@azure-rest/ai-inference 1.0.0-beta.5 → 1.0.0-beta.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (172) hide show
  1. package/LICENSE +3 -3
  2. package/README.md +253 -249
  3. package/dist/browser/clientDefinitions.d.ts +10 -3
  4. package/dist/browser/clientDefinitions.d.ts.map +1 -1
  5. package/dist/browser/clientDefinitions.js.map +1 -1
  6. package/dist/browser/constants.d.ts +7 -0
  7. package/dist/browser/constants.d.ts.map +1 -1
  8. package/dist/browser/constants.js +7 -0
  9. package/dist/browser/constants.js.map +1 -1
  10. package/dist/browser/index.d.ts +11 -3
  11. package/dist/browser/index.d.ts.map +1 -1
  12. package/dist/browser/index.js +10 -3
  13. package/dist/browser/index.js.map +1 -1
  14. package/dist/browser/isUnexpected.d.ts +8 -1
  15. package/dist/browser/isUnexpected.d.ts.map +1 -1
  16. package/dist/browser/isUnexpected.js +1 -6
  17. package/dist/browser/isUnexpected.js.map +1 -1
  18. package/dist/browser/logger.d.ts.map +1 -1
  19. package/dist/browser/logger.js +7 -0
  20. package/dist/browser/logger.js.map +1 -1
  21. package/dist/browser/modelClient.d.ts +7 -0
  22. package/dist/browser/modelClient.d.ts.map +1 -1
  23. package/dist/browser/modelClient.js +1 -1
  24. package/dist/browser/modelClient.js.map +1 -1
  25. package/dist/browser/models.d.ts +57 -8
  26. package/dist/browser/models.d.ts.map +1 -1
  27. package/dist/browser/models.js.map +1 -1
  28. package/dist/browser/outputModels.d.ts +23 -16
  29. package/dist/browser/outputModels.d.ts.map +1 -1
  30. package/dist/browser/outputModels.js.map +1 -1
  31. package/dist/browser/parameters.d.ts +13 -6
  32. package/dist/browser/parameters.d.ts.map +1 -1
  33. package/dist/browser/parameters.js.map +1 -1
  34. package/dist/browser/responses.d.ts +9 -2
  35. package/dist/browser/responses.d.ts.map +1 -1
  36. package/dist/browser/responses.js.map +1 -1
  37. package/dist/browser/tracingHelper.d.ts +8 -1
  38. package/dist/browser/tracingHelper.d.ts.map +1 -1
  39. package/dist/browser/tracingHelper.js +26 -26
  40. package/dist/browser/tracingHelper.js.map +1 -1
  41. package/dist/browser/tracingPolicy.d.ts +7 -0
  42. package/dist/browser/tracingPolicy.d.ts.map +1 -1
  43. package/dist/browser/tracingPolicy.js +2 -2
  44. package/dist/browser/tracingPolicy.js.map +1 -1
  45. package/dist/commonjs/clientDefinitions.d.ts +10 -3
  46. package/dist/commonjs/clientDefinitions.d.ts.map +1 -1
  47. package/dist/commonjs/clientDefinitions.js.map +1 -1
  48. package/dist/commonjs/constants.d.ts +7 -0
  49. package/dist/commonjs/constants.d.ts.map +1 -1
  50. package/dist/commonjs/constants.js +9 -2
  51. package/dist/commonjs/constants.js.map +1 -1
  52. package/dist/commonjs/index.d.ts +11 -3
  53. package/dist/commonjs/index.d.ts.map +1 -1
  54. package/dist/commonjs/index.js +10 -3
  55. package/dist/commonjs/index.js.map +1 -1
  56. package/dist/commonjs/isUnexpected.d.ts +8 -1
  57. package/dist/commonjs/isUnexpected.d.ts.map +1 -1
  58. package/dist/commonjs/isUnexpected.js +1 -6
  59. package/dist/commonjs/isUnexpected.js.map +1 -1
  60. package/dist/commonjs/logger.d.ts.map +1 -1
  61. package/dist/commonjs/logger.js +7 -0
  62. package/dist/commonjs/logger.js.map +1 -1
  63. package/dist/commonjs/modelClient.d.ts +7 -0
  64. package/dist/commonjs/modelClient.d.ts.map +1 -1
  65. package/dist/commonjs/modelClient.js +1 -1
  66. package/dist/commonjs/modelClient.js.map +1 -1
  67. package/dist/commonjs/models.d.ts +57 -8
  68. package/dist/commonjs/models.d.ts.map +1 -1
  69. package/dist/commonjs/models.js.map +1 -1
  70. package/dist/commonjs/outputModels.d.ts +23 -16
  71. package/dist/commonjs/outputModels.d.ts.map +1 -1
  72. package/dist/commonjs/outputModels.js.map +1 -1
  73. package/dist/commonjs/parameters.d.ts +13 -6
  74. package/dist/commonjs/parameters.d.ts.map +1 -1
  75. package/dist/commonjs/parameters.js.map +1 -1
  76. package/dist/commonjs/responses.d.ts +9 -2
  77. package/dist/commonjs/responses.d.ts.map +1 -1
  78. package/dist/commonjs/responses.js.map +1 -1
  79. package/dist/commonjs/tracingHelper.d.ts +8 -1
  80. package/dist/commonjs/tracingHelper.d.ts.map +1 -1
  81. package/dist/commonjs/tracingHelper.js +26 -26
  82. package/dist/commonjs/tracingHelper.js.map +1 -1
  83. package/dist/commonjs/tracingPolicy.d.ts +7 -0
  84. package/dist/commonjs/tracingPolicy.d.ts.map +1 -1
  85. package/dist/commonjs/tracingPolicy.js +2 -2
  86. package/dist/commonjs/tracingPolicy.js.map +1 -1
  87. package/dist/commonjs/tsdoc-metadata.json +1 -1
  88. package/dist/esm/clientDefinitions.d.ts +10 -3
  89. package/dist/esm/clientDefinitions.d.ts.map +1 -1
  90. package/dist/esm/clientDefinitions.js.map +1 -1
  91. package/dist/esm/constants.d.ts +7 -0
  92. package/dist/esm/constants.d.ts.map +1 -1
  93. package/dist/esm/constants.js +7 -0
  94. package/dist/esm/constants.js.map +1 -1
  95. package/dist/esm/index.d.ts +11 -3
  96. package/dist/esm/index.d.ts.map +1 -1
  97. package/dist/esm/index.js +10 -3
  98. package/dist/esm/index.js.map +1 -1
  99. package/dist/esm/isUnexpected.d.ts +8 -1
  100. package/dist/esm/isUnexpected.d.ts.map +1 -1
  101. package/dist/esm/isUnexpected.js +1 -6
  102. package/dist/esm/isUnexpected.js.map +1 -1
  103. package/dist/esm/logger.d.ts.map +1 -1
  104. package/dist/esm/logger.js +7 -0
  105. package/dist/esm/logger.js.map +1 -1
  106. package/dist/esm/modelClient.d.ts +7 -0
  107. package/dist/esm/modelClient.d.ts.map +1 -1
  108. package/dist/esm/modelClient.js +1 -1
  109. package/dist/esm/modelClient.js.map +1 -1
  110. package/dist/esm/models.d.ts +57 -8
  111. package/dist/esm/models.d.ts.map +1 -1
  112. package/dist/esm/models.js.map +1 -1
  113. package/dist/esm/outputModels.d.ts +23 -16
  114. package/dist/esm/outputModels.d.ts.map +1 -1
  115. package/dist/esm/outputModels.js.map +1 -1
  116. package/dist/esm/parameters.d.ts +13 -6
  117. package/dist/esm/parameters.d.ts.map +1 -1
  118. package/dist/esm/parameters.js.map +1 -1
  119. package/dist/esm/responses.d.ts +9 -2
  120. package/dist/esm/responses.d.ts.map +1 -1
  121. package/dist/esm/responses.js.map +1 -1
  122. package/dist/esm/tracingHelper.d.ts +8 -1
  123. package/dist/esm/tracingHelper.d.ts.map +1 -1
  124. package/dist/esm/tracingHelper.js +26 -26
  125. package/dist/esm/tracingHelper.js.map +1 -1
  126. package/dist/esm/tracingPolicy.d.ts +7 -0
  127. package/dist/esm/tracingPolicy.d.ts.map +1 -1
  128. package/dist/esm/tracingPolicy.js +2 -2
  129. package/dist/esm/tracingPolicy.js.map +1 -1
  130. package/dist/react-native/clientDefinitions.d.ts +10 -3
  131. package/dist/react-native/clientDefinitions.d.ts.map +1 -1
  132. package/dist/react-native/clientDefinitions.js.map +1 -1
  133. package/dist/react-native/constants.d.ts +7 -0
  134. package/dist/react-native/constants.d.ts.map +1 -1
  135. package/dist/react-native/constants.js +7 -0
  136. package/dist/react-native/constants.js.map +1 -1
  137. package/dist/react-native/index.d.ts +11 -3
  138. package/dist/react-native/index.d.ts.map +1 -1
  139. package/dist/react-native/index.js +10 -3
  140. package/dist/react-native/index.js.map +1 -1
  141. package/dist/react-native/isUnexpected.d.ts +8 -1
  142. package/dist/react-native/isUnexpected.d.ts.map +1 -1
  143. package/dist/react-native/isUnexpected.js +1 -6
  144. package/dist/react-native/isUnexpected.js.map +1 -1
  145. package/dist/react-native/logger.d.ts.map +1 -1
  146. package/dist/react-native/logger.js +7 -0
  147. package/dist/react-native/logger.js.map +1 -1
  148. package/dist/react-native/modelClient.d.ts +7 -0
  149. package/dist/react-native/modelClient.d.ts.map +1 -1
  150. package/dist/react-native/modelClient.js +1 -1
  151. package/dist/react-native/modelClient.js.map +1 -1
  152. package/dist/react-native/models.d.ts +57 -8
  153. package/dist/react-native/models.d.ts.map +1 -1
  154. package/dist/react-native/models.js.map +1 -1
  155. package/dist/react-native/outputModels.d.ts +23 -16
  156. package/dist/react-native/outputModels.d.ts.map +1 -1
  157. package/dist/react-native/outputModels.js.map +1 -1
  158. package/dist/react-native/parameters.d.ts +13 -6
  159. package/dist/react-native/parameters.d.ts.map +1 -1
  160. package/dist/react-native/parameters.js.map +1 -1
  161. package/dist/react-native/responses.d.ts +9 -2
  162. package/dist/react-native/responses.d.ts.map +1 -1
  163. package/dist/react-native/responses.js.map +1 -1
  164. package/dist/react-native/tracingHelper.d.ts +8 -1
  165. package/dist/react-native/tracingHelper.d.ts.map +1 -1
  166. package/dist/react-native/tracingHelper.js +26 -26
  167. package/dist/react-native/tracingHelper.js.map +1 -1
  168. package/dist/react-native/tracingPolicy.d.ts +7 -0
  169. package/dist/react-native/tracingPolicy.d.ts.map +1 -1
  170. package/dist/react-native/tracingPolicy.js +2 -2
  171. package/dist/react-native/tracingPolicy.js.map +1 -1
  172. package/package.json +28 -25
package/README.md CHANGED
@@ -13,10 +13,11 @@ Key links:
13
13
 
14
14
  ## Getting started
15
15
 
16
- ```javascript
16
+ ```ts snippet:ReadmeSample_Node
17
17
  import ModelClient, { isUnexpected } from "@azure-rest/ai-inference";
18
18
  import { AzureKeyCredential } from "@azure/core-auth";
19
- const client = new ModelClient(
19
+
20
+ const client = ModelClient(
20
21
  "https://<Azure Model endpoint>",
21
22
  new AzureKeyCredential("<Azure API key>"),
22
23
  );
@@ -43,13 +44,13 @@ console.log(response.body.choices[0].message.content);
43
44
 
44
45
  ### Install the `@azure-rest/ai-inference` package
45
46
 
46
- Install the Azure ModelClient REST client REST client library for JavaScript with `npm`:
47
+ Install the Azure Inference REST client library for JavaScript with `npm`:
47
48
 
48
49
  ```bash
49
50
  npm install @azure-rest/ai-inference
50
51
  ```
51
52
 
52
- ### Create and authenticate a `ModelClient`
53
+ ### Create and authenticate the Inference client
53
54
 
54
55
  #### Using an API Key from Azure
55
56
 
@@ -65,11 +66,11 @@ Use the [Azure Portal][azure_portal] to browse to your Model deployment and retr
65
66
 
66
67
  Once you have an API key and endpoint, you can use the `AzureKeyCredential` class to authenticate the client as follows:
67
68
 
68
- ```javascript
69
+ ```ts snippet:ReadmeSample_KeyCredential
69
70
  import ModelClient from "@azure-rest/ai-inference";
70
71
  import { AzureKeyCredential } from "@azure/core-auth";
71
72
 
72
- const client = new ModelClient("<endpoint>", new AzureKeyCredential("<API key>"));
73
+ const client = ModelClient("<endpoint>", new AzureKeyCredential("<API key>"));
73
74
  ```
74
75
 
75
76
  #### Using an Azure Active Directory Credential
@@ -83,43 +84,37 @@ npm install @azure/identity
83
84
 
84
85
  Set the values of the client ID, tenant ID, and client secret of the AAD application as environment variables: `AZURE_CLIENT_ID`, `AZURE_TENANT_ID`, `AZURE_CLIENT_SECRET`.
85
86
 
86
- ```javascript
87
+ ```ts snippet:ReadmeSample_TokenCredential
87
88
  import ModelClient from "@azure-rest/ai-inference";
88
89
  import { DefaultAzureCredential } from "@azure/identity";
89
90
 
90
- const client = new ModelClient("<endpoint>", new DefaultAzureCredential());
91
+ const client = ModelClient("<endpoint>", new DefaultAzureCredential());
91
92
  ```
92
93
 
93
94
  ## Key concepts
94
95
 
95
96
  The main concept to understand is [Completions][azure_openai_completions_docs]. Briefly explained, completions provides its functionality in the form of a text prompt, which by using a specific [model](https://learn.microsoft.com/azure/cognitive-services/openai/concepts/models), will then attempt to match the context and patterns, providing an output text. The following code snippet provides a rough overview:
96
97
 
97
- ```javascript
98
+ ```ts snippet:ReadmeSample_Completions
98
99
  import ModelClient, { isUnexpected } from "@azure-rest/ai-inference";
99
100
  import { AzureKeyCredential } from "@azure/core-auth";
100
101
 
101
- async function main() {
102
- const client = new ModelClient(
103
- "https://your-model-endpoint/",
104
- new AzureKeyCredential("your-model-api-key"),
105
- );
106
-
107
- const response = await client.path("/chat/completions").post({
108
- body: {
109
- messages: [{ role: "user", content: "Hello, world!" }],
110
- },
111
- });
102
+ const client = ModelClient(
103
+ "https://your-model-endpoint/",
104
+ new AzureKeyCredential("your-model-api-key"),
105
+ );
112
106
 
113
- if (isUnexpected(response)) {
114
- throw response.body.error;
115
- }
107
+ const response = await client.path("/chat/completions").post({
108
+ body: {
109
+ messages: [{ role: "user", content: "Hello, world!" }],
110
+ },
111
+ });
116
112
 
117
- console.log(response.body.choices[0].message.content);
113
+ if (isUnexpected(response)) {
114
+ throw response.body.error;
118
115
  }
119
116
 
120
- main().catch((err) => {
121
- console.error("The sample encountered an error:", err);
122
- });
117
+ console.log(response.body.choices[0].message.content);
123
118
  ```
124
119
 
125
120
  ## Examples
@@ -134,129 +129,117 @@ npm install @azure/core-sse
134
129
 
135
130
  This example authenticates using a DefaultAzureCredential, then generates chat responses to input chat question and messages.
136
131
 
137
- ```javascript
132
+ ```ts snippet:ReadmeSample_ChatbotResponse
138
133
  import ModelClient from "@azure-rest/ai-inference";
139
134
  import { DefaultAzureCredential } from "@azure/identity";
140
135
  import { createSseStream } from "@azure/core-sse";
136
+ import { IncomingMessage } from "node:http";
141
137
 
142
- async function main() {
143
- const endpoint = "https://myaccount.openai.azure.com/";
144
- const client = new ModelClient(endpoint, new DefaultAzureCredential());
145
-
146
- const messages = [
147
- // NOTE: "system" role is not supported on all Azure Models
148
- { role: "system", content: "You are a helpful assistant. You will talk like a pirate." },
149
- { role: "user", content: "Can you help me?" },
150
- { role: "assistant", content: "Arrrr! Of course, me hearty! What can I do for ye?" },
151
- { role: "user", content: "What's the best way to train a parrot?" },
152
- ];
153
-
154
- console.log(`Messages: ${messages.map((m) => m.content).join("\n")}`);
155
-
156
- const response = await client
157
- .path("/chat/completions")
158
- .post({
159
- body: {
160
- messages,
161
- stream: true,
162
- max_tokens: 128,
163
- },
164
- })
165
- .asNodeStream();
138
+ const endpoint = "https://myaccount.openai.azure.com/";
139
+ const client = ModelClient(endpoint, new DefaultAzureCredential());
166
140
 
167
- const stream = response.body;
168
- if (!stream) {
169
- throw new Error("The response stream is undefined");
170
- }
141
+ const messages = [
142
+ // NOTE: "system" role is not supported on all Azure Models
143
+ { role: "system", content: "You are a helpful assistant. You will talk like a pirate." },
144
+ { role: "user", content: "Can you help me?" },
145
+ { role: "assistant", content: "Arrrr! Of course, me hearty! What can I do for ye?" },
146
+ { role: "user", content: "What's the best way to train a parrot?" },
147
+ ];
171
148
 
172
- if (response.status !== "200") {
173
- throw new Error(`Failed to get chat completions: ${response.body.error}`);
174
- }
149
+ console.log(`Messages: ${messages.map((m) => m.content).join("\n")}`);
175
150
 
176
- const sses = createSseStream(stream);
151
+ const response = await client
152
+ .path("/chat/completions")
153
+ .post({
154
+ body: {
155
+ messages,
156
+ stream: true,
157
+ max_tokens: 128,
158
+ },
159
+ })
160
+ .asNodeStream();
177
161
 
178
- for await (const event of sses) {
179
- if (event.data === "[DONE]") {
180
- return;
181
- }
182
- for (const choice of JSON.parse(event.data).choices) {
183
- console.log(choice.delta?.content ?? "");
184
- }
185
- }
162
+ const stream = response.body;
163
+ if (!stream) {
164
+ throw new Error("The response stream is undefined");
186
165
  }
187
166
 
188
- main().catch((err) => {
189
- console.error("The sample encountered an error:", err);
190
- });
167
+ if (response.status !== "200") {
168
+ throw new Error("Failed to get chat completions");
169
+ }
170
+
171
+ const sses = createSseStream(stream as IncomingMessage);
172
+
173
+ for await (const event of sses) {
174
+ if (event.data === "[DONE]") {
175
+ return;
176
+ }
177
+ for (const choice of JSON.parse(event.data).choices) {
178
+ console.log(choice.delta?.content ?? "");
179
+ }
180
+ }
191
181
  ```
192
182
 
193
183
  ### Generate Multiple Completions With Subscription Key
194
184
 
195
185
  This example generates text responses to input prompts using an Azure subscription key
196
186
 
197
- ```javascript
198
- import ModelClient from "@azure-rest/ai-inference";
187
+ ```ts snippet:ReadmeSample_MultipleCompletions
188
+ import ModelClient, { isUnexpected } from "@azure-rest/ai-inference";
199
189
  import { AzureKeyCredential } from "@azure/core-auth";
200
190
 
201
- async function main() {
202
- // Replace with your Model API key
203
- const key = "YOUR_MODEL_API_KEY";
204
- const endpoint = "https://your-model-endpoint/";
205
- const client = new ModelClient(endpoint, new AzureKeyCredential(key));
206
-
207
- const messages = [
208
- { role: "user", content: "How are you today?" },
209
- { role: "user", content: "What is inference in the context of AI?" },
210
- { role: "user", content: "Why do children love dinosaurs?" },
211
- { role: "user", content: "Generate a proof of Euler's identity" },
212
- {
213
- role: "user",
214
- content:
215
- "Describe in single words only the good things that come into your mind about your mother.",
216
- },
217
- ];
218
-
219
- let promptIndex = 0;
220
- const response = await client.path("/chat/completions").post({
221
- body: {
222
- messages,
223
- },
224
- });
191
+ // Replace with your Model API key
192
+ const key = "YOUR_MODEL_API_KEY";
193
+ const endpoint = "https://your-model-endpoint/";
194
+ const client = ModelClient(endpoint, new AzureKeyCredential(key));
225
195
 
226
- if (response.status !== "200") {
227
- throw response.body.error;
228
- }
229
- for (const choice of response.body.choices) {
230
- const completion = choice.message.content;
231
- console.log(`Input: ${messages[promptIndex++].content}`);
232
- console.log(`Chatbot: ${completion}`);
233
- }
234
- }
196
+ const messages = [
197
+ { role: "user", content: "How are you today?" },
198
+ { role: "user", content: "What is inference in the context of AI?" },
199
+ { role: "user", content: "Why do children love dinosaurs?" },
200
+ { role: "user", content: "Generate a proof of Euler's identity" },
201
+ {
202
+ role: "user",
203
+ content:
204
+ "Describe in single words only the good things that come into your mind about your mother.",
205
+ },
206
+ ];
235
207
 
236
- main().catch((err) => {
237
- console.error("The sample encountered an error:", err);
208
+ let promptIndex = 0;
209
+ const response = await client.path("/chat/completions").post({
210
+ body: {
211
+ messages,
212
+ },
238
213
  });
214
+
215
+ if (isUnexpected(response)) {
216
+ throw response.body.error;
217
+ }
218
+ for (const choice of response.body.choices) {
219
+ const completion = choice.message.content;
220
+ console.log(`Input: ${messages[promptIndex++].content}`);
221
+ console.log(`Chatbot: ${completion}`);
222
+ }
239
223
  ```
240
224
 
241
225
  ### Summarize Text with Completion
242
226
 
243
227
  This example generates a summarization of the given input prompt.
244
228
 
245
- ```javascript
246
- import ModelClient from "@azure-rest/ai-inference";
229
+ ```ts snippet:ReadmeSample_SummarizeText
230
+ import ModelClient, { isUnexpected } from "@azure-rest/ai-inference";
247
231
  import { DefaultAzureCredential } from "@azure/identity";
248
232
 
249
- async function main() {
250
- const endpoint = "https://your-model-endpoint/";
251
- const client = new ModelClient(endpoint, new DefaultAzureCredential());
233
+ const endpoint = "https://myaccount.openai.azure.com/";
234
+ const client = ModelClient(endpoint, new DefaultAzureCredential());
252
235
 
253
- const textToSummarize = `
236
+ const textToSummarize = `
254
237
  Two independent experiments reported their results this morning at CERN, Europe's high-energy physics laboratory near Geneva in Switzerland. Both show convincing evidence of a new boson particle weighing around 125 gigaelectronvolts, which so far fits predictions of the Higgs previously made by theoretical physicists.
255
238
 
256
239
  ""As a layman I would say: 'I think we have it'. Would you agree?"" Rolf-Dieter Heuer, CERN's director-general, asked the packed auditorium. The physicists assembled there burst into applause.
257
240
  :`;
258
241
 
259
- const summarizationPrompt = `
242
+ const summarizationPrompt = `
260
243
  Summarize the following text.
261
244
 
262
245
  Text:
@@ -267,33 +250,34 @@ async function main() {
267
250
  Summary:
268
251
  `;
269
252
 
270
- console.log(`Input: ${summarizationPrompt}`);
253
+ console.log(`Input: ${summarizationPrompt}`);
271
254
 
272
- const response = await client.path("/chat/completions").post({
273
- body: {
274
- messages: [{ role: "user", content: summarizationPrompt }],
275
- max_tokens: 64,
276
- },
277
- });
255
+ const response = await client.path("/chat/completions").post({
256
+ body: {
257
+ messages: [{ role: "user", content: summarizationPrompt }],
258
+ max_tokens: 64,
259
+ },
260
+ });
278
261
 
279
- if (response.status !== "200") {
280
- throw response.body.error;
281
- }
282
- const completion = response.body.choices[0].message.content;
283
- console.log(`Summarization: ${completion}`);
262
+ if (isUnexpected(response)) {
263
+ throw response.body.error;
284
264
  }
285
-
286
- main().catch((err) => {
287
- console.error("The sample encountered an error:", err);
288
- });
265
+ const completion = response.body.choices[0].message.content;
266
+ console.log(`Summarization: ${completion}`);
289
267
  ```
290
268
 
291
269
  ### Use chat tools
292
270
 
293
271
  **Tools** extend chat completions by allowing an assistant to invoke defined functions and other capabilities in the
294
- process of fulfilling a chat completions request. To use chat tools, start by defining a function tool:
272
+ process of fulfilling a chat completions request. To use chat tools, start by defining a function tool named `getCurrentWeather`. With the tool defined, include that new definition in the options for a chat completions request:
273
+
274
+ ```ts snippet:ReadmeSample_ChatTools
275
+ import ModelClient from "@azure-rest/ai-inference";
276
+ import { DefaultAzureCredential } from "@azure/identity";
277
+
278
+ const endpoint = "https://myaccount.openai.azure.com/";
279
+ const client = ModelClient(endpoint, new DefaultAzureCredential());
295
280
 
296
- ```js
297
281
  const getCurrentWeather = {
298
282
  name: "get_current_weather",
299
283
  description: "Get the current weather in a given location",
@@ -312,22 +296,17 @@ const getCurrentWeather = {
312
296
  required: ["location"],
313
297
  },
314
298
  };
315
- ```
316
-
317
- With the tool defined, include that new definition in the options for a chat completions request:
318
299
 
319
- ```js
320
300
  const messages = [{ role: "user", content: "What is the weather like in Boston?" }];
321
- const tools = [
322
- {
323
- type: "function",
324
- function: getCurrentWeather,
325
- },
326
- ];
327
301
  const result = await client.path("/chat/completions").post({
328
302
  body: {
329
303
  messages,
330
- tools,
304
+ tools: [
305
+ {
306
+ type: "function",
307
+ function: getCurrentWeather,
308
+ },
309
+ ],
331
310
  },
332
311
  });
333
312
  ```
@@ -336,7 +315,7 @@ When the assistant decides that one or more tools should be used, the response m
336
315
  calls" that must all be resolved via "tool messages" on the subsequent request. This resolution of tool calls into
337
316
  new request messages can be thought of as a sort of "callback" for chat completions.
338
317
 
339
- ```js
318
+ ```ts snippet:ReadmeSample_ChatToolsResponse
340
319
  // Purely for convenience and clarity, this function handles tool call responses.
341
320
  function applyToolCall({ function: call, id }) {
342
321
  if (call.name === "get_current_weather") {
@@ -356,23 +335,39 @@ To provide tool call resolutions to the assistant to allow the request to contin
356
335
  context -- including the original system and user messages, the response from the assistant that included the tool
357
336
  calls, and the tool messages that resolved each of those tools -- when making a subsequent request.
358
337
 
359
- ```js
360
- const choice = result.body.choices[0];
361
- const responseMessage = choice.message;
362
- if (responseMessage?.role === "assistant") {
363
- const requestedToolCalls = responseMessage?.toolCalls;
364
- if (requestedToolCalls?.length) {
365
- const toolCallResolutionMessages = [
366
- ...messages,
367
- responseMessage,
368
- ...requestedToolCalls.map(applyToolCall),
369
- ];
370
- const toolCallResolutionResult = await client.path("/chat/completions").post({
371
- body: {
372
- messages: toolCallResolutionMessages,
373
- },
374
- });
375
- // continue handling the response as normal
338
+ ```ts snippet:ReadmeSample_ChatToolsResolution
339
+ import ModelClient from "@azure-rest/ai-inference";
340
+ import { DefaultAzureCredential } from "@azure/identity";
341
+
342
+ const endpoint = "https://myaccount.openai.azure.com/";
343
+ const client = ModelClient(endpoint, new DefaultAzureCredential());
344
+
345
+ // From previous snippets
346
+ const messages = [{ role: "user", content: "What is the weather like in Boston?" }];
347
+
348
+ function applyToolCall({ function: call, id }) {
349
+ // from previous snippet
350
+ }
351
+
352
+ // Handle result from previous snippet
353
+ async function handleResponse(result) {
354
+ const choice = result.body.choices[0];
355
+ const responseMessage = choice.message;
356
+ if (responseMessage?.role === "assistant") {
357
+ const requestedToolCalls = responseMessage?.toolCalls;
358
+ if (requestedToolCalls?.length) {
359
+ const toolCallResolutionMessages = [
360
+ ...messages,
361
+ responseMessage,
362
+ ...requestedToolCalls.map(applyToolCall),
363
+ ];
364
+ const toolCallResolutionResult = await client.path("/chat/completions").post({
365
+ body: {
366
+ messages: toolCallResolutionMessages,
367
+ },
368
+ });
369
+ // continue handling the response as normal
370
+ }
376
371
  }
377
372
  }
378
373
  ```
@@ -381,64 +376,71 @@ if (responseMessage?.role === "assistant") {
381
376
 
382
377
  Some Azure models allow you to use images as input components into chat completions.
383
378
 
384
- To do this, provide distinct content items on the user message(s) for the chat completions request:
379
+ To do this, provide distinct content items on the user message(s) for the chat completions request. Chat Completions will then proceed as usual, though the model may report the more informative `finish_details` in lieu
380
+ of `finish_reason`.
385
381
 
386
- ```js
387
- const url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
388
- const messages = [{
389
- role: "user", content: [{
390
- type: "image_url",
391
- image_url: {
392
- url,
393
- detail: "auto"
394
- }
395
- }]},
396
- {role: "user", content: "describe the image"}];
397
- ```
382
+ ```ts snippet:ReadmeSample_ChatWithImages
383
+ import ModelClient, { isUnexpected } from "@azure-rest/ai-inference";
384
+ import { DefaultAzureCredential } from "@azure/identity";
398
385
 
399
- Chat Completions will then proceed as usual, though the model may report the more informative `finish_details` in lieu
400
- of `finish_reason`:
386
+ const endpoint = "https://myaccount.openai.azure.com/";
387
+ const client = ModelClient(endpoint, new DefaultAzureCredential());
388
+
389
+ const url =
390
+ "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg";
391
+ const messages = [
392
+ {
393
+ role: "user",
394
+ content: [
395
+ {
396
+ type: "image_url",
397
+ image_url: {
398
+ url,
399
+ detail: "auto",
400
+ },
401
+ },
402
+ ],
403
+ },
404
+ { role: "user", content: "describe the image" },
405
+ ];
401
406
 
402
- ```js
403
407
  const response = await client.path("/chat/completions").post({
404
408
  body: {
405
- messages
409
+ messages,
410
+ },
406
411
  });
407
- console.log(`Chatbot: ${response.choices[0].message?.content}`);
412
+
413
+ if (isUnexpected(response)) {
414
+ throw response.body.error;
415
+ }
416
+ console.log(`Chatbot: ${response.body.choices[0].message?.content}`);
408
417
  ```
409
418
 
410
419
  ### Text Embeddings example
411
420
 
412
421
  This example demonstrates how to get text embeddings with Entra ID authentication.
413
422
 
414
- ```javascript
423
+ ```ts snippet:ReadmeSample_TextEmbeddings
415
424
  import ModelClient, { isUnexpected } from "@azure-rest/ai-inference";
416
425
  import { DefaultAzureCredential } from "@azure/identity";
417
426
 
418
- const endpoint = "<your_model_endpoint>";
419
- const credential = new DefaultAzureCredential();
427
+ const endpoint = "https://myaccount.openai.azure.com/";
428
+ const client = ModelClient(endpoint, new DefaultAzureCredential());
420
429
 
421
- async function main() {
422
- const client = ModelClient(endpoint, credential);
423
- const response = await client.path("/embeddings").post({
424
- body: {
425
- input: ["first phrase", "second phrase", "third phrase"],
426
- },
427
- });
430
+ const response = await client.path("/embeddings").post({
431
+ body: {
432
+ input: ["first phrase", "second phrase", "third phrase"],
433
+ },
434
+ });
428
435
 
429
- if (isUnexpected(response)) {
430
- throw response.body.error;
431
- }
432
- for (const data of response.body.data) {
433
- console.log(
434
- `data length: ${data.length}, [${data[0]}, ${data[1]}, ..., ${data[data.length - 2]}, ${data[data.length - 1]}]`,
435
- );
436
- }
436
+ if (isUnexpected(response)) {
437
+ throw response.body.error;
438
+ }
439
+ for (const data of response.body.data) {
440
+ console.log(
441
+ `data length: ${data.embedding.length}, [${data[0]}, ${data[1]}, ..., ${data[data.embedding.length - 2]}, ${data[data.embedding.length - 1]}]`,
442
+ );
437
443
  }
438
-
439
- main().catch((err) => {
440
- console.error("The sample encountered an error:", err);
441
- });
442
444
  ```
443
445
 
444
446
  The length of the embedding vector depends on the model, but you should see something like this:
@@ -455,17 +457,17 @@ To generate embeddings for additional phrases, simply call `client.path("/embedd
455
457
 
456
458
  This example demonstrates how to get image embeddings with Entra ID authentication.
457
459
 
458
- ```javascript
459
- import ModelClient, { isUnexpected } from "@azure-rest/ai-inference";
460
+ ```ts snippet:ReadmeSample_ImageEmbeddings
460
461
  import { DefaultAzureCredential } from "@azure/identity";
461
- import fs from "fs";
462
+ import { readFileSync } from "node:fs";
463
+ import ModelClient, { isUnexpected } from "@azure-rest/ai-inference";
462
464
 
463
- const endpoint = "<your_model_endpoint>";
465
+ const endpoint = "https://myaccount.openai.azure.com/";
464
466
  const credential = new DefaultAzureCredential();
465
467
 
466
468
  function getImageDataUrl(imageFile, imageFormat) {
467
469
  try {
468
- const imageBuffer = fs.readFileSync(imageFile);
470
+ const imageBuffer = readFileSync(imageFile);
469
471
  const imageBase64 = imageBuffer.toString("base64");
470
472
  return `data:image/${imageFormat};base64,${imageBase64}`;
471
473
  } catch (error) {
@@ -475,28 +477,22 @@ function getImageDataUrl(imageFile, imageFormat) {
475
477
  }
476
478
  }
477
479
 
478
- async function main() {
479
- const client = ModelClient(endpoint, credential);
480
- const image = getImageDataUrl("<image_file>", "<image_format>");
481
- const response = await client.path("/images/embeddings").post({
482
- body: {
483
- input: [{image}],
484
- },
485
- });
480
+ const client = ModelClient(endpoint, credential);
481
+ const image = getImageDataUrl("<image_file>", "<image_format>");
482
+ const response = await client.path("/images/embeddings").post({
483
+ body: {
484
+ input: [{ image }],
485
+ },
486
+ });
486
487
 
487
- if (isUnexpected(response)) {
488
- throw response.body.error;
489
- }
490
- for (const data of response.body.data) {
491
- console.log(
492
- `data length: ${data.length}, [${data[0]}, ${data[1]}, ..., ${data[data.length - 2]}, ${data[data.length - 1]}]`,
493
- );
494
- }
488
+ if (isUnexpected(response)) {
489
+ throw response.body.error;
490
+ }
491
+ for (const data of response.body.data) {
492
+ console.log(
493
+ `data length: ${data.embedding.length}, [${data[0]}, ${data[1]}, ..., ${data[data.embedding.length - 2]}, ${data[data.embedding.length - 1]}]`,
494
+ );
495
495
  }
496
-
497
- main().catch((err) => {
498
- console.error("The sample encountered an error:", err);
499
- });
500
496
  ```
501
497
 
502
498
  The length of the embedding vector depends on the model, but you should see something like this:
@@ -514,11 +510,11 @@ To enable instrumentation, it is required to register exporter(s).
514
510
 
515
511
  Here is an example to add console as a exporter:
516
512
 
517
- ```js
513
+ ```ts snippet:ReadmeSample_Instrumentation
518
514
  import {
519
- ConsoleSpanExporter,
520
515
  NodeTracerProvider,
521
516
  SimpleSpanProcessor,
517
+ ConsoleSpanExporter,
522
518
  } from "@opentelemetry/sdk-trace-node";
523
519
 
524
520
  const provider = new NodeTracerProvider();
@@ -528,7 +524,7 @@ provider.register();
528
524
 
529
525
  Here is an example to add application insight to be a exporter:
530
526
 
531
- ```js
527
+ ```ts snippet:ReadmeSample_InstrumentationAppInsights
532
528
  import { NodeTracerProvider, SimpleSpanProcessor } from "@opentelemetry/sdk-trace-node";
533
529
  import { AzureMonitorTraceExporter } from "@azure/monitor-opentelemetry-exporter";
534
530
 
@@ -545,32 +541,39 @@ provider.register();
545
541
 
546
542
  To use instrumentation for Azure SDK, you need to register it before importing any dependencies from `@azure/core-tracing`, such as `@azure-rest/ai-inference`.
547
543
 
548
- ```js
544
+ ```ts snippet:ReadmeSample_InstrumentationImport
549
545
  import { registerInstrumentations } from "@opentelemetry/instrumentation";
550
546
  import { createAzureSdkInstrumentation } from "@azure/opentelemetry-instrumentation-azure-sdk";
551
547
 
552
548
  registerInstrumentations({
553
549
  instrumentations: [createAzureSdkInstrumentation()],
554
550
  });
555
-
556
- import ModelClient from "@azure-rest/ai-inference";
557
551
  ```
558
552
 
559
- Finally when you are making a call for chat completion, you need to include
553
+ Finally when you are making a call for chat completion, you need to include the `tracingOptions` in the request. Here is an example:
560
554
 
561
- ```js
562
- tracingOptions: {
563
- tracingContext: context.active();
564
- }
565
- ```
555
+ ```ts snippet:ReadmeSample_InstrumentationRequest
556
+ import { DefaultAzureCredential } from "@azure/identity";
557
+ import ModelClient from "@azure-rest/ai-inference";
558
+ import { context } from "@opentelemetry/api";
566
559
 
567
- Here is an example:
560
+ const endpoint = "https://myaccount.openai.azure.com/";
561
+ const credential = new DefaultAzureCredential();
562
+ const client = ModelClient(endpoint, credential);
563
+
564
+ const messages = [
565
+ // NOTE: "system" role is not supported on all Azure Models
566
+ { role: "system", content: "You are a helpful assistant. You will talk like a pirate." },
567
+ { role: "user", content: "Can you help me?" },
568
+ { role: "assistant", content: "Arrrr! Of course, me hearty! What can I do for ye?" },
569
+ { role: "user", content: "What's the best way to train a parrot?" },
570
+ ];
568
571
 
569
- ```js
570
- import { context } from "@opentelemetry/api";
571
572
  client.path("/chat/completions").post({
572
- body: {...},
573
- tracingOptions: { tracingContext: context.active() }
573
+ body: {
574
+ messages,
575
+ },
576
+ tracingOptions: { tracingContext: context.active() },
574
577
  });
575
578
  ```
576
579
 
@@ -578,12 +581,13 @@ client.path("/chat/completions").post({
578
581
 
579
582
  Open Telemetry provides `startActiveSpan` to instrument you own code. Here is an example:
580
583
 
581
- ```js
584
+ ```ts snippet:ReadmeSample_TracingOwnFunction
582
585
  import { trace } from "@opentelemetry/api";
586
+
583
587
  const tracer = trace.getTracer("sample", "0.1.0");
584
588
 
585
589
  const getWeatherFunc = (location: string, unit: string): string => {
586
- return tracer.startActiveSpan("getWeatherFunc", span => {
590
+ return tracer.startActiveSpan("getWeatherFunc", (span) => {
587
591
  if (unit !== "celsius") {
588
592
  unit = "fahrenheit";
589
593
  }
@@ -592,7 +596,7 @@ const getWeatherFunc = (location: string, unit: string): string => {
592
596
  span.end();
593
597
  return result;
594
598
  });
595
- }
599
+ };
596
600
  ```
597
601
 
598
602
  ## Troubleshooting
@@ -601,8 +605,8 @@ const getWeatherFunc = (location: string, unit: string): string => {
601
605
 
602
606
  Enabling logging may help uncover useful information about failures. In order to see a log of HTTP requests and responses, set the `AZURE_LOG_LEVEL` environment variable to `info`. Alternatively, logging can be enabled at runtime by calling `setLogLevel` in the `@azure/logger`:
603
607
 
604
- ```javascript
605
- const { setLogLevel } = require("@azure/logger");
608
+ ```ts snippet:SetLogLevel
609
+ import { setLogLevel } from "@azure/logger";
606
610
 
607
611
  setLogLevel("info");
608
612
  ```