@azure-rest/ai-anomaly-detector 1.0.0-alpha.20241213.1 → 1.0.0-alpha.20241218.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (2) hide show
  1. package/README.md +17 -15
  2. package/package.json +1 -1
package/README.md CHANGED
@@ -20,9 +20,9 @@ Install the Azure AnomalyDetectorRest REST client REST client library for JavaSc
20
20
  npm install @azure-rest/ai-anomaly-detector
21
21
  ```
22
22
 
23
- |SDK version|Supported API version of service |
24
- |-------------|---------------|
25
- |1.0.0-beta.1| 1.1|
23
+ | SDK version | Supported API version of service |
24
+ | ------------ | -------------------------------- |
25
+ | 1.0.0-beta.1 | 1.1 |
26
26
 
27
27
  ### Create and authenticate a `AnomalyDetectorRestClient`
28
28
 
@@ -30,7 +30,7 @@ To use an [Azure Active Directory (AAD) token credential](https://github.com/Azu
30
30
  provide an instance of the desired credential type obtained from the
31
31
  [@azure/identity](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/identity/identity#credentials) library.
32
32
 
33
- To authenticate with AAD, you must first `npm` install [`@azure/identity`](https://www.npmjs.com/package/@azure/identity)
33
+ To authenticate with AAD, you must first `npm` install [`@azure/identity`](https://www.npmjs.com/package/@azure/identity)
34
34
 
35
35
  After setup, you can choose which type of [credential](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/identity/identity#credentials) from `@azure/identity` to use.
36
36
  As an example, [DefaultAzureCredential](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/identity/identity#defaultazurecredential)
@@ -43,10 +43,10 @@ AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
43
43
 
44
44
  With the Anomaly Detector, you can either detect anomalies in one variable using **Univariate Anomaly Detection**, or detect anomalies in multiple variables with **Multivariate Anomaly Detection**.
45
45
 
46
- |Feature |Description |
47
- |---------|---------|
48
- |Univariate Anomaly Detection | Detect anomalies in one variable, like revenue, cost, etc. The model was selected automatically based on your data pattern. |
49
- |Multivariate Anomaly Detection| Detect anomalies in multiple variables with correlations, which are usually gathered from equipment or other complex system. The underlying model used is Graph attention network.|
46
+ | Feature | Description |
47
+ | ------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
48
+ | Univariate Anomaly Detection | Detect anomalies in one variable, like revenue, cost, etc. The model was selected automatically based on your data pattern. |
49
+ | Multivariate Anomaly Detection | Detect anomalies in multiple variables with correlations, which are usually gathered from equipment or other complex system. The underlying model used is Graph attention network. |
50
50
 
51
51
  ### Univariate Anomaly Detection
52
52
 
@@ -56,11 +56,11 @@ Using the Anomaly Detector doesn't require any prior experience in machine learn
56
56
 
57
57
  With the Univariate Anomaly Detection, you can automatically detect anomalies throughout your time series data, or as they occur in real-time.
58
58
 
59
- |Feature |Description |
60
- |---------|---------|
61
- | Streaming detection| Detect anomalies in your streaming data by using previously seen data points to determine if your latest one is an anomaly. This operation generates a model using the data points you send, and determines if the target point is an anomaly. By calling the API with each new data point you generate, you can monitor your data as it's created. |
62
- | Batch detection | Use your time series to detect any anomalies that might exist throughout your data. This operation generates a model using your entire time series data, with each point analyzed with the same model. |
63
- | Change points detection | Use your time series to detect any trend change points that exist in your data. This operation generates a model using your entire time series data, with each point analyzed with the same model. |
59
+ | Feature | Description |
60
+ | ----------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
61
+ | Streaming detection | Detect anomalies in your streaming data by using previously seen data points to determine if your latest one is an anomaly. This operation generates a model using the data points you send, and determines if the target point is an anomaly. By calling the API with each new data point you generate, you can monitor your data as it's created. |
62
+ | Batch detection | Use your time series to detect any anomalies that might exist throughout your data. This operation generates a model using your entire time series data, with each point analyzed with the same model. |
63
+ | Change points detection | Use your time series to detect any trend change points that exist in your data. This operation generates a model using your entire time series data, with each point analyzed with the same model. |
64
64
 
65
65
  ### Multivariate Anomaly Detection
66
66
 
@@ -267,7 +267,7 @@ These code samples show common scenario operations with the Azure Anomaly Detect
267
267
 
268
268
  ### Additional documentation
269
269
 
270
- For more extensive documentation on Azure Anomaly Detector, see the [Anomaly Detector documentation](https://learn.microsoft.com/azure/cognitive-services/anomaly-detector/overview) on docs.microsoft.com.
270
+ For more extensive documentation on Azure Anomaly Detector, see the [Anomaly Detector documentation](https://learn.microsoft.com/azure/cognitive-services/anomaly-detector/overview) on learn.microsoft.com.
271
271
 
272
272
  ## Contributing
273
273
 
@@ -278,11 +278,13 @@ When you submit a pull request, a CLA-bot will automatically determine whether y
278
278
  This project has adopted the [Microsoft Open Source Code of Conduct][code_of_conduct]. For more information see the [Code of Conduct FAQ][coc_faq] or contact [opencode@microsoft.com][coc_contact] with any additional questions or comments.
279
279
 
280
280
  <!-- LINKS -->
281
+
281
282
  [cla]: https://cla.microsoft.com
282
283
  [code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
283
284
  [coc_faq]: https://opensource.microsoft.com/codeofconduct/faq/
284
285
  [coc_contact]: mailto:opencode@microsoft.com
286
+
285
287
  - [Source code](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/anomalydetector/ai-anomaly-detector-rest)
286
288
  - [Package (NPM)](https://www.npmjs.com/package/@azure-rest/ai-anomaly-detector)
287
- - [API reference documentation](https://docs.microsoft.com/javascript/api/@azure-rest/ai-anomaly-detector?view=azure-node-preview)
289
+ - [API reference documentation](https://learn.microsoft.com/javascript/api/@azure-rest/ai-anomaly-detector?view=azure-node-preview)
288
290
  - [Samples](https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/anomalydetector/ai-anomaly-detector-rest/samples)
package/package.json CHANGED
@@ -2,7 +2,7 @@
2
2
  "name": "@azure-rest/ai-anomaly-detector",
3
3
  "sdk-type": "client",
4
4
  "author": "Microsoft Corporation",
5
- "version": "1.0.0-alpha.20241213.1",
5
+ "version": "1.0.0-alpha.20241218.1",
6
6
  "description": "A generated SDK for AnomalyDetectorRest.",
7
7
  "keywords": [
8
8
  "node",