@azure/ai-projects 2.0.0-alpha.20260109.1 → 2.0.0-alpha.20260112.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +211 -7
- package/package.json +3 -3
package/README.md
CHANGED
|
@@ -4,6 +4,23 @@ The AI Projects client library (in preview) is part of the Microsoft Foundry SDK
|
|
|
4
4
|
resources in your Microsoft Foundry Project. Use it to:
|
|
5
5
|
|
|
6
6
|
- **Create and run Agents** using the `.agents` property on the client.
|
|
7
|
+
* **Enhance Agents with specialized tools**:
|
|
8
|
+
* Agent Memory Search
|
|
9
|
+
* Agent-to-Agent (A2A)
|
|
10
|
+
* Azure AI Search
|
|
11
|
+
* Bing Custom Search
|
|
12
|
+
* Bing Grounding
|
|
13
|
+
* Browser Automation
|
|
14
|
+
* Code Interpreter
|
|
15
|
+
* Computer Use
|
|
16
|
+
* File Search
|
|
17
|
+
* Function Tool
|
|
18
|
+
* Image Generation
|
|
19
|
+
* Microsoft Fabric
|
|
20
|
+
* Model Context Protocol (MCP)
|
|
21
|
+
* OpenAPI
|
|
22
|
+
* SharePoint
|
|
23
|
+
* Web Search
|
|
7
24
|
- **Get an OpenAI client** using the `.getOpenAIClient.` method to run Responses, Conversations, Evals and FineTuning operations with your Agent.
|
|
8
25
|
* **Manage memory stores** for Agent conversations, using the `.memoryStores` operations.
|
|
9
26
|
* **Explore additional evaluation tools** to assess the performance of your generative AI application, using the `.evaluationRules`,
|
|
@@ -37,12 +54,16 @@ The client library uses version `2025-11-15-preview` of the Microsoft Foundry [d
|
|
|
37
54
|
- [Using Agent tools](#using-agent-tools)
|
|
38
55
|
- [Built-in Tools](#built-in-tools)
|
|
39
56
|
- [Connection-Based Tools](#connection-based-tools)
|
|
57
|
+
- [Evaluation operations](#evaluation)
|
|
40
58
|
- [Deployments operations](#deployments-operations)
|
|
41
59
|
- [Connections operations](#connections-operations)
|
|
42
60
|
- [Dataset operations](#dataset-operations)
|
|
43
61
|
- [Files operations](#files-operations)
|
|
44
62
|
- [Indexes operations](#indexes-operations)
|
|
63
|
+
- [fine-tuning operations](#fine-tuning-operations)
|
|
45
64
|
- [Tracing](#tracing)
|
|
65
|
+
- [Installation](#installation)
|
|
66
|
+
- [How to enable tracing](#how-to-enable-tracing)
|
|
46
67
|
- [Troubleshooting](#troubleshooting)
|
|
47
68
|
- [Exceptions](#exceptions)
|
|
48
69
|
- [Reporting issues](#reporting-issues)
|
|
@@ -56,11 +77,12 @@ The client library uses version `2025-11-15-preview` of the Microsoft Foundry [d
|
|
|
56
77
|
- [LTS versions of Node.js](https://github.com/nodejs/release#release-schedule)
|
|
57
78
|
- An [Azure subscription][azure_sub].
|
|
58
79
|
- A [project in Microsoft Foundry](https://learn.microsoft.com/azure/ai-studio/how-to/create-projects?tabs=ai-studio).
|
|
80
|
+
- The project endpoint URL of the form `https://your-ai-services-account-name.services.ai.azure.com/api/projects/your-project-name`. It can be found in your Microsoft Foundry Project overview page. Below we will assume the environment variable `AZURE_AI_PROJECT_ENDPOINT` was defined to hold this value.
|
|
59
81
|
|
|
60
82
|
### Authorization
|
|
61
83
|
|
|
62
84
|
- [Entra ID][entra_id] is needed to authenticate the client. Your application needs an object that implements the [TokenCredential](https://learn.microsoft.com/javascript/api/@azure/core-auth/tokencredential) interface. Code samples here use [DefaultAzureCredential][default_azure_credential]. To get that working, you will need:
|
|
63
|
-
-
|
|
85
|
+
- An appropriate role assignment. see [Role-based access control in Microsoft Foundry portal](https://learn.microsoft.com/azure/ai-foundry/concepts/rbac-ai-foundry). Role assigned can be done via the "Access Control (IAM)" tab of your Azure AI Project resource in the Azure portal.
|
|
64
86
|
- [Azure CLI](https://learn.microsoft.com/cli/azure/install-azure-cli) installed.
|
|
65
87
|
- You are logged into your Azure account by running `az login`.
|
|
66
88
|
- Note that if you have multiple Azure subscriptions, the subscription that contains your Azure AI Project resource must be your default subscription. Run `az account list --output table` to list all your subscription and see which one is the default. Run `az account set --subscription "Your Subscription ID or Name"` to change your default subscription.
|
|
@@ -68,12 +90,14 @@ The client library uses version `2025-11-15-preview` of the Microsoft Foundry [d
|
|
|
68
90
|
### Install the package
|
|
69
91
|
|
|
70
92
|
```bash
|
|
71
|
-
npm install @azure/ai-projects @azure/identity
|
|
93
|
+
npm install @azure/ai-projects @azure/identity dotenv
|
|
72
94
|
```
|
|
73
95
|
|
|
74
96
|
## Key concepts
|
|
75
97
|
|
|
76
|
-
### Create and authenticate the client
|
|
98
|
+
### Create and authenticate the client with Entra ID
|
|
99
|
+
|
|
100
|
+
Entra ID is the only authentication method supported at the moment by the client.
|
|
77
101
|
|
|
78
102
|
To construct an `AIProjectsClient`, the `projectEndpoint` can be fetched from [projectEndpoint][ai_project_client_endpoint]. Below we will assume the environment variable `AZURE_AI_PROJECT_ENDPOINT` was defined to hold this value:
|
|
79
103
|
|
|
@@ -85,17 +109,15 @@ const projectEndpoint = process.env["AZURE_AI_PROJECT_ENDPOINT"] || "<project en
|
|
|
85
109
|
const client = new AIProjectClient(projectEndpoint, new DefaultAzureCredential());
|
|
86
110
|
```
|
|
87
111
|
|
|
88
|
-
The client uses API version `2025-11-15-preview`, refer to the [API documentation][ai_foundry_data_plane_rest_apis] to learn more about the supported features.
|
|
89
|
-
|
|
90
112
|
## Examples
|
|
91
113
|
|
|
92
114
|
### Performing Responses operations using OpenAI client
|
|
93
115
|
|
|
94
|
-
Your Microsoft Foundry project may have one or more
|
|
116
|
+
Your Microsoft Foundry project may have one or more AI models deployed. These could be OpenAI models, Microsoft models, or models from other providers. Use the code below to get an authenticated [OpenAI](https://github.com/openai/openai-node?tab=readme-ov-file#microsoft-azure-openai) from the [openai](https://www.npmjs.com/package/openai) package, and execute a chat completions call.
|
|
95
117
|
|
|
96
118
|
Run the code below. Here we assume `deploymentName` (str) is defined. It's the deployment name of an AI model in your Foundry Project. As shown in the "Models + endpoints" tab, under the "Name" column.
|
|
97
119
|
|
|
98
|
-
|
|
120
|
+
See the "responses" folder in the [package samples][samples] for additional samples, including streaming responses.
|
|
99
121
|
|
|
100
122
|
|
|
101
123
|
```ts snippet:openAI
|
|
@@ -342,6 +364,34 @@ console.log(`Response: ${response.output_text}`);
|
|
|
342
364
|
|
|
343
365
|
See the full sample code in [agentWebSearch.ts](https://github.com/Azure/azure-sdk-for-js/blob/main/sdk/ai/ai-projects/samples-dev/agents/tools/agentWebSearch.ts).
|
|
344
366
|
|
|
367
|
+
**Computer Use**
|
|
368
|
+
|
|
369
|
+
Enable agents to interact directly with computer systems for task automation and system operations:
|
|
370
|
+
|
|
371
|
+
```ts snippet:agent-computer-use
|
|
372
|
+
const agent = await project.agents.createVersion("ComputerUseAgent", {
|
|
373
|
+
kind: "prompt" as const,
|
|
374
|
+
model: deploymentName,
|
|
375
|
+
instructions: `
|
|
376
|
+
You are a computer automation assistant.
|
|
377
|
+
|
|
378
|
+
Be direct and efficient. When you reach the search results page, read and describe the actual search result titles and descriptions you can see.
|
|
379
|
+
`.trim(),
|
|
380
|
+
tools: [
|
|
381
|
+
{
|
|
382
|
+
type: "computer_use_preview",
|
|
383
|
+
display_width: 1026,
|
|
384
|
+
display_height: 769,
|
|
385
|
+
environment: "windows" as const,
|
|
386
|
+
},
|
|
387
|
+
],
|
|
388
|
+
});
|
|
389
|
+
console.log(`Agent created (id: ${agent.id}, name: ${agent.name}, version: ${agent.version})`);
|
|
390
|
+
```
|
|
391
|
+
|
|
392
|
+
*After calling `responses.create()`, process the response in an interaction loop. Handle `computer_call` output items and provide screenshots as `computer_call_output` with `computer_screenshot` type to continue the interaction.*
|
|
393
|
+
|
|
394
|
+
See the full sample code in [agentComputerUse.ts](https://github.com/Azure/azure-sdk-for-js/blob/main/sdk/ai/ai-projects/samples-dev/agents/tools/agentComputerUse.ts).
|
|
345
395
|
|
|
346
396
|
**Model Context Protocol (MCP)**
|
|
347
397
|
|
|
@@ -454,6 +504,54 @@ console.log(`Agent created (id: ${agent.id}, name: ${agent.name}, version: ${age
|
|
|
454
504
|
|
|
455
505
|
See the full sample code in [agentFunctionTool.ts](https://github.com/Azure/azure-sdk-for-js/blob/main/sdk/ai/ai-projects/samples-dev/agents/agentFunctionTool.ts).
|
|
456
506
|
|
|
507
|
+
* **Memory Search Tool**
|
|
508
|
+
|
|
509
|
+
The Memory Store Tool adds Memory to an Agent, allowing the Agent's AI model to search for past information related to the current user prompt.
|
|
510
|
+
|
|
511
|
+
The `embeddingModelDeployment` is the name of the model used to create vector embeddings for storing and searching memories.
|
|
512
|
+
|
|
513
|
+
```ts snippet:agent-memory-search
|
|
514
|
+
const memoryStoreName = "AgentMemoryStore";
|
|
515
|
+
const embeddingModelDeployment =
|
|
516
|
+
process.env["AZURE_AI_EMBEDDING_MODEL_DEPLOYMENT_NAME"] || "<embedding model>";
|
|
517
|
+
const scope = "user_123";
|
|
518
|
+
const memoryStore = await project.memoryStores.create(
|
|
519
|
+
memoryStoreName,
|
|
520
|
+
{
|
|
521
|
+
kind: "default",
|
|
522
|
+
chat_model: deploymentName,
|
|
523
|
+
embedding_model: embeddingModelDeployment,
|
|
524
|
+
options: {
|
|
525
|
+
user_profile_enabled: true,
|
|
526
|
+
chat_summary_enabled: true,
|
|
527
|
+
},
|
|
528
|
+
},
|
|
529
|
+
{
|
|
530
|
+
description: "Memory store for agent conversations",
|
|
531
|
+
},
|
|
532
|
+
);
|
|
533
|
+
console.log(
|
|
534
|
+
`Created memory store: ${memoryStore.name} (${memoryStore.id}) using chat model '${deploymentName}'`,
|
|
535
|
+
);
|
|
536
|
+
// Create an agent that will use the Memory Search tool
|
|
537
|
+
const agent = await project.agents.createVersion("MemorySearchAgent", {
|
|
538
|
+
kind: "prompt",
|
|
539
|
+
model: deploymentName,
|
|
540
|
+
instructions:
|
|
541
|
+
"You are a helpful assistant that remembers user preferences using the memory search tool.",
|
|
542
|
+
tools: [
|
|
543
|
+
{
|
|
544
|
+
type: "memory_search",
|
|
545
|
+
memory_store_name: memoryStore.name,
|
|
546
|
+
scope,
|
|
547
|
+
update_delay: 1, // wait briefly after conversation inactivity before updating memories
|
|
548
|
+
},
|
|
549
|
+
],
|
|
550
|
+
});
|
|
551
|
+
```
|
|
552
|
+
|
|
553
|
+
See the full sample code in [agentMemorySearch.ts](https://github.com/Azure/azure-sdk-for-js/blob/main/sdk/ai/ai-projects/samples-dev/agents/tools/agentMemorySearch.ts).
|
|
554
|
+
|
|
457
555
|
#### Connection-Based Tools
|
|
458
556
|
|
|
459
557
|
These tools require configuring connections in your AI Foundry project and use `projectConnectionId`.
|
|
@@ -732,6 +830,41 @@ See the full sample code in [agentOpenApiConnectionAuth.ts](https://github.com/A
|
|
|
732
830
|
|
|
733
831
|
For complete working examples of all tools, see the [samples-dev directory](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/ai/ai-projects/samples-dev).
|
|
734
832
|
|
|
833
|
+
### Evaluation
|
|
834
|
+
|
|
835
|
+
Evaluation in Azure AI Project client library provides quantitative, AI-assisted quality and safety metrics to asses performance and Evaluate LLM Models, GenAI Application and Agents. Metrics are defined as evaluators. Built-in or custom evaluators can provide comprehensive evaluation insights.
|
|
836
|
+
|
|
837
|
+
The code below shows some evaluation operations. Full list of sample can be found under "evaluations" folder in the [package samples][samples]
|
|
838
|
+
|
|
839
|
+
|
|
840
|
+
```ts snippet:evaluations
|
|
841
|
+
const openAIClient = await project.getOpenAIClient();
|
|
842
|
+
const dataSourceConfig = {
|
|
843
|
+
type: "custom" as const,
|
|
844
|
+
item_schema: {
|
|
845
|
+
type: "object",
|
|
846
|
+
properties: { query: { type: "string" } },
|
|
847
|
+
required: ["query"],
|
|
848
|
+
},
|
|
849
|
+
include_sample_schema: true,
|
|
850
|
+
};
|
|
851
|
+
const evalObject = await openAIClient.evals.create({
|
|
852
|
+
name: "Agent Evaluation",
|
|
853
|
+
data_source_config: dataSourceConfig,
|
|
854
|
+
testing_criteria: [
|
|
855
|
+
{
|
|
856
|
+
type: "azure_ai_evaluator",
|
|
857
|
+
name: "violence_detection",
|
|
858
|
+
evaluator_name: "builtin.violence",
|
|
859
|
+
data_mapping: { query: "{{item.query}}", response: "{{item.response}}" },
|
|
860
|
+
} as any,
|
|
861
|
+
],
|
|
862
|
+
});
|
|
863
|
+
console.log(`Evaluation created (id: ${evalObject.id}, name: ${evalObject.name})`);
|
|
864
|
+
```
|
|
865
|
+
|
|
866
|
+
See the full sample code in [agentEvaluation.ts](https://github.com/Azure/azure-sdk-for-js/blob/main/sdk/ai/ai-projects/samples-dev/evaluations/agentEvaluation.ts).
|
|
867
|
+
|
|
735
868
|
### Deployments operations
|
|
736
869
|
|
|
737
870
|
The code below shows some Deployments operations, which allow you to enumerate the AI models deployed to your Microsoft Foundry Projects. These models can be seen in the "Models + endpoints" tab in your Microsoft Foundry Project. Full samples can be found under the "deployment" folder in the [package samples][samples].
|
|
@@ -977,12 +1110,83 @@ console.log("Delete the Index versions created above:");
|
|
|
977
1110
|
await project.indexes.delete(indexName, version);
|
|
978
1111
|
```
|
|
979
1112
|
|
|
1113
|
+
### Fine-tuning operations
|
|
1114
|
+
|
|
1115
|
+
The code below shows how to create fine-tuning jobs using the OpenAI client. These operations support various fine-tuning techniques like Supervised Fine-Tuning (SFT), Reinforcement Fine-Tuning (RFT), and Direct Performance Optimization (DPO). Full samples can be found under the "finetuning" folder in the [package samples][samples].
|
|
1116
|
+
|
|
1117
|
+
```ts snippet:finetuning
|
|
1118
|
+
import { JobCreateParams } from "openai/resources/fine-tuning/jobs";
|
|
1119
|
+
|
|
1120
|
+
const trainingFilePath = "training_data_path.jsonl";
|
|
1121
|
+
const validationFilePath = "validation_data_path.jsonl";
|
|
1122
|
+
const openAIClient = await project.getOpenAIClient();
|
|
1123
|
+
// 1) Create the training and validation files
|
|
1124
|
+
const trainingFile = await openAIClient.files.create({
|
|
1125
|
+
file: fs.createReadStream(trainingFilePath),
|
|
1126
|
+
purpose: "fine-tune",
|
|
1127
|
+
});
|
|
1128
|
+
console.log(`Uploaded file with ID: ${trainingFile.id}`);
|
|
1129
|
+
const validationFile = await openAIClient.files.create({
|
|
1130
|
+
file: fs.createReadStream(validationFilePath),
|
|
1131
|
+
purpose: "fine-tune",
|
|
1132
|
+
});
|
|
1133
|
+
console.log(`Uploaded file with ID: ${validationFile.id}`);
|
|
1134
|
+
// 2) Wait for the files to be processed
|
|
1135
|
+
await openAIClient.files.waitForProcessing(trainingFile.id);
|
|
1136
|
+
await openAIClient.files.waitForProcessing(validationFile.id);
|
|
1137
|
+
console.log("Files processed.");
|
|
1138
|
+
// 3) Create a supervised fine-tuning job
|
|
1139
|
+
const fineTuningJob = await openAIClient.fineTuning.jobs.create({} as JobCreateParams, {
|
|
1140
|
+
body: {
|
|
1141
|
+
trainingType: "Standard",
|
|
1142
|
+
training_file: trainingFile.id,
|
|
1143
|
+
validation_file: validationFile.id,
|
|
1144
|
+
model: deploymentName,
|
|
1145
|
+
method: {
|
|
1146
|
+
type: "supervised",
|
|
1147
|
+
supervised: {
|
|
1148
|
+
hyperparameters: {
|
|
1149
|
+
n_epochs: 3,
|
|
1150
|
+
batch_size: 1,
|
|
1151
|
+
learning_rate_multiplier: 1.0,
|
|
1152
|
+
},
|
|
1153
|
+
},
|
|
1154
|
+
},
|
|
1155
|
+
},
|
|
1156
|
+
});
|
|
1157
|
+
console.log("Created fine-tuning job:\n", JSON.stringify(fineTuningJob));
|
|
1158
|
+
```
|
|
1159
|
+
|
|
980
1160
|
## Tracing
|
|
981
1161
|
|
|
982
1162
|
**Note:** Tracing functionality is in preliminary preview and is subject to change. Spans, attributes, and events may be modified in future versions.
|
|
983
1163
|
|
|
984
1164
|
You can add an Application Insights Azure resource to your Microsoft Foundry project. See the Tracing tab in your Microsoft Foundry project. If one was enabled, you can get the Application Insights connection string, configure your AI Projects client, and observe the full execution path through Azure Monitor. Typically, you might want to start tracing before you create a client or Agent.
|
|
985
1165
|
|
|
1166
|
+
### Installation
|
|
1167
|
+
|
|
1168
|
+
```bash
|
|
1169
|
+
npm install @azure/monitor-opentelemetry@^1.14.2 @opentelemetry/api@^1.9.0
|
|
1170
|
+
```
|
|
1171
|
+
|
|
1172
|
+
### How to enable tracing
|
|
1173
|
+
|
|
1174
|
+
Here is a code sample that shows how to enable Azure Monitor tracing:
|
|
1175
|
+
|
|
1176
|
+
```ts snippet:tracing
|
|
1177
|
+
import { AzureMonitorOpenTelemetryOptions, useAzureMonitor } from "@azure/monitor-opentelemetry";
|
|
1178
|
+
|
|
1179
|
+
const TELEMETRY_CONNECTION_STRING = process.env["TELEMETRY_CONNECTION_STRING"];
|
|
1180
|
+
const options: AzureMonitorOpenTelemetryOptions = {
|
|
1181
|
+
azureMonitorExporterOptions: {
|
|
1182
|
+
connectionString: TELEMETRY_CONNECTION_STRING,
|
|
1183
|
+
},
|
|
1184
|
+
};
|
|
1185
|
+
useAzureMonitor(options);
|
|
1186
|
+
```
|
|
1187
|
+
|
|
1188
|
+
See the full sample code in [remoteTelemetry.ts](https://github.com/Azure/azure-sdk-for-js/blob/main/sdk/ai/ai-projects/samples-dev/telemetry/remoteTelemetry.ts).
|
|
1189
|
+
|
|
986
1190
|
## Troubleshooting
|
|
987
1191
|
|
|
988
1192
|
### Exceptions
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@azure/ai-projects",
|
|
3
|
-
"version": "2.0.0-alpha.
|
|
3
|
+
"version": "2.0.0-alpha.20260112.1",
|
|
4
4
|
"description": "Azure AI Projects client library.",
|
|
5
5
|
"engines": {
|
|
6
6
|
"node": ">=20.0.0"
|
|
@@ -98,10 +98,10 @@
|
|
|
98
98
|
"typescript": "~5.9.3",
|
|
99
99
|
"vitest": "^4.0.8",
|
|
100
100
|
"@azure-tools/test-credential": "^2.1.2",
|
|
101
|
+
"@azure-tools/test-recorder": "^4.1.1",
|
|
101
102
|
"@azure/dev-tool": "^1.0.0",
|
|
102
103
|
"@azure-tools/test-utils-vitest": "^2.0.1",
|
|
103
|
-
"@azure/eslint-plugin-azure-sdk": "^3.0.0"
|
|
104
|
-
"@azure-tools/test-recorder": "^4.1.1"
|
|
104
|
+
"@azure/eslint-plugin-azure-sdk": "^3.0.0"
|
|
105
105
|
},
|
|
106
106
|
"exports": {
|
|
107
107
|
"./package.json": "./package.json",
|