobInputType} that the service accepts. */
5924
+ export declare enum KnownJobInputType {
5925
+ /** Literal */
5926
+ Literal = "literal",
5927
+ /** UriFile */
5928
+ UriFile = "uri_file",
5929
+ /** UriFolder */
5930
+ UriFolder = "uri_folder",
5931
+ /** Mltable */
5932
+ Mltable = "mltable",
5933
+ /** CustomModel */
5934
+ CustomModel = "custom_model",
5935
+ /** MlflowModel */
5936
+ MlflowModel = "mlflow_model",
5937
+ /** TritonModel */
5938
+ TritonModel = "triton_model"
5939
+ }
5940
+ /**
5941
+ * Defines values for JobInputType. \
5942
+ * {@link KnownJobInputType} can be used interchangeably with JobInputType,
5943
+ * this enum contains the known values that the service supports.
5944
+ * ### Known values supported by the service
5945
+ * **literal** \
5946
+ * **uri_file** \
5947
+ * **uri_folder** \
5948
+ * **mltable** \
5949
+ * **custom_model** \
5950
+ * **mlflow_model** \
5951
+ * **triton_model**
5952
+ */
5953
+ export declare type JobInputType = string;
5954
+ /** Known values of {@link NCrossValidationsMode} that the service accepts. */
5955
+ export declare enum KnownNCrossValidationsMode {
5956
+ /** Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML task. */
5957
+ Auto = "Auto",
5958
+ /** Use custom N-Cross validations value. */
5959
+ Custom = "Custom"
5960
+ }
5961
+ /**
5962
+ * Defines values for NCrossValidationsMode. \
5963
+ * {@link KnownNCrossValidationsMode} can be used interchangeably with NCrossValidationsMode,
5964
+ * this enum contains the known values that the service supports.
5965
+ * ### Known values supported by the service
5966
+ * **Auto**: Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML task. \
5967
+ * **Custom**: Use custom N-Cross validations value.
5968
+ */
5969
+ export declare type NCrossValidationsMode = string;
5970
+ /** Known values of {@link SeasonalityMode} that the service accepts. */
5971
+ export declare enum KnownSeasonalityMode {
5972
+ /** Seasonality to be determined automatically. */
5973
+ Auto = "Auto",
5974
+ /** Use the custom seasonality value. */
5975
+ Custom = "Custom"
5976
+ }
5977
+ /**
5978
+ * Defines values for SeasonalityMode. \
5979
+ * {@link KnownSeasonalityMode} can be used interchangeably with SeasonalityMode,
5980
+ * this enum contains the known values that the service supports.
5981
+ * ### Known values supported by the service
5982
+ * **Auto**: Seasonality to be determined automatically. \
5983
+ * **Custom**: Use the custom seasonality value.
5984
+ */
5985
+ export declare type SeasonalityMode = string;
5986
+ /** Known values of {@link TargetLagsMode} that the service accepts. */
5987
+ export declare enum KnownTargetLagsMode {
5988
+ /** Target lags to be determined automatically. */
5989
+ Auto = "Auto",
5990
+ /** Use the custom target lags. */
5991
+ Custom = "Custom"
5992
+ }
5993
+ /**
5994
+ * Defines values for TargetLagsMode. \
5995
+ * {@link KnownTargetLagsMode} can be used interchangeably with TargetLagsMode,
5996
+ * this enum contains the known values that the service supports.
5997
+ * ### Known values supported by the service
5998
+ * **Auto**: Target lags to be determined automatically. \
5999
+ * **Custom**: Use the custom target lags.
6000
+ */
6001
+ export declare type TargetLagsMode = string;
6002
+ /** Known values of {@link TargetRollingWindowSizeMode} that the service accepts. */
6003
+ export declare enum KnownTargetRollingWindowSizeMode {
6004
+ /** Determine rolling windows size automatically. */
6005
+ Auto = "Auto",
6006
+ /** Use the specified rolling window size. */
6007
+ Custom = "Custom"
6008
+ }
6009
+ /**
6010
+ * Defines values for TargetRollingWindowSizeMode. \
6011
+ * {@link KnownTargetRollingWindowSizeMode} can be used interchangeably with TargetRollingWindowSizeMode,
6012
+ * this enum contains the known values that the service supports.
6013
+ * ### Known values supported by the service
6014
+ * **Auto**: Determine rolling windows size automatically. \
6015
+ * **Custom**: Use the specified rolling window size.
6016
+ */
6017
+ export declare type TargetRollingWindowSizeMode = string;
4609
6018
  /** Known values of {@link ServiceDataAccessAuthIdentity} that the service accepts. */
4610
6019
  export declare enum KnownServiceDataAccessAuthIdentity {
4611
6020
  /** Do not use any identity for service data access. */
@@ -4663,6 +6072,227 @@ export declare enum KnownSamplingAlgorithmType {
4663
6072
  * **Bayesian**
4664
6073
  */
4665
6074
  export declare type SamplingAlgorithmType = string;
6075
+ /** Known values of {@link ClassificationPrimaryMetrics} that the service accepts. */
6076
+ export declare enum KnownClassificationPrimaryMetrics {
6077
+ /**
6078
+ * AUC is the Area under the curve.
6079
+ * This metric represents arithmetic mean of the score for each class,
6080
+ * weighted by the number of true instances in each class.
6081
+ */
6082
+ AUCWeighted = "AUCWeighted",
6083
+ /** Accuracy is the ratio of predictions that exactly match the true class labels. */
6084
+ Accuracy = "Accuracy",
6085
+ /**
6086
+ * Normalized macro recall is recall macro-averaged and normalized, so that random
6087
+ * performance has a score of 0, and perfect performance has a score of 1.
6088
+ */
6089
+ NormMacroRecall = "NormMacroRecall",
6090
+ /**
6091
+ * The arithmetic mean of the average precision score for each class, weighted by
6092
+ * the number of true instances in each class.
6093
+ */
6094
+ AveragePrecisionScoreWeighted = "AveragePrecisionScoreWeighted",
6095
+ /** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
6096
+ PrecisionScoreWeighted = "PrecisionScoreWeighted"
6097
+ }
6098
+ /**
6099
+ * Defines values for ClassificationPrimaryMetrics. \
6100
+ * {@link KnownClassificationPrimaryMetrics} can be used interchangeably with ClassificationPrimaryMetrics,
6101
+ * this enum contains the known values that the service supports.
6102
+ * ### Known values supported by the service
6103
+ * **AUCWeighted**: AUC is the Area under the curve.
6104
+ * This metric represents arithmetic mean of the score for each class,
6105
+ * weighted by the number of true instances in each class. \
6106
+ * **Accuracy**: Accuracy is the ratio of predictions that exactly match the true class labels. \
6107
+ * **NormMacroRecall**: Normalized macro recall is recall macro-averaged and normalized, so that random
6108
+ * performance has a score of 0, and perfect performance has a score of 1. \
6109
+ * **AveragePrecisionScoreWeighted**: The arithmetic mean of the average precision score for each class, weighted by
6110
+ * the number of true instances in each class. \
6111
+ * **PrecisionScoreWeighted**: The arithmetic mean of precision for each class, weighted by number of true instances in each class.
6112
+ */
6113
+ export declare type ClassificationPrimaryMetrics = string;
6114
+ /** Known values of {@link ClassificationModels} that the service accepts. */
6115
+ export declare enum KnownClassificationModels {
6116
+ /**
6117
+ * Logistic regression is a fundamental classification technique.
6118
+ * It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear regression.
6119
+ * Logistic regression is fast and relatively uncomplicated, and it's convenient for you to interpret the results.
6120
+ * Although it's essentially a method for binary classification, it can also be applied to multiclass problems.
6121
+ */
6122
+ LogisticRegression = "LogisticRegression",
6123
+ /**
6124
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
6125
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
6126
+ */
6127
+ SGD = "SGD",
6128
+ /**
6129
+ * The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).
6130
+ * The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.
6131
+ */
6132
+ MultinomialNaiveBayes = "MultinomialNaiveBayes",
6133
+ /** Naive Bayes classifier for multivariate Bernoulli models. */
6134
+ BernoulliNaiveBayes = "BernoulliNaiveBayes",
6135
+ /**
6136
+ * A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
6137
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
6138
+ */
6139
+ SVM = "SVM",
6140
+ /**
6141
+ * A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
6142
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
6143
+ * Linear SVM performs best when input data is linear, i.e., data can be easily classified by drawing the straight line between classified values on a plotted graph.
6144
+ */
6145
+ LinearSVM = "LinearSVM",
6146
+ /**
6147
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
6148
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
6149
+ */
6150
+ KNN = "KNN",
6151
+ /**
6152
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
6153
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
6154
+ */
6155
+ DecisionTree = "DecisionTree",
6156
+ /**
6157
+ * Random forest is a supervised learning algorithm.
6158
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
6159
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
6160
+ */
6161
+ RandomForest = "RandomForest",
6162
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
6163
+ ExtremeRandomTrees = "ExtremeRandomTrees",
6164
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
6165
+ LightGBM = "LightGBM",
6166
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
6167
+ GradientBoosting = "GradientBoosting",
6168
+ /** XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where target column values can be divided into distinct class values. */
6169
+ XGBoostClassifier = "XGBoostClassifier"
6170
+ }
6171
+ /**
6172
+ * Defines values for ClassificationModels. \
6173
+ * {@link KnownClassificationModels} can be used interchangeably with ClassificationModels,
6174
+ * this enum contains the known values that the service supports.
6175
+ * ### Known values supported by the service
6176
+ * **LogisticRegression**: Logistic regression is a fundamental classification technique.
6177
+ * It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear regression.
6178
+ * Logistic regression is fast and relatively uncomplicated, and it's convenient for you to interpret the results.
6179
+ * Although it's essentially a method for binary classification, it can also be applied to multiclass problems. \
6180
+ * **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
6181
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs. \
6182
+ * **MultinomialNaiveBayes**: The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).
6183
+ * The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. \
6184
+ * **BernoulliNaiveBayes**: Naive Bayes classifier for multivariate Bernoulli models. \
6185
+ * **SVM**: A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
6186
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text. \
6187
+ * **LinearSVM**: A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
6188
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
6189
+ * Linear SVM performs best when input data is linear, i.e., data can be easily classified by drawing the straight line between classified values on a plotted graph. \
6190
+ * **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
6191
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
6192
+ * **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
6193
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
6194
+ * **RandomForest**: Random forest is a supervised learning algorithm.
6195
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
6196
+ * The general idea of the bagging method is that a combination of learning models increases the overall result. \
6197
+ * **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
6198
+ * **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
6199
+ * **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
6200
+ * **XGBoostClassifier**: XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where target column values can be divided into distinct class values.
6201
+ */
6202
+ export declare type ClassificationModels = string;
6203
+ /** Known values of {@link StackMetaLearnerType} that the service accepts. */
6204
+ export declare enum KnownStackMetaLearnerType {
6205
+ /** None */
6206
+ None = "None",
6207
+ /** Default meta-learners are LogisticRegression for classification tasks. */
6208
+ LogisticRegression = "LogisticRegression",
6209
+ /** Default meta-learners are LogisticRegression for classification task when CV is on. */
6210
+ LogisticRegressionCV = "LogisticRegressionCV",
6211
+ /** LightGBMClassifier */
6212
+ LightGBMClassifier = "LightGBMClassifier",
6213
+ /** Default meta-learners are LogisticRegression for regression task. */
6214
+ ElasticNet = "ElasticNet",
6215
+ /** Default meta-learners are LogisticRegression for regression task when CV is on. */
6216
+ ElasticNetCV = "ElasticNetCV",
6217
+ /** LightGBMRegressor */
6218
+ LightGBMRegressor = "LightGBMRegressor",
6219
+ /** LinearRegression */
6220
+ LinearRegression = "LinearRegression"
6221
+ }
6222
+ /**
6223
+ * Defines values for StackMetaLearnerType. \
6224
+ * {@link KnownStackMetaLearnerType} can be used interchangeably with StackMetaLearnerType,
6225
+ * this enum contains the known values that the service supports.
6226
+ * ### Known values supported by the service
6227
+ * **None** \
6228
+ * **LogisticRegression**: Default meta-learners are LogisticRegression for classification tasks. \
6229
+ * **LogisticRegressionCV**: Default meta-learners are LogisticRegression for classification task when CV is on. \
6230
+ * **LightGBMClassifier** \
6231
+ * **ElasticNet**: Default meta-learners are LogisticRegression for regression task. \
6232
+ * **ElasticNetCV**: Default meta-learners are LogisticRegression for regression task when CV is on. \
6233
+ * **LightGBMRegressor** \
6234
+ * **LinearRegression**
6235
+ */
6236
+ export declare type StackMetaLearnerType = string;
6237
+ /** Known values of {@link BlockedTransformers} that the service accepts. */
6238
+ export declare enum KnownBlockedTransformers {
6239
+ /** Target encoding for text data. */
6240
+ TextTargetEncoder = "TextTargetEncoder",
6241
+ /** Ohe hot encoding creates a binary feature transformation. */
6242
+ OneHotEncoder = "OneHotEncoder",
6243
+ /** Target encoding for categorical data. */
6244
+ CatTargetEncoder = "CatTargetEncoder",
6245
+ /** Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term weighting scheme for identifying information from documents. */
6246
+ TfIdf = "TfIdf",
6247
+ /** Weight of Evidence encoding is a technique used to encode categorical variables. It uses the natural log of the P(1)/P(0) to create weights. */
6248
+ WoETargetEncoder = "WoETargetEncoder",
6249
+ /** Label encoder converts labels/categorical variables in a numerical form. */
6250
+ LabelEncoder = "LabelEncoder",
6251
+ /** Word embedding helps represents words or phrases as a vector, or a series of numbers. */
6252
+ WordEmbedding = "WordEmbedding",
6253
+ /** Naive Bayes is a classified that is used for classification of discrete features that are categorically distributed. */
6254
+ NaiveBayes = "NaiveBayes",
6255
+ /** Count Vectorizer converts a collection of text documents to a matrix of token counts. */
6256
+ CountVectorizer = "CountVectorizer",
6257
+ /** Hashing One Hot Encoder can turn categorical variables into a limited number of new features. This is often used for high-cardinality categorical features. */
6258
+ HashOneHotEncoder = "HashOneHotEncoder"
6259
+ }
6260
+ /**
6261
+ * Defines values for BlockedTransformers. \
6262
+ * {@link KnownBlockedTransformers} can be used interchangeably with BlockedTransformers,
6263
+ * this enum contains the known values that the service supports.
6264
+ * ### Known values supported by the service
6265
+ * **TextTargetEncoder**: Target encoding for text data. \
6266
+ * **OneHotEncoder**: Ohe hot encoding creates a binary feature transformation. \
6267
+ * **CatTargetEncoder**: Target encoding for categorical data. \
6268
+ * **TfIdf**: Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term weighting scheme for identifying information from documents. \
6269
+ * **WoETargetEncoder**: Weight of Evidence encoding is a technique used to encode categorical variables. It uses the natural log of the P(1)\/P(0) to create weights. \
6270
+ * **LabelEncoder**: Label encoder converts labels\/categorical variables in a numerical form. \
6271
+ * **WordEmbedding**: Word embedding helps represents words or phrases as a vector, or a series of numbers. \
6272
+ * **NaiveBayes**: Naive Bayes is a classified that is used for classification of discrete features that are categorically distributed. \
6273
+ * **CountVectorizer**: Count Vectorizer converts a collection of text documents to a matrix of token counts. \
6274
+ * **HashOneHotEncoder**: Hashing One Hot Encoder can turn categorical variables into a limited number of new features. This is often used for high-cardinality categorical features.
6275
+ */
6276
+ export declare type BlockedTransformers = string;
6277
+ /** Known values of {@link FeaturizationMode} that the service accepts. */
6278
+ export declare enum KnownFeaturizationMode {
6279
+ /** Auto mode, system performs featurization without any custom featurization inputs. */
6280
+ Auto = "Auto",
6281
+ /** Custom featurization. */
6282
+ Custom = "Custom",
6283
+ /** Featurization off. 'Forecasting' task cannot use this value. */
6284
+ Off = "Off"
6285
+ }
6286
+ /**
6287
+ * Defines values for FeaturizationMode. \
6288
+ * {@link KnownFeaturizationMode} can be used interchangeably with FeaturizationMode,
6289
+ * this enum contains the known values that the service supports.
6290
+ * ### Known values supported by the service
6291
+ * **Auto**: Auto mode, system performs featurization without any custom featurization inputs. \
6292
+ * **Custom**: Custom featurization. \
6293
+ * **Off**: Featurization off. 'Forecasting' task cannot use this value.
6294
+ */
6295
+ export declare type FeaturizationMode = string;
4666
6296
  /** Known values of {@link DistributionType} that the service accepts. */
4667
6297
  export declare enum KnownDistributionType {
4668
6298
  /** PyTorch */
@@ -4682,37 +6312,6 @@ export declare enum KnownDistributionType {
4682
6312
  * **Mpi**
4683
6313
  */
4684
6314
  export declare type DistributionType = string;
4685
- /** Known values of {@link JobInputType} that the service accepts. */
4686
- export declare enum KnownJobInputType {
4687
- /** Literal */
4688
- Literal = "literal",
4689
- /** UriFile */
4690
- UriFile = "uri_file",
4691
- /** UriFolder */
4692
- UriFolder = "uri_folder",
4693
- /** Mltable */
4694
- Mltable = "mltable",
4695
- /** CustomModel */
4696
- CustomModel = "custom_model",
4697
- /** MlflowModel */
4698
- MlflowModel = "mlflow_model",
4699
- /** TritonModel */
4700
- TritonModel = "triton_model"
4701
- }
4702
- /**
4703
- * Defines values for JobInputType. \
4704
- * {@link KnownJobInputType} can be used interchangeably with JobInputType,
4705
- * this enum contains the known values that the service supports.
4706
- * ### Known values supported by the service
4707
- * **literal** \
4708
- * **uri_file** \
4709
- * **uri_folder** \
4710
- * **mltable** \
4711
- * **custom_model** \
4712
- * **mlflow_model** \
4713
- * **triton_model**
4714
- */
4715
- export declare type JobInputType = string;
4716
6315
  /** Known values of {@link JobLimitsType} that the service accepts. */
4717
6316
  export declare enum KnownJobLimitsType {
4718
6317
  /** Command */
@@ -4729,34 +6328,373 @@ export declare enum KnownJobLimitsType {
4729
6328
  * **Sweep**
4730
6329
  */
4731
6330
  export declare type JobLimitsType = string;
4732
- /** Known values of {@link JobOutputType} that the service accepts. */
4733
- export declare enum KnownJobOutputType {
4734
- /** UriFile */
4735
- UriFile = "uri_file",
4736
- /** UriFolder */
4737
- UriFolder = "uri_folder",
4738
- /** Mltable */
4739
- Mltable = "mltable",
4740
- /** CustomModel */
4741
- CustomModel = "custom_model",
4742
- /** MlflowModel */
4743
- MlflowModel = "mlflow_model",
4744
- /** TritonModel */
4745
- TritonModel = "triton_model"
6331
+ /** Known values of {@link FeatureLags} that the service accepts. */
6332
+ export declare enum KnownFeatureLags {
6333
+ /** No feature lags generated. */
6334
+ None = "None",
6335
+ /** System auto-generates feature lags. */
6336
+ Auto = "Auto"
4746
6337
  }
4747
6338
  /**
4748
- * Defines values for JobOutputType. \
4749
- * {@link KnownJobOutputType} can be used interchangeably with JobOutputType,
6339
+ * Defines values for FeatureLags. \
6340
+ * {@link KnownFeatureLags} can be used interchangeably with FeatureLags,
4750
6341
  * this enum contains the known values that the service supports.
4751
6342
  * ### Known values supported by the service
4752
- * **uri_file** \
4753
- * **uri_folder** \
4754
- * **mltable** \
4755
- * **custom_model** \
4756
- * **mlflow_model** \
4757
- * **triton_model**
6343
+ * **None**: No feature lags generated. \
6344
+ * **Auto**: System auto-generates feature lags.
4758
6345
  */
4759
- export declare type JobOutputType = string;
6346
+ export declare type FeatureLags = string;
6347
+ /** Known values of {@link ShortSeriesHandlingConfiguration} that the service accepts. */
6348
+ export declare enum KnownShortSeriesHandlingConfiguration {
6349
+ /** Represents no/null value. */
6350
+ None = "None",
6351
+ /** Short series will be padded if there are no long series, otherwise short series will be dropped. */
6352
+ Auto = "Auto",
6353
+ /** All the short series will be padded. */
6354
+ Pad = "Pad",
6355
+ /** All the short series will be dropped. */
6356
+ Drop = "Drop"
6357
+ }
6358
+ /**
6359
+ * Defines values for ShortSeriesHandlingConfiguration. \
6360
+ * {@link KnownShortSeriesHandlingConfiguration} can be used interchangeably with ShortSeriesHandlingConfiguration,
6361
+ * this enum contains the known values that the service supports.
6362
+ * ### Known values supported by the service
6363
+ * **None**: Represents no\/null value. \
6364
+ * **Auto**: Short series will be padded if there are no long series, otherwise short series will be dropped. \
6365
+ * **Pad**: All the short series will be padded. \
6366
+ * **Drop**: All the short series will be dropped.
6367
+ */
6368
+ export declare type ShortSeriesHandlingConfiguration = string;
6369
+ /** Known values of {@link TargetAggregationFunction} that the service accepts. */
6370
+ export declare enum KnownTargetAggregationFunction {
6371
+ /** Represent no value set. */
6372
+ None = "None",
6373
+ /** Sum */
6374
+ Sum = "Sum",
6375
+ /** Max */
6376
+ Max = "Max",
6377
+ /** Min */
6378
+ Min = "Min",
6379
+ /** Mean */
6380
+ Mean = "Mean"
6381
+ }
6382
+ /**
6383
+ * Defines values for TargetAggregationFunction. \
6384
+ * {@link KnownTargetAggregationFunction} can be used interchangeably with TargetAggregationFunction,
6385
+ * this enum contains the known values that the service supports.
6386
+ * ### Known values supported by the service
6387
+ * **None**: Represent no value set. \
6388
+ * **Sum** \
6389
+ * **Max** \
6390
+ * **Min** \
6391
+ * **Mean**
6392
+ */
6393
+ export declare type TargetAggregationFunction = string;
6394
+ /** Known values of {@link UseStl} that the service accepts. */
6395
+ export declare enum KnownUseStl {
6396
+ /** No stl decomposition. */
6397
+ None = "None",
6398
+ /** Season */
6399
+ Season = "Season",
6400
+ /** SeasonTrend */
6401
+ SeasonTrend = "SeasonTrend"
6402
+ }
6403
+ /**
6404
+ * Defines values for UseStl. \
6405
+ * {@link KnownUseStl} can be used interchangeably with UseStl,
6406
+ * this enum contains the known values that the service supports.
6407
+ * ### Known values supported by the service
6408
+ * **None**: No stl decomposition. \
6409
+ * **Season** \
6410
+ * **SeasonTrend**
6411
+ */
6412
+ export declare type UseStl = string;
6413
+ /** Known values of {@link ForecastingPrimaryMetrics} that the service accepts. */
6414
+ export declare enum KnownForecastingPrimaryMetrics {
6415
+ /** The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. */
6416
+ SpearmanCorrelation = "SpearmanCorrelation",
6417
+ /** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
6418
+ NormalizedRootMeanSquaredError = "NormalizedRootMeanSquaredError",
6419
+ /** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
6420
+ R2Score = "R2Score",
6421
+ /** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
6422
+ NormalizedMeanAbsoluteError = "NormalizedMeanAbsoluteError"
6423
+ }
6424
+ /**
6425
+ * Defines values for ForecastingPrimaryMetrics. \
6426
+ * {@link KnownForecastingPrimaryMetrics} can be used interchangeably with ForecastingPrimaryMetrics,
6427
+ * this enum contains the known values that the service supports.
6428
+ * ### Known values supported by the service
6429
+ * **SpearmanCorrelation**: The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. \
6430
+ * **NormalizedRootMeanSquaredError**: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. \
6431
+ * **R2Score**: The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. \
6432
+ * **NormalizedMeanAbsoluteError**: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales.
6433
+ */
6434
+ export declare type ForecastingPrimaryMetrics = string;
6435
+ /** Known values of {@link ForecastingModels} that the service accepts. */
6436
+ export declare enum KnownForecastingModels {
6437
+ /**
6438
+ * Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and statistical analysis to interpret the data and make future predictions.
6439
+ * This model aims to explain data by using time series data on its past values and uses linear regression to make predictions.
6440
+ */
6441
+ AutoArima = "AutoArima",
6442
+ /**
6443
+ * Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.
6444
+ * It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
6445
+ */
6446
+ Prophet = "Prophet",
6447
+ /** The Naive forecasting model makes predictions by carrying forward the latest target value for each time-series in the training data. */
6448
+ Naive = "Naive",
6449
+ /** The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of target values for each time-series in the training data. */
6450
+ SeasonalNaive = "SeasonalNaive",
6451
+ /** The Average forecasting model makes predictions by carrying forward the average of the target values for each time-series in the training data. */
6452
+ Average = "Average",
6453
+ /** The Seasonal Average forecasting model makes predictions by carrying forward the average value of the latest season of data for each time-series in the training data. */
6454
+ SeasonalAverage = "SeasonalAverage",
6455
+ /** Exponential smoothing is a time series forecasting method for univariate data that can be extended to support data with a systematic trend or seasonal component. */
6456
+ ExponentialSmoothing = "ExponentialSmoothing",
6457
+ /**
6458
+ * An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be viewed as a multiple regression model with one or more autoregressive (AR) terms and/or one or more moving average (MA) terms.
6459
+ * This method is suitable for forecasting when data is stationary/non stationary, and multivariate with any type of data pattern, i.e., level/trend /seasonality/cyclicity.
6460
+ */
6461
+ Arimax = "Arimax",
6462
+ /** TCNForecaster: Temporal Convolutional Networks Forecaster. //TODO: Ask forecasting team for brief intro. */
6463
+ TCNForecaster = "TCNForecaster",
6464
+ /** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
6465
+ ElasticNet = "ElasticNet",
6466
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
6467
+ GradientBoosting = "GradientBoosting",
6468
+ /**
6469
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
6470
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
6471
+ */
6472
+ DecisionTree = "DecisionTree",
6473
+ /**
6474
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
6475
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
6476
+ */
6477
+ KNN = "KNN",
6478
+ /** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
6479
+ LassoLars = "LassoLars",
6480
+ /**
6481
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
6482
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
6483
+ * It's an inexact but powerful technique.
6484
+ */
6485
+ SGD = "SGD",
6486
+ /**
6487
+ * Random forest is a supervised learning algorithm.
6488
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
6489
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
6490
+ */
6491
+ RandomForest = "RandomForest",
6492
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
6493
+ ExtremeRandomTrees = "ExtremeRandomTrees",
6494
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
6495
+ LightGBM = "LightGBM",
6496
+ /** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
6497
+ XGBoostRegressor = "XGBoostRegressor"
6498
+ }
6499
+ /**
6500
+ * Defines values for ForecastingModels. \
6501
+ * {@link KnownForecastingModels} can be used interchangeably with ForecastingModels,
6502
+ * this enum contains the known values that the service supports.
6503
+ * ### Known values supported by the service
6504
+ * **AutoArima**: Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and statistical analysis to interpret the data and make future predictions.
6505
+ * This model aims to explain data by using time series data on its past values and uses linear regression to make predictions. \
6506
+ * **Prophet**: Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.
6507
+ * It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well. \
6508
+ * **Naive**: The Naive forecasting model makes predictions by carrying forward the latest target value for each time-series in the training data. \
6509
+ * **SeasonalNaive**: The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of target values for each time-series in the training data. \
6510
+ * **Average**: The Average forecasting model makes predictions by carrying forward the average of the target values for each time-series in the training data. \
6511
+ * **SeasonalAverage**: The Seasonal Average forecasting model makes predictions by carrying forward the average value of the latest season of data for each time-series in the training data. \
6512
+ * **ExponentialSmoothing**: Exponential smoothing is a time series forecasting method for univariate data that can be extended to support data with a systematic trend or seasonal component. \
6513
+ * **Arimax**: An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be viewed as a multiple regression model with one or more autoregressive (AR) terms and\/or one or more moving average (MA) terms.
6514
+ * This method is suitable for forecasting when data is stationary\/non stationary, and multivariate with any type of data pattern, i.e., level\/trend \/seasonality\/cyclicity. \
6515
+ * **TCNForecaster**: TCNForecaster: Temporal Convolutional Networks Forecaster. \/\/TODO: Ask forecasting team for brief intro. \
6516
+ * **ElasticNet**: Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. \
6517
+ * **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
6518
+ * **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
6519
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
6520
+ * **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
6521
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
6522
+ * **LassoLars**: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. \
6523
+ * **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
6524
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
6525
+ * It's an inexact but powerful technique. \
6526
+ * **RandomForest**: Random forest is a supervised learning algorithm.
6527
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
6528
+ * The general idea of the bagging method is that a combination of learning models increases the overall result. \
6529
+ * **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
6530
+ * **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
6531
+ * **XGBoostRegressor**: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners.
6532
+ */
6533
+ export declare type ForecastingModels = string;
6534
+ /** Known values of {@link LearningRateScheduler} that the service accepts. */
6535
+ export declare enum KnownLearningRateScheduler {
6536
+ /** No learning rate scheduler selected. */
6537
+ None = "None",
6538
+ /** Cosine Annealing With Warmup. */
6539
+ WarmupCosine = "WarmupCosine",
6540
+ /** Step learning rate scheduler. */
6541
+ Step = "Step"
6542
+ }
6543
+ /**
6544
+ * Defines values for LearningRateScheduler. \
6545
+ * {@link KnownLearningRateScheduler} can be used interchangeably with LearningRateScheduler,
6546
+ * this enum contains the known values that the service supports.
6547
+ * ### Known values supported by the service
6548
+ * **None**: No learning rate scheduler selected. \
6549
+ * **WarmupCosine**: Cosine Annealing With Warmup. \
6550
+ * **Step**: Step learning rate scheduler.
6551
+ */
6552
+ export declare type LearningRateScheduler = string;
6553
+ /** Known values of {@link StochasticOptimizer} that the service accepts. */
6554
+ export declare enum KnownStochasticOptimizer {
6555
+ /** No optimizer selected. */
6556
+ None = "None",
6557
+ /** Stochastic Gradient Descent optimizer. */
6558
+ Sgd = "Sgd",
6559
+ /** Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of moments */
6560
+ Adam = "Adam",
6561
+ /** AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay. */
6562
+ Adamw = "Adamw"
6563
+ }
6564
+ /**
6565
+ * Defines values for StochasticOptimizer. \
6566
+ * {@link KnownStochasticOptimizer} can be used interchangeably with StochasticOptimizer,
6567
+ * this enum contains the known values that the service supports.
6568
+ * ### Known values supported by the service
6569
+ * **None**: No optimizer selected. \
6570
+ * **Sgd**: Stochastic Gradient Descent optimizer. \
6571
+ * **Adam**: Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of moments \
6572
+ * **Adamw**: AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay.
6573
+ */
6574
+ export declare type StochasticOptimizer = string;
6575
+ /** Known values of {@link ClassificationMultilabelPrimaryMetrics} that the service accepts. */
6576
+ export declare enum KnownClassificationMultilabelPrimaryMetrics {
6577
+ /**
6578
+ * AUC is the Area under the curve.
6579
+ * This metric represents arithmetic mean of the score for each class,
6580
+ * weighted by the number of true instances in each class.
6581
+ */
6582
+ AUCWeighted = "AUCWeighted",
6583
+ /** Accuracy is the ratio of predictions that exactly match the true class labels. */
6584
+ Accuracy = "Accuracy",
6585
+ /**
6586
+ * Normalized macro recall is recall macro-averaged and normalized, so that random
6587
+ * performance has a score of 0, and perfect performance has a score of 1.
6588
+ */
6589
+ NormMacroRecall = "NormMacroRecall",
6590
+ /**
6591
+ * The arithmetic mean of the average precision score for each class, weighted by
6592
+ * the number of true instances in each class.
6593
+ */
6594
+ AveragePrecisionScoreWeighted = "AveragePrecisionScoreWeighted",
6595
+ /** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
6596
+ PrecisionScoreWeighted = "PrecisionScoreWeighted",
6597
+ /** Intersection Over Union. Intersection of predictions divided by union of predictions. */
6598
+ IOU = "IOU"
6599
+ }
6600
+ /**
6601
+ * Defines values for ClassificationMultilabelPrimaryMetrics. \
6602
+ * {@link KnownClassificationMultilabelPrimaryMetrics} can be used interchangeably with ClassificationMultilabelPrimaryMetrics,
6603
+ * this enum contains the known values that the service supports.
6604
+ * ### Known values supported by the service
6605
+ * **AUCWeighted**: AUC is the Area under the curve.
6606
+ * This metric represents arithmetic mean of the score for each class,
6607
+ * weighted by the number of true instances in each class. \
6608
+ * **Accuracy**: Accuracy is the ratio of predictions that exactly match the true class labels. \
6609
+ * **NormMacroRecall**: Normalized macro recall is recall macro-averaged and normalized, so that random
6610
+ * performance has a score of 0, and perfect performance has a score of 1. \
6611
+ * **AveragePrecisionScoreWeighted**: The arithmetic mean of the average precision score for each class, weighted by
6612
+ * the number of true instances in each class. \
6613
+ * **PrecisionScoreWeighted**: The arithmetic mean of precision for each class, weighted by number of true instances in each class. \
6614
+ * **IOU**: Intersection Over Union. Intersection of predictions divided by union of predictions.
6615
+ */
6616
+ export declare type ClassificationMultilabelPrimaryMetrics = string;
6617
+ /** Known values of {@link InstanceSegmentationPrimaryMetrics} that the service accepts. */
6618
+ export declare enum KnownInstanceSegmentationPrimaryMetrics {
6619
+ /**
6620
+ * Mean Average Precision (MAP) is the average of AP (Average Precision).
6621
+ * AP is calculated for each class and averaged to get the MAP.
6622
+ */
6623
+ MeanAveragePrecision = "MeanAveragePrecision"
6624
+ }
6625
+ /**
6626
+ * Defines values for InstanceSegmentationPrimaryMetrics. \
6627
+ * {@link KnownInstanceSegmentationPrimaryMetrics} can be used interchangeably with InstanceSegmentationPrimaryMetrics,
6628
+ * this enum contains the known values that the service supports.
6629
+ * ### Known values supported by the service
6630
+ * **MeanAveragePrecision**: Mean Average Precision (MAP) is the average of AP (Average Precision).
6631
+ * AP is calculated for each class and averaged to get the MAP.
6632
+ */
6633
+ export declare type InstanceSegmentationPrimaryMetrics = string;
6634
+ /** Known values of {@link ModelSize} that the service accepts. */
6635
+ export declare enum KnownModelSize {
6636
+ /** No value selected. */
6637
+ None = "None",
6638
+ /** Small size. */
6639
+ Small = "Small",
6640
+ /** Medium size. */
6641
+ Medium = "Medium",
6642
+ /** Large size. */
6643
+ Large = "Large",
6644
+ /** Extra large size. */
6645
+ ExtraLarge = "ExtraLarge"
6646
+ }
6647
+ /**
6648
+ * Defines values for ModelSize. \
6649
+ * {@link KnownModelSize} can be used interchangeably with ModelSize,
6650
+ * this enum contains the known values that the service supports.
6651
+ * ### Known values supported by the service
6652
+ * **None**: No value selected. \
6653
+ * **Small**: Small size. \
6654
+ * **Medium**: Medium size. \
6655
+ * **Large**: Large size. \
6656
+ * **ExtraLarge**: Extra large size.
6657
+ */
6658
+ export declare type ModelSize = string;
6659
+ /** Known values of {@link ValidationMetricType} that the service accepts. */
6660
+ export declare enum KnownValidationMetricType {
6661
+ /** No metric. */
6662
+ None = "None",
6663
+ /** Coco metric. */
6664
+ Coco = "Coco",
6665
+ /** Voc metric. */
6666
+ Voc = "Voc",
6667
+ /** CocoVoc metric. */
6668
+ CocoVoc = "CocoVoc"
6669
+ }
6670
+ /**
6671
+ * Defines values for ValidationMetricType. \
6672
+ * {@link KnownValidationMetricType} can be used interchangeably with ValidationMetricType,
6673
+ * this enum contains the known values that the service supports.
6674
+ * ### Known values supported by the service
6675
+ * **None**: No metric. \
6676
+ * **Coco**: Coco metric. \
6677
+ * **Voc**: Voc metric. \
6678
+ * **CocoVoc**: CocoVoc metric.
6679
+ */
6680
+ export declare type ValidationMetricType = string;
6681
+ /** Known values of {@link ObjectDetectionPrimaryMetrics} that the service accepts. */
6682
+ export declare enum KnownObjectDetectionPrimaryMetrics {
6683
+ /**
6684
+ * Mean Average Precision (MAP) is the average of AP (Average Precision).
6685
+ * AP is calculated for each class and averaged to get the MAP.
6686
+ */
6687
+ MeanAveragePrecision = "MeanAveragePrecision"
6688
+ }
6689
+ /**
6690
+ * Defines values for ObjectDetectionPrimaryMetrics. \
6691
+ * {@link KnownObjectDetectionPrimaryMetrics} can be used interchangeably with ObjectDetectionPrimaryMetrics,
6692
+ * this enum contains the known values that the service supports.
6693
+ * ### Known values supported by the service
6694
+ * **MeanAveragePrecision**: Mean Average Precision (MAP) is the average of AP (Average Precision).
6695
+ * AP is calculated for each class and averaged to get the MAP.
6696
+ */
6697
+ export declare type ObjectDetectionPrimaryMetrics = string;
4760
6698
  /** Known values of {@link Goal} that the service accepts. */
4761
6699
  export declare enum KnownGoal {
4762
6700
  /** Minimize */
@@ -4789,6 +6727,88 @@ export declare enum KnownRandomSamplingAlgorithmRule {
4789
6727
  * **Sobol**
4790
6728
  */
4791
6729
  export declare type RandomSamplingAlgorithmRule = string;
6730
+ /** Known values of {@link RegressionPrimaryMetrics} that the service accepts. */
6731
+ export declare enum KnownRegressionPrimaryMetrics {
6732
+ /** The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. */
6733
+ SpearmanCorrelation = "SpearmanCorrelation",
6734
+ /** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
6735
+ NormalizedRootMeanSquaredError = "NormalizedRootMeanSquaredError",
6736
+ /** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
6737
+ R2Score = "R2Score",
6738
+ /** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
6739
+ NormalizedMeanAbsoluteError = "NormalizedMeanAbsoluteError"
6740
+ }
6741
+ /**
6742
+ * Defines values for RegressionPrimaryMetrics. \
6743
+ * {@link KnownRegressionPrimaryMetrics} can be used interchangeably with RegressionPrimaryMetrics,
6744
+ * this enum contains the known values that the service supports.
6745
+ * ### Known values supported by the service
6746
+ * **SpearmanCorrelation**: The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. \
6747
+ * **NormalizedRootMeanSquaredError**: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. \
6748
+ * **R2Score**: The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. \
6749
+ * **NormalizedMeanAbsoluteError**: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales.
6750
+ */
6751
+ export declare type RegressionPrimaryMetrics = string;
6752
+ /** Known values of {@link RegressionModels} that the service accepts. */
6753
+ export declare enum KnownRegressionModels {
6754
+ /** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
6755
+ ElasticNet = "ElasticNet",
6756
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
6757
+ GradientBoosting = "GradientBoosting",
6758
+ /**
6759
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
6760
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
6761
+ */
6762
+ DecisionTree = "DecisionTree",
6763
+ /**
6764
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
6765
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
6766
+ */
6767
+ KNN = "KNN",
6768
+ /** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
6769
+ LassoLars = "LassoLars",
6770
+ /**
6771
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
6772
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
6773
+ * It's an inexact but powerful technique.
6774
+ */
6775
+ SGD = "SGD",
6776
+ /**
6777
+ * Random forest is a supervised learning algorithm.
6778
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
6779
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
6780
+ */
6781
+ RandomForest = "RandomForest",
6782
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
6783
+ ExtremeRandomTrees = "ExtremeRandomTrees",
6784
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
6785
+ LightGBM = "LightGBM",
6786
+ /** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
6787
+ XGBoostRegressor = "XGBoostRegressor"
6788
+ }
6789
+ /**
6790
+ * Defines values for RegressionModels. \
6791
+ * {@link KnownRegressionModels} can be used interchangeably with RegressionModels,
6792
+ * this enum contains the known values that the service supports.
6793
+ * ### Known values supported by the service
6794
+ * **ElasticNet**: Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. \
6795
+ * **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
6796
+ * **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
6797
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
6798
+ * **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
6799
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
6800
+ * **LassoLars**: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. \
6801
+ * **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
6802
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
6803
+ * It's an inexact but powerful technique. \
6804
+ * **RandomForest**: Random forest is a supervised learning algorithm.
6805
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
6806
+ * The general idea of the bagging method is that a combination of learning models increases the overall result. \
6807
+ * **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
6808
+ * **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
6809
+ * **XGBoostRegressor**: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners.
6810
+ */
6811
+ export declare type RegressionModels = string;
4792
6812
  /** Defines values for SkuTier. */
4793
6813
  export declare type SkuTier = "Free" | "Basic" | "Standard" | "Premium";
4794
6814
  /** Optional parameters. */
@@ -5824,6 +7844,45 @@ export interface OnlineDeploymentsListSkusNextOptionalParams extends coreClient.
5824
7844
  /** Contains response data for the listSkusNext operation. */
5825
7845
  export declare type OnlineDeploymentsListSkusNextResponse = SkuResourceArmPaginatedResult;
5826
7846
  /** Optional parameters. */
7847
+ export interface SchedulesListOptionalParams extends coreClient.OperationOptions {
7848
+ /** Continuation token for pagination. */
7849
+ skip?: string;
7850
+ /** Status filter for schedule. */
7851
+ listViewType?: ScheduleListViewType;
7852
+ }
7853
+ /** Contains response data for the list operation. */
7854
+ export declare type SchedulesListResponse = ScheduleResourceArmPaginatedResult;
7855
+ /** Optional parameters. */
7856
+ export interface SchedulesDeleteOptionalParams extends coreClient.OperationOptions {
7857
+ /** Delay to wait until next poll, in milliseconds. */
7858
+ updateIntervalInMs?: number;
7859
+ /** A serialized poller which can be used to resume an existing paused Long-Running-Operation. */
7860
+ resumeFrom?: string;
7861
+ }
7862
+ /** Optional parameters. */
7863
+ export interface SchedulesGetOptionalParams extends coreClient.OperationOptions {
7864
+ }
7865
+ /** Contains response data for the get operation. */
7866
+ export declare type SchedulesGetResponse = Schedule;
7867
+ /** Optional parameters. */
7868
+ export interface SchedulesCreateOrUpdateOptionalParams extends coreClient.OperationOptions {
7869
+ /** Delay to wait until next poll, in milliseconds. */
7870
+ updateIntervalInMs?: number;
7871
+ /** A serialized poller which can be used to resume an existing paused Long-Running-Operation. */
7872
+ resumeFrom?: string;
7873
+ }
7874
+ /** Contains response data for the createOrUpdate operation. */
7875
+ export declare type SchedulesCreateOrUpdateResponse = Schedule;
7876
+ /** Optional parameters. */
7877
+ export interface SchedulesListNextOptionalParams extends coreClient.OperationOptions {
7878
+ /** Continuation token for pagination. */
7879
+ skip?: string;
7880
+ /** Status filter for schedule. */
7881
+ listViewType?: ScheduleListViewType;
7882
+ }
7883
+ /** Contains response data for the listNext operation. */
7884
+ export declare type SchedulesListNextResponse = ScheduleResourceArmPaginatedResult;
7885
+ /** Optional parameters. */
5827
7886
  export interface WorkspaceFeaturesListOptionalParams extends coreClient.OperationOptions {
5828
7887
  }
5829
7888
  /** Contains response data for the list operation. */