@azure-rest/ai-anomaly-detector 1.0.0-alpha.20221107.2 → 1.0.0-beta.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.js +3 -53
- package/dist/index.js.map +1 -1
- package/dist-esm/src/anomalyDetectorRest.js +3 -4
- package/dist-esm/src/anomalyDetectorRest.js.map +1 -1
- package/dist-esm/src/clientDefinitions.js.map +1 -1
- package/dist-esm/src/index.js +0 -1
- package/dist-esm/src/index.js.map +1 -1
- package/dist-esm/src/isUnexpected.js +0 -1
- package/dist-esm/src/isUnexpected.js.map +1 -1
- package/dist-esm/src/models.js.map +1 -1
- package/dist-esm/src/outputModels.js.map +1 -1
- package/dist-esm/src/parameters.js.map +1 -1
- package/dist-esm/src/responses.js.map +1 -1
- package/package.json +4 -4
- package/review/ai-anomaly-detector.api.md +210 -259
- package/types/ai-anomaly-detector.d.ts +614 -362
- package/dist-esm/src/pollingHelper.js +0 -48
- package/dist-esm/src/pollingHelper.js.map +0 -1
|
@@ -2,39 +2,71 @@ import { Client } from '@azure-rest/core-client';
|
|
|
2
2
|
import { ClientOptions } from '@azure-rest/core-client';
|
|
3
3
|
import { HttpResponse } from '@azure-rest/core-client';
|
|
4
4
|
import { KeyCredential } from '@azure/core-auth';
|
|
5
|
-
import { LroEngineOptions } from '@azure/core-lro';
|
|
6
5
|
import { PagedAsyncIterableIterator } from '@azure/core-paging';
|
|
7
6
|
import { PathUncheckedResponse } from '@azure-rest/core-client';
|
|
8
|
-
import { PollerLike } from '@azure/core-lro';
|
|
9
|
-
import { PollOperationState } from '@azure/core-lro';
|
|
10
7
|
import { RawHttpHeaders } from '@azure/core-rest-pipeline';
|
|
11
8
|
import { RequestParameters } from '@azure-rest/core-client';
|
|
12
9
|
import { StreamableMethod } from '@azure-rest/core-client';
|
|
13
10
|
|
|
14
11
|
/** An optional field, indicating the manner to align multiple variables. */
|
|
15
12
|
export declare interface AlignPolicy {
|
|
16
|
-
/**
|
|
13
|
+
/**
|
|
14
|
+
* An optional field, indicating how to align different variables to the same
|
|
15
|
+
* time-range. Either Inner or Outer.
|
|
16
|
+
*/
|
|
17
17
|
alignMode?: "Inner" | "Outer";
|
|
18
|
-
/**
|
|
19
|
-
|
|
18
|
+
/**
|
|
19
|
+
* An optional field, indicating how missing values will be filled. One of
|
|
20
|
+
* Previous, Subsequent, Linear, Zero, Fixed.
|
|
21
|
+
*
|
|
22
|
+
* Possible values: Previous, Subsequent, Linear, Zero, Fixed
|
|
23
|
+
*/
|
|
24
|
+
fillNAMethod?: string;
|
|
20
25
|
/** An optional field. Required when fillNAMethod is Fixed. */
|
|
21
26
|
paddingValue?: number;
|
|
22
27
|
}
|
|
23
28
|
|
|
24
29
|
/** An optional field, indicating the manner to align multiple variables. */
|
|
25
30
|
export declare interface AlignPolicyOutput {
|
|
26
|
-
/**
|
|
31
|
+
/**
|
|
32
|
+
* An optional field, indicating how to align different variables to the same
|
|
33
|
+
* time-range. Either Inner or Outer.
|
|
34
|
+
*/
|
|
27
35
|
alignMode?: "Inner" | "Outer";
|
|
28
|
-
/**
|
|
29
|
-
|
|
36
|
+
/**
|
|
37
|
+
* An optional field, indicating how missing values will be filled. One of
|
|
38
|
+
* Previous, Subsequent, Linear, Zero, Fixed.
|
|
39
|
+
*
|
|
40
|
+
* Possible values: Previous, Subsequent, Linear, Zero, Fixed
|
|
41
|
+
*/
|
|
42
|
+
fillNAMethod?: string;
|
|
30
43
|
/** An optional field. Required when fillNAMethod is Fixed. */
|
|
31
44
|
paddingValue?: number;
|
|
32
45
|
}
|
|
33
46
|
|
|
47
|
+
/** Response of getting a model. */
|
|
48
|
+
export declare interface AnomalyDetectionModelOutput {
|
|
49
|
+
/** Model identifier. */
|
|
50
|
+
modelId: string;
|
|
51
|
+
/** Date and time (UTC) when the model was created. */
|
|
52
|
+
createdTime: string;
|
|
53
|
+
/** Date and time (UTC) when the model was last updated. */
|
|
54
|
+
lastUpdatedTime: string;
|
|
55
|
+
/**
|
|
56
|
+
* Training result of a model including its status, errors and diagnostics
|
|
57
|
+
* information.
|
|
58
|
+
*/
|
|
59
|
+
modelInfo?: ModelInfoOutput;
|
|
60
|
+
}
|
|
61
|
+
|
|
34
62
|
/** Error information returned by the API. */
|
|
35
63
|
export declare interface AnomalyDetectorErrorOutput {
|
|
36
|
-
/**
|
|
37
|
-
|
|
64
|
+
/**
|
|
65
|
+
* The error code.
|
|
66
|
+
*
|
|
67
|
+
* Possible values: InvalidCustomInterval, BadArgument, InvalidGranularity, InvalidPeriod, InvalidModelArgument, InvalidSeries, InvalidJsonFormat, RequiredGranularity, RequiredSeries, InvalidImputeMode, InvalidImputeFixedValue
|
|
68
|
+
*/
|
|
69
|
+
code?: string;
|
|
38
70
|
/** A message explaining the error reported by the service. */
|
|
39
71
|
message?: string;
|
|
40
72
|
}
|
|
@@ -43,140 +75,85 @@ export declare type AnomalyDetectorRestClient = Client & {
|
|
|
43
75
|
path: Routes;
|
|
44
76
|
};
|
|
45
77
|
|
|
78
|
+
export declare interface AnomalyDetectorRestClientOptions extends ClientOptions {
|
|
79
|
+
ApiVersion?: string;
|
|
80
|
+
}
|
|
81
|
+
|
|
82
|
+
/** Interpretation of the anomalous timestamp. */
|
|
46
83
|
export declare interface AnomalyInterpretationOutput {
|
|
47
84
|
/** Variable. */
|
|
48
85
|
variable?: string;
|
|
49
|
-
/**
|
|
86
|
+
/**
|
|
87
|
+
* This score shows the percentage contributing to the anomalous timestamp. A
|
|
88
|
+
* number between 0 and 1.
|
|
89
|
+
*/
|
|
50
90
|
contributionScore?: number;
|
|
91
|
+
/** Correlation changes among the anomalous variables */
|
|
51
92
|
correlationChanges?: CorrelationChangesOutput;
|
|
52
93
|
}
|
|
53
94
|
|
|
95
|
+
/** Anomaly status and information. */
|
|
54
96
|
export declare interface AnomalyStateOutput {
|
|
55
97
|
/** The timestamp for this anomaly. */
|
|
56
98
|
timestamp: string;
|
|
99
|
+
/** The detailed value of this anomalous timestamp. */
|
|
57
100
|
value?: AnomalyValueOutput;
|
|
58
101
|
/** Error message for the current timestamp. */
|
|
59
102
|
errors?: Array<ErrorResponseOutput>;
|
|
60
103
|
}
|
|
61
104
|
|
|
62
|
-
/**
|
|
63
|
-
export declare interface AnomalyValueInterpretationItemOutput extends AnomalyInterpretationOutput {
|
|
64
|
-
}
|
|
65
|
-
|
|
105
|
+
/** Detailed information of the anomalous timestamp. */
|
|
66
106
|
export declare interface AnomalyValueOutput {
|
|
67
107
|
/** True if an anomaly is detected at the current timestamp. */
|
|
68
108
|
isAnomaly: boolean;
|
|
69
|
-
/**
|
|
109
|
+
/**
|
|
110
|
+
* Indicates the significance of the anomaly. The higher the severity, the more
|
|
111
|
+
* significant the anomaly is.
|
|
112
|
+
*/
|
|
70
113
|
severity: number;
|
|
71
|
-
/**
|
|
114
|
+
/**
|
|
115
|
+
* Raw anomaly score of severity, will help indicate the degree of abnormality as
|
|
116
|
+
* well.
|
|
117
|
+
*/
|
|
72
118
|
score: number;
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
/** The request of change point detection. */
|
|
77
|
-
export declare interface ChangePointDetectRequest {
|
|
78
|
-
/** Time series data points. Points should be sorted by timestamp in ascending order to match the change point detection result. */
|
|
79
|
-
series: Array<TimeSeriesPoint>;
|
|
80
|
-
/** Can only be one of yearly, monthly, weekly, daily, hourly, minutely or secondly. Granularity is used for verify whether input series is valid. */
|
|
81
|
-
granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none";
|
|
82
|
-
/** Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as {"granularity":"minutely", "customInterval":5}. */
|
|
83
|
-
customInterval?: number;
|
|
84
|
-
/** Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. */
|
|
85
|
-
period?: number;
|
|
86
|
-
/** Optional argument, advanced model parameter, a default stableTrendWindow will be used in detection. */
|
|
87
|
-
stableTrendWindow?: number;
|
|
88
|
-
/** Optional argument, advanced model parameter, between 0.0-1.0, the lower the value is, the larger the trend error will be which means less change point will be accepted. */
|
|
89
|
-
threshold?: number;
|
|
90
|
-
}
|
|
91
|
-
|
|
92
|
-
/** The response of change point detection. */
|
|
93
|
-
export declare interface ChangePointDetectResponseOutput {
|
|
94
|
-
/** Frequency extracted from the series, zero means no recurrent pattern has been found. */
|
|
95
|
-
period?: number;
|
|
96
|
-
/** isChangePoint contains change point properties for each input point. True means an anomaly either negative or positive has been detected. The index of the array is consistent with the input series. */
|
|
97
|
-
isChangePoint?: Array<boolean>;
|
|
98
|
-
/** the change point confidence of each point */
|
|
99
|
-
confidenceScores?: Array<number>;
|
|
119
|
+
/** Interpretation of this anomalous timestamp. */
|
|
120
|
+
interpretation?: Array<AnomalyInterpretationOutput>;
|
|
100
121
|
}
|
|
101
122
|
|
|
123
|
+
/** Correlation changes among the anomalous variables */
|
|
102
124
|
export declare interface CorrelationChangesOutput {
|
|
103
125
|
/** The correlated variables that have correlation changes under an anomaly. */
|
|
104
|
-
changedVariables?:
|
|
105
|
-
}
|
|
106
|
-
|
|
107
|
-
export declare interface CreateAndTrainMultivariateModel {
|
|
108
|
-
/** Create and train a multivariate anomaly detection model. The request must include a source parameter to indicate an externally accessible Azure blob storage URI.There are two types of data input: An URI pointed to an Azure blob storage folder which contains multiple CSV files, and each CSV file contains two columns, timestamp and variable. Another type of input is an URI pointed to a CSV file in Azure blob storage, which contains all the variables and a timestamp column. */
|
|
109
|
-
post(options: CreateAndTrainMultivariateModelParameters): StreamableMethod<CreateAndTrainMultivariateModel201Response | CreateAndTrainMultivariateModelDefaultResponse>;
|
|
110
|
-
/** List models of a resource. */
|
|
111
|
-
get(options?: ListMultivariateModelsParameters): StreamableMethod<ListMultivariateModels200Response | ListMultivariateModelsDefaultResponse>;
|
|
112
|
-
}
|
|
113
|
-
|
|
114
|
-
export declare interface CreateAndTrainMultivariateModel201Headers {
|
|
115
|
-
/** Location and ID of the model. */
|
|
116
|
-
location?: string;
|
|
117
|
-
}
|
|
118
|
-
|
|
119
|
-
/** Create and train a multivariate anomaly detection model. The request must include a source parameter to indicate an externally accessible Azure blob storage URI.There are two types of data input: An URI pointed to an Azure blob storage folder which contains multiple CSV files, and each CSV file contains two columns, timestamp and variable. Another type of input is an URI pointed to a CSV file in Azure blob storage, which contains all the variables and a timestamp column. */
|
|
120
|
-
export declare interface CreateAndTrainMultivariateModel201Response extends HttpResponse {
|
|
121
|
-
status: "201";
|
|
122
|
-
body: ModelOutput;
|
|
123
|
-
headers: RawHttpHeaders & CreateAndTrainMultivariateModel201Headers;
|
|
124
|
-
}
|
|
125
|
-
|
|
126
|
-
export declare interface CreateAndTrainMultivariateModelBodyParam {
|
|
127
|
-
/** Training request */
|
|
128
|
-
body: ModelInfo;
|
|
129
|
-
}
|
|
130
|
-
|
|
131
|
-
export declare interface CreateAndTrainMultivariateModelDefaultHeaders {
|
|
132
|
-
/** Error code */
|
|
133
|
-
"x-ms-error-code"?: string;
|
|
134
|
-
}
|
|
135
|
-
|
|
136
|
-
/** Create and train a multivariate anomaly detection model. The request must include a source parameter to indicate an externally accessible Azure blob storage URI.There are two types of data input: An URI pointed to an Azure blob storage folder which contains multiple CSV files, and each CSV file contains two columns, timestamp and variable. Another type of input is an URI pointed to a CSV file in Azure blob storage, which contains all the variables and a timestamp column. */
|
|
137
|
-
export declare interface CreateAndTrainMultivariateModelDefaultResponse extends HttpResponse {
|
|
138
|
-
status: string;
|
|
139
|
-
body: ErrorResponseOutput;
|
|
140
|
-
headers: RawHttpHeaders & CreateAndTrainMultivariateModelDefaultHeaders;
|
|
141
|
-
}
|
|
142
|
-
|
|
143
|
-
export declare interface CreateAndTrainMultivariateModelMediaTypesParam {
|
|
144
|
-
/** Request content type */
|
|
145
|
-
contentType?: "application/json";
|
|
126
|
+
changedVariables?: string[];
|
|
146
127
|
}
|
|
147
128
|
|
|
148
|
-
export declare type CreateAndTrainMultivariateModelParameters = CreateAndTrainMultivariateModelMediaTypesParam & CreateAndTrainMultivariateModelBodyParam & RequestParameters;
|
|
149
|
-
|
|
150
129
|
/**
|
|
151
130
|
* Initialize a new instance of the class AnomalyDetectorRestClient class.
|
|
152
|
-
* @param Endpoint type: string
|
|
153
|
-
* @param ApiVersion type: string Anomaly Detector API version (for example, v1.1).
|
|
131
|
+
* @param Endpoint type: string
|
|
154
132
|
* @param credentials type: KeyCredential
|
|
155
133
|
*/
|
|
156
|
-
declare function createClient(Endpoint: string, credentials: KeyCredential, options?:
|
|
157
|
-
apiVersion?: string;
|
|
158
|
-
}): AnomalyDetectorRestClient;
|
|
134
|
+
declare function createClient(Endpoint: string, credentials: KeyCredential, options?: AnomalyDetectorRestClientOptions): AnomalyDetectorRestClient;
|
|
159
135
|
export default createClient;
|
|
160
136
|
|
|
161
137
|
export declare interface DeleteMultivariateModel {
|
|
162
138
|
/** Delete an existing multivariate model according to the modelId */
|
|
163
139
|
delete(options?: DeleteMultivariateModelParameters): StreamableMethod<DeleteMultivariateModel204Response | DeleteMultivariateModelDefaultResponse>;
|
|
164
|
-
/**
|
|
140
|
+
/**
|
|
141
|
+
* Get detailed information of multivariate model, including the training status
|
|
142
|
+
* and variables used in the model.
|
|
143
|
+
*/
|
|
165
144
|
get(options?: GetMultivariateModelParameters): StreamableMethod<GetMultivariateModel200Response | GetMultivariateModelDefaultResponse>;
|
|
166
145
|
}
|
|
167
146
|
|
|
168
|
-
/**
|
|
147
|
+
/** There is no content to send for this request, but the headers may be useful. */
|
|
169
148
|
export declare interface DeleteMultivariateModel204Response extends HttpResponse {
|
|
170
149
|
status: "204";
|
|
171
|
-
body: Record<string, unknown>;
|
|
172
150
|
}
|
|
173
151
|
|
|
174
152
|
export declare interface DeleteMultivariateModelDefaultHeaders {
|
|
175
|
-
/** Error code */
|
|
153
|
+
/** Error code. */
|
|
176
154
|
"x-ms-error-code"?: string;
|
|
177
155
|
}
|
|
178
156
|
|
|
179
|
-
/** Delete an existing multivariate model according to the modelId */
|
|
180
157
|
export declare interface DeleteMultivariateModelDefaultResponse extends HttpResponse {
|
|
181
158
|
status: string;
|
|
182
159
|
body: ErrorResponseOutput;
|
|
@@ -185,290 +162,196 @@ export declare interface DeleteMultivariateModelDefaultResponse extends HttpResp
|
|
|
185
162
|
|
|
186
163
|
export declare type DeleteMultivariateModelParameters = RequestParameters;
|
|
187
164
|
|
|
188
|
-
|
|
189
|
-
export declare interface DetectionRequest {
|
|
190
|
-
/** Source link to the input data to indicate an accessible Azure storage Uri, either pointed to an Azure blob storage folder, or pointed to a CSV file in Azure blob storage based on you data schema selection. The data schema should be exactly the same with those used in the training phase. */
|
|
191
|
-
dataSource: string;
|
|
192
|
-
/** An optional field, which is used to specify the number of top contributed variables for one anomalous timestamp in the response. The default number is 10. */
|
|
193
|
-
topContributorCount: number;
|
|
194
|
-
/** A required field, indicating the start time of data for detection, which should be date-time of ISO 8601 format. */
|
|
195
|
-
startTime: Date | string;
|
|
196
|
-
/** A required field, indicating the end time of data for detection, which should be date-time of ISO 8601 format. */
|
|
197
|
-
endTime: Date | string;
|
|
198
|
-
}
|
|
199
|
-
|
|
200
|
-
/** Detection request for batch inference. This is an asynchronous inference which will need another API to get detection results. */
|
|
201
|
-
export declare interface DetectionRequestOutput {
|
|
202
|
-
/** Source link to the input data to indicate an accessible Azure storage Uri, either pointed to an Azure blob storage folder, or pointed to a CSV file in Azure blob storage based on you data schema selection. The data schema should be exactly the same with those used in the training phase. */
|
|
203
|
-
dataSource: string;
|
|
204
|
-
/** An optional field, which is used to specify the number of top contributed variables for one anomalous timestamp in the response. The default number is 10. */
|
|
205
|
-
topContributorCount: number;
|
|
206
|
-
/** A required field, indicating the start time of data for detection, which should be date-time of ISO 8601 format. */
|
|
207
|
-
startTime: string;
|
|
208
|
-
/** A required field, indicating the end time of data for detection, which should be date-time of ISO 8601 format. */
|
|
209
|
-
endTime: string;
|
|
210
|
-
}
|
|
211
|
-
|
|
212
|
-
/** Detection results for the given resultId. */
|
|
213
|
-
export declare interface DetectionResultOutput {
|
|
165
|
+
export declare interface DetectMultivariateBatchAnomaly {
|
|
214
166
|
/**
|
|
215
|
-
*
|
|
216
|
-
*
|
|
217
|
-
*
|
|
167
|
+
* Submit multivariate anomaly detection task with the modelId of trained model
|
|
168
|
+
* and inference data, the input schema should be the same with the training
|
|
169
|
+
* request. The request will complete asynchronously and return a resultId to
|
|
170
|
+
* query the detection result.The request should be a source link to indicate an
|
|
171
|
+
* externally accessible Azure storage Uri, either pointed to an Azure blob
|
|
172
|
+
* storage folder, or pointed to a CSV file in Azure blob storage.
|
|
218
173
|
*/
|
|
219
|
-
resultId: string;
|
|
220
|
-
/** Multivariate anomaly detection status. */
|
|
221
|
-
summary: DetectionResultSummaryOutput;
|
|
222
|
-
/** Detection result for each timestamp. */
|
|
223
|
-
results: Array<AnomalyStateOutput>;
|
|
224
|
-
}
|
|
225
|
-
|
|
226
|
-
/** Multivariate anomaly detection status. */
|
|
227
|
-
export declare interface DetectionResultSummaryOutput {
|
|
228
|
-
/** Status of detection results. One of CREATED, RUNNING, READY, and FAILED. */
|
|
229
|
-
status: "CREATED" | "RUNNING" | "READY" | "FAILED";
|
|
230
|
-
/** Error message when detection is failed. */
|
|
231
|
-
errors?: Array<ErrorResponseOutput>;
|
|
232
|
-
variableStates?: Array<VariableStateOutput>;
|
|
233
|
-
/** Detection request for batch inference. This is an asynchronous inference which will need another API to get detection results. */
|
|
234
|
-
setupInfo: DetectionRequestOutput;
|
|
235
|
-
}
|
|
236
|
-
|
|
237
|
-
export declare interface DetectMultivariateBatchAnomaly {
|
|
238
|
-
/** Submit multivariate anomaly detection task with the modelId of trained model and inference data, the input schema should be the same with the training request. The request will complete asynchronously and return a resultId to query the detection result.The request should be a source link to indicate an externally accessible Azure storage Uri, either pointed to an Azure blob storage folder, or pointed to a CSV file in Azure blob storage. */
|
|
239
174
|
post(options: DetectMultivariateBatchAnomalyParameters): StreamableMethod<DetectMultivariateBatchAnomaly202Response | DetectMultivariateBatchAnomalyDefaultResponse>;
|
|
240
175
|
}
|
|
241
176
|
|
|
242
177
|
export declare interface DetectMultivariateBatchAnomaly202Headers {
|
|
243
|
-
/** Location of the detection result. */
|
|
244
|
-
"operation-location"?: string;
|
|
245
178
|
/** Id of the detection result. */
|
|
246
|
-
"operation-id"
|
|
179
|
+
"operation-id": string;
|
|
180
|
+
/** Location of the detection result. */
|
|
181
|
+
"operation-location": string;
|
|
247
182
|
}
|
|
248
183
|
|
|
249
|
-
/**
|
|
184
|
+
/** The request has been accepted for processing, but processing has not yet completed. */
|
|
250
185
|
export declare interface DetectMultivariateBatchAnomaly202Response extends HttpResponse {
|
|
251
186
|
status: "202";
|
|
252
|
-
body:
|
|
187
|
+
body: MultivariateDetectionResultOutput;
|
|
253
188
|
headers: RawHttpHeaders & DetectMultivariateBatchAnomaly202Headers;
|
|
254
189
|
}
|
|
255
190
|
|
|
256
191
|
export declare interface DetectMultivariateBatchAnomalyBodyParam {
|
|
257
|
-
/**
|
|
258
|
-
body:
|
|
192
|
+
/** Request of multivariate anomaly detection. */
|
|
193
|
+
body: MultivariateBatchDetectionOptions;
|
|
259
194
|
}
|
|
260
195
|
|
|
261
196
|
export declare interface DetectMultivariateBatchAnomalyDefaultHeaders {
|
|
262
|
-
/** Error code */
|
|
197
|
+
/** Error code. */
|
|
263
198
|
"x-ms-error-code"?: string;
|
|
264
199
|
}
|
|
265
200
|
|
|
266
|
-
/** Submit multivariate anomaly detection task with the modelId of trained model and inference data, the input schema should be the same with the training request. The request will complete asynchronously and return a resultId to query the detection result.The request should be a source link to indicate an externally accessible Azure storage Uri, either pointed to an Azure blob storage folder, or pointed to a CSV file in Azure blob storage. */
|
|
267
201
|
export declare interface DetectMultivariateBatchAnomalyDefaultResponse extends HttpResponse {
|
|
268
202
|
status: string;
|
|
269
203
|
body: ErrorResponseOutput;
|
|
270
204
|
headers: RawHttpHeaders & DetectMultivariateBatchAnomalyDefaultHeaders;
|
|
271
205
|
}
|
|
272
206
|
|
|
273
|
-
export declare
|
|
274
|
-
/** Request content type */
|
|
275
|
-
contentType?: "application/json";
|
|
276
|
-
}
|
|
277
|
-
|
|
278
|
-
export declare type DetectMultivariateBatchAnomalyParameters = DetectMultivariateBatchAnomalyMediaTypesParam & DetectMultivariateBatchAnomalyBodyParam & RequestParameters;
|
|
207
|
+
export declare type DetectMultivariateBatchAnomalyParameters = DetectMultivariateBatchAnomalyBodyParam & RequestParameters;
|
|
279
208
|
|
|
280
209
|
export declare interface DetectMultivariateLastAnomaly {
|
|
281
|
-
/**
|
|
210
|
+
/**
|
|
211
|
+
* Submit multivariate anomaly detection task with the modelId of trained model
|
|
212
|
+
* and inference data, and the inference data should be put into request body in a
|
|
213
|
+
* JSON format. The request will complete synchronously and return the detection
|
|
214
|
+
* immediately in the response body.
|
|
215
|
+
*/
|
|
282
216
|
post(options: DetectMultivariateLastAnomalyParameters): StreamableMethod<DetectMultivariateLastAnomaly200Response | DetectMultivariateLastAnomalyDefaultResponse>;
|
|
283
217
|
}
|
|
284
218
|
|
|
285
|
-
/**
|
|
219
|
+
/** The request has succeeded. */
|
|
286
220
|
export declare interface DetectMultivariateLastAnomaly200Response extends HttpResponse {
|
|
287
221
|
status: "200";
|
|
288
|
-
body:
|
|
222
|
+
body: MultivariateLastDetectionResultOutput;
|
|
289
223
|
}
|
|
290
224
|
|
|
291
225
|
export declare interface DetectMultivariateLastAnomalyBodyParam {
|
|
292
|
-
/** Request
|
|
293
|
-
body:
|
|
226
|
+
/** Request of last detection. */
|
|
227
|
+
body: MultivariateLastDetectionOptions;
|
|
294
228
|
}
|
|
295
229
|
|
|
296
230
|
export declare interface DetectMultivariateLastAnomalyDefaultHeaders {
|
|
297
|
-
/** Error code */
|
|
231
|
+
/** Error code. */
|
|
298
232
|
"x-ms-error-code"?: string;
|
|
299
233
|
}
|
|
300
234
|
|
|
301
|
-
/** Submit multivariate anomaly detection task with the modelId of trained model and inference data, and the inference data should be put into request body in a JSON format. The request will complete synchronously and return the detection immediately in the response body. */
|
|
302
235
|
export declare interface DetectMultivariateLastAnomalyDefaultResponse extends HttpResponse {
|
|
303
236
|
status: string;
|
|
304
237
|
body: ErrorResponseOutput;
|
|
305
238
|
headers: RawHttpHeaders & DetectMultivariateLastAnomalyDefaultHeaders;
|
|
306
239
|
}
|
|
307
240
|
|
|
308
|
-
export declare
|
|
309
|
-
/** Request content type */
|
|
310
|
-
contentType?: "application/json";
|
|
311
|
-
}
|
|
312
|
-
|
|
313
|
-
export declare type DetectMultivariateLastAnomalyParameters = DetectMultivariateLastAnomalyMediaTypesParam & DetectMultivariateLastAnomalyBodyParam & RequestParameters;
|
|
314
|
-
|
|
315
|
-
/** The request of entire or last anomaly detection. */
|
|
316
|
-
export declare interface DetectRequest {
|
|
317
|
-
/** Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned. */
|
|
318
|
-
series: Array<TimeSeriesPoint>;
|
|
319
|
-
/** Optional argument, can be one of yearly, monthly, weekly, daily, hourly, minutely, secondly, microsecond or none. If granularity is not present, it will be none by default. If granularity is none, the timestamp property in time series point can be absent. */
|
|
320
|
-
granularity?: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none";
|
|
321
|
-
/** Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as {"granularity":"minutely", "customInterval":5}. */
|
|
322
|
-
customInterval?: number;
|
|
323
|
-
/** Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. */
|
|
324
|
-
period?: number;
|
|
325
|
-
/** Optional argument, advanced model parameter, max anomaly ratio in a time series. */
|
|
326
|
-
maxAnomalyRatio?: number;
|
|
327
|
-
/** Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted. */
|
|
328
|
-
sensitivity?: number;
|
|
329
|
-
/** Used to specify how to deal with missing values in the input series, it's used when granularity is not "none". */
|
|
330
|
-
imputeMode?: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill";
|
|
331
|
-
/** Used to specify the value to fill, it's used when granularity is not "none" and imputeMode is "fixed". */
|
|
332
|
-
imputeFixedValue?: number;
|
|
333
|
-
}
|
|
241
|
+
export declare type DetectMultivariateLastAnomalyParameters = DetectMultivariateLastAnomalyBodyParam & RequestParameters;
|
|
334
242
|
|
|
335
243
|
export declare interface DetectUnivariateChangePoint {
|
|
336
244
|
/** Evaluate change point score of every series point */
|
|
337
245
|
post(options: DetectUnivariateChangePointParameters): StreamableMethod<DetectUnivariateChangePoint200Response | DetectUnivariateChangePointDefaultResponse>;
|
|
338
246
|
}
|
|
339
247
|
|
|
340
|
-
/**
|
|
248
|
+
/** The request has succeeded. */
|
|
341
249
|
export declare interface DetectUnivariateChangePoint200Response extends HttpResponse {
|
|
342
250
|
status: "200";
|
|
343
|
-
body:
|
|
251
|
+
body: UnivariateChangePointDetectionResultOutput;
|
|
344
252
|
}
|
|
345
253
|
|
|
346
254
|
export declare interface DetectUnivariateChangePointBodyParam {
|
|
347
|
-
/**
|
|
348
|
-
body:
|
|
255
|
+
/** Method of univariate anomaly detection. */
|
|
256
|
+
body: UnivariateChangePointDetectionOptions;
|
|
349
257
|
}
|
|
350
258
|
|
|
351
259
|
export declare interface DetectUnivariateChangePointDefaultHeaders {
|
|
352
|
-
/**
|
|
260
|
+
/** Error code. */
|
|
353
261
|
"x-ms-error-code"?: string;
|
|
354
262
|
}
|
|
355
263
|
|
|
356
|
-
/** Evaluate change point score of every series point */
|
|
357
264
|
export declare interface DetectUnivariateChangePointDefaultResponse extends HttpResponse {
|
|
358
265
|
status: string;
|
|
359
266
|
body: AnomalyDetectorErrorOutput;
|
|
360
267
|
headers: RawHttpHeaders & DetectUnivariateChangePointDefaultHeaders;
|
|
361
268
|
}
|
|
362
269
|
|
|
363
|
-
export declare
|
|
364
|
-
/** Request content type */
|
|
365
|
-
contentType?: "application/json";
|
|
366
|
-
}
|
|
367
|
-
|
|
368
|
-
export declare type DetectUnivariateChangePointParameters = DetectUnivariateChangePointMediaTypesParam & DetectUnivariateChangePointBodyParam & RequestParameters;
|
|
270
|
+
export declare type DetectUnivariateChangePointParameters = DetectUnivariateChangePointBodyParam & RequestParameters;
|
|
369
271
|
|
|
370
272
|
export declare interface DetectUnivariateEntireSeries {
|
|
371
|
-
/**
|
|
273
|
+
/**
|
|
274
|
+
* This operation generates a model with an entire series, each point is detected
|
|
275
|
+
* with the same model. With this method, points before and after a certain point
|
|
276
|
+
* are used to determine whether it is an anomaly. The entire detection can give
|
|
277
|
+
* user an overall status of the time series.
|
|
278
|
+
*/
|
|
372
279
|
post(options: DetectUnivariateEntireSeriesParameters): StreamableMethod<DetectUnivariateEntireSeries200Response | DetectUnivariateEntireSeriesDefaultResponse>;
|
|
373
280
|
}
|
|
374
281
|
|
|
375
|
-
/**
|
|
282
|
+
/** The request has succeeded. */
|
|
376
283
|
export declare interface DetectUnivariateEntireSeries200Response extends HttpResponse {
|
|
377
284
|
status: "200";
|
|
378
|
-
body:
|
|
285
|
+
body: UnivariateEntireDetectionResultOutput;
|
|
379
286
|
}
|
|
380
287
|
|
|
381
288
|
export declare interface DetectUnivariateEntireSeriesBodyParam {
|
|
382
|
-
/**
|
|
383
|
-
body:
|
|
289
|
+
/** Method of univariate anomaly detection. */
|
|
290
|
+
body: UnivariateDetectionOptions;
|
|
384
291
|
}
|
|
385
292
|
|
|
386
293
|
export declare interface DetectUnivariateEntireSeriesDefaultHeaders {
|
|
387
|
-
/**
|
|
294
|
+
/** Error code. */
|
|
388
295
|
"x-ms-error-code"?: string;
|
|
389
296
|
}
|
|
390
297
|
|
|
391
|
-
/** This operation generates a model with an entire series, each point is detected with the same model. With this method, points before and after a certain point are used to determine whether it is an anomaly. The entire detection can give user an overall status of the time series. */
|
|
392
298
|
export declare interface DetectUnivariateEntireSeriesDefaultResponse extends HttpResponse {
|
|
393
299
|
status: string;
|
|
394
300
|
body: AnomalyDetectorErrorOutput;
|
|
395
301
|
headers: RawHttpHeaders & DetectUnivariateEntireSeriesDefaultHeaders;
|
|
396
302
|
}
|
|
397
303
|
|
|
398
|
-
export declare
|
|
399
|
-
/** Request content type */
|
|
400
|
-
contentType?: "application/json";
|
|
401
|
-
}
|
|
402
|
-
|
|
403
|
-
export declare type DetectUnivariateEntireSeriesParameters = DetectUnivariateEntireSeriesMediaTypesParam & DetectUnivariateEntireSeriesBodyParam & RequestParameters;
|
|
304
|
+
export declare type DetectUnivariateEntireSeriesParameters = DetectUnivariateEntireSeriesBodyParam & RequestParameters;
|
|
404
305
|
|
|
405
306
|
export declare interface DetectUnivariateLastPoint {
|
|
406
|
-
/**
|
|
307
|
+
/**
|
|
308
|
+
* This operation generates a model using the points that you sent into the API,
|
|
309
|
+
* and based on all data to determine whether the last point is anomalous.
|
|
310
|
+
*/
|
|
407
311
|
post(options: DetectUnivariateLastPointParameters): StreamableMethod<DetectUnivariateLastPoint200Response | DetectUnivariateLastPointDefaultResponse>;
|
|
408
312
|
}
|
|
409
313
|
|
|
410
|
-
/**
|
|
314
|
+
/** The request has succeeded. */
|
|
411
315
|
export declare interface DetectUnivariateLastPoint200Response extends HttpResponse {
|
|
412
316
|
status: "200";
|
|
413
|
-
body:
|
|
317
|
+
body: UnivariateLastDetectionResultOutput;
|
|
414
318
|
}
|
|
415
319
|
|
|
416
320
|
export declare interface DetectUnivariateLastPointBodyParam {
|
|
417
|
-
/**
|
|
418
|
-
body:
|
|
321
|
+
/** Method of univariate anomaly detection. */
|
|
322
|
+
body: UnivariateDetectionOptions;
|
|
419
323
|
}
|
|
420
324
|
|
|
421
325
|
export declare interface DetectUnivariateLastPointDefaultHeaders {
|
|
422
|
-
/**
|
|
326
|
+
/** Error code. */
|
|
423
327
|
"x-ms-error-code"?: string;
|
|
424
328
|
}
|
|
425
329
|
|
|
426
|
-
/** This operation generates a model using the points that you sent into the API, and based on all data to determine whether the last point is anomalous. */
|
|
427
330
|
export declare interface DetectUnivariateLastPointDefaultResponse extends HttpResponse {
|
|
428
331
|
status: string;
|
|
429
332
|
body: AnomalyDetectorErrorOutput;
|
|
430
333
|
headers: RawHttpHeaders & DetectUnivariateLastPointDefaultHeaders;
|
|
431
334
|
}
|
|
432
335
|
|
|
433
|
-
export declare
|
|
434
|
-
/** Request content type */
|
|
435
|
-
contentType?: "application/json";
|
|
436
|
-
}
|
|
437
|
-
|
|
438
|
-
export declare type DetectUnivariateLastPointParameters = DetectUnivariateLastPointMediaTypesParam & DetectUnivariateLastPointBodyParam & RequestParameters;
|
|
336
|
+
export declare type DetectUnivariateLastPointParameters = DetectUnivariateLastPointBodyParam & RequestParameters;
|
|
439
337
|
|
|
440
338
|
/** Diagnostics information to help inspect the states of model or variable. */
|
|
441
339
|
export declare interface DiagnosticsInfo {
|
|
340
|
+
/** Model status. */
|
|
442
341
|
modelState?: ModelState;
|
|
342
|
+
/** Variable Status. */
|
|
443
343
|
variableStates?: Array<VariableState>;
|
|
444
344
|
}
|
|
445
345
|
|
|
446
346
|
/** Diagnostics information to help inspect the states of model or variable. */
|
|
447
347
|
export declare interface DiagnosticsInfoOutput {
|
|
348
|
+
/** Model status. */
|
|
448
349
|
modelState?: ModelStateOutput;
|
|
350
|
+
/** Variable Status. */
|
|
449
351
|
variableStates?: Array<VariableStateOutput>;
|
|
450
352
|
}
|
|
451
353
|
|
|
452
|
-
/**
|
|
453
|
-
export declare interface EntireDetectResponseOutput {
|
|
454
|
-
/** Frequency extracted from the series, zero means no recurrent pattern has been found. */
|
|
455
|
-
period: number;
|
|
456
|
-
/** ExpectedValues contain expected value for each input point. The index of the array is consistent with the input series. */
|
|
457
|
-
expectedValues: Array<number>;
|
|
458
|
-
/** UpperMargins contain upper margin of each input point. UpperMargin is used to calculate upperBoundary, which equals to expectedValue + (100 - marginScale)*upperMargin. Anomalies in response can be filtered by upperBoundary and lowerBoundary. By adjusting marginScale value, less significant anomalies can be filtered in client side. The index of the array is consistent with the input series. */
|
|
459
|
-
upperMargins: Array<number>;
|
|
460
|
-
/** LowerMargins contain lower margin of each input point. LowerMargin is used to calculate lowerBoundary, which equals to expectedValue - (100 - marginScale)*lowerMargin. Points between the boundary can be marked as normal ones in client side. The index of the array is consistent with the input series. */
|
|
461
|
-
lowerMargins: Array<number>;
|
|
462
|
-
/** IsAnomaly contains anomaly properties for each input point. True means an anomaly either negative or positive has been detected. The index of the array is consistent with the input series. */
|
|
463
|
-
isAnomaly: Array<boolean>;
|
|
464
|
-
/** IsNegativeAnomaly contains anomaly status in negative direction for each input point. True means a negative anomaly has been detected. A negative anomaly means the point is detected as an anomaly and its real value is smaller than the expected one. The index of the array is consistent with the input series. */
|
|
465
|
-
isNegativeAnomaly: Array<boolean>;
|
|
466
|
-
/** IsPositiveAnomaly contain anomaly status in positive direction for each input point. True means a positive anomaly has been detected. A positive anomaly means the point is detected as an anomaly and its real value is larger than the expected one. The index of the array is consistent with the input series. */
|
|
467
|
-
isPositiveAnomaly: Array<boolean>;
|
|
468
|
-
/** The severity score for each input point. The larger the value is, the more sever the anomaly is. For normal points, the "severity" is always 0. */
|
|
469
|
-
severity?: Array<number>;
|
|
470
|
-
}
|
|
471
|
-
|
|
354
|
+
/** ErrorResponse contains code and message that shows the error information. */
|
|
472
355
|
export declare interface ErrorResponse {
|
|
473
356
|
/** The error code. */
|
|
474
357
|
code: string;
|
|
@@ -476,6 +359,7 @@ export declare interface ErrorResponse {
|
|
|
476
359
|
message: string;
|
|
477
360
|
}
|
|
478
361
|
|
|
362
|
+
/** ErrorResponse contains code and message that shows the error information. */
|
|
479
363
|
export declare interface ErrorResponseOutput {
|
|
480
364
|
/** The error code. */
|
|
481
365
|
code: string;
|
|
@@ -488,32 +372,25 @@ export declare interface ErrorResponseOutput {
|
|
|
488
372
|
*/
|
|
489
373
|
export declare type GetArrayType<T> = T extends Array<infer TData> ? TData : never;
|
|
490
374
|
|
|
491
|
-
/**
|
|
492
|
-
* Helper function that builds a Poller object to help polling a long running operation.
|
|
493
|
-
* @param client - Client to use for sending the request to get additional pages.
|
|
494
|
-
* @param initialResponse - The initial response.
|
|
495
|
-
* @param options - Options to set a resume state or custom polling interval.
|
|
496
|
-
* @returns - A poller object to poll for operation state updates and eventually get the final response.
|
|
497
|
-
*/
|
|
498
|
-
export declare function getLongRunningPoller<TResult extends HttpResponse>(client: Client, initialResponse: TResult, options?: LroEngineOptions<TResult, PollOperationState<TResult>>): PollerLike<PollOperationState<TResult>, TResult>;
|
|
499
|
-
|
|
500
375
|
export declare interface GetMultivariateBatchDetectionResult {
|
|
501
|
-
/**
|
|
376
|
+
/**
|
|
377
|
+
* For asynchronous inference, get multivariate anomaly detection result based on
|
|
378
|
+
* resultId returned by the BatchDetectAnomaly api.
|
|
379
|
+
*/
|
|
502
380
|
get(options?: GetMultivariateBatchDetectionResultParameters): StreamableMethod<GetMultivariateBatchDetectionResult200Response | GetMultivariateBatchDetectionResultDefaultResponse>;
|
|
503
381
|
}
|
|
504
382
|
|
|
505
|
-
/**
|
|
383
|
+
/** The request has succeeded. */
|
|
506
384
|
export declare interface GetMultivariateBatchDetectionResult200Response extends HttpResponse {
|
|
507
385
|
status: "200";
|
|
508
|
-
body:
|
|
386
|
+
body: MultivariateDetectionResultOutput;
|
|
509
387
|
}
|
|
510
388
|
|
|
511
389
|
export declare interface GetMultivariateBatchDetectionResultDefaultHeaders {
|
|
512
|
-
/** Error code */
|
|
390
|
+
/** Error code. */
|
|
513
391
|
"x-ms-error-code"?: string;
|
|
514
392
|
}
|
|
515
393
|
|
|
516
|
-
/** For asynchronous inference, get multivariate anomaly detection result based on resultId returned by the BatchDetectAnomaly api. */
|
|
517
394
|
export declare interface GetMultivariateBatchDetectionResultDefaultResponse extends HttpResponse {
|
|
518
395
|
status: string;
|
|
519
396
|
body: ErrorResponseOutput;
|
|
@@ -522,18 +399,17 @@ export declare interface GetMultivariateBatchDetectionResultDefaultResponse exte
|
|
|
522
399
|
|
|
523
400
|
export declare type GetMultivariateBatchDetectionResultParameters = RequestParameters;
|
|
524
401
|
|
|
525
|
-
/**
|
|
402
|
+
/** The request has succeeded. */
|
|
526
403
|
export declare interface GetMultivariateModel200Response extends HttpResponse {
|
|
527
404
|
status: "200";
|
|
528
|
-
body:
|
|
405
|
+
body: AnomalyDetectionModelOutput;
|
|
529
406
|
}
|
|
530
407
|
|
|
531
408
|
export declare interface GetMultivariateModelDefaultHeaders {
|
|
532
|
-
/** Error code */
|
|
409
|
+
/** Error code. */
|
|
533
410
|
"x-ms-error-code"?: string;
|
|
534
411
|
}
|
|
535
412
|
|
|
536
|
-
/** Get detailed information of multivariate model, including the training status and variables used in the model. */
|
|
537
413
|
export declare interface GetMultivariateModelDefaultResponse extends HttpResponse {
|
|
538
414
|
status: string;
|
|
539
415
|
body: ErrorResponseOutput;
|
|
@@ -558,7 +434,7 @@ export declare function isUnexpected(response: DetectUnivariateChangePoint200Res
|
|
|
558
434
|
|
|
559
435
|
export declare function isUnexpected(response: GetMultivariateBatchDetectionResult200Response | GetMultivariateBatchDetectionResultDefaultResponse): response is GetMultivariateBatchDetectionResultDefaultResponse;
|
|
560
436
|
|
|
561
|
-
export declare function isUnexpected(response:
|
|
437
|
+
export declare function isUnexpected(response: TrainMultivariateModel201Response | TrainMultivariateModelDefaultResponse): response is TrainMultivariateModelDefaultResponse;
|
|
562
438
|
|
|
563
439
|
export declare function isUnexpected(response: ListMultivariateModels200Response | ListMultivariateModelsDefaultResponse): response is ListMultivariateModelsDefaultResponse;
|
|
564
440
|
|
|
@@ -570,52 +446,17 @@ export declare function isUnexpected(response: DetectMultivariateBatchAnomaly202
|
|
|
570
446
|
|
|
571
447
|
export declare function isUnexpected(response: DetectMultivariateLastAnomaly200Response | DetectMultivariateLastAnomalyDefaultResponse): response is DetectMultivariateLastAnomalyDefaultResponse;
|
|
572
448
|
|
|
573
|
-
|
|
574
|
-
/** This contains the inference data, including the name, timestamps(ISO 8601) and values of variables. */
|
|
575
|
-
variables: Array<VariableValues>;
|
|
576
|
-
/** An optional field, which is used to specify the number of top contributed variables for one anomalous timestamp in the response. The default number is 10. */
|
|
577
|
-
topContributorCount: number;
|
|
578
|
-
}
|
|
579
|
-
|
|
580
|
-
export declare interface LastDetectionResultOutput {
|
|
581
|
-
variableStates?: Array<VariableStateOutput>;
|
|
582
|
-
results?: Array<AnomalyStateOutput>;
|
|
583
|
-
}
|
|
584
|
-
|
|
585
|
-
/** The response of last anomaly detection. */
|
|
586
|
-
export declare interface LastDetectResponseOutput {
|
|
587
|
-
/** Frequency extracted from the series, zero means no recurrent pattern has been found. */
|
|
588
|
-
period: number;
|
|
589
|
-
/** Suggested input series points needed for detecting the latest point. */
|
|
590
|
-
suggestedWindow: number;
|
|
591
|
-
/** Expected value of the latest point. */
|
|
592
|
-
expectedValue: number;
|
|
593
|
-
/** Upper margin of the latest point. UpperMargin is used to calculate upperBoundary, which equals to expectedValue + (100 - marginScale)*upperMargin. If the value of latest point is between upperBoundary and lowerBoundary, it should be treated as normal value. By adjusting marginScale value, anomaly status of latest point can be changed. */
|
|
594
|
-
upperMargin: number;
|
|
595
|
-
/** Lower margin of the latest point. LowerMargin is used to calculate lowerBoundary, which equals to expectedValue - (100 - marginScale)*lowerMargin. */
|
|
596
|
-
lowerMargin: number;
|
|
597
|
-
/** Anomaly status of the latest point, true means the latest point is an anomaly either in negative direction or positive direction. */
|
|
598
|
-
isAnomaly: boolean;
|
|
599
|
-
/** Anomaly status in negative direction of the latest point. True means the latest point is an anomaly and its real value is smaller than the expected one. */
|
|
600
|
-
isNegativeAnomaly: boolean;
|
|
601
|
-
/** Anomaly status in positive direction of the latest point. True means the latest point is an anomaly and its real value is larger than the expected one. */
|
|
602
|
-
isPositiveAnomaly: boolean;
|
|
603
|
-
/** The severity score for the last input point. The larger the value is, the more sever the anomaly is. For normal points, the "severity" is always 0. */
|
|
604
|
-
severity?: number;
|
|
605
|
-
}
|
|
606
|
-
|
|
607
|
-
/** List models of a resource. */
|
|
449
|
+
/** The request has succeeded. */
|
|
608
450
|
export declare interface ListMultivariateModels200Response extends HttpResponse {
|
|
609
451
|
status: "200";
|
|
610
452
|
body: ModelListOutput;
|
|
611
453
|
}
|
|
612
454
|
|
|
613
455
|
export declare interface ListMultivariateModelsDefaultHeaders {
|
|
614
|
-
/** Error code */
|
|
456
|
+
/** Error code. */
|
|
615
457
|
"x-ms-error-code"?: string;
|
|
616
458
|
}
|
|
617
459
|
|
|
618
|
-
/** List models of a resource. */
|
|
619
460
|
export declare interface ListMultivariateModelsDefaultResponse extends HttpResponse {
|
|
620
461
|
status: string;
|
|
621
462
|
body: ErrorResponseOutput;
|
|
@@ -635,50 +476,96 @@ export declare interface ListMultivariateModelsQueryParamProperties {
|
|
|
635
476
|
top?: number;
|
|
636
477
|
}
|
|
637
478
|
|
|
638
|
-
/**
|
|
479
|
+
/**
|
|
480
|
+
* Training result of a model including its status, errors and diagnostics
|
|
481
|
+
* information.
|
|
482
|
+
*/
|
|
639
483
|
export declare interface ModelInfo {
|
|
640
|
-
/**
|
|
484
|
+
/**
|
|
485
|
+
* Source link to the input data to indicate an accessible Azure storage Uri,
|
|
486
|
+
* either pointed to an Azure blob storage folder, or pointed to a CSV file in
|
|
487
|
+
* Azure blob storage based on you data schema selection.
|
|
488
|
+
*/
|
|
641
489
|
dataSource: string;
|
|
642
|
-
/**
|
|
643
|
-
|
|
644
|
-
|
|
490
|
+
/**
|
|
491
|
+
* Data schema of input data source: OneTable or MultiTable. The default
|
|
492
|
+
* DataSchema is OneTable.
|
|
493
|
+
*
|
|
494
|
+
* Possible values: OneTable, MultiTable
|
|
495
|
+
*/
|
|
496
|
+
dataSchema?: string;
|
|
497
|
+
/**
|
|
498
|
+
* A required field, indicating the start time of training data, which should be
|
|
499
|
+
* date-time of ISO 8601 format.
|
|
500
|
+
*/
|
|
645
501
|
startTime: Date | string;
|
|
646
|
-
/**
|
|
502
|
+
/**
|
|
503
|
+
* A required field, indicating the end time of training data, which should be
|
|
504
|
+
* date-time of ISO 8601 format.
|
|
505
|
+
*/
|
|
647
506
|
endTime: Date | string;
|
|
648
|
-
/**
|
|
507
|
+
/**
|
|
508
|
+
* An optional field. The display name of the model whose maximum length is 24
|
|
509
|
+
* characters.
|
|
510
|
+
*/
|
|
649
511
|
displayName?: string;
|
|
650
|
-
/**
|
|
512
|
+
/**
|
|
513
|
+
* An optional field, indicating how many previous timestamps will be used to
|
|
514
|
+
* detect whether the timestamp is anomaly or not.
|
|
515
|
+
*/
|
|
651
516
|
slidingWindow?: number;
|
|
652
517
|
/** An optional field, indicating the manner to align multiple variables. */
|
|
653
518
|
alignPolicy?: AlignPolicy;
|
|
654
519
|
/** Model status. One of CREATED, RUNNING, READY, and FAILED. */
|
|
655
520
|
status?: "CREATED" | "RUNNING" | "READY" | "FAILED";
|
|
656
|
-
/** Error messages when failed to create a model. */
|
|
657
|
-
errors?: Array<ErrorResponse>;
|
|
658
521
|
/** Diagnostics information to help inspect the states of model or variable. */
|
|
659
522
|
diagnosticsInfo?: DiagnosticsInfo;
|
|
660
523
|
}
|
|
661
524
|
|
|
662
|
-
/**
|
|
525
|
+
/**
|
|
526
|
+
* Training result of a model including its status, errors and diagnostics
|
|
527
|
+
* information.
|
|
528
|
+
*/
|
|
663
529
|
export declare interface ModelInfoOutput {
|
|
664
|
-
/**
|
|
530
|
+
/**
|
|
531
|
+
* Source link to the input data to indicate an accessible Azure storage Uri,
|
|
532
|
+
* either pointed to an Azure blob storage folder, or pointed to a CSV file in
|
|
533
|
+
* Azure blob storage based on you data schema selection.
|
|
534
|
+
*/
|
|
665
535
|
dataSource: string;
|
|
666
|
-
/**
|
|
667
|
-
|
|
668
|
-
|
|
536
|
+
/**
|
|
537
|
+
* Data schema of input data source: OneTable or MultiTable. The default
|
|
538
|
+
* DataSchema is OneTable.
|
|
539
|
+
*
|
|
540
|
+
* Possible values: OneTable, MultiTable
|
|
541
|
+
*/
|
|
542
|
+
dataSchema?: string;
|
|
543
|
+
/**
|
|
544
|
+
* A required field, indicating the start time of training data, which should be
|
|
545
|
+
* date-time of ISO 8601 format.
|
|
546
|
+
*/
|
|
669
547
|
startTime: string;
|
|
670
|
-
/**
|
|
548
|
+
/**
|
|
549
|
+
* A required field, indicating the end time of training data, which should be
|
|
550
|
+
* date-time of ISO 8601 format.
|
|
551
|
+
*/
|
|
671
552
|
endTime: string;
|
|
672
|
-
/**
|
|
553
|
+
/**
|
|
554
|
+
* An optional field. The display name of the model whose maximum length is 24
|
|
555
|
+
* characters.
|
|
556
|
+
*/
|
|
673
557
|
displayName?: string;
|
|
674
|
-
/**
|
|
558
|
+
/**
|
|
559
|
+
* An optional field, indicating how many previous timestamps will be used to
|
|
560
|
+
* detect whether the timestamp is anomaly or not.
|
|
561
|
+
*/
|
|
675
562
|
slidingWindow?: number;
|
|
676
563
|
/** An optional field, indicating the manner to align multiple variables. */
|
|
677
564
|
alignPolicy?: AlignPolicyOutput;
|
|
678
565
|
/** Model status. One of CREATED, RUNNING, READY, and FAILED. */
|
|
679
566
|
status?: "CREATED" | "RUNNING" | "READY" | "FAILED";
|
|
680
567
|
/** Error messages when failed to create a model. */
|
|
681
|
-
errors?: Array<ErrorResponseOutput>;
|
|
568
|
+
readonly errors?: Array<ErrorResponseOutput>;
|
|
682
569
|
/** Diagnostics information to help inspect the states of model or variable. */
|
|
683
570
|
diagnosticsInfo?: DiagnosticsInfoOutput;
|
|
684
571
|
}
|
|
@@ -686,7 +573,7 @@ export declare interface ModelInfoOutput {
|
|
|
686
573
|
/** Response of listing models. */
|
|
687
574
|
export declare interface ModelListOutput {
|
|
688
575
|
/** List of models. */
|
|
689
|
-
models: Array<
|
|
576
|
+
models: Array<AnomalyDetectionModelOutput>;
|
|
690
577
|
/** Number of trained multivariate models. */
|
|
691
578
|
currentCount: number;
|
|
692
579
|
/** Maximum number of models that can be trained for this Anomaly Detector resource. */
|
|
@@ -695,42 +582,154 @@ export declare interface ModelListOutput {
|
|
|
695
582
|
nextLink?: string;
|
|
696
583
|
}
|
|
697
584
|
|
|
698
|
-
/**
|
|
699
|
-
export declare interface
|
|
585
|
+
/** Model status. */
|
|
586
|
+
export declare interface ModelState {
|
|
700
587
|
/**
|
|
701
|
-
*
|
|
702
|
-
*
|
|
703
|
-
* Value may contain a UUID
|
|
588
|
+
* This indicates the number of passes of the entire training dataset the
|
|
589
|
+
* algorithm has completed.
|
|
704
590
|
*/
|
|
705
|
-
|
|
706
|
-
/**
|
|
707
|
-
|
|
708
|
-
|
|
709
|
-
|
|
710
|
-
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
|
|
714
|
-
|
|
715
|
-
|
|
716
|
-
epochIds?: Array<number>;
|
|
717
|
-
/** List of metrics used to assess how the model fits the training data for each epoch. */
|
|
718
|
-
trainLosses?: Array<number>;
|
|
719
|
-
/** List of metrics used to assess how the model fits the validation set for each epoch. */
|
|
720
|
-
validationLosses?: Array<number>;
|
|
591
|
+
epochIds?: number[];
|
|
592
|
+
/**
|
|
593
|
+
* List of metrics used to assess how the model fits the training data for each
|
|
594
|
+
* epoch.
|
|
595
|
+
*/
|
|
596
|
+
trainLosses?: number[];
|
|
597
|
+
/**
|
|
598
|
+
* List of metrics used to assess how the model fits the validation set for each
|
|
599
|
+
* epoch.
|
|
600
|
+
*/
|
|
601
|
+
validationLosses?: number[];
|
|
721
602
|
/** Latency for each epoch. */
|
|
722
|
-
latenciesInSeconds?:
|
|
603
|
+
latenciesInSeconds?: number[];
|
|
723
604
|
}
|
|
724
605
|
|
|
606
|
+
/** Model status. */
|
|
725
607
|
export declare interface ModelStateOutput {
|
|
726
|
-
/**
|
|
727
|
-
|
|
728
|
-
|
|
729
|
-
|
|
730
|
-
|
|
731
|
-
|
|
608
|
+
/**
|
|
609
|
+
* This indicates the number of passes of the entire training dataset the
|
|
610
|
+
* algorithm has completed.
|
|
611
|
+
*/
|
|
612
|
+
epochIds?: number[];
|
|
613
|
+
/**
|
|
614
|
+
* List of metrics used to assess how the model fits the training data for each
|
|
615
|
+
* epoch.
|
|
616
|
+
*/
|
|
617
|
+
trainLosses?: number[];
|
|
618
|
+
/**
|
|
619
|
+
* List of metrics used to assess how the model fits the validation set for each
|
|
620
|
+
* epoch.
|
|
621
|
+
*/
|
|
622
|
+
validationLosses?: number[];
|
|
732
623
|
/** Latency for each epoch. */
|
|
733
|
-
latenciesInSeconds?:
|
|
624
|
+
latenciesInSeconds?: number[];
|
|
625
|
+
}
|
|
626
|
+
|
|
627
|
+
/**
|
|
628
|
+
* Detection request for batch inference. This is an asynchronous inference which
|
|
629
|
+
* will need another API to get detection results.
|
|
630
|
+
*/
|
|
631
|
+
export declare interface MultivariateBatchDetectionOptions {
|
|
632
|
+
/**
|
|
633
|
+
* Source link to the input data to indicate an accessible Azure storage Uri,
|
|
634
|
+
* either pointed to an Azure blob storage folder, or pointed to a CSV file in
|
|
635
|
+
* Azure blob storage based on you data schema selection. The data schema should
|
|
636
|
+
* be exactly the same with those used in the training phase.
|
|
637
|
+
*/
|
|
638
|
+
dataSource: string;
|
|
639
|
+
/**
|
|
640
|
+
* An optional field, which is used to specify the number of top contributed
|
|
641
|
+
* variables for one anomalous timestamp in the response. The default number is
|
|
642
|
+
* 10.
|
|
643
|
+
*/
|
|
644
|
+
topContributorCount: number;
|
|
645
|
+
/**
|
|
646
|
+
* A required field, indicating the start time of data for detection, which should
|
|
647
|
+
* be date-time of ISO 8601 format.
|
|
648
|
+
*/
|
|
649
|
+
startTime: Date | string;
|
|
650
|
+
/**
|
|
651
|
+
* A required field, indicating the end time of data for detection, which should
|
|
652
|
+
* be date-time of ISO 8601 format.
|
|
653
|
+
*/
|
|
654
|
+
endTime: Date | string;
|
|
655
|
+
}
|
|
656
|
+
|
|
657
|
+
/**
|
|
658
|
+
* Detection request for batch inference. This is an asynchronous inference which
|
|
659
|
+
* will need another API to get detection results.
|
|
660
|
+
*/
|
|
661
|
+
export declare interface MultivariateBatchDetectionOptionsOutput {
|
|
662
|
+
/**
|
|
663
|
+
* Source link to the input data to indicate an accessible Azure storage Uri,
|
|
664
|
+
* either pointed to an Azure blob storage folder, or pointed to a CSV file in
|
|
665
|
+
* Azure blob storage based on you data schema selection. The data schema should
|
|
666
|
+
* be exactly the same with those used in the training phase.
|
|
667
|
+
*/
|
|
668
|
+
dataSource: string;
|
|
669
|
+
/**
|
|
670
|
+
* An optional field, which is used to specify the number of top contributed
|
|
671
|
+
* variables for one anomalous timestamp in the response. The default number is
|
|
672
|
+
* 10.
|
|
673
|
+
*/
|
|
674
|
+
topContributorCount: number;
|
|
675
|
+
/**
|
|
676
|
+
* A required field, indicating the start time of data for detection, which should
|
|
677
|
+
* be date-time of ISO 8601 format.
|
|
678
|
+
*/
|
|
679
|
+
startTime: string;
|
|
680
|
+
/**
|
|
681
|
+
* A required field, indicating the end time of data for detection, which should
|
|
682
|
+
* be date-time of ISO 8601 format.
|
|
683
|
+
*/
|
|
684
|
+
endTime: string;
|
|
685
|
+
}
|
|
686
|
+
|
|
687
|
+
/** Multivariate anomaly detection status. */
|
|
688
|
+
export declare interface MultivariateBatchDetectionResultSummaryOutput {
|
|
689
|
+
/** Status of detection results. One of CREATED, RUNNING, READY, and FAILED. */
|
|
690
|
+
status: "CREATED" | "RUNNING" | "READY" | "FAILED";
|
|
691
|
+
/** Error message when detection is failed. */
|
|
692
|
+
errors?: Array<ErrorResponseOutput>;
|
|
693
|
+
/** Variable Status. */
|
|
694
|
+
variableStates?: Array<VariableStateOutput>;
|
|
695
|
+
/**
|
|
696
|
+
* Detection request for batch inference. This is an asynchronous inference which
|
|
697
|
+
* will need another API to get detection results.
|
|
698
|
+
*/
|
|
699
|
+
setupInfo: MultivariateBatchDetectionOptionsOutput;
|
|
700
|
+
}
|
|
701
|
+
|
|
702
|
+
/** Detection results for the given resultId. */
|
|
703
|
+
export declare interface MultivariateDetectionResultOutput {
|
|
704
|
+
/** Result identifier, which is used to fetch the results of an inference call. */
|
|
705
|
+
resultId: string;
|
|
706
|
+
/** Multivariate anomaly detection status. */
|
|
707
|
+
summary: MultivariateBatchDetectionResultSummaryOutput;
|
|
708
|
+
/** Detection result for each timestamp. */
|
|
709
|
+
results: Array<AnomalyStateOutput>;
|
|
710
|
+
}
|
|
711
|
+
|
|
712
|
+
/** Request of last detection. */
|
|
713
|
+
export declare interface MultivariateLastDetectionOptions {
|
|
714
|
+
/**
|
|
715
|
+
* This contains the inference data, including the name, timestamps(ISO 8601) and
|
|
716
|
+
* values of variables.
|
|
717
|
+
*/
|
|
718
|
+
variables: Array<VariableValues>;
|
|
719
|
+
/**
|
|
720
|
+
* An optional field, which is used to specify the number of top contributed
|
|
721
|
+
* variables for one anomalous timestamp in the response. The default number is
|
|
722
|
+
* 10.
|
|
723
|
+
*/
|
|
724
|
+
topContributorCount: number;
|
|
725
|
+
}
|
|
726
|
+
|
|
727
|
+
/** Results of last detection. */
|
|
728
|
+
export declare interface MultivariateLastDetectionResultOutput {
|
|
729
|
+
/** Variable Status. */
|
|
730
|
+
variableStates?: Array<VariableStateOutput>;
|
|
731
|
+
/** Anomaly status and information. */
|
|
732
|
+
results?: Array<AnomalyStateOutput>;
|
|
734
733
|
}
|
|
735
734
|
|
|
736
735
|
/**
|
|
@@ -779,7 +778,7 @@ export declare interface Routes {
|
|
|
779
778
|
/** Resource for '/multivariate/detect-batch/\{resultId\}' has methods for the following verbs: get */
|
|
780
779
|
(path: "/multivariate/detect-batch/{resultId}", resultId: string): GetMultivariateBatchDetectionResult;
|
|
781
780
|
/** Resource for '/multivariate/models' has methods for the following verbs: post, get */
|
|
782
|
-
(path: "/multivariate/models"):
|
|
781
|
+
(path: "/multivariate/models"): TrainMultivariateModel;
|
|
783
782
|
/** Resource for '/multivariate/models/\{modelId\}' has methods for the following verbs: delete, get */
|
|
784
783
|
(path: "/multivariate/models/{modelId}", modelId: string): DeleteMultivariateModel;
|
|
785
784
|
/** Resource for '/multivariate/models/\{modelId\}:detect-batch' has methods for the following verbs: post */
|
|
@@ -796,6 +795,257 @@ export declare interface TimeSeriesPoint {
|
|
|
796
795
|
value: number;
|
|
797
796
|
}
|
|
798
797
|
|
|
798
|
+
export declare interface TrainMultivariateModel {
|
|
799
|
+
/**
|
|
800
|
+
* Create and train a multivariate anomaly detection model. The request must
|
|
801
|
+
* include a source parameter to indicate an externally accessible Azure blob
|
|
802
|
+
* storage URI.There are two types of data input: An URI pointed to an Azure blob
|
|
803
|
+
* storage folder which contains multiple CSV files, and each CSV file contains
|
|
804
|
+
* two columns, timestamp and variable. Another type of input is an URI pointed to
|
|
805
|
+
* a CSV file in Azure blob storage, which contains all the variables and a
|
|
806
|
+
* timestamp column.
|
|
807
|
+
*/
|
|
808
|
+
post(options: TrainMultivariateModelParameters): StreamableMethod<TrainMultivariateModel201Response | TrainMultivariateModelDefaultResponse>;
|
|
809
|
+
/** List models of a resource. */
|
|
810
|
+
get(options?: ListMultivariateModelsParameters): StreamableMethod<ListMultivariateModels200Response | ListMultivariateModelsDefaultResponse>;
|
|
811
|
+
}
|
|
812
|
+
|
|
813
|
+
export declare interface TrainMultivariateModel201Headers {
|
|
814
|
+
/** Location and ID of the model. */
|
|
815
|
+
location: string;
|
|
816
|
+
}
|
|
817
|
+
|
|
818
|
+
/** The request has succeeded and a new resource has been created as a result. */
|
|
819
|
+
export declare interface TrainMultivariateModel201Response extends HttpResponse {
|
|
820
|
+
status: "201";
|
|
821
|
+
body: AnomalyDetectionModelOutput;
|
|
822
|
+
headers: RawHttpHeaders & TrainMultivariateModel201Headers;
|
|
823
|
+
}
|
|
824
|
+
|
|
825
|
+
export declare interface TrainMultivariateModelBodyParam {
|
|
826
|
+
/** Model information. */
|
|
827
|
+
body: ModelInfo;
|
|
828
|
+
}
|
|
829
|
+
|
|
830
|
+
export declare interface TrainMultivariateModelDefaultHeaders {
|
|
831
|
+
/** Error code. */
|
|
832
|
+
"x-ms-error-code"?: string;
|
|
833
|
+
}
|
|
834
|
+
|
|
835
|
+
export declare interface TrainMultivariateModelDefaultResponse extends HttpResponse {
|
|
836
|
+
status: string;
|
|
837
|
+
body: ErrorResponseOutput;
|
|
838
|
+
headers: RawHttpHeaders & TrainMultivariateModelDefaultHeaders;
|
|
839
|
+
}
|
|
840
|
+
|
|
841
|
+
export declare type TrainMultivariateModelParameters = TrainMultivariateModelBodyParam & RequestParameters;
|
|
842
|
+
|
|
843
|
+
/** The request of change point detection. */
|
|
844
|
+
export declare interface UnivariateChangePointDetectionOptions {
|
|
845
|
+
/**
|
|
846
|
+
* Time series data points. Points should be sorted by timestamp in ascending
|
|
847
|
+
* order to match the change point detection result.
|
|
848
|
+
*/
|
|
849
|
+
series: Array<TimeSeriesPoint>;
|
|
850
|
+
/**
|
|
851
|
+
* Can only be one of yearly, monthly, weekly, daily, hourly, minutely or
|
|
852
|
+
* secondly. Granularity is used for verify whether input series is valid.
|
|
853
|
+
*/
|
|
854
|
+
granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none";
|
|
855
|
+
/**
|
|
856
|
+
* Custom Interval is used to set non-standard time interval, for example, if the
|
|
857
|
+
* series is 5 minutes, request can be set as {"granularity":"minutely",
|
|
858
|
+
* "customInterval":5}.
|
|
859
|
+
*/
|
|
860
|
+
customInterval?: number;
|
|
861
|
+
/**
|
|
862
|
+
* Optional argument, periodic value of a time series. If the value is null or
|
|
863
|
+
* does not present, the API will determine the period automatically.
|
|
864
|
+
*/
|
|
865
|
+
period?: number;
|
|
866
|
+
/**
|
|
867
|
+
* Optional argument, advanced model parameter, a default stableTrendWindow will
|
|
868
|
+
* be used in detection.
|
|
869
|
+
*/
|
|
870
|
+
stableTrendWindow?: number;
|
|
871
|
+
/**
|
|
872
|
+
* Optional argument, advanced model parameter, between 0.0-1.0, the lower the
|
|
873
|
+
* value is, the larger the trend error will be which means less change point will
|
|
874
|
+
* be accepted.
|
|
875
|
+
*/
|
|
876
|
+
threshold?: number;
|
|
877
|
+
}
|
|
878
|
+
|
|
879
|
+
/** The response of change point detection. */
|
|
880
|
+
export declare interface UnivariateChangePointDetectionResultOutput {
|
|
881
|
+
/**
|
|
882
|
+
* Frequency extracted from the series, zero means no recurrent pattern has been
|
|
883
|
+
* found.
|
|
884
|
+
*/
|
|
885
|
+
readonly period?: number;
|
|
886
|
+
/**
|
|
887
|
+
* isChangePoint contains change point properties for each input point. True means
|
|
888
|
+
* an anomaly either negative or positive has been detected. The index of the
|
|
889
|
+
* array is consistent with the input series.
|
|
890
|
+
*/
|
|
891
|
+
isChangePoint?: boolean[];
|
|
892
|
+
/** the change point confidence of each point */
|
|
893
|
+
confidenceScores?: number[];
|
|
894
|
+
}
|
|
895
|
+
|
|
896
|
+
/** The request of entire or last anomaly detection. */
|
|
897
|
+
export declare interface UnivariateDetectionOptions {
|
|
898
|
+
/**
|
|
899
|
+
* Time series data points. Points should be sorted by timestamp in ascending
|
|
900
|
+
* order to match the anomaly detection result. If the data is not sorted
|
|
901
|
+
* correctly or there is duplicated timestamp, the API will not work. In such
|
|
902
|
+
* case, an error message will be returned.
|
|
903
|
+
*/
|
|
904
|
+
series: Array<TimeSeriesPoint>;
|
|
905
|
+
/**
|
|
906
|
+
* Optional argument, can be one of yearly, monthly, weekly, daily, hourly,
|
|
907
|
+
* minutely, secondly, microsecond or none. If granularity is not present, it will
|
|
908
|
+
* be none by default. If granularity is none, the timestamp property in time
|
|
909
|
+
* series point can be absent.
|
|
910
|
+
*/
|
|
911
|
+
granularity?: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none";
|
|
912
|
+
/**
|
|
913
|
+
* Custom Interval is used to set non-standard time interval, for example, if the
|
|
914
|
+
* series is 5 minutes, request can be set as {"granularity":"minutely",
|
|
915
|
+
* "customInterval":5}.
|
|
916
|
+
*/
|
|
917
|
+
customInterval?: number;
|
|
918
|
+
/**
|
|
919
|
+
* Optional argument, periodic value of a time series. If the value is null or
|
|
920
|
+
* does not present, the API will determine the period automatically.
|
|
921
|
+
*/
|
|
922
|
+
period?: number;
|
|
923
|
+
/** Optional argument, advanced model parameter, max anomaly ratio in a time series. */
|
|
924
|
+
maxAnomalyRatio?: number;
|
|
925
|
+
/**
|
|
926
|
+
* Optional argument, advanced model parameter, between 0-99, the lower the value
|
|
927
|
+
* is, the larger the margin value will be which means less anomalies will be
|
|
928
|
+
* accepted.
|
|
929
|
+
*/
|
|
930
|
+
sensitivity?: number;
|
|
931
|
+
/**
|
|
932
|
+
* Used to specify how to deal with missing values in the input series, it's used
|
|
933
|
+
* when granularity is not "none".
|
|
934
|
+
*
|
|
935
|
+
* Possible values: auto, previous, linear, fixed, zero, notFill
|
|
936
|
+
*/
|
|
937
|
+
imputeMode?: string;
|
|
938
|
+
/**
|
|
939
|
+
* Used to specify the value to fill, it's used when granularity is not "none"
|
|
940
|
+
* and imputeMode is "fixed".
|
|
941
|
+
*/
|
|
942
|
+
imputeFixedValue?: number;
|
|
943
|
+
}
|
|
944
|
+
|
|
945
|
+
/** The response of entire anomaly detection. */
|
|
946
|
+
export declare interface UnivariateEntireDetectionResultOutput {
|
|
947
|
+
/**
|
|
948
|
+
* Frequency extracted from the series, zero means no recurrent pattern has been
|
|
949
|
+
* found.
|
|
950
|
+
*/
|
|
951
|
+
period: number;
|
|
952
|
+
/**
|
|
953
|
+
* ExpectedValues contain expected value for each input point. The index of the
|
|
954
|
+
* array is consistent with the input series.
|
|
955
|
+
*/
|
|
956
|
+
expectedValues: number[];
|
|
957
|
+
/**
|
|
958
|
+
* UpperMargins contain upper margin of each input point. UpperMargin is used to
|
|
959
|
+
* calculate upperBoundary, which equals to expectedValue + (100 -
|
|
960
|
+
* marginScale)*upperMargin. Anomalies in response can be filtered by
|
|
961
|
+
* upperBoundary and lowerBoundary. By adjusting marginScale value, less
|
|
962
|
+
* significant anomalies can be filtered in client side. The index of the array is
|
|
963
|
+
* consistent with the input series.
|
|
964
|
+
*/
|
|
965
|
+
upperMargins: number[];
|
|
966
|
+
/**
|
|
967
|
+
* LowerMargins contain lower margin of each input point. LowerMargin is used to
|
|
968
|
+
* calculate lowerBoundary, which equals to expectedValue - (100 -
|
|
969
|
+
* marginScale)*lowerMargin. Points between the boundary can be marked as normal
|
|
970
|
+
* ones in client side. The index of the array is consistent with the input
|
|
971
|
+
* series.
|
|
972
|
+
*/
|
|
973
|
+
lowerMargins: number[];
|
|
974
|
+
/**
|
|
975
|
+
* IsAnomaly contains anomaly properties for each input point. True means an
|
|
976
|
+
* anomaly either negative or positive has been detected. The index of the array
|
|
977
|
+
* is consistent with the input series.
|
|
978
|
+
*/
|
|
979
|
+
isAnomaly: boolean[];
|
|
980
|
+
/**
|
|
981
|
+
* IsNegativeAnomaly contains anomaly status in negative direction for each input
|
|
982
|
+
* point. True means a negative anomaly has been detected. A negative anomaly
|
|
983
|
+
* means the point is detected as an anomaly and its real value is smaller than
|
|
984
|
+
* the expected one. The index of the array is consistent with the input series.
|
|
985
|
+
*/
|
|
986
|
+
isNegativeAnomaly: boolean[];
|
|
987
|
+
/**
|
|
988
|
+
* IsPositiveAnomaly contain anomaly status in positive direction for each input
|
|
989
|
+
* point. True means a positive anomaly has been detected. A positive anomaly
|
|
990
|
+
* means the point is detected as an anomaly and its real value is larger than the
|
|
991
|
+
* expected one. The index of the array is consistent with the input series.
|
|
992
|
+
*/
|
|
993
|
+
isPositiveAnomaly: boolean[];
|
|
994
|
+
/**
|
|
995
|
+
* The severity score for each input point. The larger the value is, the more
|
|
996
|
+
* sever the anomaly is. For normal points, the "severity" is always 0.
|
|
997
|
+
*/
|
|
998
|
+
severity?: number[];
|
|
999
|
+
}
|
|
1000
|
+
|
|
1001
|
+
/** The response of last anomaly detection. */
|
|
1002
|
+
export declare interface UnivariateLastDetectionResultOutput {
|
|
1003
|
+
/**
|
|
1004
|
+
* Frequency extracted from the series, zero means no recurrent pattern has been
|
|
1005
|
+
* found.
|
|
1006
|
+
*/
|
|
1007
|
+
period: number;
|
|
1008
|
+
/** Suggested input series points needed for detecting the latest point. */
|
|
1009
|
+
suggestedWindow: number;
|
|
1010
|
+
/** Expected value of the latest point. */
|
|
1011
|
+
expectedValue: number;
|
|
1012
|
+
/**
|
|
1013
|
+
* Upper margin of the latest point. UpperMargin is used to calculate
|
|
1014
|
+
* upperBoundary, which equals to expectedValue + (100 - marginScale)*upperMargin.
|
|
1015
|
+
* If the value of latest point is between upperBoundary and lowerBoundary, it
|
|
1016
|
+
* should be treated as normal value. By adjusting marginScale value, anomaly
|
|
1017
|
+
* status of latest point can be changed.
|
|
1018
|
+
*/
|
|
1019
|
+
upperMargin: number;
|
|
1020
|
+
/**
|
|
1021
|
+
* Lower margin of the latest point. LowerMargin is used to calculate
|
|
1022
|
+
* lowerBoundary, which equals to expectedValue - (100 - marginScale)*lowerMargin.
|
|
1023
|
+
*
|
|
1024
|
+
*/
|
|
1025
|
+
lowerMargin: number;
|
|
1026
|
+
/**
|
|
1027
|
+
* Anomaly status of the latest point, true means the latest point is an anomaly
|
|
1028
|
+
* either in negative direction or positive direction.
|
|
1029
|
+
*/
|
|
1030
|
+
isAnomaly: boolean;
|
|
1031
|
+
/**
|
|
1032
|
+
* Anomaly status in negative direction of the latest point. True means the latest
|
|
1033
|
+
* point is an anomaly and its real value is smaller than the expected one.
|
|
1034
|
+
*/
|
|
1035
|
+
isNegativeAnomaly: boolean;
|
|
1036
|
+
/**
|
|
1037
|
+
* Anomaly status in positive direction of the latest point. True means the latest
|
|
1038
|
+
* point is an anomaly and its real value is larger than the expected one.
|
|
1039
|
+
*/
|
|
1040
|
+
isPositiveAnomaly: boolean;
|
|
1041
|
+
/**
|
|
1042
|
+
* The severity score for the last input point. The larger the value is, the more
|
|
1043
|
+
* sever the anomaly is. For normal points, the "severity" is always 0.
|
|
1044
|
+
*/
|
|
1045
|
+
severity?: number;
|
|
1046
|
+
}
|
|
1047
|
+
|
|
1048
|
+
/** Variable Status. */
|
|
799
1049
|
export declare interface VariableState {
|
|
800
1050
|
/** Variable name in variable states. */
|
|
801
1051
|
variable?: string;
|
|
@@ -809,6 +1059,7 @@ export declare interface VariableState {
|
|
|
809
1059
|
lastTimestamp?: Date | string;
|
|
810
1060
|
}
|
|
811
1061
|
|
|
1062
|
+
/** Variable Status. */
|
|
812
1063
|
export declare interface VariableStateOutput {
|
|
813
1064
|
/** Variable name in variable states. */
|
|
814
1065
|
variable?: string;
|
|
@@ -822,13 +1073,14 @@ export declare interface VariableStateOutput {
|
|
|
822
1073
|
lastTimestamp?: string;
|
|
823
1074
|
}
|
|
824
1075
|
|
|
1076
|
+
/** Variable values. */
|
|
825
1077
|
export declare interface VariableValues {
|
|
826
1078
|
/** Variable name of last detection request. */
|
|
827
1079
|
variable: string;
|
|
828
1080
|
/** Timestamps of last detection request */
|
|
829
|
-
timestamps:
|
|
1081
|
+
timestamps: string[];
|
|
830
1082
|
/** Values of variables. */
|
|
831
|
-
values:
|
|
1083
|
+
values: number[];
|
|
832
1084
|
}
|
|
833
1085
|
|
|
834
1086
|
export { }
|