@azure/ai-language-text 1.1.0-alpha.20250113.2 → 1.1.0-alpha.20250114.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -92,10 +92,13 @@ az cognitiveservices account keys list --resource-group <your-resource-group-nam
92
92
 
93
93
  Once you have an API key and endpoint, you can use the `AzureKeyCredential` class to authenticate the client as follows:
94
94
 
95
- ```javascript
96
- const { TextAnalysisClient, AzureKeyCredential } = require("@azure/ai-language-text");
95
+ ```ts snippet:ReadmeSampleCreateClient_Node
96
+ import { AzureKeyCredential } from "@azure/core-auth";
97
+ import { TextAnalysisClient } from "@azure/ai-language-text";
97
98
 
98
- const client = new TextAnalysisClient("<endpoint>", new AzureKeyCredential("<API key>"));
99
+ const endpoint = "https://<resource name>.cognitiveservices.azure.com";
100
+ const credential = new AzureKeyCredential("<api key>");
101
+ const client = new TextAnalysisClient(endpoint, credential);
99
102
  ```
100
103
 
101
104
  #### Using an Azure Active Directory Credential
@@ -111,11 +114,13 @@ You will also need to [register a new AAD application][register_aad_app] and gra
111
114
 
112
115
  Set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables: `AZURE_CLIENT_ID`, `AZURE_TENANT_ID`, `AZURE_CLIENT_SECRET`.
113
116
 
114
- ```javascript
115
- const { TextAnalysisClient } = require("@azure/ai-language-text");
116
- const { DefaultAzureCredential } = require("@azure/identity");
117
+ ```ts snippet:ReadmeSampleCreateClient_ActiveDirectory
118
+ import { DefaultAzureCredential } from "@azure/identity";
119
+ import { TextAnalysisClient } from "@azure/ai-language-text";
117
120
 
118
- const client = new TextAnalysisClient("<endpoint>", new DefaultAzureCredential());
121
+ const endpoint = "https://<resource name>.cognitiveservices.azure.com";
122
+ const credential = new DefaultAzureCredential();
123
+ const client = new TextAnalysisClient(endpoint, credential);
119
124
  ```
120
125
 
121
126
  ## Key concepts
@@ -130,7 +135,7 @@ A **document** represents a single unit of input to be analyzed by the predictiv
130
135
 
131
136
  For example, each document can be passed as a string in an array, e.g.
132
137
 
133
- ```typescript
138
+ ```ts snippet:ReadmeSample_Documents
134
139
  const documents = [
135
140
  "I hated the movie. It was so slow!",
136
141
  "The movie made it into my top ten favorites.",
@@ -140,7 +145,7 @@ const documents = [
140
145
 
141
146
  or, if you wish to pass in a per-item document `id` or `language`/`countryHint`, they can be given as a list of `TextDocumentInput` or `DetectLanguageInput` depending on the operation;
142
147
 
143
- ```javascript
148
+ ```ts snippet:ReadmeSample_TextDocumentInput
144
149
  const textDocumentInputs = [
145
150
  { id: "1", language: "en", text: "I hated the movie. It was so slow!" },
146
151
  { id: "2", language: "en", text: "The movie made it into my top ten favorites." },
@@ -164,14 +169,35 @@ In the collection returned by an operation, errors are distinguished from succes
164
169
 
165
170
  For example, to filter out all errors, you could use the following `filter`:
166
171
 
167
- ```javascript
172
+ ```ts snippet:ReadmeSample_FilterErrors
173
+ import { DefaultAzureCredential } from "@azure/identity";
174
+ import { TextAnalysisClient } from "@azure/ai-language-text";
175
+
176
+ const endpoint = "https://<resource name>.cognitiveservices.azure.com";
177
+ const credential = new DefaultAzureCredential();
178
+
179
+ const client = new TextAnalysisClient(endpoint, credential);
180
+
181
+ const documents = [
182
+ "I hated the movie. It was so slow!",
183
+ "The movie made it into my top ten favorites.",
184
+ "What a great movie!",
185
+ ];
186
+
168
187
  const results = await client.analyze("SentimentAnalysis", documents);
169
188
  const onlySuccessful = results.filter((result) => result.error === undefined);
170
189
  ```
171
190
 
172
191
  **Note**: TypeScript users can benefit from better type-checking of result and error objects if `compilerOptions.strictNullChecks` is set to `true` in the `tsconfig.json` configuration. For example:
173
192
 
174
- ```typescript
193
+ ```ts snippet:ReadmeSample_TypeChecking
194
+ import { DefaultAzureCredential } from "@azure/identity";
195
+ import { TextAnalysisClient } from "@azure/ai-language-text";
196
+
197
+ const endpoint = "https://<resource name>.cognitiveservices.azure.com";
198
+ const credential = new DefaultAzureCredential();
199
+
200
+ const client = new TextAnalysisClient(endpoint, credential);
175
201
  const [result] = await client.analyze("SentimentAnalysis", ["Hello world!"]);
176
202
 
177
203
  if (result.error !== undefined) {
@@ -219,8 +245,8 @@ if (result.error !== undefined) {
219
245
 
220
246
  Enabling logging may help uncover useful information about failures. In order to see a log of HTTP requests and responses, set the `AZURE_LOG_LEVEL` environment variable to `info`. Alternatively, logging can be enabled at runtime by calling `setLogLevel` in the `@azure/logger`:
221
247
 
222
- ```javascript
223
- const { setLogLevel } = require("@azure/logger");
248
+ ```ts snippet:SetLogLevel
249
+ import { setLogLevel } from "@azure/logger";
224
250
 
225
251
  setLogLevel("info");
226
252
  ```