@azure/arm-machinelearning 2.0.1-alpha.20221026.1 → 2.1.0-alpha.20221101.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. package/CHANGELOG.md +173 -10
  2. package/dist/index.js +6417 -3094
  3. package/dist/index.js.map +1 -1
  4. package/dist/index.min.js +1 -1
  5. package/dist/index.min.js.map +1 -1
  6. package/dist-esm/samples-dev/batchDeploymentsCreateOrUpdateSample.js +1 -1
  7. package/dist-esm/samples-dev/batchDeploymentsDeleteSample.js +1 -1
  8. package/dist-esm/samples-dev/batchDeploymentsGetSample.js +1 -1
  9. package/dist-esm/samples-dev/batchDeploymentsListSample.js +1 -1
  10. package/dist-esm/samples-dev/batchDeploymentsUpdateSample.js +1 -1
  11. package/dist-esm/samples-dev/batchEndpointsCreateOrUpdateSample.js +1 -1
  12. package/dist-esm/samples-dev/batchEndpointsDeleteSample.js +1 -1
  13. package/dist-esm/samples-dev/batchEndpointsGetSample.js +1 -1
  14. package/dist-esm/samples-dev/batchEndpointsListKeysSample.js +1 -1
  15. package/dist-esm/samples-dev/batchEndpointsListSample.js +1 -1
  16. package/dist-esm/samples-dev/batchEndpointsUpdateSample.js +1 -1
  17. package/dist-esm/samples-dev/codeContainersCreateOrUpdateSample.js +1 -1
  18. package/dist-esm/samples-dev/codeContainersDeleteSample.js +1 -1
  19. package/dist-esm/samples-dev/codeContainersGetSample.js +1 -1
  20. package/dist-esm/samples-dev/codeContainersListSample.js +1 -1
  21. package/dist-esm/samples-dev/codeVersionsCreateOrUpdateSample.js +1 -1
  22. package/dist-esm/samples-dev/codeVersionsDeleteSample.js +1 -1
  23. package/dist-esm/samples-dev/codeVersionsGetSample.js +1 -1
  24. package/dist-esm/samples-dev/codeVersionsListSample.js +1 -1
  25. package/dist-esm/samples-dev/componentContainersCreateOrUpdateSample.js +1 -1
  26. package/dist-esm/samples-dev/componentContainersDeleteSample.js +1 -1
  27. package/dist-esm/samples-dev/componentContainersGetSample.js +1 -1
  28. package/dist-esm/samples-dev/componentContainersListSample.js +1 -1
  29. package/dist-esm/samples-dev/componentVersionsCreateOrUpdateSample.js +1 -1
  30. package/dist-esm/samples-dev/componentVersionsDeleteSample.js +1 -1
  31. package/dist-esm/samples-dev/componentVersionsGetSample.js +1 -1
  32. package/dist-esm/samples-dev/componentVersionsListSample.js +1 -1
  33. package/dist-esm/samples-dev/computeCreateOrUpdateSample.js +60 -8
  34. package/dist-esm/samples-dev/computeCreateOrUpdateSample.js.map +1 -1
  35. package/dist-esm/samples-dev/computeDeleteSample.js +1 -1
  36. package/dist-esm/samples-dev/computeGetSample.js +4 -4
  37. package/dist-esm/samples-dev/computeListKeysSample.js +1 -1
  38. package/dist-esm/samples-dev/computeListNodesSample.js +1 -1
  39. package/dist-esm/samples-dev/computeListSample.js +1 -1
  40. package/dist-esm/samples-dev/computeRestartSample.js +1 -1
  41. package/dist-esm/samples-dev/computeStartSample.js +1 -1
  42. package/dist-esm/samples-dev/computeStopSample.js +1 -1
  43. package/dist-esm/samples-dev/computeUpdateSample.js +1 -1
  44. package/dist-esm/samples-dev/dataContainersCreateOrUpdateSample.js +1 -1
  45. package/dist-esm/samples-dev/dataContainersDeleteSample.js +1 -1
  46. package/dist-esm/samples-dev/dataContainersGetSample.js +1 -1
  47. package/dist-esm/samples-dev/dataContainersListSample.js +1 -1
  48. package/dist-esm/samples-dev/dataVersionsCreateOrUpdateSample.js +1 -1
  49. package/dist-esm/samples-dev/dataVersionsDeleteSample.js +1 -1
  50. package/dist-esm/samples-dev/dataVersionsGetSample.js +1 -1
  51. package/dist-esm/samples-dev/dataVersionsListSample.js +1 -1
  52. package/dist-esm/samples-dev/datastoresCreateOrUpdateSample.js +4 -4
  53. package/dist-esm/samples-dev/datastoresDeleteSample.js +1 -1
  54. package/dist-esm/samples-dev/datastoresGetSample.js +1 -1
  55. package/dist-esm/samples-dev/datastoresListSample.js +1 -1
  56. package/dist-esm/samples-dev/datastoresListSecretsSample.js +1 -1
  57. package/dist-esm/samples-dev/environmentContainersCreateOrUpdateSample.js +1 -1
  58. package/dist-esm/samples-dev/environmentContainersDeleteSample.js +1 -1
  59. package/dist-esm/samples-dev/environmentContainersGetSample.js +1 -1
  60. package/dist-esm/samples-dev/environmentContainersListSample.js +1 -1
  61. package/dist-esm/samples-dev/environmentVersionsCreateOrUpdateSample.js +1 -1
  62. package/dist-esm/samples-dev/environmentVersionsDeleteSample.js +1 -1
  63. package/dist-esm/samples-dev/environmentVersionsGetSample.js +1 -1
  64. package/dist-esm/samples-dev/environmentVersionsListSample.js +1 -1
  65. package/dist-esm/samples-dev/jobsCancelSample.js +1 -1
  66. package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js +66 -3
  67. package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js.map +1 -1
  68. package/dist-esm/samples-dev/jobsDeleteSample.js +1 -1
  69. package/dist-esm/samples-dev/jobsGetSample.js +22 -3
  70. package/dist-esm/samples-dev/jobsGetSample.js.map +1 -1
  71. package/dist-esm/samples-dev/jobsListSample.js +44 -12
  72. package/dist-esm/samples-dev/jobsListSample.js.map +1 -1
  73. package/dist-esm/samples-dev/modelContainersCreateOrUpdateSample.js +1 -1
  74. package/dist-esm/samples-dev/modelContainersDeleteSample.js +1 -1
  75. package/dist-esm/samples-dev/modelContainersGetSample.js +1 -1
  76. package/dist-esm/samples-dev/modelContainersListSample.js +1 -1
  77. package/dist-esm/samples-dev/modelVersionsCreateOrUpdateSample.js +1 -1
  78. package/dist-esm/samples-dev/modelVersionsDeleteSample.js +1 -1
  79. package/dist-esm/samples-dev/modelVersionsGetSample.js +1 -1
  80. package/dist-esm/samples-dev/modelVersionsListSample.js +1 -1
  81. package/dist-esm/samples-dev/onlineDeploymentsCreateOrUpdateSample.js +2 -2
  82. package/dist-esm/samples-dev/onlineDeploymentsDeleteSample.js +1 -1
  83. package/dist-esm/samples-dev/onlineDeploymentsGetLogsSample.js +1 -1
  84. package/dist-esm/samples-dev/onlineDeploymentsGetSample.js +2 -2
  85. package/dist-esm/samples-dev/onlineDeploymentsListSample.js +1 -1
  86. package/dist-esm/samples-dev/onlineDeploymentsListSkusSample.js +2 -2
  87. package/dist-esm/samples-dev/onlineDeploymentsUpdateSample.js +2 -2
  88. package/dist-esm/samples-dev/onlineEndpointsCreateOrUpdateSample.js +1 -1
  89. package/dist-esm/samples-dev/onlineEndpointsDeleteSample.js +1 -1
  90. package/dist-esm/samples-dev/onlineEndpointsGetSample.js +1 -1
  91. package/dist-esm/samples-dev/onlineEndpointsGetTokenSample.js +1 -1
  92. package/dist-esm/samples-dev/onlineEndpointsListKeysSample.js +1 -1
  93. package/dist-esm/samples-dev/onlineEndpointsListSample.js +1 -1
  94. package/dist-esm/samples-dev/onlineEndpointsRegenerateKeysSample.js +1 -1
  95. package/dist-esm/samples-dev/onlineEndpointsUpdateSample.js +1 -1
  96. package/dist-esm/samples-dev/operationsListSample.js +1 -1
  97. package/dist-esm/samples-dev/privateEndpointConnectionsCreateOrUpdateSample.js +1 -1
  98. package/dist-esm/samples-dev/privateEndpointConnectionsDeleteSample.js +1 -1
  99. package/dist-esm/samples-dev/privateEndpointConnectionsGetSample.js +1 -1
  100. package/dist-esm/samples-dev/privateEndpointConnectionsListSample.js +1 -1
  101. package/dist-esm/samples-dev/privateLinkResourcesListSample.js +1 -1
  102. package/dist-esm/samples-dev/quotasListSample.js +1 -1
  103. package/dist-esm/samples-dev/quotasUpdateSample.js +1 -1
  104. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts +2 -0
  105. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts.map +1 -0
  106. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js +54 -0
  107. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js.map +1 -0
  108. package/dist-esm/samples-dev/schedulesDeleteSample.d.ts +2 -0
  109. package/dist-esm/samples-dev/schedulesDeleteSample.d.ts.map +1 -0
  110. package/dist-esm/samples-dev/schedulesDeleteSample.js +32 -0
  111. package/dist-esm/samples-dev/schedulesDeleteSample.js.map +1 -0
  112. package/dist-esm/samples-dev/schedulesGetSample.d.ts +2 -0
  113. package/dist-esm/samples-dev/schedulesGetSample.d.ts.map +1 -0
  114. package/dist-esm/samples-dev/schedulesGetSample.js +32 -0
  115. package/dist-esm/samples-dev/schedulesGetSample.js.map +1 -0
  116. package/dist-esm/samples-dev/schedulesListSample.d.ts +2 -0
  117. package/dist-esm/samples-dev/schedulesListSample.d.ts.map +1 -0
  118. package/dist-esm/samples-dev/schedulesListSample.js +45 -0
  119. package/dist-esm/samples-dev/schedulesListSample.js.map +1 -0
  120. package/dist-esm/samples-dev/usagesListSample.js +1 -1
  121. package/dist-esm/samples-dev/virtualMachineSizesListSample.js +1 -1
  122. package/dist-esm/samples-dev/workspaceConnectionsCreateSample.js +1 -1
  123. package/dist-esm/samples-dev/workspaceConnectionsDeleteSample.js +1 -1
  124. package/dist-esm/samples-dev/workspaceConnectionsGetSample.js +1 -1
  125. package/dist-esm/samples-dev/workspaceConnectionsListSample.js +1 -1
  126. package/dist-esm/samples-dev/workspaceFeaturesListSample.js +1 -1
  127. package/dist-esm/samples-dev/workspacesCreateOrUpdateSample.js +1 -1
  128. package/dist-esm/samples-dev/workspacesDeleteSample.js +1 -1
  129. package/dist-esm/samples-dev/workspacesDiagnoseSample.js +1 -1
  130. package/dist-esm/samples-dev/workspacesGetSample.js +1 -1
  131. package/dist-esm/samples-dev/workspacesListByResourceGroupSample.js +1 -1
  132. package/dist-esm/samples-dev/workspacesListBySubscriptionSample.js +1 -1
  133. package/dist-esm/samples-dev/workspacesListKeysSample.js +1 -1
  134. package/dist-esm/samples-dev/workspacesListNotebookAccessTokenSample.js +1 -1
  135. package/dist-esm/samples-dev/workspacesListNotebookKeysSample.js +1 -1
  136. package/dist-esm/samples-dev/workspacesListOutboundNetworkDependenciesEndpointsSample.js +1 -1
  137. package/dist-esm/samples-dev/workspacesListStorageAccountKeysSample.js +1 -1
  138. package/dist-esm/samples-dev/workspacesPrepareNotebookSample.js +1 -1
  139. package/dist-esm/samples-dev/workspacesResyncKeysSample.js +1 -1
  140. package/dist-esm/samples-dev/workspacesUpdateSample.js +1 -1
  141. package/dist-esm/src/azureMachineLearningWorkspaces.d.ts +2 -1
  142. package/dist-esm/src/azureMachineLearningWorkspaces.d.ts.map +1 -1
  143. package/dist-esm/src/azureMachineLearningWorkspaces.js +4 -3
  144. package/dist-esm/src/azureMachineLearningWorkspaces.js.map +1 -1
  145. package/dist-esm/src/models/index.d.ts +2177 -118
  146. package/dist-esm/src/models/index.d.ts.map +1 -1
  147. package/dist-esm/src/models/index.js +645 -42
  148. package/dist-esm/src/models/index.js.map +1 -1
  149. package/dist-esm/src/models/mappers.d.ts +107 -8
  150. package/dist-esm/src/models/mappers.d.ts.map +1 -1
  151. package/dist-esm/src/models/mappers.js +3218 -915
  152. package/dist-esm/src/models/mappers.js.map +1 -1
  153. package/dist-esm/src/models/parameters.d.ts +2 -0
  154. package/dist-esm/src/models/parameters.d.ts.map +1 -1
  155. package/dist-esm/src/models/parameters.js +15 -2
  156. package/dist-esm/src/models/parameters.js.map +1 -1
  157. package/dist-esm/src/operations/index.d.ts +1 -0
  158. package/dist-esm/src/operations/index.d.ts.map +1 -1
  159. package/dist-esm/src/operations/index.js +1 -0
  160. package/dist-esm/src/operations/index.js.map +1 -1
  161. package/dist-esm/src/operations/schedules.d.ts +81 -0
  162. package/dist-esm/src/operations/schedules.d.ts.map +1 -0
  163. package/dist-esm/src/operations/schedules.js +343 -0
  164. package/dist-esm/src/operations/schedules.js.map +1 -0
  165. package/dist-esm/src/operationsInterfaces/index.d.ts +1 -0
  166. package/dist-esm/src/operationsInterfaces/index.d.ts.map +1 -1
  167. package/dist-esm/src/operationsInterfaces/index.js +1 -0
  168. package/dist-esm/src/operationsInterfaces/index.js.map +1 -1
  169. package/dist-esm/src/operationsInterfaces/schedules.d.ts +56 -0
  170. package/dist-esm/src/operationsInterfaces/schedules.d.ts.map +1 -0
  171. package/dist-esm/src/operationsInterfaces/schedules.js +9 -0
  172. package/dist-esm/src/operationsInterfaces/schedules.js.map +1 -0
  173. package/package.json +3 -2
  174. package/review/arm-machinelearning.api.md +1033 -11
  175. package/src/azureMachineLearningWorkspaces.ts +6 -2
  176. package/src/models/index.ts +2662 -410
  177. package/src/models/mappers.ts +4026 -1470
  178. package/src/models/parameters.ts +18 -2
  179. package/src/operations/index.ts +1 -0
  180. package/src/operations/schedules.ts +476 -0
  181. package/src/operationsInterfaces/index.ts +1 -0
  182. package/src/operationsInterfaces/schedules.ts +109 -0
  183. package/types/arm-machinelearning.d.ts +2348 -80
  184. package/types/tsdoc-metadata.json +1 -1
@@ -59,6 +59,57 @@ export type OnlineScaleSettingsUnion =
59
59
  | OnlineScaleSettings
60
60
  | DefaultScaleSettings
61
61
  | TargetUtilizationScaleSettings;
62
+ export type ScheduleActionBaseUnion =
63
+ | ScheduleActionBase
64
+ | EndpointScheduleAction
65
+ | JobScheduleAction;
66
+ export type TriggerBaseUnion = TriggerBase | RecurrenceTrigger | CronTrigger;
67
+ export type ForecastHorizonUnion =
68
+ | ForecastHorizon
69
+ | AutoForecastHorizon
70
+ | CustomForecastHorizon;
71
+ export type JobOutputUnion =
72
+ | JobOutput
73
+ | CustomModelJobOutput
74
+ | MLFlowModelJobOutput
75
+ | MLTableJobOutput
76
+ | TritonModelJobOutput
77
+ | UriFileJobOutput
78
+ | UriFolderJobOutput;
79
+ export type AutoMLVerticalUnion =
80
+ | AutoMLVertical
81
+ | Classification
82
+ | Forecasting
83
+ | ImageClassification
84
+ | ImageClassificationMultilabel
85
+ | ImageInstanceSegmentation
86
+ | ImageObjectDetection
87
+ | Regression
88
+ | TextClassification
89
+ | TextClassificationMultilabel
90
+ | TextNer;
91
+ export type JobInputUnion =
92
+ | JobInput
93
+ | MLTableJobInput
94
+ | CustomModelJobInput
95
+ | MLFlowModelJobInput
96
+ | LiteralJobInput
97
+ | TritonModelJobInput
98
+ | UriFileJobInput
99
+ | UriFolderJobInput;
100
+ export type NCrossValidationsUnion =
101
+ | NCrossValidations
102
+ | AutoNCrossValidations
103
+ | CustomNCrossValidations;
104
+ export type SeasonalityUnion =
105
+ | Seasonality
106
+ | AutoSeasonality
107
+ | CustomSeasonality;
108
+ export type TargetLagsUnion = TargetLags | AutoTargetLags | CustomTargetLags;
109
+ export type TargetRollingWindowSizeUnion =
110
+ | TargetRollingWindowSize
111
+ | AutoTargetRollingWindowSize
112
+ | CustomTargetRollingWindowSize;
62
113
  export type EarlyTerminationPolicyUnion =
63
114
  | EarlyTerminationPolicy
64
115
  | BanditPolicy
@@ -74,24 +125,7 @@ export type DistributionConfigurationUnion =
74
125
  | Mpi
75
126
  | PyTorch
76
127
  | TensorFlow;
77
- export type JobInputUnion =
78
- | JobInput
79
- | CustomModelJobInput
80
- | LiteralJobInput
81
- | MLFlowModelJobInput
82
- | MLTableJobInput
83
- | TritonModelJobInput
84
- | UriFileJobInput
85
- | UriFolderJobInput;
86
128
  export type JobLimitsUnion = JobLimits | CommandJobLimits | SweepJobLimits;
87
- export type JobOutputUnion =
88
- | JobOutput
89
- | CustomModelJobOutput
90
- | MLFlowModelJobOutput
91
- | MLTableJobOutput
92
- | TritonModelJobOutput
93
- | UriFileJobOutput
94
- | UriFolderJobOutput;
95
129
  export type OnlineDeploymentPropertiesUnion =
96
130
  | OnlineDeploymentProperties
97
131
  | KubernetesOnlineDeployment
@@ -104,6 +138,7 @@ export type DatastorePropertiesUnion =
104
138
  | AzureFileDatastore;
105
139
  export type JobBasePropertiesUnion =
106
140
  | JobBaseProperties
141
+ | AutoMLJob
107
142
  | CommandJob
108
143
  | PipelineJob
109
144
  | SweepJob;
@@ -773,21 +808,18 @@ export interface ComputeResourceSchema {
773
808
  export interface Compute {
774
809
  /** Polymorphic discriminator, which specifies the different types this object can be */
775
810
  computeType:
776
- | "AKS"
777
- | "Kubernetes"
778
- | "AmlCompute"
779
- | "ComputeInstance"
780
- | "VirtualMachine"
781
- | "HDInsight"
782
- | "DataFactory"
783
- | "Databricks"
784
- | "DataLakeAnalytics"
785
- | "SynapseSpark";
786
- /**
787
- * Location for the underlying compute
788
- * NOTE: This property will not be serialized. It can only be populated by the server.
789
- */
790
- readonly computeLocation?: string;
811
+ | "AKS"
812
+ | "Kubernetes"
813
+ | "AmlCompute"
814
+ | "ComputeInstance"
815
+ | "VirtualMachine"
816
+ | "HDInsight"
817
+ | "DataFactory"
818
+ | "Databricks"
819
+ | "DataLakeAnalytics"
820
+ | "SynapseSpark";
821
+ /** Location for the underlying compute */
822
+ computeLocation?: string;
791
823
  /**
792
824
  * The provision state of the cluster. Valid values are Unknown, Updating, Provisioning, Succeeded, and Failed.
793
825
  * NOTE: This property will not be serialized. It can only be populated by the server.
@@ -1173,11 +1205,11 @@ export interface DatastoreResourceArmPaginatedResult {
1173
1205
  export interface DatastoreCredentials {
1174
1206
  /** Polymorphic discriminator, which specifies the different types this object can be */
1175
1207
  credentialsType:
1176
- | "AccountKey"
1177
- | "Certificate"
1178
- | "None"
1179
- | "Sas"
1180
- | "ServicePrincipal";
1208
+ | "AccountKey"
1209
+ | "Certificate"
1210
+ | "None"
1211
+ | "Sas"
1212
+ | "ServicePrincipal";
1181
1213
  }
1182
1214
 
1183
1215
  /** Base definition for datastore secrets. */
@@ -1427,6 +1459,37 @@ export interface EndpointAuthToken {
1427
1459
  tokenType?: string;
1428
1460
  }
1429
1461
 
1462
+ /** A paginated list of Schedule entities. */
1463
+ export interface ScheduleResourceArmPaginatedResult {
1464
+ /** The link to the next page of Schedule objects. If null, there are no additional pages. */
1465
+ nextLink?: string;
1466
+ /** An array of objects of type Schedule. */
1467
+ value?: Schedule[];
1468
+ }
1469
+
1470
+ export interface ScheduleActionBase {
1471
+ /** Polymorphic discriminator, which specifies the different types this object can be */
1472
+ actionType: "InvokeBatchEndpoint" | "CreateJob";
1473
+ }
1474
+
1475
+ export interface TriggerBase {
1476
+ /** Polymorphic discriminator, which specifies the different types this object can be */
1477
+ triggerType: "Recurrence" | "Cron";
1478
+ /**
1479
+ * Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601.
1480
+ * Recommented format would be "2022-06-01T00:00:01"
1481
+ * If not present, the schedule will run indefinitely
1482
+ */
1483
+ endTime?: string;
1484
+ /** Specifies start time of schedule in ISO 8601 format, but without a UTC offset. */
1485
+ startTime?: string;
1486
+ /**
1487
+ * Specifies time zone in which the schedule runs.
1488
+ * TimeZone should follow Windows time zone format. Refer: https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11
1489
+ */
1490
+ timeZone?: string;
1491
+ }
1492
+
1430
1493
  /** The List Aml user feature operation response. */
1431
1494
  export interface ListAmlUserFeatureResult {
1432
1495
  /**
@@ -1852,7 +1915,7 @@ export interface ScriptsToExecute {
1852
1915
 
1853
1916
  /** Script reference */
1854
1917
  export interface ScriptReference {
1855
- /** The storage source of the script: inline, workspace. */
1918
+ /** The storage source of the script: workspace. */
1856
1919
  scriptSource?: string;
1857
1920
  /** The location of scripts in the mounted volume. */
1858
1921
  scriptData?: string;
@@ -1883,7 +1946,7 @@ export interface ComputeSchedules {
1883
1946
  /** Compute start stop schedule properties */
1884
1947
  export interface ComputeStartStopSchedule {
1885
1948
  /**
1886
- * Schedule id.
1949
+ * A system assigned id for the schedule.
1887
1950
  * NOTE: This property will not be serialized. It can only be populated by the server.
1888
1951
  */
1889
1952
  readonly id?: string;
@@ -1892,14 +1955,37 @@ export interface ComputeStartStopSchedule {
1892
1955
  * NOTE: This property will not be serialized. It can only be populated by the server.
1893
1956
  */
1894
1957
  readonly provisioningStatus?: ProvisioningStatus;
1895
- /** The compute power action. */
1958
+ /** Is the schedule enabled or disabled? */
1959
+ status?: ScheduleStatus;
1960
+ /** [Required] The compute power action. */
1896
1961
  action?: ComputePowerAction;
1962
+ /** [Required] The schedule trigger type. */
1963
+ triggerType?: TriggerType;
1964
+ /** Required if triggerType is Recurrence. */
1965
+ recurrence?: RecurrenceTrigger;
1966
+ /** Required if triggerType is Cron. */
1967
+ cron?: CronTrigger;
1968
+ /** [Deprecated] Not used any more. */
1897
1969
  schedule?: ScheduleBase;
1898
1970
  }
1899
1971
 
1972
+ export interface RecurrenceSchedule {
1973
+ /** [Required] List of hours for the schedule. */
1974
+ hours: number[];
1975
+ /** [Required] List of minutes for the schedule. */
1976
+ minutes: number[];
1977
+ /** List of month days for the schedule */
1978
+ monthDays?: number[];
1979
+ /** List of days for the schedule. */
1980
+ weekDays?: WeekDay[];
1981
+ }
1982
+
1900
1983
  export interface ScheduleBase {
1984
+ /** A system assigned id for the schedule. */
1901
1985
  id?: string;
1986
+ /** The current deployment state of schedule. */
1902
1987
  provisioningStatus?: ScheduleProvisioningState;
1988
+ /** Is the schedule enabled or disabled? */
1903
1989
  status?: ScheduleStatus;
1904
1990
  }
1905
1991
 
@@ -2135,6 +2221,93 @@ export interface AssetJobOutput {
2135
2221
  uri?: string;
2136
2222
  }
2137
2223
 
2224
+ /** The desired maximum forecast horizon in units of time-series frequency. */
2225
+ export interface ForecastHorizon {
2226
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2227
+ mode: "Auto" | "Custom";
2228
+ }
2229
+
2230
+ /** Job output definition container information on where to find job output/logs. */
2231
+ export interface JobOutput {
2232
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2233
+ jobOutputType:
2234
+ | "custom_model"
2235
+ | "mlflow_model"
2236
+ | "mltable"
2237
+ | "triton_model"
2238
+ | "uri_file"
2239
+ | "uri_folder";
2240
+ /** Description for the output. */
2241
+ description?: string;
2242
+ }
2243
+
2244
+ /**
2245
+ * AutoML vertical class.
2246
+ * Base class for AutoML verticals - TableVertical/ImageVertical/NLPVertical
2247
+ */
2248
+ export interface AutoMLVertical {
2249
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2250
+ taskType:
2251
+ | "Classification"
2252
+ | "Forecasting"
2253
+ | "ImageClassification"
2254
+ | "ImageClassificationMultilabel"
2255
+ | "ImageInstanceSegmentation"
2256
+ | "ImageObjectDetection"
2257
+ | "Regression"
2258
+ | "TextClassification"
2259
+ | "TextClassificationMultilabel"
2260
+ | "TextNER";
2261
+ /** Log verbosity for the job. */
2262
+ logVerbosity?: LogVerbosity;
2263
+ /**
2264
+ * Target column name: This is prediction values column.
2265
+ * Also known as label column name in context of classification tasks.
2266
+ */
2267
+ targetColumnName?: string;
2268
+ /** [Required] Training data input. */
2269
+ trainingData: MLTableJobInput;
2270
+ }
2271
+
2272
+ /** Command job definition. */
2273
+ export interface JobInput {
2274
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2275
+ jobInputType:
2276
+ | "mltable"
2277
+ | "custom_model"
2278
+ | "mlflow_model"
2279
+ | "literal"
2280
+ | "triton_model"
2281
+ | "uri_file"
2282
+ | "uri_folder";
2283
+ /** Description for the input. */
2284
+ description?: string;
2285
+ }
2286
+
2287
+ /** N-Cross validations value. */
2288
+ export interface NCrossValidations {
2289
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2290
+ mode: "Auto" | "Custom";
2291
+ }
2292
+
2293
+ /** Forecasting seasonality. */
2294
+ export interface Seasonality {
2295
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2296
+ mode: "Auto" | "Custom";
2297
+ }
2298
+
2299
+ /** The number of past periods to lag from the target column. */
2300
+ export interface TargetLags {
2301
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2302
+ mode: "Auto" | "Custom";
2303
+ }
2304
+
2305
+ /** Forecasting target rolling window size. */
2306
+ export interface TargetRollingWindowSize {
2307
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2308
+ mode: "Auto" | "Custom";
2309
+ }
2310
+
2138
2311
  /** Early termination policies enable canceling poor-performing runs before they complete */
2139
2312
  export interface EarlyTerminationPolicy {
2140
2313
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -2154,27 +2327,111 @@ export interface SamplingAlgorithm {
2154
2327
  samplingAlgorithmType: "Bayesian" | "Grid" | "Random";
2155
2328
  }
2156
2329
 
2330
+ /** Training related configuration. */
2331
+ export interface TrainingSettings {
2332
+ /** Enable recommendation of DNN models. */
2333
+ enableDnnTraining?: boolean;
2334
+ /** Flag to turn on explainability on best model. */
2335
+ enableModelExplainability?: boolean;
2336
+ /** Flag for enabling onnx compatible models. */
2337
+ enableOnnxCompatibleModels?: boolean;
2338
+ /** Enable stack ensemble run. */
2339
+ enableStackEnsemble?: boolean;
2340
+ /** Enable voting ensemble run. */
2341
+ enableVoteEnsemble?: boolean;
2342
+ /**
2343
+ * During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
2344
+ * Configure this parameter with a higher value than 300 secs, if more time is needed.
2345
+ */
2346
+ ensembleModelDownloadTimeout?: string;
2347
+ /** Stack ensemble settings for stack ensemble run. */
2348
+ stackEnsembleSettings?: StackEnsembleSettings;
2349
+ }
2350
+
2351
+ /** Advances setting to customize StackEnsemble run. */
2352
+ export interface StackEnsembleSettings {
2353
+ /** Optional parameters to pass to the initializer of the meta-learner. */
2354
+ stackMetaLearnerKWargs?: Record<string, unknown>;
2355
+ /** Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. */
2356
+ stackMetaLearnerTrainPercentage?: number;
2357
+ /** The meta-learner is a model trained on the output of the individual heterogeneous models. */
2358
+ stackMetaLearnerType?: StackMetaLearnerType;
2359
+ }
2360
+
2361
+ /** Abstract class for AutoML tasks that use table dataset as input - such as Classification/Regression/Forecasting. */
2362
+ export interface TableVertical {
2363
+ /** Columns to use for CVSplit data. */
2364
+ cvSplitColumnNames?: string[];
2365
+ /** Featurization inputs needed for AutoML job. */
2366
+ featurizationSettings?: TableVerticalFeaturizationSettings;
2367
+ /** Execution constraints for AutoMLJob. */
2368
+ limitSettings?: TableVerticalLimitSettings;
2369
+ /**
2370
+ * Number of cross validation folds to be applied on training dataset
2371
+ * when validation dataset is not provided.
2372
+ */
2373
+ nCrossValidations?: NCrossValidationsUnion;
2374
+ /** Test data input. */
2375
+ testData?: MLTableJobInput;
2376
+ /**
2377
+ * The fraction of test dataset that needs to be set aside for validation purpose.
2378
+ * Values between (0.0 , 1.0)
2379
+ * Applied when validation dataset is not provided.
2380
+ */
2381
+ testDataSize?: number;
2382
+ /** Validation data inputs. */
2383
+ validationData?: MLTableJobInput;
2384
+ /**
2385
+ * The fraction of training dataset that needs to be set aside for validation purpose.
2386
+ * Values between (0.0 , 1.0)
2387
+ * Applied when validation dataset is not provided.
2388
+ */
2389
+ validationDataSize?: number;
2390
+ /** The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. */
2391
+ weightColumnName?: string;
2392
+ }
2393
+
2394
+ /** Column transformer parameters. */
2395
+ export interface ColumnTransformer {
2396
+ /** Fields to apply transformer logic on. */
2397
+ fields?: string[];
2398
+ /**
2399
+ * Different properties to be passed to transformer.
2400
+ * Input expected is dictionary of key,value pairs in JSON format.
2401
+ */
2402
+ parameters?: Record<string, unknown>;
2403
+ }
2404
+
2405
+ /** Featurization Configuration. */
2406
+ export interface FeaturizationSettings {
2407
+ /** Dataset language, useful for the text data. */
2408
+ datasetLanguage?: string;
2409
+ }
2410
+
2411
+ /** Job execution constraints. */
2412
+ export interface TableVerticalLimitSettings {
2413
+ /** Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. */
2414
+ enableEarlyTermination?: boolean;
2415
+ /** Exit score for the AutoML job. */
2416
+ exitScore?: number;
2417
+ /** Maximum Concurrent iterations. */
2418
+ maxConcurrentTrials?: number;
2419
+ /** Max cores per iteration. */
2420
+ maxCoresPerTrial?: number;
2421
+ /** Number of iterations. */
2422
+ maxTrials?: number;
2423
+ /** AutoML job timeout. */
2424
+ timeout?: string;
2425
+ /** Iteration timeout. */
2426
+ trialTimeout?: string;
2427
+ }
2428
+
2157
2429
  /** Base definition for job distribution configuration. */
2158
2430
  export interface DistributionConfiguration {
2159
2431
  /** Polymorphic discriminator, which specifies the different types this object can be */
2160
2432
  distributionType: "Mpi" | "PyTorch" | "TensorFlow";
2161
2433
  }
2162
2434
 
2163
- /** Command job definition. */
2164
- export interface JobInput {
2165
- /** Polymorphic discriminator, which specifies the different types this object can be */
2166
- jobInputType:
2167
- | "custom_model"
2168
- | "literal"
2169
- | "mlflow_model"
2170
- | "mltable"
2171
- | "triton_model"
2172
- | "uri_file"
2173
- | "uri_folder";
2174
- /** Description for the input. */
2175
- description?: string;
2176
- }
2177
-
2178
2435
  export interface JobLimits {
2179
2436
  /** Polymorphic discriminator, which specifies the different types this object can be */
2180
2437
  jobLimitsType: "Command" | "Sweep";
@@ -2182,20 +2439,6 @@ export interface JobLimits {
2182
2439
  timeout?: string;
2183
2440
  }
2184
2441
 
2185
- /** Job output definition container information on where to find job output/logs. */
2186
- export interface JobOutput {
2187
- /** Polymorphic discriminator, which specifies the different types this object can be */
2188
- jobOutputType:
2189
- | "custom_model"
2190
- | "mlflow_model"
2191
- | "mltable"
2192
- | "triton_model"
2193
- | "uri_file"
2194
- | "uri_folder";
2195
- /** Description for the output. */
2196
- description?: string;
2197
- }
2198
-
2199
2442
  /** Resource requirements for each container instance within an online deployment. */
2200
2443
  export interface ContainerResourceRequirements {
2201
2444
  /** Container resource limit info: */
@@ -2222,6 +2465,297 @@ export interface ContainerResourceSettings {
2222
2465
  memory?: string;
2223
2466
  }
2224
2467
 
2468
+ /** Forecasting specific parameters. */
2469
+ export interface ForecastingSettings {
2470
+ /**
2471
+ * Country or region for holidays for forecasting tasks.
2472
+ * These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.
2473
+ */
2474
+ countryOrRegionForHolidays?: string;
2475
+ /**
2476
+ * Number of periods between the origin time of one CV fold and the next fold. For
2477
+ * example, if `CVStepSize` = 3 for daily data, the origin time for each fold will be
2478
+ * three days apart.
2479
+ */
2480
+ cvStepSize?: number;
2481
+ /** Flag for generating lags for the numeric features with 'auto' or null. */
2482
+ featureLags?: FeatureLags;
2483
+ /** The desired maximum forecast horizon in units of time-series frequency. */
2484
+ forecastHorizon?: ForecastHorizonUnion;
2485
+ /** When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. */
2486
+ frequency?: string;
2487
+ /**
2488
+ * Set time series seasonality as an integer multiple of the series frequency.
2489
+ * If seasonality is set to 'auto', it will be inferred.
2490
+ */
2491
+ seasonality?: SeasonalityUnion;
2492
+ /** The parameter defining how if AutoML should handle short time series. */
2493
+ shortSeriesHandlingConfig?: ShortSeriesHandlingConfiguration;
2494
+ /**
2495
+ * The function to be used to aggregate the time series target column to conform to a user specified frequency.
2496
+ * If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".
2497
+ */
2498
+ targetAggregateFunction?: TargetAggregationFunction;
2499
+ /** The number of past periods to lag from the target column. */
2500
+ targetLags?: TargetLagsUnion;
2501
+ /** The number of past periods used to create a rolling window average of the target column. */
2502
+ targetRollingWindowSize?: TargetRollingWindowSizeUnion;
2503
+ /** The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. */
2504
+ timeColumnName?: string;
2505
+ /**
2506
+ * The names of columns used to group a timeseries. It can be used to create multiple series.
2507
+ * If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting.
2508
+ */
2509
+ timeSeriesIdColumnNames?: string[];
2510
+ /** Configure STL Decomposition of the time-series target column. */
2511
+ useStl?: UseStl;
2512
+ }
2513
+
2514
+ /**
2515
+ * Settings used for training the model.
2516
+ * For more information on the available settings please visit the official documentation:
2517
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2518
+ */
2519
+ export interface ImageModelSettings {
2520
+ /** Settings for advanced scenarios. */
2521
+ advancedSettings?: string;
2522
+ /** Enable AMSGrad when optimizer is 'adam' or 'adamw'. */
2523
+ amsGradient?: boolean;
2524
+ /** Settings for using Augmentations. */
2525
+ augmentations?: string;
2526
+ /** Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
2527
+ beta1?: number;
2528
+ /** Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
2529
+ beta2?: number;
2530
+ /** Frequency to store model checkpoints. Must be a positive integer. */
2531
+ checkpointFrequency?: number;
2532
+ /** The pretrained checkpoint model for incremental training. */
2533
+ checkpointModel?: MLFlowModelJobInput;
2534
+ /** The id of a previous run that has a pretrained checkpoint for incremental training. */
2535
+ checkpointRunId?: string;
2536
+ /** Whether to use distributed training. */
2537
+ distributed?: boolean;
2538
+ /** Enable early stopping logic during training. */
2539
+ earlyStopping?: boolean;
2540
+ /**
2541
+ * Minimum number of epochs or validation evaluations to wait before primary metric improvement
2542
+ * is tracked for early stopping. Must be a positive integer.
2543
+ */
2544
+ earlyStoppingDelay?: number;
2545
+ /**
2546
+ * Minimum number of epochs or validation evaluations with no primary metric improvement before
2547
+ * the run is stopped. Must be a positive integer.
2548
+ */
2549
+ earlyStoppingPatience?: number;
2550
+ /** Enable normalization when exporting ONNX model. */
2551
+ enableOnnxNormalization?: boolean;
2552
+ /** Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. */
2553
+ evaluationFrequency?: number;
2554
+ /**
2555
+ * Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
2556
+ * updating the model weights while accumulating the gradients of those steps, and then using
2557
+ * the accumulated gradients to compute the weight updates. Must be a positive integer.
2558
+ */
2559
+ gradientAccumulationStep?: number;
2560
+ /**
2561
+ * Number of layers to freeze for the model. Must be a positive integer.
2562
+ * For instance, passing 2 as value for 'seresnext' means
2563
+ * freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
2564
+ * see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2565
+ */
2566
+ layersToFreeze?: number;
2567
+ /** Initial learning rate. Must be a float in the range [0, 1]. */
2568
+ learningRate?: number;
2569
+ /** Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. */
2570
+ learningRateScheduler?: LearningRateScheduler;
2571
+ /**
2572
+ * Name of the model to use for training.
2573
+ * For more information on the available models please visit the official documentation:
2574
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2575
+ */
2576
+ modelName?: string;
2577
+ /** Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. */
2578
+ momentum?: number;
2579
+ /** Enable nesterov when optimizer is 'sgd'. */
2580
+ nesterov?: boolean;
2581
+ /** Number of training epochs. Must be a positive integer. */
2582
+ numberOfEpochs?: number;
2583
+ /** Number of data loader workers. Must be a non-negative integer. */
2584
+ numberOfWorkers?: number;
2585
+ /** Type of optimizer. */
2586
+ optimizer?: StochasticOptimizer;
2587
+ /** Random seed to be used when using deterministic training. */
2588
+ randomSeed?: number;
2589
+ /** Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. */
2590
+ stepLRGamma?: number;
2591
+ /** Value of step size when learning rate scheduler is 'step'. Must be a positive integer. */
2592
+ stepLRStepSize?: number;
2593
+ /** Training batch size. Must be a positive integer. */
2594
+ trainingBatchSize?: number;
2595
+ /** Validation batch size. Must be a positive integer. */
2596
+ validationBatchSize?: number;
2597
+ /** Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. */
2598
+ warmupCosineLRCycles?: number;
2599
+ /** Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. */
2600
+ warmupCosineLRWarmupEpochs?: number;
2601
+ /** Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. */
2602
+ weightDecay?: number;
2603
+ }
2604
+
2605
+ /**
2606
+ * Distribution expressions to sweep over values of model settings.
2607
+ * <example>
2608
+ * Some examples are:
2609
+ * <code>
2610
+ * ModelName = "choice('seresnext', 'resnest50')";
2611
+ * LearningRate = "uniform(0.001, 0.01)";
2612
+ * LayersToFreeze = "choice(0, 2)";
2613
+ * </code></example>
2614
+ * All distributions can be specified as distribution_name(min, max) or choice(val1, val2, ..., valn)
2615
+ * where distribution name can be: uniform, quniform, loguniform, etc
2616
+ * For more details on how to compose distribution expressions please check the documentation:
2617
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
2618
+ * For more information on the available settings please visit the official documentation:
2619
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2620
+ */
2621
+ export interface ImageModelDistributionSettings {
2622
+ /** Enable AMSGrad when optimizer is 'adam' or 'adamw'. */
2623
+ amsGradient?: string;
2624
+ /** Settings for using Augmentations. */
2625
+ augmentations?: string;
2626
+ /** Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
2627
+ beta1?: string;
2628
+ /** Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
2629
+ beta2?: string;
2630
+ /** Whether to use distributer training. */
2631
+ distributed?: string;
2632
+ /** Enable early stopping logic during training. */
2633
+ earlyStopping?: string;
2634
+ /**
2635
+ * Minimum number of epochs or validation evaluations to wait before primary metric improvement
2636
+ * is tracked for early stopping. Must be a positive integer.
2637
+ */
2638
+ earlyStoppingDelay?: string;
2639
+ /**
2640
+ * Minimum number of epochs or validation evaluations with no primary metric improvement before
2641
+ * the run is stopped. Must be a positive integer.
2642
+ */
2643
+ earlyStoppingPatience?: string;
2644
+ /** Enable normalization when exporting ONNX model. */
2645
+ enableOnnxNormalization?: string;
2646
+ /** Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. */
2647
+ evaluationFrequency?: string;
2648
+ /**
2649
+ * Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
2650
+ * updating the model weights while accumulating the gradients of those steps, and then using
2651
+ * the accumulated gradients to compute the weight updates. Must be a positive integer.
2652
+ */
2653
+ gradientAccumulationStep?: string;
2654
+ /**
2655
+ * Number of layers to freeze for the model. Must be a positive integer.
2656
+ * For instance, passing 2 as value for 'seresnext' means
2657
+ * freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
2658
+ * see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2659
+ */
2660
+ layersToFreeze?: string;
2661
+ /** Initial learning rate. Must be a float in the range [0, 1]. */
2662
+ learningRate?: string;
2663
+ /** Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. */
2664
+ learningRateScheduler?: string;
2665
+ /**
2666
+ * Name of the model to use for training.
2667
+ * For more information on the available models please visit the official documentation:
2668
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
2669
+ */
2670
+ modelName?: string;
2671
+ /** Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. */
2672
+ momentum?: string;
2673
+ /** Enable nesterov when optimizer is 'sgd'. */
2674
+ nesterov?: string;
2675
+ /** Number of training epochs. Must be a positive integer. */
2676
+ numberOfEpochs?: string;
2677
+ /** Number of data loader workers. Must be a non-negative integer. */
2678
+ numberOfWorkers?: string;
2679
+ /** Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. */
2680
+ optimizer?: string;
2681
+ /** Random seed to be used when using deterministic training. */
2682
+ randomSeed?: string;
2683
+ /** Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. */
2684
+ stepLRGamma?: string;
2685
+ /** Value of step size when learning rate scheduler is 'step'. Must be a positive integer. */
2686
+ stepLRStepSize?: string;
2687
+ /** Training batch size. Must be a positive integer. */
2688
+ trainingBatchSize?: string;
2689
+ /** Validation batch size. Must be a positive integer. */
2690
+ validationBatchSize?: string;
2691
+ /** Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. */
2692
+ warmupCosineLRCycles?: string;
2693
+ /** Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. */
2694
+ warmupCosineLRWarmupEpochs?: string;
2695
+ /** Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. */
2696
+ weightDecay?: string;
2697
+ }
2698
+
2699
+ /**
2700
+ * Abstract class for AutoML tasks that train image (computer vision) models -
2701
+ * such as Image Classification / Image Classification Multilabel / Image Object Detection / Image Instance Segmentation.
2702
+ */
2703
+ export interface ImageVertical {
2704
+ /** [Required] Limit settings for the AutoML job. */
2705
+ limitSettings: ImageLimitSettings;
2706
+ /** Model sweeping and hyperparameter sweeping related settings. */
2707
+ sweepSettings?: ImageSweepSettings;
2708
+ /** Validation data inputs. */
2709
+ validationData?: MLTableJobInput;
2710
+ /**
2711
+ * The fraction of training dataset that needs to be set aside for validation purpose.
2712
+ * Values between (0.0 , 1.0)
2713
+ * Applied when validation dataset is not provided.
2714
+ */
2715
+ validationDataSize?: number;
2716
+ }
2717
+
2718
+ /** Limit settings for the AutoML job. */
2719
+ export interface ImageLimitSettings {
2720
+ /** Maximum number of concurrent AutoML iterations. */
2721
+ maxConcurrentTrials?: number;
2722
+ /** Maximum number of AutoML iterations. */
2723
+ maxTrials?: number;
2724
+ /** AutoML job timeout. */
2725
+ timeout?: string;
2726
+ }
2727
+
2728
+ /** Model sweeping and hyperparameter sweeping related settings. */
2729
+ export interface ImageSweepSettings {
2730
+ /** Type of early termination policy. */
2731
+ earlyTermination?: EarlyTerminationPolicyUnion;
2732
+ /** [Required] Type of the hyperparameter sampling algorithms. */
2733
+ samplingAlgorithm: SamplingAlgorithmType;
2734
+ }
2735
+
2736
+ /**
2737
+ * Abstract class for NLP related AutoML tasks.
2738
+ * NLP - Natural Language Processing.
2739
+ */
2740
+ export interface NlpVertical {
2741
+ /** Featurization inputs needed for AutoML job. */
2742
+ featurizationSettings?: NlpVerticalFeaturizationSettings;
2743
+ /** Execution constraints for AutoMLJob. */
2744
+ limitSettings?: NlpVerticalLimitSettings;
2745
+ /** Validation data inputs. */
2746
+ validationData?: MLTableJobInput;
2747
+ }
2748
+
2749
+ /** Job execution constraints. */
2750
+ export interface NlpVerticalLimitSettings {
2751
+ /** Maximum Concurrent AutoML iterations. */
2752
+ maxConcurrentTrials?: number;
2753
+ /** Number of AutoML iterations. */
2754
+ maxTrials?: number;
2755
+ /** AutoML job timeout. */
2756
+ timeout?: string;
2757
+ }
2758
+
2225
2759
  /** Optimization objective. */
2226
2760
  export interface Objective {
2227
2761
  /** [Required] Defines supported metric goals for hyperparameter tuning */
@@ -2243,7 +2777,7 @@ export interface TrialComponent {
2243
2777
  /** Environment variables included in the job. */
2244
2778
  environmentVariables?: { [propertyName: string]: string | null };
2245
2779
  /** Compute Resource configuration for the job. */
2246
- resources?: ResourceConfiguration;
2780
+ resources?: JobResourceConfiguration;
2247
2781
  }
2248
2782
 
2249
2783
  /** The Private Endpoint Connection resource. */
@@ -2476,6 +3010,12 @@ export interface ModelVersion extends Resource {
2476
3010
  properties: ModelVersionProperties;
2477
3011
  }
2478
3012
 
3013
+ /** Azure Resource Manager resource envelope. */
3014
+ export interface Schedule extends Resource {
3015
+ /** [Required] Additional attributes of the entity. */
3016
+ properties: ScheduleProperties;
3017
+ }
3018
+
2479
3019
  /** A Machine Learning compute based on AKS. */
2480
3020
  export interface Aks extends Compute, AKSSchema {
2481
3021
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -2540,7 +3080,7 @@ export interface SynapseSpark extends Compute {
2540
3080
  /** Secrets related to a Machine Learning compute based on AKS. */
2541
3081
  export interface AksComputeSecrets
2542
3082
  extends ComputeSecrets,
2543
- AksComputeSecretsProperties {
3083
+ AksComputeSecretsProperties {
2544
3084
  /** Polymorphic discriminator, which specifies the different types this object can be */
2545
3085
  computeType: "AKS";
2546
3086
  }
@@ -2548,7 +3088,7 @@ export interface AksComputeSecrets
2548
3088
  /** Secrets related to a Machine Learning compute based on AKS. */
2549
3089
  export interface VirtualMachineSecrets
2550
3090
  extends ComputeSecrets,
2551
- VirtualMachineSecretsSchema {
3091
+ VirtualMachineSecretsSchema {
2552
3092
  /** Polymorphic discriminator, which specifies the different types this object can be */
2553
3093
  computeType: "VirtualMachine";
2554
3094
  }
@@ -2556,7 +3096,7 @@ export interface VirtualMachineSecrets
2556
3096
  /** Secrets related to a Machine Learning compute based on Databricks. */
2557
3097
  export interface DatabricksComputeSecrets
2558
3098
  extends ComputeSecrets,
2559
- DatabricksComputeSecretsProperties {
3099
+ DatabricksComputeSecretsProperties {
2560
3100
  /** Polymorphic discriminator, which specifies the different types this object can be */
2561
3101
  computeType: "Databricks";
2562
3102
  }
@@ -2618,6 +3158,8 @@ export interface OnlineEndpointProperties extends EndpointPropertiesBase {
2618
3158
  * NOTE: This property will not be serialized. It can only be populated by the server.
2619
3159
  */
2620
3160
  readonly provisioningState?: EndpointProvisioningState;
3161
+ /** Set to "Enabled" for endpoints that should allow public access when Private Link is enabled. */
3162
+ publicNetworkAccess?: PublicNetworkAccessType;
2621
3163
  /** Percentage of traffic from endpoint to divert to each deployment. Traffic values need to sum to 100. */
2622
3164
  traffic?: { [propertyName: string]: number };
2623
3165
  }
@@ -2664,6 +3206,16 @@ export interface OutputPathAssetReference extends AssetReferenceBase {
2664
3206
  path?: string;
2665
3207
  }
2666
3208
 
3209
+ export interface DeploymentResourceConfiguration
3210
+ extends ResourceConfiguration { }
3211
+
3212
+ export interface JobResourceConfiguration extends ResourceConfiguration {
3213
+ /** Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. */
3214
+ dockerArgs?: string;
3215
+ /** Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). */
3216
+ shmSize?: string;
3217
+ }
3218
+
2667
3219
  /** Batch inference settings per deployment. */
2668
3220
  export interface BatchDeploymentProperties
2669
3221
  extends EndpointDeploymentPropertiesBase {
@@ -2702,7 +3254,7 @@ export interface BatchDeploymentProperties
2702
3254
  * Indicates compute configuration for the job.
2703
3255
  * If not provided, will default to the defaults defined in ResourceConfiguration.
2704
3256
  */
2705
- resources?: ResourceConfiguration;
3257
+ resources?: DeploymentResourceConfiguration;
2706
3258
  /**
2707
3259
  * Retry Settings for the batch inference operation.
2708
3260
  * If not provided, will default to the defaults defined in BatchRetrySettings.
@@ -2714,6 +3266,8 @@ export interface OnlineDeploymentProperties
2714
3266
  extends EndpointDeploymentPropertiesBase {
2715
3267
  /** If true, enables Application Insights logging. */
2716
3268
  appInsightsEnabled?: boolean;
3269
+ /** If Enabled, allow egress public network access. If Disabled, this will create secure egress. Default: Enabled. */
3270
+ egressPublicNetworkAccess?: EgressPublicNetworkAccessType;
2717
3271
  /** [Required] The compute type of the endpoint. */
2718
3272
  endpointComputeType: EndpointComputeType;
2719
3273
  /** Compute instance type. */
@@ -2779,6 +3333,8 @@ export interface DatastoreProperties extends ResourceBase {
2779
3333
 
2780
3334
  /** Base definition for a job. */
2781
3335
  export interface JobBaseProperties extends ResourceBase {
3336
+ /** ARM resource ID of the component resource. */
3337
+ componentId?: string;
2782
3338
  /** ARM resource ID of the compute resource. */
2783
3339
  computeId?: string;
2784
3340
  /** Display name of job. */
@@ -2806,6 +3362,23 @@ export interface JobBaseProperties extends ResourceBase {
2806
3362
  readonly status?: JobStatus;
2807
3363
  }
2808
3364
 
3365
+ /** Base definition of a schedule */
3366
+ export interface ScheduleProperties extends ResourceBase {
3367
+ /** [Required] Specifies the action of the schedule */
3368
+ action: ScheduleActionBaseUnion;
3369
+ /** Display name of schedule. */
3370
+ displayName?: string;
3371
+ /** Is the schedule enabled? */
3372
+ isEnabled?: boolean;
3373
+ /**
3374
+ * Provisioning state for the schedule.
3375
+ * NOTE: This property will not be serialized. It can only be populated by the server.
3376
+ */
3377
+ readonly provisioningState?: ScheduleProvisioningStatus;
3378
+ /** [Required] Specifies the trigger details */
3379
+ trigger: TriggerBaseUnion;
3380
+ }
3381
+
2809
3382
  /** Account key datastore credentials configuration. */
2810
3383
  export interface AccountKeyDatastoreCredentials extends DatastoreCredentials {
2811
3384
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -2937,100 +3510,190 @@ export interface TargetUtilizationScaleSettings extends OnlineScaleSettings {
2937
3510
  targetUtilizationPercentage?: number;
2938
3511
  }
2939
3512
 
2940
- export interface CustomModelJobInput extends AssetJobInput, JobInput {}
3513
+ export interface EndpointScheduleAction extends ScheduleActionBase {
3514
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3515
+ actionType: "InvokeBatchEndpoint";
3516
+ /**
3517
+ * [Required] Defines Schedule action definition details.
3518
+ * <see href="TBD" />
3519
+ */
3520
+ endpointInvocationDefinition: Record<string, unknown>;
3521
+ }
3522
+
3523
+ export interface JobScheduleAction extends ScheduleActionBase {
3524
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3525
+ actionType: "CreateJob";
3526
+ /** [Required] Defines Schedule action definition details. */
3527
+ jobDefinition: JobBasePropertiesUnion;
3528
+ }
3529
+
3530
+ export interface RecurrenceTrigger extends TriggerBase {
3531
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3532
+ triggerType: "Recurrence";
3533
+ /** [Required] The frequency to trigger schedule. */
3534
+ frequency: RecurrenceFrequency;
3535
+ /** [Required] Specifies schedule interval in conjunction with frequency */
3536
+ interval: number;
3537
+ /** The recurrence schedule. */
3538
+ schedule?: RecurrenceSchedule;
3539
+ }
2941
3540
 
2942
- export interface MLFlowModelJobInput extends AssetJobInput, JobInput {}
3541
+ export interface CronTrigger extends TriggerBase {
3542
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3543
+ triggerType: "Cron";
3544
+ /**
3545
+ * [Required] Specifies cron expression of schedule.
3546
+ * The expression should follow NCronTab format.
3547
+ */
3548
+ expression: string;
3549
+ }
2943
3550
 
2944
- export interface MLTableJobInput extends AssetJobInput, JobInput {}
3551
+ export interface MLTableJobInput extends AssetJobInput, JobInput { }
2945
3552
 
2946
- export interface TritonModelJobInput extends AssetJobInput, JobInput {}
3553
+ export interface CustomModelJobInput extends AssetJobInput, JobInput { }
2947
3554
 
2948
- export interface UriFileJobInput extends AssetJobInput, JobInput {}
3555
+ export interface MLFlowModelJobInput extends AssetJobInput, JobInput { }
2949
3556
 
2950
- export interface UriFolderJobInput extends AssetJobInput, JobInput {}
3557
+ export interface TritonModelJobInput extends AssetJobInput, JobInput { }
2951
3558
 
2952
- export interface CustomModelJobOutput extends AssetJobOutput, JobOutput {}
3559
+ export interface UriFileJobInput extends AssetJobInput, JobInput { }
2953
3560
 
2954
- export interface MLFlowModelJobOutput extends AssetJobOutput, JobOutput {}
3561
+ export interface UriFolderJobInput extends AssetJobInput, JobInput { }
2955
3562
 
2956
- export interface MLTableJobOutput extends AssetJobOutput, JobOutput {}
3563
+ export interface CustomModelJobOutput extends AssetJobOutput, JobOutput { }
2957
3564
 
2958
- export interface TritonModelJobOutput extends AssetJobOutput, JobOutput {}
3565
+ export interface MLFlowModelJobOutput extends AssetJobOutput, JobOutput { }
2959
3566
 
2960
- export interface UriFileJobOutput extends AssetJobOutput, JobOutput {}
3567
+ export interface MLTableJobOutput extends AssetJobOutput, JobOutput { }
2961
3568
 
2962
- export interface UriFolderJobOutput extends AssetJobOutput, JobOutput {}
3569
+ export interface TritonModelJobOutput extends AssetJobOutput, JobOutput { }
2963
3570
 
2964
- /** Defines an early termination policy based on slack criteria, and a frequency and delay interval for evaluation */
2965
- export interface BanditPolicy extends EarlyTerminationPolicy {
2966
- /** Polymorphic discriminator, which specifies the different types this object can be */
2967
- policyType: "Bandit";
2968
- /** Absolute distance allowed from the best performing run. */
2969
- slackAmount?: number;
2970
- /** Ratio of the allowed distance from the best performing run. */
2971
- slackFactor?: number;
2972
- }
3571
+ export interface UriFileJobOutput extends AssetJobOutput, JobOutput { }
2973
3572
 
2974
- /** Defines an early termination policy based on running averages of the primary metric of all runs */
2975
- export interface MedianStoppingPolicy extends EarlyTerminationPolicy {
2976
- /** Polymorphic discriminator, which specifies the different types this object can be */
2977
- policyType: "MedianStopping";
2978
- }
3573
+ export interface UriFolderJobOutput extends AssetJobOutput, JobOutput { }
2979
3574
 
2980
- /** Defines an early termination policy that cancels a given percentage of runs at each evaluation interval. */
2981
- export interface TruncationSelectionPolicy extends EarlyTerminationPolicy {
3575
+ /** Forecast horizon determined automatically by system. */
3576
+ export interface AutoForecastHorizon extends ForecastHorizon {
2982
3577
  /** Polymorphic discriminator, which specifies the different types this object can be */
2983
- policyType: "TruncationSelection";
2984
- /** The percentage of runs to cancel at each evaluation interval. */
2985
- truncationPercentage?: number;
3578
+ mode: "Auto";
2986
3579
  }
2987
3580
 
2988
- /** Defines a Sampling Algorithm that generates values based on previous values */
2989
- export interface BayesianSamplingAlgorithm extends SamplingAlgorithm {
3581
+ /** The desired maximum forecast horizon in units of time-series frequency. */
3582
+ export interface CustomForecastHorizon extends ForecastHorizon {
2990
3583
  /** Polymorphic discriminator, which specifies the different types this object can be */
2991
- samplingAlgorithmType: "Bayesian";
3584
+ mode: "Custom";
3585
+ /** [Required] Forecast horizon value. */
3586
+ value: number;
2992
3587
  }
2993
3588
 
2994
- /** Defines a Sampling Algorithm that exhaustively generates every value combination in the space */
2995
- export interface GridSamplingAlgorithm extends SamplingAlgorithm {
2996
- /** Polymorphic discriminator, which specifies the different types this object can be */
2997
- samplingAlgorithmType: "Grid";
3589
+ /** Classification task in AutoML Table vertical. */
3590
+ export interface Classification extends TableVertical, AutoMLVertical {
3591
+ /** Positive label for binary metrics calculation. */
3592
+ positiveLabel?: string;
3593
+ /** Primary metric for the task. */
3594
+ primaryMetric?: ClassificationPrimaryMetrics;
3595
+ /** Inputs for training phase for an AutoML Job. */
3596
+ trainingSettings?: ClassificationTrainingSettings;
2998
3597
  }
2999
3598
 
3000
- /** Defines a Sampling Algorithm that generates values randomly */
3001
- export interface RandomSamplingAlgorithm extends SamplingAlgorithm {
3002
- /** Polymorphic discriminator, which specifies the different types this object can be */
3003
- samplingAlgorithmType: "Random";
3004
- /** The specific type of random algorithm */
3005
- rule?: RandomSamplingAlgorithmRule;
3006
- /** An optional integer to use as the seed for random number generation */
3007
- seed?: number;
3599
+ /** Forecasting task in AutoML Table vertical. */
3600
+ export interface Forecasting extends TableVertical, AutoMLVertical {
3601
+ /** Forecasting task specific inputs. */
3602
+ forecastingSettings?: ForecastingSettings;
3603
+ /** Primary metric for forecasting task. */
3604
+ primaryMetric?: ForecastingPrimaryMetrics;
3605
+ /** Inputs for training phase for an AutoML Job. */
3606
+ trainingSettings?: ForecastingTrainingSettings;
3008
3607
  }
3009
3608
 
3010
- /** MPI distribution configuration. */
3011
- export interface Mpi extends DistributionConfiguration {
3012
- /** Polymorphic discriminator, which specifies the different types this object can be */
3013
- distributionType: "Mpi";
3014
- /** Number of processes per MPI node. */
3015
- processCountPerInstance?: number;
3609
+ /**
3610
+ * Image Classification. Multi-class image classification is used when an image is classified with only a single label
3611
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'.
3612
+ */
3613
+ export interface ImageClassification
3614
+ extends ImageClassificationBase,
3615
+ AutoMLVertical {
3616
+ /** Primary metric to optimize for this task. */
3617
+ primaryMetric?: ClassificationPrimaryMetrics;
3016
3618
  }
3017
3619
 
3018
- /** PyTorch distribution configuration. */
3019
- export interface PyTorch extends DistributionConfiguration {
3020
- /** Polymorphic discriminator, which specifies the different types this object can be */
3021
- distributionType: "PyTorch";
3022
- /** Number of processes per node. */
3023
- processCountPerInstance?: number;
3620
+ /**
3621
+ * Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
3622
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.
3623
+ */
3624
+ export interface ImageClassificationMultilabel
3625
+ extends ImageClassificationBase,
3626
+ AutoMLVertical {
3627
+ /** Primary metric to optimize for this task. */
3628
+ primaryMetric?: ClassificationMultilabelPrimaryMetrics;
3024
3629
  }
3025
3630
 
3026
- /** TensorFlow distribution configuration. */
3027
- export interface TensorFlow extends DistributionConfiguration {
3028
- /** Polymorphic discriminator, which specifies the different types this object can be */
3029
- distributionType: "TensorFlow";
3030
- /** Number of parameter server tasks. */
3031
- parameterServerCount?: number;
3032
- /** Number of workers. If not specified, will default to the instance count. */
3033
- workerCount?: number;
3631
+ /**
3632
+ * Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
3633
+ * drawing a polygon around each object in the image.
3634
+ */
3635
+ export interface ImageInstanceSegmentation
3636
+ extends ImageObjectDetectionBase,
3637
+ AutoMLVertical {
3638
+ /** Primary metric to optimize for this task. */
3639
+ primaryMetric?: InstanceSegmentationPrimaryMetrics;
3640
+ }
3641
+
3642
+ /**
3643
+ * Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
3644
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
3645
+ */
3646
+ export interface ImageObjectDetection
3647
+ extends ImageObjectDetectionBase,
3648
+ AutoMLVertical {
3649
+ /** Primary metric to optimize for this task. */
3650
+ primaryMetric?: ObjectDetectionPrimaryMetrics;
3651
+ }
3652
+
3653
+ /** Regression task in AutoML Table vertical. */
3654
+ export interface Regression extends TableVertical, AutoMLVertical {
3655
+ /** Primary metric for regression task. */
3656
+ primaryMetric?: RegressionPrimaryMetrics;
3657
+ /** Inputs for training phase for an AutoML Job. */
3658
+ trainingSettings?: RegressionTrainingSettings;
3659
+ }
3660
+
3661
+ /**
3662
+ * Text Classification task in AutoML NLP vertical.
3663
+ * NLP - Natural Language Processing.
3664
+ */
3665
+ export interface TextClassification extends NlpVertical, AutoMLVertical {
3666
+ /** Primary metric for Text-Classification task. */
3667
+ primaryMetric?: ClassificationPrimaryMetrics;
3668
+ }
3669
+
3670
+ /**
3671
+ * Text Classification Multilabel task in AutoML NLP vertical.
3672
+ * NLP - Natural Language Processing.
3673
+ */
3674
+ export interface TextClassificationMultilabel
3675
+ extends NlpVertical,
3676
+ AutoMLVertical {
3677
+ /**
3678
+ * Primary metric for Text-Classification-Multilabel task.
3679
+ * Currently only Accuracy is supported as primary metric, hence user need not set it explicitly.
3680
+ * NOTE: This property will not be serialized. It can only be populated by the server.
3681
+ */
3682
+ readonly primaryMetric?: ClassificationMultilabelPrimaryMetrics;
3683
+ }
3684
+
3685
+ /**
3686
+ * Text-NER task in AutoML NLP vertical.
3687
+ * NER - Named Entity Recognition.
3688
+ * NLP - Natural Language Processing.
3689
+ */
3690
+ export interface TextNer extends NlpVertical, AutoMLVertical {
3691
+ /**
3692
+ * Primary metric for Text-NER task.
3693
+ * Only 'Accuracy' is supported for Text-NER, so user need not set this explicitly.
3694
+ * NOTE: This property will not be serialized. It can only be populated by the server.
3695
+ */
3696
+ readonly primaryMetric?: ClassificationPrimaryMetrics;
3034
3697
  }
3035
3698
 
3036
3699
  /** Literal input type. */
@@ -3041,6 +3704,175 @@ export interface LiteralJobInput extends JobInput {
3041
3704
  value: string;
3042
3705
  }
3043
3706
 
3707
+ /** N-Cross validations determined automatically. */
3708
+ export interface AutoNCrossValidations extends NCrossValidations {
3709
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3710
+ mode: "Auto";
3711
+ }
3712
+
3713
+ /** N-Cross validations are specified by user. */
3714
+ export interface CustomNCrossValidations extends NCrossValidations {
3715
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3716
+ mode: "Custom";
3717
+ /** [Required] N-Cross validations value. */
3718
+ value: number;
3719
+ }
3720
+
3721
+ export interface AutoSeasonality extends Seasonality {
3722
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3723
+ mode: "Auto";
3724
+ }
3725
+
3726
+ export interface CustomSeasonality extends Seasonality {
3727
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3728
+ mode: "Custom";
3729
+ /** [Required] Seasonality value. */
3730
+ value: number;
3731
+ }
3732
+
3733
+ export interface AutoTargetLags extends TargetLags {
3734
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3735
+ mode: "Auto";
3736
+ }
3737
+
3738
+ export interface CustomTargetLags extends TargetLags {
3739
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3740
+ mode: "Custom";
3741
+ /** [Required] Set target lags values. */
3742
+ values: number[];
3743
+ }
3744
+
3745
+ /** Target lags rolling window determined automatically. */
3746
+ export interface AutoTargetRollingWindowSize extends TargetRollingWindowSize {
3747
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3748
+ mode: "Auto";
3749
+ }
3750
+
3751
+ export interface CustomTargetRollingWindowSize extends TargetRollingWindowSize {
3752
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3753
+ mode: "Custom";
3754
+ /** [Required] TargetRollingWindowSize value. */
3755
+ value: number;
3756
+ }
3757
+
3758
+ /** Defines an early termination policy based on slack criteria, and a frequency and delay interval for evaluation */
3759
+ export interface BanditPolicy extends EarlyTerminationPolicy {
3760
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3761
+ policyType: "Bandit";
3762
+ /** Absolute distance allowed from the best performing run. */
3763
+ slackAmount?: number;
3764
+ /** Ratio of the allowed distance from the best performing run. */
3765
+ slackFactor?: number;
3766
+ }
3767
+
3768
+ /** Defines an early termination policy based on running averages of the primary metric of all runs */
3769
+ export interface MedianStoppingPolicy extends EarlyTerminationPolicy {
3770
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3771
+ policyType: "MedianStopping";
3772
+ }
3773
+
3774
+ /** Defines an early termination policy that cancels a given percentage of runs at each evaluation interval. */
3775
+ export interface TruncationSelectionPolicy extends EarlyTerminationPolicy {
3776
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3777
+ policyType: "TruncationSelection";
3778
+ /** The percentage of runs to cancel at each evaluation interval. */
3779
+ truncationPercentage?: number;
3780
+ }
3781
+
3782
+ /** Defines a Sampling Algorithm that generates values based on previous values */
3783
+ export interface BayesianSamplingAlgorithm extends SamplingAlgorithm {
3784
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3785
+ samplingAlgorithmType: "Bayesian";
3786
+ }
3787
+
3788
+ /** Defines a Sampling Algorithm that exhaustively generates every value combination in the space */
3789
+ export interface GridSamplingAlgorithm extends SamplingAlgorithm {
3790
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3791
+ samplingAlgorithmType: "Grid";
3792
+ }
3793
+
3794
+ /** Defines a Sampling Algorithm that generates values randomly */
3795
+ export interface RandomSamplingAlgorithm extends SamplingAlgorithm {
3796
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3797
+ samplingAlgorithmType: "Random";
3798
+ /** The specific type of random algorithm */
3799
+ rule?: RandomSamplingAlgorithmRule;
3800
+ /** An optional integer to use as the seed for random number generation */
3801
+ seed?: number;
3802
+ }
3803
+
3804
+ /** Classification Training related configuration. */
3805
+ export interface ClassificationTrainingSettings extends TrainingSettings {
3806
+ /** Allowed models for classification task. */
3807
+ allowedTrainingAlgorithms?: ClassificationModels[];
3808
+ /** Blocked models for classification task. */
3809
+ blockedTrainingAlgorithms?: ClassificationModels[];
3810
+ }
3811
+
3812
+ /** Forecasting Training related configuration. */
3813
+ export interface ForecastingTrainingSettings extends TrainingSettings {
3814
+ /** Allowed models for forecasting task. */
3815
+ allowedTrainingAlgorithms?: ForecastingModels[];
3816
+ /** Blocked models for forecasting task. */
3817
+ blockedTrainingAlgorithms?: ForecastingModels[];
3818
+ }
3819
+
3820
+ /** Regression Training related configuration. */
3821
+ export interface RegressionTrainingSettings extends TrainingSettings {
3822
+ /** Allowed models for regression task. */
3823
+ allowedTrainingAlgorithms?: RegressionModels[];
3824
+ /** Blocked models for regression task. */
3825
+ blockedTrainingAlgorithms?: RegressionModels[];
3826
+ }
3827
+
3828
+ /** Featurization Configuration. */
3829
+ export interface TableVerticalFeaturizationSettings
3830
+ extends FeaturizationSettings {
3831
+ /** These transformers shall not be used in featurization. */
3832
+ blockedTransformers?: BlockedTransformers[];
3833
+ /** Dictionary of column name and its type (int, float, string, datetime etc). */
3834
+ columnNameAndTypes?: { [propertyName: string]: string | null };
3835
+ /** Determines whether to use Dnn based featurizers for data featurization. */
3836
+ enableDnnFeaturization?: boolean;
3837
+ /**
3838
+ * Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
3839
+ * If 'Off' is selected then no featurization is done.
3840
+ * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
3841
+ */
3842
+ mode?: FeaturizationMode;
3843
+ /** User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. */
3844
+ transformerParams?: { [propertyName: string]: ColumnTransformer[] | null };
3845
+ }
3846
+
3847
+ export interface NlpVerticalFeaturizationSettings
3848
+ extends FeaturizationSettings { }
3849
+
3850
+ /** MPI distribution configuration. */
3851
+ export interface Mpi extends DistributionConfiguration {
3852
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3853
+ distributionType: "Mpi";
3854
+ /** Number of processes per MPI node. */
3855
+ processCountPerInstance?: number;
3856
+ }
3857
+
3858
+ /** PyTorch distribution configuration. */
3859
+ export interface PyTorch extends DistributionConfiguration {
3860
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3861
+ distributionType: "PyTorch";
3862
+ /** Number of processes per node. */
3863
+ processCountPerInstance?: number;
3864
+ }
3865
+
3866
+ /** TensorFlow distribution configuration. */
3867
+ export interface TensorFlow extends DistributionConfiguration {
3868
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3869
+ distributionType: "TensorFlow";
3870
+ /** Number of parameter server tasks. */
3871
+ parameterServerCount?: number;
3872
+ /** Number of workers. If not specified, will default to the instance count. */
3873
+ workerCount?: number;
3874
+ }
3875
+
3044
3876
  /** Command Job limit class. */
3045
3877
  export interface CommandJobLimits extends JobLimits {
3046
3878
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -3059,6 +3891,221 @@ export interface SweepJobLimits extends JobLimits {
3059
3891
  trialTimeout?: string;
3060
3892
  }
3061
3893
 
3894
+ /**
3895
+ * Settings used for training the model.
3896
+ * For more information on the available settings please visit the official documentation:
3897
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3898
+ */
3899
+ export interface ImageModelSettingsClassification extends ImageModelSettings {
3900
+ /** Image crop size that is input to the neural network for the training dataset. Must be a positive integer. */
3901
+ trainingCropSize?: number;
3902
+ /** Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. */
3903
+ validationCropSize?: number;
3904
+ /** Image size to which to resize before cropping for validation dataset. Must be a positive integer. */
3905
+ validationResizeSize?: number;
3906
+ /**
3907
+ * Weighted loss. The accepted values are 0 for no weighted loss.
3908
+ * 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
3909
+ */
3910
+ weightedLoss?: number;
3911
+ }
3912
+
3913
+ /**
3914
+ * Settings used for training the model.
3915
+ * For more information on the available settings please visit the official documentation:
3916
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3917
+ */
3918
+ export interface ImageModelSettingsObjectDetection extends ImageModelSettings {
3919
+ /**
3920
+ * Maximum number of detections per image, for all classes. Must be a positive integer.
3921
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3922
+ */
3923
+ boxDetectionsPerImage?: number;
3924
+ /**
3925
+ * During inference, only return proposals with a classification score greater than
3926
+ * BoxScoreThreshold. Must be a float in the range[0, 1].
3927
+ */
3928
+ boxScoreThreshold?: number;
3929
+ /**
3930
+ * Image size for train and validation. Must be a positive integer.
3931
+ * Note: The training run may get into CUDA OOM if the size is too big.
3932
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3933
+ */
3934
+ imageSize?: number;
3935
+ /**
3936
+ * Maximum size of the image to be rescaled before feeding it to the backbone.
3937
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
3938
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3939
+ */
3940
+ maxSize?: number;
3941
+ /**
3942
+ * Minimum size of the image to be rescaled before feeding it to the backbone.
3943
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
3944
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3945
+ */
3946
+ minSize?: number;
3947
+ /**
3948
+ * Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
3949
+ * Note: training run may get into CUDA OOM if the model size is too big.
3950
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3951
+ */
3952
+ modelSize?: ModelSize;
3953
+ /**
3954
+ * Enable multi-scale image by varying image size by +/- 50%.
3955
+ * Note: training run may get into CUDA OOM if no sufficient GPU memory.
3956
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3957
+ */
3958
+ multiScale?: boolean;
3959
+ /** IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. */
3960
+ nmsIouThreshold?: number;
3961
+ /**
3962
+ * The grid size to use for tiling each image. Note: TileGridSize must not be
3963
+ * None to enable small object detection logic. A string containing two integers in mxn format.
3964
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3965
+ */
3966
+ tileGridSize?: string;
3967
+ /**
3968
+ * Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
3969
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3970
+ */
3971
+ tileOverlapRatio?: number;
3972
+ /**
3973
+ * The IOU threshold to use to perform NMS while merging predictions from tiles and image.
3974
+ * Used in validation/ inference. Must be float in the range [0, 1].
3975
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3976
+ */
3977
+ tilePredictionsNmsThreshold?: number;
3978
+ /** IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. */
3979
+ validationIouThreshold?: number;
3980
+ /** Metric computation method to use for validation metrics. */
3981
+ validationMetricType?: ValidationMetricType;
3982
+ }
3983
+
3984
+ /**
3985
+ * Distribution expressions to sweep over values of model settings.
3986
+ * <example>
3987
+ * Some examples are:
3988
+ * <code>
3989
+ * ModelName = "choice('seresnext', 'resnest50')";
3990
+ * LearningRate = "uniform(0.001, 0.01)";
3991
+ * LayersToFreeze = "choice(0, 2)";
3992
+ * </code></example>
3993
+ * For more details on how to compose distribution expressions please check the documentation:
3994
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
3995
+ * For more information on the available settings please visit the official documentation:
3996
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3997
+ */
3998
+ export interface ImageModelDistributionSettingsClassification
3999
+ extends ImageModelDistributionSettings {
4000
+ /** Image crop size that is input to the neural network for the training dataset. Must be a positive integer. */
4001
+ trainingCropSize?: string;
4002
+ /** Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. */
4003
+ validationCropSize?: string;
4004
+ /** Image size to which to resize before cropping for validation dataset. Must be a positive integer. */
4005
+ validationResizeSize?: string;
4006
+ /**
4007
+ * Weighted loss. The accepted values are 0 for no weighted loss.
4008
+ * 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
4009
+ */
4010
+ weightedLoss?: string;
4011
+ }
4012
+
4013
+ /**
4014
+ * Distribution expressions to sweep over values of model settings.
4015
+ * <example>
4016
+ * Some examples are:
4017
+ * <code>
4018
+ * ModelName = "choice('seresnext', 'resnest50')";
4019
+ * LearningRate = "uniform(0.001, 0.01)";
4020
+ * LayersToFreeze = "choice(0, 2)";
4021
+ * </code></example>
4022
+ * For more details on how to compose distribution expressions please check the documentation:
4023
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
4024
+ * For more information on the available settings please visit the official documentation:
4025
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
4026
+ */
4027
+ export interface ImageModelDistributionSettingsObjectDetection
4028
+ extends ImageModelDistributionSettings {
4029
+ /**
4030
+ * Maximum number of detections per image, for all classes. Must be a positive integer.
4031
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4032
+ */
4033
+ boxDetectionsPerImage?: string;
4034
+ /**
4035
+ * During inference, only return proposals with a classification score greater than
4036
+ * BoxScoreThreshold. Must be a float in the range[0, 1].
4037
+ */
4038
+ boxScoreThreshold?: string;
4039
+ /**
4040
+ * Image size for train and validation. Must be a positive integer.
4041
+ * Note: The training run may get into CUDA OOM if the size is too big.
4042
+ * Note: This settings is only supported for the 'yolov5' algorithm.
4043
+ */
4044
+ imageSize?: string;
4045
+ /**
4046
+ * Maximum size of the image to be rescaled before feeding it to the backbone.
4047
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
4048
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4049
+ */
4050
+ maxSize?: string;
4051
+ /**
4052
+ * Minimum size of the image to be rescaled before feeding it to the backbone.
4053
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
4054
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4055
+ */
4056
+ minSize?: string;
4057
+ /**
4058
+ * Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
4059
+ * Note: training run may get into CUDA OOM if the model size is too big.
4060
+ * Note: This settings is only supported for the 'yolov5' algorithm.
4061
+ */
4062
+ modelSize?: string;
4063
+ /**
4064
+ * Enable multi-scale image by varying image size by +/- 50%.
4065
+ * Note: training run may get into CUDA OOM if no sufficient GPU memory.
4066
+ * Note: This settings is only supported for the 'yolov5' algorithm.
4067
+ */
4068
+ multiScale?: string;
4069
+ /** IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. */
4070
+ nmsIouThreshold?: string;
4071
+ /**
4072
+ * The grid size to use for tiling each image. Note: TileGridSize must not be
4073
+ * None to enable small object detection logic. A string containing two integers in mxn format.
4074
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4075
+ */
4076
+ tileGridSize?: string;
4077
+ /**
4078
+ * Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
4079
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4080
+ */
4081
+ tileOverlapRatio?: string;
4082
+ /**
4083
+ * The IOU threshold to use to perform NMS while merging predictions from tiles and image.
4084
+ * Used in validation/ inference. Must be float in the range [0, 1].
4085
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4086
+ * NMS: Non-maximum suppression
4087
+ */
4088
+ tilePredictionsNmsThreshold?: string;
4089
+ /** IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. */
4090
+ validationIouThreshold?: string;
4091
+ /** Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. */
4092
+ validationMetricType?: string;
4093
+ }
4094
+
4095
+ export interface ImageClassificationBase extends ImageVertical {
4096
+ /** Settings used for training the model. */
4097
+ modelSettings?: ImageModelSettingsClassification;
4098
+ /** Search space for sampling different combinations of models and their hyperparameters. */
4099
+ searchSpace?: ImageModelDistributionSettingsClassification[];
4100
+ }
4101
+
4102
+ export interface ImageObjectDetectionBase extends ImageVertical {
4103
+ /** Settings used for training the model. */
4104
+ modelSettings?: ImageModelSettingsObjectDetection;
4105
+ /** Search space for sampling different combinations of models and their hyperparameters. */
4106
+ searchSpace?: ImageModelDistributionSettingsObjectDetection[];
4107
+ }
4108
+
3062
4109
  export interface BatchEndpoint extends TrackedResource {
3063
4110
  /** Managed service identity (system assigned and/or user assigned identities) */
3064
4111
  identity?: ManagedServiceIdentity;
@@ -3118,13 +4165,13 @@ export interface ManagedOnlineDeployment extends OnlineDeploymentProperties {
3118
4165
  }
3119
4166
 
3120
4167
  /** Container for code asset versions. */
3121
- export interface CodeContainerProperties extends AssetContainer {}
4168
+ export interface CodeContainerProperties extends AssetContainer { }
3122
4169
 
3123
4170
  /**
3124
4171
  * Component container definition.
3125
4172
  * <see href="https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-component-command" />
3126
4173
  */
3127
- export interface ComponentContainerProperties extends AssetContainer {}
4174
+ export interface ComponentContainerProperties extends AssetContainer { }
3128
4175
 
3129
4176
  /** Container for data asset versions. */
3130
4177
  export interface DataContainerProperties extends AssetContainer {
@@ -3133,9 +4180,9 @@ export interface DataContainerProperties extends AssetContainer {
3133
4180
  }
3134
4181
 
3135
4182
  /** Container for environment specification versions. */
3136
- export interface EnvironmentContainerProperties extends AssetContainer {}
4183
+ export interface EnvironmentContainerProperties extends AssetContainer { }
3137
4184
 
3138
- export interface ModelContainerProperties extends AssetContainer {}
4185
+ export interface ModelContainerProperties extends AssetContainer { }
3139
4186
 
3140
4187
  /** Code asset version details. */
3141
4188
  export interface CodeVersionProperties extends AssetBase {
@@ -3156,12 +4203,14 @@ export interface ComponentVersionProperties extends AssetBase {
3156
4203
  export interface DataVersionBaseProperties extends AssetBase {
3157
4204
  /** [Required] Specifies the type of data. */
3158
4205
  dataType: DataType;
3159
- /** [Required] Uri of the data. Usage/meaning depends on Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20220501.Assets.DataVersionBase.DataType */
4206
+ /** [Required] Uri of the data. Usage/meaning depends on Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType */
3160
4207
  dataUri: string;
3161
4208
  }
3162
4209
 
3163
4210
  /** Environment version details. */
3164
4211
  export interface EnvironmentVersionProperties extends AssetBase {
4212
+ /** Defines if image needs to be rebuilt based on base image changes. */
4213
+ autoRebuild?: AutoRebuildSetting;
3165
4214
  /** Configuration settings for Docker build context. */
3166
4215
  build?: BuildContext;
3167
4216
  /**
@@ -3256,6 +4305,29 @@ export interface AzureFileDatastore extends DatastoreProperties {
3256
4305
  serviceDataAccessAuthIdentity?: ServiceDataAccessAuthIdentity;
3257
4306
  }
3258
4307
 
4308
+ /**
4309
+ * AutoMLJob class.
4310
+ * Use this class for executing AutoML tasks like Classification/Regression etc.
4311
+ * See TaskType enum for all the tasks supported.
4312
+ */
4313
+ export interface AutoMLJob extends JobBaseProperties {
4314
+ /** Polymorphic discriminator, which specifies the different types this object can be */
4315
+ jobType: "AutoML";
4316
+ /**
4317
+ * The ARM resource ID of the Environment specification for the job.
4318
+ * This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job.
4319
+ */
4320
+ environmentId?: string;
4321
+ /** Environment variables included in the job. */
4322
+ environmentVariables?: { [propertyName: string]: string | null };
4323
+ /** Mapping of output data bindings used in the job. */
4324
+ outputs?: { [propertyName: string]: JobOutputUnion | null };
4325
+ /** Compute Resource configuration for the job. */
4326
+ resources?: JobResourceConfiguration;
4327
+ /** [Required] This represents scenario which can be one of Tables/NLP/Image */
4328
+ taskDetails: AutoMLVerticalUnion;
4329
+ }
4330
+
3259
4331
  /** Command job definition. */
3260
4332
  export interface CommandJob extends JobBaseProperties {
3261
4333
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -3282,7 +4354,7 @@ export interface CommandJob extends JobBaseProperties {
3282
4354
  */
3283
4355
  readonly parameters?: Record<string, unknown>;
3284
4356
  /** Compute Resource configuration for the job. */
3285
- resources?: ResourceConfiguration;
4357
+ resources?: JobResourceConfiguration;
3286
4358
  }
3287
4359
 
3288
4360
  /** Pipeline Job definition: defines generic to MFE attributes. */
@@ -3297,6 +4369,8 @@ export interface PipelineJob extends JobBaseProperties {
3297
4369
  outputs?: { [propertyName: string]: JobOutputUnion | null };
3298
4370
  /** Pipeline settings, for things like ContinueRunOnStepFailure etc. */
3299
4371
  settings?: Record<string, unknown>;
4372
+ /** ARM resource ID of source job. */
4373
+ sourceJobId?: string;
3300
4374
  }
3301
4375
 
3302
4376
  /** Sweep job definition. */
@@ -3501,6 +4575,24 @@ export interface OnlineDeploymentsCreateOrUpdateHeaders {
3501
4575
  azureAsyncOperation?: string;
3502
4576
  }
3503
4577
 
4578
+ /** Defines headers for Schedules_delete operation. */
4579
+ export interface SchedulesDeleteHeaders {
4580
+ /** Timeout for the client to use when polling the asynchronous operation. */
4581
+ xMsAsyncOperationTimeout?: string;
4582
+ /** URI to poll for asynchronous operation result. */
4583
+ location?: string;
4584
+ /** Duration the client should wait between requests, in seconds. */
4585
+ retryAfter?: number;
4586
+ }
4587
+
4588
+ /** Defines headers for Schedules_createOrUpdate operation. */
4589
+ export interface SchedulesCreateOrUpdateHeaders {
4590
+ /** Timeout for the client to use when polling the asynchronous operation. */
4591
+ xMsAsyncOperationTimeout?: string;
4592
+ /** URI to poll for asynchronous operation status. */
4593
+ azureAsyncOperation?: string;
4594
+ }
4595
+
3504
4596
  /** Known values of {@link ProvisioningState} that the service accepts. */
3505
4597
  export enum KnownProvisioningState {
3506
4598
  /** Unknown */
@@ -4239,6 +5331,24 @@ export enum KnownSecretsType {
4239
5331
  */
4240
5332
  export type SecretsType = string;
4241
5333
 
5334
+ /** Known values of {@link AutoRebuildSetting} that the service accepts. */
5335
+ export enum KnownAutoRebuildSetting {
5336
+ /** Disabled */
5337
+ Disabled = "Disabled",
5338
+ /** OnBaseImageUpdate */
5339
+ OnBaseImageUpdate = "OnBaseImageUpdate"
5340
+ }
5341
+
5342
+ /**
5343
+ * Defines values for AutoRebuildSetting. \
5344
+ * {@link KnownAutoRebuildSetting} can be used interchangeably with AutoRebuildSetting,
5345
+ * this enum contains the known values that the service supports.
5346
+ * ### Known values supported by the service
5347
+ * **Disabled** \
5348
+ * **OnBaseImageUpdate**
5349
+ */
5350
+ export type AutoRebuildSetting = string;
5351
+
4242
5352
  /** Known values of {@link EnvironmentType} that the service accepts. */
4243
5353
  export enum KnownEnvironmentType {
4244
5354
  /** Curated */
@@ -4298,6 +5408,8 @@ export type IdentityConfigurationType = string;
4298
5408
 
4299
5409
  /** Known values of {@link JobType} that the service accepts. */
4300
5410
  export enum KnownJobType {
5411
+ /** AutoML */
5412
+ AutoML = "AutoML",
4301
5413
  /** Command */
4302
5414
  Command = "Command",
4303
5415
  /** Sweep */
@@ -4311,6 +5423,7 @@ export enum KnownJobType {
4311
5423
  * {@link KnownJobType} can be used interchangeably with JobType,
4312
5424
  * this enum contains the known values that the service supports.
4313
5425
  * ### Known values supported by the service
5426
+ * **AutoML** \
4314
5427
  * **Command** \
4315
5428
  * **Sweep** \
4316
5429
  * **Pipeline**
@@ -4420,31 +5533,67 @@ export enum KnownOrderString {
4420
5533
  */
4421
5534
  export type OrderString = string;
4422
5535
 
4423
- /** Known values of {@link ScaleType} that the service accepts. */
4424
- export enum KnownScaleType {
4425
- /** Default */
4426
- Default = "Default",
4427
- /** TargetUtilization */
4428
- TargetUtilization = "TargetUtilization"
5536
+ /** Known values of {@link PublicNetworkAccessType} that the service accepts. */
5537
+ export enum KnownPublicNetworkAccessType {
5538
+ /** Enabled */
5539
+ Enabled = "Enabled",
5540
+ /** Disabled */
5541
+ Disabled = "Disabled"
4429
5542
  }
4430
5543
 
4431
5544
  /**
4432
- * Defines values for ScaleType. \
4433
- * {@link KnownScaleType} can be used interchangeably with ScaleType,
5545
+ * Defines values for PublicNetworkAccessType. \
5546
+ * {@link KnownPublicNetworkAccessType} can be used interchangeably with PublicNetworkAccessType,
4434
5547
  * this enum contains the known values that the service supports.
4435
5548
  * ### Known values supported by the service
4436
- * **Default** \
4437
- * **TargetUtilization**
5549
+ * **Enabled** \
5550
+ * **Disabled**
4438
5551
  */
4439
- export type ScaleType = string;
5552
+ export type PublicNetworkAccessType = string;
4440
5553
 
4441
- /** Known values of {@link ContainerType} that the service accepts. */
4442
- export enum KnownContainerType {
4443
- /** StorageInitializer */
4444
- StorageInitializer = "StorageInitializer",
4445
- /** InferenceServer */
4446
- InferenceServer = "InferenceServer"
4447
- }
5554
+ /** Known values of {@link EgressPublicNetworkAccessType} that the service accepts. */
5555
+ export enum KnownEgressPublicNetworkAccessType {
5556
+ /** Enabled */
5557
+ Enabled = "Enabled",
5558
+ /** Disabled */
5559
+ Disabled = "Disabled"
5560
+ }
5561
+
5562
+ /**
5563
+ * Defines values for EgressPublicNetworkAccessType. \
5564
+ * {@link KnownEgressPublicNetworkAccessType} can be used interchangeably with EgressPublicNetworkAccessType,
5565
+ * this enum contains the known values that the service supports.
5566
+ * ### Known values supported by the service
5567
+ * **Enabled** \
5568
+ * **Disabled**
5569
+ */
5570
+ export type EgressPublicNetworkAccessType = string;
5571
+
5572
+ /** Known values of {@link ScaleType} that the service accepts. */
5573
+ export enum KnownScaleType {
5574
+ /** Default */
5575
+ Default = "Default",
5576
+ /** TargetUtilization */
5577
+ TargetUtilization = "TargetUtilization"
5578
+ }
5579
+
5580
+ /**
5581
+ * Defines values for ScaleType. \
5582
+ * {@link KnownScaleType} can be used interchangeably with ScaleType,
5583
+ * this enum contains the known values that the service supports.
5584
+ * ### Known values supported by the service
5585
+ * **Default** \
5586
+ * **TargetUtilization**
5587
+ */
5588
+ export type ScaleType = string;
5589
+
5590
+ /** Known values of {@link ContainerType} that the service accepts. */
5591
+ export enum KnownContainerType {
5592
+ /** StorageInitializer */
5593
+ StorageInitializer = "StorageInitializer",
5594
+ /** InferenceServer */
5595
+ InferenceServer = "InferenceServer"
5596
+ }
4448
5597
 
4449
5598
  /**
4450
5599
  * Defines values for ContainerType. \
@@ -4495,6 +5644,93 @@ export enum KnownKeyType {
4495
5644
  */
4496
5645
  export type KeyType = string;
4497
5646
 
5647
+ /** Known values of {@link ScheduleListViewType} that the service accepts. */
5648
+ export enum KnownScheduleListViewType {
5649
+ /** EnabledOnly */
5650
+ EnabledOnly = "EnabledOnly",
5651
+ /** DisabledOnly */
5652
+ DisabledOnly = "DisabledOnly",
5653
+ /** All */
5654
+ All = "All"
5655
+ }
5656
+
5657
+ /**
5658
+ * Defines values for ScheduleListViewType. \
5659
+ * {@link KnownScheduleListViewType} can be used interchangeably with ScheduleListViewType,
5660
+ * this enum contains the known values that the service supports.
5661
+ * ### Known values supported by the service
5662
+ * **EnabledOnly** \
5663
+ * **DisabledOnly** \
5664
+ * **All**
5665
+ */
5666
+ export type ScheduleListViewType = string;
5667
+
5668
+ /** Known values of {@link ScheduleActionType} that the service accepts. */
5669
+ export enum KnownScheduleActionType {
5670
+ /** CreateJob */
5671
+ CreateJob = "CreateJob",
5672
+ /** InvokeBatchEndpoint */
5673
+ InvokeBatchEndpoint = "InvokeBatchEndpoint"
5674
+ }
5675
+
5676
+ /**
5677
+ * Defines values for ScheduleActionType. \
5678
+ * {@link KnownScheduleActionType} can be used interchangeably with ScheduleActionType,
5679
+ * this enum contains the known values that the service supports.
5680
+ * ### Known values supported by the service
5681
+ * **CreateJob** \
5682
+ * **InvokeBatchEndpoint**
5683
+ */
5684
+ export type ScheduleActionType = string;
5685
+
5686
+ /** Known values of {@link ScheduleProvisioningStatus} that the service accepts. */
5687
+ export enum KnownScheduleProvisioningStatus {
5688
+ /** Creating */
5689
+ Creating = "Creating",
5690
+ /** Updating */
5691
+ Updating = "Updating",
5692
+ /** Deleting */
5693
+ Deleting = "Deleting",
5694
+ /** Succeeded */
5695
+ Succeeded = "Succeeded",
5696
+ /** Failed */
5697
+ Failed = "Failed",
5698
+ /** Canceled */
5699
+ Canceled = "Canceled"
5700
+ }
5701
+
5702
+ /**
5703
+ * Defines values for ScheduleProvisioningStatus. \
5704
+ * {@link KnownScheduleProvisioningStatus} can be used interchangeably with ScheduleProvisioningStatus,
5705
+ * this enum contains the known values that the service supports.
5706
+ * ### Known values supported by the service
5707
+ * **Creating** \
5708
+ * **Updating** \
5709
+ * **Deleting** \
5710
+ * **Succeeded** \
5711
+ * **Failed** \
5712
+ * **Canceled**
5713
+ */
5714
+ export type ScheduleProvisioningStatus = string;
5715
+
5716
+ /** Known values of {@link TriggerType} that the service accepts. */
5717
+ export enum KnownTriggerType {
5718
+ /** Recurrence */
5719
+ Recurrence = "Recurrence",
5720
+ /** Cron */
5721
+ Cron = "Cron"
5722
+ }
5723
+
5724
+ /**
5725
+ * Defines values for TriggerType. \
5726
+ * {@link KnownTriggerType} can be used interchangeably with TriggerType,
5727
+ * this enum contains the known values that the service supports.
5728
+ * ### Known values supported by the service
5729
+ * **Recurrence** \
5730
+ * **Cron**
5731
+ */
5732
+ export type TriggerType = string;
5733
+
4498
5734
  /** Known values of {@link ClusterPurpose} that the service accepts. */
4499
5735
  export enum KnownClusterPurpose {
4500
5736
  /** FastProd */
@@ -4846,6 +6082,24 @@ export enum KnownProvisioningStatus {
4846
6082
  */
4847
6083
  export type ProvisioningStatus = string;
4848
6084
 
6085
+ /** Known values of {@link ScheduleStatus} that the service accepts. */
6086
+ export enum KnownScheduleStatus {
6087
+ /** Enabled */
6088
+ Enabled = "Enabled",
6089
+ /** Disabled */
6090
+ Disabled = "Disabled"
6091
+ }
6092
+
6093
+ /**
6094
+ * Defines values for ScheduleStatus. \
6095
+ * {@link KnownScheduleStatus} can be used interchangeably with ScheduleStatus,
6096
+ * this enum contains the known values that the service supports.
6097
+ * ### Known values supported by the service
6098
+ * **Enabled** \
6099
+ * **Disabled**
6100
+ */
6101
+ export type ScheduleStatus = string;
6102
+
4849
6103
  /** Known values of {@link ComputePowerAction} that the service accepts. */
4850
6104
  export enum KnownComputePowerAction {
4851
6105
  /** Start */
@@ -4864,6 +6118,66 @@ export enum KnownComputePowerAction {
4864
6118
  */
4865
6119
  export type ComputePowerAction = string;
4866
6120
 
6121
+ /** Known values of {@link RecurrenceFrequency} that the service accepts. */
6122
+ export enum KnownRecurrenceFrequency {
6123
+ /** Minute frequency */
6124
+ Minute = "Minute",
6125
+ /** Hour frequency */
6126
+ Hour = "Hour",
6127
+ /** Day frequency */
6128
+ Day = "Day",
6129
+ /** Week frequency */
6130
+ Week = "Week",
6131
+ /** Month frequency */
6132
+ Month = "Month"
6133
+ }
6134
+
6135
+ /**
6136
+ * Defines values for RecurrenceFrequency. \
6137
+ * {@link KnownRecurrenceFrequency} can be used interchangeably with RecurrenceFrequency,
6138
+ * this enum contains the known values that the service supports.
6139
+ * ### Known values supported by the service
6140
+ * **Minute**: Minute frequency \
6141
+ * **Hour**: Hour frequency \
6142
+ * **Day**: Day frequency \
6143
+ * **Week**: Week frequency \
6144
+ * **Month**: Month frequency
6145
+ */
6146
+ export type RecurrenceFrequency = string;
6147
+
6148
+ /** Known values of {@link WeekDay} that the service accepts. */
6149
+ export enum KnownWeekDay {
6150
+ /** Monday weekday */
6151
+ Monday = "Monday",
6152
+ /** Tuesday weekday */
6153
+ Tuesday = "Tuesday",
6154
+ /** Wednesday weekday */
6155
+ Wednesday = "Wednesday",
6156
+ /** Thursday weekday */
6157
+ Thursday = "Thursday",
6158
+ /** Friday weekday */
6159
+ Friday = "Friday",
6160
+ /** Saturday weekday */
6161
+ Saturday = "Saturday",
6162
+ /** Sunday weekday */
6163
+ Sunday = "Sunday"
6164
+ }
6165
+
6166
+ /**
6167
+ * Defines values for WeekDay. \
6168
+ * {@link KnownWeekDay} can be used interchangeably with WeekDay,
6169
+ * this enum contains the known values that the service supports.
6170
+ * ### Known values supported by the service
6171
+ * **Monday**: Monday weekday \
6172
+ * **Tuesday**: Tuesday weekday \
6173
+ * **Wednesday**: Wednesday weekday \
6174
+ * **Thursday**: Thursday weekday \
6175
+ * **Friday**: Friday weekday \
6176
+ * **Saturday**: Saturday weekday \
6177
+ * **Sunday**: Sunday weekday
6178
+ */
6179
+ export type WeekDay = string;
6180
+
4867
6181
  /** Known values of {@link ScheduleProvisioningState} that the service accepts. */
4868
6182
  export enum KnownScheduleProvisioningState {
4869
6183
  /** Completed */
@@ -4885,24 +6199,6 @@ export enum KnownScheduleProvisioningState {
4885
6199
  */
4886
6200
  export type ScheduleProvisioningState = string;
4887
6201
 
4888
- /** Known values of {@link ScheduleStatus} that the service accepts. */
4889
- export enum KnownScheduleStatus {
4890
- /** Enabled */
4891
- Enabled = "Enabled",
4892
- /** Disabled */
4893
- Disabled = "Disabled"
4894
- }
4895
-
4896
- /**
4897
- * Defines values for ScheduleStatus. \
4898
- * {@link KnownScheduleStatus} can be used interchangeably with ScheduleStatus,
4899
- * this enum contains the known values that the service supports.
4900
- * ### Known values supported by the service
4901
- * **Enabled** \
4902
- * **Disabled**
4903
- */
4904
- export type ScheduleStatus = string;
4905
-
4906
6202
  /** Known values of {@link Autosave} that the service accepts. */
4907
6203
  export enum KnownAutosave {
4908
6204
  /** None */
@@ -5037,231 +6333,1049 @@ export enum KnownMountState {
5037
6333
  }
5038
6334
 
5039
6335
  /**
5040
- * Defines values for MountState. \
5041
- * {@link KnownMountState} can be used interchangeably with MountState,
6336
+ * Defines values for MountState. \
6337
+ * {@link KnownMountState} can be used interchangeably with MountState,
6338
+ * this enum contains the known values that the service supports.
6339
+ * ### Known values supported by the service
6340
+ * **MountRequested** \
6341
+ * **Mounted** \
6342
+ * **MountFailed** \
6343
+ * **UnmountRequested** \
6344
+ * **UnmountFailed** \
6345
+ * **Unmounted**
6346
+ */
6347
+ export type MountState = string;
6348
+
6349
+ /** Known values of {@link InputDeliveryMode} that the service accepts. */
6350
+ export enum KnownInputDeliveryMode {
6351
+ /** ReadOnlyMount */
6352
+ ReadOnlyMount = "ReadOnlyMount",
6353
+ /** ReadWriteMount */
6354
+ ReadWriteMount = "ReadWriteMount",
6355
+ /** Download */
6356
+ Download = "Download",
6357
+ /** Direct */
6358
+ Direct = "Direct",
6359
+ /** EvalMount */
6360
+ EvalMount = "EvalMount",
6361
+ /** EvalDownload */
6362
+ EvalDownload = "EvalDownload"
6363
+ }
6364
+
6365
+ /**
6366
+ * Defines values for InputDeliveryMode. \
6367
+ * {@link KnownInputDeliveryMode} can be used interchangeably with InputDeliveryMode,
6368
+ * this enum contains the known values that the service supports.
6369
+ * ### Known values supported by the service
6370
+ * **ReadOnlyMount** \
6371
+ * **ReadWriteMount** \
6372
+ * **Download** \
6373
+ * **Direct** \
6374
+ * **EvalMount** \
6375
+ * **EvalDownload**
6376
+ */
6377
+ export type InputDeliveryMode = string;
6378
+
6379
+ /** Known values of {@link OutputDeliveryMode} that the service accepts. */
6380
+ export enum KnownOutputDeliveryMode {
6381
+ /** ReadWriteMount */
6382
+ ReadWriteMount = "ReadWriteMount",
6383
+ /** Upload */
6384
+ Upload = "Upload"
6385
+ }
6386
+
6387
+ /**
6388
+ * Defines values for OutputDeliveryMode. \
6389
+ * {@link KnownOutputDeliveryMode} can be used interchangeably with OutputDeliveryMode,
6390
+ * this enum contains the known values that the service supports.
6391
+ * ### Known values supported by the service
6392
+ * **ReadWriteMount** \
6393
+ * **Upload**
6394
+ */
6395
+ export type OutputDeliveryMode = string;
6396
+
6397
+ /** Known values of {@link ForecastHorizonMode} that the service accepts. */
6398
+ export enum KnownForecastHorizonMode {
6399
+ /** Forecast horizon to be determined automatically. */
6400
+ Auto = "Auto",
6401
+ /** Use the custom forecast horizon. */
6402
+ Custom = "Custom"
6403
+ }
6404
+
6405
+ /**
6406
+ * Defines values for ForecastHorizonMode. \
6407
+ * {@link KnownForecastHorizonMode} can be used interchangeably with ForecastHorizonMode,
6408
+ * this enum contains the known values that the service supports.
6409
+ * ### Known values supported by the service
6410
+ * **Auto**: Forecast horizon to be determined automatically. \
6411
+ * **Custom**: Use the custom forecast horizon.
6412
+ */
6413
+ export type ForecastHorizonMode = string;
6414
+
6415
+ /** Known values of {@link JobOutputType} that the service accepts. */
6416
+ export enum KnownJobOutputType {
6417
+ /** UriFile */
6418
+ UriFile = "uri_file",
6419
+ /** UriFolder */
6420
+ UriFolder = "uri_folder",
6421
+ /** Mltable */
6422
+ Mltable = "mltable",
6423
+ /** CustomModel */
6424
+ CustomModel = "custom_model",
6425
+ /** MlflowModel */
6426
+ MlflowModel = "mlflow_model",
6427
+ /** TritonModel */
6428
+ TritonModel = "triton_model"
6429
+ }
6430
+
6431
+ /**
6432
+ * Defines values for JobOutputType. \
6433
+ * {@link KnownJobOutputType} can be used interchangeably with JobOutputType,
6434
+ * this enum contains the known values that the service supports.
6435
+ * ### Known values supported by the service
6436
+ * **uri_file** \
6437
+ * **uri_folder** \
6438
+ * **mltable** \
6439
+ * **custom_model** \
6440
+ * **mlflow_model** \
6441
+ * **triton_model**
6442
+ */
6443
+ export type JobOutputType = string;
6444
+
6445
+ /** Known values of {@link LogVerbosity} that the service accepts. */
6446
+ export enum KnownLogVerbosity {
6447
+ /** No logs emitted. */
6448
+ NotSet = "NotSet",
6449
+ /** Debug and above log statements logged. */
6450
+ Debug = "Debug",
6451
+ /** Info and above log statements logged. */
6452
+ Info = "Info",
6453
+ /** Warning and above log statements logged. */
6454
+ Warning = "Warning",
6455
+ /** Error and above log statements logged. */
6456
+ Error = "Error",
6457
+ /** Only critical statements logged. */
6458
+ Critical = "Critical"
6459
+ }
6460
+
6461
+ /**
6462
+ * Defines values for LogVerbosity. \
6463
+ * {@link KnownLogVerbosity} can be used interchangeably with LogVerbosity,
6464
+ * this enum contains the known values that the service supports.
6465
+ * ### Known values supported by the service
6466
+ * **NotSet**: No logs emitted. \
6467
+ * **Debug**: Debug and above log statements logged. \
6468
+ * **Info**: Info and above log statements logged. \
6469
+ * **Warning**: Warning and above log statements logged. \
6470
+ * **Error**: Error and above log statements logged. \
6471
+ * **Critical**: Only critical statements logged.
6472
+ */
6473
+ export type LogVerbosity = string;
6474
+
6475
+ /** Known values of {@link TaskType} that the service accepts. */
6476
+ export enum KnownTaskType {
6477
+ /**
6478
+ * Classification in machine learning and statistics is a supervised learning approach in which
6479
+ * the computer program learns from the data given to it and make new observations or classifications.
6480
+ */
6481
+ Classification = "Classification",
6482
+ /** Regression means to predict the value using the input data. Regression models are used to predict a continuous value. */
6483
+ Regression = "Regression",
6484
+ /**
6485
+ * Forecasting is a special kind of regression task that deals with time-series data and creates forecasting model
6486
+ * that can be used to predict the near future values based on the inputs.
6487
+ */
6488
+ Forecasting = "Forecasting",
6489
+ /**
6490
+ * Image Classification. Multi-class image classification is used when an image is classified with only a single label
6491
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'.
6492
+ */
6493
+ ImageClassification = "ImageClassification",
6494
+ /**
6495
+ * Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
6496
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.
6497
+ */
6498
+ ImageClassificationMultilabel = "ImageClassificationMultilabel",
6499
+ /**
6500
+ * Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
6501
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
6502
+ */
6503
+ ImageObjectDetection = "ImageObjectDetection",
6504
+ /**
6505
+ * Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
6506
+ * drawing a polygon around each object in the image.
6507
+ */
6508
+ ImageInstanceSegmentation = "ImageInstanceSegmentation",
6509
+ /**
6510
+ * Text classification (also known as text tagging or text categorization) is the process of sorting texts into categories.
6511
+ * Categories are mutually exclusive.
6512
+ */
6513
+ TextClassification = "TextClassification",
6514
+ /** Multilabel classification task assigns each sample to a group (zero or more) of target labels. */
6515
+ TextClassificationMultilabel = "TextClassificationMultilabel",
6516
+ /**
6517
+ * Text Named Entity Recognition a.k.a. TextNER.
6518
+ * Named Entity Recognition (NER) is the ability to take free-form text and identify the occurrences of entities such as people, locations, organizations, and more.
6519
+ */
6520
+ TextNER = "TextNER"
6521
+ }
6522
+
6523
+ /**
6524
+ * Defines values for TaskType. \
6525
+ * {@link KnownTaskType} can be used interchangeably with TaskType,
6526
+ * this enum contains the known values that the service supports.
6527
+ * ### Known values supported by the service
6528
+ * **Classification**: Classification in machine learning and statistics is a supervised learning approach in which
6529
+ * the computer program learns from the data given to it and make new observations or classifications. \
6530
+ * **Regression**: Regression means to predict the value using the input data. Regression models are used to predict a continuous value. \
6531
+ * **Forecasting**: Forecasting is a special kind of regression task that deals with time-series data and creates forecasting model
6532
+ * that can be used to predict the near future values based on the inputs. \
6533
+ * **ImageClassification**: Image Classification. Multi-class image classification is used when an image is classified with only a single label
6534
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'. \
6535
+ * **ImageClassificationMultilabel**: Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
6536
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'. \
6537
+ * **ImageObjectDetection**: Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
6538
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each. \
6539
+ * **ImageInstanceSegmentation**: Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
6540
+ * drawing a polygon around each object in the image. \
6541
+ * **TextClassification**: Text classification (also known as text tagging or text categorization) is the process of sorting texts into categories.
6542
+ * Categories are mutually exclusive. \
6543
+ * **TextClassificationMultilabel**: Multilabel classification task assigns each sample to a group (zero or more) of target labels. \
6544
+ * **TextNER**: Text Named Entity Recognition a.k.a. TextNER.
6545
+ * Named Entity Recognition (NER) is the ability to take free-form text and identify the occurrences of entities such as people, locations, organizations, and more.
6546
+ */
6547
+ export type TaskType = string;
6548
+
6549
+ /** Known values of {@link JobInputType} that the service accepts. */
6550
+ export enum KnownJobInputType {
6551
+ /** Literal */
6552
+ Literal = "literal",
6553
+ /** UriFile */
6554
+ UriFile = "uri_file",
6555
+ /** UriFolder */
6556
+ UriFolder = "uri_folder",
6557
+ /** Mltable */
6558
+ Mltable = "mltable",
6559
+ /** CustomModel */
6560
+ CustomModel = "custom_model",
6561
+ /** MlflowModel */
6562
+ MlflowModel = "mlflow_model",
6563
+ /** TritonModel */
6564
+ TritonModel = "triton_model"
6565
+ }
6566
+
6567
+ /**
6568
+ * Defines values for JobInputType. \
6569
+ * {@link KnownJobInputType} can be used interchangeably with JobInputType,
6570
+ * this enum contains the known values that the service supports.
6571
+ * ### Known values supported by the service
6572
+ * **literal** \
6573
+ * **uri_file** \
6574
+ * **uri_folder** \
6575
+ * **mltable** \
6576
+ * **custom_model** \
6577
+ * **mlflow_model** \
6578
+ * **triton_model**
6579
+ */
6580
+ export type JobInputType = string;
6581
+
6582
+ /** Known values of {@link NCrossValidationsMode} that the service accepts. */
6583
+ export enum KnownNCrossValidationsMode {
6584
+ /** Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML task. */
6585
+ Auto = "Auto",
6586
+ /** Use custom N-Cross validations value. */
6587
+ Custom = "Custom"
6588
+ }
6589
+
6590
+ /**
6591
+ * Defines values for NCrossValidationsMode. \
6592
+ * {@link KnownNCrossValidationsMode} can be used interchangeably with NCrossValidationsMode,
6593
+ * this enum contains the known values that the service supports.
6594
+ * ### Known values supported by the service
6595
+ * **Auto**: Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML task. \
6596
+ * **Custom**: Use custom N-Cross validations value.
6597
+ */
6598
+ export type NCrossValidationsMode = string;
6599
+
6600
+ /** Known values of {@link SeasonalityMode} that the service accepts. */
6601
+ export enum KnownSeasonalityMode {
6602
+ /** Seasonality to be determined automatically. */
6603
+ Auto = "Auto",
6604
+ /** Use the custom seasonality value. */
6605
+ Custom = "Custom"
6606
+ }
6607
+
6608
+ /**
6609
+ * Defines values for SeasonalityMode. \
6610
+ * {@link KnownSeasonalityMode} can be used interchangeably with SeasonalityMode,
6611
+ * this enum contains the known values that the service supports.
6612
+ * ### Known values supported by the service
6613
+ * **Auto**: Seasonality to be determined automatically. \
6614
+ * **Custom**: Use the custom seasonality value.
6615
+ */
6616
+ export type SeasonalityMode = string;
6617
+
6618
+ /** Known values of {@link TargetLagsMode} that the service accepts. */
6619
+ export enum KnownTargetLagsMode {
6620
+ /** Target lags to be determined automatically. */
6621
+ Auto = "Auto",
6622
+ /** Use the custom target lags. */
6623
+ Custom = "Custom"
6624
+ }
6625
+
6626
+ /**
6627
+ * Defines values for TargetLagsMode. \
6628
+ * {@link KnownTargetLagsMode} can be used interchangeably with TargetLagsMode,
6629
+ * this enum contains the known values that the service supports.
6630
+ * ### Known values supported by the service
6631
+ * **Auto**: Target lags to be determined automatically. \
6632
+ * **Custom**: Use the custom target lags.
6633
+ */
6634
+ export type TargetLagsMode = string;
6635
+
6636
+ /** Known values of {@link TargetRollingWindowSizeMode} that the service accepts. */
6637
+ export enum KnownTargetRollingWindowSizeMode {
6638
+ /** Determine rolling windows size automatically. */
6639
+ Auto = "Auto",
6640
+ /** Use the specified rolling window size. */
6641
+ Custom = "Custom"
6642
+ }
6643
+
6644
+ /**
6645
+ * Defines values for TargetRollingWindowSizeMode. \
6646
+ * {@link KnownTargetRollingWindowSizeMode} can be used interchangeably with TargetRollingWindowSizeMode,
6647
+ * this enum contains the known values that the service supports.
6648
+ * ### Known values supported by the service
6649
+ * **Auto**: Determine rolling windows size automatically. \
6650
+ * **Custom**: Use the specified rolling window size.
6651
+ */
6652
+ export type TargetRollingWindowSizeMode = string;
6653
+
6654
+ /** Known values of {@link ServiceDataAccessAuthIdentity} that the service accepts. */
6655
+ export enum KnownServiceDataAccessAuthIdentity {
6656
+ /** Do not use any identity for service data access. */
6657
+ None = "None",
6658
+ /** Use the system assigned managed identity of the Workspace to authenticate service data access. */
6659
+ WorkspaceSystemAssignedIdentity = "WorkspaceSystemAssignedIdentity",
6660
+ /** Use the user assigned managed identity of the Workspace to authenticate service data access. */
6661
+ WorkspaceUserAssignedIdentity = "WorkspaceUserAssignedIdentity"
6662
+ }
6663
+
6664
+ /**
6665
+ * Defines values for ServiceDataAccessAuthIdentity. \
6666
+ * {@link KnownServiceDataAccessAuthIdentity} can be used interchangeably with ServiceDataAccessAuthIdentity,
6667
+ * this enum contains the known values that the service supports.
6668
+ * ### Known values supported by the service
6669
+ * **None**: Do not use any identity for service data access. \
6670
+ * **WorkspaceSystemAssignedIdentity**: Use the system assigned managed identity of the Workspace to authenticate service data access. \
6671
+ * **WorkspaceUserAssignedIdentity**: Use the user assigned managed identity of the Workspace to authenticate service data access.
6672
+ */
6673
+ export type ServiceDataAccessAuthIdentity = string;
6674
+
6675
+ /** Known values of {@link EarlyTerminationPolicyType} that the service accepts. */
6676
+ export enum KnownEarlyTerminationPolicyType {
6677
+ /** Bandit */
6678
+ Bandit = "Bandit",
6679
+ /** MedianStopping */
6680
+ MedianStopping = "MedianStopping",
6681
+ /** TruncationSelection */
6682
+ TruncationSelection = "TruncationSelection"
6683
+ }
6684
+
6685
+ /**
6686
+ * Defines values for EarlyTerminationPolicyType. \
6687
+ * {@link KnownEarlyTerminationPolicyType} can be used interchangeably with EarlyTerminationPolicyType,
6688
+ * this enum contains the known values that the service supports.
6689
+ * ### Known values supported by the service
6690
+ * **Bandit** \
6691
+ * **MedianStopping** \
6692
+ * **TruncationSelection**
6693
+ */
6694
+ export type EarlyTerminationPolicyType = string;
6695
+
6696
+ /** Known values of {@link SamplingAlgorithmType} that the service accepts. */
6697
+ export enum KnownSamplingAlgorithmType {
6698
+ /** Grid */
6699
+ Grid = "Grid",
6700
+ /** Random */
6701
+ Random = "Random",
6702
+ /** Bayesian */
6703
+ Bayesian = "Bayesian"
6704
+ }
6705
+
6706
+ /**
6707
+ * Defines values for SamplingAlgorithmType. \
6708
+ * {@link KnownSamplingAlgorithmType} can be used interchangeably with SamplingAlgorithmType,
6709
+ * this enum contains the known values that the service supports.
6710
+ * ### Known values supported by the service
6711
+ * **Grid** \
6712
+ * **Random** \
6713
+ * **Bayesian**
6714
+ */
6715
+ export type SamplingAlgorithmType = string;
6716
+
6717
+ /** Known values of {@link ClassificationPrimaryMetrics} that the service accepts. */
6718
+ export enum KnownClassificationPrimaryMetrics {
6719
+ /**
6720
+ * AUC is the Area under the curve.
6721
+ * This metric represents arithmetic mean of the score for each class,
6722
+ * weighted by the number of true instances in each class.
6723
+ */
6724
+ AUCWeighted = "AUCWeighted",
6725
+ /** Accuracy is the ratio of predictions that exactly match the true class labels. */
6726
+ Accuracy = "Accuracy",
6727
+ /**
6728
+ * Normalized macro recall is recall macro-averaged and normalized, so that random
6729
+ * performance has a score of 0, and perfect performance has a score of 1.
6730
+ */
6731
+ NormMacroRecall = "NormMacroRecall",
6732
+ /**
6733
+ * The arithmetic mean of the average precision score for each class, weighted by
6734
+ * the number of true instances in each class.
6735
+ */
6736
+ AveragePrecisionScoreWeighted = "AveragePrecisionScoreWeighted",
6737
+ /** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
6738
+ PrecisionScoreWeighted = "PrecisionScoreWeighted"
6739
+ }
6740
+
6741
+ /**
6742
+ * Defines values for ClassificationPrimaryMetrics. \
6743
+ * {@link KnownClassificationPrimaryMetrics} can be used interchangeably with ClassificationPrimaryMetrics,
6744
+ * this enum contains the known values that the service supports.
6745
+ * ### Known values supported by the service
6746
+ * **AUCWeighted**: AUC is the Area under the curve.
6747
+ * This metric represents arithmetic mean of the score for each class,
6748
+ * weighted by the number of true instances in each class. \
6749
+ * **Accuracy**: Accuracy is the ratio of predictions that exactly match the true class labels. \
6750
+ * **NormMacroRecall**: Normalized macro recall is recall macro-averaged and normalized, so that random
6751
+ * performance has a score of 0, and perfect performance has a score of 1. \
6752
+ * **AveragePrecisionScoreWeighted**: The arithmetic mean of the average precision score for each class, weighted by
6753
+ * the number of true instances in each class. \
6754
+ * **PrecisionScoreWeighted**: The arithmetic mean of precision for each class, weighted by number of true instances in each class.
6755
+ */
6756
+ export type ClassificationPrimaryMetrics = string;
6757
+
6758
+ /** Known values of {@link ClassificationModels} that the service accepts. */
6759
+ export enum KnownClassificationModels {
6760
+ /**
6761
+ * Logistic regression is a fundamental classification technique.
6762
+ * It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear regression.
6763
+ * Logistic regression is fast and relatively uncomplicated, and it's convenient for you to interpret the results.
6764
+ * Although it's essentially a method for binary classification, it can also be applied to multiclass problems.
6765
+ */
6766
+ LogisticRegression = "LogisticRegression",
6767
+ /**
6768
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
6769
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
6770
+ */
6771
+ SGD = "SGD",
6772
+ /**
6773
+ * The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).
6774
+ * The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.
6775
+ */
6776
+ MultinomialNaiveBayes = "MultinomialNaiveBayes",
6777
+ /** Naive Bayes classifier for multivariate Bernoulli models. */
6778
+ BernoulliNaiveBayes = "BernoulliNaiveBayes",
6779
+ /**
6780
+ * A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
6781
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
6782
+ */
6783
+ SVM = "SVM",
6784
+ /**
6785
+ * A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
6786
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
6787
+ * Linear SVM performs best when input data is linear, i.e., data can be easily classified by drawing the straight line between classified values on a plotted graph.
6788
+ */
6789
+ LinearSVM = "LinearSVM",
6790
+ /**
6791
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
6792
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
6793
+ */
6794
+ KNN = "KNN",
6795
+ /**
6796
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
6797
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
6798
+ */
6799
+ DecisionTree = "DecisionTree",
6800
+ /**
6801
+ * Random forest is a supervised learning algorithm.
6802
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
6803
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
6804
+ */
6805
+ RandomForest = "RandomForest",
6806
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
6807
+ ExtremeRandomTrees = "ExtremeRandomTrees",
6808
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
6809
+ LightGBM = "LightGBM",
6810
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
6811
+ GradientBoosting = "GradientBoosting",
6812
+ /** XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where target column values can be divided into distinct class values. */
6813
+ XGBoostClassifier = "XGBoostClassifier"
6814
+ }
6815
+
6816
+ /**
6817
+ * Defines values for ClassificationModels. \
6818
+ * {@link KnownClassificationModels} can be used interchangeably with ClassificationModels,
6819
+ * this enum contains the known values that the service supports.
6820
+ * ### Known values supported by the service
6821
+ * **LogisticRegression**: Logistic regression is a fundamental classification technique.
6822
+ * It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear regression.
6823
+ * Logistic regression is fast and relatively uncomplicated, and it's convenient for you to interpret the results.
6824
+ * Although it's essentially a method for binary classification, it can also be applied to multiclass problems. \
6825
+ * **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
6826
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs. \
6827
+ * **MultinomialNaiveBayes**: The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).
6828
+ * The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. \
6829
+ * **BernoulliNaiveBayes**: Naive Bayes classifier for multivariate Bernoulli models. \
6830
+ * **SVM**: A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
6831
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text. \
6832
+ * **LinearSVM**: A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
6833
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
6834
+ * Linear SVM performs best when input data is linear, i.e., data can be easily classified by drawing the straight line between classified values on a plotted graph. \
6835
+ * **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
6836
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
6837
+ * **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
6838
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
6839
+ * **RandomForest**: Random forest is a supervised learning algorithm.
6840
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
6841
+ * The general idea of the bagging method is that a combination of learning models increases the overall result. \
6842
+ * **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
6843
+ * **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
6844
+ * **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
6845
+ * **XGBoostClassifier**: XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where target column values can be divided into distinct class values.
6846
+ */
6847
+ export type ClassificationModels = string;
6848
+
6849
+ /** Known values of {@link StackMetaLearnerType} that the service accepts. */
6850
+ export enum KnownStackMetaLearnerType {
6851
+ /** None */
6852
+ None = "None",
6853
+ /** Default meta-learners are LogisticRegression for classification tasks. */
6854
+ LogisticRegression = "LogisticRegression",
6855
+ /** Default meta-learners are LogisticRegression for classification task when CV is on. */
6856
+ LogisticRegressionCV = "LogisticRegressionCV",
6857
+ /** LightGBMClassifier */
6858
+ LightGBMClassifier = "LightGBMClassifier",
6859
+ /** Default meta-learners are LogisticRegression for regression task. */
6860
+ ElasticNet = "ElasticNet",
6861
+ /** Default meta-learners are LogisticRegression for regression task when CV is on. */
6862
+ ElasticNetCV = "ElasticNetCV",
6863
+ /** LightGBMRegressor */
6864
+ LightGBMRegressor = "LightGBMRegressor",
6865
+ /** LinearRegression */
6866
+ LinearRegression = "LinearRegression"
6867
+ }
6868
+
6869
+ /**
6870
+ * Defines values for StackMetaLearnerType. \
6871
+ * {@link KnownStackMetaLearnerType} can be used interchangeably with StackMetaLearnerType,
6872
+ * this enum contains the known values that the service supports.
6873
+ * ### Known values supported by the service
6874
+ * **None** \
6875
+ * **LogisticRegression**: Default meta-learners are LogisticRegression for classification tasks. \
6876
+ * **LogisticRegressionCV**: Default meta-learners are LogisticRegression for classification task when CV is on. \
6877
+ * **LightGBMClassifier** \
6878
+ * **ElasticNet**: Default meta-learners are LogisticRegression for regression task. \
6879
+ * **ElasticNetCV**: Default meta-learners are LogisticRegression for regression task when CV is on. \
6880
+ * **LightGBMRegressor** \
6881
+ * **LinearRegression**
6882
+ */
6883
+ export type StackMetaLearnerType = string;
6884
+
6885
+ /** Known values of {@link BlockedTransformers} that the service accepts. */
6886
+ export enum KnownBlockedTransformers {
6887
+ /** Target encoding for text data. */
6888
+ TextTargetEncoder = "TextTargetEncoder",
6889
+ /** Ohe hot encoding creates a binary feature transformation. */
6890
+ OneHotEncoder = "OneHotEncoder",
6891
+ /** Target encoding for categorical data. */
6892
+ CatTargetEncoder = "CatTargetEncoder",
6893
+ /** Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term weighting scheme for identifying information from documents. */
6894
+ TfIdf = "TfIdf",
6895
+ /** Weight of Evidence encoding is a technique used to encode categorical variables. It uses the natural log of the P(1)/P(0) to create weights. */
6896
+ WoETargetEncoder = "WoETargetEncoder",
6897
+ /** Label encoder converts labels/categorical variables in a numerical form. */
6898
+ LabelEncoder = "LabelEncoder",
6899
+ /** Word embedding helps represents words or phrases as a vector, or a series of numbers. */
6900
+ WordEmbedding = "WordEmbedding",
6901
+ /** Naive Bayes is a classified that is used for classification of discrete features that are categorically distributed. */
6902
+ NaiveBayes = "NaiveBayes",
6903
+ /** Count Vectorizer converts a collection of text documents to a matrix of token counts. */
6904
+ CountVectorizer = "CountVectorizer",
6905
+ /** Hashing One Hot Encoder can turn categorical variables into a limited number of new features. This is often used for high-cardinality categorical features. */
6906
+ HashOneHotEncoder = "HashOneHotEncoder"
6907
+ }
6908
+
6909
+ /**
6910
+ * Defines values for BlockedTransformers. \
6911
+ * {@link KnownBlockedTransformers} can be used interchangeably with BlockedTransformers,
6912
+ * this enum contains the known values that the service supports.
6913
+ * ### Known values supported by the service
6914
+ * **TextTargetEncoder**: Target encoding for text data. \
6915
+ * **OneHotEncoder**: Ohe hot encoding creates a binary feature transformation. \
6916
+ * **CatTargetEncoder**: Target encoding for categorical data. \
6917
+ * **TfIdf**: Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term weighting scheme for identifying information from documents. \
6918
+ * **WoETargetEncoder**: Weight of Evidence encoding is a technique used to encode categorical variables. It uses the natural log of the P(1)\/P(0) to create weights. \
6919
+ * **LabelEncoder**: Label encoder converts labels\/categorical variables in a numerical form. \
6920
+ * **WordEmbedding**: Word embedding helps represents words or phrases as a vector, or a series of numbers. \
6921
+ * **NaiveBayes**: Naive Bayes is a classified that is used for classification of discrete features that are categorically distributed. \
6922
+ * **CountVectorizer**: Count Vectorizer converts a collection of text documents to a matrix of token counts. \
6923
+ * **HashOneHotEncoder**: Hashing One Hot Encoder can turn categorical variables into a limited number of new features. This is often used for high-cardinality categorical features.
6924
+ */
6925
+ export type BlockedTransformers = string;
6926
+
6927
+ /** Known values of {@link FeaturizationMode} that the service accepts. */
6928
+ export enum KnownFeaturizationMode {
6929
+ /** Auto mode, system performs featurization without any custom featurization inputs. */
6930
+ Auto = "Auto",
6931
+ /** Custom featurization. */
6932
+ Custom = "Custom",
6933
+ /** Featurization off. 'Forecasting' task cannot use this value. */
6934
+ Off = "Off"
6935
+ }
6936
+
6937
+ /**
6938
+ * Defines values for FeaturizationMode. \
6939
+ * {@link KnownFeaturizationMode} can be used interchangeably with FeaturizationMode,
6940
+ * this enum contains the known values that the service supports.
6941
+ * ### Known values supported by the service
6942
+ * **Auto**: Auto mode, system performs featurization without any custom featurization inputs. \
6943
+ * **Custom**: Custom featurization. \
6944
+ * **Off**: Featurization off. 'Forecasting' task cannot use this value.
6945
+ */
6946
+ export type FeaturizationMode = string;
6947
+
6948
+ /** Known values of {@link DistributionType} that the service accepts. */
6949
+ export enum KnownDistributionType {
6950
+ /** PyTorch */
6951
+ PyTorch = "PyTorch",
6952
+ /** TensorFlow */
6953
+ TensorFlow = "TensorFlow",
6954
+ /** Mpi */
6955
+ Mpi = "Mpi"
6956
+ }
6957
+
6958
+ /**
6959
+ * Defines values for DistributionType. \
6960
+ * {@link KnownDistributionType} can be used interchangeably with DistributionType,
6961
+ * this enum contains the known values that the service supports.
6962
+ * ### Known values supported by the service
6963
+ * **PyTorch** \
6964
+ * **TensorFlow** \
6965
+ * **Mpi**
6966
+ */
6967
+ export type DistributionType = string;
6968
+
6969
+ /** Known values of {@link JobLimitsType} that the service accepts. */
6970
+ export enum KnownJobLimitsType {
6971
+ /** Command */
6972
+ Command = "Command",
6973
+ /** Sweep */
6974
+ Sweep = "Sweep"
6975
+ }
6976
+
6977
+ /**
6978
+ * Defines values for JobLimitsType. \
6979
+ * {@link KnownJobLimitsType} can be used interchangeably with JobLimitsType,
6980
+ * this enum contains the known values that the service supports.
6981
+ * ### Known values supported by the service
6982
+ * **Command** \
6983
+ * **Sweep**
6984
+ */
6985
+ export type JobLimitsType = string;
6986
+
6987
+ /** Known values of {@link FeatureLags} that the service accepts. */
6988
+ export enum KnownFeatureLags {
6989
+ /** No feature lags generated. */
6990
+ None = "None",
6991
+ /** System auto-generates feature lags. */
6992
+ Auto = "Auto"
6993
+ }
6994
+
6995
+ /**
6996
+ * Defines values for FeatureLags. \
6997
+ * {@link KnownFeatureLags} can be used interchangeably with FeatureLags,
6998
+ * this enum contains the known values that the service supports.
6999
+ * ### Known values supported by the service
7000
+ * **None**: No feature lags generated. \
7001
+ * **Auto**: System auto-generates feature lags.
7002
+ */
7003
+ export type FeatureLags = string;
7004
+
7005
+ /** Known values of {@link ShortSeriesHandlingConfiguration} that the service accepts. */
7006
+ export enum KnownShortSeriesHandlingConfiguration {
7007
+ /** Represents no/null value. */
7008
+ None = "None",
7009
+ /** Short series will be padded if there are no long series, otherwise short series will be dropped. */
7010
+ Auto = "Auto",
7011
+ /** All the short series will be padded. */
7012
+ Pad = "Pad",
7013
+ /** All the short series will be dropped. */
7014
+ Drop = "Drop"
7015
+ }
7016
+
7017
+ /**
7018
+ * Defines values for ShortSeriesHandlingConfiguration. \
7019
+ * {@link KnownShortSeriesHandlingConfiguration} can be used interchangeably with ShortSeriesHandlingConfiguration,
7020
+ * this enum contains the known values that the service supports.
7021
+ * ### Known values supported by the service
7022
+ * **None**: Represents no\/null value. \
7023
+ * **Auto**: Short series will be padded if there are no long series, otherwise short series will be dropped. \
7024
+ * **Pad**: All the short series will be padded. \
7025
+ * **Drop**: All the short series will be dropped.
7026
+ */
7027
+ export type ShortSeriesHandlingConfiguration = string;
7028
+
7029
+ /** Known values of {@link TargetAggregationFunction} that the service accepts. */
7030
+ export enum KnownTargetAggregationFunction {
7031
+ /** Represent no value set. */
7032
+ None = "None",
7033
+ /** Sum */
7034
+ Sum = "Sum",
7035
+ /** Max */
7036
+ Max = "Max",
7037
+ /** Min */
7038
+ Min = "Min",
7039
+ /** Mean */
7040
+ Mean = "Mean"
7041
+ }
7042
+
7043
+ /**
7044
+ * Defines values for TargetAggregationFunction. \
7045
+ * {@link KnownTargetAggregationFunction} can be used interchangeably with TargetAggregationFunction,
5042
7046
  * this enum contains the known values that the service supports.
5043
7047
  * ### Known values supported by the service
5044
- * **MountRequested** \
5045
- * **Mounted** \
5046
- * **MountFailed** \
5047
- * **UnmountRequested** \
5048
- * **UnmountFailed** \
5049
- * **Unmounted**
7048
+ * **None**: Represent no value set. \
7049
+ * **Sum** \
7050
+ * **Max** \
7051
+ * **Min** \
7052
+ * **Mean**
5050
7053
  */
5051
- export type MountState = string;
7054
+ export type TargetAggregationFunction = string;
5052
7055
 
5053
- /** Known values of {@link InputDeliveryMode} that the service accepts. */
5054
- export enum KnownInputDeliveryMode {
5055
- /** ReadOnlyMount */
5056
- ReadOnlyMount = "ReadOnlyMount",
5057
- /** ReadWriteMount */
5058
- ReadWriteMount = "ReadWriteMount",
5059
- /** Download */
5060
- Download = "Download",
5061
- /** Direct */
5062
- Direct = "Direct",
5063
- /** EvalMount */
5064
- EvalMount = "EvalMount",
5065
- /** EvalDownload */
5066
- EvalDownload = "EvalDownload"
7056
+ /** Known values of {@link UseStl} that the service accepts. */
7057
+ export enum KnownUseStl {
7058
+ /** No stl decomposition. */
7059
+ None = "None",
7060
+ /** Season */
7061
+ Season = "Season",
7062
+ /** SeasonTrend */
7063
+ SeasonTrend = "SeasonTrend"
5067
7064
  }
5068
7065
 
5069
7066
  /**
5070
- * Defines values for InputDeliveryMode. \
5071
- * {@link KnownInputDeliveryMode} can be used interchangeably with InputDeliveryMode,
7067
+ * Defines values for UseStl. \
7068
+ * {@link KnownUseStl} can be used interchangeably with UseStl,
5072
7069
  * this enum contains the known values that the service supports.
5073
7070
  * ### Known values supported by the service
5074
- * **ReadOnlyMount** \
5075
- * **ReadWriteMount** \
5076
- * **Download** \
5077
- * **Direct** \
5078
- * **EvalMount** \
5079
- * **EvalDownload**
7071
+ * **None**: No stl decomposition. \
7072
+ * **Season** \
7073
+ * **SeasonTrend**
5080
7074
  */
5081
- export type InputDeliveryMode = string;
7075
+ export type UseStl = string;
5082
7076
 
5083
- /** Known values of {@link OutputDeliveryMode} that the service accepts. */
5084
- export enum KnownOutputDeliveryMode {
5085
- /** ReadWriteMount */
5086
- ReadWriteMount = "ReadWriteMount",
5087
- /** Upload */
5088
- Upload = "Upload"
7077
+ /** Known values of {@link ForecastingPrimaryMetrics} that the service accepts. */
7078
+ export enum KnownForecastingPrimaryMetrics {
7079
+ /** The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. */
7080
+ SpearmanCorrelation = "SpearmanCorrelation",
7081
+ /** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
7082
+ NormalizedRootMeanSquaredError = "NormalizedRootMeanSquaredError",
7083
+ /** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
7084
+ R2Score = "R2Score",
7085
+ /** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
7086
+ NormalizedMeanAbsoluteError = "NormalizedMeanAbsoluteError"
5089
7087
  }
5090
7088
 
5091
7089
  /**
5092
- * Defines values for OutputDeliveryMode. \
5093
- * {@link KnownOutputDeliveryMode} can be used interchangeably with OutputDeliveryMode,
7090
+ * Defines values for ForecastingPrimaryMetrics. \
7091
+ * {@link KnownForecastingPrimaryMetrics} can be used interchangeably with ForecastingPrimaryMetrics,
5094
7092
  * this enum contains the known values that the service supports.
5095
7093
  * ### Known values supported by the service
5096
- * **ReadWriteMount** \
5097
- * **Upload**
7094
+ * **SpearmanCorrelation**: The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. \
7095
+ * **NormalizedRootMeanSquaredError**: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. \
7096
+ * **R2Score**: The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. \
7097
+ * **NormalizedMeanAbsoluteError**: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales.
5098
7098
  */
5099
- export type OutputDeliveryMode = string;
7099
+ export type ForecastingPrimaryMetrics = string;
5100
7100
 
5101
- /** Known values of {@link ServiceDataAccessAuthIdentity} that the service accepts. */
5102
- export enum KnownServiceDataAccessAuthIdentity {
5103
- /** Do not use any identity for service data access. */
7101
+ /** Known values of {@link ForecastingModels} that the service accepts. */
7102
+ export enum KnownForecastingModels {
7103
+ /**
7104
+ * Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and statistical analysis to interpret the data and make future predictions.
7105
+ * This model aims to explain data by using time series data on its past values and uses linear regression to make predictions.
7106
+ */
7107
+ AutoArima = "AutoArima",
7108
+ /**
7109
+ * Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.
7110
+ * It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
7111
+ */
7112
+ Prophet = "Prophet",
7113
+ /** The Naive forecasting model makes predictions by carrying forward the latest target value for each time-series in the training data. */
7114
+ Naive = "Naive",
7115
+ /** The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of target values for each time-series in the training data. */
7116
+ SeasonalNaive = "SeasonalNaive",
7117
+ /** The Average forecasting model makes predictions by carrying forward the average of the target values for each time-series in the training data. */
7118
+ Average = "Average",
7119
+ /** The Seasonal Average forecasting model makes predictions by carrying forward the average value of the latest season of data for each time-series in the training data. */
7120
+ SeasonalAverage = "SeasonalAverage",
7121
+ /** Exponential smoothing is a time series forecasting method for univariate data that can be extended to support data with a systematic trend or seasonal component. */
7122
+ ExponentialSmoothing = "ExponentialSmoothing",
7123
+ /**
7124
+ * An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be viewed as a multiple regression model with one or more autoregressive (AR) terms and/or one or more moving average (MA) terms.
7125
+ * This method is suitable for forecasting when data is stationary/non stationary, and multivariate with any type of data pattern, i.e., level/trend /seasonality/cyclicity.
7126
+ */
7127
+ Arimax = "Arimax",
7128
+ /** TCNForecaster: Temporal Convolutional Networks Forecaster. //TODO: Ask forecasting team for brief intro. */
7129
+ TCNForecaster = "TCNForecaster",
7130
+ /** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
7131
+ ElasticNet = "ElasticNet",
7132
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
7133
+ GradientBoosting = "GradientBoosting",
7134
+ /**
7135
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
7136
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
7137
+ */
7138
+ DecisionTree = "DecisionTree",
7139
+ /**
7140
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
7141
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
7142
+ */
7143
+ KNN = "KNN",
7144
+ /** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
7145
+ LassoLars = "LassoLars",
7146
+ /**
7147
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
7148
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
7149
+ * It's an inexact but powerful technique.
7150
+ */
7151
+ SGD = "SGD",
7152
+ /**
7153
+ * Random forest is a supervised learning algorithm.
7154
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
7155
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
7156
+ */
7157
+ RandomForest = "RandomForest",
7158
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
7159
+ ExtremeRandomTrees = "ExtremeRandomTrees",
7160
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
7161
+ LightGBM = "LightGBM",
7162
+ /** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
7163
+ XGBoostRegressor = "XGBoostRegressor"
7164
+ }
7165
+
7166
+ /**
7167
+ * Defines values for ForecastingModels. \
7168
+ * {@link KnownForecastingModels} can be used interchangeably with ForecastingModels,
7169
+ * this enum contains the known values that the service supports.
7170
+ * ### Known values supported by the service
7171
+ * **AutoArima**: Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and statistical analysis to interpret the data and make future predictions.
7172
+ * This model aims to explain data by using time series data on its past values and uses linear regression to make predictions. \
7173
+ * **Prophet**: Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.
7174
+ * It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well. \
7175
+ * **Naive**: The Naive forecasting model makes predictions by carrying forward the latest target value for each time-series in the training data. \
7176
+ * **SeasonalNaive**: The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of target values for each time-series in the training data. \
7177
+ * **Average**: The Average forecasting model makes predictions by carrying forward the average of the target values for each time-series in the training data. \
7178
+ * **SeasonalAverage**: The Seasonal Average forecasting model makes predictions by carrying forward the average value of the latest season of data for each time-series in the training data. \
7179
+ * **ExponentialSmoothing**: Exponential smoothing is a time series forecasting method for univariate data that can be extended to support data with a systematic trend or seasonal component. \
7180
+ * **Arimax**: An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be viewed as a multiple regression model with one or more autoregressive (AR) terms and\/or one or more moving average (MA) terms.
7181
+ * This method is suitable for forecasting when data is stationary\/non stationary, and multivariate with any type of data pattern, i.e., level\/trend \/seasonality\/cyclicity. \
7182
+ * **TCNForecaster**: TCNForecaster: Temporal Convolutional Networks Forecaster. \/\/TODO: Ask forecasting team for brief intro. \
7183
+ * **ElasticNet**: Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. \
7184
+ * **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
7185
+ * **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
7186
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
7187
+ * **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
7188
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
7189
+ * **LassoLars**: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. \
7190
+ * **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
7191
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
7192
+ * It's an inexact but powerful technique. \
7193
+ * **RandomForest**: Random forest is a supervised learning algorithm.
7194
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
7195
+ * The general idea of the bagging method is that a combination of learning models increases the overall result. \
7196
+ * **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
7197
+ * **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
7198
+ * **XGBoostRegressor**: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners.
7199
+ */
7200
+ export type ForecastingModels = string;
7201
+
7202
+ /** Known values of {@link LearningRateScheduler} that the service accepts. */
7203
+ export enum KnownLearningRateScheduler {
7204
+ /** No learning rate scheduler selected. */
5104
7205
  None = "None",
5105
- /** Use the system assigned managed identity of the Workspace to authenticate service data access. */
5106
- WorkspaceSystemAssignedIdentity = "WorkspaceSystemAssignedIdentity",
5107
- /** Use the user assigned managed identity of the Workspace to authenticate service data access. */
5108
- WorkspaceUserAssignedIdentity = "WorkspaceUserAssignedIdentity"
7206
+ /** Cosine Annealing With Warmup. */
7207
+ WarmupCosine = "WarmupCosine",
7208
+ /** Step learning rate scheduler. */
7209
+ Step = "Step"
5109
7210
  }
5110
7211
 
5111
7212
  /**
5112
- * Defines values for ServiceDataAccessAuthIdentity. \
5113
- * {@link KnownServiceDataAccessAuthIdentity} can be used interchangeably with ServiceDataAccessAuthIdentity,
7213
+ * Defines values for LearningRateScheduler. \
7214
+ * {@link KnownLearningRateScheduler} can be used interchangeably with LearningRateScheduler,
5114
7215
  * this enum contains the known values that the service supports.
5115
7216
  * ### Known values supported by the service
5116
- * **None**: Do not use any identity for service data access. \
5117
- * **WorkspaceSystemAssignedIdentity**: Use the system assigned managed identity of the Workspace to authenticate service data access. \
5118
- * **WorkspaceUserAssignedIdentity**: Use the user assigned managed identity of the Workspace to authenticate service data access.
7217
+ * **None**: No learning rate scheduler selected. \
7218
+ * **WarmupCosine**: Cosine Annealing With Warmup. \
7219
+ * **Step**: Step learning rate scheduler.
5119
7220
  */
5120
- export type ServiceDataAccessAuthIdentity = string;
7221
+ export type LearningRateScheduler = string;
5121
7222
 
5122
- /** Known values of {@link EarlyTerminationPolicyType} that the service accepts. */
5123
- export enum KnownEarlyTerminationPolicyType {
5124
- /** Bandit */
5125
- Bandit = "Bandit",
5126
- /** MedianStopping */
5127
- MedianStopping = "MedianStopping",
5128
- /** TruncationSelection */
5129
- TruncationSelection = "TruncationSelection"
7223
+ /** Known values of {@link StochasticOptimizer} that the service accepts. */
7224
+ export enum KnownStochasticOptimizer {
7225
+ /** No optimizer selected. */
7226
+ None = "None",
7227
+ /** Stochastic Gradient Descent optimizer. */
7228
+ Sgd = "Sgd",
7229
+ /** Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of moments */
7230
+ Adam = "Adam",
7231
+ /** AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay. */
7232
+ Adamw = "Adamw"
5130
7233
  }
5131
7234
 
5132
7235
  /**
5133
- * Defines values for EarlyTerminationPolicyType. \
5134
- * {@link KnownEarlyTerminationPolicyType} can be used interchangeably with EarlyTerminationPolicyType,
7236
+ * Defines values for StochasticOptimizer. \
7237
+ * {@link KnownStochasticOptimizer} can be used interchangeably with StochasticOptimizer,
5135
7238
  * this enum contains the known values that the service supports.
5136
7239
  * ### Known values supported by the service
5137
- * **Bandit** \
5138
- * **MedianStopping** \
5139
- * **TruncationSelection**
7240
+ * **None**: No optimizer selected. \
7241
+ * **Sgd**: Stochastic Gradient Descent optimizer. \
7242
+ * **Adam**: Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of moments \
7243
+ * **Adamw**: AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay.
5140
7244
  */
5141
- export type EarlyTerminationPolicyType = string;
7245
+ export type StochasticOptimizer = string;
5142
7246
 
5143
- /** Known values of {@link SamplingAlgorithmType} that the service accepts. */
5144
- export enum KnownSamplingAlgorithmType {
5145
- /** Grid */
5146
- Grid = "Grid",
5147
- /** Random */
5148
- Random = "Random",
5149
- /** Bayesian */
5150
- Bayesian = "Bayesian"
7247
+ /** Known values of {@link ClassificationMultilabelPrimaryMetrics} that the service accepts. */
7248
+ export enum KnownClassificationMultilabelPrimaryMetrics {
7249
+ /**
7250
+ * AUC is the Area under the curve.
7251
+ * This metric represents arithmetic mean of the score for each class,
7252
+ * weighted by the number of true instances in each class.
7253
+ */
7254
+ AUCWeighted = "AUCWeighted",
7255
+ /** Accuracy is the ratio of predictions that exactly match the true class labels. */
7256
+ Accuracy = "Accuracy",
7257
+ /**
7258
+ * Normalized macro recall is recall macro-averaged and normalized, so that random
7259
+ * performance has a score of 0, and perfect performance has a score of 1.
7260
+ */
7261
+ NormMacroRecall = "NormMacroRecall",
7262
+ /**
7263
+ * The arithmetic mean of the average precision score for each class, weighted by
7264
+ * the number of true instances in each class.
7265
+ */
7266
+ AveragePrecisionScoreWeighted = "AveragePrecisionScoreWeighted",
7267
+ /** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
7268
+ PrecisionScoreWeighted = "PrecisionScoreWeighted",
7269
+ /** Intersection Over Union. Intersection of predictions divided by union of predictions. */
7270
+ IOU = "IOU"
5151
7271
  }
5152
7272
 
5153
7273
  /**
5154
- * Defines values for SamplingAlgorithmType. \
5155
- * {@link KnownSamplingAlgorithmType} can be used interchangeably with SamplingAlgorithmType,
7274
+ * Defines values for ClassificationMultilabelPrimaryMetrics. \
7275
+ * {@link KnownClassificationMultilabelPrimaryMetrics} can be used interchangeably with ClassificationMultilabelPrimaryMetrics,
5156
7276
  * this enum contains the known values that the service supports.
5157
7277
  * ### Known values supported by the service
5158
- * **Grid** \
5159
- * **Random** \
5160
- * **Bayesian**
7278
+ * **AUCWeighted**: AUC is the Area under the curve.
7279
+ * This metric represents arithmetic mean of the score for each class,
7280
+ * weighted by the number of true instances in each class. \
7281
+ * **Accuracy**: Accuracy is the ratio of predictions that exactly match the true class labels. \
7282
+ * **NormMacroRecall**: Normalized macro recall is recall macro-averaged and normalized, so that random
7283
+ * performance has a score of 0, and perfect performance has a score of 1. \
7284
+ * **AveragePrecisionScoreWeighted**: The arithmetic mean of the average precision score for each class, weighted by
7285
+ * the number of true instances in each class. \
7286
+ * **PrecisionScoreWeighted**: The arithmetic mean of precision for each class, weighted by number of true instances in each class. \
7287
+ * **IOU**: Intersection Over Union. Intersection of predictions divided by union of predictions.
5161
7288
  */
5162
- export type SamplingAlgorithmType = string;
7289
+ export type ClassificationMultilabelPrimaryMetrics = string;
5163
7290
 
5164
- /** Known values of {@link DistributionType} that the service accepts. */
5165
- export enum KnownDistributionType {
5166
- /** PyTorch */
5167
- PyTorch = "PyTorch",
5168
- /** TensorFlow */
5169
- TensorFlow = "TensorFlow",
5170
- /** Mpi */
5171
- Mpi = "Mpi"
7291
+ /** Known values of {@link InstanceSegmentationPrimaryMetrics} that the service accepts. */
7292
+ export enum KnownInstanceSegmentationPrimaryMetrics {
7293
+ /**
7294
+ * Mean Average Precision (MAP) is the average of AP (Average Precision).
7295
+ * AP is calculated for each class and averaged to get the MAP.
7296
+ */
7297
+ MeanAveragePrecision = "MeanAveragePrecision"
5172
7298
  }
5173
7299
 
5174
7300
  /**
5175
- * Defines values for DistributionType. \
5176
- * {@link KnownDistributionType} can be used interchangeably with DistributionType,
7301
+ * Defines values for InstanceSegmentationPrimaryMetrics. \
7302
+ * {@link KnownInstanceSegmentationPrimaryMetrics} can be used interchangeably with InstanceSegmentationPrimaryMetrics,
5177
7303
  * this enum contains the known values that the service supports.
5178
7304
  * ### Known values supported by the service
5179
- * **PyTorch** \
5180
- * **TensorFlow** \
5181
- * **Mpi**
7305
+ * **MeanAveragePrecision**: Mean Average Precision (MAP) is the average of AP (Average Precision).
7306
+ * AP is calculated for each class and averaged to get the MAP.
5182
7307
  */
5183
- export type DistributionType = string;
7308
+ export type InstanceSegmentationPrimaryMetrics = string;
5184
7309
 
5185
- /** Known values of {@link JobInputType} that the service accepts. */
5186
- export enum KnownJobInputType {
5187
- /** Literal */
5188
- Literal = "literal",
5189
- /** UriFile */
5190
- UriFile = "uri_file",
5191
- /** UriFolder */
5192
- UriFolder = "uri_folder",
5193
- /** Mltable */
5194
- Mltable = "mltable",
5195
- /** CustomModel */
5196
- CustomModel = "custom_model",
5197
- /** MlflowModel */
5198
- MlflowModel = "mlflow_model",
5199
- /** TritonModel */
5200
- TritonModel = "triton_model"
7310
+ /** Known values of {@link ModelSize} that the service accepts. */
7311
+ export enum KnownModelSize {
7312
+ /** No value selected. */
7313
+ None = "None",
7314
+ /** Small size. */
7315
+ Small = "Small",
7316
+ /** Medium size. */
7317
+ Medium = "Medium",
7318
+ /** Large size. */
7319
+ Large = "Large",
7320
+ /** Extra large size. */
7321
+ ExtraLarge = "ExtraLarge"
5201
7322
  }
5202
7323
 
5203
7324
  /**
5204
- * Defines values for JobInputType. \
5205
- * {@link KnownJobInputType} can be used interchangeably with JobInputType,
7325
+ * Defines values for ModelSize. \
7326
+ * {@link KnownModelSize} can be used interchangeably with ModelSize,
5206
7327
  * this enum contains the known values that the service supports.
5207
7328
  * ### Known values supported by the service
5208
- * **literal** \
5209
- * **uri_file** \
5210
- * **uri_folder** \
5211
- * **mltable** \
5212
- * **custom_model** \
5213
- * **mlflow_model** \
5214
- * **triton_model**
7329
+ * **None**: No value selected. \
7330
+ * **Small**: Small size. \
7331
+ * **Medium**: Medium size. \
7332
+ * **Large**: Large size. \
7333
+ * **ExtraLarge**: Extra large size.
5215
7334
  */
5216
- export type JobInputType = string;
7335
+ export type ModelSize = string;
5217
7336
 
5218
- /** Known values of {@link JobLimitsType} that the service accepts. */
5219
- export enum KnownJobLimitsType {
5220
- /** Command */
5221
- Command = "Command",
5222
- /** Sweep */
5223
- Sweep = "Sweep"
7337
+ /** Known values of {@link ValidationMetricType} that the service accepts. */
7338
+ export enum KnownValidationMetricType {
7339
+ /** No metric. */
7340
+ None = "None",
7341
+ /** Coco metric. */
7342
+ Coco = "Coco",
7343
+ /** Voc metric. */
7344
+ Voc = "Voc",
7345
+ /** CocoVoc metric. */
7346
+ CocoVoc = "CocoVoc"
5224
7347
  }
5225
7348
 
5226
7349
  /**
5227
- * Defines values for JobLimitsType. \
5228
- * {@link KnownJobLimitsType} can be used interchangeably with JobLimitsType,
7350
+ * Defines values for ValidationMetricType. \
7351
+ * {@link KnownValidationMetricType} can be used interchangeably with ValidationMetricType,
5229
7352
  * this enum contains the known values that the service supports.
5230
7353
  * ### Known values supported by the service
5231
- * **Command** \
5232
- * **Sweep**
7354
+ * **None**: No metric. \
7355
+ * **Coco**: Coco metric. \
7356
+ * **Voc**: Voc metric. \
7357
+ * **CocoVoc**: CocoVoc metric.
5233
7358
  */
5234
- export type JobLimitsType = string;
7359
+ export type ValidationMetricType = string;
5235
7360
 
5236
- /** Known values of {@link JobOutputType} that the service accepts. */
5237
- export enum KnownJobOutputType {
5238
- /** UriFile */
5239
- UriFile = "uri_file",
5240
- /** UriFolder */
5241
- UriFolder = "uri_folder",
5242
- /** Mltable */
5243
- Mltable = "mltable",
5244
- /** CustomModel */
5245
- CustomModel = "custom_model",
5246
- /** MlflowModel */
5247
- MlflowModel = "mlflow_model",
5248
- /** TritonModel */
5249
- TritonModel = "triton_model"
7361
+ /** Known values of {@link ObjectDetectionPrimaryMetrics} that the service accepts. */
7362
+ export enum KnownObjectDetectionPrimaryMetrics {
7363
+ /**
7364
+ * Mean Average Precision (MAP) is the average of AP (Average Precision).
7365
+ * AP is calculated for each class and averaged to get the MAP.
7366
+ */
7367
+ MeanAveragePrecision = "MeanAveragePrecision"
5250
7368
  }
5251
7369
 
5252
7370
  /**
5253
- * Defines values for JobOutputType. \
5254
- * {@link KnownJobOutputType} can be used interchangeably with JobOutputType,
7371
+ * Defines values for ObjectDetectionPrimaryMetrics. \
7372
+ * {@link KnownObjectDetectionPrimaryMetrics} can be used interchangeably with ObjectDetectionPrimaryMetrics,
5255
7373
  * this enum contains the known values that the service supports.
5256
7374
  * ### Known values supported by the service
5257
- * **uri_file** \
5258
- * **uri_folder** \
5259
- * **mltable** \
5260
- * **custom_model** \
5261
- * **mlflow_model** \
5262
- * **triton_model**
7375
+ * **MeanAveragePrecision**: Mean Average Precision (MAP) is the average of AP (Average Precision).
7376
+ * AP is calculated for each class and averaged to get the MAP.
5263
7377
  */
5264
- export type JobOutputType = string;
7378
+ export type ObjectDetectionPrimaryMetrics = string;
5265
7379
 
5266
7380
  /** Known values of {@link Goal} that the service accepts. */
5267
7381
  export enum KnownGoal {
@@ -5298,19 +7412,105 @@ export enum KnownRandomSamplingAlgorithmRule {
5298
7412
  * **Sobol**
5299
7413
  */
5300
7414
  export type RandomSamplingAlgorithmRule = string;
7415
+
7416
+ /** Known values of {@link RegressionPrimaryMetrics} that the service accepts. */
7417
+ export enum KnownRegressionPrimaryMetrics {
7418
+ /** The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. */
7419
+ SpearmanCorrelation = "SpearmanCorrelation",
7420
+ /** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
7421
+ NormalizedRootMeanSquaredError = "NormalizedRootMeanSquaredError",
7422
+ /** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
7423
+ R2Score = "R2Score",
7424
+ /** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
7425
+ NormalizedMeanAbsoluteError = "NormalizedMeanAbsoluteError"
7426
+ }
7427
+
7428
+ /**
7429
+ * Defines values for RegressionPrimaryMetrics. \
7430
+ * {@link KnownRegressionPrimaryMetrics} can be used interchangeably with RegressionPrimaryMetrics,
7431
+ * this enum contains the known values that the service supports.
7432
+ * ### Known values supported by the service
7433
+ * **SpearmanCorrelation**: The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. \
7434
+ * **NormalizedRootMeanSquaredError**: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. \
7435
+ * **R2Score**: The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. \
7436
+ * **NormalizedMeanAbsoluteError**: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales.
7437
+ */
7438
+ export type RegressionPrimaryMetrics = string;
7439
+
7440
+ /** Known values of {@link RegressionModels} that the service accepts. */
7441
+ export enum KnownRegressionModels {
7442
+ /** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
7443
+ ElasticNet = "ElasticNet",
7444
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
7445
+ GradientBoosting = "GradientBoosting",
7446
+ /**
7447
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
7448
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
7449
+ */
7450
+ DecisionTree = "DecisionTree",
7451
+ /**
7452
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
7453
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
7454
+ */
7455
+ KNN = "KNN",
7456
+ /** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
7457
+ LassoLars = "LassoLars",
7458
+ /**
7459
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
7460
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
7461
+ * It's an inexact but powerful technique.
7462
+ */
7463
+ SGD = "SGD",
7464
+ /**
7465
+ * Random forest is a supervised learning algorithm.
7466
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
7467
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
7468
+ */
7469
+ RandomForest = "RandomForest",
7470
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
7471
+ ExtremeRandomTrees = "ExtremeRandomTrees",
7472
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
7473
+ LightGBM = "LightGBM",
7474
+ /** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
7475
+ XGBoostRegressor = "XGBoostRegressor"
7476
+ }
7477
+
7478
+ /**
7479
+ * Defines values for RegressionModels. \
7480
+ * {@link KnownRegressionModels} can be used interchangeably with RegressionModels,
7481
+ * this enum contains the known values that the service supports.
7482
+ * ### Known values supported by the service
7483
+ * **ElasticNet**: Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. \
7484
+ * **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
7485
+ * **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
7486
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
7487
+ * **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
7488
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
7489
+ * **LassoLars**: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. \
7490
+ * **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
7491
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
7492
+ * It's an inexact but powerful technique. \
7493
+ * **RandomForest**: Random forest is a supervised learning algorithm.
7494
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
7495
+ * The general idea of the bagging method is that a combination of learning models increases the overall result. \
7496
+ * **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
7497
+ * **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
7498
+ * **XGBoostRegressor**: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners.
7499
+ */
7500
+ export type RegressionModels = string;
5301
7501
  /** Defines values for SkuTier. */
5302
7502
  export type SkuTier = "Free" | "Basic" | "Standard" | "Premium";
5303
7503
 
5304
7504
  /** Optional parameters. */
5305
7505
  export interface OperationsListOptionalParams
5306
- extends coreClient.OperationOptions {}
7506
+ extends coreClient.OperationOptions { }
5307
7507
 
5308
7508
  /** Contains response data for the list operation. */
5309
7509
  export type OperationsListResponse = AmlOperationListResult;
5310
7510
 
5311
7511
  /** Optional parameters. */
5312
7512
  export interface WorkspacesGetOptionalParams
5313
- extends coreClient.OperationOptions {}
7513
+ extends coreClient.OperationOptions { }
5314
7514
 
5315
7515
  /** Contains response data for the get operation. */
5316
7516
  export type WorkspacesGetResponse = Workspace;
@@ -5374,7 +7574,7 @@ export type WorkspacesDiagnoseResponse = DiagnoseResponseResult;
5374
7574
 
5375
7575
  /** Optional parameters. */
5376
7576
  export interface WorkspacesListKeysOptionalParams
5377
- extends coreClient.OperationOptions {}
7577
+ extends coreClient.OperationOptions { }
5378
7578
 
5379
7579
  /** Contains response data for the listKeys operation. */
5380
7580
  export type WorkspacesListKeysResponse = ListWorkspaceKeysResult;
@@ -5400,7 +7600,7 @@ export type WorkspacesListBySubscriptionResponse = WorkspaceListResult;
5400
7600
 
5401
7601
  /** Optional parameters. */
5402
7602
  export interface WorkspacesListNotebookAccessTokenOptionalParams
5403
- extends coreClient.OperationOptions {}
7603
+ extends coreClient.OperationOptions { }
5404
7604
 
5405
7605
  /** Contains response data for the listNotebookAccessToken operation. */
5406
7606
  export type WorkspacesListNotebookAccessTokenResponse = NotebookAccessTokenResult;
@@ -5419,21 +7619,21 @@ export type WorkspacesPrepareNotebookResponse = NotebookResourceInfo;
5419
7619
 
5420
7620
  /** Optional parameters. */
5421
7621
  export interface WorkspacesListStorageAccountKeysOptionalParams
5422
- extends coreClient.OperationOptions {}
7622
+ extends coreClient.OperationOptions { }
5423
7623
 
5424
7624
  /** Contains response data for the listStorageAccountKeys operation. */
5425
7625
  export type WorkspacesListStorageAccountKeysResponse = ListStorageAccountKeysResult;
5426
7626
 
5427
7627
  /** Optional parameters. */
5428
7628
  export interface WorkspacesListNotebookKeysOptionalParams
5429
- extends coreClient.OperationOptions {}
7629
+ extends coreClient.OperationOptions { }
5430
7630
 
5431
7631
  /** Contains response data for the listNotebookKeys operation. */
5432
7632
  export type WorkspacesListNotebookKeysResponse = ListNotebookKeysResult;
5433
7633
 
5434
7634
  /** Optional parameters. */
5435
7635
  export interface WorkspacesListOutboundNetworkDependenciesEndpointsOptionalParams
5436
- extends coreClient.OperationOptions {}
7636
+ extends coreClient.OperationOptions { }
5437
7637
 
5438
7638
  /** Contains response data for the listOutboundNetworkDependenciesEndpoints operation. */
5439
7639
  export type WorkspacesListOutboundNetworkDependenciesEndpointsResponse = ExternalFqdnResponse;
@@ -5459,41 +7659,41 @@ export interface WorkspacesListBySubscriptionNextOptionalParams
5459
7659
  export type WorkspacesListBySubscriptionNextResponse = WorkspaceListResult;
5460
7660
 
5461
7661
  /** Optional parameters. */
5462
- export interface UsagesListOptionalParams extends coreClient.OperationOptions {}
7662
+ export interface UsagesListOptionalParams extends coreClient.OperationOptions { }
5463
7663
 
5464
7664
  /** Contains response data for the list operation. */
5465
7665
  export type UsagesListResponse = ListUsagesResult;
5466
7666
 
5467
7667
  /** Optional parameters. */
5468
7668
  export interface UsagesListNextOptionalParams
5469
- extends coreClient.OperationOptions {}
7669
+ extends coreClient.OperationOptions { }
5470
7670
 
5471
7671
  /** Contains response data for the listNext operation. */
5472
7672
  export type UsagesListNextResponse = ListUsagesResult;
5473
7673
 
5474
7674
  /** Optional parameters. */
5475
7675
  export interface VirtualMachineSizesListOptionalParams
5476
- extends coreClient.OperationOptions {}
7676
+ extends coreClient.OperationOptions { }
5477
7677
 
5478
7678
  /** Contains response data for the list operation. */
5479
7679
  export type VirtualMachineSizesListResponse = VirtualMachineSizeListResult;
5480
7680
 
5481
7681
  /** Optional parameters. */
5482
7682
  export interface QuotasUpdateOptionalParams
5483
- extends coreClient.OperationOptions {}
7683
+ extends coreClient.OperationOptions { }
5484
7684
 
5485
7685
  /** Contains response data for the update operation. */
5486
7686
  export type QuotasUpdateResponse = UpdateWorkspaceQuotasResult;
5487
7687
 
5488
7688
  /** Optional parameters. */
5489
- export interface QuotasListOptionalParams extends coreClient.OperationOptions {}
7689
+ export interface QuotasListOptionalParams extends coreClient.OperationOptions { }
5490
7690
 
5491
7691
  /** Contains response data for the list operation. */
5492
7692
  export type QuotasListResponse = ListWorkspaceQuotas;
5493
7693
 
5494
7694
  /** Optional parameters. */
5495
7695
  export interface QuotasListNextOptionalParams
5496
- extends coreClient.OperationOptions {}
7696
+ extends coreClient.OperationOptions { }
5497
7697
 
5498
7698
  /** Contains response data for the listNext operation. */
5499
7699
  export type QuotasListNextResponse = ListWorkspaceQuotas;
@@ -5508,7 +7708,7 @@ export interface ComputeListOptionalParams extends coreClient.OperationOptions {
5508
7708
  export type ComputeListResponse = PaginatedComputeResourcesList;
5509
7709
 
5510
7710
  /** Optional parameters. */
5511
- export interface ComputeGetOptionalParams extends coreClient.OperationOptions {}
7711
+ export interface ComputeGetOptionalParams extends coreClient.OperationOptions { }
5512
7712
 
5513
7713
  /** Contains response data for the get operation. */
5514
7714
  export type ComputeGetResponse = ComputeResource;
@@ -5548,14 +7748,14 @@ export interface ComputeDeleteOptionalParams
5548
7748
 
5549
7749
  /** Optional parameters. */
5550
7750
  export interface ComputeListNodesOptionalParams
5551
- extends coreClient.OperationOptions {}
7751
+ extends coreClient.OperationOptions { }
5552
7752
 
5553
7753
  /** Contains response data for the listNodes operation. */
5554
7754
  export type ComputeListNodesResponse = AmlComputeNodesInformation;
5555
7755
 
5556
7756
  /** Optional parameters. */
5557
7757
  export interface ComputeListKeysOptionalParams
5558
- extends coreClient.OperationOptions {}
7758
+ extends coreClient.OperationOptions { }
5559
7759
 
5560
7760
  /** Contains response data for the listKeys operation. */
5561
7761
  export type ComputeListKeysResponse = ComputeSecretsUnion;
@@ -5598,60 +7798,60 @@ export type ComputeListNextResponse = PaginatedComputeResourcesList;
5598
7798
 
5599
7799
  /** Optional parameters. */
5600
7800
  export interface ComputeListNodesNextOptionalParams
5601
- extends coreClient.OperationOptions {}
7801
+ extends coreClient.OperationOptions { }
5602
7802
 
5603
7803
  /** Contains response data for the listNodesNext operation. */
5604
7804
  export type ComputeListNodesNextResponse = AmlComputeNodesInformation;
5605
7805
 
5606
7806
  /** Optional parameters. */
5607
7807
  export interface PrivateEndpointConnectionsListOptionalParams
5608
- extends coreClient.OperationOptions {}
7808
+ extends coreClient.OperationOptions { }
5609
7809
 
5610
7810
  /** Contains response data for the list operation. */
5611
7811
  export type PrivateEndpointConnectionsListResponse = PrivateEndpointConnectionListResult;
5612
7812
 
5613
7813
  /** Optional parameters. */
5614
7814
  export interface PrivateEndpointConnectionsGetOptionalParams
5615
- extends coreClient.OperationOptions {}
7815
+ extends coreClient.OperationOptions { }
5616
7816
 
5617
7817
  /** Contains response data for the get operation. */
5618
7818
  export type PrivateEndpointConnectionsGetResponse = PrivateEndpointConnection;
5619
7819
 
5620
7820
  /** Optional parameters. */
5621
7821
  export interface PrivateEndpointConnectionsCreateOrUpdateOptionalParams
5622
- extends coreClient.OperationOptions {}
7822
+ extends coreClient.OperationOptions { }
5623
7823
 
5624
7824
  /** Contains response data for the createOrUpdate operation. */
5625
7825
  export type PrivateEndpointConnectionsCreateOrUpdateResponse = PrivateEndpointConnection;
5626
7826
 
5627
7827
  /** Optional parameters. */
5628
7828
  export interface PrivateEndpointConnectionsDeleteOptionalParams
5629
- extends coreClient.OperationOptions {}
7829
+ extends coreClient.OperationOptions { }
5630
7830
 
5631
7831
  /** Optional parameters. */
5632
7832
  export interface PrivateLinkResourcesListOptionalParams
5633
- extends coreClient.OperationOptions {}
7833
+ extends coreClient.OperationOptions { }
5634
7834
 
5635
7835
  /** Contains response data for the list operation. */
5636
7836
  export type PrivateLinkResourcesListResponse = PrivateLinkResourceListResult;
5637
7837
 
5638
7838
  /** Optional parameters. */
5639
7839
  export interface WorkspaceConnectionsCreateOptionalParams
5640
- extends coreClient.OperationOptions {}
7840
+ extends coreClient.OperationOptions { }
5641
7841
 
5642
7842
  /** Contains response data for the create operation. */
5643
7843
  export type WorkspaceConnectionsCreateResponse = WorkspaceConnectionPropertiesV2BasicResource;
5644
7844
 
5645
7845
  /** Optional parameters. */
5646
7846
  export interface WorkspaceConnectionsGetOptionalParams
5647
- extends coreClient.OperationOptions {}
7847
+ extends coreClient.OperationOptions { }
5648
7848
 
5649
7849
  /** Contains response data for the get operation. */
5650
7850
  export type WorkspaceConnectionsGetResponse = WorkspaceConnectionPropertiesV2BasicResource;
5651
7851
 
5652
7852
  /** Optional parameters. */
5653
7853
  export interface WorkspaceConnectionsDeleteOptionalParams
5654
- extends coreClient.OperationOptions {}
7854
+ extends coreClient.OperationOptions { }
5655
7855
 
5656
7856
  /** Optional parameters. */
5657
7857
  export interface WorkspaceConnectionsListOptionalParams
@@ -5700,7 +7900,7 @@ export interface BatchEndpointsDeleteOptionalParams
5700
7900
 
5701
7901
  /** Optional parameters. */
5702
7902
  export interface BatchEndpointsGetOptionalParams
5703
- extends coreClient.OperationOptions {}
7903
+ extends coreClient.OperationOptions { }
5704
7904
 
5705
7905
  /** Contains response data for the get operation. */
5706
7906
  export type BatchEndpointsGetResponse = BatchEndpoint;
@@ -5731,7 +7931,7 @@ export type BatchEndpointsCreateOrUpdateResponse = BatchEndpoint;
5731
7931
 
5732
7932
  /** Optional parameters. */
5733
7933
  export interface BatchEndpointsListKeysOptionalParams
5734
- extends coreClient.OperationOptions {}
7934
+ extends coreClient.OperationOptions { }
5735
7935
 
5736
7936
  /** Contains response data for the listKeys operation. */
5737
7937
  export type BatchEndpointsListKeysResponse = EndpointAuthKeys;
@@ -5773,7 +7973,7 @@ export interface BatchDeploymentsDeleteOptionalParams
5773
7973
 
5774
7974
  /** Optional parameters. */
5775
7975
  export interface BatchDeploymentsGetOptionalParams
5776
- extends coreClient.OperationOptions {}
7976
+ extends coreClient.OperationOptions { }
5777
7977
 
5778
7978
  /** Contains response data for the get operation. */
5779
7979
  export type BatchDeploymentsGetResponse = BatchDeployment;
@@ -5828,18 +8028,18 @@ export type CodeContainersListResponse = CodeContainerResourceArmPaginatedResult
5828
8028
 
5829
8029
  /** Optional parameters. */
5830
8030
  export interface CodeContainersDeleteOptionalParams
5831
- extends coreClient.OperationOptions {}
8031
+ extends coreClient.OperationOptions { }
5832
8032
 
5833
8033
  /** Optional parameters. */
5834
8034
  export interface CodeContainersGetOptionalParams
5835
- extends coreClient.OperationOptions {}
8035
+ extends coreClient.OperationOptions { }
5836
8036
 
5837
8037
  /** Contains response data for the get operation. */
5838
8038
  export type CodeContainersGetResponse = CodeContainer;
5839
8039
 
5840
8040
  /** Optional parameters. */
5841
8041
  export interface CodeContainersCreateOrUpdateOptionalParams
5842
- extends coreClient.OperationOptions {}
8042
+ extends coreClient.OperationOptions { }
5843
8043
 
5844
8044
  /** Contains response data for the createOrUpdate operation. */
5845
8045
  export type CodeContainersCreateOrUpdateResponse = CodeContainer;
@@ -5870,18 +8070,18 @@ export type CodeVersionsListResponse = CodeVersionResourceArmPaginatedResult;
5870
8070
 
5871
8071
  /** Optional parameters. */
5872
8072
  export interface CodeVersionsDeleteOptionalParams
5873
- extends coreClient.OperationOptions {}
8073
+ extends coreClient.OperationOptions { }
5874
8074
 
5875
8075
  /** Optional parameters. */
5876
8076
  export interface CodeVersionsGetOptionalParams
5877
- extends coreClient.OperationOptions {}
8077
+ extends coreClient.OperationOptions { }
5878
8078
 
5879
8079
  /** Contains response data for the get operation. */
5880
8080
  export type CodeVersionsGetResponse = CodeVersion;
5881
8081
 
5882
8082
  /** Optional parameters. */
5883
8083
  export interface CodeVersionsCreateOrUpdateOptionalParams
5884
- extends coreClient.OperationOptions {}
8084
+ extends coreClient.OperationOptions { }
5885
8085
 
5886
8086
  /** Contains response data for the createOrUpdate operation. */
5887
8087
  export type CodeVersionsCreateOrUpdateResponse = CodeVersion;
@@ -5914,18 +8114,18 @@ export type ComponentContainersListResponse = ComponentContainerResourceArmPagin
5914
8114
 
5915
8115
  /** Optional parameters. */
5916
8116
  export interface ComponentContainersDeleteOptionalParams
5917
- extends coreClient.OperationOptions {}
8117
+ extends coreClient.OperationOptions { }
5918
8118
 
5919
8119
  /** Optional parameters. */
5920
8120
  export interface ComponentContainersGetOptionalParams
5921
- extends coreClient.OperationOptions {}
8121
+ extends coreClient.OperationOptions { }
5922
8122
 
5923
8123
  /** Contains response data for the get operation. */
5924
8124
  export type ComponentContainersGetResponse = ComponentContainer;
5925
8125
 
5926
8126
  /** Optional parameters. */
5927
8127
  export interface ComponentContainersCreateOrUpdateOptionalParams
5928
- extends coreClient.OperationOptions {}
8128
+ extends coreClient.OperationOptions { }
5929
8129
 
5930
8130
  /** Contains response data for the createOrUpdate operation. */
5931
8131
  export type ComponentContainersCreateOrUpdateResponse = ComponentContainer;
@@ -5960,18 +8160,18 @@ export type ComponentVersionsListResponse = ComponentVersionResourceArmPaginated
5960
8160
 
5961
8161
  /** Optional parameters. */
5962
8162
  export interface ComponentVersionsDeleteOptionalParams
5963
- extends coreClient.OperationOptions {}
8163
+ extends coreClient.OperationOptions { }
5964
8164
 
5965
8165
  /** Optional parameters. */
5966
8166
  export interface ComponentVersionsGetOptionalParams
5967
- extends coreClient.OperationOptions {}
8167
+ extends coreClient.OperationOptions { }
5968
8168
 
5969
8169
  /** Contains response data for the get operation. */
5970
8170
  export type ComponentVersionsGetResponse = ComponentVersion;
5971
8171
 
5972
8172
  /** Optional parameters. */
5973
8173
  export interface ComponentVersionsCreateOrUpdateOptionalParams
5974
- extends coreClient.OperationOptions {}
8174
+ extends coreClient.OperationOptions { }
5975
8175
 
5976
8176
  /** Contains response data for the createOrUpdate operation. */
5977
8177
  export type ComponentVersionsCreateOrUpdateResponse = ComponentVersion;
@@ -6006,18 +8206,18 @@ export type DataContainersListResponse = DataContainerResourceArmPaginatedResult
6006
8206
 
6007
8207
  /** Optional parameters. */
6008
8208
  export interface DataContainersDeleteOptionalParams
6009
- extends coreClient.OperationOptions {}
8209
+ extends coreClient.OperationOptions { }
6010
8210
 
6011
8211
  /** Optional parameters. */
6012
8212
  export interface DataContainersGetOptionalParams
6013
- extends coreClient.OperationOptions {}
8213
+ extends coreClient.OperationOptions { }
6014
8214
 
6015
8215
  /** Contains response data for the get operation. */
6016
8216
  export type DataContainersGetResponse = DataContainer;
6017
8217
 
6018
8218
  /** Optional parameters. */
6019
8219
  export interface DataContainersCreateOrUpdateOptionalParams
6020
- extends coreClient.OperationOptions {}
8220
+ extends coreClient.OperationOptions { }
6021
8221
 
6022
8222
  /** Contains response data for the createOrUpdate operation. */
6023
8223
  export type DataContainersCreateOrUpdateResponse = DataContainer;
@@ -6057,18 +8257,18 @@ export type DataVersionsListResponse = DataVersionBaseResourceArmPaginatedResult
6057
8257
 
6058
8258
  /** Optional parameters. */
6059
8259
  export interface DataVersionsDeleteOptionalParams
6060
- extends coreClient.OperationOptions {}
8260
+ extends coreClient.OperationOptions { }
6061
8261
 
6062
8262
  /** Optional parameters. */
6063
8263
  export interface DataVersionsGetOptionalParams
6064
- extends coreClient.OperationOptions {}
8264
+ extends coreClient.OperationOptions { }
6065
8265
 
6066
8266
  /** Contains response data for the get operation. */
6067
8267
  export type DataVersionsGetResponse = DataVersionBase;
6068
8268
 
6069
8269
  /** Optional parameters. */
6070
8270
  export interface DataVersionsCreateOrUpdateOptionalParams
6071
- extends coreClient.OperationOptions {}
8271
+ extends coreClient.OperationOptions { }
6072
8272
 
6073
8273
  /** Contains response data for the createOrUpdate operation. */
6074
8274
  export type DataVersionsCreateOrUpdateResponse = DataVersionBase;
@@ -6118,11 +8318,11 @@ export type DatastoresListResponse = DatastoreResourceArmPaginatedResult;
6118
8318
 
6119
8319
  /** Optional parameters. */
6120
8320
  export interface DatastoresDeleteOptionalParams
6121
- extends coreClient.OperationOptions {}
8321
+ extends coreClient.OperationOptions { }
6122
8322
 
6123
8323
  /** Optional parameters. */
6124
8324
  export interface DatastoresGetOptionalParams
6125
- extends coreClient.OperationOptions {}
8325
+ extends coreClient.OperationOptions { }
6126
8326
 
6127
8327
  /** Contains response data for the get operation. */
6128
8328
  export type DatastoresGetResponse = Datastore;
@@ -6139,7 +8339,7 @@ export type DatastoresCreateOrUpdateResponse = Datastore;
6139
8339
 
6140
8340
  /** Optional parameters. */
6141
8341
  export interface DatastoresListSecretsOptionalParams
6142
- extends coreClient.OperationOptions {}
8342
+ extends coreClient.OperationOptions { }
6143
8343
 
6144
8344
  /** Contains response data for the listSecrets operation. */
6145
8345
  export type DatastoresListSecretsResponse = DatastoreSecretsUnion;
@@ -6180,18 +8380,18 @@ export type EnvironmentContainersListResponse = EnvironmentContainerResourceArmP
6180
8380
 
6181
8381
  /** Optional parameters. */
6182
8382
  export interface EnvironmentContainersDeleteOptionalParams
6183
- extends coreClient.OperationOptions {}
8383
+ extends coreClient.OperationOptions { }
6184
8384
 
6185
8385
  /** Optional parameters. */
6186
8386
  export interface EnvironmentContainersGetOptionalParams
6187
- extends coreClient.OperationOptions {}
8387
+ extends coreClient.OperationOptions { }
6188
8388
 
6189
8389
  /** Contains response data for the get operation. */
6190
8390
  export type EnvironmentContainersGetResponse = EnvironmentContainer;
6191
8391
 
6192
8392
  /** Optional parameters. */
6193
8393
  export interface EnvironmentContainersCreateOrUpdateOptionalParams
6194
- extends coreClient.OperationOptions {}
8394
+ extends coreClient.OperationOptions { }
6195
8395
 
6196
8396
  /** Contains response data for the createOrUpdate operation. */
6197
8397
  export type EnvironmentContainersCreateOrUpdateResponse = EnvironmentContainer;
@@ -6226,18 +8426,18 @@ export type EnvironmentVersionsListResponse = EnvironmentVersionResourceArmPagin
6226
8426
 
6227
8427
  /** Optional parameters. */
6228
8428
  export interface EnvironmentVersionsDeleteOptionalParams
6229
- extends coreClient.OperationOptions {}
8429
+ extends coreClient.OperationOptions { }
6230
8430
 
6231
8431
  /** Optional parameters. */
6232
8432
  export interface EnvironmentVersionsGetOptionalParams
6233
- extends coreClient.OperationOptions {}
8433
+ extends coreClient.OperationOptions { }
6234
8434
 
6235
8435
  /** Contains response data for the get operation. */
6236
8436
  export type EnvironmentVersionsGetResponse = EnvironmentVersion;
6237
8437
 
6238
8438
  /** Optional parameters. */
6239
8439
  export interface EnvironmentVersionsCreateOrUpdateOptionalParams
6240
- extends coreClient.OperationOptions {}
8440
+ extends coreClient.OperationOptions { }
6241
8441
 
6242
8442
  /** Contains response data for the createOrUpdate operation. */
6243
8443
  export type EnvironmentVersionsCreateOrUpdateResponse = EnvironmentVersion;
@@ -6282,14 +8482,14 @@ export interface JobsDeleteOptionalParams extends coreClient.OperationOptions {
6282
8482
  }
6283
8483
 
6284
8484
  /** Optional parameters. */
6285
- export interface JobsGetOptionalParams extends coreClient.OperationOptions {}
8485
+ export interface JobsGetOptionalParams extends coreClient.OperationOptions { }
6286
8486
 
6287
8487
  /** Contains response data for the get operation. */
6288
8488
  export type JobsGetResponse = JobBase;
6289
8489
 
6290
8490
  /** Optional parameters. */
6291
8491
  export interface JobsCreateOrUpdateOptionalParams
6292
- extends coreClient.OperationOptions {}
8492
+ extends coreClient.OperationOptions { }
6293
8493
 
6294
8494
  /** Contains response data for the createOrUpdate operation. */
6295
8495
  export type JobsCreateOrUpdateResponse = JobBase;
@@ -6334,18 +8534,18 @@ export type ModelContainersListResponse = ModelContainerResourceArmPaginatedResu
6334
8534
 
6335
8535
  /** Optional parameters. */
6336
8536
  export interface ModelContainersDeleteOptionalParams
6337
- extends coreClient.OperationOptions {}
8537
+ extends coreClient.OperationOptions { }
6338
8538
 
6339
8539
  /** Optional parameters. */
6340
8540
  export interface ModelContainersGetOptionalParams
6341
- extends coreClient.OperationOptions {}
8541
+ extends coreClient.OperationOptions { }
6342
8542
 
6343
8543
  /** Contains response data for the get operation. */
6344
8544
  export type ModelContainersGetResponse = ModelContainer;
6345
8545
 
6346
8546
  /** Optional parameters. */
6347
8547
  export interface ModelContainersCreateOrUpdateOptionalParams
6348
- extends coreClient.OperationOptions {}
8548
+ extends coreClient.OperationOptions { }
6349
8549
 
6350
8550
  /** Contains response data for the createOrUpdate operation. */
6351
8551
  export type ModelContainersCreateOrUpdateResponse = ModelContainer;
@@ -6394,18 +8594,18 @@ export type ModelVersionsListResponse = ModelVersionResourceArmPaginatedResult;
6394
8594
 
6395
8595
  /** Optional parameters. */
6396
8596
  export interface ModelVersionsDeleteOptionalParams
6397
- extends coreClient.OperationOptions {}
8597
+ extends coreClient.OperationOptions { }
6398
8598
 
6399
8599
  /** Optional parameters. */
6400
8600
  export interface ModelVersionsGetOptionalParams
6401
- extends coreClient.OperationOptions {}
8601
+ extends coreClient.OperationOptions { }
6402
8602
 
6403
8603
  /** Contains response data for the get operation. */
6404
8604
  export type ModelVersionsGetResponse = ModelVersion;
6405
8605
 
6406
8606
  /** Optional parameters. */
6407
8607
  export interface ModelVersionsCreateOrUpdateOptionalParams
6408
- extends coreClient.OperationOptions {}
8608
+ extends coreClient.OperationOptions { }
6409
8609
 
6410
8610
  /** Contains response data for the createOrUpdate operation. */
6411
8611
  export type ModelVersionsCreateOrUpdateResponse = ModelVersion;
@@ -6471,7 +8671,7 @@ export interface OnlineEndpointsDeleteOptionalParams
6471
8671
 
6472
8672
  /** Optional parameters. */
6473
8673
  export interface OnlineEndpointsGetOptionalParams
6474
- extends coreClient.OperationOptions {}
8674
+ extends coreClient.OperationOptions { }
6475
8675
 
6476
8676
  /** Contains response data for the get operation. */
6477
8677
  export type OnlineEndpointsGetResponse = OnlineEndpoint;
@@ -6502,7 +8702,7 @@ export type OnlineEndpointsCreateOrUpdateResponse = OnlineEndpoint;
6502
8702
 
6503
8703
  /** Optional parameters. */
6504
8704
  export interface OnlineEndpointsListKeysOptionalParams
6505
- extends coreClient.OperationOptions {}
8705
+ extends coreClient.OperationOptions { }
6506
8706
 
6507
8707
  /** Contains response data for the listKeys operation. */
6508
8708
  export type OnlineEndpointsListKeysResponse = EndpointAuthKeys;
@@ -6518,7 +8718,7 @@ export interface OnlineEndpointsRegenerateKeysOptionalParams
6518
8718
 
6519
8719
  /** Optional parameters. */
6520
8720
  export interface OnlineEndpointsGetTokenOptionalParams
6521
- extends coreClient.OperationOptions {}
8721
+ extends coreClient.OperationOptions { }
6522
8722
 
6523
8723
  /** Contains response data for the getToken operation. */
6524
8724
  export type OnlineEndpointsGetTokenResponse = EndpointAuthToken;
@@ -6570,7 +8770,7 @@ export interface OnlineDeploymentsDeleteOptionalParams
6570
8770
 
6571
8771
  /** Optional parameters. */
6572
8772
  export interface OnlineDeploymentsGetOptionalParams
6573
- extends coreClient.OperationOptions {}
8773
+ extends coreClient.OperationOptions { }
6574
8774
 
6575
8775
  /** Contains response data for the get operation. */
6576
8776
  export type OnlineDeploymentsGetResponse = OnlineDeployment;
@@ -6601,7 +8801,7 @@ export type OnlineDeploymentsCreateOrUpdateResponse = OnlineDeployment;
6601
8801
 
6602
8802
  /** Optional parameters. */
6603
8803
  export interface OnlineDeploymentsGetLogsOptionalParams
6604
- extends coreClient.OperationOptions {}
8804
+ extends coreClient.OperationOptions { }
6605
8805
 
6606
8806
  /** Contains response data for the getLogs operation. */
6607
8807
  export type OnlineDeploymentsGetLogsResponse = DeploymentLogs;
@@ -6644,16 +8844,68 @@ export interface OnlineDeploymentsListSkusNextOptionalParams
6644
8844
  /** Contains response data for the listSkusNext operation. */
6645
8845
  export type OnlineDeploymentsListSkusNextResponse = SkuResourceArmPaginatedResult;
6646
8846
 
8847
+ /** Optional parameters. */
8848
+ export interface SchedulesListOptionalParams
8849
+ extends coreClient.OperationOptions {
8850
+ /** Continuation token for pagination. */
8851
+ skip?: string;
8852
+ /** Status filter for schedule. */
8853
+ listViewType?: ScheduleListViewType;
8854
+ }
8855
+
8856
+ /** Contains response data for the list operation. */
8857
+ export type SchedulesListResponse = ScheduleResourceArmPaginatedResult;
8858
+
8859
+ /** Optional parameters. */
8860
+ export interface SchedulesDeleteOptionalParams
8861
+ extends coreClient.OperationOptions {
8862
+ /** Delay to wait until next poll, in milliseconds. */
8863
+ updateIntervalInMs?: number;
8864
+ /** A serialized poller which can be used to resume an existing paused Long-Running-Operation. */
8865
+ resumeFrom?: string;
8866
+ }
8867
+
8868
+ /** Optional parameters. */
8869
+ export interface SchedulesGetOptionalParams
8870
+ extends coreClient.OperationOptions { }
8871
+
8872
+ /** Contains response data for the get operation. */
8873
+ export type SchedulesGetResponse = Schedule;
8874
+
8875
+ /** Optional parameters. */
8876
+ export interface SchedulesCreateOrUpdateOptionalParams
8877
+ extends coreClient.OperationOptions {
8878
+ /** Delay to wait until next poll, in milliseconds. */
8879
+ updateIntervalInMs?: number;
8880
+ /** A serialized poller which can be used to resume an existing paused Long-Running-Operation. */
8881
+ resumeFrom?: string;
8882
+ }
8883
+
8884
+ /** Contains response data for the createOrUpdate operation. */
8885
+ export type SchedulesCreateOrUpdateResponse = Schedule;
8886
+
8887
+ /** Optional parameters. */
8888
+ export interface SchedulesListNextOptionalParams
8889
+ extends coreClient.OperationOptions {
8890
+ /** Continuation token for pagination. */
8891
+ skip?: string;
8892
+ /** Status filter for schedule. */
8893
+ listViewType?: ScheduleListViewType;
8894
+ }
8895
+
8896
+ /** Contains response data for the listNext operation. */
8897
+ export type SchedulesListNextResponse = ScheduleResourceArmPaginatedResult;
8898
+
6647
8899
  /** Optional parameters. */
6648
8900
  export interface WorkspaceFeaturesListOptionalParams
6649
- extends coreClient.OperationOptions {}
8901
+ extends coreClient.OperationOptions { }
6650
8902
 
6651
8903
  /** Contains response data for the list operation. */
6652
8904
  export type WorkspaceFeaturesListResponse = ListAmlUserFeatureResult;
6653
8905
 
6654
8906
  /** Optional parameters. */
6655
8907
  export interface WorkspaceFeaturesListNextOptionalParams
6656
- extends coreClient.OperationOptions {}
8908
+ extends coreClient.OperationOptions { }
6657
8909
 
6658
8910
  /** Contains response data for the listNext operation. */
6659
8911
  export type WorkspaceFeaturesListNextResponse = ListAmlUserFeatureResult;