@aztec/protocol-contracts 4.0.0-nightly.20260108 → 4.0.0-nightly.20260110
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/artifacts/AuthRegistry.json +42 -42
- package/artifacts/ContractClassRegistry.json +65 -61
- package/artifacts/ContractInstanceRegistry.json +43 -43
- package/artifacts/FeeJuice.json +51 -51
- package/artifacts/MultiCallEntrypoint.json +30 -30
- package/artifacts/Router.json +20 -20
- package/dest/protocol_contract_data.js +13 -13
- package/package.json +4 -4
- package/src/protocol_contract_data.ts +13 -13
package/artifacts/FeeJuice.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"transpiled": true,
|
|
3
|
-
"noir_version": "1.0.0-beta.18+
|
|
3
|
+
"noir_version": "1.0.0-beta.18+78a54455147d9ddbec669e78ebd107aed5245111",
|
|
4
4
|
"name": "FeeJuice",
|
|
5
5
|
"functions": [
|
|
6
6
|
{
|
|
@@ -63,7 +63,7 @@
|
|
|
63
63
|
}
|
|
64
64
|
},
|
|
65
65
|
"bytecode": "JwACBAEoAAABBIBOJwAABE4nAgMEAicCBAQAHwoAAwAEAEwcAE1NBi0ITAEtCE0CJQAAAEolAAAAmCcCAQROJwICBAA7DgACAAEsAABDADBkTnLhMaApuFBFtoGBWF0oM+hIeblwkUPh9ZPwAAAAJwBEBAMnAEUBACcARgQAJwBHAAAnAEgBAScASQQBJwBKAAEnAEsEAiYlAAAB7R4CAAMAHgIABAAeAgAFAQoiBUMGFgoGBxwKBwgABCoIBQcKIgZFBSQCAAUAAADVJwIIBAA8BggBCioHBAUkAgAFAAAA5yUAAAITLQgBBCcCBQQDAAgBBQEnAwQEAQAiBAIFLQoFBi0MSgYAIgYCBi0OAQYnAgYEBy0IAActCgQILQhLCS0IRQoACAAGACUAAAIlLQIAAC0KCAUKIgVHBAoiBEUGJAIABgAAAU4lAAAEBy8KAAUABBwKBAYGHAoGBQAcCgUEBgAqBAIFDioEBQYkAgAGAAABeiUAAAQZLQgBAicCBAQDAAgBBAEnAwIEAQAiAgIELQoEBi0MSgYAIgYCBi0OAQYnAgQEBi0IAAYtCgIHLQhLCC0IRQkACAAEACUAAAIlLQIAAC0KBwEKIgFHAgoiAkUEJAIABAAAAeElAAAEBxwKBQIAMAoAAgABJigAAAQEeE4MAAAEAyQAAAMAAAISKgEAAQXaxfXWtEoybTwEAgEmKgEAAQV33+wLY5yXoTwEAgEmJQAAAe0cCgIFACsCAAYAAAAAAAAAAAEAAAAAAAAAAAQqBQYHLQgBBScCBgQEAAgBBgEnAwUEAQAiBQIGLQoGCC0MRwgAIggCCC0MRwgAIggCCC0MRwgtCAEGJwIIBAUACAEIAScDBgQBACIGAggtCggJLQxHCQAiCQIJLQxHCQAiCQIJLQxHCQAiCQIJLQ4HCS0IAQcAAAECAS0OBQctCAEFAAABAgEtDgYFLQgBBgAAAQIBLQxGBi0IAQgAAAECAS0MRQgtCEYEIwAAAvMMIgRLCSQCAAkAAAOpIwAAAwUkAgADAAADEiMAAANCJwIBBAktCAAJLQoHCi0KBQstCgYMLQoIDS0ISg4ACAABACUAAAQrLQIAACMAAANCLQsIAQoiAUUCJAIAAgAAA1wnAgMEADwGAwEnAgEECS0IAAktCgcKLQoFCy0KBgwtCggNAAgAAQAlAAAFKi0CAAAtCwcBLQsFAi0LBgMtDgEHLQ4CBS0OAwYtDEgIACICSQMtCwMBJgwqBAIJJAIACQAAA7sjAAAD+QAiAQIKACoKBAstCwsJJwIKBAstCAALLQoHDC0KBQ0tCgYOLQoIDy0KCRAACAAKACUAAAQrLQIAACMAAAP5ACIESQktCgkEIwAAAvMqAQABBbq7IdeCMxhkPAQCASYqAQABBdAH6/TLxmeQPAQCASYlAAAB7S0LBAYKIgZFByQCAAcAAARKJwIIBAA8BggBLQsDBgoiBkQHJAIABwAABMYjAAAEYC0LAQctCwIIDCIGRAkkAgAJAAAEeiUAAAYmLQIHAycABAQEJQAABjgtCAUJACIJAgoAKgoGCy0OBQsAIgZJBQ4qBgUHJAIABwAABLElAAAEGS0OCQEtDggCLQ4FAy0MRQQjAAAFKScCBgQHLQgABy0KAQgtCgIJLQoDCi0KBAsACAAGACUAAAUqLQIAAC0LAQYtCwIHLQsECC0CBgMnAAQEBCUAAAY4LQgFCQAiCUkKLQ4FCi0OCQEtDgcCLQxJAy0OCAQjAAAFKSYlAAAB7S0IRgUjAAAFOAwiBUQGJAIABgAABaAjAAAFSi0LAgUtCwUGACIGAgYtDgYFLQgBBicCBwQFAAgBBwEnAwYEAQAiBQIHJwIIBAQAIgYCCT8PAAcACS0LAQUtCwMHLQsECC0OBQEtDgYCLQ4HAy0OCAQmLQsDBgwqBQYHJAIABwAABbYjAAAGGC0LAgcAIgcCCQAqCQUKLQsKCC0LAQkAIgkCCwAqCwUMLQsMCgAqCAoLLQsECC0CBwMnAAQEBSUAAAY4LQgFCgAiCgIMACoMBQ0tDgsNLQ4JAS0OCgItDgYDLQ4IBCMAAAYYACIFSQYtCgYFIwAABTgqAQABBeQIUEUCtYwfPAQCASYtAQMGCgAGAgckAAAHAAAGTiMAAAZXLQADBSMAAAaWLQABBQAAAQQBAAADBAktAAMKLQAFCwoACgkMJAAADAAABpEtAQoILQQICwAACgIKAAALAgsjAAAGbScBBQQBJg==",
|
|
66
|
-
"debug_symbols": "
|
|
66
|
+
"debug_symbols": "tZnRbts6DIbfJde5kERRFPsqwzB0XTYUCNoiaw9wMPTdD2mTtFvAOq273rRfGOs3SVGU7Pw5/Dh9f/r17fbu5/3vw9WXP4fvl9vz+fbXt/P9zfXj7f2dWP8ckv7JSIcrOB5yK4cr0v/yOWcBEkPWb4gMeravejNgtaBCm6Gk6sAGGQSaQjcozQB0OCugQU0ObkG3YFjYoIFDN1CfS1EgA/V5BnRgAwaHPgMkcLDhkHV4VWgGxS2FDUBCLnJ3UOchK6ABukWdB8khtOTgFgIHcQMkLdCLAxmwW9gsNRWHZpCTAzqIhyCO1VIdugEUh2YwOT8BGqBb0IejDK8STtXMz+AWagaa8IoKaunHA+rwygriDyaBnhzkXlgU2ICrg1laqg5u0YqagQxKcWgGWloz6C1AgQ1qdXALugXdogHOQAZaWjM0A410Br8FJwcVzAp9BtLSmoEMtLRmaAYlOVQHNgAfDj68FgMtLZQ6JE04SuZJV+UM6MAz9MmNCcggZwe7uE9uTOAWrXAkBQ1H5rRXMMDs0Ay0wpEV0IENtNRnIIMphxP4xezDOSw2nBM42HDO2QEd/OLiFxe5uEmxsdb8DGqR1LGmrkmRsPo8Q1hEp8lUMlWHbqDLc4ZmoD7P4BezXZyTOm0UNq3bmbSqWp1IxbSVJs2JETtNwjN1o6wtoDUlnbFGE9Wg7qS1M1PNQXq3rqSr3AidWthaDWInCtuUElbqEBQ23RMmKikHYRA7ZR9bdBlTmoicdCEbYRA7aR0axQgMFQxbC5UWKi1UtC4pT0ROOstGYdOFZdSMIHnuIdUgzz3k4qSNloqSdhuCibrTtPvORE6kd8OJ0Ek7p1HYOGzstppSUNh0sVCdCIPYSdeLETlBjIAYofvEFEfVPkpaf3XyfqZm3tfJ+5nCNnk/k46lidiJw6Y1TlphqKvHyPOCOQe5MpawadOaCVLQYmOnqXJmCmUMlTaNfX4+HvzI9O3xcjrpiWl1hpKT1cP15XT3eLi6ezqfj4d/rs9P00W/H67vpv+P1xf5VqrsdPdD/ovgz9vzSen5uIxO20MLdLbRcjriEJAV+UIib0vknpprCFMPEcovNMq2Bsj5q5mGMJUtjVEoPXcPhUveDKUOJErv1TUKp7q4UV9o4F9IR/vcdID0rJBoZTMdfZAOWcopqkOC2UoHD9LBtKSDiWgrlDyMpRVYgoHNnI6DYYxgJDlbweRRnVaX0NSEAu6aFNqu0TwoUmqeCqIWCrXs8qFvL/nhUqNlqaWltvClE5m2JaSnZpNA2T8XL/jVbAynNKoTFyeAytsV8qLQNhXKIBUkR+6YDlwaBtSXcZRBBwV9lLCqWryQHvD2bOaGkc1Vu3idTV1Fmyu1RWHltlrrJe2ri5y36qLgqAWXHB24tk0vyqh9JgZPh/BqZl/vSDQSKZVDRDaGTZE+mtkGHo5wq5si43DKKpxV23glAmm0LXGLNpxhqVNO+2aXtmYXBv2zcKR0VR7Ab3ZhmdjCyJsu1I83HsCPNp6hwpsaD9DHGw/0jzaeYTbf2Hhq+tzGs66LtlkXdVSaxO6FnCR504sKo60V2rK3wvZhpw5SminOKXLk6psr9X8cgbQ4gpsHyDrqO3kpMWHc7IB11EaRYrEI97znZJ+X2V0fu14X6lgiDvZ51YbfJcHLzrR6VHotgXnUfLz/yfPjPgX2KWkZd4VRYLXBll0SskpdojHskqDs25G8Hxmkon2uhvSeFL1n9az2Lg2i6F/EZZ8Gp+UpqeyblRKhyAuufatEfqNwifUG/S4vlhcKkHYFIi/54ymr43pPeauCvJWMWZV3QHuckKehEhJ910qTN2a+VgX3eYElAsHVI+u7JJbnb+y8L5ClOOWRcZ9ErSGBuwKh6hNCte0R4Hh4Z9wXRCpRE6lt1wTVzyxujk2Zy748RGUz4QcT+Vrgq3y8vrm9vPgt+FmlLrfX388n+/jz6e5m9e3jvw/+jf+W/HC5vzn9eLqcVGn5QVn+fJEXGEeo8FV/r5CPXI/M+kFer34pqR/lbP31WV35Dw=="
|
|
67
67
|
},
|
|
68
68
|
{
|
|
69
69
|
"name": "balance_of_public",
|
|
@@ -115,7 +115,7 @@
|
|
|
115
115
|
}
|
|
116
116
|
},
|
|
117
117
|
"bytecode": "JwACBAEoAAABBIBGJwAABEYnAgIEAScCAwQAHwoAAgADAEQtCEQBJQAAAEUlAAAASy0CAUUnAgIERScCAwQBOw4AAwACJwBDBAMmJQAAAm0eAgADAB4CAAQAHgIABQknAgYBASQCAAUAAABxJQAAApMnAgUAACsCAAcAAAAAAAAAAAIAAAAAAAAAAC0IAQgnAgkEBQAIAQkBJwMIBAEAIggCCS0KCQotDgUKACIKAgotDgUKACIKAgotDgUKACIKAgotDgcKLQgBBwAAAQIBLQgBCQAAAQIBLQgBCgAAAQIBLQgBCwAAAQIBJwIMAAEtCAENJwIOBAQACAEOAScDDQQBACINAg4tCg4PLQ4MDwAiDwIPLQ4BDwAiDwIPLQ4FDy0ODQctDggJJwIBBAItDgEKJwIBAQAtDgELJwIIBAAnAgwEAS0KCAIjAAABTgwiAkMDJAIAAwAAAecjAAABYC0LCQItCwIDACIDAgMtDgMCLQgBAycCBAQFAAgBBAEnAwMEAQAiAgIEJwIIBAQAIgMCDT8PAAQADS0LBwItCwoELQ4CBy0OAwktDgQKLQ4GCwAqAwwELQsEAgoqAgUDCioDAQQkAgAEAAAB0SUAAAKlLwoAAgABHAoBAwYcCgMCABwKAgEGJi0LCgMMKgIDBCQCAAQAAAH9IwAAAl8tCwkEACIEAg0AKg0CDi0LDggtCwcNACINAg8AKg8CEC0LEA4AKggODy0LCwgtAgQDJwAEBAUlAAACty0IBQ4AIg4CEAAqEAIRLQ4PES0ODQctDg4JLQ4DCi0OCAsjAAACXwAqAgwDLQoDAiMAAAFOKAAABAR4RgwAAAQDJAAAAwAAApIqAQABBdrF9da0SjJtPAQCASYqAQABBdwbbuv7trxDPAQCASYqAQABBbq7IdeCMxhkPAQCASYtAQMGCgAGAgckAAAHAAACzSMAAALWLQADBSMAAAMVLQABBQAAAQQBAAADBAktAAMKLQAFCwoACgkMJAAADAAAAxAtAQoILQQICwAACgIKAAALAgsjAAAC7CcBBQQBJg==",
|
|
118
|
-
"debug_symbols": "
|
|
118
|
+
"debug_symbols": "tZdRbtswDIbv4uc8iKRISb3KUBRp6w4BgrTIkgFDkbuPtEXbyWBhy7aX5BMd/SYpUoo+u9f++fz1aXd4e//WPXz57J6Pu/1+9/Vp//6yPe3eD2r97IJ9ZP2kTZe5e0ibrugIgn7rEGDTQQgOuQKQQjbIFahUiP4o+iN2C7tF3CKpQgIHqWA+jcAO/ooSHUxQPcaADqkCgINUwODADqUCqSAGg1LBohghV2C3sFvELRbFABbFCFLBohiBHewVmkMs5JBGIItiBKlgUQwweBgV2H7DBlJBggM72Cs0LkrkkCtkt2S3FLeUaomBHExHFGy5RzBXtVIiggM7lApkP84GuUJUnykYpArsFnN+BNUhdT5aDsnebjkcILslpzEJsZhFldk8HGDwkA1yBXQLpgpks4qBVIhuifr2qG4wB4dYZ7ELiguKWxI6+CuyW3JdHS7BwQVLnS5hmHW5bDrvyKfTse+tIRctqo37sT32h1P3cDjv95vu+3Z/Hn707WN7GL5P26M+Va/7w6t+q+Dbbt8bXTbz7LA+FSmXOht11ScBALmSgHUJ7VdxDeWUJ5EEVxq4rkHILFVDOeGaRiuUbDvDGEpBWA0lNiQw5+gaWEKc3YhXGvwP0iH/Nx3ECVxCK281HbmRjkIEU0oppjU3SsMNlfBlUY7wl6FICKuhtCRIcPIiyyTBeF3mjRplBPeCURb1Va5rA6iRUfBeRZ6doHTjRaNEUwqpSqTEc4FSvPGCW/n0XESYvdCau1aQVhxlKgxcbBu/aKRGPosHIsD3eYHz5qVH6LpGoz6B0ZcEeFHhf6Yxdzzncl8sCbzjMVFY1cBGhUJK5H6ksp4PbFRoil4bKcpdCiVyVSic71KAgO4EBFmvDWzkU/87uBsxMy669ffTWcK0rAUb5dXaNEB42jQSrm4a2CovkWlZJS9KI9y3/S0Og5vtj6DVbDi3/LI0bryg1jEfCnk6lBdb4M1hQNQSwVgmET2xV0ViawsUmo9Hkbgq0g4HF+Gk1bONpPV/ochUZUDzhl7C77fcdCYUvLNpp/ooif+27W8VHnW4fdkdr+6fF5M67rbP+74O386Hl8XT048Pf+L314/j+0v/ej72pjRfYvXjC+h/d+DyaHdVG+r1A4hsCDbUW4ReVB8v5sxP"
|
|
119
119
|
},
|
|
120
120
|
{
|
|
121
121
|
"name": "check_balance",
|
|
@@ -157,7 +157,7 @@
|
|
|
157
157
|
}
|
|
158
158
|
},
|
|
159
159
|
"bytecode": "JwACBAEoAAABBIBGJwAABEYnAgIEAScCAwQAHwoAAgADAEUcAEVFBi0IRQElAAAARiUAAABxJwIBBEYnAgIEADsOAAIAASwAAEMAMGROcuExoCm4UEW2gYFYXSgz6Eh5uXCRQ+H1k/AAAAAnAEQEAyYlAAAC2B4CAAMAHgIABAAeAgAFCScCBgEBJAIABQAAAJclAAAC/h4CAAUBCiIFQwcWCgcIHAoICQAEKgkFCCcCBQEACioHBQkkAgAJAAAAyicCCgQAPAYKAScCBwAAKwIACQAAAAAAAAAAAgAAAAAAAAAALQgBCicCCwQFAAgBCwEnAwoEAQAiCgILLQoLDC0OBwwAIgwCDC0OBwwAIgwCDC0OBwwAIgwCDC0OCQwtCAEJAAABAgEtCAELAAABAgEtCAEMAAABAgEtCAENAAABAgEnAg4AAS0IAQ8nAhAEBAAIARABJwMPBAEAIg8CEC0KEBEtDg4RACIRAhEtDggRACIRAhEtDgcRLQ4PCS0OCgsnAggEAi0OCAwtDgUNJwIIBAAnAgoEAS0KCAIjAAABogwiAkQDJAIAAwAAAlIjAAABtC0LCwItCwIDACIDAgMtDgMCLQgBAycCBAQFAAgBBAEnAwMEAQAiAgIEJwIIBAQAIgMCDj8PAAQADi0LCQItCwwELQ4CCS0OAwstDgQMLQ4GDQAqAwoELQsEAgoqAgcDCioDBQQkAgAEAAACJSUAAAMQLwoAAgADHAoDBAYcCgQCABwKAgMGDCoDAQIKKgIFASQCAAEAAAJRJQAAAyImLQsMAwwqAgMEJAIABAAAAmgjAAACyi0LCwQAIgQCDgAqDgIPLQsPCC0LCQ4AIg4CEAAqEAIRLQsRDwAqCA8QLQsNCC0CBAMnAAQEBSUAAAM0LQgFDwAiDwIRACoRAhItDhASLQ4OCS0ODwstDgMMLQ4IDSMAAALKACoCCgMtCgMCIwAAAaIoAAAEBHhGDAAABAMkAAADAAAC/SoBAAEF2sX11rRKMm08BAIBJioBAAEFDv4gSes3Tjw8BAIBJioBAAEFursh14IzGGQ8BAIBJioBAAEFhHKAwoQjC0Y8BAIBJi0BAwYKAAYCByQAAAcAAANKIwAAA1MtAAMFIwAAA5ItAAEFAAABBAEAAAMECS0AAwotAAULCgAKCQwkAAAMAAADjS0BCggtBAgLAAAKAgoAAAsCCyMAAANpJwEFBAEm",
|
|
160
|
-
"debug_symbols": "tZjdbiI7DMffZa65iB07TniVVVXRlq6QEK1YONJRxbsfJ8SZgaNEu+zuDfzGQ/7jr3iG+Zreti/n78+7w/vHj2n97Wt6Oe72+9335/3H6+a0+zio9Wty+QMgTmu/mgD9tJb8rcfgFLwaADLEChQqMChwhmzJqwIYcD0lziBbkkJ0BmZJ3iBeAR1OawwZpEL2p4C3U95OkVnILGyW7FiB4AzYIFUQMrBLRG+QBdV5TGAQruCdM2CDVAHIIFbIScWYIVYoURSQCmQWMgubpUSRoURRgA1ShRJFgXwJzaGPaBAqlCgK8BWoVB0VvP7Ga/2JnAEZpAqsUXjOIBUCGphFzCJmiWaJZsnl9pRBrsBOHfOQgQ1SBfAG+cdaFEY0yD5ryOzBwCzF+QKqQ+o8syqTXp1zDq9gltyilAVzixaIZomxQqJroji3KGmHBwgVsGYsIFfwZvFkkFepP4G8gVlylSllkAp5E5VVwQTFBKVZalFCtEtEs5T0FpAriAODulygrLpcVpONgufTcbvNk2AxG3RifG6O28NpWh/O+/1q+mezP5cf/fjcHMr3aXPUszontoc3/VbB991+m+mymle7/lL0MdXVSC41AYBwIwF9CZ0owTSUJTYRgRsN7Gt4ZA5VQ1mwpzEKJUK0UBJCNxQaSGCMZBqYHM1u0I0G/4F0hL+bDs8CJqHbppuOOEhH8h5aSnUy9txIAzdUwsqiTPCboQTnuqGMJADRJMDPgTDetvmgR5GAXdsrWtpec4AfdEeSuTuSSDelQKP2COhbe+h064qMw0ncwsFlce/
|
|
160
|
+
"debug_symbols": "tZjdbiI7DMffZa65iB07TniVVVXRlq6QEK1YONJRxbsfJ8SZgaNEu+zuDfzGQ/7jr3iG+Zreti/n78+7w/vHj2n97Wt6Oe72+9335/3H6+a0+zio9Wty+QMgTmu/mgD9tJb8rcfgFLwaADLEChQqMChwhmzJqwIYcD0lziBbkkJ0BmZJ3iBeAR1OawwZpEL2p4C3U95OkVnILGyW7FiB4AzYIFUQMrBLRG+QBdV5TGAQruCdM2CDVAHIIFbIScWYIVYoURSQCmQWMgubpUSRoURRgA1ShRJFgXwJzaGPaBAqlCgK8BWoVB0VvP7Ga/2JnAEZpAqsUXjOIBUCGphFzCJmiWaJZsnl9pRBrsBOHfOQgQ1SBfAG+cdaFEY0yD5ryOzBwCzF+QKqQ+o8syqTXp1zDq9gltyilAVzixaIZomxQqJroji3KGmHBwgVsGYsIFfwZvFkkFepP4G8gVlylSllkAp5E5VVwQTFBKVZalFCtEtEs5T0FpAriAODulygrLpcVpONgufTcbvNk2AxG3RifG6O28NpWh/O+/1q+mezP5cf/fjcHMr3aXPUszontoc3/VbB991+m+mymle7/lL0MdXVSC41AYBwIwF9CZ0owTSUJTYRgRsN7Gt4ZA5VQ1mwpzEKJUK0UBJCNxQaSGCMZBqYHM1u0I0G/4F0hL+bDs8CJqHbppuOOEhH8h5aSnUy9txIAzdUwsqiTPCboQTnuqGMJADRJMDPgTDetvmgR5GAXdsrWtpec4AfdEeSuTuSSDelQKP2COhbe+h064qMw0ncwsFlce/CGTUqmUROzpzVh8pCoVuWQZNKsFSIzAKEP+2CS9JcWIyNOxdwIMEI1p96V1xMnnSbSRxMUYTWWzyH4eXOi0FBRZy0TPA8ujzdeeFHOw1bPWcvdBrdKoxGKKQ2MnBxQ/mfxmCEcqtIAH7MC5xva95hX0MGW5XRSgK82B6/pjHvdo7psVgE7F6A4l1Xww86FERsl4Ckfj78oEOFrDeEwkMKqU2LxPEhBXBtXoAL/d7wg3xShDa0IuNit/58OpObhzgO2ms0NPRPWhsagt2h4UftFdrwg7C4IaELD42/xdS4G38+jTYbzlt+2Rp3XtDYDW/pUF6MwLtbGsFIBCk1EX2W64qMHkU5+PnBKQTqiozDwUU40n3qIRo9SabQugz8PNCTe6i6IXWrO9q07a6S8MFtH2zPJuHfHRz3Ck96uHndHW9eqlyy1HG3edlv6+H7+fC6OHv699PO2EuZz+PH6/btfNxmpfnNjH58A5YVSHjSVyTlUNsHSPIhlLOwAvZPl+zMfw=="
|
|
161
161
|
},
|
|
162
162
|
{
|
|
163
163
|
"name": "claim",
|
|
@@ -1180,7 +1180,7 @@
|
|
|
1180
1180
|
"name": "note_hash_read_requests",
|
|
1181
1181
|
"type": {
|
|
1182
1182
|
"kind": "struct",
|
|
1183
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1183
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1184
1184
|
"fields": [
|
|
1185
1185
|
{
|
|
1186
1186
|
"name": "array",
|
|
@@ -1248,7 +1248,7 @@
|
|
|
1248
1248
|
"name": "nullifier_read_requests",
|
|
1249
1249
|
"type": {
|
|
1250
1250
|
"kind": "struct",
|
|
1251
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1251
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1252
1252
|
"fields": [
|
|
1253
1253
|
{
|
|
1254
1254
|
"name": "array",
|
|
@@ -1316,7 +1316,7 @@
|
|
|
1316
1316
|
"name": "key_validation_requests_and_generators",
|
|
1317
1317
|
"type": {
|
|
1318
1318
|
"kind": "struct",
|
|
1319
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1319
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1320
1320
|
"fields": [
|
|
1321
1321
|
{
|
|
1322
1322
|
"name": "array",
|
|
@@ -1394,7 +1394,7 @@
|
|
|
1394
1394
|
"name": "private_call_requests",
|
|
1395
1395
|
"type": {
|
|
1396
1396
|
"kind": "struct",
|
|
1397
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1397
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1398
1398
|
"fields": [
|
|
1399
1399
|
{
|
|
1400
1400
|
"name": "array",
|
|
@@ -1514,7 +1514,7 @@
|
|
|
1514
1514
|
"name": "public_call_requests",
|
|
1515
1515
|
"type": {
|
|
1516
1516
|
"kind": "struct",
|
|
1517
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1517
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1518
1518
|
"fields": [
|
|
1519
1519
|
{
|
|
1520
1520
|
"name": "array",
|
|
@@ -1654,7 +1654,7 @@
|
|
|
1654
1654
|
"name": "note_hashes",
|
|
1655
1655
|
"type": {
|
|
1656
1656
|
"kind": "struct",
|
|
1657
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1657
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1658
1658
|
"fields": [
|
|
1659
1659
|
{
|
|
1660
1660
|
"name": "array",
|
|
@@ -1698,7 +1698,7 @@
|
|
|
1698
1698
|
"name": "nullifiers",
|
|
1699
1699
|
"type": {
|
|
1700
1700
|
"kind": "struct",
|
|
1701
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1701
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1702
1702
|
"fields": [
|
|
1703
1703
|
{
|
|
1704
1704
|
"name": "array",
|
|
@@ -1757,7 +1757,7 @@
|
|
|
1757
1757
|
"name": "l2_to_l1_msgs",
|
|
1758
1758
|
"type": {
|
|
1759
1759
|
"kind": "struct",
|
|
1760
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1760
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1761
1761
|
"fields": [
|
|
1762
1762
|
{
|
|
1763
1763
|
"name": "array",
|
|
@@ -1825,7 +1825,7 @@
|
|
|
1825
1825
|
"name": "private_logs",
|
|
1826
1826
|
"type": {
|
|
1827
1827
|
"kind": "struct",
|
|
1828
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1828
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1829
1829
|
"fields": [
|
|
1830
1830
|
{
|
|
1831
1831
|
"name": "array",
|
|
@@ -1907,7 +1907,7 @@
|
|
|
1907
1907
|
"name": "contract_class_logs_hashes",
|
|
1908
1908
|
"type": {
|
|
1909
1909
|
"kind": "struct",
|
|
1910
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
1910
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
1911
1911
|
"fields": [
|
|
1912
1912
|
{
|
|
1913
1913
|
"name": "array",
|
|
@@ -2013,8 +2013,8 @@
|
|
|
2013
2013
|
}
|
|
2014
2014
|
},
|
|
2015
2015
|
"bytecode": "H4sIAAAAAAAA/+y9B5gU1dfuO1XF9OTuIYOIDIqCWTCjknMWVAwoICCixAEUTICKYILpARUVRCUIikrOIDn2JkkURDBiBBEkw90NNlUTuvfbm3rP+d97+3u+53z74Ftr7Vpr7fXrri4WVrb/nXmtW7d9pleHdq27Zrbu1LVXh8yubTv3bN26Xee2nbqIgh12Fd4/YHKNzm3bPVmjW586vbu2q9m2c+cB45pXb1K3dvaAT1p26tW1Q8+eZgYgsgxAVBCxVLgaICoW6A+oikOqi5FdlUZElyCiMogoA9p5WUh1KaS6DFKVQzZ/hTT1WY3MTp07d+oYFAyPy8paNODT6j17dsjs9WCHzG7DsvzZyzJuaN8kc2/FD6+c3az2zAED7n+4wo376vWd091fc+/hYQfi4uKE9eWyjLjI/3ONjtnJYc3Ghxb53OX0Zt16dujUvlvXSs06ZHbp3attr07dumYPP3/Xcrvn15fbsXD898nDhTVFWFOFNU1Y03PufFi28l6N8oBGeoBiMENpKi76DVaANjgV2uBMYIM6SZrhWM90rKc51tNlomYJa7aw5ghrbs44ZAP3WBi6w3kKQ8bdyImUdqpFv8Ny0A7nqw1BO5yfkbMfGP4B41t06tqxc4dzR1blBNlJ3FmbXbp37iCsBYugbS0wcm4rkbythTmboH8Y5EJeh23mK3VK9fx/lRVls8AsL5CWh0F1uABSfQWpFgE1nftegB3+dy/AXWO5hO5lMSUvMuMLMJAuAfznOGFJw6I7YZcDDs4bVFdpRhRiQ57ccdUzM9v23RWXIaylwlomrOXCWiGslcJaJazVwlojrLXCCghLCGudsNYLa4OwNgprk7C+FtZmYW0R1lZhbRPWdmHtENY3wtoprF3C+lZYu4X1nbD2CGuvsL7H+tXSREi2DJMtx2QrMNlKTLYKk63GZGsw2VpMFsBkApOtw2TrMdkGTLYRk23CZF9jss2YbAsm24rJtmGy7ZhsByb7BpPtxGS7MNm3mGw3JvsOk+3BZHsx2feJOT+hDg9Pl6z/6CI5tDasqpvfVgXCqWZ3d6gEwrP0xGi/FOW6kRn5mJXOt+VQ1ZqZv2q7U9W0dhjVDuhGUqO9kV1xpREcQ58KlipU+8+ckTeyTKkK3u5ylepsUFZEVmWfC93KiKpD/wV4VSTVnlAaVkdQ1TifrDVhVH1ypHRd/qq6ORO/Pl/VL7nKY0N+qkq5i2hjPqryeUptU15Vq7wF+XUeVct8ynZzblX//Ip7Sy5V/3yPwFaHalazcAflG1tVYXZY1c7zqtFXhlftCqlu+DCC6tv/VHsqRlLtPqfqsTei6ruzqsaZkVV7gqp2TRSqvVJ1fXuV6nvke0l6IqRKjfZ7QfTfvL9X9piNjm/eP+h88/5eXpet7mUbgzLE3o+U7+dylz/6oV3+GG1WkrM1sqIQbYjqK1i2ncKf7OXP2Neln7CHUz8nRv+g89xxUUPuJwiYPwNRi74wfpTusa/xP/GP615ltEY5jusvOsdVfo/+BTiuo4IyxN4+ynGVu9znh3a5j39c9ypFI3WP66/28jfsuP6KHdfftI7rXui4/godl9+AqOV5IK82izn/nfL4UvaKfdkYxKBd/kF5MPm7NOx3zf8FdrQ9yoKa5uhof+p0NPlw8E+go00LyhB7f1E6mtzlX35ol39pVAVUu3+4Wbv7o/3ujB3vvyDVAeB4X2DT36MUTdVt+n/by4NY0/8ba/oHtZr+Hqjp/w0l5iAQNY2qwJz/o9H0VRfIQpflhrXTQ5R2/o80zPEPBv8QpDpMCX6oawH9DVL9G23jiJ543ylP01AH8Y7oEE/+InYEIN7QoAyxd5RCPLnLo35ol0cpxDss0+1mhR+LssLB43UUUh3nE+87pWiILvFO2MuTGPFOYMQ7qUW87yDinYAScxKImkZVYM5PUZruMVluGHFOU4h3Shrm+AeDfxpSnaEEP9S11EqoaxWI43/H2608TRk28QoYOsTbLa8DiJcRlAH2CpgU4sldmn5olyaFeGdkul2s8AIWhXgFTEhVgE+83UpRGU3iFYi3lx6IeAXiIeIV8GgRbzdCvALxUGI8QNQ0qgJznsBougUsWW4QcQokMohXIEEa5vgHg58IqZIoxAt1LbUS61rJfOJ9qzxNGxzES9Eh3rfyOoB4G4IypMRSKcSTu0z1Q7tMZRCvQJJMt5sVnsYhXiqk8vKJ961StF6XeD57mY4Rz4cRL12LeN9CxPNBiUkHoqZRFZjzghTipclyw4hTiEK8gtIwxz8Y/EKQqjAl+KGupVZiXasIn3i7lKeprYN4RXWIt0teBxCvbVCGxK4YhXhyl8X80C6LUYhXWKbbzQovziFeMUhVgk+8XUpRG13ilbSXF2HEK4kR7yIt4u2CiFcSSsxFQNQ0qgJzXorSdIvLcsOIczGFeKWkYY5/MPgXQ6rSlOCHupZaiXWtS/jE26k8TdsdxCujQ7yd8jqAeNuDMiR2GRTiyV1m+KFdZlCIV1qm280KL8shXgakupRPvJ1K0TZd4l1mL8thxLsMI145LeLthIh3GZSYckDUNKoCc345pemWleWGEecKCvEul4Y5/sHgXwGpylOCH+paaiXWtSrwifeN8jTVdxDvSh3ifSOvA4hXPyhDYncVhXhyl1f5oV1eRSFeeZluNyv8ag7xroJU1/CJ941SVE+XeNfay+sw4l2LEe86LeJ9AxHvWigx1wFR06gKzPn1lKZ7tSw3jDg3UIh3vTTM8Q8G/wZIVZES/FDXUiuxrlWJT7wdytM0xUG8G3WIt0NeBxBvSlCGxO4mCvHkLm/yQ7u8iUK8ijLdblb4zRzi3QSpbuETb4dSNFmXeLfay9sw4t2KEe82LeLtgIh3K5SY24CoaVQF5vx2StO9WZYbRpzKFOLdLg1z/IPBrwyp7qAEP9S11Eqsa93JJ9525Wma7yDeXTrEkw8C7wKINz8oQ2JXhUI8ucsqfmiXVSjEu0Om280Kr8ohXhVIVY1PvO1K0Txd4lW3lzUw4lXHiFdDi3jbIeJVhxJTA4iaRlVgzmtSmm5VWW4YcWpRiFdTGub4B4NfC1LVpgQ/1LXUSqxr1eETb5vyNDV0EK+uDvG2yesA4jUMypDY1aMQT+6ynh/aZT0K8WrLdLtZ4fU5xKsHqRrwibdNKWqgS7yG9rIRRryGGPEaaRFvG0S8hlBiGgFR06gKzHljStOVvzM0wIjThEK8xtIwxz8Y/CaQqikl+KGupVZiXasZn3hblaepv4N4d+sQb6u8DiBe/6AMiV1zCvHkLpv7oV02pxCvqUy3mxXegkO85pDqHj7xtipF/XSJd6+9vA8j3r0Y8e7TIt5WiHj3Qom5D4iaRlVgzltSmm4LWW4Yce6nEK+lNMzxDwb/fkj1ACX4oa6lVmJd60E+8bZERbyHdIi3RV6HEe8hKHatKMSTu2yFEa8VhXgPyHS7WeEPc4jXClI9wifeFh7xWtvLNhjxWmPEa6NFvC0Q8VpDiWnDIR7mvC2l6T4syw0jzqMU4rWVhjn+weA/CqnaUYIf6lpqJda12vOJt1l5miY6iNdBh3ib5XUA8SYGZUjsHqMQT+7yMT+0y8coxGsn0+1mhXfkEO8xSPU4n3iblaIJusTrZC+fwIjXCSPeE1rE2wwRrxOUmCeAqGlUBeb8SUrT7SjLDSNOZwrxnpSGOf7B4HeGVF0owQ91LbUS61pd+cT7WnmaxjqI102HeF/L6wDijQ3KkNh1pxBP7rK7H9pldwrxush0u1nhPTjE6w6pMvnE+1opGqNLvJ72shdGvJ4Y8XppEe9riHg9ocT0AqKmURWY896UpttDlhtGnKcoxOstDXP8g8F/ClI9TQl+qGuplVjX6sMn3ibladrhIF5fHeJtktcBxNsRlCGxe4ZCPLnLZ/zQLp+hEO9pmW43K/xZDvGegVTP8Ym3SSnarku85+3lCxjxnseI94IW8TZBxHseSswLQNQ0qgJz3o/SdJ+V5YYRpz+FeP2kYY5/MPj9IdUASvBDXUutxLrWi3zibVSepnUO4r2kQ7yN8jqAeOuCMiR2L1OIJ3f5sh/a5csU4g2Q6XazwgdyiPcypHqFT7yNSpHQJd4gezkYI94gjHiDtYi3ESLeICgxg4GoaVQF5vxVStMdKMsNI85rFOK9Kg1z/IPBfw1SvU4JfqhrqZVY13qDT7wNytNU0kG8N3WIt0FeBxCvZFCGxG4IhXhyl0P80C6HUIj3uky3mxU+lEO8IZAqi0+8DUpRCV3iOQo+GyOeHyNethbxNkDEw5puNhA1jarAnA+jNN2hstww/8MpxBsmDXP8g8EfDqneogQ/1LXUSqxrvc0n3nrlaZrjaADv6BBvvbwOIN6coAyJ3QgK8eQuR/ihXY6gEO8tmW43K/xdDvFGQKr3+MRbrxTN1iXe+/ZyJEa89zHijdQi3nqIeO9DiRkJRE2jKjDnoyhN911ZbhhxPqAQb5Q0zPEPBv8DSDWaEvxQ11Irsa71IZ9465SnabCDeB/pEE8+CPwIIN7goAyJ3ccU4sldfuyHdvkxhXijZbrdrPAxHOJ9DKnG8om3TikapEu8cfZyPEa8cRjxxmsRbx1EvHFQYsYDUdOoCsz5J5SmO0aWG0acCRTifSINc/yDwZ8AqSZSgh/qWmol1rU+5RNPKE9TPQfxPtMhnpDXAcSrF5QhsZtEIZ7c5SQ/tMtJFOJNlOl2s8I/5xBvEqT6gk88oRTV1SXel/ZyMka8LzHiTdYinoCI9yWUmMlA1DSqAnM+hdJ0P5flhhFnKoV4U6Rhjn8w+FMh1TRK8ENdS63EutZ0PvECytPkdxBvhg7xAvI6gHj+oAyJ3UwK8eQuZ/qhXc6kEG+aTLebFT6LQ7yZkGo2n3gBpShLl3hz7OVcjHhzMOLN1SJeACLeHCgxc4GoaVQF5nwepenOkuWGEWc+hXjzpGGOfzD48yHVAkrwQ11LrcS61kI+8dYqT1N3B/G+0iHeWnkdQLzuQRkSu0UU4sldLvJDu1xEId4CmW43K3wxh3iLINUSPvHWKkXddIm31F4uw4i3FCPeMi3irYWItxRKzDIgahpVgTlfTmm6i2W5YcRZQSHecmmY4x8M/gpItZIS/FDXUiuxrrWKT7w1ytO00EG81TrEWyOvA4i3MChDYreGQjy5yzV+aJdrKMRbKdPtZoWv5RBvDaQK8ImnzsICXeIJe7kOI57AiLdOi3hrIOIJKDHrgKhpVAXmfD2l6cqPqgGMOBsoxFsvDXP8g8HfAKk2UoIf6lpqJda1NvGJt1p5mjIcxPtah3ir5XUA8TKCMiR2mynEk7vc7Id2uZlCvI0y3W5W+BYO8TZDqq184q1WisroEm+bvdyOEW8bRrztWsRbDRFvG5SY7UDUNKoCc76D0nS3yHLDiPMNhXg7pGGOfzD430CqnZTgh7qWWol1rV184q1SnqZUB/G+1SHeKnkdQLzUoAyJ3W4K8eQud/uhXe6mEG+nTLebFf4dh3i7IdUePvHUzz9SdIm3115+jxFvL0a877WItwoi3l4oMd8DUdOoCsz5D5Sm+50sN4w4P1KI94M0zPEPBv9HSPUTJfihrqVWYl3rZz7xVipPU1cH8X7RIZ785vsLQLyuQRkSu30U4sld7vNDu9xHId5PMt1uVvivHOLtg1S/8Ymn/l2iiy7xfreXf2DE+x0j3h9axFsJEe93KDF/AFHTqArM+Z+UpvurLDeMOH9RiPenNMzxDwb/L0i1nxL8UNdSK7GudYBPvBXK01TQQby/dYi3Ql4HEK9gUIbE7iCFeHKXB/3QLg9SiLdfptvNCv+HQ7yDkOoQn3jq1wDSdYl32F7+ixHvMEa8f7WItwIi3mEoMf8CUdOoCsz5EUrT/UeWG0acoxTiHZGGOf7B4B+FVMcowQ91LbUS61rH+cRTvz8V5yDeCR3iLZfXQZspcJLCMun/ZBaFUsdkitysylMcSp2EVKc1jgRwS9JwFr+Ml0VVxmd0yniZvA7aTHwcpYyXScNZlJ59Slr2u1SgF5zJpep92JmMN3QyuVReB50cKUPybVLyLXdpQlkJ+leYi9M6ufEmBrNT0C4tRu0Go2RlUT5JxFuQqgDlk0SILGolRJb4eEbw4wtIw1hLtIAjkqNxJA2LrnFcAdwg/gUoLiOqb0v+AeOqZ2a27bsrLkPEe0R8gohPFPFJIj5ZxKeI+FQRnybivSLeJ+LTRXxBEV9IxBcW8UVEfFERX0zEFxfxJUR8SRF/kYgvJeIvFvGlRfwlIr6MiJcGy4r4S0X8ZSK+nIi/HPoGFu9JhGQJmCwRkyVhsmRMloLJUjFZGibzYjIfJkvHZAUxWSFMVhiTFcFkRTFZMUxWHJOVwGQlMdlFmKwUJrsYk5XGZJdgsjKYLAOTlcVkl2KyyzBZOUx2ea5nQhEmtWX9Bw5JF29YVTe/rfKFU83u7lClIzxNLx7tR45cNzIjH7PS+UU5VLVm5q8q5VQ1rR1GdTF0I6WivZFdcaURHEOfSjzIs7z4BKUqeLuJKtXZoCRFVmWfC11yRNWh/wKcEkm1J5SG1AiqGueTlRZG1SdHSgvmr6qbM/GF8lX9kqs8CuenqpS7iIrkoyqfp9SK5lW1yluQxfKoWuZTtsVzq/rnV9wlcqn653sESjpUs5qFOyilbVWF2WFVl5xXjb4yvKpMSHXDhxFUGf+p9lSMpCp7TtVjb0TVpWdVjTMjqy4Lqto1UajKSdX17VWqy5FP/OnFIVUp+gOF+MuVPWaj44HCFRoPFOIvl9cBv+ltDMoQe+UZDxSCuyzvh3ZZPtqsRP2DVTArCtEGzR+s4ivYyyuxr0sVoB+s4q/U+cHq7HFRQ64CBMwrgahFXxjlpXvsSVMF/nEtp4zWKMdxvUrnuMrv0VcBx3VUUIbYu5pyXOUur/ZDu7yaf1zLKUUjdY/rNfbyWuy4XoMd12u1jms56LheAx2Xa4GoaTyYxJxfx/g9J9grrs7GIAbt8nrKg8nrpGG/a/4vsKNdpiyoaY6OdoNOR5MPB28AOtq0oAyxV5HS0eQuK/qhXVZk/KIRrN3r3azdSpzfHSpCqhvpLxUFC1chmqrb9G+ylzdjTf8mrOnfrNX0L4Oa/k1QYm4GoqZRFZjzWxi/RsVXkuWGtdNbKe38FmmY4x8M/q2Q6jZK8ENdC+hvkOr2aBtH9MS7VHmahjqIV1mHePIXscoA8YYGZYi9OyjEk7u8ww/t8g4K8W6T6Xazwu+kvKAUfwekuotPvEuVoiG6xKtiL6tixKuCEa+qFvEuhYhXBUpMVSBqGlWBOa9Gabp3ynLDiFOdQrxq0jDHPxj86pCqBiX4oa6lVmJdqyb/O15Z5WlyjMOJr6VDvLLyOmgcjpQh9mpTiCd3WRsahxP0rzCnQ7waMt1uVngdDvFqQ6q6fOKVVYp0x+HE17OX9THi1cOIV1+LeGUh4tWDElMfiJpGVWDOG1Cabh1ZbhhxGlKI10Aa5vgHg98QUjWiBD/UtdRKrGs15hMvQ3maNjiI10SHeBISTQDibQjKEHtNKcSTu2zqh3bZlEK8RjLdblZ4Mw7xmkKqu/nEy1CK1usSr7m9bIERrzlGvBZaxMuAiNccSkwLIGoaVYE5v4fSdJvJcsOIcy+FePdIwxz/YPDvhVT3UYIf6lpqJda1WvKJV0Z5mto6iHe/DvHKyOsA4rUNyhB7D1CIJ3f5gB/a5QMU4t0n0+1mhT/IId4DkOohPvHKKEVtdInXyl4+jBGvFUa8h7WIVwYiXisoMQ8DUdOoCsz5I5Sm+6AsN4w4rSnEe0Qa5vgHg98aUrWhBD/UtdRKrGu15RPvEuVp2u4g3qM6xLtEXgcQb3tQhthrRyGe3GU7P7TLdhTitZHpdrPC23OI1w5SdeAT7xKlaJsu8R6zlx0x4j2GEa+jFvEugYj3GJSYjkDUNKoCc/44pem2l+WGEacThXiPS8Mc/2DwO0GqJyjBD3UttRLrWk/yiVdaeZrqO4jXWYd4peV1APHqB2WIvS4U4slddvFDu+xCId4TMt1uVnhXDvG6QKpufOKVVorq6RKvu73sgRGvO0a8HlrEKw0RrzuUmB5A1DSqAnOeSWm6XWW5YcTpSSFepjTM8Q8Gvyek6kUJfqhrqZVY1+rNJ97FytM0xUG8p3SId7G8DiDelKAMsfc0hXhyl0/7oV0+TSFeL5luNyu8D4d4T0OqvnziXawUTdYl3jP28lmMeM9gxHtWi3gXQ8R7BkrMs0DUNKoCc/4cpen2keWGEed5CvGek4Y5/sHgPw+pXqAEP9S11Eqsa/XjE6+U8jTNdxCvvw7xSsnrAOLND8oQewMoxJO7HOCHdjmAQrwXZLrdrPAXOcQbAKle4hNPPSxjni7xXraXAzHivYwRb6AW8UpBxHsZSsxAIGoaVYE5f4XSdF+U5YYRZxCFeK9Iwxz/YPAHQarBlOCHupZaiXWtV/nEu0h5mho6iPeaDvEuktcBxGsYlCH2XqcQT+7ydT+0y9cpxBss0+1mhb/BId7rkOpNPvEuUooa6BJviL0cihFvCEa8oVrEuwgi3hAoMUOBqGlUBeY8i9J035DlhhHHTyFeljTM8Q8GH3OeTQl+qGuplVjXGsYnXknlaervIN5wHeKVlNcBxOsflCH23qIQT+7yLT+0y7coxMuW6Xazwt/mEO8tSPUOn3gllaJ+usQbYS/fxYg3AiPeu1rEKwkRbwSUmHeBqGlUBeb8PUrTfVuWG3Yk3qcQ7z1pmOMfDP77kGokJfihrqVWYiEaxSdeiaiI94EO8UrI6zDifQBteTSFeHKXozHijaYQb6RMt5sV/iGHeKMh1Ud84pXgEe9jezkGI97HGPHGaBGvBES8j6HEjOEQD3M+ltJ0P5TlhrXTcRTijZWGOf7B4I+DVOMpwQ91LbUS61qf8IlXXHmaJjqIN0GHeMXldQDxJgZliL2JFOLJXU70Q7ucSCHeeJluNyv8Uw7xJkKqz/jEU//jIRN0iTfJXn6OEW8SRrzPtYhXHCLeJCgxnwNR06gKzPkXlKb7qSw3jDhfUoj3hTTM8Q8G/0tINZkS/FDXUiuxrjWFT7xiytM01kG8qTrEKyavA4g3NihD7E2jEE/ucpof2uU0CvEmy3S7WeHTOcSbBqlm8IlXTCkao0u8mfZyFka8mRjxZmkRrxhEvJlQYmYBUdOoCsz5bErTnS7LDSPOHArxZkvDHP9g8OdAqrmU4Ie6llqJda15fOIVVZ6mHQ7izdchXlF5HUC8HUEZYm8BhXhylwv80C4XUIg3V6bbzQpfyCHeAkj1FZ94RZWi7brEW2QvF2PEW4QRb7EW8YpCxFsEJWYxEDWNqsCcL6E03YWy3DDiLKUQb4k0zPEPBn8ppFpGCX6oa6mVWNdazideEeVpWucg3god4hWR1wHEWxeUIfZWUognd7nSD+1yJYV4y2S63azwVRzirYRUq/nEK6IUCV3irbGXazHircGIt1aLeEUg4q2BErMWiJpGVWDOA5Smu0qWG0YcQSFeQBrm+AeDLyDVOkrwQ11LrcS61no+8QorT1NJB/E26BCvsLwOIF7JoAyxt5FCPLnLjX5olxspxJMoXe9mhW/iEG8jpPqaT7zCSlEJXeJttpdbMOJtxoi3RYt4hSHibYYSswWImkZVYM63UpruJlluGHG2UYi3VRrm+AeDvw1SbacEP9S11Eqsa+3gE6+Q8jTNcRDvGx3iFZLXAcSbE5Qh9nZSiCd3udMP7XInhXjbZbrdrPBdHOLthFTf8olXSCmarUu83fbyO4x4uzHifadFvEIQ8XZDifkOiJpGVWDO91Ca7i5Zbhhx9lKIt0ca5vgHg78XUn1PCX6oa6mVWNf6gU+8gsrTNNhBvB91iFdQXgcQb3BQhtj7iUI8ucuf/NAuf6IQ73uZbjcr/GcO8X6CVL/wiVdQKRqkS7x99vJXjHj7MOL9qkW8ghDx9kGJ+RWImkZVYM5/ozTdn2W5YcT5nUK836Rhjn8w+L9Dqj8owQ91LbUS61p/8omXrjxN9RzE+0uHeOnyOoB49YIyxN5+CvHkLvf7oV3upxDvD5luNyv8AId4+yHV33zipStFdXWJd9Be/oMR7yBGvH+0iJcOEe8glJh/gKhpVAXm/BCl6R6Q5YYR5zCFeIekYY5/MPiHIdW/lOCHupZaiXWtI3zi+ZSnye8g3lEd4vnkdQDx/EEZYu8YhXhyl8f80C6PUYj3r0y3mxV+nEO8Y5DqBJ94PqUoS5d4J+3lKYx4JzHindIing8i3kkoMaeAqGlUBeb8NKXpHpflhhHnDIV4p6Vhjn8w+GcQlSeOEvxQ11Iroa7lMfjE8ypPU3ebeB5Th3heeR1AvO5BGWDPY1GIJ3dp+aFdWgzieYLpdrPCC1CI57EgVTyfeF6lqJsm8Twee5kAEc/jgYjnSdAinhchnscDJSYBiJpGVWDOExlN11NAlhtEHE8Sg3ieRGmY4x8MfhKkSqYEP9S1lEqwa6XwiZemPE0LHcRL1SFemrwOIN7CoAyJchqFeHKXaX5ol2kU4iXLdLtZ4V4O8dIglY9PPHUWFugSL91eFsSIl44Rr6AW8dIg4qVDiSkIRE2jKjDnhShNV35U9WHEKUwhXiFpmOMfDH5hSFWEEvxQ11Irsa5VlE+8VOVpynAQr5gO8VLldQDxMoIyJHbFKcSTuyzuh3ZZnEK8IjLdblZ4CQ7xikOqknzipSpFZXSJd5G9LIUR7yKMeKW0iJcKEe8iKDGlgKhpVAXm/GJK0y0hyw0jTmkK8S6Whjn+weCXhlSXUIIf6lpqJda1yvCJl6I8TakO4mXoEC9FXgcQLzUoQ2JXlkI8ucuyfmiXZSnEu0Sm280Kv5RDvLKQ6jI+8dTPP1J0iVfOXl6OEa8cRrzLtYiXAhGvHJSYy4GoaVQF5vwKStO9VJYbRpzyFOJdIQ1z/IPBLw+pKlCCH+paaiXWta7kEy9ZeZq6Ooh3lQ7x5DffqwDidQ3KkNhdTSGe3OXVfmiXV1OIV0Gm280Kv4ZDvKsh1bV84ql/l+iiS7zr7OX1GPGuw4h3vRbxkiHiXQcl5nogahpVgTm/gdJ0r5HlhhGnIoV4N0jDHP9g8CtCqkqU4Ie6llqJda0b+cRLUp6mgg7i3aRDvCR5HUC8gkEZErubKcSTu7zZD+3yZgrxKsl0u1nht3CIdzOkupVPPPVrAOm6xLvNXt6OEe82jHi3axEvCSLebVBibgeiplEVmPPKlKZ7iyw3jDh3UIhXWRrm+AeDfwekupMS/FDXUiuxrnUXn3jq96fiHMSrokO8RHkdtBlPVQrLpP+qWRRK3SlT5GZVVuNQqiqkqq5xJIBbkoaz+GWcEFUZ19Ap4wR5HVbGNSllLP3XzKL0bJmjmn6XCvSCM+lR78ORyVo6mfTI67CTUwvKd21KvuUua2NZqU1pbrIqamMwqwbtsg6jdoNRqpPF+SRRB1LVpXySCJFFrcTIUo/SOOpKw1hLrAMckRyNwxw2YFz1zMy2fXfF1QK+scS1Q0SHEFF9RPQ42M4s9aijONTUXvdM7XHP1Hfumdrtnqlv3TO1yz1TO90z9Y17pna4Z2q7e6a2uWdqq3umtrhnarN7pr52z9Qm90xtdM/UBvdMrXfP1Dr3TAn3TAXcM7XWPVNr3DO12j1Tq9wztdI9UyvcM7XcPVPL3DO11DVT8Ze7Z6qce6Yuc8/Upe6ZKuueqQz3TJVxz9Ql7pkq7Z6pi90zVco9Uxe5Z6qke6ZKuGequHumirlnqqh7poq4Z6qwe6YKuWeqoHum0t0z5XPPlNc9U2numUp1z1SKe6aS3TOV5J6pRPdMJbhnyqM2FcXbAHG1ohHLp/OhB3fpwlNfeBoIT0PhaSQ8jYWnifA0FZ5mwnO38DQXnhbCc4/w3Cs89wlPS+G5H3u9oEEGJGuIyRphssaYrAkma4rJmmGyuzFZc0zWApPdg8nuxWT3YbKWmOz+jJzP+7Fn1PUjP6N+I2XmuznNvoU8ere+Q15YsfYoVWcfAatU5545Q7fbAGgSGre7E7rdXdDtfgvd7m7odhtGe7vDIOfQPxPjaSRVF/9Z6vBUq8hbV5h/7Ki65NRDJQrUvuZwvfEd2mdV+HJkh47bRXoqJyNfQxnZDGVkCxSUrVBQGnNudz10uxug290I3e4m6HabcApwHeS8qVSV2zo34cinQwtM3X6g29OHrxq2pu6bCz+7M1tcW6V/ix/e/quxSE/kZGQllJFVUEZWQ0FZAwWlGed2l0K3uwy63eXQ7UL/HrHnbsrtxl+K3G78ZcjtxpdDbjf+cuh2m3Nu9xLodstAt5sB3W5Z6HZbUNpLfGnI+T0Q30pxMlIMykhxKCMloKCUhIJyL+d2C0G3Wxi63SLQ7RaFbvc+TgEWhJy3hPhWnJMR6C9hAX85OQ4Z2nHuaQ8UlPujvV3sdbMHIpttd6j+4zpmH4xs9omknzvqmH0ostl5Hb8YqGO2VWSzd3b9J1PH7MORzY5reriyjtlHIpu929u8n47Z1pHNvh//+Bs6ZttENlvmpR2f6ZhtG9nsQ3tEyXyeLkxp8XjbSjffUrNbl+6Z8uFCp25dh8knW46HDQ84H005nz85HzI5nyQ5Hxc5nwk5H/w4n+44H+E4n9M4H8Y4n7g4H6s4n504H5CMcPx/HnSsH3KsWznWDzvWjzjWrR3rNo512xHC86jwtBOe9sLTQXgeE56OwvO48HSKveanMBV7zS/2mt95U7HX/GKv+Z03FXvNL/aa33lTsdf8Yq/5nTcVe80v9prfeVOx1/xir/mdNxV7zS/2mt95U7HX/GKv+Z03FXvNL/aaX47/ieo1v2o5XvN7QnieFJ7OwtNFeLoKTzfh6S48PYQnU3jkw8BewtNbeJ4SnqeFp4/w9MVe83siQ+e3GNW/GnXut5gE6LeYROi3mCTot5gngFxpvLP2JMdsZ47ZLhyzXTlmu3HMdueY7cExm8kx25NjthfHbG+O2ac4Zp/mmO3DMdtXx6z6x75nIpvtr2n2Wc5un1OZNTN0fpp8wrF+xrF+9n94/Zzzp8lHHet2jnV7x7qDY/2YY93RsX7cse4kf5p8XnheEJ5+wtNfeAYIz4vC85LwvJzzp8mkYVGOLvI87+7nsQJRTWwMfR4bLjwDhecV4RkkPIOxT1oDEyHZK5hsECYbnJj3412cOsTQcRqIfAj0vIJ8CPQMQj4EegYDqb/A6nrhf6S6XhWe14TndeF5A6uuV7F6eA2TvY7J3tCqrheg6noVqq7XoOp6HaquN/jV1e9/pLreFJ4hwjNUeLKw6noTq4chmGwoJsvSqq5+UHW9CVXXEKi6hkLVlcWvrv7/I9XlF55s4RkmPMOx6vJj9ZCNyYZhsuFa1dUfqi4/VF3ZUHVB7+96hvOra8D/SHW9JTxvC887wjMCq663sHp4G5O9g8lGaFXXAKi63oKq622out6BqmsEv7pe/B+prneF5z3heV94RmLV9S5WD+9hsvcx2Uit6noRqq53oep6D6qu96HqGsmvrpf+R6prlPB8IDyjhedDrLpGYfXwASYbjck+1Kqul6DqGgVV1wdQdY2GqutDfnW9/D9SXR8Jz8fCM0Z4xmLV9RFWDx9jsjGYbKxWdb0MVddHUHV9DFXXGKi6xnKeVI5Tmi2iY3Z8WLPm+d3mzeH0Zt16dujUvlvXSs06ZHbp3attL/kMNHu4I6fjzq/Lh3neOF6W5yfCM0F4JgrPpxd24C5y97hlaB23XXEZwvOZ8EwSns+F5wvh+VJ4JgvPFOGZKjzThGe68MwQnpnCM0t4ZgvPHOGZKzzzhGe+8CwQnoXC85XwLBKexcKzRHiWCs8y4VkuPCuEZ6XwrBKe1cKzBjvEn2HHbhIm+xyTfYHJvsRkkzHZFEw2FZNNw2TTMdkMTDYTk83CZLMx2RxMNheTzcNk8zHZAky2EJN9hckWYbLFmGwJJluKyZZhsuWYbAUmW4nJVmGy1ZhsTa4PAsPDIyzrP4RJ4E4Lq+rmt1XTw6lmd3eoZiDQTK8cLeJz3ciMfMxK51/lUNWamb9qkVPVtHYY1WLoRqpEeyO74pC5BBdBHz0+gz6aTYI+mn0OfTT7IrIq+1zovoyoOvRfgCdHUu0JpWFKBFWN88maGkbVJ0dKZ+avqpsz8bPyVf2Sqzxm56eqlLuI5uSjKp+n1ObmVbXKW5Dz8qha5lO283Or+udX3AtyqfrnewQWOlSzmoU7KEtsVYXZYVX2aJnRV4ZXnR8tc8OHEVSh0TJ7KkZSrTin6rE3ourchJ/GmZFVZyf8tGuiUAUn/FzfXqWCJvykV4ZUVaL9Ih71v2rkWaPsMRsd/6rR2kUa/xjLGnkd8A+LbgzKEHsBdfPU22XAD+0yEG1Wov5XMz3qv622QfdfzRT2ch32dUlg/2rmOp1/NfPscVFDTkDAXAdELfrCCEj32LMCwT+uq5XRGuU4rut1jqv8Hr0eOK6jgjLE3gbKcZW73OCHdrmBf1zVfyN0pO5x3WgvN2HHdSN2XDdpHdfV0HHdCB2XTUDUNP51NMy5+q+s6/yjkrJXbMD+dbQAtMvNUX7/wM7O19Kw3zX/F9jRVikLapqjo23R6Wjy4eAWoKNNC8oQe1spHU3ucqsf2uVWjaqAanezm7W7Lcpdgsd7K6TaDhzvC2z66r+7P1W36e+wl99gTX8H1vS/0Wr6q6CmvwNKzDdA1DSqAnO+U6Ppqy6QhS7LDWunuyjtfKc0zPEPBn8XpPqWEvxQ1wL6G6TaHW3jiJ54K5WnaaiDeN/pEE/+IvYdQLyhQRlibw+FeHKXe/zQLvdQiPetTLebFb43ygoHj9ceSPU9n3jqETNDdIn3g738ESPeDxjxftQiHjQY3PMDlJgfgahpVAXm/CdK090ryw0jzs8U4v0kDXP8g8H/GVL9Qgl+qGuplVjX2sf/jrdCeZoyHMT7VYd4K+R1APEygjLE3m8U4sld/uaHdvkbhXi/yHS7WeG/c4j3G6T6g0889SS0MrrE+9Ne/oUR70+MeH9pEW8FRLw/ocT8BURNoyow5/spTfd3WW4YcQ5QiLdfGub4B4N/AFL9TQl+qGuplVjXOsgn3nLladrgIN4/OsRbLq8DiLchKEPsHaIQT+7ykB/a5SEK8f6W6Xazwg9ziHcIUv3LJ556YOd6XeIdsZdHMeIdwYh3VIt4yyHiHYEScxSImkZVYM6PUZruYVluGHGOU4h3TBrm+AeDfxxSnaAEP9S11Eqsa53kE2+Z8jS1dRDvlA7xlsnrAOK1DcoQe6cpxJO7PO2HdnmaQrwTMt1uVvgZDvFOI6qEOD7x1HOl22gSL8GwlyZEvAQDIl6CqUW8ZQjxEgwoMSYQteirAnRuUZruGVluEHESCjCIl2BJwxz/YPALQKp4SvBDXUuthLpWgodPvKXK07TdJl5Cgg7xlsrrAOJtD8qQEkukEE/uMtEP7TKRQbyEeJluNys8iUK8hERIlcwnnvqfP9imS7wUe5mKES8FI16qFvGgf/E2IQVKTCoQNY2qwJynMZpuQpIsN4w4Xgrx0qRhjn8w+F5I5aMEP9S11Eqsa6XzibdEeZrqO4hXUId4S+R1APHqB2VI7ApRiCd3WcgP7bIQhXg+mW43K7wwh3iFIFURPvGWKEX1dIlX1F4Ww4hXFCNeMS3iLYGIVxRKTDEgahpVgTkvTmm6hWW5YcQpQSFecWmY4x8MfglIVZIS/FDXUiuxrnURn3iLladpioN4pXSIt1heBxBvSlCGxO5iCvHkLi/2Q7u8mEK8kjLdblZ4aQ7xLoZUl/CJt1gpmqxLvDL2MgMjXhmMeBlaxFsMEa8MlJgMIGoaVYE5L0tpuqVluWHEuZRCvLLSMMc/GPxLIdVllOCHupZaiXWtcnziLVKepvkO4l2uQ7xF8jqAePODMiR2V1CIJ3d5hR/a5RUU4l0m0+1mhZfnEO8KSFWBT7xFStE8XeJdaS+vwoh3JUa8q7SItwgi3pVQYq4CoqZRFZjzqylNt7wsN4w411CId7U0zPEPBv8aSHUtJfihrqVWYl3rOj7xvlKepoYO4l2vQ7yv5HUA8RoGZUjsbqAQT+7yBj+0yxsoxLtWptvNCq/IId4NkKoSn3hfKUUNdIl3o728CSPejRjxbtIi3lcQ8W6EEnMTEDWNqsCc30xpuhVluWHEuYVCvJulYY5/MPi3QKpbKcEPdS21Eutat/GJt1B5mvo7iHe7DvEWyusA4vUPypDYVaYQT+6ysh/aZWUK8W6V6Xazwu/gEK8ypLqTT7yFSlE/XeLdZS+rYMS7CyNeFS3iLYSIdxeUmCpA1DSqAnNeldJ075DlhhGnGoV4VaVhjn8w+NUgVXVK8ENdS63EulYNPvEWREW8mjrEWyCvw4hXE4pdLQrx5C5rYcSrRSFedZluNyu8Nod4tSBVHT7xFvCIV9de1sOIVxcjXj0t4i2AiFcXSkw9DvEw5/UpTbe2LDeMOA0oxKsvDXP8g8FvAKkaUoIf6lpqJda1GvGJN195miY6iNdYh3jyp6/GAPEmBmVI7JpQiCd32cQP7bIJhXjycWkjNyu8KYd4TSBVMz7x5itFE3SJd7e9bI4R726MeM21iDcfIt7dUGKaA1HTqArMeQtK020qyw0jzj0U4rWQhjn+weDfA6nupQQ/1LXUSqxr3ccn3jzlaRrrIF5LHeLNk9cBxBsblCGxu59CPLnL+/3QLu+nEO9emW43K/wBDvHuh1QP8ok3Tykao0u8h+xlK4x4D2HEa6VFvHkQ8R6CEtMKiJpGVWDOH6Y03QdkuWHEeYRCvIelYY5/MPiPQKrWlOCHupZaiXWtNnzizVWeph0O4rXVId5ceR1AvB1BGRK7RynEk7t81A/t8lEK8VrLdLtZ4e04xHsUUrXnE2+uUrRdl3gd7OVjGPE6YMR7TIt4cyHidYAS8xgQNY2qwJx3pDTddrLcMOI8TiFeR2mY4x8M/uOQqhMl+KGupVZiXesJPvHmKE/TOgfxntQh3hx5HUC8dUEZErvOFOLJXXb2Q7vsTCFeJ5luNyu8C4d4nSFVVz7x5ihFQpd43exld4x43TDiddci3hyIeN2gxHQHoqZRFZjzHpSm20WWG0acTArxekjDHP9g8DMhVU9K8ENdS63EulYvPvFmK09TSQfxeusQb7a8DiBeyaAMid1TFOLJXT7lh3b5FIV4siH2crPCn+YQ7ylI1YdPvNlKUQld4vW1l89gxOuLEe8ZLeLNhojXF0rMM0DUNKoCc/4spek+LcsNI85zFOI9Kw1z/IPBfw5SPU8JfqhrqZVY13qBT7xZytM0x0G8fjrEmyWvA4g3JyhDYtefQjy5y/5+aJf9KcR7XqbbzQofwCFef0j1Ip94s5Si2brEe8levowR7yWMeC9rEW8WRLyXoMS8DERNoyow5wMpTXeALDeMOK9QiDdQGub4B4P/CqQaRAl+qGuplVjXGswn3kzlaRrsIN6rOsSbKa8DiDc4KENi9xqFeHKXr/mhXb5GId4gmW43K/x1DvFeg1Rv8Ik3UykapEu8N+3lEIx4b2LEG6JFvJkQ8d6EEjMEiJpGVWDOh1Ka7uuy3DDiZFGIN1Qa5vgHg58FqfyU4Ie6llqJda1sPvFmKE9TPQfxhukQb4a8DiBevaAMid1wCvHkLof7oV0OpxDPL9PtZoW/xSHecEj1Np94M5SiurrEe8dejsCI9w5GvBFaxJsBEe8dKDEjgKhpVAXm/F1K031LlhtGnPcoxHtXGub4B4P/HqR6nxL8UNdSK7GuNZJPvOnK0+R3EG+UDvGmy+sA4vmDMiR2H1CIJ3f5gR/a5QcU4r0v0+1mhY/mEO8DSPUhn3jTlaIsXeJ9ZC8/xoj3EUa8j7WINx0i3kdQYj4GoqZRFZjzMZSmO1qWG0acsRTijZGGOf7B4I+FVOMowQ91LbUS61rj+cSbpjxN3R3E+0SHeNPkdQDxugdlSOwmUIgndznBD+1yAoV442S63azwiRziTYBUn/KJN00p6qZLvM/s5SSMeJ9hxJukRbxpEPE+gxIzCYiaRlVgzj+nNN2Jstww4nxBId7n0jDHPxj8LyDVl5Tgh7qWWol1rcl84k1VnqaFDuJN0SHeVHkdQLyFQRkSu6kU4sldTvVDu5xKId6XMt1uVvg0DvGmQqrpfOKps7BAl3gz7OVMjHgzMOLN1CLeVIh4M6DEzASiplEVmPNZlKYrP6pOx4gzm0K8WdIwxz8Y/NmQag4l+KGupVZiXWsun3hTlKcpw0G8eTrEmyKvA4iXEZQhsZtPIZ7c5Xw/tMv5FOLNkel2s8IXcIg3H1It5BNvilJURpd4X9nLRRjxvsKIt0iLeFMg4n0FJWYREDWNqsCcL6Y03QWy3DDiLKEQb7E0zPEPBn8JpFpKCX6oa6mVWNdaxifeZOVpSnUQb7kO8SbL6wDipQZlSOxWUIgnd7nCD+1yBYV4S2W63azwlRzirYBUq/jEUz//SNEl3mp7uQYj3mqMeGu0iDcZIt5qKDFrgKhpVAXmfC2l6a6U5YYRJ0Ah3lppmOMfDH4AUglK8ENdS63EutY6PvG+VJ6mrg7irdchnvzmux4gXtegDIndBgrx5C43+KFdbqAQT8h0u1nhGznE2wCpNvGJp/5doosu8b62l5sx4n2NEW+zFvG+hIj3NZSYzUDUNKoCc76F0nQ3ynLDiLOVQrwt0jDHPxj8rZBqGyX4oa6lVmJdazufeF8oT1NBB/F26BDvC3kdQLyCQRkSu28oxJO7/MYP7fIbCvG2yXS7WeE7OcT7BlLt4hNP/RpAui7xvrWXuzHifYsRb7cW8b6AiPctlJjdQNQ0qgJz/h2l6e6U5YYRZw+FeN9Jwxz/YPD3QKq9lOCHupZaiXWt7/nEU78/Fecg3g86xPtcXgdtJuFHCsuk/x+zKJTaK1PkZlX+xKHUj5DqZ40jAdySNJzFL+NJUZXxLzplPEleh5XxPkoZS//7OH+HWuZon9+lAr3gTH6m3ocjk7/qZPIzeR12cn6F8v0bJd9yl79hWfmN0txkVfyGwewnaJe/M2o3GKXfSX+z/3dI9Qflk0SILGolRpY/KY3jD2kYa4m/A0ckR+NIGhZd4zCAG8S/AMVlRPVtyT9gXPXMzLZ9d8VliIS/RMJ+kXBAJPwtEg6KhH9EwiGRcFgk/CsSjoiEoyLhmEg4LhJOiISTIuGUSDgtEs6IxDiRaIhEUyRaIrGASIwXiR6RmCASE0VikkhMFokpIjFVJKZh38D+SoRk+zHZAUz2NyY7iMn+wWSHMNlhTPYvJjuCyY5ismOY7DgmO4HJTmKyU5jsNCY7A8kS4zCZgclMTGZhsgKYLB6TeTBZAiZLxGRJmCwZk6VgslRMlpbrmVCE8R9Z/4FD0uXfsKpuflt1JJxqdneH6ijC0/T60X7kyHUjM/IxG+z/OVS1ZuavspyqprXDqApAN9I42hvZFVcawTH0qeQv6FnefqUqmLcDKtXZ7P4dWZV9rgYORlQd+q9S/omk2hOqp0MRVDXOV93hMKo+zpQmHMtfVTdH4hOO56v6JWd5JJzIT1UpVxElnMxHVT53qSWcyqtqlacgE07nUbXMW7YJZ3Kr+udX3HG5VP3zPQLOKpzVLNxBibdVFWaHVXnOq0ZfGV6VEFLd8GEEVeJ/qj0VI6mSzql67I2oSj6rapwZWZUSVLVrolClStX17VWqNOQTf3p9SNWY/kAhMU3ZYzbaDxQSvRoPFBLT5HXAb3obgzLEno/xQCG4S58f2qUv2qxE/YNVMCsK0QbNH6wS0+1lQejrUmI69INVYkGdH6zOHhcl5BLTEWAmFgSiFn1h+KR76ElTYjr/uKYqozXKcVwL6RxX+T26EHBcRwVliL3ClOMqd1nYD+2yMP+4pipFI3WPaxF7WRQ7rkWw41pU67imQse1CHRcigJRi/7BJOi8GOP3nGCvKJyNQQzaZXHGg8nEYtKw3zX/F9jRUpQFNc3R0UrodDT5cLAE0NGmBWWIvZKUjiZ3WdIP7bIk4xeNYO0Wd7N2L6L87pBYElKVor9UFCxchWiqbtO/2F6Wxpr+xVjTL63V9FOgpn8xlJjSQNQ0qgJzfgnj16jEi2S5Ye20DKWdXyINc/yDwS8DqTIowQ91LaC/Qaqy0TaO6ImXrDxNQx3Eu1SHePIXsUsB4g0NyhB7l1GIJ3d5mR/a5WUU4mXIdLtZ4eUoLyglXgapLucTL1kpGqJLvCvsZXmMeFdgxCuvRbxkiHhXQIkpD0RNoyow5xUoTbecLDeMOFdSiFdBGub4B4N/JaS6ihL8UNdSK7GudTX/O16S8jQ5xuEkXqNDvCR5HTQOR8oQe9dSiCd3eS00DifoX2FOh3hXyXS7WeHXcYh3LaS6nk+8JKVIdxxO4g32siJGvBsw4lXUIl4SRLwboMRUBKKmURWY80qUpnudLDeMODdSiFdJGub4B4N/I6S6iRL8UNdSK7GudTOfeInK07TBQbxbdIiXKK8DiLchKEPs3UohntzlrX5ol7dSiHeTTLebFX4bh3i3Qqrb+cRLVIrW6xKvsr28AyNeZYx4d2gRLxEiXmUoMXcAUdOoCsz5nZSme5ssN4w4d1GId6c0zPEPBv8uSFWFEvxQ11Irsa5VlU+8BOVpausgXjUd4iXI6wDitQ3KEHvVKcSTu6zuh3ZZnUK8KjLdblZ4DQ7xqkOqmnziJShFbXSJV8te1saIVwsjXm0t4iVAxKsFJaY2EDWNqsCc16E03Rqy3DDi1KUQr440zPEPBr8upKpHCX6oa6mVWNeqzyeeR3matjuI10CHeB55HUC87UEZYq8hhXhylw390C4bUohXT6bbzQpvxCFeQ0jVmE88j1K0TZd4TexlU4x4TTDiNdUingciXhMoMU2BqGlUBea8GaXpNpLlhhHnbgrxmknDHP9g8O+GVM0pwQ91LbUS61ot+MSLV56m+g7i3aNDvHh5HUC8+kEZYu9eCvHkLu/1Q7u8l0K85jLdblb4fRzi3QupWvKJF68U1dMl3v328gGMePdjxHtAi3jxEPHuhxLzABA1jarAnD9Iabr3yXLDiPMQhXgPSsMc/2DwH4JUrSjBD3UttRLrWg/ziVdAeZqmOIj3iA7xCsjrAOJNCcoQe60pxJO7bO2HdtmaQrxWMt1uVngbDvFaQ6q2fOIVUIom6xLvUXvZDiPeoxjx2mkRrwBEvEehxLQDoqZRFZjz9pSm20aWG0acDhTitZeGOf7B4HeAVI9Rgh/qWmol1rU68olnKU/TfAfxHtchniWvA4g3PyhD7HWiEE/uspMf2mUnCvEek+l2s8Kf4BCvE6R6kk88Symap0u8zvayC0a8zhjxumgRz4KI1xlKTBcgahpVgTnvSmm6T8hyw4jTjUK8rtIwxz8Y/G6Qqjsl+KGupVZiXasHn3im8jQ1dBAvU4d4prwOIF7DoAyx15NCPLnLnn5olz0pxOsu0+1mhffiEK8npOrNJ56pFDXQJd5T9vJpjHhPYcR7Wot4JkS8p6DEPA1ETaMqMOd9KE23lyw3jDh9KcTrIw1z/IPB7wupnqEEP9S11Eqsaz3LJ56hPE39HcR7Tod48n+fA4jXPyhD7D1PIV7QsB/a5fMU4j0j0+1mhb/AId7zkKofn3jqOeb9dInX314OwIjXHyPeAC3iGRDx+kOJGQBETaMqMOcvUpruC7LcMOK8RCHei9Iwxz8Y/Jcg1cuU4Ie6llqJda2BfOLFRUW8V3SIJ2/kFYx4r0BbHkQhntzlIIx4gyjEe1mm280KH8wh3iBI9SqfeHE84r1mL1/HiPcaRrzXtYgXBxHvNSgxr3OIhzl/g9J0B8tyw4jzJoV4b0jDHP9g8N+EVEMowQ91LbUS61pD6cRLOKM8TRMdxMvSIF7wH+bJAog3MShDYudnEC+4S78f2qWfQrwhMt1uVng2h3jY2R5GJ16wcBWiCbrEG24v38KINxwj3ls6xMv7jznkS7zhUGLeAqKmURWY87cpTTdblhtWle9QiPe2NMzxDwb/HUg1ghL8UNdSK7Gu9S6feKeVp2msg3jv6RDvtLwOIN7YoAyJ3fsU4sldvu+Hdvk+hXgjZLrdrPCRHOK9D6lG8Yl3Wikao0u8D+zlaIx4H2DEG61FvNMQ8T6AEjMaiJpGVWDOP6Q03ZGy3DDifEQh3ofSMMc/GPyPINXHlOCHupZaiXWtMXzinVKeph0O4o3VId4peR1AvB1BGRK7cRTiyV2O80O7HEch3scy3W5W+HgO8cZBqk/4xDulFG3XJd4EezkRI94EjHgTtYh3CiLeBCgxE4GoaVQF5vxTStMdL8sNI85nFOJ9Kg1z/IPB/wxSTaIEP9S11Eqsa33OJ95J5Wla5yDeFzrEOymvA4i3LihDYvclhXhyl1/6oV1+SSHeJJluNyt8Mod4X0KqKXzinVSKhC7xptrLaRjxpmLEm6ZFvJMQ8aZCiZkGRE2jKjDn0ylNd7IsN4w4MyjEmy4Nc/yDwZ8BqWZSgh/qWmol1rVm8Yl3QnmaSjqIN1uHeCfkdQDxSgZlSOzmUIgndznHD+1yDoV4M2W63azwuRzizYFU8/jEO6EUldAl3nx7uQAj3nyMeAu0iHcCIt58KDELgKhpVAXmfCGl6c6V5YYR5ysK8RZKwxz/YPC/glSLKMEPdS21Eutai/nEO648TXMcxFuiQ7zj8jqAeHOCMiR2SynEk7tc6od2uZRCvEUy3W5W+DIO8ZZCquV84h1XimbrEm+FvVyJEW8FRryVWsQ7DhFvBZSYlUDUNKoCc76K0nSXyXLDiLOaQrxV0jDHPxj81ZBqDSX4oa6lVmJday2feMeUp2mwg3gBHeIdk9cBxBsclCGxExTiyV0KP7RLQSHeGpluNyt8HYd4AlKt5xPvmFI0SJd4G+zlRox4GzDibdQi3jGIeBugxGwEoqZRFZjzTZSmK39nWI8R52sK8TZJwxz/YPC/hlSbKcEPdS21EutaW/jEO6o8TfUcxNuqQ7yj8jqAePWCMiR22yjEk7vc5od2uY1CvM0y3W5W+HYO8bZBqh184h1ViurqEu8be7kTI943GPF2ahHvKES8b6DE7ASiplEVmPNdlKa7XZYbRpxvKcTbJQ1z/IPB/xZS7aYEP9S11Eqsa33HJ94R5WnyO4i3R4d4R+R1APH8QRkSu70U4sld7vVDu9xLId5umW43K/x7DvH2Qqof+MQ7ohRl6RLvR3v5E0a8HzHi/aRFvCMQ8X6EEvMTEDWNqsCc/0xput/LcsOI8wuFeD9Lwxz/YPB/gVT7KMEPdS21Eutav/KJ96/yNHV3EO83HeL9K68DiNc9KENi9zuFeHKXv/uhXf5OId4+mW43K/wPDvF+h1R/8on3r1LUTZd4f9nL/Rjx/sKIt1+LeP9CxPsLSsx+IGoaVYE5P0Bpun/IcsOI8zeFeAekYY5/MPh/Q6qDlOCHupZaiXWtf/jEO6w8TQsdxDukQ7zD8jqAeAuDMiR2hynEk7s87Id2eZhCvIMy3W5W+L8c4h2GVEf4xFNnYYEu8Y7ay2MY8Y5ixDumRbzDEPGOQok5BkRNoyow58cpTVd+VD2CEecEhXjHpWGOfzD4JyDVSUrwQ11LrcS61ik+8Q4pT1OGg3indYh3SF4HEC8jKENid4ZCPLnLM35ol2coxDsp0+1ihSfFcYh3BnJu8Il3SCkqo0m8JNNeWhDxkkyIeEmWFvEOIcRLMqHEWEDUoq8K0HkBRtNNCpYbRJykeAbxkgpIwxz/YPDjIZWHQrxQ11Irsa6VwCfeP8rTlGoTLylRh3j/yOsA4qUGZUiJJVGIJ3eZ5Id2mcQgXpJHptvNCk+mEC8pCVKl8Imnfv6Roku8VHuZhhEvFSNemhbx/oGIlwolJg2ImkZVYM69FOIly3LDiOOjEM8rDXP8g8H3Qap0SvBDXUutxLpWQT7xDipPU1cH8QrpEO+gvA4gXtegDIldYQrx5C4L+6FdFqYQL12m280KL8IhXmFIVZRPPPXvEl10iVfMXhbHiFcMI15xLeIdhIhXDEpMcSBqGlWBOS9BabpFZLlhxClJIV4JaZjjHwx+SUh1ESX4oa6lVmJdqxSfeH8rT1NBB/Eu1iHe3/I6gHgFgzIkdqUpxJO7LO2HdlmaQryLZLrdrPBLOMQrDanK8Imnfg0gXZd4GfayLEa8DIx4ZbWI9zdEvAwoMWWBqGlUBeb8UkrTvUSWG0acyyjEu1Qa5vgHg38ZpCpHCX6oa6mVWNe6nE889ftTcQ7iXaFDvAPyOmgzSeUpLJP+y2dRKFVOpsjNqqzAoVR5SHWlxpEAbkkazuKX8f6oyvgqnTLeL6/DyvhqShlL/1dnUXq2zNHVfpcK9IIz+Zd6H45MXqOTyb/kddjJuQbK97WUfMtdXotl5VpKc5NVcS0GswrQLq9j1G4wStdlcT5JXAeprqd8kgiRRa3EyHIDpXFcLw1jLfE64IjkaBxJw6JrHMjDAfwLUFxGVN+W/APGVc/MbNt3V1yGSKookiqJpBtF0k0i6WaRdItIulUk3SaSbhdJlUXSHSLpTpF0l0iqIpKqiqRqIqm6SKohkmqKpFoiqbZIqiOS6oqkeiKpvkhqIJIaiqRGIqmxSGoikpqKpGbYN7CKiZCsEia7EZPdhMluxmS3YLJbMdltmOx2TFYZk92Bye7EZHdhsiqYrComq4bJqmOyGpisJiarhclqY7I6mKwuJquHyepjsgaYrCEma4TJGmOyJpisKSZrluuZUIR/hjLrP3BIutweVtXNb6sqh1PN7u5Q3YHwNP3+aD9y5LqRGfmYlc5r51DVmpm/qo5T1bR2GFVd6EZaRXsju+JKIziGPpVUhJ7lVVKqgrd7o0p1Nig3RVZlnwvdzRFVh/4L8C2RVHtCabg1gqrG+WTdFkbVJ0dK78xfVTdn4u/KV/VLrvKokp+qUu4iqpqPqnyeUquWV9Uqb0FWz6NqmU/Z1sit6p9fcdfMpeqf7xGo5VDNahbuoNSzVRVmh1XVP68afWV4VYOQ6oYPI6ga/qfaUzGSqtE5VY+9EVWNz6oaZ0ZWNQmq2jVRqJpK1fXtVapmyCf+9PshVSv6A4WkZsoes9HxQOFujQcKSc3kdcBvehuDMsRec8YDheAum/uhXTaPNitR/2AVzIpCtEH3B6sW9vIe7OtSC+wHq3t0frA6e1zUkGsBAfMeIGrRF0Zz6R570tSCf1ybKqM1ynFc79U5rvJ79L3AcR0VlCH27qMcV7nL+/zQLu/jH9emStFI3ePa0l7ejx3XlthxvV/ruDaFjmtL6LjcD0RN48Ek5vwByu85slfchz2YbA7t8kHKg8kHpGG/a/4vsKM1URbUNEdHe0ino8mHgw8BHW1aUIbYa0XpaHKXrfzQLltpVAVUuw+6WbsPc353aAWpHqG/VBQsXIVoqm7Tb20v22BNvzXW9NtoNf0mUNNvDSWmDRA1jarAnLel/Br1sCw3rJ0+SmnnbaVhjn8w+I9CqnaU4Ie6FtDfIFX7aBtH9MRrrDxNQx3E66BDPPmLWAeAeEODMsTeYxTiyV0+5od2+RiFeO1kut2s8I6cF5Qeg1SP84nXWCkaoku8TvbyCYx4nTDiPaFFvMYQ8TpBiXkCiJpGVWDOn6Q03Y6y3DDidKYQ70lpmOMfDH5nSNWFEvxQ11Irsa7Vlf8dr5HyNDnG4SR10yFeI3kdNA5HyhB73SnEk7vsDo3DCfpXmNMhXheZbjcrvAeHeN0hVSafeI2UIu1xOD3tZS+MeD0x4vXSIl4jiHg9ocT0AqKmURWY896UpttDlhtGnKcoxOstDXP8g8F/ClI9TQl+qGuplVjX6sMnXkPladrgIF5fHeI1lNcBxNsQlCH2nqEQT+7yGT+0y2coxHtaptvNCn+WQ7xnINVzfOI1VIrW6xLveXv5Aka85zHivaBFvIYQ8Z6HEvMCEDWNqsCc96M03WdluWHE6U8hXj9pmOMfDH5/SDWAEvxQ11Irsa71Ip94DZSnqa2DeC/pEK+BvA4gXtugDLH3MoV4cpcv+6Fdvkwh3gCZbjcrfCCHeC9Dqlf4xGugFLXRJd4gezkYI94gjHiDtYjXACLeICgxg4GoaVQF5vxVStMdKMsNI85rFOK9Kg1z/IPBfw1SvU4JfqhrqZVY13qDT7z6ytO03UG8N3WIV19eBxBve1CG2BtCIZ7c5RA/tMshFOK9LtPtZoUP5RBvCKTK4hOvvlK0TZd4joLPxojnx4iXrUW8+hDxsKabDURNoyow58MoTVf+sp6F+R9OId4waZjjHwz+cEj1FiX4oa6lVmJd620+8eopT1N9RwN4R4d49eR1APHqB2WIvREU4sldjvBDuxxBId5bMt1uVvi7HOKNgFTv8YlXTymqp0u89+3lSIx472PEG6lFvHoQ8d6HEjMSiJpGVWDOR1Ga7ruy3DDifEAh3ihpmOMfDP4HkGo0JfihrqVWYl3rQz7x6ipP0xQH8T7SIV5deR1AvClBGWLvYwrx5C4/9kO7/JhCvNEy3W5W+BgO8T6GVGP5xKurFE3WJd44ezkeI944jHjjtYhXFyLeOCgx44GoaVQF5vwTStMdI8sNI84ECvE+kYY5/sHgT4BUEynBD3UttRLrWp/yiVdHeZrmO4j3mQ7x6sjrAOLND8oQe5MoxJO7nOSHdjmJQryJMt1uVvjnHOJNglRf8IlXRymap0u8L+3lZIx4X2LEm6xFvDoQ8b6EEjMZiJpGVWDOp1Ca7uey3DDiTKUQT34GnsrxDwZ/KqSaRgl+qGuplVjXms4nXm3laWroIN4MHeLVltcBxGsYlCH2ZlKIJ3c50w/tciaFeNNkut2s8Fkc4s2EVLP5xKutFDXQJd4cezkXI94cjHhztYhXGyLeHCgxc4GoaVQF5nwepenOkuWGEWc+hXjzpGGOfzD48yHVAkrwQ11LrcS61kI+8WopT1N/B/G+0iFeLXkdQLz+QRlibxGFeHKXi/zQLhdRiLdAptvNCl/MId4iSLWET7xaSlE/XeIttZfLMOItxYi3TIt4tSDiLYUSswyImkZVYM6XU5ruYlluGHFWUIi3XBrm+AeDvwJSraQEP9S11Eqsa63iE69mVMRbrUO8mvI6jHiroS2voRBP7nINRrw1FOKtlOl2s8LXcoi3BlIF+MSrySOesJfrMOIJjHjrtIhXEyKegBKzjkM8zPl6StNdK8sNI84GCvHWS8Mc/2DwN0CqjZTgh7qWWol1rU184tVQnqaJDuJ9rUO8GvI6gHgTgzLE3mYK8eQuN/uhXW6mEG+jTLebFb6FQ7zNkGorn3g1lKIJusTbZi+3Y8TbhhFvuxbxakDE2wYlZjsQNY2qwJzvoDTdLbLcMOJ8QyHeDmmY4x8M/jeQaicl+KGupVZiXWsXn3jVladprIN43+oQr7q8DiDe2KAMsbebQjy5y91+aJe7KcTbKdPtZoV/xyHebki1h0+86krRGF3i7bWX32PE24sR73st4lWHiLcXSsz3QNQ0qgJz/gOl6X4nyw0jzo8U4v0gDXP8g8H/EVL9RAl+qGuplVjX+plPvGrK07TDQbxfdIhXTV4HEG9HUIbY20chntzlPj+0y30U4v0k0+1mhf/KId4+SPUbn3jVlKLtusT73V7+gRHvd4x4f2gRrxpEvN+hxPwBRE2jKjDnf1Ka7q+y3DDi/EUh3p/SMMc/GPy/INV+SvBDXUutxLrWAT7xqipP0zoH8f7WIV5VeR1AvHVBGWLvIIV4cpcH/dAuD1KIt1+m280K/4dDvIOQ6hCfeFWVIqFLvMP28l+MeIcx4v2rRbyqEPEOQ4n5F4iaRlVgzo9Qmu4/stww4hylEO+INMzxDwb/KKQ6Rgl+qGuplVjXOs4nXhXlaSrpIN4JHeJVkdcBxCsZlCH2TlKIJ3d50g/t8iSFeMdkut2s8FMc4p2EVKf5xKuiFJXQJd6Z88vkOIx4ZyDiJcdpEa8KRLwzSGKS44CoaVQF5tygNN1Tstwg4iSbDOIly/81Of6x4CebkMqiBD/UtdRKqGslF+AT7y7laZpjEy85Xod4d8nrAOLNCcqQEvNQiCd36fFDu/QwiJdsyXS7WeEJFOIleyBVIp94dylFszWJl5xkL5Mh4iUnYcRL1iLeXQjxkpOgxCQDUdOoCsx5CqPpJifIcsOIk0ohXoo0zPEPBj8VUqVRgh/qWmol1rW8fOLdqTxNgx3E8+kQ7055HUC8wUEZErt0CvHkLtP90C7TKcRLk+l2s8ILcoiXDqkK8Yl3p1I0SJd4he1lEYx4hTHiFdEi3p0Q8QpDiSkCRE2jKjDnRSlNt6AsN4w4xSjEKyoNc/yDwS8GqYpTgh/qWmol1rVK8Il3h/I01XMQr6QO8e6Q1wHEqxeUIbG7iEI8ucuL/NAuL6IQr7hMt5sVXopDvIsg1cV84t2hFNXVJV5pe3kJRrzSGPEu0SLeHRDxSkOJuQSImkZVYM7LUJpuKVluGHEyKMQrIw1z/IPBz4BUZSnBD3UttRLrWpfyiVdZeZr8DuJdpkO8yvI6gHj+oAyJXTkK8eQuy/mhXZajEK+sTLebFX45h3jlINUVfOJVVoqydIlX3l5WwIhXHiNeBS3iVYaIVx5KTAUgahpVgTm/ktJ0L5flhhHnKgrxrpSGOf7B4F8Fqa6mBD/UtdRKrGtdwyfe7crT1N1BvGt1iHe7vA4gXvegDInddRTiyV1e54d2eR2FeFfLdLtZ4ddziHcdpLqBT7zblaJuusSraC8rYcSriBGvkhbxboeIVxFKTCUgahpVgTm/kdJ0r5flhhHnJgrxbpSGOf7B4N8EqW6mBD/UtdRKrGvdwifebcrTtNBBvFt1iHebvA4g3sKgDIndbRTiyV3e5od2eRuFeDfLdLtZ4bdziHcbpKrMJ546Cwt0iXeHvbwTI94dGPHu1CLebRDx7oAScycQNY2qwJzfRWm68qNqZYw4VSjEu0sa5vgHg18FUlWlBD/UtdRKrGtV4xPvVuVpynAQr7oO8W6V1wHEywjKkNjVoBBP7rKGH9plDQrxqsp0u1nhNTnEqwGpavGJd6tSVEaXeLXtZR2MeLUx4tXRIt6tEPFqQ4mpA0RNoyow53UpTbemLDeMOPUoxKsrDXP8g8GvB6nqU4If6lpqJda1GvCJd4vyNKU6iNdQh3i3yOsA4qUGZUjsGlGIJ3fZyA/tshGFePVlut2s8MYc4jWCVE34xFM//0jRJV5Te9kMI15TjHjNtIh3C0S8plBimgFR06gKzPndlKbbWJYbRpzmFOLdLQ1z/IPBbw6pWlCCH+paaiXWte7hE+9m5Wnq6iDevTrEk9987wWI1zUoQ2J3H4V4cpf3+aFd3kchXguZbjcrvCWHePdBqvv5xFP/LtFFl3gP2MsHMeI9gBHvQS3i3QwR7wEoMQ8CUdOoCsz5Q5Sm21KWG0acVhTiPSQNc/yDwW8FqR6mBD/UtdRKrGs9wifeTcrTVNBBvNY6xLtJXgcQr2BQhsSuDYV4cpdt/NAu21CI97BMt5sV3pZDvDaQ6lE+8dSvAaTrEq+dvWyPEa8dRrz2WsS7CSJeOygx7YGoaVQF5rwDpem2leWGEecxCvFklTzG8Q8G/zFI1ZES/FDXUiuxrvU4n3jq96fiHMTrpEO8G+V10GaSn6CwTPp/IotCqY4yRW5W5ZMcSj0BqTprHAnglqThLH4ZV4qqjLvolHEleR1Wxl0pZSz9d82i9GyZo65+lwr0gjNZUb0PRya76WSyorwOOzndoHx3p+Rb7rI7lpXulOYmq6I7BrMnoV32YNRuMEo9sjifJHpAqkzKJ4kQWdRKjCw9KY0jUxrGWmIP4IjkaBxJw+zGsSuuzH9OjAhehGfgOVUkkVS9clYVUSRVg4KqyCKpGuy4eSOs6lVbZYS39dp5lRHB4+shlRFpX2/kSoqRr+rNnCojf1tDcqiMMB6HOlVGuH1l5VMsRh5VPiVl5LWV93gY+XjM86XSyG9fw8MUsZFD9Vb+KiOnrbfzVRm5PL6Tn8rIva8REQ6XcV71bniVYdt6L6zKcHh8P5zKcO5rpOLQG2dVoyKrjHO2PoioMv7zODqSygjt60OkGXk+VqoMaWuMSmUEPY4FGiv+4CUuI6qnNP4B46pnZrbtuysuQyT3Esm9RfJTIvlpkdxHJPcVyc+I5GdF8nMi+XmR/IJI7ieS+4vkASL5RZH8kkh+WSQPFMmviORBInmwSH5VJL8mkl8XyW+I5DdF8hCRPFQkZ4lkv0jOFsnDsCc/vRIhWW9M9hQmexqT9cFkfTHZM5jsWUz2HCZ7HpO9gMn6YbL+mGwAJnsRk72EyV7GZAMx2SuYbBAmG4zJXsVkr2Gy1zHZG5jsTUw2BJMNxWRZmMyPybIx2bBcz6KHh/9UnfXfB1b5qfa5sKpuflv1fDjV7O4O1QvI5/j0aL9E5b6RGfmYlc4H51DVmpm/6lWnqmntMKrXoBvpHe2N7Iq7I/Yl4D9V7EtASBX7EhBSxb4EhPb1f+FLAPQMphf0y2VvpSrYZJ9Sqc624qcjq7LPNew+EVWH/mvrfSOp9oSa/zMRVDXOI+LZMKo+OUDSL39V3Zy46Z+v6pdcUBqQn6pSbnS9mI+qfB7AvZRX1SovBl/Oo2qZDywH5lb1zw+pr+RS9c8XvIMcqlnNwuH5dVtVYXZY1RvnVaOvDK96M6S64cMIqiH/qfZUjKQaek7VY29EVdZZVePMyKqzj83bNVGoguy4vr1KBb2VkN4DUiEfei7s55PkYcoes9Hx88lwjZ9PkofJ64A3mDYGZYi9txg/nwR3+ZYf2uVb0WYl6tdzktU73qD7es7b9vId7CHN29jrOe/ovJ5z9rioIfc2BMx3gKhFXxhvSffY72pv84+rOlqjHMd1hM5xlU/vRgDHdVRQhth7l3Jc5S7f9UO7fJd/XNWikbrH9T17+T52XN/Djuv7Wsc1Gzqu70HH5X0gaho/w2LOR1LeXpG94l3sZ9i3oF2OovwMO1Ia9rvm/wI7ml9ZUNMcHe0DnY4mf5L4ACjcaUEZYm80paPJXY72Q7scTXl/Q9buKDdr90POWxajIdVHwPG+wKbvV4qm6jb9j+3lGKzpf4w1/TFaTd8PNf2PocSMAaKmURWY87EaTV91gSx0WW5YOx1HaedjpWGOfzD44yDVeErwQ10L6G+Q6pNoG0f0xMtSnqahDuJN0CGe/B1+AkC8oUEZYm8ihXhylxP90C4nUog3XqbbzQr/NMoKB4/XREj1GZ946tdRhugSb5K9/Bwj3iSMeJ9rES8LIt4kKDGfA1HTqArM+ReUpvupLDeMOF9SiPeFNMzxDwb/S0g1mRL8UNdSK7GuNYX/HW+o8jQ5h/9N1SGehMRUbPjfVGjL0yjEk7uchg3/m0Yh3mSZbjcrfDqHeNMg1Qw+8YYqRdrD/2bay1kY8WZixJulRbyhEPFmQomZBURNoyow57MpTXe6LDeMOHMoxJstDXP8g8GfA6nmUoIf6lpqJda15vGJN0R5mjY4iDdfh3hD5HUA8TYEZYi9BRTiyV0u8EO7XEAh3lyZbjcrfCGHeAsg1Vd84g1RitbrEm+RvVyMEW8RRrzFWsQbAhFvEZSYxUDUNKoCc76E0nQXynLDiLOUQrwl0jDHPxj8pZBqGSX4oa6lVmJdazmfeG8qT1NbB/FW6BDvTXkdQLy2QRlibyWFeHKXK/3QLldSiLdMptvNCl/FId5KSLWaT7w3laI2usRbYy/XYsRbgxFvrRbx3oSItwZKzFogahpVgTkPUJruKlluGHEEhXgBaZjjHwy+gFTrKMEPdS21Euta6/nEe0N5mrY7iLdBh3hvyOsA4m0PyhB7GynEk7vc6Id2uZFCvHUy3W5W+CYO8TZCqq/5xHtDKdqmS7zN9nILRrzNGPG2aBHvDYh4m6HEbAGiplEVmPOtlKa7SZYbRpxtFOJtlYY5/sHgb4NU2ynBD3UttRLrWjv4xHtdeZrqO4j3jQ7xXpfXAcSrH5Qh9nZSiCd3udMP7XInhXgSpTvcrPBdHOLthFTf8on3ulJUT5d4u+3ldxjxdmPE+06LeK9DxNsNJeY7IGoaVYE530NpurtkuWHE2Ush3h5pmOMfDP5eSPU9JfihrqVWYl3rBz7xXlOepikO4v2oQ7zX5HUA8aYEZYi9nyjEk7v8yQ/t8icK8b6X6Xazwn/mEO8nSPULn3ivKUWTdYm3z17+ihFvH0a8X7WI9xpEvH1QYn4FoqZRFZjz3yhN92dZbhhxfqcQ7zdpmOMfDP7vkOoPSvBDXUutxLrWn3zivao8TfMdxPtLh3ivyusA4s0PyhB7+ynEk7vc74d2uZ9CvD9kut2s8AMc4u2HVH/zifeqUjRPl3gH7eU/GPEOYsT7R4t4r0LEOwgl5h8gahpVgTk/RGm6B2S5YcQ5TCHeIWmY4x8M/mFI9S8l+KGupVZiXesIn3iDlaepoYN4R3WIN1heBxCvYVCG2DtGIZ7c5TE/tMtjFOL9K9PtZoUf5xDvGKQ6wSfeYKWogS7xTtrLUxjxTmLEO6VFvMEQ8U5CiTkFRE2jKjDnpylN97gsN4w4ZyjEOy0Nc/xnYcE/g6hS4ijBD3UttRLqWikGn3iDlKepv028FFOHeIPkdQDx+gdlgL0Ui0I8uUvLD+3SYhAvJZhuNyu8AIV4KRakiucTb5BS1E+TeCkee5kAES/FAxEvJUGLeIMQ4qV4oMQkAFHTqArMeSKj6aYUkOUGEScliUG8lERpmOMfDH4SpEqmBD/UtZRKsGul8In3SlTES9Uh3ivyOox4qRDx0ijEk7tMw4iXRiFesky3mxXu5RAvDVL5+MR7hUe8dHtZECNeOka8glrEewUiXjqUmIIc4mHOC1GarleWG0acwhTiFZKGOf7B4BeGVEUowQ91LbUS61pF+cQbqDxNEx3EK6ZDvIHyOoB4E4MyJHbFKcSTuyzuh3ZZnEK8IjLdblZ4CQ7xikOqknziDVSKJugS7yJ7WQoj3kUY8UppEW8gRLyLoMSUAqKmURWY84spTbeELDeMOKUpxLtYGub4B4NfGlJdQgl+qGuplVjXKsMn3svK0zTWQbwMHeK9LK8DiDc2KENiV5ZCPLnLsn5ol2UpxLtEptvNCr+UQ7yykOoyPvFeVorG6BKvnL28HCNeOYx4l2sR72WIeOWgxFwORE2jKjDnV1Ca7qWy3DDilKcQ7wppmOMfDH55SFWBEvxQ11Irsa51JZ94LylP0w4H8a7SId5L8jqAeDuCMiR2V1OIJ3d5tR/a5dUU4lWQ6Xazwq/hEO9qSHUtn3gvKUXbdYl3nb28HiPedRjxrtci3ksQ8a6DEnM9EDWNqsCc30BputfIcsOIU5FCvBukYY5/MPgVIVUlSvBDXUutxLrWjXzivag8TescxLtJh3gvyusA4q0LypDY3UwhntzlzX5olzdTiFdJptvNCr+FQ7ybIdWtfOK9qBQJXeLdZi9vx4h3G0a827WI9yJEvNugxNwORE2jKjDnlSlN9xZZbhhx7qAQr7I0zPEPBv8OSHUnJfihrqVWYl3rLj7xBihPU0kH8aroEG+AvA4gXsmgDIldVQrx5C6r+qFdVqUQ706ZbjcrvBqHeFUhVXU+8QYoRSV0iVfDXtbEiFcDI15NLeINgIhXA0pMTSBqGlWBOa9FabrVZLlhxKlNIV4taZjjHwx+bUhVhxL8UNdSK7GuVZdPvP7K0zTHQbx6OsTrL68DiDcnKENiV59CPLnL+n5ol/UpxKsj0+1mhTfgEK8+pGrIJ15/pWi2LvEa2cvGGPEaYcRrrEW8/hDxGkGJaQxETaMqMOdNKE23gSw3jDhNKcRrIg1z/IPBbwqpmlGCH+paaiXWte7mE6+f8jQNdhCvuQ7x+snrAOINDsqQ2LWgEE/usoUf2mULCvGayXS7WeH3cIjXAlLdyydeP6VokC7x7rOXLTHi3YcRr6UW8fpBxLsPSkxLIGoaVYE5v5/SdO+R5YYR5wEK8e6Xhjn+weA/AKkepAQ/1LXUSqxrPcQn3gvK01TPQbxWOsR7QV4HEK9eUIbE7mEK8eQuH/ZDu3yYQrwHZbrdrPBHOMR7GFK15hPvBaWori7x2tjLthjx2mDEa6tFvBcg4rWBEtMWiJpGVWDOH6U03UdkuWHEaUch3qPSMMc/GPx2kKo9JfihrqVWYl2rA594zytPk99BvMd0iPe8vA4gnj8oQ2LXkUI8ucuOfmiXHSnEay/T7WaFP84hXkdI1YlPvOeVoixd4j1hL5/EiPcERrwntYj3PES8J6DEPAlETaMqMOedKU33cVluGHG6UIjXWRrm+AeD3wVSdaUEP9S11Eqsa3XjE+855Wnq7iBedx3iPSevA4jXPShDYteDQjy5yx5+aJc9KMTrKtPtZoVncojXA1L15BPvOaWomy7xetnL3hjxemHE661FvOcg4vWCEtMbiJpGVWDOn6I03UxZbhhxnqYQ7ylpmOMfDP7TkKoPJfihrqVWYl2rL594zypP00IH8Z7RId6z8jqAeAuDMiR2z1KIJ3f5rB/a5bMU4vWR6Xazwp/jEO9ZSPU8n3jqLCzQJd4L9rIfRrwXMOL10yLesxDxXoAS0w+ImkZVYM77U5qu/Kj6PEacARTi9ZeGOf7B4A+AVC9Sgh/qWmol1rVe4hPvGeVpynAQ72Ud4j0jrwOIlxGUIbEbSCGe3OVAP7TLgRTivSjT7WaFv8Ih3kBINYhPvGeUojK6xBtsL1/FiDcYI96rWsR7BiLeYCgxrwJR06gKzPlrlKb7iiw3jDivU4j3mjTM8Q8G/3VI9QYl+KGupVZiXetNPvH6Kk9TqoN4Q3SI11deBxAvNShDYjeUQjy5y6F+aJdDKcR7Q6bbzQrP4hBvKKTy84mnfv6Roks8x3IYRrxsjHjDtIjXFyIelr5hQNQ0qgJTDac03SxZbhhx3qIQb7g0zPEPBv8tSPU2JfihrqVWYl3rHT7x+ihPU1cH8UboEE9+8x0BEK9rUIbE7l0K8eQu3/VDu3yXQry3ZbrdrPD3OMR7F1K9zyee+neJLrrEG2kvR2HEG4kRb5QW8fpAxBsJJWYUEDWNqsCcf0Bpuu/JcsOIM5pCvA+kYY5/MPijIdWHlOCHupZaiXWtj/jEe1p5mgo6iPexDvGeltcBxCsYlCGxG0MhntzlGD+0yzEU4n0o0+1mhY/lEG8MpBrHJ576NYB0XeKNt5efYMQbjxHvEy3iPQ0RbzyUmE+AqGlUBeZ8AqXpjpXlhhFnIoV4E6Rhjn8w+BMh1aeU4Ie6llqJda3P+MRTvz8V5yDeJB3iPSWvgzaT8jmFZdL/51kUSn0qU+RmVX7BodTnkOpLjSMB3JI0nMUv495RlfFknTLuLa/DyngKpYyl/ylZlJ4tczTF71KBXnAme6n34cjkVJ1M9pLXYSdnKpTvaZR8y11Ow7IyjdLcZFVMw2D2BbTL6YzaDUZpehbnk8R0SDWD8kkiRBa1EiPLTErjmCENYy1xOnBEcjSOpGFRNg7PJ8At4l+B4jKi+r7kHzCuemZm27674jJEyiyRMlukzBEpc0XKPJEyX6QsECkLRcpXImWRSFksUpaIlKUiZZlIWS5SVoiUlSJllUhZLVLWiJS1IiUgUoRIWSdS1ouUDSJlo0jZJFK+FimbRcoWkbIV+w42KxGSzcZkczDZXEw2D5PNx2QLMNlCTPYVJluEyRZjsiWYbCkmW4bJlmOyFZhsJSZbhclWY7I1mGwtJgtgMoHJ1mGy9ZhsAybbiMk2YbKvMdlmTLYFk23N9VRoeHi+Zf2HDsmXr8Kquvlt1aJwqtndHarFCFHTo32bM/eNzMjHrHS+Noeq1sz8VQGnqmntMCoB3cir0d7IrrjSGJChTyazoOd5s5Wq4A3PUanOhmVuZFX2ueDNi6g69F+I50dS7QklYkEEVY3z6VoYRtUnR1KX5K+qmzP1S/NV/ZKrQJblp6qUu4yW56Mqn6fYVuRVtcpbkivzqFrmU7ircqv651feq3Op+ud7CNY4VLOahTsq62xVhdlhVevPq0ZfGV61IaS64cMIqo3/qfZUjKTadE7VY29E1ddnVY0zI6s2B1XtmihUW6Tq+vYq1VakA6QPhFSv0h8qpGxV9piNjocK2zQeKqRsldcBv+ttDMoQe9sZDxWCu9zuh3a5PdqsRP2jVTArCtEG3R+tdtjLb7AvTDuwH62+0fnR6uxxUUNuBwTMb4CoRV8Y26V77GnTDv5x3aKM1ijHcd2pc1zlN+mdwHEdFZQh9nZRjqvc5S4/tMtd/OO6RSkaqXtcv7WXu7Hj+i12XHdrHdct0HH9Fjouu4GoaTycxJx/R/lNR/aKXdjDye3QLvdQHk5+Jw37XfN/gR1ts7Kgpjk62l6djiYfD+4FOtq0oAyx9z2lo8ldfu+Hdvk95VcNWbt73KzdHzi/PXwPqX6kv1gULFyFaKpu0//JXv6MNf2fsKb/s1bT3ww1/Z+gxPwMRE2jKjDnv1B+kfpBlhvWTvdR2vkv0jDHPxj8fZDqV0rwQ10L6G+Q6rdoG0f0xPtaeZqGOoj3uw7x5G9ivwPEGxqUIfb+oBBP7vIPP7TLPyjE+1Wm280K/5PzktIfkOovPvG+VoqG6BJvv708gBFvP0a8A1rE+xoi3n4oMQeAqGlUBeb8b0rT/VOWG0acgxTi/S0Nc/yDwT8Iqf6hBD/UtdRKrGsd4n/H26Q8Tc6ROId1iLdJXoeNxDkMbflfCvHkLv/FRuL8SyHePzLdblb4EQ7x/oVUR/nE26QUaY/EOWYvj2PEO4YR77gW8TZBxDsGJeY4EDWNqsCcn6A03SOy3DDinKQQ74Q0zPEPBv8kpDpFCX6oa6mVWNc6zSfeRuVp2uAg3hkd4slfIs8AxNsQlAH2UuMoxNsoDfuRXQb9K8zpEO+UTLeLFZ5qUIiXGgepTD7xNipF6zWJl2rZywIQ8VItiHipBbSItxEhXqoFJaYAEDWNqsCcxzOabqr8XxMiTqqHQbzUeGmY4x8MvgdSJVCIF+paaiXWtRL5xNugPE1tbeKlJukQT0IiCSBe26AMKbFkCvHkLpP90C6TGcRLTZDpdrPCUzjES4ZUqXzibVCK2ugSL81eejHipWHE82oRbwNEvDQoMV4gahpVgTn3UYiXIssNI046hXg+aZjjHwx+OqQqSAl+qGuplVjXKsQn3nrladruIF5hHeKtl9cBxNselCGxK0IhntxlET+0yyIU4hWU6XazwotyiFcEUhXjE2+9UrRNl3jF7WUJjHjFMeKV0CLeeoh4xaHElACiplEVmPOSlKZbVJYbRpyLKMQrKQ1z/IPBvwhSlaIEP9S11Eqsa13MJ9465Wmq7yBeaR3irZPXAcSrH5QhsbuEQjy5y0v80C4voRCvlEy3mxVehkO8SyBVBp9465SierrEK2svL8WIVxYj3qVaxFsHEa8slJhLgahpVAXm/DJK0y0jyw0jTjkK8S6Thjn+weCXg1SXU4If6lpqJda1ruATTyhP0xQH8crrEE/I6wDiTQnKkNhVoBBP7rKCH9plBQrxLpfpdrPCr+QQrwKkuopPPKEUTdYl3tX28hqMeFdjxLtGi3gCIt7VUGKuAaKmURWY82spTfdKWW4Yca6jEO9aaZjjHwz+dZDqekrwQ11LrcS61g184gWUp2m+g3gVdYgXkNcBxJsflCGxq0QhntxlJT+0y0oU4l0v0+1mhd/IIV4lSHUTn3gBpWieLvFutpe3YMS7GSPeLVrEC0DEuxlKzC1A1DSqAnN+K6Xp3ijLDSPObRTi3SoNc/yDwb8NUt1OCX6oa6mVWNeqzCfeWuVpaugg3h06xFsrrwOI1zAoQ2J3J4V4cpd3+qFd3kkh3u0y3W5W+F0c4t0JqarwibdWKWqgS7yq9rIaRryqGPGqaRFvLUS8qlBiqgFR06gKzHl1StO9S5YbRpwaFOJVl4Y5/sHg14BUNSnBD3UttRLrWrX4xFujPE39HcSrrUO8NfI6gHj9gzIkdnUoxJO7rOOHdlmHQryaMt1uVnhdDvHqQKp6fOKtUYr66RKvvr1sgBGvPka8BlrEWwMRrz6UmAZA1DSqAnPekNJ068pyw4jTiEI8+Rm4Ecc/GPxGkKoxJfihrqVWYl2rCZ94q6MiXlMd4q2W12HEawrFrhmFeHKXzTDiNaMQr7FMt5sVfjeHeM0gVXM+8VbziNfCXt6DEa8FRrx7tIi3GiJeCygx93CIhzm/l9J075blhhHnPgrx7pWGOf7B4N8HqVpSgh/qWmol1rXu5xNvlfI0TXQQ7wEd4q2S1wHEmxiUIbF7kEI8ucsH/dAuH6QQr6VMt5sV/hCHeA9CqlZ84q1SiiboEu9he/kIRryHMeI9okW8VRDxHoYS8wgQNY2qwJy3pjTdh2S5YcRpQyFea2mY4x8MfhtI1ZYS/FDXUiuxrvUon3grladprIN47XSIt1JeBxBvbFCGxK49hXhyl+390C7bU4jXVqbbzQrvwCFee0j1GJ94K5WiMbrE62gvH8eI1xEj3uNaxFsJEa8jlJjHgahpVAXmvBOl6cosPYYR5wkK8TpJwxz/YPCfgFRPUoIf6lpqJda1OvOJt0J5mnY4iNdFh3gr5HUA8XYEZUjsulKIJ3fZ1Q/tsiuFeE/KdLtZ4d04xOsKqbrzibdCKdquS7we9jITI14PjHiZWsRbARGvB5SYTCBqGlWBOe9JabrdZLlhxOlFIZ7May+OfzD4vSBVb0rwQ11LrcS61lN84i1XnqZ1DuI9rUO85fI6gHjrgjIkdn0oxJO77OOHdtmHQrzeMt1uVnhfDvH6QKpn+MRbrhQJXeI9ay+fw4j3LEa857SItxwi3rNQYp4DoqZRFZjz5ylNt68sN4w4L1CI97w0zPEPBv8FSNWPEvxQ11Irsa7Vn0+8ZcrTVNJBvAE6xFsmrwOIVzIoQ2L3IoV4cpcv+qFdvkghXj+Zbjcr/CUO8V6EVC/zibdMKSqhS7yB9vIVjHgDMeK9okW8ZRDxBkKJeQWImkZVYM4HUZruS7LcMOIMphBvkDTM8Q8GfzCkepUS/FDXUiuxrvUan3hLladpjoN4r+sQb6m8DiDenKAMid0bFOLJXb7hh3b5BoV4r8p0u1nhb3KI9wakGsIn3lKlaLYu8YbayyyMeEMx4mVpEW8pRLyhUGKygKhpVAXm3E9pum/KcsOIk00hnl8a5vgHg4+phlGCH+paaiXWtYbzibdEeZoGO4j3lg7xlsjrAOINDsqQ2L1NIZ7c5dt+aJdvU4g3TKbbzQp/h0O8tyHVCD7xlihFg3SJ9669fA8j3rsY8d7TIt4SiHjvQol5D4iaRlVgzt+nNN13ZLlhxBlJId770jDHPxj8kZBqFCX4oa6lVmL38gGfeIuVp6meg3ijdYi3WF4HEK9eUIbE7kMK8eQuP/RDu/yQQrxRMt1uVvhHHOJ9CKk+5hNvsVJUV5d4Y+zlWIx4YzDijdUi3mKIeGOgxIwFoqZRFZjzcZSm+5EsN4w44ynEGycNc/yDwR8PqT6hBD/UtdRKrGtN4BNvkfI0+R3Em6hDvEXyOoB4/qAMid2nFOLJXX7qh3b5KYV4n8h0u1nhn3GI9ymkmsQn3iKlKEuXeJ/byy8w4n2OEe8LLeItgoj3OZSYL4CoaVQF5vxLStP9TJYbRpzJFOJ9KQ1z/IPBnwypplCCH+paaiXWtabyifeV8jR1dxBvmg7xvpLXAcTrHpQhsZtOIZ7c5XQ/tMvpFOJNkel2s8JncIg3HVLN5BPvK6Womy7xZtnL2RjxZmHEm61FvK8g4s2CEjMbiJpGVWDO51Ca7gxZbhhx5lKIJ3/Zn8vxDwZ/LqSaRwl+qGuplVjXms8n3kLlaVroIN4CHeItlNcBxDsrQ2K3kEI86X6hH9rlQgrx5sl0u1nhX3GItxBSLeITT52FBbrEW2wvl2DEW4wRb4kW8RZCxFsMJWYJEDWNqsCcL6U0XflRdRFGnGUU4i2Vhjn+weAvg1TLKcEPdS21EutaK/jEW6A8TRkO4q3UId4CeR1AvIygDIndKgrx5C5X+aFdrqIQb7lMt5sVvppDvFWQag2feAuUojK6xFtrLwMY8dZixAtoEW8BRLy1UGICQNQ0qgJzLihNd7UsN4w46yjEE9Iwxz8Y/HWQaj0l+KGupVZiXWsDn3jzlacp1UG8jTrEmy+vA4iXGpQhsdtEIZ7c5SY/tMtNFOKtl+l2s8K/5hBvE6TazCee+vlHii7xttjLrRjxtmDE26pFvPkQ8bZAidkKRE2jKjDn2yhN92tZbhhxtlOIt00a5vgHg78dUu2gBD/UtdRKrGt9wyfePOVp6uog3k4d4slvvjsB4nUNypDY7aIQT+5ylx/a5S4K8XbIdLtZ4d9yiLcLUu3mE0/9u0QXXeJ9Zy/3YMT7DiPeHi3izYOI9x2UmD1A1DSqAnO+l9J0v5XlhhHnewrx9krDHP9g8L+HVD9Qgh/qWmol1rV+5BNvrvI0FXQQ7ycd4s2V1wHEKxiUIbH7mUI8ucuf/dAuf6YQ7weZbjcr/BcO8X6GVPv4xFO/BpCuS7xf7eVvGPF+xYj3mxbx5kLE+xVKzG9A1DSqAnP+O6Xp/iLLDSPOHxTi/S4Nc/yDwf8DUv1JCX6oa6mVWNf6i0889ftTcQ7i7dch3hx5HbSZ1AMUlkn/B7IolPpTpsjNqvybQ6kDkOqgxpEAbkkazuKX8eyoyvgfnTKeLa/DyvgQpYyl/0NZlJ4tc3TI71KBXnAmZ6n34cjkYZ1MzpLXYSfnMJTvfyn5lrv8F8vKv5TmJqviXwxmf0O7PMKo3WCUjmRxPkkcgVRHKZ8kQmRRKzGyHKM0jqPSMNYSjwBHJEfjSBoWXeOoANwg/gUoLiOqb0v+AeOqZ2a27bsrLkOkHhepJ0TqSZF6SqSeFqlnRFqcSDNEminSLJFWQKTFizSPSEsQaYkiLUmkJYu0FJGWKtLSRJpXpPlEWrpIKyjSCom0wiKtiEgrKtKKibTiIq2ESCuJfQM7ngjJTmCyk5jsFCY7jcnOQLK0OExmYDITk1mYrAAmi8dkHkyWgMkSMVkSJkvGZCmYLBWTpWEyLybzYbJ0TFYQkxXCZIUxWRFMVhSTFcNkxTFZCUxWMtczoeHh6Zb1HziCrTWsqpvfVlnhVLO7O1QFEJ6mD4/2I0euG5mRj1np3JtDVWtm/iqfU9W0dhhVOnQjI6K9kV1xpREcQ59KjkPP8k4oVcFPGCdVqrOfQ05FVmWfDV3q6YiqQ+cCnHomkmpPKA1xEVQ1zifLCKPqkyOl8fmr6uZMvCdf1S+5yiMhP1Wl3EWUmI+qfJ5SS8qrapW3IJPzqFrmU7YpuVX98yvu1Fyq/vkegTSHalazcAeloK2qMDusqtB51egrw6sKh1Q3fBhBVeQ/1Z6KkVRFz6l67I2oKnZW1Tgzsqp4UNWuiUJVQqqub69SlUQ+8acPh1Qj6A8U0koqe8xG+4FC2kUaDxTSSsrrgN/0NgZliL1SjAcKwV2W8kO7LBVtVqL+wSqYFYVog+YPVmkX28vS0NeltIuhH6zSSuv8YHX2uCghl3YxAsy00kDUoi+MUtI99KQp7WL+cS2hjNYox3G9ROe4yu/RlwDHdVRQhtgrQzmucpdl/NAuy/CPawmlaKTucc2wl2Wx45qBHdeyWse1BHRcM6DjUhaIWvQPJkHnlzJ+zwn2ijLZGMSgXV7GeDCZdqk07HfN/wV2tOLKgprm6GjldDqafDhYDuho04IyxN7llI4md3m5H9rl5YxfNIK1e5mbtXsF5XeHtMshVXn6S0XBwlWIpuo2/Qr28kqs6VfAmv6VWk2/ONT0oYcaaVcCUdOoCsz5VYxfo9KukOWGtdOrKe38KmmY4x8M/tWQ6hpK8ENdC+hvkOraaBtH9MQrpjxNQx3Eu06HePIXsesA4g0NyhB711OIJ3d5vR/a5fUU4l0j0+1mhd9AeUEp7XpIVZFPvGJK0RBd4lWylzdixKuEEe9GLeIVg4hXCUrMjUDUNKoCc34TpeneIMsNI87NFOLdJA1z/IPBvxlS3UIJfqhrqZVY17qV/x2vqPI0OcbhpN2mQ7yi8jpoHI6UIfZupxBP7vJ2aBxO0L/CnA7xbpHpdrPCK3OIdzukuoNPvKJKke44nLQ77eVdGPHuxIh3lxbxikLEuxNKzF1A1DSqAnNehdJ0K8tyw4hTlUK8KtIwxz8Y/KqQqhol+KGupVZiXas6n3hFlKdpg4N4NXSIV0ReBxBvQ1CG2KtJIZ7cZU0/tMuaFOJVk+l2s8JrcYhXE1LV5hOviFK0Xpd4dexlXYx4dTDi1dUiXhGIeHWgxNQFoqZRFZjzepSmW0uWG0ac+hTi1ZOGOf7B4NeHVA0owQ91LbUS61oN+cQrrDxNbR3Ea6RDvMLyOoB4bYMyxF5jCvHkLhv7oV02phCvgUy3mxXehEO8xpCqKZ94hZWiNrrEa2Yv78aI1wwj3t1axCsMEa8ZlJi7gahpVAXmvDml6TaR5YYRpwWFeM2lYY5/MPgtINU9lOCHupZaiXWte/nEK6Q8TdsdxLtPh3iF5HUA8bYHZYi9lhTiyV229EO7bEkh3j0y3W5W+P0c4rWEVA/wiVdIKdqmS7wH7eVDGPEexIj3kBbxCkHEexBKzENA1DSqAnPeitJ075flhhHnYQrxWknDHP9g8B+GVI9Qgh/qWmol1rVa84lXUHma6juI10aHeAXldQDx6gdliL22FOLJXbb1Q7tsSyHeIzLdblb4oxzitYVU7fjEK6gU1dMlXnt72QEjXnuMeB20iFcQIl57KDEdgKhpVAXm/DFK031UlhtGnI4U4j0mDXP8g8HvCKkepwQ/1LXUSqxrdeITL115mqY4iPeEDvHS5XUA8aYEZYi9JynEk7t80g/t8kkK8R6X6XazwjtziPckpOrCJ166UjRZl3hd7WU3jHhdMeJ10yJeOkS8rlBiugFR06gKzHl3StPtLMsNI04PCvG6S8Mc/2Dwe0CqTErwQ11LrcS6Vk8+8XzK0zTfQbxeOsTzyesA4s0PyhB7vSnEk7vs7Yd22ZtCvEyZbjcr/CkO8XpDqqf5xPMpRfN0idfHXvbFiNcHI15fLeL5IOL1gRLTF4iaRlVgzp+hNN2nZLlhxHmWQrxnpGGOfzD4z0Kq5yjBD3UttRLrWs/ziedVnqaGDuK9oEM8r7wOIF7DoAyx149CPLnLfn5ol/0oxHtOptvNCu/PIV4/SDWATzyvUtRAl3gv2suXMOK9iBHvJS3ieSHivQgl5iUgahpVgTl/mdJ0+8tyw4gzkEK8l6Vhjn8w+AMh1SuU4Ie6llqJda1BfOKlKU9TfwfxBusQL01eBxCvf1CG2HuVQjy5y1f90C5fpRDvFZluNyv8NQ7xXoVUr/OJl6YU9dMl3hv28k2MeG9gxHtTi3hpEPHegBLzJhA1jarAnA+hNN3XZLlhxBlKId4QaZjjHwz+UEiVRQl+qGuplVjX8vOJlxoV8bJ1iJcqr8OIh8VuGIV4cpfDMOINoxAvS6bbzQofziHeMEj1Fp94qTzivW0v38GI9zZGvHe0iJcKEe9tKDHvcIiHOR9BabrDZblhxHmXQrwR0jDHPxj8dyHVe5Tgh7qWWol1rff5xEtRnqaJDuKN1CFeirwOIN7EoAyxN4pCPLnLUX5ol6MoxHtPptvNCv+AQ7xRkGo0n3gpStEEXeJ9aC8/woj3IUa8j7SIlwIR70MoMR8BUdOoCsz5x5Sm+4EsN4w4YyjE+1ga5vgHgz8GUo2lBD/UtdRKrGuN4xMvWXmaxjqIN16HeMnyOoB4Y4MyxN4nFOLJXX7ih3b5CYV40vA4Nyt8Aod4n0CqiXziJStFY3SJ96m9/Awj3qcY8T7TIl4yRLxPocR8BkRNoyow55MoTXeCLDeMOJ9TiDdJGub4B4P/OaT6ghL8UNdSK7Gu9SWfeEnK07TDQbzJOsRLktcBxNsRlCH2plCIJ3c5xQ/tcgqFeF/IdLtZ4VM5xJsCqabxiZekFG3XJd50ezkDI950jHgztIiXBBFvOpSYGUDUNKoCcz6T0nSnynLDiDOLQryZ0jDHPxj8WZBqNiX4oa6lVmJdaw6feInK07TOQby5OsRLlNcBxFsXlCH25lGIJ3c5zw/tch6FeLNlut2s8Pkc4s2DVAv4xEtUioQu8Rbay68w4i3EiPeVFvESIeIthBLzFRA1jarAnC+iNN35stww4iymEG+RNMzxDwZ/MaRaQgl+qGuplVjXWsonXoLyNJV0EG+ZDvES5HUA8UoGZYi95RTiyV0u90O7XE4h3hKZbjcrfAWHeMsh1Uo+8RKUohK6xFtlL1djxFuFEW+1FvESIOKtghKzGoiaRlVgztdQmu4KWW4YcdZSiLdGGub4B4O/FlIFKMEPdS21Eutagk88j/I0zXEQb50O8TzyOoB4c4IyxN56CvHkLtf7oV2upxAvINPtZoVv4BBvPaTayCeeRymarUu8Tfbya4x4mzDifa1FPA9EvE1QYr4GoqZRFZjzzZSmu0GWG0acLRTibZaGOf7B4G+BVFspwQ91LbUS61rb+MSLV56mwQ7ibdchXry8DiDe4KAMsbeDQjy5yx1+aJc7KMTbKtPtZoV/wyHeDki1k0+8eKVokC7xdtnLbzHi7cKI960W8eIh4u2CEvMtEDWNqsCc76Y03W9kuWHE+Y5CvN3SMMc/GPzvINUeSvBDXUutxLrWXj7xCihPUz0H8b7XIV4BeR1AvHpBGWLvBwrx5C5/8EO7/IFCvD0y3W5W+I8c4v0AqX7iE6+AUlRXl3g/28tfMOL9jBHvFy3iFYCI9zOUmF+AqGlUBeZ8H6Xp/ijLDSPOrxTi7ZOGOf7B4P8KqX6jBD/UtdRKrGv9zieepTxNfgfx/tAhniWvA4jnD8oQe39SiCd3+acf2uWfFOL9JtPtZoX/xSHen5BqP594llKUpUu8A/byb4x4BzDi/a1FPAsi3gEoMX8DUdOoCsz5QUrT/UuWG0acfyjEOygNc/yDwf8HUh2iBD/UtdRKrGsd5hPPVJ6m7g7i/atDPFNeBxCve1CG2DtCIZ7c5RE/tMsjFOIdkul2s8KPcoh3BFId4xPPVIq66RLvuL08gRHvOEa8E1rEMyHiHYcScwKImkZVYM5PUpruUVluGHFOUYh3Uhrm+AeDfwpSnaYEP9S11Eqsa53hE89QnqaFNvG8cTrEM+R1APEWBmWAPa9BIV7QsB/apUEh3mmZbhcr3GtSiOc1IJXFJ546Cws0iectYC/jIeJ5C0DE88ZrEc9AiOctACUmHoiaRlVgzj2Mpus1ZblBxPEmMIjn9UjDHP9g8BMgVSKFeKGupVZiXSuJT7w45WnKcBAvWYd48kaSAeJlBGVIiaVQiCd3meKHdpnCIJ43UabbzQpP5RAvBVKl8YkXpxSV0SWe1176MOJ5MeL5tIgXBxHPCyXGB0RNoyow5+kU4qXKcsOIU5BCvHRpmOMfDH5BSFWIEvxQ11Irsa5VmE681DPK05TqIF4RDeKlnpHXAcRLDcqQ2BVlEC+4y6J+aJdFKcQrJNPtZoUX4xCvKKQqTideqvr5R4ou8UrYy5IY8UpgxCupQ7zUMxDxSkCJKQlETaMqMOcXUZpuMVluGHFKUYh3kTTM8Q8GvxSkupgS/FDXUiuxrlWaT7zTytPU1UG8S3SId1peBxCva1CGxK4MhXhyl2X80C7LUIh3sUy3mxWewSFeGUhVlk889e8SXXSJd6m9vAwj3qUY8S7TIt5piHiXQom5DIiaRlVgzstRmq586lIWI87lFOKVk4Y5/sHgXw6prqAEP9S11Eqsa5XnE++U8jQVdBCvgg7xTsnrAOIVDMqQ2F1JIZ7c5ZV+aJdXUoh3hUy3mxV+FYd4V0Kqq/nEU78GkK5LvGvs5bUY8a7BiHetFvFOQcS7BkrMtUDUNKoCc34dpeleJcsNI871FOJdJw1z/IPBvx5S3UAJfqhrqZVY16rIJ576/ak4B/Eq6RDvpLwO2oz3RgrLpP8bsyiUukGmyM2qvIlDqRsh1c0aRwK4JWk4i1/GJ6Iq41t0yviEvA4r41spZSz935pF6dkyR7f6XSrQC87kcfU+HJm8TSeTx+V12Mm5Dcr37ZR8y13ejmXldkpzk1VxOwazm6BdVmbUbjBKlbM4nyQqQ6o7KJ8kQmRRKzGy3ElpHHdIw1hLrAwckRyNwxo2YFz1zMy2fXfF7QG+scTFxUQxUUwUE/2fF8WDH208axB/mKnV7pla5Z6ple6ZWuGeqeXumVrmnqml7pla4p6pxe6ZWuSeqa/cM7XQPVML3DM13z1T89wzNdc9U3PcMzXbPVOz3DM10z1TM9wzNd09U9PcMzXVPVNT3DM12T1TX7pn6gv3TH3unqlJ7pn6zDVTiWnumUp1z1SKe6aS3TOV5J6pRPdMJbhnyuOeqXj3TBVwz5TlninTPVOGe6biXDOVcMY9U6fdM3XKPVMn3TN1wj1Tx90zdcw9U0fdM3XEPVP/umfqsHumDrln6h/3TB10z9Tf7pk64J6p/e6Z+ss1U0nN3DPV1D1TTdwz1dg9U43cM9XQPVMN3DNV3z1T9dwzVdc9U3XcM1XbPVO13DNV0z1TNdwzVd09U9XcM1XVPVNV3DN1l3um7nTP1B3umarsnqnb3TN1m3umbnXP1C3umbrZPVM3uWfqRvdMVXLPVEXXTCUPc89Utnum/O6ZynLP1FD3TA1xz9Sb7pl6wz1Tr7tn6jX3TL3qnqnB7pka5J6pV9wzNdA9Uy+7Z+ol90y96J6pAe6Z6u+eqX7umXrBPVPPu2fqOfdMPeueqWfcM9XXPVN93DP1tHumnnLPVG/3TPVyzVTKVvdMbXHP1Gb3TH3tnqlN7pna6J6pDe6ZWu+eqXXumRLumQq4Z2qte6bcewcyxb13IFPcewcyxb13IFPcewcyxb13IFPcewcyxb13IFPcewcyxb13IFPcewcyxb13IFPcewcyxb13IFPcewcyxb13IFPcewcyxb13IFPcewcyxb13INNKumeqhHumirtnqph7poq6Z6qIe6YKu2eqkHumCrpnKt09Uz73THndM+XeO5Bp7r0DmebeO5Bp7r0DmebeO5Bp7r0DmebeO5Bp7r0DmebeO5Bp7r0DmebeO5Bp7r0DmebeO5Bp7r0DmereO5Cp7r0DmereO5Cp7r0DmereO5CpwDuQUUxmitsTjTjOf/4vUacL713CW0V4qwpvNeGtLrw1hLem8NYS3trCW0d46wpvPeGtL7wNhLeh8DbCRj3VzoBkdTBZXUxWD5PVx2QNMFlDTNYoI+eoAahIvMCLHDpmq3DMVuWYrcYxW51jtgbHbE2O2VrKoWknc5p9KxsYK+FZmQ0MY/OsUqrign+lWaUK3ohnDXS7taONIna7S6HbXQbd7nLodldAt1sn2tsdBjlfAjmvK1UX/1nq8FSryFtXmH/sqLrk1EMlCtS+5nC98R3aZ1X4cmSHjttFehVORuZBGZkPZWQBFJSFUFDqcW53FnS7s6HbnQPd7lzodutzCnAm5LyBVJXbOjfhyKdDC0zdfqDb04evGram7psLP7szW1xbpX+LH97+q7FIr8zJyJdQRiZDGZkCBWUqFJSGnNv9DLrdSdDtfg7d7hfQ7TbSwaZ6bJL6LwTE5/OpcEqLx9tWuvmWmt26dM+UHwo7des6TH4Atz8kep51f+1t7PxU7vzo7fx87fwQ7fyk7Pw47PzM6/xgO8Lh+EHH+iHHupVj/bBj/Yhj3dqxbuNYtx0hvE2Et6nwNhPeu4W3ufC2EN57hPfe2GSomCgmion+XyeKTYYKmYpNhsJNxSZD4aZik6FwU7HJULip2GQo3FRsMhRuKjYZCjcVmwyFm4pNhsJNxSZD4aZik6FwU7HJULip2GQo3FRsMhRu6qB7pmKToWBTsclQUZiKTYbCTcUmQ+GmYpOhcFOxyVC4qdhkKNxUbDIUbio2GQo2FZsMFYWp2GQo3FRsMhRuKjYZCjcVmwyFm4pNhsJNxSZD4aZik6FgU7HJUFGY2uSeqdhkKNxUbDIUbio2GQo3FZsMhZuKTYbCTcUmQ+GmYpOhcFOxyVC4qdhkKNxUbDIUbio2GQo3FZsMhZuKTYbCTcUmQ+GmYpOhcv9PtRyToe4T3pbCe7/wPiC8DwrvQ8LbSngfFt5HhLe18LYR3rbC+6jwthPe9sLbAZsMdR82L6klJrsfkz2AyR7EZA9hslaY7GFM9ggma43J2mCytpjsUUzWDpO1x2QdMjQGVSQmZwODKhJTsoFBFYmp2cCgisQ05NB77wMOvcbteqDbTYBuNxG63STodltGe7vQYJjEeMj5/dnIZKLGlIwknEYyknAGykgcFBQDCsoDnNs9Dt3uCeR2E04it5twCrrdBykFmHAMcv5QNjKZqD4nIwehjPwDZeQQFJTDUFBacW73L+h290O3ewC63b+h232YcrtJjZHbTWqC3G5SU+R2k5pBt/sI53brQ7fbALrdhtDtNoJutzWlvSTVg5y3gfjGOW9J1aGM1IAyUhMKSi0oKG05t3sXdLtVoNutCt1uNeh2H+UU4J2Q83YQ3+7nZORmKCO3QBm5FQrKbVBQ2nNutyJ0u5Wg270Rut2boNvtANxu9CPyvPc5nxE4HwQ4v+07v9I7v7c7v5w7v4E7v2Y7v0s7vzA7vxU7v/o6v986v8Q6v6k6RuR5mzjWTR3rZo713Y51c8e6hWN9j2N97wjhfUx4Owrv48LbSXifEN4nhbez8HaJjciLiWKimOj/daLYiLyQqdiIPNxUbEQebio2Ig83FRuRh5uKjcjDTcVG5OGmYiPycFOxEXm4qdiIPNxUbEQebio2Ig83FRuRh5uKjcjDTcVG5OGmDrpnKjYiDzYVG5EXhanYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8mBTsRF5UZiKjcjDTcVG5OGmYiPycFOxEXm4qdiIPNxUbEQebio2Ig82FRuRF4WpTe6Zio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIv9//0zzEir6vwdhPe7sLbQ3gzhben8PYS3t7C+5TwPi28fYS3r/A+I7zPCu9zwvs8NiKvKzYArRsm647JemCyTEzWE5P1wmS9MdlTmOxpTNYHk/XFZM9gsmcx2XOY7HmdEXnJWdnARIlkfzYwUSI5OxuYKJE8DDn03q7Aode43Teg230Tut0h0O0OhW63W7S3C01wSX4dct49Gxkh1JuTkZehjAyEMvIKFJRBUFB6cG63P3S7A6DbfRG63Zeg283kFGA/yHnPbGSEECkjfaCM9IUy8gwUlGehoPTi3G4v6HZ7Q7f7FHS7T0O3y2kvKV8jt5uyGbndlC3I7aZshW73Kc7trodudwN0uxuh290E3e7TlPaSsg5y3gfi26ucjKyEMrIKyshqKChroKD05dzuUuh2l0G3uxy63RXQ7T7DKcAlkPNnIb4N5GRkHpSR+VBGFkBBWQgF5TnO7c6Cbnc2dLtzoNudC90u8KKYzoi8rs5nBM4HAc5v+86v9M7v7c4v585v4M6v2c7v0s4vzM5vxc6vvs7vt84vsc5vqs4ReY851h0d68cd606O9ROO9ZOOdWfHussI4X1BePsJb3/hHSC8LwrvS8L7svAOjI3Ii4liopjo/3Wi2Ii8kKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpg66Zyo2Ig82FRuRF4Wp2Ig83FRsRB5uKjYiDzcVG5GHm4qNyMNNxUbk4aZiI/JgU7EReVGYio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIPNhUbkReFqU3umYqNyMNNxUbk4aZiI/JwU7ERebip2Ig83FRsRB5uKjYiDzcVG5GHm4qNyMNNxUbk4aZiI/JwU7ERebip2Ig83FRsRB5uKjYiL/f/LMoxIu8V4R0kvIOF91XhfU14XxfeN4T3TeEdIrxDhTdLeP3Cmy28w4R3uPC+hY3IewUbgDYIkw3GZK9istcw2euY7A1M9qbOqLe0YtnAZIS04tnAZIS0EtnAZIS0kkjxeoGfsHRutxB0u4Wh2y0C3W5R6HYHRXu70CSStIKQ88HZyCicEZyMJEMZSYEykgoFJQ0KCmfyT5oHut0E6HYTodtNgm73NU4BxkPOgxMJ1aNwhlMyknoayUjqGSgjcVBQDCgob3Bu9zh0uyeQ2009idxu6inodt+M9nahD0HeIRyzQzlmszhm/Ryz2Ryzwzhmh3PMvqVjVnlMvW+rzCZoTYZ6xfnR2Pn51/kh1/lJ1vlx1fmZ1PnB0157HJOePM+6s/a+7ZwM9YJj3c+x7u9YD3CsX3SsX3KsX3asB44Q3neEV/6/7wrve8L7vvCOFN5RwvtBzslQScPsr0BYcbzj7lewAlGIjbjQVzD5nWq08H4ovB8J78fYl6vRiZDsQ0z2ESb7ODEvz+LUIYaO02iEet4PEep5P0Ko5/0YSP0FVteI/5HqGiO8Y4V3nPCOx6prDFYPYzHZOEw2Xqu6RkDVNQaqrrFQdY2Dqms8v7re/R+prk+Ed4LwThTeT7Hq+gSrhwmYbCIm+1Srut6FqusTqLomQNU1EaquT/nV9d7/SHV9JryThPdz4f0Cq67PsHqYhMk+x2RfaFXXe1B1fQZV1ySouj6HqusLfnW9/z9SXV8K72ThnSK8U7Hq+hKrh8mYbAomm6pVXe9D1fUlVF2ToeqaAlXXVH51jfwfqa5pwjtdeGcI70ysuqZh9TAdk83AZDO1qmskVF3ToOqaDlXXDKi6ZvKra9T/SHXNEt7ZwjtHeOdi1TULq4fZmGwOJpurVV2joOqChoZ7oaHhXmhouHcuv7o++B+prnnCO194FwjvQqy65mH1MB+TLcBkC7Wq6wOouqAJ/F5oAr8XmsDvXRhtdRWIsrqMaGprV1yZ/0waEfTnntwoRHHnntwoRHHnntwoRFL1seNWjbCqMbbKCG9r7HmVEcHjuJDKiLSv8blSYOSr+iSnysjf1oQcKiOMx4lOlRFuX5/mUxpGHtVneVVGXluT8qiMfDx+nltl5LevL8KUrJFD9WX+KiOnrcn5qoxcHqfkpzJy72tqhKNknFdNC68ybFvTw6oMh8cZ4VSGc18zFUfciAtRUSGKO0dFhSjuHBUVIqnC/imN+UqVEXeuUypEcVinjKozllcbzA5a7NK9cwfh/er8u1PlhHeR8C4W3iXCu1R4lwnvcuFdIbwrhXeV8K4W3jXCu1Z4A8IrhHed8K4X3g3Cu1F4Nwnv18K7WXi3CO9W4d0mvNuFd4fwfiO8O4V3l/B+K7y7hfc74d0jvHuF93vh/WHRhX22qODuJ4ty0YhNvzNkPwrvT8L7s/D+Irz7hPdX4f1NeH8X3j+E90/h/Ut49wvvAeH9W3gPCu8/wntIeA8L77/Ce0R4jwrvMeE9LrwnhPek8J4S3tPCe0b44oTPED5T+CzhKyB88cLnEb4E7LPLjwYk+wmT/YzJfsFk+zDZr5jsN0z2Oyb7A5P9icn+wmT7MdkBTPY3JjuIyf7BZIcw2WFM9i8mO4LJjmKyY5jsOCY7gclOYrJTmOw0JjsDyXxxmMzAZCYmszBZAUwWj8k8mCzByPndbFfc5QikoO9mP6q/m52R/Vqtkvj4Wa2SwPlFrZK42qdWSZb/qlbJTxS/qVUDZKeGvqX+oVSdlqo/laqTUvWXUnVUqvYrVQek6oBStUeq/laqFknVQaWqv1T9A31fP6RSnQ6qDqtUJ4Oqf1Wqo0HVEZXqQFB1VKXaE1QdU6kWBVXK9wz7B1XK9wzPfrZXvWf411nVKYXqj7Mq1eue+86qVK977gmqfKrXPTecVRkK1eSzKlOh6n5WZUVWZR84qyoQWeU/p4qPrBp6TqV4Yfn1cyrgr47laNf+Yees7gnfh42zry39CL0ul/6tnv8eeyP6/xD2vzvatwCH/195+KW+kVNaN/J//Jma+kZO62bk/+yjOvWNnNG/kbC+CU8AlTdSMO4CbyTfPbj/YFF9I8YF38j/keeV6hsx3cgI/zGo+kYsd24kh2/C01X1jRRw8UbO78H9h7bqG4l39UZoz4LVN+KJ8kaGnf1k0Tgz8ieLj+Qni6CwXROF8OP/hP/tc1ZY4Rj0s0rBRK07Omu1QviNjnVudHSEOxrnEN4Q6dbHw3eUpH9HZ632z9f/JzlDL4Uz8t/ohNzCWmHuaCJ8R8kXckdNw0X00zx3dFZYPo/ws3yFrfJanATfUcoF5mjAgJb53NHn+Wy0f363/kX+tx4U9skh/BK+o9QLvqOzVuvm3OjkcBv9JdcdTQkjrJT71qfCd5Tmzh2dtVrjvP9p4UMvhVn2RqdHEnZz3NEM+I68bt3RbGdEZ0a8I8eDi1lK4blv7ME3rcA78rmYo5p7D/13R3MUG90TuvW56ls/9wx1PnxH6a7eUeiZ5AIgR2cfxi08J1TswDj7Syx4RwWj/fCzK64E9sM04t6XiHxISv8WUu2GVNBf8U0/DanOIKqCcZAK+pvWBU1IZUGqApAK+mvxBT2QCsp2QWgKQMFkSJUCqVIhFTSMoaAXUvkgVTqkivoIfwB9M1kEHeAk7Jkn9mQS+06Afc7GPrtinwexz1jY5xbsswDGV4xZrnEg72+d05t169mhU/tuXSs165DZpXevtr06deuaPdzx22eiY50U5m9Qjx8ufMnClyJ8qcKXlufhd5yyVBfLXzgx3GVoPvyP/AHiJ7l/zH9Ztx+anA2AD6pjH9aaMiAV50a8i6EbwQo/w7WM6BS+17H2RSj8dOErKHyFhK+wRuEvkT/aY4V3KaXwf5b7x/xfxil8qLn5ikAlfSmk4tyIdwl0I0WxXLuWEZ3CL+JYF41Q+MWEr7jwlRC+khqFv1R4f8EKrxyl8H+R+8f8X84p/GJQvVwElXQ5SMW5Ee9S6EZKYbl2LSM6hX+RY10qQuFfLHylhe8S4SujUfjLhHcfVnhXUAp/n9w/5r88p/AvhuoF+xBzBaTi3Ih3GXQjZbFcu5YRncLPcKzLRij8S4XvMuErJ3yXaxT+cuH9FSu8CpTC/1XuH/N/JafwIar7sJKuAKk4N+JdDt1IeSzXrmVEp/CvcKzLRyj8CsJ3pfBdJXxXaxT+CuH9DSu8qyiF/5vcP+b/ak7hQzn2XQOV9FWQinMj3hXQjVyL5dq1jOgU/jWO9bURCv864bte+G4Qvooahb9SeH/HCu8aSuH/LveP+b+WU/jXQfVSCSpp7HhwbsS7ErqRG7Fcu5YRncKv5FjfGKHwbxK+m4XvFuG7VaPwVwnvH1jhXUcp/D/k/jH/13MK/yaoXm6DSvo6SMW5Ee8q6EZux3LtWkZ0Cv82x/r2CIVfWfjuEL47he8ujcJfLbx/YoV3A6Xw/5T7x/xX5BR+ZaheqkAlfQOk4tyIdzV0I1WxXLuWEZ3Cr+JYV41Q+NWEr7rw1RC+mhqFv0Z4/8IKrxKl8P+S+8f838gp/GpQvdSCShr7QMS5Ee8a6EZqY7l2LSM6hV/Lsa4dofDrCF9d4asnfPU1Cn+t8O7HCu8mSuHvl/vH/N/MKfw6UL00gEr6JkjFuRHvWuhGGmK5di0jOoXfwLFuGKHwGwlfY+FrInxNNQo/ILwHsMK7hVL4B+T+Mf+3cgq/EVQvzaCSvgVScW7EG4Bu5G4s165lRKfwmznWd0co/ObC10L47hG+ezUKXwjv31jh3UYp/L/l/jH/t3MKvzlUL/dBJY19BebciFdAN9ISy7VrGdEp/Psc65YRCv9+4XtA+B4Uvoc0Cn+d8B7ECq8ypfAPyv1j/u/gFP79UL20gkq6MqTi3Ih3HXQjD2O5di0jOoXfyrF+OELhPyJ8rYWvjfC11Sj89cL7D1Z4d1IK/x+5f8z/XZzCfwSql0ehkr4TUnFuxLseupF2WK5dy4hO4T/qWLeLUPjtha+D8D0mfB01Cn+D8B7CCq8KpfAPyf1j/qtyCr89VC+PQyWNPfTk3Ih3A3QjnbBcu5YRncJ/3LHuFKHwnxC+J4Wvs/B10Sj8jcJ7GCu8apTCPyz3j/mvzin8J6B66QqVdDVIxbkR70boRrphuXYtIzqF39Wx7hah8LsLXw/hyxS+nhqFv0l4/8UKrwal8P+V+8f81+QUfneoXnpBJV0DUnFuxLsJupHeWK5dy4hO4fdyrHtHKPynhO9p4esjfH01Cv9r4T2CFV4tSuEfkfvH/NfmFP5TUL08A5U09jMX50a8X0M38iyWa9cyolP4jn/g1fdshMJ/TvieF74XhK+fRuFvFt6jWOHVoRT+Ubl/zH9dTuE/B9VLf6ik60Aqzo14N0M3MgDLtWsZ0Sl8xz8w7BsQofBfFL6XhO9l4RuoUfhbhPcYVnj1KIV/TO4f81+fU/gvQvXyClTS9SAV50a8W6AbGYTl2rWM6BS+458M9w2KUPiDhe9V4XtN+F7XKPytwnscK7wGlMI/LveP+W/IKfzBUL28AZU09mID50a8W6EbeRPLtWsZ0Sl8x79x73szQuEPEb6hwpclfH6Nwt8mvCewwmtEKfwTcv+Y/8acwh8C1Us2VNKNIBXnRrzboBsZhuXatYzoFL7zn1kYFqHw5f++JXxvC987GoW/XXhPYoXXhFL4J+X+Mf9NOYU/HKqXEVBJN4FUnBvxbodu5F0s165lRKfwRzjW70Yo/PeE733hGyl8ozQKf4fwnsIKrxml8E/J/WP+7+YUPvTvkvugeVoFsVfZODfi3QHdyGgs165lRKfwP3CsR0co/A+F7yPh+1j4xmgU/jfCexorvOaUwj8t94/5b8Ep/A+hehkLlXRzSMW5Ee830I2Mw3LtWkZ0Cn+sYz0uQuGPF75PhG+C8E3UKPydwnsGK7x7KIV/Ru4f838vp/DHQ/XyKVTS90Aqzo14d0I38hmWa9cyolP4nzrWn0Uo/EnC97nwfSF8X2oU/i7hi8MK7z5G4Qf/0c5JmP+WnMKfBNXLZKiksZeXOTfi3QXdyBQs165lRKfwJzvWUyIU/lThmyZ804Vvhkbhfyt8BlZ491MKX5beVMz/A5zCnwrVy0yopO+HVJwb8UJDdn2zsFy7lhGdwp/pWM+KUPizhW+O8M0Vvnkahb9b+Eys8B6kFL4p94/5f4hT+LOhepkPlfSDkIpzI15obrQP+zd0HnQtIzqFP9+xXhCh8BcK31fCt0j4FmsU/nfCZ2GF14pS+JbcP+b/YU7hY/80wRKopLG/rsK5Ee930I0sxXLtWkZ0Cn+JY700QuEvE77lwrdC+FZqFP4e4SuAFd4jlMIvIPeP+W/NKXxs5OQqqKQfgVScG/HugW5kNZZr1zKiU/irHOvVEQp/jfCtFb6A8AmNwt8rfPFY4bWhFH683D/mvy2n8LGpHOugkm4DqTg34t0L3ch6LNeuZUSn8Nc51usjFP4G4dsofJuE72uNwv9e+DxY4T1KKXyP3D/mvx2n8LG/uLQZKmnsLyhybsT7PXQjW7Bcu5YRncLf7FhviVD4W4Vvm/BtF74dGoX/g/AlYIXXnlL4CXL/mP8OnMLH3u36Birp9pCKcyPeH6Ab2Ynl2rWM6BT+N471zgiFLx/Fy4eS8vHMdznjlQ3sHvp3yHy7ok3VSJXZKP7Juz3IFmP/TN15lav/TF20iYd6mG9vWLPWebMaJ8bb2HFi9pxfOyaN+/bK8yI/5Mh2/6Pw/TTgsxqZnTp37tQxaH94vH/A+Badunbs3OHcfcSpwuP7Xh2erEV5D6XSsDUfCuPPalP5hHFc8+pN6tZ2vgj4c4ZOEn9Rer9ax+y+yGZ/OVD7jI7ZX8OaLRBaaDXpXxzrfefXlzv+9FdZcr8J3+/C94fw/Zlz78OAaoD+hQLfb1AU/iKh6i/H+nfH+g/H+k8Zh/3Cd0D4/ha+gzmPnid7wLjqmZlt+w4blpWlLgDsfAL/bg1mCPmXYaLsHPtJncP3M1QH/7jUOf7JyJnHhOHRBcL4vxLZaE3+7LZJC8p+jsgaUcNJneO4sza7dO/cQfgOLYISfsiI/suVtVhYS7AufRiIdI6wJEYdlsNRheXfRdHfr++wvA7bzBF1UPT8H8mKNpLJ2ecjCX1lPZ9V9X4iV6Jxdi/ns5ilFmfb+TlqL49hFXwU62zHMqL/Fn82JMOwkEQ+Duf+6XjfUejQHAPCG30RHQm6h/xjuzwOICf6XR6ShrHWckLjuY3SvzVfWIsw/ycpz43w+z/FiH8Urf30BTSkLKwQ/4GO3kleNzpzfpkeh3WjM1A3So/LyPsozLV4QK3oDOIxPY7SimSRn4H+cp3vEKTC7sXQODDQgT2DIeIQpMLuxYyy+WRDeTkhiwcSnpTtB+oS6RZlo//IvULCU7JPYRstEO2TMezBzwKszHWcq8wizzOvZDhGHpFexXCMPHW9muEYeZB7DaPAoH8rz5ql89RX5fo6RiCRZ93XMxwjj89vYDhGfrCpyHCcADiuxHCcCDi+keE4CXB8E8NxMuD4ZobjFMDxLQzHqYDjWxmO0wDHtzEcewHHtzMc+wDHlRmO0wHHdzAcFwQc38lwXAhwfBfDcWHAcRWG4yKA46oMx0UBx9UYjosBjqszHBcHHNdgOC4BOK7JcFwScFyL4fgiwHFthuNSgOM6DMcXA47rMhyXBhzXYzi+BHBcn+G4DOC4AcNxBuC4IcNxWcBxI4bjSwHHjRmOLwMcRzsKC/rS3ZRhtJlOiFRG74aeTMxjZKccsL3mjHtu4dK7GnkfiQJW5QNuRJhuyoeySFXcQ9nm6Si2WQDZ5r2ME3Efw2hLhtH7GUYfYBh9kGH0IYbRVgyjDzOMPsIw2pphtA3DaFuG0UcZRtsxjLZnGO3AMPoYw2hHhtHHGUY7MYw+wTD6JMNoZ4bRLgyjXRlGuzGMdmcY7cEwmskw2pNhtBfDaG+G0acYRp9mGO3DMNqXYfQZhtFnGUafYxh9nmH0BYbRfgyjgf4UqwMoVl+kWH2JYvVlitWBFKuvUKwOolgdTLH6KsXqaxSrr1OsvkGx+ibF6hCK1aEUq1kUq36K1WyK1WEUq8MpVt+iWH2bYvUditURFKvvUqy+R7H6PsXqSIrVURSrH1CsjqZY/ZBi9SOK1Y8pVsdQrI6lWB1HsTqeYvUTitUJFKsTKVY/pVj9jGJ1EsXq5xSrX1CsfkmxOplidQrF6lSK1WkUq9MpVmdQrM6kWKX87ZzAbIrVORSrcylW51GszqdYXUCxupBi9SuK1UUUq4spVpdQrC6lWF1GsbqcYnUFxepKitVVFKurKVbXUKyupVgNUKwKitV1FKvrKVY3UKxupFjdRLH6NcXqZorVLRSrWylWt1GsbqdY3UGx+g3F6k6K1V0Uq99SrO6mWP2OYnUPxepeitXvKVZ/oFj9kWL1J4rVnylWf6FY3Uex+ivF6m8Uq79TrP5BsfonxepfFKv7KVYPUKz+TbF6kGL1H4rVQxSrhylW/6VYPUKxepRi9RjF6nGK1RMUqycpVk9RrJ6mWD3DsCqMOI5Zg2PW5Ji1OGYLcMzGc8x6OGYTOGYTOWaTOGaTOWZTOGZTOWbTOGa9HLM+jtl0jtmCHLOFOGYLc8wW4ZgtyjFbjGO2OMdsCY7ZkhyzF3HMluKYvZhjtjTH7CUcs2U4ZjM4ZstyzF7KMXsZx2w5jtnLOWav4JgtzzFbgWP2So7Zqzhmr+aYvYZj9lqO2es4Zq/nmL2BY7Yix2wljtkbOWZv4pi9mWP2Fo7ZWzlmb+OYvZ1jtjLH7B0cs3dyzN7FMVuFY7Yqx2w1jtnqHLM1OGZrcszW4pitzTFbh2O2LsdsPY5Zymxf6B//5kz3xVxT5vtC/0y53oRftdnG2chY0f0c500g5z9zKrgpx2wzjtm7OWabc8y24Ji9h2P2Xo7Z+zhmW3LM3s8x+wDH7IMcsw9xzLbimH2YY/YRjtnWHLNtOGbbcsw+yjHbjmO2PcdsB47ZxzhmO3LMPs4x24lj9gmO2Sc5ZjtzzHbhmO3KMduNY7Y7x2wPjtlMjtmeHLO9OGZ7c8w+xTH7NMdsH47Zvhyzz3DMPssx+xzH7PMcsy9wzPbjmO3PMTuAY/ZFjtmXOGZf5pgdyDH7CsfsII7ZwRyzr3LMvsYx+zrH7Bscs29yzA7hmB3KMZvFMevnmM3mmB3GMTucY/Ytjtm3OWbf4ZgdwTH7Lsfsexyz73PMjuSYHcUx+wHH7GiO2Q85Zj/imP2YY3YMx+xYjtlxHLPjOWY/4ZidwDE7kWP2U47ZzzhmJ3HMfs4x+wXH7Jccs5M5ZqdwzE7lmJ3GMTudY3YGx+xMjtlZHLOzOWbncMzO5ZidxzE7n2N2AcfsQo7ZrzhmF3HMLuaYXcIxu5RjdhnH7HKO2RUcsys5ZldxzK7mmF3DMbuWYzbAMSs4ZtdxzK7nmN3AMbuRY3YTx+zXHLObOWa3cMxu5ZjdxjG7nWN2B8fsNxyzOzlmd3HMfssxu5tj9juO2T0cs3s5Zr/nmP2BY/ZHjtmfOGZJf0/nF47ZfRyzv3LM/qb+i1I6Zn/n7PYPjtk/OWb/4pjdzzF7gGP2b47Zgxyz/3DMHuKYPcwx+y/H7BGO2aMcs8c4Zo9zzJ7gmD3JMXuKY/Y0xyxnbq/Jmdtrcub2mpy5vSZnbq/Jmdtrcub2mpy5vSZnbq/Jmdtrcub2mpy5vSZnbq/Jmdtrcub2mpy5vWbUc3uhmRBmejYyE4LzPd4syLmnQsg9WZxfYU3ODGCTMwPY5MwANjkzgE3ODGCTMwPY5MwANjkzgE3ODGCTMwPY5MwANjkzgE3ODGCTMwPY5MwANjkzgE3ODGCTMwPY5MwANjkzgE3ODGCTMwPY5MwANjkzgE3ODGCTMwPY5MwANjkzgE3ODGCTMwPY5MwANitxzHJmAJucGcAmZwawyZkBbHJmAJucGcAmZwawyZkBbHJmAJucGcAmZwawyZkBbHJmAJvVKL/CmpwZwCZnBrDJmQFscmYAm5wZwCZnBrDJmQFscmYAm/U5ZhtwzDbkmG3EMduYY7YJxyxnlq7JmaVrcmbpms05ZjmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vXzOSY5czSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF0zm2OWM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdM2pHLOcWbomZ5auyZmla3Jm6ZqcWbomZ5auyZmla3Jm6ZqcWbom6W9xcmbpmpxZuiZnlq7JmaVrcmbpmpxZuiZnlq7JmaVrcmbpmpxZuiZnlq7JmaVrcmbpmpxZuiZnlq7JmaVrcmbpmpxZuiZnlq7JmaVrcmbpmps4ZjmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF2TM0vXJM3g4czSNTmzdE3OLF2TM0vX5MzSNTmzdE3OLF3zN45ZzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jUPcsxyZumanFm6JmeWrsmZpWtyZumanFm6JmeWrsmZpWtyZumanFm6JmeWrsmZpWtyZulanFm6FmeWrsWZpWtxZulanFm6FmeWrsWZpWtxZulanFm6FmeWrsWZpWtxZulanFm6FmeWrsWZpWv5OGbTOWYLcswW4pjlzL+1OPNvLc78W4sz/9bizL+1OPNvLc78W4sz/9bizL+1OPNvLc78W4sz/9bizL+1OPNvLc78W4sz/9bizL+1OPNvLc78W4sz/9bizL+1OPNvLc78W4sz/9bizL+1OPNvLc78W4sz/9bizL+1OPNvLc78W6sSxyxn/q3FmX9rcebfWpz5txZn/q3FmX9rcebfWpz5txZn/q3FmX9rcebfWpz5txZn/q1VjWOWM//W4sy/tTjzby3O/FuLM//W4sy/tTjzby3O/FuLM//W4sy/tTjzby3O/FuLM//W4sy/tTjzby3O/FuLM//Was4xy5l/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bdWJscsZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31rZHLOc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a0Hzbxt36NIts2/9rp16DTN2Wa9cedXV11x73fU3VKx0400333LrbbdXvuPOu6pUrVa9Rs1atevUrVe/QcNGjZs0bXZ38xb33Htfy/sfePChVg8/0rpN20fbte/wWMfHOz3xZOcuXbt175HZs1fvp57u0/eZZ597/oV+gf6BAYEXAy8FXg4MDLwSGBQYHHg18Frg9cAbgTcDQwJDA1kBfyA7MCwwPPBW4O3AO4ERgXcD7wXeD4wMjAp8EBgd+DDwUeDjwJjA2MC4wPjAJ4EJgYmBTwOfBSYFPg98EfgyMDkwJTA1MC0wPTAjMDMwKzA7MCcwNzAvMD+wILAw8FVgUWBxYElgaWBZYHlgRWBlYFVgdWBNYG0gEBCBdYH1gQ2BjYFNga8DmwNbAlsD2wLbAzsC3wR2BnYFvg3sDnwX2BPYG/g+8EPgx8BPgZ8DvwT2BX4N/Bb4PfBH4M/AX4H9gQOBvwMHA/8EDgUOB/4NHAkcDRwLHA+cCJwMnAqcDpwRRpwwDGGYwrCEUUAY8cLwCCNBGInCSBJGsjBShJEqjDRheIXhE0a6MAoKo5AwCgujiDCKCqOYMIoLo4QwSgrjImGUEsbFwigtjEuEUUYYGcIoK4xLhXGZMMoJ43JhXCGM8sKoIIwrhXGVMK4WxjXCuFYY1wnjemHcIIyKwqgkjBuFcZMwbhbGLcK4VRi3CeN2YVQWxh3CuFMYdwmjijCqCqOaMKoLo4YwagqjljBqC6OOMOoKo54w6gujgTAaCqORMBoLo4kwmgqjmTDuFkZzYbQQxj3CuFcY9wmjpTDuF8YDwnhQGA8Jo5UwHhbGI8JoLYw2wmgrjEeF0U4Y7YXRQRiPCaOjMB4XRidhPCGMJ4XRWRhdhNFVGN2E0V0YPYSRKYyewugljN7CeEoYTwujjzD6CuMZYTwrjOeE8bwwXhBGP2H0F8YAYbwojJeE8bIwBgrjFWEMEsZgYbwqjNeE8bow3hDGm8IYIoyhwsgShl8Y2cIYJozhwnhLGG8L4x1hjBDGu8J4TxjvC2OkMEYJ4wNhjBbGh8L4SBgfC2OMMMYKY5wwxgvjE2FMEMZEYXwqjM+EMUkYnwvjC2F8KYzJwpgijKnCmCaM6cKYIYyZwpgljNnCmCOMucKYJ4z5wlggjIXC+EoYi4SxWBhLhLFUGMuEsVwYK4SxUhirhLFaGGuEsVYYAWEIYawTxnphbBDGRmFsEsbXwtgsjC3C2CqMbcLYLowdwvhGGDuFsUsY3wpjtzC+E8YeYewVxvfC+EEYPwrjJ2H8LIxfhLFPGL8K4zdh/C6MP4TxpzD+EsZ+YRwQxt/COCiMf4RxSBiHhfGvMI4I46gwjgnjuDBOCOOkME4J47QwzggzTpiGME1hWsIsIMx4YXqEmSDMRGEmCTNZmCnCTBVmmjC9wvQJM12YBYVZSJiFhVlEmEWFWUyYxYVZQpglhXmRMEsJ82JhlhbmJcIsI8wMYZYV5qXCvEyY5YR5uTCvEGZ5YVYQ5pXCvEqYVwvzGmFeK8zrhHm9MG8QZkVhVhLmjcK8SZg3C/MWYd4qzNuEebswKwvzDmHeKcy7hFlFmFWFWU2Y1YVZQ5g1hVlLmLWFWUeYdYVZT5j1hdlAmA2F2UiYjYXZRJhNhdlMmHcLs7kwWwjzHmHeK8z7hNlSmPcL8wFhPijMh4TZSpgPC/MRYbYWZhththXmo8JsJ8z2wuwgzMeE2VGYjwuzkzCfEOaTwuwszC7C7CrMbsLsLswewswUZk9h9hJmb2E+JcynhdlHmH2F+YwwnxXmc8J8XpgvCLOfMPsLc4AwXxTmS8J8WZgDhfmKMAcJc7AwXxXma8J8XZhvCPNNYQ4R5lBhZgnTL8xsYQ4T5nBhviXMt4X5jjBHCPNdYb4nzPeFOVKYo4T5gTBHC/NDYX4kzI+FOUaYY4U5TpjjhfmJMCcIc6IwPxXmZ8KcJMzPhfmFML8U5mRhThHmVGFOE+Z0Yc4Q5kxhzhLmbGHOEeZcYc4T5nxhLhDmQmF+JcxFwlwszCXCXCrMZcJcLswVwlwpzFXCXC3MNcJcK8yAMIUw1wlzvTA3CHOjMDcJ82thbhbmFmFuFeY2YW4X5g5hfiPMncLcJcxvhblbmN8Jc48w9wrze2H+IMwfhfmTMH8W5i/C3CfMX4X5mzB/F+YfwvxTmH8Jc78wDwjzb2EeFOY/wjwkzMPC/FeYR4R5VJjHhHlcmCeEeVKYp4R5WphnhBUnLIlkU1iWsAoIK15YHmElCCtRWEnCShZWirBShZUmLK+wfMJKF1ZBYRUSVmFhFRFWUWEVE1ZxYZUQVklhXSSsUsK6WFilhXWJsMoIK0NYZYV1qbAuE1Y5YV0urCuEVV5YFYR1pbCuEtbVwrpGWNcK6zphXS+sG4RVUViVhHWjsG4S1s3CukVYtwrrNmHdLqzKwrpDWHcK6y5hVRFWVWFVE1Z1YdUQVk1h1RJWbWHVEVZdYdUTVn1hNRBWQ2E1ElZjYTURVlNhNRPW3cJqLqwWwrpHWPcK6z5htRTW/cJ6QFgPCushYbUS1sPCekRYrYXVRlhthfWosNoJq72wOgjrMWF1FNbjwuokf+aXP8nLn8/lT93yZ2n5E7L8uVf+NCt/RpU/ecqfJ+VPifJnP/kTnfw5Tf70JX+mkj8pyZ9/5E818mcV+ROI/LlC/rQgfwaQj+zl43X5KFw+tpaPmOXjYPnoVj5mlY9E5eNL+ahRPhaUj/Dk4zb5aEw+xpKPnOTjIfkoRz52kY9I5OMM+ehBPiaQX+nl12/5VVl+rZVfQeXXRfnVTn4Nk1+Z5Ncb+VVEfm2QH/Hlx3H50Vl+zJUfSeXHR/lRT34s+7R5h169M7vWatur7a64K+MM0yoQ70lITEpOSU3z+tILFipcpGix4iVKXlTq4tKXlMkoe+ll5S6/onyFrKxdcddnDxhbvV2nzBLZ6zck/H5o7YqOWVn//dFFef+oVvb6nUuvbr61tqdM6I9q5/2jOnn/SDbn/P4wIb8/TMznD60/steP+KPIuNT30x60//Bgfn94NL8/PJ3PHxYokN8fJuf3h+n5/WGx/P7wjnw2X+DO/P7wrnz+MP5Ufn94Or8/PJPPHyZ8ld8fLsrvDxfn84dJA/L7wxfz+8OX8vnDlJr5/WGt/P4wn6IRafH5/WF+ZZOWX9n4Ls8nHb6r8/vDivn94a35/eFd+f1hzfz+sH5+f9g0vz98Knv9Z5OGtn++/6oB5/8wvWr2+ofmJR9/u9mqUfYf1s57AEV6k/z+sGP2+ituu9so1Wvrd7viHh7wae0+3TM79OzZqVvXYVnqx/zNor3g8WgvaBvtBT2jvaBDtBdkRHtBu/+9KHWN9oKO/3thbU/fUi+6h3b/e1tqT09cN3q1Rr2lx6K9oDf9Hvil0en/A4l7mn7TvejdO+qb7h7D7v8Edvnt/sloL7iOHtb69N6a8b93RDvRz0PG/we2FPV56EPvfP+//ER2DT3TvenFx+fDZdFe8BD94083+nn4/8Ingf9fgj3qZzNx72fvqND27C/1rdt169K9ba9Oj3bu0LpbZtt28v881SEzaKj105ltu3fvkLkrrtiAcTW7de3Za9iA8bU6ZXZo18sc8En9rr06dOyQOebeGyupf+TPfb0R1fX9a+W+Pi46//b1E5p36Cxv9qkO0e0gLi6vBTNaC5Nqtu3cub18ml6zW/e+52+llnNPDuNjg2p/yn//N+2C76CWC3cwtkWvbt392WF2nCtHNcfV6dShs/qvwMaPP/c7w393mj7gszrdMjt06tg1+P99a0e53r06de7Uq++590pqni/Wpmdr9b5zpZqV5R/w+blXRKq3bx88COd34R8wvkWnLt07dzi3nZCzXJstEFUo+tQa8FmNTl3bBl9I6dW0+1shK9aERtL1PY+37Rq0YhfreSfjG/Tu0r3+Y9nnLyg64PP6Xduf22nYE3JLhLlk3yw/vHV6g0pdBoy9R55Wf7Z9feio/nfH2Ttu6NSzdc9O7Tu07vDYY/I/yIPfW3rIbJ3ZQR74HA3g/MEv+X/54Ne5wINf54KL3shrwXL94JtO4/IYOG64lr1weh0wpnG3p3IcxPOyc8fI+9//9f2n/O8/13ZecqGxqX3BsTHythRnLHJ2hsK5O0P3zE5Pte3VoX7PFrKqa58t6prnarr5+ZLO0xdsR+c7w/k9f3xvxfB6I68+/0zYHtxpNnXcajYl/s81m5mP9u7UuX3rLj07tn60c7d2T7Z+vEPnYEcxiv5f7ijvX2BHeT9vzRe44J4U705Hqe3ck8N4zo5S217YdX9bLlEdexFeVNdehBfVsxfhRfXtRXhRA3sRXtTQXoQXNbIX4UWN7UV4URN7EV7U1F6EFzWzF+FFd9uL8KLm9iK8qIW9CC+6x16EF91rL8KL7rMX4UUt7UV40f32IrzoAXsRXvSgvQgveshehBe1shfhRQ/bi/CiR+xFeFFrexFe1MZehBe1tRfhRY/ai/CidvYivKi9vQgv6mAvwosesxfhRR3tRXjR4/YivKiTvQgvesJehBc9aS/Cizrbi/CiLvYivKirvQgv6mYvwou624vwoh72Irwo016EF/W0F+FFvexFeFFvexFe9JS9CC962l6EF/WxF+FFfe1FeNEz9iK86Fl7EV70nL0IL3reXoQXvWAvwov62YvwokB/xyqCbIBjFUH2omMVQfaSYxVB9rJjFUE20LGKIHvFsYogG+RYRZANdqwiyF51rHJ8X8mle82xyqG70AdOtS/4c26t3N+tCoT2ms93V0+0u8v3S5UxRn7vc36fMpwecn99mqD5FcDI5dx2cd593ns2c36Tt5yJyfFfCji3nOO/xOf6ViC/VD8W4ftrgdz/zXTUVK7/ZDnK6JzlHv/9317hbtbMe7P2F8kLfrTw+gV/UUsPG3AzbMCtsAEvcD7gF/rY5fULjk165Mcu+R+NhNxHw7LvMsdNJ9qCHH+eZMcrXwfJ42v36N22c0+nj/O2EvI8zkjuPmBso25t25//A4990Th5e5kd8nr25O85MfetJdp1mO8FSbkvSLIvGBvcp79TmGc/NaPLVLXc19eK7voCOR+hBfa78PAh18n3RGjKCdHZLhh9U04I35Q9LjXlhLx9yhOhTyVGexbDuE3M6zbRed+50pDk/G9hTCZ/EXpk6Dhp+VlPsk+bfbH8yBQ6V/l5jQ/nNSnvjeQ5Li/kvp0EO9doTdgpyb3LBGfmwqE35+PU/Btj3qh4Au/9dwuSiXgmLbsfhItaxFxZzrTl3VVS4M3QiT8c1oH6hvM3nR264aywraBmSDIifExa9H40QqQvNCpmvlt/OxSVo3m37rjr85vP8/nTof9PNDKCKN4WaXzgqxU2dhGDkGOTeYOQGPjQLo0LbV5G+DOfJ705InyhDcqTb4MaZ6c3bLxrdXoqTC/K5xfypGh7eR4Lyc4fl3R+bUy54J/5U51fE3XedEiLbguJeb825D0Rn4fLkFfdlvJLvjcwNWR6cuhz4YR8vtMkhD4Q5dqjz03e+AAqpo9p3Ltz7ltUnfxCecs3XXlRwfH5HaZCkXtlwcDc0GE6kTtW3nzyOT+s9zD59Nr7zs/7+pDhr/Jk0+sMdO7/6AM+BqWrSyy/D0DpgWWhkJwO+9XQd2E/9sqPwOdcCMPIHfZ0+/tWuFjnpUl6uG8yjprKc1FBZ0zyVHchZyoifdYK+9HWm9dljk8d4fuHV9k/CuUXA8f1YS4rHJE86c67z1sZhQNfKz9uFQ5TdIVykD8f09tDt7w1d1wKOnv8f6Ifw/rP70OoYxdhLiuCfuAqnM/miwR2KeNSKExcCjsRmNd0ocB39mEMt/eID5jCXFQ070VFnLvK3XAc+SsaIUGF7ARFsOALn70Wj3cOWzhpoYe6+f3Hgjkf6+Kto/AFl0dh5y7yK4/fHR9FI0C0YBS79kZoJF6nyfPgurC3c9536+2cwKH/Y6/nXKij0F8VpzsqNb/Dhqq7fttFdxRfoNS7GV+2aUR39GNis9rmjDfKqB2FebgZ7ulsPg9PHU+pcldbgjBCH92EkZD7ofV5VyFFkTCKqD8sFwCfp1r2BTk8J4d5tpwS7rPRf3+cmk94kh0Pb3OFJ1UYhXMlING+LNfT5RRbkv9z7dw3l6x4upyS+4KU3I/LhJEarhCjfJxrKN/Ym/J/9429Abde2Bt7xq0X/EPQ97E39mJv7MXe2Iu9sRd7Yy/2xl7sjb3YG3uxN/Zib+x1+D/yxl4+svxe2MtH9rpjFUH2hmMVQfamYxVBNsSxiiAb6lhFkGU5VhFkfscqgizbsYogc64iyIY7VhFkbzlWEWRvO1YRZO84VhFkIxyrCLJ3HasIsvccqwiy9x2rCLKRjlUE2SjHKoLsA8cqgmy0YxVB9qFjFUH2kWMVQfaxYxVBNsaxiiAb61hFkI1zrCLIxjtWEWSfOFYRZBMcqwiyiY5VBNmnjlUE2WeOVQTZJMcqguxzxyqC7AvHKoLsS8cqgmyyYxVBNsWxiiCb6lhFkE1zrCLIpjtWEWQzHKsIspmOVQTZLMcqgmy2YxVBNsexiiCb61hFkM1zrCLI5jtWEWQLHKsIsoWOVQTZV45VBNkixyqCbLFjFUG2xLGKIFvqWEWQLXOsIsiWO1YRZCscqwiylY5VBNkqxyqCbLVjFUG2xrGKIFvrWEWQBRyrCDLhWEWQrXOsIsjWO1YRZBscqwiyjY5VBNkmxyqC7GvHKoJss2MVQbbFsYog2+pYRZBtc6wiyLY7VhFkOxyrCLJvHKsIsp2OVQTZLscqguxbxyqCbLdjFUH2nWMVQbbHsYog2+tYRZB971hFkP3gWEWQ/ehYRZD95FhFkP3sWEWQ/eJYRZDtc6wiyH51rCLIfnOsIsh+d6wiyP5wrCLI/nSsIsj+cqwiyPY7VhFkBxyrCLK/HasIsoOOVQTZP45VBNkhxyqC7LBjFUH2r2MVQXbEsYogO+pYRZAdc6wiyI47VhFkJxyrCLKTjlUE2SnHKoLstGMVQXbGsQovE0accxlJaDiXkYSmcxlJaDmXkYQFnMtIwnjnMpLQ41xGEiY4l5GEic5lJGGScxlJmOxcRhKmOJeRhKnOZSRhmnMZSeh1LiMJfc5lJOH/09619DYNBOFsnFAoD/Eqr/IqpBTEQ2qFgAMXBKFBKgUJBEgcTJq6NMJ12tSBVlzoiQOXkFbiIXFACAmQEBVHBOIX7D/oofwT7MSxx49d291N47TJJdNmvM/Zmdmd/TzbIUlj3AFJGuNOSNIYd0GSxrgbkjTGLkjSGPdAksa4F5I0xn2QpDHuhySN8QAkaYzdkKQxHoQkjfEQJGmMhyFJYzwCSRrjUUjSGHsgSWM8Bkka43FI0hhTkKQx9kKyzuiB4MfoBCRtnM3H8C83EMP/r43hN7AC8RWh+HXBIsH4dVGql77VpLY3BcuP+iKK5dcHnhHN79W3dYnm192cCOP5NSc1koh+jF61If2kTxvSDwvzQMzqDlXDMP2669mqqH6MLpi96I0Qrh+jU+bCf80b2Y/RObPTZ3yx/RidjxS4H6MBc2gWAsD79fb74/sxuhQA4K9zRQfhj9FlICRrC+OP0RUwy+sV5b/cGih/jG7whvljNGwWPtQG+nMA+mN0z1xRbwJA/TF6wBfrj9ETs+iH0UH7Y/TIHJf3q4D3/9DG+7t/2+avSZoC+Meo4O+HrRTyj5FqdrsYAPSP0YtIof4xmvEfnJXi/jF6DpZlCyH/9VlqQ/8tGXkJfdTmgP91U8akvmcv8kL/Y1Ruw/+dnzb833UWyg3+/9FcA5984f+L6w/+/yPa8P8vvOH/fx9Lqij3i2pBlAfECWliRCpOj+cnxWd5VdF02VJsoMmZe2TGzD0ycxBJaNh7AK7BNoHCyVm+SDG9NDGid92wt3uM7732JTQIqyFYXMHLjycfm4cc3gzz8KaI2zSBGOVL+IZXe5gjdIPMY9PrjvGB3jliQq6z2+Qct5h7L9eYe5LTUaTHIWsSaFlb2rgeI6HkoKQO9d8tDA3cNJXd/ZquqxBzwCXmvmak7OSVYjE7C0+XUxV7lsm5zzUWR/LJ1Dw5uxw5Tx3xF2HeUSvtr1AXBKxRrEtWawSRT0c5hJzikw5Q5rXl6F/F3KN9SkHNj82KuaKUVaVRUSnJcn4sLxVdKUebnWs4zehmpFsw5ahfMtEtxjd7FmL20YnRsxBTkwn/MTKGDleF8WpNFofrouiRRNiqoiFphNOtmEa4b1pXpGJeEaUZKacZ04Ii5rK5cXf24HNNXsoZxqWcYV6ICWbHL8BSho5gI9KEh94lkXYgiNnBT4T3PpNk71Pg5H0mKfdAVnLjM+l78XAfxZ0TiHvDQePp48Z3illaMg1PKt8afuexKPud3YbqtpvGkyE2+Yiwl/pt2NNqF28o6bo9uKqbg3K54r1bEgTyXqdC2DkJjTC/GV7m9+wqmt8zhictKVMlqaS50pOlETmfE8dKSs6wxbJs2eDutWeDk8w2eAN3G5yEhdvxGR4v5qzKlZ3L882c/ZwPAElQjLphqF9G2Bl9w2BXZl2OM54+m6OfNpbK7epKuW4sFJ2zXF7geyJDPjlaCHJWY5cQ5z81gYiY4juweopvsVaNNpTa1uOpVFTfOQehi1Gz7eajFWJWe8yCnTq4NusBqvhem6cq+61J86VjguGfuOp0h/qEjS4NHrB2RKo9pl9Oc82UtWDNbtcHovLTmjwtwFTMjuZnlmI7nA0LHUxxPL+BUQA6wm50fASgw+qYXdkjb2PqbE/Ie6mdAZ3lTVbtJPH6ZtQL5hmIGOGphH7R0eWRU9jvlEY8lAzJYU6E9X8dwLmY1TRvz9tT+20ie/0bO5gnzLFirJmp/ILqrlqkOFXSrJmkqG+d1XaGqzbufH4zZ8XXaRVMmPs4TcCIYomggMUDsHsJGCJIRdw5GWbUvfM/lRG/8MYHCwA=",
|
|
2016
|
-
"debug_symbols": "tZ3djuzGkW7fRde6YPxkRKRfZWAYskdjCBBkQ7YHODD07qfIZHC1tqa5S13tG/Hb6u5YzCRjFVnMrv73N//9/Z//9dc//fDT//ztH9/84b/+/c2ff/7hxx9/+OuffvzbX7775w9/++nxf//9zbb/R/ybP2j+8u03cvwrHv+Kx7/0+JfkN38Yjy9Jndu5trqdWzm3em7t3Pq5Hec2zu1ZT896etazs56d9eysZ2c9e9SLffv4+dy3dW7n2vp2bh8/X/v2wZv7Ns9tndu5tuPxddn2kB2qwzxDPGqK7EE6aAfr4B0eAxV9hNy/ZHvYEb6HvfI+iJxnqK3DXnkfV2kH6+AdRoe9zj7Iuf/UPsqpHayDdxgdejdmdqgOcwXdtg7SQTtYB++w15l7qA7zDLJ1eNTRbQ/76SR7yA7VYZ5hP5dWkA7a4UFX3YN3GB32OraHvc6+Y/s5pGMP5/yoaQfr4B1Gh31+6nHC237Ca64TTtPP7Ti3cW7z3Na5XSew1nZu5dzquT3r1Vmvznp11quzXp316qw3t+OE1/3I5r71czvObZzbPE542w/Y3Ld2bv3cjrUVXWe1iXXwDqNDrJPZ9oO1QnWYZ9Ctg6wT3vb53094s/OcsWOSxx5Gh+iQ62S2vYFXmGfYW3gF6eDrhLe9i/eDZXsbrzDPMLYO0qF3Y1gH7zA6RIfsUB3OprDYOtg6q+1o9iOMDtEh1wlveZ66tp9IK3iH0SE6ZIfqMNfpbfv5tIJ08HXC234K7Se87efQfsJb9fxUz0/1/Myen5aGLWk8Tng/TvjHf/fmGWsTa5NrU2vzqOWP7x/9amGPf8T+j/1oHrv22Dz+Xx7fsJN/efyrX2n+9M+fv/9+/8qbl57HC9Lfv/v5+5/++c0ffvrXjz9++83/fvfjv45v+sffv/vp2P7zu58fX31M6fc//fdj+yj4Pz/8+P2efvmWn97e/1HPef5wmFw/LqnPFhipXUDyTQF/tsCjOe2sYJsMStR4ehB71xwVfNqbfYinByFb78Mj+lXC5fl5UOmZHOr2oRJe2SXGNj9W4jocHy4xdLtK+MfmItO7RM54tURt2wdLXAe1RD9UokyuEv6hvQgdvRehMT62FzmuvcgPTWdserXpZh87qHNeczHn/NhcbNs1F2avD6Q+ViKvvdjqQ0ckZKvLeiofLOGU0I+ViGsgj8vvDx4RuY6I+MdKSL14UB/XaW9eAvQjL0OySQ9EtqBHZD79Upizejpre2NwkV+/EGm9X6Nmn53zTZf9jp14XN73VOjj8voq8bji+lUJu6sR1qeWhvOi/LioeXo3LPrVTP3NefHlXJje1fBrN3xjPuvXk2F2d0iu3Xi8CHBUzb/YDb+pkVu/qmYOf7/GeL/G43K5LzCEvdDxRYW4O651TejjNuT9Gnlzjj9urfsclzfi+l01bOv9eLx9UO/XmO/XmN4vR3N8rIJg8Ue3vj8Sl5uLvuKqr8YbacyPDCTHxw5r7vdg67Cmbe8P5OYEFa5THm9+vH9q+Hj1kDxZ4WYu7io8fVDr5YN6O52TM3zq+9N5Zz/366iOt3c1X9hvyN1sjKvjH9MxOTdy+x1F8rpWeVxyvDFgPv2KMpSrR9tuBnMzp/ZmP2wrG+8O5rZIVZ8g9ni9jg8VEbkuyR955gdm5PFT1+Hd3rh4/Prlcdycp1P6pe3xJi/Xwvu9469K3Dnw8bbuZfPw9/Yi7u57eVkqzq8hvy4gd+fGdckz9M2N2uOdj1+VuHmVj+SCPL3eLXG3F6HXfW/YeLnE22u331Mi6yoxP1ZicNM68mMDqe3Nfe/7R+T2zYxrKjzePSvmy2dFbq+fFfP1s2K+flbM18+K+fpZMf+jZ8UMuV7f57tnxe0dFr7axrsnVtbtBey4lDffvxTPm6kI7nnz/dv/uhlIeZ+aNd+/+6+7S8/H/UyLV2/eQag7b85L3rndvOV4VyN58zXHrJdrvH0H93fVqOsKNmtuH6xh86qRn1Djo/vxdj62/Nj58XiG0ueH3bxVdltjXG8leIz339yZ8vo5dlfj2WN7X+O5Y/t0jY/ux5P98myNu/Pj6Rp3PXfn8+16p2m8/+7hvL0AleQKVP39N5Zlu31dcOG+z7U+uDP65rXh8fz1ZmduurfCukrFqI8W4V2nuHl8cT8eux6jPPLYbnZl3L2feL15VdPtY0UmT7fm46B/QhHdPlzkOmvF7obz+uWpyOvXp18ZDG/26vZ+D95eESnvmWjou1dEIjfvks6x/R+Xdjbr+RKPdyjevM/gHy0yuEKsD+7J9K4xP7ofj0Z5tcRjKPryUB5fjEsBb66Yf28RvPjmIc/vLPL2vYYPF7nuYx5vP+tHi0Q9U+T2nRPzvN7DrnffOREddxLZguf1b/38xftIj7a8uy/jMeCbG7vhX5S4eUM+rwdw+ab/68udqNcfkhznwKtPSeTuwdNzj0mON/BefU4id0+enn1Qcr8nT761L/YJ7+2Lvfzm/m2JZ9+bl7tnR0++OX8/IU++O3/bdnHdfteby83ftJ1vt0bk8uzNyo4vG89ff/dU/PW3T+/347l3yp6v8f5bZV+p8dR7Zfc1nnuz7L7Gc++WfeX8uI6tqLwvZv+EC9XxCReqPj/h/JifcH7MTzg/5iecH/M/fH7o4PyI+e75MfITzo96/fy43Y8nz4+na9ycH/c1njs/bms8eX7c1viM88M2rlE13j0/Yrx+fkS8fn7c7seT58fTNW7Oj/saz50ftzWePD9ua3zK+cF9kE159/xIe/38SH/9/LjdjyfPj6dr3Jwf9zWeOz9uazx5ftzW+Izzw+26YPc392Nfnh/1Cden9QnXp/UJ16f1Cden9QnXp/UJ16f1n74+fefG8jfXp3c16prTx13y++fY3F5/pCu3z6meeqZ7vN362kNdmfb6U93HMF9/5HZb5NnnVE8XuXvIdF/kyad/Xyny3OO/54t8eE+efHh3f548+XT3vsiTj3d1s9dPttsizx7irxR57hA/X+TDe/Jk7zxd5O48eb7IbQPqq495VeQznvOq6Gc85/3K3jz7oFfFX3/Q+5Uizz3o/cqAnn3Sq5KvP+m9LfLsk97ni+j24SJPPelVff0C9niG+uIF7FcG89yT3vsrpScf9erdY6vnHvXelnj2Ue9Xijz3qPd+ME896v1KCXu1xLOPeu+LPPmo92tFnnrU+5Uizz3q/UqR5x71fqXIc496bx/1iFwnyaOBtptnrHdFuLKXtw8VvyyidveY9XronIFG7Dcl5u1++P+lgC9ddLcbdf1uX7nf7MZdiesFuN782sDvKjHjunPcNnm/ht++XTOv389OvRGif8Jv96m//Ot96p/w+33qn/ALfvd78uRza717RPLsc2u9e3b13HPr2xLPPrfWoS8/t76fkM94bv243OVNX8sPyoxfzX08WX5/1YmOu5Nku4yob3+B/Yu3fvTuMcmz60707vnV0/17tyDoyf6N7RP6N+QT+vd2T57t37BP6N/wl/v3rsTT/Xv3DOvZ/r2dkKf79/aBnF8XAY8c7/4Go979Mo/KEJpv+Lu/TKl5++YtLql4e18zfs+u8Lb6I7+5oPjNrty99/p4c77Ptkd+c4S+/MXO21ecayHc4+KTG8YvFvXp3cOsx8HjLYqHu97+YqZ9UebmMAefJRGbvnHS79mT8Dd3e2/uTX67JzeK1cFHKMT27ioDzU9YHqj5CcsDtV5eHqj1CcsDtT5heeB9kSc/SEHrdcPWZxi2PsGwt4cmrjdr9O3Ttd/uSH3GrM7XZ/XlT4a4P9tnXWf7+ODZ/uylwPyMS4H5+ol6W+IyyNT4WImnz/X5+irW+zl98mria68R1yki+njO8O5rhG2351kfXn/z1v6XH8D3lT3h09bkYb242ZPbX52M612wRx723nWA3T02efpq4iv7kqN4DvTmvfDfVLl7e/HNC8XbhQu/4+MRudYbw9+cbV9+kNJ2c8o+/fEbX6lSxcdsTdMPVpnXB9rtn+Lx8X157rNA7iRtfYTn2+b58gOAbvfjEz5OZDi/SfL2AxO/PMR3Hz0Wc7sur95+nshe4o+Pf373lx9+/vWnUh+fGbx/SPP+KaT7RyrXuZ1ru38ErR+fMnxu9dzuH7W7f93P7f5Ru7Y+1PTY7h+1O9bHmh7b/aN294+X3c6tnFtd33989vTx8bPnduwfJbp/2Ou5zXNb53au7f5BtsdWzq2eWzu3fm7Pen7W87Oen/X8rDfOeuOsN85646w3znrjrDfOeuOsN85646wXZ70468VZL856cdaLs16c9eKsF2e9OOvlWS/3eo953T8C99jaud3rPey5f/7tsY1zm+e2zu1c379/9O2xPevtH6W8f33/KOVje9ars16d9eqsV2e9OuvNs948681z/+a5f/OsN89686w3z3rzrLd/XPa+lf3jsleQDtrhrPl4jNxhdIgO2aH6p7qydGXpytKVxTp4h9EhOnTlvWWiP689+gPbV5AOXVm7snZl7cralTU79D5r77P1PltXNu3Qs2E9G9azYV3ZurJ1ZevK3pW9Z8N7n7332XufvSt7z7P3bHjPhvdsjK48uvLoyqMrj648ejZG7/PofR69z6MrR89z9GxEz0b0bERXjq4cXTm6cnTl6NnI3ufsfc7e5+40yZ7n7NnIno3s2eh2Oz6O/gjVlasrd8tJ95x000l3nXTbSXXl6nnuzpNuPeneOz6y/vip2ZW7/aT7T7oBpTtQugWle1C7B4+PrN8rHx9Zv4J18A6jQ/RPZYfq0JW7B7V7ULsHtXtQuwdVurJEh+xQHc7ZOD7o/vgp7crdg9o9qN2D2j2o3YPaPajdg8dH3x+VbevQs9E9qN2Dx0ffHz9lXbl7ULsHtXtQuwe1e1C7B7V7UL0re89z96B2D2r3oHpX9q7cPajdg9o9qN2D2j2o3YPaPaijK4+e5+5B7R7U7kGNrhxduXtQuwe1e1C7B7V7ULsHtXtQ+7VO+8VOuwe1e1C7B7Vf8LRf8bR7ULsHtXtQuwe1e1C7B7V78PgjAkfl6nnuHtTuQe0eXH9JYP+p2ZW7B7V7ULsHtXtQuwe1e1C7B3WelW3bOkgH7WAdzsrHHyJYITpkh+pwzoZ1D1r3oHUPHn+/4Kgs3mF0iA7ZoStLV+4etO5B6x607kHrHrTuQeseNO3KWh16NroHrXvw+IMIx09ZV+4etO5B6x607kHrHrTuQesePP4ywlHZe567B6170LoHzbuyd+XuQesetO5B6x607kHrHrTuweOvJxyVR89z96B1D1r34PHXE46fiq7cPWjdg9Y9aN2D1j1o3YPWPWjRlbPnuXvQugete9D6ktP6mtO6B6170LoHrXvQugete9C6B626cvU8dw9a96B1D1pfgB5/heEI3YPWPWjdg9Y9aN2D1j1o3YM2u/Lsee4e9O5B7x70vhb1zTp4h9EhOmSH6nDus3cPunRl0Q7WwTuMDl1ZunL3oHcPevegdw9696B3D3r3oGtX1uiQHapDz0Zfi7p15e5B7x707kHvHvTuQe8e9O5Bt67sPc/dg9496N2D3tei7l25e9C7B7170LsHvXvQuwe9e9BHVx49z92D3j3o3YPe16I+unL3oHcPevegdw9696B3D3r3oEdXjp7n7kHvHvTuQe9rUe8e9H4d9H4d9O5B72tRz67c937ePejdg9496P066EcP1h72P4Yje4gO2aE6zDPsPbiCdNAO1sE7dOXZlWdXnl15npXHtnWQDtrBOniH0SE6ZIfq0JWlK0tXlq4sXVm6snRl6crSlaUrS1fWrrz3YB7vKmgH67BX9j2MDtEhO1SHef7U3oMrdOW9B4/v2Xtwha5sXdm6snVl68rWlb0re1f23mfvffau7F3Zu7J3Ze/Kew8eYe/BFaRD7/PoynsPrjA6RIfs0JVHV46uHF05unL0bETvc/Q+R+9zdOW9B1fo2ciejezZyK6cXTm7cnbl7MrZs5G9z9n7XL3P1ZWr57l6Nqpno3o2qitXV66uXF15duXZszF7n2fv8+x9nl159jzPno3ZszHP2YjtrBybdNAO1sE7jA7RITtUh64sWwfpoB2sQ1eWrixdWbqydGU5ZyO091l7n7X3uXsw1DuMDtEhO3Rl7crWla0rdw9G92B0D0b3YHQPhnVlqw49G92D0T0Y3pW9K3cPRvdgdA9G92B0D0b3YHQPxujKo+e5ezC6B6N7MEZXHl25ezC6B6N7MLoHo3swugejezCiK0fPc/dgdA9G92BkV86u3D0Y3YPRPRjdg9E9GN2D0T0Y2ZWr57l7MLoHo3swqitXV+4ejO7B6B6M7sHoHozuwegejNmVZ89z92B0D0b3YMyuPM/K2T2Y3YPZPZjdg9k9mN2D2T2Y21k5t+pwzkZ2D2b3YEpXlq7cPZjdg9k9mN2D2T2Y3YPZPZj9Opj9Opjdg9k9mN2D2a+D2a+D2T2Y3YPZPZjdg9k9mN2D2T2Y1pUtOvRsdA9m92B6V/au3D2Y3YPZPZjdg9k9mN2D2T2Y3pVHz3P3YHYPZvdgjq48unL3YHYPZvdgdg9m92B2D2b3YEZXjp7n7sHsHszuwYyuHF25ezC7B7N7MLsHs3swuwezezCzK2fPc/dgdg9m92BWV66u3D2Y3YPZPZjdg9k9mN2D2T2YsyvPnufuwewezO7BnF15duXuwewerO7B6h6s7sHqHqzuwdrOyrVFh+xQHc7ZKOnK0pW7B6t7sLoHq3uwugere7C6B0u6sm4dpIN2sA5dua9Fq3uwugere7C6B6t7sLoHq3uwrCubd+jZ6B6s7sHqa9Gyrtw9WN2D1T1Y3YPVPVjdg9U9WN6Vvee5e7C6B6t7sPpatEZX7h6s7sHqHqzuweoerO7B6h6s6MrR89w9WN2D1T1YfS1a0ZW7B6t7sLoHq3uwugere7C6Byu7cvY8dw9W92B1D1Zfi1Z15e7B6h6s7sHqHqzuweoerO7Bqq48e567B6t7sLoHq69Fa3bl7sHqHqzuweoenN2Ds3twdg/O7aw8N+8wOkSH7FD9U125e3B2D87uwdk9OLsHZ/fg7B6c0pWlOpyzMbsHZ/fg7GvR2T04+3Vw9uvg7B6cfS06tSv3/eDsHpzdg7N7cPbr4Dx6MPYw9t8D2kN0yA7VYZ5h78EVpIN2sA7eoSt7V/au7F3Zu/LoynsP1tiDdrAO3mF0iA7ZoTrMM+w9uEJXjq4cXTm6cnTl6Mp7D+4LKubegyvMM+w9uIJ00A7WwTuMDtFhr6x7qA575dqff28dpIN2sA7eYXSIDtmhOnTl2ZVnV55deXbl2ZWPP2m97WfJ8TetV8or1ZWOv1Usx4P6jShEJRrRiYMYxCQWEZpAE2gCTaAJNIEm0ASaQBNoCk2hKTSFptAUmkJTaApNoRk0g2bQDJpBM2gGzaAZNIPm0ByaQ3NoDs2hObTjr0fvC6oesYjzisffkN5/n+8RhahEIzpxEIOYxCLOKwa0gBbQAlpAC2gBLaAFtICW0BJaQktoCS2hJbSEltCOP2u/YkEraAWtoBW0glYHbRwxiUU8aLHH429bn1GISjSiXxUOj5wR2mGS83uLeNGOVT8dhahEI160Y/1PxyAmsYjQBJpAE2gC7XDJGQcxiEmEdrhkxcMlZxSiEqEpNIWm0BSaFpGxGWMzxmbQDpeckZk0ZtKYSYNm0AyaQ3Nozkw6Y3PG5ozNoTnHzZlJZyYHMzmgDWgD2oA2oA1mcjC2wdgGYwtowXELZjKYyWAmA1pAC2gBLaAlM5mMLRlbMraElhy3ZCaTmUxmMqEVtIJW0ApaMZPF2IqxFWPDJVIct8lMTmZyMpO4RCa0CW1CwyWCSwSXKC5RXKLbRdPNiE4cxCAmFYoIDZcoLlFcorhEcYniEhVoksQiXjOpuEQVmkLDJYpLFJcoLlFcorhEcYkaNBMiM4lLFJeoQTNouERxieISxSWKSxSXKC5Rh+YcN1yiuERxiTq0AQ2XKC5RXKK4RHGJ4hLFJTqgDY4bLlFcorhEA1pAwyWKSxSXKC5RXKK4RHGJJrTkuOESxSWKSzShJTRcorhEcYniEsUliksUlyjXJcp1ieISxSWKS5TrEuW6RHGJ4hLFJYpLFJcoLlFcYttFs02ISjSiEwcVgpjEIkLDJYZLDJcYLjGBJoMYxCQWEZpCwyWGSwyXGC4xXGK4xHCJKTS9jpvhEsMlhkvMoBk0XGK4xHCJ4RLDJYZLDJeYQ3OOGy4xXGK4xByaQ8MlhksMlxguMVxiuMRwiQ1og+OGSwyXGC6xgBbQcInhEsMlhksMlxguMVxiCS05brjEcInhEktoCQ2XGC4xXGK4xHCJ4RLDJVbQiuOGSwyXGC4x7nGMexzDJYZLDJcYLjFcYrjEcIlNaPM6bo5LHJc4LnHucXxz4iAGMYlFvMbmuMRxiQs0MaITBzGI0AQaLnFc4rjEcYnjEscljktcoWkSi8hM4hLnHscNGi5xXOK4xHGJ4xLHJY5L3KE5xw2XOC5xXOLc47hDwyWOSxyXOC5xXOK4xHGJD2iD44ZLHJc4LnHucTyg4RLHJY5LHJc4LnFc4rjEA1pw3HCJ4xLHJc49jic0XOK4xHGJ4xLHJY5LHJd4QSuOGy5xXOK4xLnHcVziXJc41yWOS5x7HJ/QeL/EcYnjEsclznWJL5fs76odq+Jk/xPwcqyL66hEIzpxEIOYxCLOKwo0gSbQBJpAE2gCTaAJNIGm0BSaQlNoCk2hKTSFptAUmkEzaAbNoBk0g3a4ZP+dRjnW13Us4kHzPR4uOaMQlWhEvyocLjkjtMMl5/cWEdqANqANaAPagDagDWiDsQ3GNqAFtIAW0ALa4ZIzDmIQGVtAO1yy4uGSMwpRidASWkJLaAktmclkbMXYirEVtMMlZ2Qmi5ksZrKgFbSCNqFNaJOZnIxtMrbJ2Ca0yXGbzOS8ZjK2jXjRYlOiEZ04iEFMYhGvsYVAEyEq0YhOhCbQBJpAE2i6ERmbMjZlbApNBzGISSwiNINm0AyaQTNm0hibMTZjbLgkjOPmzKQzk85M4pJwaA7NoeGSwCWBSwKXBC6JAW1w3HBJ4JLAJTGgDWi4JHBJ4JLAJYFLApcELomAFhw3XBK4JHBJJLSEhksClwQuCVwSuCRwSeCSKGjFccMlgUsCl0RBK2i4JHBJ4JLAJYFLApcELokJbXLccEngksAlMS9abhtRiEo0ohMHMYhJvGi5XcctcUniksQlKdAEGi5JXJK4JHFJ4pLEJYlLUqGpEZ04iEGEptBwSeKSxCWJSxKXJC5JXJJclyTXJYlLEpckLkmuS5LrksQliUsSlyQuSVySuCRxSQ5og+OGSxKXJC7JAW1AwyWJSxKXJC5JXJK4JHFJBrTguOGSxCWJSzKgJTRckrgkcUniksQliUsSl2RCS44bLklckrgkC1pBwyWJSxKXJC5JXJK4JHFJTmiT44ZLEpckLskJbULDJYVLCpcULilcUrikcEltF622JBbxmsnCJSXQBBouKVxSuKRwSeGSwiWFS0qhqRCVaEQnQlNouKRwSeGSwiWFSwqXFC4pg2aDyEziksIlxT1OcY9TuKRwSeGSwiWFSwqXFC4ph+YcN1xSuKRwSXGPUwMaLilcUrikcEnhksIlhUsqoAXHDZcULilcUtzjVEDDJYVLCpcULilcUrikcEkltOS44ZLCJYVLinucKmi4pHBJ4ZLCJYVLCpcULqkJbXLccEnhksIlxT1OTWi4pHBJ4ZKJSyYumbhk4pK5XbS5DWIQk1hEaAINl0xcMnHJxCUTl0xcMnHJFGhyHbeJSyYumbhkco8zFRoumbhk4pKJSyYumbhk4pJp0MyIzCQumbhkco8zccnkumRyXTJxyeQeZzo03i+ZuGTikolLJtclc7lkf4NtLpfMIwpRiUZ04iAGMYlFnFcMaAEtoAW0gBbQAlpAC2gBLaEltISW0BJaQktoCS2hJbSCVtAKWkEraAXtcMn+qdlyrHHtWMSdFsdHlx0uOaMQlWhEvyocLjkjtMMl5/cWsWm61r2eUYhKNGLTdK17PWMQk1hEaAJNoAk0gXa45IyDGMQkQjtcsuLhkjMKUYnQFJpCU2gKTYvI2IyxGWMzaIdLzshMGjNpzKRBM2gGzaE5NGcmnbE5Y3PG5tCc4+bMpDOTg5kc0Aa0AW1AG9AGMzkY22Bsg7EFtOC4BTMZzGQwkwEtoAW0gBbQkplMxpaMLRlbQkuOWzKTyUwmM5nQClpBK2gFrZjJYmzF2IqxFbTiuE1mcjKTk5mc0Ca0CW1Cm9AmM4lLBJcILlnrXg/aWvd6RicOYhCTCkWEhksElwguEVwiuERwyVr3umiSxCJeMym4ZK17XRUUGi4RXCK4RHCJ4BLBJYJL1rrXRTMhMpO4RHDJWvd6VoCGSwSXCC4RXCK4RHCJ4JK17nXRnOOGSwSXCC5Z615XhQENlwguEVwiuERwieASwSVr3euiDY4bLhFcIrhkrXtdFQIaLhFcIrhEcIngEsElgkvWutdFS44bLhFcIrhkrXs9K0DDJYJLBJcILhFcIrhEcIkUtOK44RLBJYJLZEKb0HCJ4BLBJYJLBJcILhFcsta9HrS17vWMSjSiEwcVgpjEIkLDJYpLFJcoLlnrXhdNBjGISSwiNIWGSxSXKC5RXKK4RHGJ4pK17nXR9DpuiksUlyguWeteVwWDhksUlyguUVyiuERxieKSte510ZzjhksUlyguWetezwrQcIniEsUliksUlyguUVyy1r0u2uC44RLFJYpL1rrXVSGg4RLFJYpLFJcoLlFcorhkrXtdtOS44RLFJYpL1rrXswI0XKK4RHGJ4hLFJYpLFJesda+LVhw3XKK4RHGJFrQJDZcoLlFcorhEcYniEsUla93ros3ruBkuMVxiuMS4x1nrXs84iEFMYhGvsRkuMVyy1r0umhjRiYMYRGgCDZcYLjFcYrjEcInhEsMla93romkSi8hM4hLjHmetez0jNFxiuMRwieESwyWGS9a610VzjhsuMVxiuMS4x1nrXs8IDZcYLjFcYrjEcInhkrXuddEGxw2XGC4xXGLc46x1r2eEhksMlxguMVxiuMRwyVr3umjBccMlhksMlxj3OGvd6xmh4RLDJYZLDJcYLjFcsta9Llpx3HCJ4RLDJcY9juES47rEuC4xXGLc46x1r2eEhksMlxguMa5L1rrX/U986Vr3uv/hR13rXs+oRCM6cRCDmMQizisKNIEm0ASaQBNoAk2gCTSBptAUmkJTaApNoSk0habQFJpBM2gGzaAZNIO2XDKPmMQi7rT9r0boWvd6RiEq0Yh+VVguWRHa4ZLze4sIbUAb0Aa0AW1AG9AGtMHYBmMb0AJaQAtoAe1wyRkHMYiMLaAtlxxxuWRFISoRWkJLaAktoSUzmYytGFsxtoK2XLIiM1nMZDGTBa2gFbQJbUKbzORkbJOxTcY2oU2O22Qm5zWTa93rGS/aWvd6RiM6cRCDmMQiXmNb614XTYSoRCM6EZpAE2gCTaDpRmRsytiUsSk0HcQgJrGI0AyaQTNoBs2YSWNsxtiMseGSte51RWcmnZl0ZhKXrHWvZ4Tm0HDJwCUDlwxcMnDJWve6aIPjhksGLhm4ZK17PStAwyUDlwxcMnDJwCUDlwxcsta9Llpw3HDJwCUDl6x1r6tCQsMlA5cMXDJwycAlA5cMXLLWvS5acdxwycAlA5esda9nBWi4ZOCSgUsGLhm4ZOCSgUvWutdFmxw3XDJwycAla93rUWGtez2jEJVoRCcOYhCTeNHWutcVcUngksAla93rqiDQcEngksAlgUsClwQuCVyy1r0umhrRiYMYRGgKDZcELglcErgkcEngksAlwXVJcF0SuCRwSeCS4LokuC4JXBK4JHBJ4JLAJYFLApesda+LNjhuuCRwSeCSte71rAANlwQuCVwSuCRwSeCSwCVr3euiBccNlwQuCVyy1r2uCgkNlwQuCVwSuCRwSeCSwCVr3euiJccNlwQuCVyy1r2uCgUNlwQuCVwSuCRwSeCSwCVr3euiTY4bLglcErhkrXs9K0DDJYlLEpckLklckrgkccla93rQ1rrXMxbxmsnEJWvd66og0HBJ4pLEJYlLEpckLklcsta9LpoKUYlGdCI0hYZLEpckLklckrgkcUnikrXuddFsEJlJXJK4JLnHSe5xEpckLklckrgkcUniksQla93rojnHDZckLklcktzjrHWvZ4SGSxKXJC5JXJK4JHHJWve6aMFxwyWJSxKXJPc4a93rGaHhksQliUsSlyQuSVyy1r0uWnLccEniksQlyT3OWvd6Rmi4JHFJ4pLEJYlLEpesda+LNjluuCRxSeKS5B5nrXs9IzRckrikcEnhksIlhUvWuteDtta9njGISSwiNIGGSwqXFC4pXFK4pHBJ4ZK17nXR5DpuhUsKlxQuKe5x1rrXM0LDJYVLCpcULilcUrhkrXtdNDMiM4lLCpcU9ziFS4rrkuK6pHBJcY+z1r2eERouKVxSuKS4LlnrXve/qa5r3ev+58h1rXs9oxKN6MRBDGISizivGNACWkALaAEtoAW0gBbQAlpCS2gJLaEltISW0BJaQktoBa2gFbSCVtAK2nJJHjGJRTxotcd1XbKiEJVoRL8qLJesCG25ZH1vES/aWvd6RiEq0YgXba17PWMQk1hEaAJNoAk0gbZcsuIgBjGJ0NZ1yRHXPc6KQlQiNIWm0BSaQtMiMjZjbMbYDNq6LlmRmTRm0phJg2bQDJpDc2jOTDpjc8bmjM2hOcfNmUlnJgczOaANaAPagDagDWZyMLbB2AZjC2jBcQtmMpjJYCYDWkALaAEtoCUzmYwtGVsytoSWHLdkJpOZTGYyoRW0glbQCloxk8XYirEVY8Mla93ripOZnMzkZCZxyVr3ekZoExoumbhkXi6x7XKJbZdLbK17zeMv/W5GdOIgBjGpUERoAk2gXS6x7XKJbZdLbLtcYmvd66JJEos4r3i5xNa611VBoSk0habQLpfYpoxNGZsyNoNmQmQmjZk0ZtKgGTSDZtAMmjOTzticsTljc2jOcXNm0plJZyYd2oA2oA1oA9pgJgdjG4xtMLYBbXDcgpkMZjKYyYAW0AJaQAtowUwGY0vGlowtoSXHLZnJZCaTmUxoCS2hFbSCVsxkMbZibMXYClpx3IqZLGZyMpMT2oQ2oU1oE9pkJidjm4wNl6x1rwdtrXs9oxKN6MRBhSAmsYjQcIngEsElgkvWutdFk0EMYhKLCE2h4RLBJYJLBJcILhFcIrhkrXtdNL2Om+ASwSWCS9a611XBoOESwSWCSwSXCC4RXCK4ZK17XTTnuOESwSWCS9a617MCNFwiuERwieASwSWCSwSXrHWvizY4brhEcIngkrXudVUIaLhEcIngEsElgksElwgukYSWHDdcIrhEcMla93pWgIZLBJcILhFcIrhEcIngkrXuddGK44ZLBJcILpGCNqHhEsElgksElwguEVwiuGSte120eR03xSWKSxSX6HWPY2vd6xkHMYhJLOI1NsUlikvWutdFEyM6cRCDCE2g4RLFJYpLFJcoLlFcorhkrXtdNE1iEZlJXKIGzaDhEsUliksUlyguUVyiuGSte10057jhEsUlikvUoTk0XKK4RHGJ4hLFJYpLFJesda+LNjhuuERxieISHdACGi5RXKK4RHGJ4hLFJYpL1rrXRQuOGy5RXKK4RBNaQsMliksUlyguUVyiuERxyVr3umjFccMliksUl2hBwyXKdYlyXaK4RCe0CW1CwyWKSxSXKNcla91rPd5gs7Xudf/jJLbWvZ5RiUZ04iAGMYlFnFcUaAJNoAk0gSbQBJpAE2gCTaEpNIWm0BSaQlNoCk2hKTSDZtAMmkEzaAbtcMn+h1lsrXs9YxEPWuzxcMkZhahEI/pV4XDJGaEdLjm/t4jQBrQBbUAb0Aa0AW1AG4xtMLYBLaAFtIAW0A6XnHEQg8jYAtrhkhUPl5xRiEqEltASWkJLaMlMJmMrxlaMraAdLjkjM1nMZDGTBa2gFbQJbUKbzORkbJOxTcY2oU2O22Qm5zWTa93rGS/aWvd6RiM6cRCDmMQiXmNb614XTYSoRCM6EZpAE2gCTaDpRmRsytiUsSk0HcQgJrGI0AyaQTNoBs2YSWNsxtiMseGSte51RWcmnZl0ZhKXrHWvZ4Tm0HCJ4xLHJY5LHJesda+LNjhuuMRxieOSte71rAANlzgucVziuMRxieMSxyVr3euiBccNlzgucVyy1r2uCgkNlzgucVziuMRxieMSxyVr3euiFccNlzgucVyy1r2eFaDhEscljksclzgucVziuGSte120yXHDJY5LHJesda9HhbXu9YxCVKIRnTiIQUziRVvrXlfEJQOXDFyy1r2uCgINlwxcMnDJwCUDlwxcMnDJWve6aGpEJw5iEKEpNFwycMnAJQOXDFwycMnAJYPrksF1ycAlA5cMXDK4LhlclwxcMnDJwCUDlwxcMnDJwCVr3euiDY4bLhm4ZOCSte71rAANlwxcMnDJwCUDlwxcMnDJWve6aMFxwyUDlwxcsta9rgoJDZcMXDJwycAlA5cMXDJwyVr3umjJccMlA5cMXLLWva4KBQ2XDFwycMnAJQOXDFwycMla97pok+OGSwYuGbhkrXs9K0DDJYFLApcELglcErgkcMla93rQ1rrXMxbxmsnAJWvd66og0HBJ4JLAJYFLApcELglcsta9LpoKUYlGdCI0hYZLApcELglcErgkcEngkrXuddFsEJlJXBK4JLjHCe5xApcELglcErgkcEngksAla93rojnHDZcELglcEtzjrHWvZ4SGSwKXBC4JXBK4JHDJWve6aMFxwyWBSwKXBPc4a93rGaHhksAlgUsClwQuCVyy1r0uWnLccEngksAlwT3OWvd6Rmi4JHBJ4JLAJYFLApesda+LNjluuCRwSeCS4B5nrXs9IzRcErgkcUniksQliUvWuteDtta9njGISSwiNIGGSxKXJC5JXJK4JHFJ4pK17nXR5DpuiUsSlyQuSe5x1rrXM0LDJYlLEpckLklckrhkrXtdNDMiM4lLEpck9ziJS5LrkuS6JHFJco+z1r2eERouSVySuCS5LlnrXmt/g22te51HhcMlZ1SiEZ04iEFMYhF32tzf+lvrXs8oRCUa0YmDGMQkFhFaQktoCS2hJbTdJY9nFEcMImNLxna4ZMViJouZLGaymMliJouZLGayoBW0gjahTWgT2oQ2GdtkJiczOZnJyUzOaybXutczClGJRnTiIAYxiUWEtrtkzfpa93qMYq17PaMRnTiIQUxiEa+ZXOtezwhNoSk0habQFJpCU8amjM2YSWMmjZk0ZtKYSWMmjZk0ZtKgGTSH5tAcmkPbXXLOuh8d4EcMYhKLOK84NqIQlWjEnSbbEQcxiEks4rzi7pKOQlSiEaEFtIAW0AJaQMuDVkcU4k5TO6IRnTiIQUxiEecVd5d0FCK0glbQClpBK2gFraBNaBPahDahTWgT2oQ2oU1o86Id6147ClGJRnTiIAYxiUWEJtAEmkATaAJNoAk0gSbQBNruksfT1SPuNN+OqEQjOnEQg5jEIs4r7i7pCM2gGTSDZtAMmkEzaAbNoTk0h+bQHJpDc2gOzaE5tAFtQBvQBrQBbUAb0Aa0Ae1wyTiO2+GSMwpRiUZ04iAGMYlFhJbQElpCS2gJLaEltISW0BJaQStoBa2gFbSCVtAKWkEraBPahDahTWgT2oQ2oU1oE9psmh/rXjsKUYlGdOIgBjGJRYQm0ASaQBNoAk2gCTSBJtAEmkJTaApNoSk0habQFJpCU2gGzaAZNINm0AyaQTNoBs2gOTSH5tAcmkNzaA7NoTk0hzagDWgD2oA2oA1oA9qANqANaAEtoAW0gBbQAlpAC2gBLaAltISW0BJaQktoCS2hJbSEVtAKWkEraAWtoBW0glbQCtqENqFNaBPahDahTWgT2oSGSwSXCC4RXCK4RHCJ4BLBJYJLBJcILhFcIrhEcIngEsElgksElwguEVwiuERwieASwSWCSwSXCC4RXCK4RHCJ4BLBJYJLBJcILhFcIrhEcIngEsElgksElwguEVwiuERwieASwSWCS451rx2h4RLBJYJLBJcILhFcIrhEcIngElkuGXs8XLJ/PJQf6147KnGnpRxxp+VR4XDJGXdare9NYhHnFQ+XzDqiEB802w7E7hLb79/8WPfacewxjhh7XD+WxNrjPOK84u6SjkLcafstlx/rXjs6cRB3mhx7trvERI9YxHnFuV37u7vE5JidqUQjOnHwY0FMIrR50PyXb7/53+9+/uG7P//4/T+++cO/H//8n3/99Jd//vC3n85//vP//b2/8ueff/jxxx/++qe///y3v3z/3//6+fs//fi3v+xf+2bb/7NL4r8kvlX54+Obhf81v1Xf/5ee3/pfOvJbzfjj4/po//rjNv7hkse/jm9X27/f93/K/k+vb3Vs+89b//yjo7510/PndTy+I6p//nGp/O3jQqh//vHa+vhn7D/v+8/vP2H7j/f3++Prc//y+O0gon9C/Vvz6ye2b33sX87rJ1Qeu/DHX3755Y+//H8=",
|
|
2017
|
-
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdwAAAAAAAAAAAAAAAAAAAACPm9W0tjxDELm1AuOUxzJ2UAAAAAAAAAAAAAAAAAAAAAAAdUHSvfs4f6udfPrmgeiwAAAAAAAAAAAAAAAAAAANVczEmm+LR7VUgL4sy06QbrAAAAAAAAAAAAAAAAAAAAAAAGKy5nQRM5ZDThdjVvkEkAAAAAAAAAAAAAAAAAAAAwy9qUUDUQNtnyxQusmzhUjAAAAAAAAAAAAAAAAAAAAAAAClqyUgOfZdHiXb1ukefVAAAAAAAAAAAAAAAAAAAAwjrLLSjBf5YvIyXM6g1ZrA4AAAAAAAAAAAAAAAAAAAAAAB4C9y2NiBh3B3SSPWVsiQAAAAAAAAAAAAAAAAAAAAPgrs5Tq85BTOoprRO9ilSaAAAAAAAAAAAAAAAAAAAAAAAE2wiNu7W5Otv/0PfhS2kAAAAAAAAAAAAAAAAAAABN6uwxArEdlvienSNP08dQOAAAAAAAAAAAAAAAAAAAAAAAEAc/P5R0xFthANE5GT1nAAAAAAAAAAAAAAAAAAAAYgyv6VPQ94hdIOZNajK4Mp4AAAAAAAAAAAAAAAAAAAAAABJ20s+q8KFYwBe5ukvsuQAAAAAAAAAAAAAAAAAAAKva06D6AiMe2obiDpzKfc+xAAAAAAAAAAAAAAAAAAAAAAAJIcsDanvnDjznmtfMQJMAAAAAAAAAAAAAAAAAAACw0nQR9ZHMGaHcjdtfQbdiUwAAAAAAAAAAAAAAAAAAAAAAC6/6Xtu5XKRauoIx7JAdAAAAAAAAAAAAAAAAAAAAmBfHhVuyXxHquP2f46HrDfwAAAAAAAAAAAAAAAAAAAAAABTlBnSPLEyxNUDB9yvsqQAAAAAAAAAAAAAAAAAAAC1YCfP2PV6wu/WKGdZI3Dj4AAAAAAAAAAAAAAAAAAAAAAANMMLN8Iam1Y5juopXlCoAAAAAAAAAAAAAAAAAAADmXqmgY/nxY5kg+WLJllRmMwAAAAAAAAAAAAAAAAAAAAAAAb1YE2ZxNvkY06W2o9V8AAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAADXZSytT/7bmtUUvtUXXNWcDAAAAAAAAAAAAAAAAAAAAAAALzxAtw6k/wKUOXiU8y3zAAAAAAAAAAAAAAAAAAAAh1sDs0YAFv4LLEVlJprO148AAAAAAAAAAAAAAAAAAAAAAAVcCVujDZ8JOy6/irSpRgAAAAAAAAAAAAAAAAAAACLYxkx+vLjudTuINN+5/2lmAAAAAAAAAAAAAAAAAAAAAAABTuCCmk4quTMJZSwQdNMAAAAAAAAAAAAAAAAAAABm3hZxAHDg2jNSDgzL8fZGPAAAAAAAAAAAAAAAAAAAAAAALh45Ran+crsUs9zuLe3jAAAAAAAAAAAAAAAAAAAAa4bVkD4GIBlmFogHOUOpBo4AAAAAAAAAAAAAAAAAAAAAACG6uD91RwhtRUIPFXuhfwAAAAAAAAAAAAAAAAAAAL9Oqm69U4ilb0p8JTb0ksXfAAAAAAAAAAAAAAAAAAAAAAAkhI7rG3n46xvLIb3clfcAAAAAAAAAAAAAAAAAAAAbo4laXysq6Qhljp5oofBERwAAAAAAAAAAAAAAAAAAAAAAB7ctp4kjhb2cqXnkT96gAAAAAAAAAAAAAAAAAAAAMv0wdGEHRcQKxLMAYjrFdroAAAAAAAAAAAAAAAAAAAAAAB4kl9h50OezS9j2g3vLfgAAAAAAAAAAAAAAAAAAAKC7/J/wri1Sw5YaMZB2qwXfAAAAAAAAAAAAAAAAAAAAAAAEZxF17Sy8HlHl8ndKnOcAAAAAAAAAAAAAAAAAAABwMBRsAYyIM0yIZehGVgAxcAAAAAAAAAAAAAAAAAAAAAAAG0bt2ONZ1VYQusUb8TigAAAAAAAAAAAAAAAAAAAAfqtyqDbeK+rtH/wKfHk/NpgAAAAAAAAAAAAAAAAAAAAAABrMr0pDktJWujfwoYKYBAAAAAAAAAAAAAAAAAAAAP0syXbMAuVTCMiTS6a3kpL5AAAAAAAAAAAAAAAAAAAAAAAhzYU10wubRZt0idO1besAAAAAAAAAAAAAAAAAAAD+iK4LamzA1eCT4bPidlJIUgAAAAAAAAAAAAAAAAAAAAAAF68WR24KRD+Oss5SELR6AAAAAAAAAAAAAAAAAAAA4nW5mSrnjHmptnYGr+e8+JkAAAAAAAAAAAAAAAAAAAAAAB2Z5I2d61/l1fmUraiP4gAAAAAAAAAAAAAAAAAAAAfMT2Jf+ucufTqNowbEHPOOAAAAAAAAAAAAAAAAAAAAAAAp2MiPfKvOgtgt/VC0N08AAAAAAAAAAAAAAAAAAADZqvpE6q/iaLVpF2JoPpyeTAAAAAAAAAAAAAAAAAAAAAAABHcERb2q+r7fehlidkWDAAAAAAAAAAAAAAAAAAAApuJ8YFdVjIZJl06xOFNk4YcAAAAAAAAAAAAAAAAAAAAAACUd0r2xgc8jW3Q6nkd3FwAAAAAAAAAAAAAAAAAAANewUemYCmJwu5ftRS2xDxGUAAAAAAAAAAAAAAAAAAAAAAAi4dgAd5bjOSWEqPKSoXsAAAAAAAAAAAAAAAAAAABkkgKrTUvTqJ3d4QQm0sHGXwAAAAAAAAAAAAAAAAAAAAAAAhm79/274KVifF1CuIXjAAAAAAAAAAAAAAAAAAAA3UNhJVdZcjpTPx5igvp8B+oAAAAAAAAAAAAAAAAAAAAAABApi95KQ5IawpQZ9LzpRAAAAAAAAAAAAAAAAAAAAKYtyMLO4geRiUR2wq9yO0sGAAAAAAAAAAAAAAAAAAAAAAAZHKlzElRnXggl00kXODIAAAAAAAAAAAAAAAAAAABNtO4HRLUjhVkL2/B8a7Hm/gAAAAAAAAAAAAAAAAAAAAAADV9Ya7TB7nE/N1InrtlBAAAAAAAAAAAAAAAAAAAA/2n1hKMn5sGiNCCuofe/1MAAAAAAAAAAAAAAAAAAAAAAACNVdcD8Ka8kuUif8M8TOgAAAAAAAAAAAAAAAAAAAMPG/E+1tR1VS4CWZ64Teon8AAAAAAAAAAAAAAAAAAAAAAAJUr8uJiJ5IWWDWCdBVzgAAAAAAAAAAAAAAAAAAAD3ysHBM+RihG1pnQ9XKHgsjwAAAAAAAAAAAAAAAAAAAAAACrwtrjvzhbGu7a5AOU8mAAAAAAAAAAAAAAAAAAAA7YxVPFYsIX3NYKYZksTEUEsAAAAAAAAAAAAAAAAAAAAAABknrTbk11+QUNDreW4jFwAAAAAAAAAAAAAAAAAAAEN01V5flCwVCJY1iFir60g5AAAAAAAAAAAAAAAAAAAAAAAA+UVukmMBgmZbD5Mdg54AAAAAAAAAAAAAAAAAAACqf37d5izcYjTWIrr1Iba7ZQAAAAAAAAAAAAAAAAAAAAAABiyW/3i+UyChzsNTHLrvAAAAAAAAAAAAAAAAAAAAHNZGOmq+vkEVxu58PSSeqjUAAAAAAAAAAAAAAAAAAAAAAARSo55t0OPgkEqs2hvUDQAAAAAAAAAAAAAAAAAAAF4Y8VqdoHnR/yrFwwmr7o46AAAAAAAAAAAAAAAAAAAAAAArvxDN+WJf1jywyQOvr7oAAAAAAAAAAAAAAAAAAADoG5hE3WloixJTi4bcgF1GMwAAAAAAAAAAAAAAAAAAAAAAKE/0mIQVYMqkrnnI/OsoAAAAAAAAAAAAAAAAAAAAbnZtQiMdEklQf4l9H20vT3cAAAAAAAAAAAAAAAAAAAAAABS6cmiSgFPUY/Czye5FrgAAAAAAAAAAAAAAAAAAAPSmxv/fgKctt4di4jfVjNX2AAAAAAAAAAAAAAAAAAAAAAAmgUpZgDVVY1o7bf0FbRkAAAAAAAAAAAAAAAAAAAD0W42WBpIx9I4NDDTVdZOmpgAAAAAAAAAAAAAAAAAAAAAAC53DI5kCV5YAWy9owVmRAAAAAAAAAAAAAAAAAAAAdQ4bXLmXo634VAv1W7kmTsQAAAAAAAAAAAAAAAAAAAAAAB9s1bbUP2d5iuRlXAFvNwAAAAAAAAAAAAAAAAAAAFlsxhg4SPMsYOx0/
|
|
2016
|
+
"debug_symbols": "tZ3bbjTHkW7fRde66DhkRKRfZWAYtkczECDYhsbewIbhd99dlRm1qN+bpRbJuVF/1E/GqsyqWF2HZPOf3/3nD3/6x3//4ce//Ndf/+e73/3HP7/7088//vTTj//9h5/++uc//v3Hv/7l+X//+d3j+I/4d7/T/Nf338n5VTy/iudXen4l+d3vxvOfpPbrXK/62K+yX3W/2n71/Tr2a+zXXU93Pd31bNezXc92Pdv17Fkvjtfnz+fxWvt1rld/7Nfnz9fx+uTN4zX3a+3XuV7H89/lcYTsUB3mDvGsKXIE6aAdrIN3eA5U9Bny+Cc7woHwIxyVj0Hk3KEeHY7Kx7hKO1gH7zA6HHWOQc7jp45RTu1gHbzD6NCbMbNDdZgr6OPRQTpoB+vgHY468wjVYe4gjw7POvo4wnE4yRGyQ3WYOxzH0grSQTs86apH8A6jw1HHjnDUOTbsOIZ0HGHPj5p2sA7eYXQ45qeeB7wdB7zmOuA0fb+O/Rr7Nfdr7dd1AGs99qvsV92vu17terXr1a5Xu17terXrzcd5wOuxZ/N49f069mvs1zwPeDt22Dxebb/6fh3rVXQd1SbWwTuMDrEOZjt21grVYe6gjw6yDng75v844M32MWPnJI8jjA7RIdfBbEcDrzB3OFp4Beng64C3o4uPnWVHG68wdxiPDtKhN2NYB+8wOkSH7FAddlNYPDrYOqrtbPYzjA7RIdcBb7kPXTsOpBW8w+gQHbJDdZjr8LbjeFpBOvg64O04hI4D3o5j6DjgrXp+quenen5mz09Lw5Y0nge8nwf8879H84z1Eusl10utl2ctf37/6HcLe34RxxfH3jw37fny/H95fsNB/tfzq36n+cPff/7hh+Nf3rz1PN+Q/vbHn3/4y9+/+91f/vHTT99/93/++NM/zm/6n7/98S/n69//+PPzX59T+sNf/vP5+iz4Xz/+9MOR/vU9P/14/0c95/7hMLl+XFJfLTBSu4DkmwL+aoFnc9quYA8ZlKjx8iCOrjkr+LQ32xAvD0IevQ3P6FcJl9fnQaVncqjbh0p4ZZcYj/mxEtfu+HCJoY+rhH9sLjK9S+SMz5aox+ODJa6dWqIfKlEmVwn/0FaEjt6K0Bgf24oc11bkh6YzHnq16cM+tlPnvOZizvmxuXg8rrkw+/xA6mMl8tqKR31oj4Q86rKeygdLOCX0YyXiGsjz9PuDe0SuPSL+sRJSn9ypz/O0N28B+pG3IXlID0QeQY/IfPmtMGf1dNbjjcFFfvlGpPV+jZp9dM43XfYbNuJ5et9Toc/T66vE89TrFyXsrkZYH1oazpvy8+zm5c2w6Hcz9TfHxbdzYXpXw6/N8AfzWb+cDLO7XXJtxvNNgL36rPzLGn5TIx/9rpo5/P0a4/0az9PlPsEQtkLHN5MRd/u1rgl9Xoa8XyNvjvHnpXUf4/JGXL+phj16O563D+r9GvP9GtP77WiOj1UQLP7s1vdH4nJz0lec9dV4I435kYHk+NhuzeMabO3WtMf7A7k5QIXzlOfNj/cPDR+f3SUvVriZi7sKL+/U+vROvZ3OyRE+9f3pvLOf+7VXx9urmm/sN+RuNsbV8c/pmBwb+fgNRfI6V3mecrwxYL78jjKUs0d73AzmZk7tzXbYo2y8O5jbIlV9gNjz/To+VETkOiV/5pkfmJHnT1279/HGxeOXZxvj5jid0m9tz5u8nAsf146/KHHnwOdt3cvm4e9tRdxd9/K2VBxf45fv8iF3x8Z1yjP0zYWa/PJkI27e5SM5IU+vd0vcbUXodd0bNj5d4u25228pkXWVmB8rMbhoHfmxgdTjzXXv+3vk9mbGNRUe7x4V89NHRT4+f1TMzx8V8/NHxfz8UTE/f1TM/9WjYoZc7+/z3aPi9goLXz3GuwdW1u0J7LiUN98/Fc+bqQiuefP9y/+6GUh5H5o137/6r7tTz+f1TItXb+4g1J035yXvfNzccryrkdx8zTHr0zXe3sH9TTXqOoPNmo8P1rB51cgvqPHR7Xg7H4/82PHxfIbSx4fd3Cq7rTGuWwke4/2bO1M+f4zd1Xh1397XeG3fvlzjo9vxYr+8WuPu+Hi5xl3P3fn8cd1pGu/fPZy3J6CSnIGqv39jWR637wsuXPe51gc3Rt+8Nzyfv95szE33VlhXqRj10SLcdYqbxxf347HrMcozj8fNpoy7+4nXzauabh8rMnm6NZ87/QuK6OPDRa6jVuxuOJ8/PRX5/PnprwyGm736eL8Hb8+IlHsmGvruGZHI3V3S63K2HuPN3d56vURVXPvl8dES1w0k+eBW5HWnoj66FUnrfngg1xn/hwcyrxu1s/SjJa7z9coPlrjOQj5c4ml+7j896oPbMf2VGrc3S8zzum1d794sER133ngEj+jfKvmbW0fPTry7FOPJ35trufFNv+rNPfi8nrnlm5avbzeiPv9c5LzF9NkHI3L3rOm1JyPnPbvPPhqRu4dNrz4bud+SF+/mi33B7XyxT9/Pvy3x6u14uXtc9OL9+PsJefGG/G3bxXXFXW/OMP+t7fxxe4rJGdmbxRzfNp5//oap+OfvmN5vx2s3x16v8f7dsV+p8dLtsfsar90fu6/x2g2yXzk+rn0rKu+L2b/g3HR8wbmpzy84PuYXHB/zC46P+QXHx/xfPj50cHzEfPf4GPkFx0d9/vi43Y4Xj4+Xa9wcH/c1Xjs+bmu8eHzc1viK48MenKNqvHt8xPj88RHx+ePjdjtePD5ernFzfNzXeO34uK3x4vFxW+NLjo+o6/iY8u7xkfb54yP988fH7Xa8eHy8XOPm+Liv8drxcVvjxePjtsZXHB9u1wm7v7ke+/b4qC84P60vOD+tLzg/rS84P60vOD+tLzg/rf/t89N3Liz/7fz0rkZdc/q8Sn7/GJuPzz/FldtHUy89xj3vsH7uOa5M+/yDXJn++adst0VefTT1cpG750r3RV584PcrRV574vd6kQ9vyYvP6+6Pkxcf6N4XefGJrj7s8wfbbZFXd/GvFHltF79e5MNb8mLvvFzk7jh5vchtA+pnn+yqyFc82lXRr3i0+ytb8+qzXRX//LPdXyny2rPdXxnQqw93VfLzD3dvi7z6cPf1Ivr4cJGXHu6qfv4E9nxs+skT2F8ZzGsPd+/PlF58uqt3j61ee7p7W+K1p7u/UuKVp7u/MpBXnu7el3jp6e79QF56untb4rWnu79S4pWnu/clXnq6e1vi1ae799vx2tPd26c7ct683Y3yxj///lj1rggn8/L2OeK3RdTunqxez5kz3gxm2Dcl5u12+P+v67/Vz91m1PUbfOV+sxl3Ja733HrzywG/qcSMZNfK+zX89g7NvH4LO/XGgf4Fv8On/ulf4lP/gt/iU/+CX+O735IXH1Xr3VORVx9V693jqtceVd+WePVRtQ799KPq+wn5ikfVzzNc7vNaflBm/ALu82Hy+wtNdNwdJI/LiPr219S/udujd09GXl1qonePrF7u37s1QC/2bzy+oH9DvqB/b7fk1f4N+4L+Df90/96VeLl/7x5bvdq/txPycv/ePoPz6yTgmePd31PUu1/ZURlC8w1/91cmNW/v1+KSireXMuO3bAp30p/5zQnFv23K3e3W5/34Ptqe+c0e+vbXN2/fca61b89nVFwjfrOOT++eXz13Hnclnu56++uX35yY5M1ujoddH8zyeHOHxH7LloS/ucB7sy7x37fkRrE6+KCEeLy7sEDzC1YEan7BikCtT68I1PqCFYFaX7Ai8L7Iix+XoPV5w9ZXGLa+wLC3uyau+zP69oHav29IfcWszs/P6qc//+H+aJ91He3jg0f7q6cC8ytOBebnD9TbEpdBpsbHSrx8rM/PL1y9n9MXzyZ+7T3iOkREn48W3n2PsMftcda719+8V337MXu/siV8ppo8rRc3W3L7C5JhcT1uiWHvnQfY3ZOSl88mfmVbchSPft7c/v63Ki/dzztu5r+Z3N/wmXny5jPz3hxt335c0uPmkH35QzZ+pUoVH6Y1TT9YZV4fW3d8VsfHt+W1T/y4k7RdN2zfNs+3H/Nzux1f8KEhw/nlkbcfi/jtLn7c3r1+XKdXbz815Cjx++eXf/zzjz//8rOnz08GPj6K+fis0eODk2u/zvV6fNCsn58lvF91vx4fqHv8u+/X4wN1bX106fl6fKDuWB9eer4eH6h7fIjsY7/KftX1/ecnTJ8fMrtfx/GBocdHuu7X3K+1X+d6PT6u9nyV/ar71far79ddz3c93/V81/Ndb+x6Y9cbu97Y9cauN3a9seuNXW/semPXi10vdr3Y9WLXi10vdr3Y9WLXi10vdr3c9fKo95zX44Nuz1fbr0e9pz2PT7k9X2O/5n6t/TrX9x8fcHu+7nrHByYf/358YPL5uuvVrle7Xu16tevVrjd3vbnrzb19c2/f3PXmrjd3vbnrzV3v+FDs41WOD8VeQTpoh13z+eS4w+gQHbJD9U91ZenK0pWlK4t18A6jQ3ToykfLrLDn4PxY9hWkQ1fWrqxdWbuydmXNDr3N2ttsvc3WlU079GxYz4b1bFhXtq5sXdm6sndl79nw3mbvbfbeZu/K3vPsPRves+E9G6Mrj648uvLoyqMrj56N0ds8eptHb/PoytHzHD0b0bMRPRvRlaMrR1eOrhxdOXo2src5e5uzt7k7TbLnOXs2smcjeza63c4PnT9DdeXqyt1y0j0n3XTSXSfddlJduXqeu/OkW0+6984Ppj9/anblbj/p/pNuQOkOlG5B6R7U7sHzg+mPyucH069gHbzD6BD9U9mhOnTl7kHtHtTuQe0e1O5Bla4s0SE7VIc9G+fH2Z8/pV25e1C7B7V7ULsHtXtQuwe1e/D8gPuzsj069Gx0D2r34PkB9+dPWVfuHtTuQe0e1O5B7R7U7kHtHlTvyt7z3D2o3YPaPajelb0rdw9q96B2D2r3oHYPavegdg/q6Mqj57l7ULsHtXtQoytHV+4e1O5B7R7U7kHtHtTuQe0e1H6v036z0+5B7R7U7kHtNzztdzztHtTuQe0e1O5B7R7U7kHtHjz/VMBZuXqeuwe1e1C7B9ffCzh+anbl7kHtHtTuQe0e1O5B7R7U7kGdu7I9Hh2kg3awDrvy+ecGVogO2aE67Nmw7kHrHrTuwfOvFJyVxTuMDtEhO3Rl6crdg9Y9aN2D1j1o3YPWPWjdg6ZdWatDz0b3oHUPnn/24Pwp68rdg9Y9aN2D1j1o3YPWPWjdg+ffPzgre89z96B1D1r3oHlX9q7cPWjdg9Y9aN2D1j1o3YPWPXj+jYSz8uh57h607kHrHjz/RsL5U9GVuwete9C6B6170LoHrXvQugctunL2PHcPWvegdQ9an3Jan3Na96B1D1r3oHUPWvegdQ9a96BVV66e5+5B6x607kHrE9Dzby2coXvQugete9C6B6170LoHrXvQZleePc/dg9496N2D3uei/rAO3mF0iA7ZoTrsbfbuQZeuLNrBOniH0aErS1fuHvTuQe8e9O5B7x707kHvHnTtyhodskN16Nnoc1G3rtw96N2D3j3o3YPePejdg9496NaVvee5e9C7B7170Ptc1L0rdw9696B3D3r3oHcPevegdw/66Mqj57l70LsHvXvQ+1zUR1fuHvTuQe8e9O5B7x707kHvHvToytHz3D3o3YPePeh9Lurdg97vg97vg9496H0u6tmV+9rPuwe9e9C7B73fB/3swTrC8Sdv5AjRITtUh7nD0YMrSAftYB28Q1eeXXl25dmV5648Ho8O0kE7WAfvMDpEh+xQHbqydGXpytKVpStLV5auLF1ZurJ0ZenK2pWPHszzroJ2sA5HZT/C6BAdskN1mPunjh5coSsfPXh+z9GDK3Rl68rWla0rW1e2ruxd2buy9zZ7b7N3Ze/K3pW9K3tXPnrwDEcPriAdeptHVz56cIXRITpkh648unJ05ejK0ZWjZyN6m6O3OXqboysfPbhCz0b2bGTPRnbl7MrZlbMrZ1fOno3sbc7e5uptrq5cPc/Vs1E9G9WzUV25unJ15erKsyvPno3Z2zx7m2dv8+zKs+d59mzMno25ZyMeu3I8pIN2sA7eYXSIDtmhOnRleXSQDtrBOnRl6crSlaUrS1eWPRuhvc3a26y9zd2Dod5hdIgO2aEra1e2rmxduXswugejezC6B6N7MKwrW3Xo2egejO7B8K7sXbl7MLoHo3swugejezC6B6N7MEZXHj3P3YPRPRjdgzG68ujK3YPRPRjdg9E9GN2D0T0Y3YMRXTl6nrsHo3swugcju3J25e7B6B6M7sHoHozuwegejO7ByK5cPc/dg9E9GN2DUV25unL3YHQPRvdgdA9G92B0D0b3YMyuPHueuwejezC6B2N25bkrZ/dgdg9m92B2D2b3YHYPZvdgPnblfFSHPRvZPZjdgyldWbpy92B2D2b3YHYPZvdgdg9m92D2+2D2+2B2D2b3YHYPZr8PZr8PZvdgdg9m92B2D2b3YHYPZvdgWle26NCz0T2Y3YPpXdm7cvdgdg9m92B2D2b3YHYPZvdgelcePc/dg9k9mN2DObry6Mrdg9k9mN2D2T2Y3YPZPZjdgxldOXqeuwezezC7BzO6cnTl7sHsHszuwewezO7B7B7M7sHMrpw9z92D2T2Y3YNZXbm6cvdgdg9m92B2D2b3YHYPZvdgzq48e567B7N7MLsHc3bl2ZW7B7N7sLoHq3uwugere7C6B+uxK9cjOmSH6rBno6QrS1fuHqzuweoerO7B6h6s7sHqHizpyvroIB20g3Xoyn0uWt2D1T1Y3YPVPVjdg9U9WN2DZV3ZvEPPRvdgdQ9Wn4uWdeXuweoerO7B6h6s7sHqHqzuwfKu7D3P3YPVPVjdg9XnojW6cvdgdQ9W92B1D1b3YHUPVvdgRVeOnufuweoerO7B6nPRiq7cPVjdg9U9WN2D1T1Y3YPVPVjZlbPnuXuwugere7D6XLSqK3cPVvdgdQ9W92B1D1b3YHUPVnXl2fPcPVjdg9U9WH0uWrMrdw9W92B1D1b34OwenN2Ds3twPnbl+fAOo0N0yA7VP9WVuwdn9+DsHpzdg7N7cHYPzu7BKV1ZqsOejdk9OLsHZ5+Lzu7B2e+Ds98HZ/fg7HPRqV25rwdn9+DsHpzdg7PfB+fZg3GEcfwe0BGiQ3aoDnOHowdXkA7awTp4h67sXdm7sndl78qjKx89ePwW4Dx6cAXr4B1Gh+iQHarD3OHowRW6cnTl6MrRlaMrR1c+evBYUDGPHlxh7nD04ArSQTtYB+8wOkSHo7IeoToclet4/v3oIB20g3XwDqNDdMgO1aErz648u/LsyrMrz658/uHqx3GUnH+5eqW8Ul3p/IvEcj6ofxCFqEQjOnEQg5jEIkITaAJNoAk0gSbQBJpAE2gCTaEpNIWm0BSaQlNoCk2hKTSDZtAMmkEzaAbNoBk0g2bQHJpDc2gOzaE5NId2/o3oY0HVMxZxXvH8S9HH7/M9oxCVaEQnDmIQk1jEecWAFtACWkALaAEtoAW0gBbQElpCS2gJLaEltISW0BJaQitoBa2gFbSCVtDqpI0zJrGIJy2OeP4F6x2FqEQj+lXh9MiO0E6T7O8t4kU7V/10FKISjXjRzvU/HYOYxCJCE2gCTaAJtNMlOw5iEJMI7XTJiqdLdhSiEqEpNIWm0BSaFpGxGWMzxmbQTpfsyEwaM2nMpEEzaAbNoTk0ZyadsTljc8bm0Jz95sykM5ODmRzQBrQBbUAb0AYzORjbYGyDsQW0YL8FMxnMZDCTAS2gBbSAFtCSmUzGlowtGVtCS/ZbMpPJTCYzmdAKWkEraAWtmMlibMXYirHhEin222QmJzM5mUlcIhPahDah4RLBJYJLFJcoLtHHRdOHEZ04iEFMKhQRGi5RXKK4RHGJ4hLFJSrQJIlFvGZScYkqNIWGSxSXKC5RXKK4RHGJ4hI1aCZEZhKXKC5Rg2bQcIniEsUliksUlyguUVyiDs3Zb7hEcYniEnVoAxouUVyiuERxieISxSWKS3RAG+w3XKK4RHGJBrSAhksUlyguUVyiuERxieISTWjJfsMliksUl2hCS2i4RHGJ4hLFJYpLFJcoLlHOS5TzEsUliksUlyjnJcp5ieISxSWKSxSXKC5RXKK4xB4XzR5CVKIRnTioEMQkFhEaLjFcYrjEcIkJNBnEICaxiNAUGi4xXGK4xHCJ4RLDJYZLTKHptd8MlxguMVxiBs2g4RLDJYZLDJcYLjFcYrjEHJqz33CJ4RLDJebQHBouMVxiuMRwieESwyWGS2xAG+w3XGK4xHCJBbSAhksMlxguMVxiuMRwieESS2jJfsMlhksMl1hCS2i4xHCJ4RLDJYZLDJcYLrGCVuw3XGK4xHCJcY1jXOMYLjFcYrjEcInhEsMlhktsQpvXfnNc4rjEcYlzjeMPJw5iEJNYxGtsjkscl7hAEyM6cRCDCE2g4RLHJY5LHJc4LnFc4rjEFZomsYjMJC5xrnHcoOESxyWOSxyXOC5xXOK4xB2as99wieMSxyXONY47NFziuMRxieMSxyWOSxyX+IA22G+4xHGJ4xLnGscDGi5xXOK4xHGJ4xLHJY5LPKAF+w2XOC5xXOJc43hCwyWOSxyXOC5xXOK4xHGJF7Riv+ESxyWOS5xrHMclznmJc17iuMS5xvEJjfsljksclzgucc5LfLnkuKt2roqT4w+9y7kurqMSjejEQQxiEos4ryjQBJpAE2gCTaAJNIEm0ASaQlNoCk2hKTSFptAUmkJTaAbNoBk0g2bQDNrpkuN3GuVcX9exiCfNj3i6ZEchKtGIflU4XbIjtNMl+3uLCG1AG9AGtAFtQBvQBrTB2AZjG9ACWkALaAHtdMmOgxhExhbQTpeseLpkRyEqEVpCS2gJLaElM5mMrRhbMbaCdrpkR2aymMliJgtaQStoE9qENpnJydgmY5uMbUKb7LfJTM5rJuPxIF60eCjRiE4cxCAmsYjX2EKgiRCVaEQnQhNoAk2gCTR9EBmbMjZlbApNBzGISSwiNINm0AyaQTNm0hibMTZjbLgkjP3mzKQzk85M4pJwaA7NoeGSwCWBSwKXBC6JAW2w33BJ4JLAJTGgDWi4JHBJ4JLAJYFLApcELomAFuw3XBK4JHBJJLSEhksClwQuCVwSuCRwSeCSKGjFfsMlgUsCl0RBK2i4JHBJ4JLAJYFLApcELokJbbLfcEngksAlMS9aPh5EISrRiE4cxCAm8aLl49pviUsSlyQuSYEm0HBJ4pLEJYlLEpckLklckgpNjejEQQwiNIWGSxKXJC5JXJK4JHFJ4pLkvCQ5L0lckrgkcUlyXpKclyQuSVySuCRxSeKSxCWJS3JAG+w3XJK4JHFJDmgDGi5JXJK4JHFJ4pLEJYlLMqAF+w2XJC5JXJIBLaHhksQliUsSlyQuSVySuCQTWrLfcEniksQlWdAKGi5JXJK4JHFJ4pLEJYlLckKb7DdckrgkcUlOaBMaLilcUrikcEnhksIlhUvqcdHqkcQiXjNZuKQEmkDDJYVLCpcULilcUrikcEkpNBWiEo3oRGgKDZcULilcUrikcEnhksIlZdBsEJlJXFK4pLjGKa5xCpcULilcUrikcEnhksIl5dCc/YZLCpcULimucWpAwyWFSwqXFC4pXFK4pHBJBbRgv+GSwiWFS4prnApouKRwSeGSwiWFSwqXFC6phJbsN1xSuKRwSXGNUwUNlxQuKVxSuKRwSeGSwiU1oU32Gy4pXFK4pLjGqQkNlxQuKVwyccnEJROXTFwyHxdtPgYxiEksIjSBhksmLpm4ZOKSiUsmLpm4ZAo0ufbbxCUTl0xcMrnGmQoNl0xcMnHJxCUTl0xcMnHJNGhmRGYSl0xcMrnGmbhkcl4yOS+ZuGRyjTMdGvdLJi6ZuGTiksl5yVwuOW6wzeWSeUYhKtGIThzEICaxiPOKAS2gBbSAFtACWkALaAEtoCW0hJbQElpCS2gJLaEltIRW0ApaQStoBa2gnS45PjVbzjWuHYt40OL86LLTJTsKUYlG9KvC6ZIdoZ0u2d9bxKbpWve6oxCVaMSm6Vr3umMQk1hEaAJNoAk0gXa6ZMdBDGISoZ0uWfF0yY5CVCI0habQFJpC0yIyNmNsxtgM2umSHZlJYyaNmTRoBs2gOTSH5sykMzZnbM7YHJqz35yZdGZyMJMD2oA2oA1oA9pgJgdjG4xtMLaAFuy3YCaDmQxmMqAFtIAW0AJaMpPJ2JKxJWNLaMl+S2YymclkJhNaQStoBa2gFTNZjK0YWzG2glbst8lMTmZyMpMT2oQ2oU1oE9pkJnGJ4BLBJWvd60lb6153dOIgBjGpUERouERwieASwSWCSwSXrHWviyZJLOI1k4JL1rrXVUGh4RLBJYJLBJcILhFcIrhkrXtdNBMiM4lLBJesda+7AjRcIrhEcIngEsElgksEl6x1r4vm7DdcIrhEcMla97oqDGi4RHCJ4BLBJYJLBJcILlnrXhdtsN9wieASwSVr3euqENBwieASwSWCSwSXCC4RXLLWvS5ast9wieASwSVr3euuAA2XCC4RXCK4RHCJ4BLBJVLQiv2GSwSXCC6RCW1CwyWCSwSXCC4RXCK4RHDJWvd60ta61x2VaEQnDioEMYlFhIZLFJcoLlFcsta9LpoMYhCTWERoCg2XKC5RXKK4RHGJ4hLFJWvd66Lptd8UlyguUVyy1r2uCgYNlyguUVyiuERxieISxSVr3euiOfsNlyguUVyy1r3uCtBwieISxSWKSxSXKC5RXLLWvS7aYL/hEsUlikvWutdVIaDhEsUliksUlyguUVyiuGSte120ZL/hEsUlikvWutddARouUVyiuERxieISxSWKS9a610Ur9hsuUVyiuEQL2oSGSxSXKC5RXKK4RHGJ4pK17nXR5rXfDJcYLjFcYlzjrHWvOw5iEJNYxGtshksMl6x1r4smRnTiIAYRmkDDJYZLDJcYLjFcYrjEcMla97pomsQiMpO4xLjGWeted4SGSwyXGC4xXGK4xHDJWve6aM5+wyWGSwyXGNc4a93rjtBwieESwyWGSwyXGC5Z614XbbDfcInhEsMlxjXOWve6IzRcYrjEcInhEsMlhkvWutdFC/YbLjFcYrjEuMZZ6153hIZLDJcYLjFcYrjEcMla97poxX7DJYZLDJcY1ziGS4zzEuO8xHCJcY2z1r3uCA2XGC4xXGKcl6x1r8ef+NK17vX4w4+61r3uqEQjOnEQg5jEIs4rCjSBJtAEmkATaAJNoAk0gabQFJpCU2gKTaEpNIWm0BSaQTNoBs2gGTSDtlwyz5jEIh60469G6Fr3uqMQlWhEvyosl6wI7XTJ/t4iQhvQBrQBbUAb0Aa0AW0wtsHYBrSAFtACWkA7XbLjIAaRsQW05ZIzLpesKEQlQktoCS2hJbRkJpOxFWMrxlbQlktWZCaLmSxmsqAVtII2oU1ok5mcjG0ytsnYJrTJfpvM5Lxmcq173fGirXWvOxrRiYMYxCQW8RrbWve6aCJEJRrRidAEmkATaAJNH0TGpoxNGZtC00EMYhKLCM2gGTSDZtCMmTTGZozNGBsuWeteV3Rm0plJZyZxyVr3uiM0h4ZLBi4ZuGTgkoFL1rrXRRvsN1wycMnAJWvd664ADZcMXDJwycAlA5cMXDJwyVr3umjBfsMlA5cMXLLWva4KCQ2XDFwycMnAJQOXDFwycMla97poxX7DJQOXDFyy1r3uCtBwycAlA5cMXDJwycAlA5esda+LNtlvuGTgkoFL1rrXs8Ja97qjEJVoRCcOYhCTeNHWutcVcUngksAla93rqiDQcEngksAlgUsClwQuCVyy1r0umhrRiYMYRGgKDZcELglcErgkcEngksAlwXlJcF4SuCRwSeCS4LwkOC8JXBK4JHBJ4JLAJYFLApesda+LNthvuCRwSeCSte51V4CGSwKXBC4JXBK4JHBJ4JK17nXRgv2GSwKXBC5Z615XhYSGSwKXBC4JXBK4JHBJ4JK17nXRkv2GSwKXBC5Z615XhYKGSwKXBC4JXBK4JHBJ4JK17nXRJvsNlwQuCVyy1r3uCtBwSeKSxCWJSxKXJC5JXLLWvZ60te51xyJeM5m4ZK17XRUEGi5JXJK4JHFJ4pLEJYlL1rrXRVMhKtGIToSm0HBJ4pLEJYlLEpckLklcsta9LpoNIjOJSxKXJNc4yTVO4pLEJYlLEpckLklckrhkrXtdNGe/4ZLEJYlLkmucte51R2i4JHFJ4pLEJYlLEpesda+LFuw3XJK4JHFJco2z1r3uCA2XJC5JXJK4JHFJ4pK17nXRkv2GSxKXJC5JrnHWutcdoeGSxCWJSxKXJC5JXLLWvS7aZL/hksQliUuSa5y17nVHaLgkcUnhksIlhUsKl6x1rydtrXvdMYhJLCI0gYZLCpcULilcUrikcEnhkrXuddHk2m+FSwqXFC4prnHWutcdoeGSwiWFSwqXFC4pXLLWvS6aGZGZxCWFS4prnMIlxXlJcV5SuKS4xlnrXneEhksKlxQuKc5L1rrX42+q61r3evw5cl3rXndUohGdOIhBTGIR5xUDWkALaAEtoAW0gBbQAlpAS2gJLaEltISW0BJaQktoCa2gFbSCVtAKWkFbLskzJrGIJ62OuM5LVhSiEo3oV4XlkhWhLZes7y3iRVvrXncUohKNeNHWutcdg5jEIkITaAJNoAm05ZIVBzGISYS2zkvOuK5xVhSiEqEpNIWm0BSaFpGxGWMzxmbQ1nnJisykMZPGTBo0g2bQHJpDc2bSGZszNmdsDs3Zb85MOjM5mMkBbUAb0Aa0AW0wk4OxDcY2GFtAC/ZbMJPBTAYzGdACWkALaAEtmclkbMnYkrEltGS/JTOZzGQykwmtoBW0glbQipksxlaMrRgbLlnrXleczORkJicziUvWutcdoU1ouGTiknm5xB6XS+xxucTWutc8/9Lvw4hOHMQgJhWKCE2gCbTLJfa4XGKPyyX2uFxia93rokkSiziveLnE1rrXVUGhKTSFptAul9hDGZsyNmVsBs2EyEwaM2nMpEEzaAbNoBk0ZyadsTljc8bm0Jz95sykM5POTDq0AW1AG9AGtMFMDsY2GNtgbAPaYL8FMxnMZDCTAS2gBbSAFtCCmQzGlowtGVtCS/ZbMpPJTCYzmdASWkIraAWtmMlibMXYirEVtGK/FTNZzORkJie0CW1Cm9AmtMlMTsY2GRsuWeteT9pa97qjEo3oxEGFICaxiNBwieASwSWCS9a610WTQQxiEosITaHhEsElgksElwguEVwiuGSte100vfab4BLBJYJL1rrXVcGg4RLBJYJLBJcILhFcIrhkrXtdNGe/4RLBJYJL1rrXXQEaLhFcIrhEcIngEsElgkvWutdFG+w3XCK4RHDJWve6KgQ0XCK4RHCJ4BLBJYJLBJdIQkv2Gy4RXCK4ZK173RWg4RLBJYJLBJcILhFcIrhkrXtdtGK/4RLBJYJLpKBNaLhEcIngEsElgksElwguWeteF21e+01xieISxSV6XePYWve64yAGMYlFvMamuERxyVr3umhiRCcOYhChCTRcorhEcYniEsUliksUl6x1r4umSSwiM4lL1KAZNFyiuERxieISxSWKSxSXrHWvi+bsN1yiuERxiTo0h4ZLFJcoLlFcorhEcYnikrXuddEG+w2XKC5RXKIDWkDDJYpLFJcoLlFcorhEccla97powX7DJYpLFJdoQktouERxieISxSWKSxSXKC5Z614XrdhvuERxieISLWi4RDkvUc5LFJfohDahTWi4RHGJ4hLlvGSte63nDTZb616PP05ia93rjko0ohMHMYhJLOK8okATaAJNoAk0gSbQBJpAE2gKTaEpNIWm0BSaQlNoCk2hGTSDZtAMmkEzaKdLjj/MYmvd645FPGlxxNMlOwpRiUb0q8Lpkh2hnS7Z31tEaAPagDagDWgD2oA2oA3GNhjbgBbQAlpAC2inS3YcxCAytoB2umTF0yU7ClGJ0BJaQktoCS2ZyWRsxdiKsRW00yU7MpPFTBYzWdAKWkGb0Ca0yUxOxjYZ22RsE9pkv01mcl4zuda97njR1rrXHY3oxEEMYhKLeI1trXtdNBGiEo3oRGgCTaAJNIGmDyJjU8amjE2h6SAGMYlFhGbQDJpBM2jGTBpjM8ZmjA2XrHWvKzoz6cykM5O4ZK173RGaQ8MljksclzgucVyy1r0u2mC/4RLHJY5L1rrXXQEaLnFc4rjEcYnjEscljkvWutdFC/YbLnFc4rhkrXtdFRIaLnFc4rjEcYnjEscljkvWutdFK/YbLnFc4rhkrXvdFaDhEscljksclzgucVziuGSte120yX7DJY5LHJesda9nhbXudUchKtGIThzEICbxoq11ryvikoFLBi5Z615XBYGGSwYuGbhk4JKBSwYuGbhkrXtdNDWiEwcxiNAUGi4ZuGTgkoFLBi4ZuGTgksF5yeC8ZOCSgUsGLhmclwzOSwYuGbhk4JKBSwYuGbhk4JK17nXRBvsNlwxcMnDJWve6K0DDJQOXDFwycMnAJQOXDFyy1r0uWrDfcMnAJQOXrHWvq0JCwyUDlwxcMnDJwCUDlwxcsta9Llqy33DJwCUDl6x1r6tCQcMlA5cMXDJwycAlA5cMXLLWvS7aZL/hkoFLBi5Z6153BWi4JHBJ4JLAJYFLApcELlnrXk/aWve6YxGvmQxcsta9rgoCDZcELglcErgkcEngksAla93roqkQlWhEJ0JTaLgkcEngksAlgUsClwQuWeteF80GkZnEJYFLgmuc4BoncEngksAlgUsClwQuCVyy1r0umrPfcEngksAlwTXOWve6IzRcErgkcEngksAlgUvWutdFC/YbLglcErgkuMZZ6153hIZLApcELglcErgkcMla97poyX7DJYFLApcE1zhr3euO0HBJ4JLAJYFLApcELlnrXhdtst9wSeCSwCXBNc5a97ojNFwSuCRxSeKSxCWJS9a615O21r3uGMQkFhGaQMMliUsSlyQuSVySuCRxyVr3umhy7bfEJYlLEpck1zhr3euO0HBJ4pLEJYlLEpckLlnrXhfNjMhM4pLEJck1TuKS5LwkOS9JXJJc46x1rztCwyWJSxKXJOcla91rHTfY1rrXeVY4XbKjEo3oxEEMYhKLeNDmcetvrXvdUYhKNKITBzGISSwitISW0BJaQktoh0uezyjOGETGloztdMmKxUwWM1nMZDGTxUwWM1nMZEEraAVtQpvQJrQJbTK2yUxOZnIyk5OZnNdMrnWvOwpRiUZ04iAGMYlFhHa4ZM36Wvd6jmKte93RiE4cxCAmsYjXTK51rztCU2gKTaEpNIWm0JSxKWMzZtKYSWMmjZk0ZtKYSWMmjZk0aAbNoTk0h+bQDpfsWfezA/yMQUxiEecVx4MoRCUa8aDJ44yDGMQkFnFe8XBJRyEq0YjQAlpAC2gBLaDlSaszCvGgqZ3RiE4cxCAmsYjziodLOgoRWkEraAWtoBW0glbQJrQJbUKb0Ca0CW1Cm9AmtHnRznWvHYWoRCM6cRCDmMQiQhNoAk2gCTSBJtAEmkATaALtcMnz6eoZD5o/zqhEIzpxEIOYxCLOKx4u6QjNoBk0g2bQDJpBM2gGzaE5NIfm0ByaQ3NoDs2hObQBbUAb0Aa0AW1AG9AGtAHtdMk499vpkh2FqEQjOnEQg5jEIkJLaAktoSW0hJbQElpCS2gJraAVtIJW0ApaQStoBa2gFbQJbUKb0Ca0CW1Cm9AmtAltNs3Pda8dhahEIzpxEIOYxCJCE2gCTaAJNIEm0ASaQBNoAk2hKTSFptAUmkJTaApNoSk0g2bQDJpBM2gGzaAZNINm0ByaQ3NoDs2hOTSH5tAcmkMb0Aa0AW1AG9AGtAFtQBvQBrSAFtACWkALaAEtoAW0gBbQElpCS2gJLaEltISW0BJaQitoBa2gFbSCVtAKWkEraAVtQpvQJrQJbUKb0Ca0CW1CwyWCSwSXCC4RXCK4RHCJ4BLBJYJLBJcILhFcIrhEcIngEsElgksElwguEVwiuERwieASwSWCSwSXCC4RXCK4RHCJ4BLBJYJLBJcILhFcIrhEcIngEsElgksElwguEVwiuERwieASwSWCSwSXCC4RXCK4RHCJ4BLBJYJLBJcILpHlknHE0yXHx0P5ue61oxIPWsoZD1qeFU6X7HjQan1vEos4r3i6ZNYZhfik2eNEHC6x4/rNz3WvHccR44xxxPVjSawjzjPOKx4u6SjEg3Zccvm57rWjEwfxoMm5ZYdLTPSMRZxXnI9rew+XmJyzM5VoRCcOfiyISYQ2T5r/6/vv/s8ff/7xj3/66Yf/+e53/3x++V//+Muf//7jX/+yv/z7//1b/8uffv7xp59+/O8//O3nv/75h//8x88//OGnv/75+LfvHsd/Dkn8h8T3Kr9/frPwv+b36sf/0v2t/6Ejv9eM3z/Pj45/f17GP13y/Or8drXj+/34Uo4vvb7X8Th+3vrnnx31vZvun9fx/I6o/vnnqfL3zxOh/vnne+vzyzh+3o+fP37Cjh/v7/fnv8/jn8e/DyL6J9S/N79+4vG9j+Of8/oJlecm/P5f//rX7//1/wA=",
|
|
2017
|
+
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdwAAAAAAAAAAAAAAAAAAAACPm9W0tjxDELm1AuOUxzJ2UAAAAAAAAAAAAAAAAAAAAAAAdUHSvfs4f6udfPrmgeiwAAAAAAAAAAAAAAAAAAANVczEmm+LR7VUgL4sy06QbrAAAAAAAAAAAAAAAAAAAAAAAGKy5nQRM5ZDThdjVvkEkAAAAAAAAAAAAAAAAAAAAwy9qUUDUQNtnyxQusmzhUjAAAAAAAAAAAAAAAAAAAAAAAClqyUgOfZdHiXb1ukefVAAAAAAAAAAAAAAAAAAAAwjrLLSjBf5YvIyXM6g1ZrA4AAAAAAAAAAAAAAAAAAAAAAB4C9y2NiBh3B3SSPWVsiQAAAAAAAAAAAAAAAAAAAAPgrs5Tq85BTOoprRO9ilSaAAAAAAAAAAAAAAAAAAAAAAAE2wiNu7W5Otv/0PfhS2kAAAAAAAAAAAAAAAAAAABN6uwxArEdlvienSNP08dQOAAAAAAAAAAAAAAAAAAAAAAAEAc/P5R0xFthANE5GT1nAAAAAAAAAAAAAAAAAAAAYgyv6VPQ94hdIOZNajK4Mp4AAAAAAAAAAAAAAAAAAAAAABJ20s+q8KFYwBe5ukvsuQAAAAAAAAAAAAAAAAAAAKva06D6AiMe2obiDpzKfc+xAAAAAAAAAAAAAAAAAAAAAAAJIcsDanvnDjznmtfMQJMAAAAAAAAAAAAAAAAAAACw0nQR9ZHMGaHcjdtfQbdiUwAAAAAAAAAAAAAAAAAAAAAAC6/6Xtu5XKRauoIx7JAdAAAAAAAAAAAAAAAAAAAAmBfHhVuyXxHquP2f46HrDfwAAAAAAAAAAAAAAAAAAAAAABTlBnSPLEyxNUDB9yvsqQAAAAAAAAAAAAAAAAAAAC1YCfP2PV6wu/WKGdZI3Dj4AAAAAAAAAAAAAAAAAAAAAAANMMLN8Iam1Y5juopXlCoAAAAAAAAAAAAAAAAAAADmXqmgY/nxY5kg+WLJllRmMwAAAAAAAAAAAAAAAAAAAAAAAb1YE2ZxNvkY06W2o9V8AAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAADXZSytT/7bmtUUvtUXXNWcDAAAAAAAAAAAAAAAAAAAAAAALzxAtw6k/wKUOXiU8y3zAAAAAAAAAAAAAAAAAAAAh1sDs0YAFv4LLEVlJprO148AAAAAAAAAAAAAAAAAAAAAAAVcCVujDZ8JOy6/irSpRgAAAAAAAAAAAAAAAAAAACLYxkx+vLjudTuINN+5/2lmAAAAAAAAAAAAAAAAAAAAAAABTuCCmk4quTMJZSwQdNMAAAAAAAAAAAAAAAAAAABm3hZxAHDg2jNSDgzL8fZGPAAAAAAAAAAAAAAAAAAAAAAALh45Ran+crsUs9zuLe3jAAAAAAAAAAAAAAAAAAAAa4bVkD4GIBlmFogHOUOpBo4AAAAAAAAAAAAAAAAAAAAAACG6uD91RwhtRUIPFXuhfwAAAAAAAAAAAAAAAAAAAL9Oqm69U4ilb0p8JTb0ksXfAAAAAAAAAAAAAAAAAAAAAAAkhI7rG3n46xvLIb3clfcAAAAAAAAAAAAAAAAAAAAbo4laXysq6Qhljp5oofBERwAAAAAAAAAAAAAAAAAAAAAAB7ctp4kjhb2cqXnkT96gAAAAAAAAAAAAAAAAAAAAMv0wdGEHRcQKxLMAYjrFdroAAAAAAAAAAAAAAAAAAAAAAB4kl9h50OezS9j2g3vLfgAAAAAAAAAAAAAAAAAAAKC7/J/wri1Sw5YaMZB2qwXfAAAAAAAAAAAAAAAAAAAAAAAEZxF17Sy8HlHl8ndKnOcAAAAAAAAAAAAAAAAAAABwMBRsAYyIM0yIZehGVgAxcAAAAAAAAAAAAAAAAAAAAAAAG0bt2ONZ1VYQusUb8TigAAAAAAAAAAAAAAAAAAAAfqtyqDbeK+rtH/wKfHk/NpgAAAAAAAAAAAAAAAAAAAAAABrMr0pDktJWujfwoYKYBAAAAAAAAAAAAAAAAAAAAP0syXbMAuVTCMiTS6a3kpL5AAAAAAAAAAAAAAAAAAAAAAAhzYU10wubRZt0idO1besAAAAAAAAAAAAAAAAAAAD+iK4LamzA1eCT4bPidlJIUgAAAAAAAAAAAAAAAAAAAAAAF68WR24KRD+Oss5SELR6AAAAAAAAAAAAAAAAAAAA4nW5mSrnjHmptnYGr+e8+JkAAAAAAAAAAAAAAAAAAAAAAB2Z5I2d61/l1fmUraiP4gAAAAAAAAAAAAAAAAAAAAfMT2Jf+ucufTqNowbEHPOOAAAAAAAAAAAAAAAAAAAAAAAp2MiPfKvOgtgt/VC0N08AAAAAAAAAAAAAAAAAAADZqvpE6q/iaLVpF2JoPpyeTAAAAAAAAAAAAAAAAAAAAAAABHcERb2q+r7fehlidkWDAAAAAAAAAAAAAAAAAAAApuJ8YFdVjIZJl06xOFNk4YcAAAAAAAAAAAAAAAAAAAAAACUd0r2xgc8jW3Q6nkd3FwAAAAAAAAAAAAAAAAAAANewUemYCmJwu5ftRS2xDxGUAAAAAAAAAAAAAAAAAAAAAAAi4dgAd5bjOSWEqPKSoXsAAAAAAAAAAAAAAAAAAABkkgKrTUvTqJ3d4QQm0sHGXwAAAAAAAAAAAAAAAAAAAAAAAhm79/274KVifF1CuIXjAAAAAAAAAAAAAAAAAAAA3UNhJVdZcjpTPx5igvp8B+oAAAAAAAAAAAAAAAAAAAAAABApi95KQ5IawpQZ9LzpRAAAAAAAAAAAAAAAAAAAAKYtyMLO4geRiUR2wq9yO0sGAAAAAAAAAAAAAAAAAAAAAAAZHKlzElRnXggl00kXODIAAAAAAAAAAAAAAAAAAABNtO4HRLUjhVkL2/B8a7Hm/gAAAAAAAAAAAAAAAAAAAAAADV9Ya7TB7nE/N1InrtlBAAAAAAAAAAAAAAAAAAAA/2n1hKMn5sGiNCCuofe/1MAAAAAAAAAAAAAAAAAAAAAAACNVdcD8Ka8kuUif8M8TOgAAAAAAAAAAAAAAAAAAAMPG/E+1tR1VS4CWZ64Teon8AAAAAAAAAAAAAAAAAAAAAAAJUr8uJiJ5IWWDWCdBVzgAAAAAAAAAAAAAAAAAAAD3ysHBM+RihG1pnQ9XKHgsjwAAAAAAAAAAAAAAAAAAAAAACrwtrjvzhbGu7a5AOU8mAAAAAAAAAAAAAAAAAAAA7YxVPFYsIX3NYKYZksTEUEsAAAAAAAAAAAAAAAAAAAAAABknrTbk11+QUNDreW4jFwAAAAAAAAAAAAAAAAAAAEN01V5flCwVCJY1iFir60g5AAAAAAAAAAAAAAAAAAAAAAAA+UVukmMBgmZbD5Mdg54AAAAAAAAAAAAAAAAAAACqf37d5izcYjTWIrr1Iba7ZQAAAAAAAAAAAAAAAAAAAAAABiyW/3i+UyChzsNTHLrvAAAAAAAAAAAAAAAAAAAAHNZGOmq+vkEVxu58PSSeqjUAAAAAAAAAAAAAAAAAAAAAAARSo55t0OPgkEqs2hvUDQAAAAAAAAAAAAAAAAAAAF4Y8VqdoHnR/yrFwwmr7o46AAAAAAAAAAAAAAAAAAAAAAArvxDN+WJf1jywyQOvr7oAAAAAAAAAAAAAAAAAAADoG5hE3WloixJTi4bcgF1GMwAAAAAAAAAAAAAAAAAAAAAAKE/0mIQVYMqkrnnI/OsoAAAAAAAAAAAAAAAAAAAAbnZtQiMdEklQf4l9H20vT3cAAAAAAAAAAAAAAAAAAAAAABS6cmiSgFPUY/Czye5FrgAAAAAAAAAAAAAAAAAAAPSmxv/fgKctt4di4jfVjNX2AAAAAAAAAAAAAAAAAAAAAAAmgUpZgDVVY1o7bf0FbRkAAAAAAAAAAAAAAAAAAAD0W42WBpIx9I4NDDTVdZOmpgAAAAAAAAAAAAAAAAAAAAAAC53DI5kCV5YAWy9owVmRAAAAAAAAAAAAAAAAAAAAdQ4bXLmXo634VAv1W7kmTsQAAAAAAAAAAAAAAAAAAAAAAB9s1bbUP2d5iuRlXAFvNwAAAAAAAAAAAAAAAAAAAFlsxhg4SPMsYOx0/ivNdrIPAAAAAAAAAAAAAAAAAAAAAAAO1i0QsBk1XwCLRkEtDi0AAAAAAAAAAAAAAAAAAAAgIN/auMnbgzW8o8goSxWFsgAAAAAAAAAAAAAAAAAAAAAAI6KQbQMgSqT3m1uAuS6qAAAAAAAAAAAAAAAAAAAAkRbE0V98mlHxfDgw/nweO0IAAAAAAAAAAAAAAAAAAAAAACSuyuMy20jgO5f8ZFp/BQAAAAAAAAAAAAAAAAAAAINMXpOM+ei9S9WEfiQIQHJ2AAAAAAAAAAAAAAAAAAAAAAAIUktAz4e2aBGQIvaRz6wAAAAAAAAAAAAAAAAAAADmmd+GBzFDfsV/mJD+SzpCBQAAAAAAAAAAAAAAAAAAAAAADh6dQyfmNfVH2meu9X6GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCEmmrLyPKGVyxwyVTJPBz6gAAAAAAAAAAAAAAAAAAAAAAJIDCPSy5jwCo6dc28D0uAAAAAAAAAAAAAAAAAAAA6xIt8erxUNNV6Y7Uxxlq4MsAAAAAAAAAAAAAAAAAAAAAACwcl6TCc6T3bHIn0ASE5QAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
|
|
2018
2018
|
},
|
|
2019
2019
|
{
|
|
2020
2020
|
"name": "claim_and_end_setup",
|
|
@@ -3037,7 +3037,7 @@
|
|
|
3037
3037
|
"name": "note_hash_read_requests",
|
|
3038
3038
|
"type": {
|
|
3039
3039
|
"kind": "struct",
|
|
3040
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3040
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3041
3041
|
"fields": [
|
|
3042
3042
|
{
|
|
3043
3043
|
"name": "array",
|
|
@@ -3105,7 +3105,7 @@
|
|
|
3105
3105
|
"name": "nullifier_read_requests",
|
|
3106
3106
|
"type": {
|
|
3107
3107
|
"kind": "struct",
|
|
3108
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3108
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3109
3109
|
"fields": [
|
|
3110
3110
|
{
|
|
3111
3111
|
"name": "array",
|
|
@@ -3173,7 +3173,7 @@
|
|
|
3173
3173
|
"name": "key_validation_requests_and_generators",
|
|
3174
3174
|
"type": {
|
|
3175
3175
|
"kind": "struct",
|
|
3176
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3176
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3177
3177
|
"fields": [
|
|
3178
3178
|
{
|
|
3179
3179
|
"name": "array",
|
|
@@ -3251,7 +3251,7 @@
|
|
|
3251
3251
|
"name": "private_call_requests",
|
|
3252
3252
|
"type": {
|
|
3253
3253
|
"kind": "struct",
|
|
3254
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3254
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3255
3255
|
"fields": [
|
|
3256
3256
|
{
|
|
3257
3257
|
"name": "array",
|
|
@@ -3371,7 +3371,7 @@
|
|
|
3371
3371
|
"name": "public_call_requests",
|
|
3372
3372
|
"type": {
|
|
3373
3373
|
"kind": "struct",
|
|
3374
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3374
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3375
3375
|
"fields": [
|
|
3376
3376
|
{
|
|
3377
3377
|
"name": "array",
|
|
@@ -3511,7 +3511,7 @@
|
|
|
3511
3511
|
"name": "note_hashes",
|
|
3512
3512
|
"type": {
|
|
3513
3513
|
"kind": "struct",
|
|
3514
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3514
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3515
3515
|
"fields": [
|
|
3516
3516
|
{
|
|
3517
3517
|
"name": "array",
|
|
@@ -3555,7 +3555,7 @@
|
|
|
3555
3555
|
"name": "nullifiers",
|
|
3556
3556
|
"type": {
|
|
3557
3557
|
"kind": "struct",
|
|
3558
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3558
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3559
3559
|
"fields": [
|
|
3560
3560
|
{
|
|
3561
3561
|
"name": "array",
|
|
@@ -3614,7 +3614,7 @@
|
|
|
3614
3614
|
"name": "l2_to_l1_msgs",
|
|
3615
3615
|
"type": {
|
|
3616
3616
|
"kind": "struct",
|
|
3617
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3617
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3618
3618
|
"fields": [
|
|
3619
3619
|
{
|
|
3620
3620
|
"name": "array",
|
|
@@ -3682,7 +3682,7 @@
|
|
|
3682
3682
|
"name": "private_logs",
|
|
3683
3683
|
"type": {
|
|
3684
3684
|
"kind": "struct",
|
|
3685
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3685
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3686
3686
|
"fields": [
|
|
3687
3687
|
{
|
|
3688
3688
|
"name": "array",
|
|
@@ -3764,7 +3764,7 @@
|
|
|
3764
3764
|
"name": "contract_class_logs_hashes",
|
|
3765
3765
|
"type": {
|
|
3766
3766
|
"kind": "struct",
|
|
3767
|
-
"path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
|
|
3767
|
+
"path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
|
|
3768
3768
|
"fields": [
|
|
3769
3769
|
{
|
|
3770
3770
|
"name": "array",
|
|
@@ -3865,8 +3865,8 @@
|
|
|
3865
3865
|
}
|
|
3866
3866
|
},
|
|
3867
3867
|
"bytecode": "H4sIAAAAAAAA/+y9B5wUVbfuPVXF9OTuIaggIhgQMBFERUXJORoxoICAihIHUDABJjAyPWAGQQmCiJJzzqE3QSUpKmAgSJScv91AU8VMd+9nNvWc4/lun99779mH96m1dq219vp3V3evsbL8H28o1axZixe7tG7ZrH1Gszbtu7TOaN+ibedmzVq2bdGmXbMW7Vs1ay3/X+fWXbp2FHkbb8z/U68xVdu2aPlc1Q7danZt37Jai7Ztew27r0rDWjWyen3dpE2X9q07dzaLASLLAER5EUv5KwOiSwM9AdVlkOoKZFdFENGViKgoIioG7fwqSHU1pLoGUl2LbP46aWpU1Yw2bdu2eToo6B+XmTmn1zdVOndundHl0dYZHfpl+rMWFCvTqmHG5rKDS01pXGNSr14PP17ylm21u0/t6K+2+WC/vXFxccL6fkGxuOj/c6OO2TERzcaHFmHuckLjDp1bt2nVoX25xq0z2nXt0qJLmw7ts/qfv2u53fPr4nYsHP/9mP7CGiusccIaL6wJF+68X5byXo0SgEZ6gGIwUWkqLvcbLAltcBy0wUnABnWSNNGxnuRYj3esJ8hETRbWFGFNFda0C+OQBdxjfugOpysMGfciJ1LaqZz7HV4L7XCG2hC0wxnFLuwHif16Db+/Tfun27Y+e2RVTooDtXDeYKZSXCwXYiPO32tYlYyMFt03xhUT1kxhzRLWbGHNEdZcYc0T1nxhLRDWQmEtEtZiYS0R1lJhLRPWcmEFhCWEtUJYK4W1SlirhfWDsH4U1k/CWiOstcJaJ6z1wtogrJ+F9YuwNs6BojkzEZLNwmSzMdkcTDYXk83DZPMx2QJMthCTLcJkizHZEky2FJMtw2TLMVkAkwlMtgKTrcRkqzDZakz2Ayb7EZP9hMnWYLK1mGwdJluPyTZgsp8x2S+YbGPihaDqHxlCmecgJF8uLIyo6uC3VYsiqaZ0dKgWI9jz7c/ta6NsNzIxjFnpfPUFquqTwqt+cKoa1Yig+hG6kcO5vZGNcUUQHEMvHmYqVHtOn5Y3MkupCt7ubJXqTFDmRFdlnQ3d3KiqA+cCPC+aalMoDfOjqKqeT9aCCKpuF6R0SXhVrQsTvzSsamu28lgWTlUuexEtD6MqkaPUAjlVTXMWpMihahKmbFdkV/UMV9wrs6l6hj0CqxyqyY0jHZSfbFXJKRFVa86rBpWKrFobUpUZHEW17pxqU9loqvVnVZ02R1VtOKNqkBFd9XNQ1bKhQvWLVJVupVJtRN7C+fZDKqT9XPC+IMmfu/cFcrvKHrP6jM12Hdu2FtavFz6F8PeDXMjrstS9bHVQhtj7Td089Xb5mx/a5W+5zUpylkZWFKJVuXoLlmWn8Hd7uQl7u/Q79h51U2Lun3ecPS5qyP0OAXMTELXcF8Zv0j32WOx3/nH9RRmtgY7julnnuMr30ZuB4zowKEPsbaEcV7nLLX5ol1v4x/UXpWiA7nH9w17+iR3XP7Dj+qfWcf0FOq5/QMflTyBqOZ7Lqc1izv8Cnsxlr0q1VdkrtmRhEIN2+Xcu339gZ+cvadjvmv+L7Gg/KwtqvKOjbdXpaPLh4Fago40PyhB72ygdTe5ymx/a5TaNqoBq9283a3d7bt87Y8d7G6TaARzvi2z6PytF43Sb/j/2cifW9P/Bmv5Orab/M9T0/4ESsxOImkZVYM53aTR91QWy0GW5Ye10N6Wd75KGOf7B4O+GVHsowQ91LaC/Qaq9uW0cuSfeBuVp6usg3j4d4slPxPYBxOsblCH2/qUQT+7yXz+0y38pxNsj0+1mhe/PZYWDx+tfSHWAT7wNStEHusQ7aC8PYcQ7iBHvkBbxNkDEOwgl5hAQNY2qwJwfpjTd/bLcMOIcoRDvsDTM8Q8G/wikOkoJfqhrqZVY1zrGf4+3XnmaijmId1yHeOvldQDxigVliL0TFOLJXZ7wQ7s8QSHeUZluNyv8JId4JyDVKT7x1itFRXWJd/r8Mk8cRrzTEPHyxGkRbz1EvNNIYvLEAVHTqArMuUFpuidluUHEyWMyiJdH/sfk+MeCn8eEVBYl+KGupVZCXStPHj7x1ilP0yqbeHnidYi3Tl4HEG9VUIaUmIdCPLlLjx/apYdBvDyWTLebFZ5AIV4eD6RK5BNvnVK0UpN4eZLsZTJEvDxJGPGStYi3DiFeniQoMclA1DSqAnOewmi6eRJkuWHESaUQL0Ua5vgHg58KqdIowQ91LbUS61pePvHWKk9TCwfxfDrEWyuvA4jXIihDYpdOIZ7cZbof2mU6hXhpMt1uVnheDvHSIVU+PvHWKkXNdYmX314WwIiXHyNeAS3irYWIB/32Kk8BIGoaVYE5v4TSdPPKcsOIcymFeJdIwxz/YPAvhVSXUYIf6lpqJda1CvKJt0Z5mtY7iFdIh3hr5HUA8dYHZUjsLqcQT+7ycj+0y8spxLtMptvNCi/MId7lkOoKPvHWKEXrdIlXxF5eiRGvCEa8K7WItwYiXhEoMVcCUdOoCsx5UUrTLSzLDSNOMQrxikrDHP9g8ItBqqsowQ91LbUS61pX84n3k/I01XEQ7xod4v0krwOIVycoQ2J3LYV4cpfX+qFdXksh3lUy3W5WeHEO8aAhCXmu4xPvJ6Woti7xStjLkhjxSmDEK6lFvJ8g4pWAElMSiJpGVWDOS1GabnFZbhhxrqcQr5Q0zPEPBv96SHUDJfihrqVWYl3rRj7xflSeprEO4t2kQ7wf5XUA8cYGZUjsbqYQT+7yZj+0y5spxLtBptvNCi/NId7NkKoMn3g/KkVjdIlX1l6Ww4hXFiNeOS3i/QgRryyUmHJA1DSqAnN+C6XplpblhhGnPIV4t0jDHP9g8MtDqlspwQ91LbUS61q38Yn3g/I0zXAQ73Yd4v0grwOINyMoQ2JXgUI8ucsKfmiXFSjEu1Wm280Kv4NDvAqQ6k4+8X5QiqbrEu8ue1kRI95dGPEqahHvB4h4d0GJqQhETaMqMOd3U5ruHbLcMOLcQyHe3dIwxz8Y/HsgVSVK8ENdS63EulZlPvFWK09TPQfxqugQb7W8DiBevaAMiV1VCvHkLqv6oV1WpRCvkky3mxVejUO8qpCqOp94q5WiurrEq2Eva2LEq4ERr6YW8VZDxKsBJaYmEDWNqsCc16I03Wqy3DDi1KYQr5Y0zPEPBr82pKpDCX6oa6mVWNeqyyfeKuVp6ukgXj0d4q2S1wHE6xmUIbGrTyGe3GV9P7TL+hTiyQ8I67pZ4Q04xKsPqRryibdKKeqhS7xG9rIxRrxGGPEaaxFvFUS8RlBiGgNR06gKzPm9lKbbQJYbRpz7KMS7Vxrm+AeDfx+kup8S/FDXUiuxrvUAn3grc0W8B3WIt1JehxHvQSh2D1GIJ3f5EEa8hyjEu1+m280Kb8Ih3kOQ6mE+8VbyiPeIvXwUI94jGPEe1SLeSoh4j0CJeZRDPMz5Y5Sm20SWG0acphTiPSYNc/yDwW8KqR6nBD/UtdRKrGs9wSfeCuVpGukgXjMd4q2Q1wHEGxmUIbFrTiGe3GVzP7TL5hTiPS7T7WaFt+AQrzmkepJPvBVK0Qhd4rW0l60w4rXEiNdKi3grIOK1hBLTCoiaRlVgzltTmm4LWW4YcZ6iEE9WyVMc/2Dwn4JUT1OCH+paaiXWtZ7hE08oT9NQB/Ha6BBPyOsA4g0NypDYPUshntzls35ol89SiPe0TLebFf4ch3jPQqq2fOIJpWiILvHa2cv2GPHaYcRrr0U8ARGvHZSY9kDUNKoCc96B0nSfk+WGEacjhXgdpGGOfzD4HSFVJ0rwQ11LrcS6VgafeAHladrgIF5nHeIF5HUA8TYEZUjsulCIJ3fZxQ/tsguFeJ1kut2s8K4c4nWBVM/ziRdQitbrEu8Fe9kNI94LGPG6aREvABHvBSgx3YCoaVQF5rw7pel2leWGEedFCvG6S8Mc/2DwX4RUL1GCH+paaiXWtV7mE2+58jStcBDvFR3iLZfXAcRbEZQhsXuVQjy5y1f90C5fpRDvJZluNyu8B4d4r0KqnnziLVeKhC7xetnL1zDi9cKI95oW8ZZDxOsFJeY1IGoaVYE5f53SdHvIcsOI8waFeK9Lwxz/YPDfgFRvUoIf6lpqJda13uITb5nyNBVyEK+3DvGWyesA4hUKypDY9aEQT+6yjx/aZR8K8d6U6Xazwt/mEK8PpHqHT7xlSlFBXeK9ay/fw4j3Lka897SItwwi3rtQYt4DoqZRFZjz9ylN921ZbhhxPqAQ731pmOMfDP4HkKovJfihrqVWYl0rk0+8pcrTNNVBPL8O8ZbK6wDiTQ3KkNhlUYgnd5nlh3aZRSFeX5luNyu8H4d4mKo/n3hLlaIpusT70F5+hBHvQ4x4H2kRbylEvA+hxHwERE2jKjDnH1Oabj9ZbhhxPqEQ72NpmOMfDP4nkOpTSvBDXUutxLrWZ3ziLVGepj4O4n2uQ7wl8jqAeH2CMiR2AyjEk7sc4Id2OYBCvE9lut2s8IEc4g2AVF/wibdEKeqtS7xB9nIwRrxBGPEGaxFvCUS8QVBiBgNR06gKzPmXlKY7UJYbRpyvKMT7Uhrm+AeD/xWkGkIJfqhrqZVY1xrKJ95i5Wmq7SDeMB3iLZbXAcSrHZQhsRtOIZ7c5XA/tMvhFOINkel2s8K/5hBvOKQawSfeYqWoli7xRtrLbzDijcSI940W8RZDxBsJJeYbIGoaVYE5H0Vpul/LcsOI8y2FeKOkYY5/MPjfQqrRlOCHupZaiXWt7/jEW6Q8TX4H8b7XId4ieR1APH9QhsRuDIV4cpdj/NAux1CIN1qm280KH8sh3hhINY5PvEVKUaYu8cbbywkY8cZjxJugRbxFEPHGQ4mZAERNoyow5xMpTXesLDeMOJMoxJsoDXP8g8GfBKkmU4If6lpqJda1pvCJt1B5mjo6iDdVh3gL5XUA8ToGZUjsplGIJ3c5zQ/tchqFeJNlut2s8Okc4k2DVDP4xFuoFHXQJd5MezkLI95MjHiztIi3ECLeTCgxs4CoaVQF5nw2pelOl+WGEWcOhXizpWGOfzD4cyDVXErwQ11LrcS61jw+8RYoT9MsB/Hm6xBvgbwOIN6soAyJ3QIK8eQuF/ihXS6gEG+uTLebFb6QQ7wFkGoRn3jqLMzUJd5ie7kEI95ijHhLtIi3ACLeYigxS4CoaVQF5nwppenKl6qLMOIsoxBvqTTM8Q8GfxmkWk4JfqhrqZVY1wrwiTdfeZqKOYgndIg3X14HEK9YUIbEbgWFeHKXK/zQLldQiLdcptvNCl/JId4KSLWKT7z5SlFRXeKttpc/YMRbjRHvBy3izYeItxpKzA9A1DSqAnP+I6XprpTlhhHnJwrxfpSGOf7B4P8EqdZQgh/qWmol1rXW8ok3T3maUh3EW6dDvHnyOoB4qUEZErv1FOLJXa73Q7tcTyHeGpluNyt8A4d46yHVz3ziqZ9/pOgS7xd7uREj3i8Y8TZqEW8eRLxfoMRsBKKmURWY818pTXeDLDeMOL9RiPerNMzxDwb/N0j1OyX4oa6lVmJdaxOfeHOVp6m9g3ibdYgn3/luBojXPihDYreFQjy5yy1+aJdbKMT7XabbzQr/g0O8LZDqTz7x1J9LtNMl3l/28m+MeH9hxPtbi3hzIeL9BSXmbyBqGlWBOd9Kabp/yHLDiLONQryt0jDHPxj8bZBqOyX4oa6lVmJdawefeHOUpymvg3j/6BBvjrwOIF7eoAyJ3U4K8eQud/qhXe6kEG+7TLebFb6LQ7ydkGo3n3jqrwGk6xJvj73cixFvD0a8vVrEmwMRbw+UmL1A1DSqAnO+j9J0d8lyw4jzL4V4+6Rhjn8w+P9Cqv2U4Ie6llqJda0DfOKpvz8V5yDeQR3izZbXYdNUDlFYJv0fyqRQar9MkZtVeZhDqUOQ6ojGkQBuSRr+HxgdNCtXZXxUp4xnyeuwMj5GKWPp/1gmpWfLHB3zu1SgF53Jmep9ODJ5XCeTM+V12Mk5DuX7BCXfcpcnsKycoDQ3WRUnMJgdhnZ5klG7wSidzOS8kjgJqU5RXkmEyKJWYmQ5TWkcp6RhrCWeBI7IBY0jsV/uGsd1wA3ib4DiiuXq3ZK/17AqGRktum+MKybi40S8IeJNEW+J+DwiPl7Ee0R8gohPFPFJIj5ZxKeI+FQRnybivSLeJ+LTRXxeEZ9PxOcX8QVE/CUi/lIRf5mILyjiC4n4y0V8YRF/hYgvIuKvFPFFoXdg8XGJkMzAZCYmszBZHkwWj8k8mCwBkyVisiRMlozJUjBZKiZLw2ReTObDZOmYLC8my4fJ8mOyApjsEkx2KSa7DJMVxGSFMNnlmKwwJrsCkxXBZFdisqLZngn1j0y3zHPgkM02MaKqg99WJUVSTenoUCUjPE03c/uSI9uNTAxjVjovcIGq+qTwqkucqkY1IqguhW7Ek9sb2RhXBMEx4jw+DnmWF28oVcHbNVWqM0GxoquyzoYu+ljXA+cCHB9NtSmUBk8UVdXzyUqIoOp2QUpTwqtqXZj41LCqrdnKIy2cqlz2IvKGUZXIUWq+nKqmOQsyPYeqSZiyzZtd1TNccefLpuoZ9gjkd6gmN450UC6zVSWnRFQVPK8aVCqyqlBIVWZwFNXl51SbykZTFT6r6rQ5quqKM6oGGdFVwTNbpmVDhepKqSrdSqUqirziTzchlYf+QCG+qLLHrLYfKMQX03igEF9UXgd8prc6KEPsXcV4oBDc5VV+aJdX5TYruf7AKpgVhWiV5gdW8Vfby2uwt0tXQx9YxV+j84HVmeOihtzVEDCvAaKW+8K4SrqHnjTFX80/rlcqozXQcVyv1Tmu8n30tcBxHRiUIfaKU46r3GVxP7TL4vzjeqVSNED3uF5nL0tgx/U67LiW0DquV0LHFXt9WwKIWu4fTILOSzI+zwn2iuJZGMSgXZZiPJiMLykN+13zf5EdrYiyoMY7Otr1Oh1NPhy8Huho44MyxN4NlI4md3mDH9rlDYxPNIK1W8rN2r2R8rlD/A2Q6ib6l4qChasQjdNt+jfby9JY078Za/qltZp+Eajp3wwlpjQQNY2qwJyXYXwaFX+jLDesnZaltPMy0jDHPxj8spCqHCX4oa4F9DdIdUtuG0fuiXeF8jT1dRCvvA7x5Cdi5QHi9Q3KEHu3Uognd3mrH9rlrRTilZPpdrPCb6N8QSn+Vkh1O594VyhFH+gSr4K9vAMjXgWMeHdoEe8KiHgVoMTcAURNoyow53dSmu5tstww4txFId6d0jDHPxj8uyBVRUrwQ11LrcS61t3893iFlafJMQ4n/h4d4hWW10HjcKQMsVeJQjy5y0rQOJygf4U5HeJVlOl2s8Irc4hXCVJV4ROvsFKkOw4nvqq9rIYRrypGvGpaxCsMEa8qlJhqQNQ0qgJzXp3SdCvLcsOIU4NCvOrSMMc/GPwakKomJfihrqVWYl2rFp94lytP0yoH8WrrEO9yeR1AvFVBGWKvDoV4cpd1/NAu61CIV1Om280Kr8shXh1IVY9PvMuVopW6xKtvLxtgxKuPEa+BFvEuh4hXH0pMAyBqGlWBOW9Iabp1ZblhxGlEIV5DaZjjHwx+I0jVmBL8UNdSK7GudS+feIWUp6mFg3j36RCvkLwOIF6LoAyxdz+FeHKX9/uhXd5PIV5jmW43K/wBDvHuh1QP8olXSClqrku8h+xlE4x4D2HEa6JFvEIQ8R6CEtMEiJpGVWDOH6Y03QdkuWHEeYRCvIelYY5/MPiPQKpHKcEPdS21Eutaj/GJV1B5mtY7iNdUh3gF5XUA8dYHZYi9xynEk7t83A/t8nEK8R6V6Xazwp/gEO9xSNWMT7yCStE6XeI1t5ctMOI1x4jXQot4BSHiNYcS0wKImkZVYM6fpDTdJ2S5YcRpSSHek9Iwxz8Y/JaQqhUl+KGupVZiXas1n3iXKU9THQfxntIh3mXyOoB4dYIyxN7TFOLJXT7th3b5NIV4rWS63azwZzjEexpSteET7zKlqLYu8Z61l89hxHsWI95zWsS7DCLes1BingOiplEVmPO2lKb7jCw3jDjtKMRrKw1z/IPBbwep2lOCH+paaiXWtTrwiXep8jSNdRCvow7xLpXXAcQbG5Qh9jpRiCd32ckP7bIThXjtZbrdrPAMDvE6QarOfOJdqhSN0SVeF3vZFSNeF4x4XbWIdylEvC5QYroCUdOoCsz585SmmyHLDSPOCxTiPS8Nc/yDwX8BUnWjBD/UtdRKrGt15xPvEuVpmuEg3os6xLtEXgcQb0ZQhth7iUI8ucuX/NAuX6IQr5tMt5sV/jKHeC9Bqlf4xLtEKZquS7xX7WUPjHivYsTroUW8SyDivQolpgcQNY2qwJz3pDTdl2W5YcTpRSFeT2mY4x8Mfi9I9Rol+KGupVZiXet1PvEKKE9TPQfx3tAhXgF5HUC8ekEZYu9NCvHkLt/0Q7t8k0K812S63azwtzjEexNS9eYTr4BSVFeXeH3s5dsY8fpgxHtbi3gFIOL1gRLzNhA1jarAnL9DabpvyXLDiPMuhXjvSMMc/2Dw34VU71GCH+paaiXWtd7nEy+/8jT1dBDvAx3i5ZfXAcTrGZQh9vpSiCd32dcP7bIvhXjvyXS7WeGZHOL1hVR+PvHyK0U9dInnWPbDiJeFEa+fFvHyQ8TD0tcPiJpGVWCq/pSmmynLDSPOhxTi9ZeGOf7B4H8IqT6iBD/UtdRKrGt9zCdevlwR7xMd4uWT12HE+wTa8qcU4sldfooR71MK8T6S6Xazwj/jEO9TSPU5n3j5eMQbYC8HYsQbgBFvoBbx8kHEGwAlZiCHeJjzLyhN9zNZbhhxBlGI94U0zPEPBn8QpBpMCX6oa6mVWNf6kk+8vMrTNNJBvK90iJdXXgcQb2RQhtgbQiGe3OUQP7TLIRTiDZbpdrPCh3KINwRSDeMTL69SNEKXeMPt5dcY8YZjxPtai3h5IeINhxLzNRA1jarAnI+gNN2hstww4oykEG+ENMzxDwZ/JKT6hhL8UNdSK7GuNYpPvHTlaRrqIN63OsRLl9cBxBsalCH2RlOIJ3c52g/tcjSFeN/IdLtZ4d9xiDcaUn3PJ166UjREl3hj7OVYjHhjMOKN1SJeOkS8MVBixgJR06gKzPk4StP9TpYbRpzxFOKNk4Y5/sHgj4dUEyjBD3UttRLrWhP5xPMpT9MGB/Em6RDPJ68DiLchKEPsTaYQT+5ysh/a5WQK8SbIdLtZ4VM4xJsMqabyiedTitbrEm+avZyOEW8aRrzpWsTzQcSbBiVmOhA1jarAnM+gNN0pstww4sykEG+GNMzxDwZ/JqSaRQl+qGuplVjXms0nnld5mlY4iDdHh3heeR1AvBVBGWJvLoV4cpdz/dAu51KIN0um280Kn8ch3lxINZ9PPK9SJHSJt8BeLsSItwAj3kIt4nkh4i2AErMQiJpGVWDOF1Ga7jxZbhhxFlOIt0ga5vgHg78YUi2hBD/UtdRKrGst5RMvTXmaCjmIt0yHeGnyOoB4hYIyxN5yCvHkLpf7oV0upxBviUy3mxUe4BBvOaQSfOKlKUUFdYm3wl6uxIi3AiPeSi3ipUHEWwElZiUQNY2qwJyvojTdgCw3jDirKcRbJQ1z/IPBXw2pfqAEP9S11Eqsa/3IJ16q8jRNdRDvJx3ipcrrAOJNDcoQe2soxJO7XOOHdrmGQrwfZLrdrPC1HOKtgVTr+MRLVYqm6BJvvb3cgBFvPUa8DVrES4WItx5KzAYgahpVgTn/mdJ018pyw4jzC4V4P0vDHP9g8H+BVBspwQ91LbUS61q/8omXojxNfRzE+02HeCnyOoB4fYIyxN7vFOLJXf7uh3b5O4V4G2W63azwTRzi/Q6pNvOJl6IU9dYl3hZ7+QdGvC0Y8f7QIl4KRLwtUGL+AKKmURWY8z8pTXeTLDeMOH9RiPenNMzxDwb/L0j1NyX4oa6lVmJdayufeMnK01TbQbxtOsRLltcBxKsdlCH2tlOIJ3e53Q/tcjuFeH/LdLtZ4Ts4xNsOqf7hEy9ZKaqlS7yd9nIXRrydGPF2aREvGSLeTigxu4CoaVQF5nw3penukOWGEWcPhXi7pWGOfzD4eyDVXkrwQ11LrcS61j4+8ZKUp8nvIN6/OsRLktcBxPMHZYi9/RTiyV3u90O73E8h3l6Zbjcr/ACHePsh1UE+8ZKUokxd4h2yl4cx4h3CiHdYi3hJEPEOQYk5DERNoyow50coTfeALDeMOEcpxDsiDXP8g8E/CqmOUYIf6lpqJda1jvOJl6g8TR0dxDuhQ7xEeR1AvI5BGWLvJIV4cpcn/dAuT1KId0ym280KP8Uh3klIdZpPvESlqIMm8Txx9tKAiOeJg4jnMbSIl4gQzxOHJMZjAFHLfVWAzk1K0z0lyw0ijsdiEM9jSsMc/2DwLUiVhxL8UNdSK6Gu5YnnEy9BeZpm2cTzeHSIlyCvA4g3KyhDSiyBQjy5ywQ/tMsEBvE8eWS63azwRArxPAmQKolPPHUWZuoSL9lepmDES8aIl6JFvASIeMlQYlKAqGlUBeY8ldF0PYmy3DDipFGIlyoNc/yDwU+DVF5K8ENdS63EupaPTzyP8jQVcxAvXYd4HnkdQLxiQRkSu7wU4sld5vVDu8xLIZ5XptvNCs/HIV5eSJWfTzyPUlRUl3gF7OUlGPEKYMS7RIt4Hoh4BaDEXAJETaMqMOeXUppuPlluGHEuoxDvUmmY4x8M/mWQqiAl+KGupVZiXasQn3jxytOU6iDe5TrEi5fXAcRLDcqQ2BWmEE/usrAf2mVhCvEKynS7WeFXcIhXGFIV4RNP/fwjRZd4V9rLohjxrsSIV1SLePEQ8a6EElMUiJpGVWDOi1Ga7hWy3DDiXEUhnnwNfBXHPxj8qyDV1ZTgh7qWWol1rWv4xMujPE3tHcS7Vod48p3vtQDx2gdlSOyKU4gnd1ncD+2yOIV4V8t0u1nh13GIVxxSleATT/25RDtd4pW0l6Uw4pXEiFdKi3h5IOKVhBJTCoiaRlVgzq+nNN3rZLlhxLmBQrzrpWGOfzD4N0CqGynBD3UttRLrWjfxiWcpT1NeB/Fu1iGeJa8DiJc3KENiV5pCPLnL0n5ol6UpxLtRptvNCi/DIV5pSFWWTzz11wDSdYlXzl7eghGvHEa8W7SIZ0HEKwcl5hYgahpVgTkvT2m6ZWS5YcS5lUK88tIwxz8Y/Fsh1W2U4Ie6llqJda3b+cRTf38qzkG8CjrEM+V10GY8d1BYJv3fkUmh1G0yRW5W5Z0cSt0Bqe7SOBLALUnDmfwyNnJVxhV1yljWZ0WsjO+mlHHQcCalZ8sc3e13qUAvOpNx6n04MnmPTibljdyDnZx7oHxXouRbuq+EZaUSpbnJqqiEwexOaJeVGbUbjFLlTM4ricqQqgrllUSILGolRpaqlMZRRRrGWmJl4Ihc0DiMfr2GVcnIaNF9Y1x14B1LXEtEdAAR1UFEz4DtzFKPOopDTf3inqmf3TO1wT1T690ztc49U2vdM7XGPVM/uWfqR/dM/eCeqdXumVrlnqmV7pla4Z4p4Z6pgHumlrtnapl7ppa6Z2qJe6YWu2dqkXumFrpnaoF7pua7Z2qee6bmumdqjnumZrtnapZ7pma6Ziq+qHumrnTPVBH3TF3hnqnC7pm63D1ThdwzVdA9U5e5Z+pS90xd4p6pAu6Zyu+eqXzumcrrnql090z53DPldc9UmnumUt0zleKeqWT3TCW5ZyrRPVMJ7pnyuGcq3j1TedwzZblnynTPlOGeqTi1qVx8GyCuem7E8ul86MFduvBUE57qwlNDeGoKTy3hqS08dYSnrvDUE576wtNAeBoKTyPhaSw89wrPfdjXC6oXg2Q1MFlNTFYLk9XGZHUwWV1MVg+T1cdkDTBZQ0zWCJM1xmT3YrL7il34vB97Rl0t+jPq91ImfXqh2Q+RR+/WBuQLK9bPStWZR8Aq1dlnztDtVgeahMbtroFudy10u+ug210P3W6N3N5uP8g59GdiPDWl6opdhQ+Oswp8eJ25c0OleScfK5inxo0Haw9v3Sqz5PcDWj+9XvgOczIioIysgDKyEgrKKigotTi3uxS63WXQ7S6HbjcA3W5tTgEugZzXkapr105LOPxN3zzj1u/t8MLB6/stq/X+rFEVs8RN9/S8/4+PdjcQvv2cjMyFMjIPysh8KCgLoKDU5dzuTOh2Z0G3Oxu6XejvEXvqUW43/grkduOLILcbfyVyu/FFodutz7ndgtDtFoJu93LodgtDt9uA0l7iL4OcN0T4lu7hZCQdykheKCP5oKDkh4LSiHO72J/gSoNu1wvdrg+63cacAkyBnN+L8C3d5GQE+hEW8OPkOGRox9mnPVBQ7svt7WJfN7s/utmWB+o8o2P2gehmn036+2kdsw9GNzv96e/e1DH7UHSzFdvvz9Ax2yS62WGNDt6pY/bh6Gbv9d7XQ8fsI9HNfh7/zHs6Zh+Nbrbo6xtG6Zh9LLrZxzaJQmGeLoy9/5kW5W69rVqHdh0z5MOFNh3a95NPthwPG+53PppyPn9yPmRyPklyPi5yPhNyPvhxPt1xPsJxPqdxPoxxPnFxPlZxPjtxPiD5xPF/POBYP+hYP+RYN3GsH3asH3GsH3WsH/tEeJoKz+PC84TwNBOe5sLTQnieFJ6Wsa/5KUzFvuYX+5rfeVOxr/nFvuZ33lTsa36xr/mdNxX7ml/sa37nTcW+5hf7mt95U7Gv+cW+5nfeVOxrfrGv+Z03FfuaX+xrfudNxb7mF/ua3wX/k6uv+VW+4Gt+rYSntfA8JTxPC88zwtNGeJ4VnueEp63wtBOe9sLTQXg6Ck8n4ckQns7Y1/xaFdP5LEb1V6POfhZjQJ/FmNBnMRb0WUwrIFca31lrzTH7FMfs0xyzz3DMtuGYfZZj9jmO2bYcs+04ZttzzHbgmO3IMduJYzaDY7azjln1h31dopvtqWm2K2e3z6vMmsV0Ppps5Vh3cay7/ofXzzs/mmzqWD/uWD/hWDdzrJs71i0c6ycd65byo8kXhKeb8HQXnheF5yXheVl4XhGeVy/8aDKxXy5HF3lecPf1WJ5cTWwMvR7rLzw9hKen8PQSntewV1o9EiFZT0zWC5O9lpjz5V2cOsTQceqBvAj09EReBHp6IS8CPa8Bqb/I6ur2H6mu14XnDeF5U3jewqrrdawe3sBkb2Kyt7SqqxtUXa9D1fUGVF1vQtX1Fr+6uv9Hqqu38PQRnreF5x2sunpj9dAHk72Nyd7Rqq7uUHX1hqqrD1Rdb0PV9Q6/ul78j1TXu8LznvC8LzwfYNX1LlYP72Gy9zHZB1rV9SJUXe9C1fUeVF3vQ9X1Ab+6XvqPVFdf4ckUHr/wZGHV1Rerh0xM5sdkWVrV9RJUXX2h6sqEqssPVVcWv7pe/o9UVz/hkf//h8LzEVZd/bB66I/JPsRkH2lV18tQdfWDqqs/VF0fQtX1Eb+6XvmPVNfHwiPfF38qPJ9h1fUxVg+fYLJPMdlnWtX1ClRdH0PV9QlUXZ9C1fUZv7pe/Y9U1+fCM0B4BgrPF1h1fY7VwwBMNhCTfaFVXa9C1fU5VF0DoOoaCFXXF5wnlYOUZgvomB0c0ax5frc5czihcYfOrdu06tC+XOPWGe26dmnRRT4DzervyOmg8+sSEZ43Dpbl+aXwfCU8Q4Rn6MUduMvdPW7FtI7bxrhiwjNMeIYLz9fCM0J4RgrPN8IzSni+FZ7RwvOd8HwvPGOEZ6zwjBOe8cIzQXgmCs8k4ZksPFOEZ6rwTBOe6cIzQ3hmCs8s4ZktPHOEZ67wzBOe+cKzADvEw7BjNxyTfY3JRmCykZjsG0w2CpN9i8lGY7LvMNn3mGwMJhuLycZhsvGYbAImm4jJJmGyyZhsCiabismmYbLpmGwGJpuJyWZhstmYbA4mm4vJ5mGy+ZhsQbYXAlHeUmSeQ5gE7uiIqg5+W/VdJNWUjg7V9wg003P7x0az38jEMGal86kXqKpPCq+a5lQ1qhFBNR26kVK5vZGNcUUQHEMvPYZBL82GQy/NvoZemo2Irso6G7qRUVUHzgX4m2iqTaE0jIqiqno+Wd9GUHW7IKVjwqtqXZj4sWFVW7OVx7hwqnLZi2h8GFWJHKU2Iaeqac6CnJhD1SRM2U7KruoZrrgnZ1P1DHsEpjhUkxtHOigzbFXJKRFV9miZQaUiq86PlikzOIoqNFpmU9loqjlnVZ02R1WdnfDTICO66syEn5YNFarghJ/SrVQqaMJPenFIVSq3b8STcvtXjTwLlD1mteOvGi2co/HHWBbI64A/LLo6KEPsLVI3T71dLvJDu1yU26zk+q9metS/Vlul+1czF9vLJdjbpcXYX81covNXM88cFzXkFkPAXAJELfeFsUi6x54VLOYf1/nKaA10HNelOsdVvo9eChzXgUEZYm8Z5bjKXS7zQ7tcxj+u6l+EDtA9rsvtZQA7rsux4xrQOq7zoeO6HDouASBqGn8dDXOu/sm6zh+VlL1iGfbX0RZBu1yRy/cf2NkR0rDfNf8X2dHmKQtqvKOjrdTpaPLh4Eqgo40PyhB7qygdTe5ylR/a5SqNqoBqd4Wbtbs6l7sEj/cqSPUDcLwvsumrf7s/Trfp/2gvf8Ka/o9Y0/9Jq+nPg5r+j1BifgKiplEVmPM1Gk1fdYEsdFluWDtdS2nna6Rhjn8w+Gsh1TpK8ENdC+hvkGp9bhtH7ok3V3ma+jqIt0GHeHPldQDx+gZliL2fKcSTu/zZD+3yZwrx1sl0u1nhv+SywsHj9TOk2sgnnnrEzAe6xPvVXv6GEe9XjHi/aREPGgzu+RVKzG9A1DSqAnP+O6Xp/iLLDSPOJgrxfpeGOf7B4G+CVJspwQ91LbUS61pb+O/x5ihPUzEH8f7QId4ceR1AvGJBGWLvTwrx5C7/9EO7/JNCvM0y3W5W+F8c4v0Jqf7mE089Ca2oLvG22sttGPG2YsTbpkW8ORDxtkKJ2QZETaMqMOfbKU33L1luGHF2UIi3XRrm+AeDvwNS/UMJfqhrqZVY19rJJ95s5Wla5SDeLh3izZbXAcRbFZQh9nZTiCd3udsP7XI3hXj/yHS7WeF7OMTbDan28omnHti5Upd4++zlvxjx9mHE+1eLeLMh4u2DEvMvEDWNqsCc76c03T2y3DDiHKAQb780zPEPBv8ApDpICX6oa6mVWNc6xCfeLOVpauEg3mEd4s2S1wHEaxGUIfaOUIgnd3nED+3yCIV4B2W63azwoxziHYFUx/jEU8+Vbq5LvOP28gRGvOMY8U5oEW8WRLzjUGJOAFHTqArM+UlK0z0qyw0jzikK8U5Kwxz/YPBPQarTlOCHupZaCXWthDg+8WYqT9N6m3gJhg7xZsrrAOKtD8oAewkmhXhyl6Yf2qVJId5pmW4XKzzBohAvwYRUefjEU//5g3WaxEuIt5ceiHgJ8RDxEjxaxIP+4m1CPJQYDxA1jarAnCcwmm6CJcsNIk5CIoN4CQnSMMc/GPxESJVEIV6oa6mVWNdK5hNvhvI01XEQL0WHeDPkdQDx6gRlSImlUognd5nqh3aZyiBeQpJMt5sVnsYhXiqk8vKJN0Mpqq1LPJ+9TMeI58OIl65FvBkQ8XxQYtKBqGlUBeY8L4V4abLcMOLkoxAvrzTM8Q8GPx+kyk8JfqhrqZVY1yrAJ9505Wka6yDeJTrEmy6vA4g3NihDYncphXhyl5f6oV1eSiFefpluNyv8Mg7xLoVUBfnEm64UjdElXiF7eTlGvEIY8S7XIt50iHiFoMRcDkRNoyow54UpTfcyWW4Yca6gEK+wNMzxDwb/CkhVhBL8UNdSK7GudSWfeNOUp2mGg3hFdYg3TV4HEG9GUIbErhiFeHKXxfzQLotRiFdEptvNCr+KQ7xikOpqPvGmKUXTdYl3jb28FiPeNRjxrtUi3jSIeNdAibkWiJpGVWDOi1Oa7lWy3DDiXEchXnFpmOMfDP51kKoEJfihrqVWYl2rJJ94U5WnqZ6DeKV0iDdVXgcQr15QhsTuegrx5C6v90O7vJ5CvBIy3W5W+A0c4l0PqW7kE2+qUlRXl3g32cubMeLdhBHvZi3iTYWIdxOUmJuBqGlUBea8NKXp3iDLDSNOGQrxSkvDHP9g8MtAqrKU4Ie6llqJda1yfOJNUZ6mng7i3aJDvCnyOoB4PYMyJHblKcSTuyzvh3ZZnkK8sjLdblb4rRzilYdUt/GJN0Up6qFLvNvtZQWMeLdjxKugRbwpEPFuhxJTAYiaRlVgzu+gNN1bZblhxLmTQrw7pGGOfzD4d0KquyjBD3UttRLrWhX5xJucK+LdrUO8yfI6jHh3Q7G7h0I8uct7MOLdQyHeXTLdblZ4JQ7x7oFUlfnEm8wjXhV7WRUjXhWMeFW1iDcZIl4VKDFVOcTDnFejNN1Kstww4lSnEK+aNMzxDwa/OqSqQQl+qGuplVjXqskn3iTlaRrpIF4tHeJNktcBxBsZlCGxq00hntxlbT+0y9oU4tWQ6XazwutwiFcbUtXlE2+SUjRCl3j17GV9jHj1MOLV1yLeJIh49aDE1AeiplEVmPMGlKZbR5YbRpyGFOI1kIY5/sHgN4RUjSjBD3UttRLrWo35xJuoPE1DHcS7V4d4E+V1APGGBmVI7O6jEE/u8j4/tMv7KMRrJNPtZoXfzyHefZDqAT7xJipFQ3SJ96C9fAgj3oMY8R7SIt5EiHgPQol5CIiaRlVgzptQmu79stww4jxMIV4TaZjjHwz+w5DqEUrwQ11LrcS61qN84k1QnqYNDuI9pkO8CfI6gHgbgjIkdk0pxJO7bOqHdtmUQrxHZLrdrPDHOcRrCqme4BNvglK0Xpd4zexlc4x4zTDiNdci3gSIeM2gxDQHoqZRFZjzFpSm+7gsN4w4T1KI10Ia5vgHg/8kpGpJCX6oa6mVWNdqxSfeeOVpWuEgXmsd4o2X1wHEWxGUIbF7ikI8ucun/NAun6IQr6VMt5sV/jSHeE9Bqmf4xBuvFAld4rWxl89ixGuDEe9ZLeKNh4jXBkrMs0DUNKoCc/4cpek+LcsNI05bCvGek4Y5/sHgt4VU7SjBD3UttRLrWu35xBunPE2FHMTroEO8cfI6gHiFgjIkdh0pxJO77OiHdtmRQrx2Mt1uVngnDvE6QqoMPvHGKUUFdYnX2V52wYjXGSNeFy3ijYOI1xlKTBcgahpVgTnvSmm6nWS5YcR5nkK8rtIwxz8Y/Och1QuU4Ie6llqJda1ufOKNVZ6mqQ7iddch3lh5HUC8qUEZErsXKcSTu3zRD+3yRQrxXpDpdrPCX+IQ70VI9TKfeGOVoim6xHvFXr6KEe8VjHivahFvLES8V6DEvApETaMqMOc9KE33JVluGHF6UojXQxrm+AeD3xNS9aIEP9S11Eqsa73GJ94Y5Wnq4yDe6zrEGyOvA4jXJyhDYvcGhXhyl2/4oV2+QSFeL5luNyv8TQ7x3oBUb/GJN0Yp6q1LvN72sg9GvN4Y8fpoEW8MRLzeUGL6AFHTqArM+duUpvumLDeMOO9QiPe2NMzxDwb/HUj1LiX4oa6lVmJd6z0+8b5XnqbaDuK9r0O87+V1APFqB2VI7D6gEE/u8gM/tMsPKMR7V6bbzQrvyyHeB5Aqk0+875WiWrrEcxR8FkY8P0a8LC3ifQ8RD2u6WUDUNKoCc96P0nT7ynLD/PenEK+fNMzxDwa/P6T6kBL8UNdSK7Gu9RGfeN8pT5Pf0QA+1iHed/I6gHj+oAyJ3ScU4sldfuKHdvkJhXgfynS7WeGfcoj3CaT6jE+875SiTF3ifW4vB2DE+xwj3gAt4n0HEe9zKDEDgKhpVAXmfCCl6X4qyw0jzhcU4g2Uhjn+weB/AakGUYIf6lpqJda1BvOJN1p5mjo6iPelDvFGy+sA4nUMypDYfUUhntzlV35ol19RiDdIptvNCh/CId5XkGoon3ijlaIOusQbZi+HY8QbhhFvuBbxRkPEGwYlZjgQNY2qwJx/TWm6Q2S5YcQZQSHe19Iwxz8Y/BGQaiQl+KGupVZiXesbPvG+VZ6mWQ7ijdIh3rfyOoB4s4IyJHbfUognd/mtH9rltxTijZTpdrPCR3OI9y2k+o5PPHUWZuoS73t7OQYj3vcY8cZoEe9biHjfQ4kZA0RNoyow52MpTVe+VP0OI844CvHGSsMc/2Dwx0Gq8ZTgh7qWWol1rQl84o1SnqZiDuJN1CHeKHkdQLxiQRkSu0kU4sldTvJDu5xEId54mW43K3wyh3iTINUUPvFGKUVFdYk31V5Ow4g3FSPeNC3ijYKINxVKzDQgahpVgTmfTmm6k2W5YcSZQSHedGmY4x8M/gxINZMS/FDXUiuxrjWLT7xvlKcp1UG82TrE+0ZeBxAvNShDYjeHQjy5yzl+aJdzKMSbKdPtZoXP5RBvDqSaxyee+vlHii7x5tvLBRjx5mPEW6BFvG8g4s2HErMAiJpGVWDOF1Ka7lxZbhhxFlGIt1Aa5vgHg78IUi2mBD/UtdRKrGst4RNvpPI0tXcQb6kO8eQ736UA8doHZUjsllGIJ3e5zA/tchmFeItlut2s8OUc4i2DVAE+8dSfS7TTJZ6wlysw4gmMeCu0iDcSIp6AErMCiJpGVWDOV1Ka7nJZbhhxVlGIt1Ia5vgHg78KUq2mBD/UtdRKrGv9wCfeCOVpyusg3o86xBshrwOIlzcoQ2L3E4V4cpc/+aFd/kQh3mqZbjcrfA2HeD9BqrV84qm/BpCuS7x19nI9Rrx1GPHWaxFvBES8dVBi1gNR06gKzPkGStNdI8sNI87PFOJtkIY5/sHg/wypfqEEP9S11Eqsa23kE0/9/ak4B/F+1SHe1/I6aDMJv1FYJv3/lkmh1C8yRW5W5e8cSv0GqTZpHAnglqThTH4ZD89VGW/WKePh8jqsjLdQylj635JJ6dkyR1v8LhXoRWdymHofjkz+oZPJYfI67OT8AeX7T0q+5S7/xLLyJ6W5yar4E4PZ79Au/2LUbjBKf2VyXkn8Ban+prySCJFFrcTIspXSOP6WhrGW+BdwRC5oHIn9ctc4DOAG8TdAccVy9W7J32tYlYyMFt03xhUTCdtEwnaRsEMk/CMSdoqEXSJht0jYIxL2ioR9IuFfkbBfJBwQCQdFwiGRcFgkHBEJR0XCMZFwXCScEAknRcIpkXBaJMaJREMkmiLREol5RGK8SPSIxATsHdi2REi2HZPtwGT/YLKdmGwXJtuNyfZgsr2YbB8m+xeT7cdkBzDZQUx2CJMdxmRHMNlRTHYMkx3HZCcw2UlMdgqTnYZkiXGYzMBkJiazMFkeTBaPyTyYLCHbM6Eov2nMPAcOSZe9EVUd/LZqXyTVlI4O1b8IT9PL5/YlR7YbmRjGrHR+4gJV9UnhVSedqkY1IqhOQTdSIbc3sjGuCIJj6FXJNuhZ3nalKni7O1SqM0H5J7oq62zodkZVHTgX4F3RVJtCadgdRVX1fLL2RFB1uyCl+8Oral2Y+ANhVVuzlcfBcKpy2YvoUBhViRyldjinqmnOgjySQ9UkTNkeza7qGa64j2VT9Qx7BI47VJMbRzoop21VySmRVIlx51WDSkVWna/7MoOjqMxzqk1lo6mss6pOm6Oq8pxRNciIrooPqlo2VKg8UlW6lUoFDPUxZIeEVBXoDxQSE5Q9ZrX9QCExUeOBQmKCvA74TG91UIbYS2I8UAjuMskP7TIpt1nJ9QdWwawoRKs0P7BKTLaXKdDbpcRk6AOrxBSdD6zOHBcl5BKTEWAmpgBRy31hJEn30JOmxGT+cfUoozXQcVxTdY6rfB+dChzXgUEZYi+NclzlLtP80C7T+MfVoxQN0D2uXnvpw46rFzuuPq3j6oGOqxc6Lj4garl/MAk6T2d8nhPsFWlZGMSgXeZlPJhMTJeG/a75v8iOFq8sqPGOjpZPp6PJh4P5gI42PihD7OWndDS5y/x+aJf5GZ9oBGs3r5u1W4DyuUNifkh1Cf1LRcHCVYjG6Tb9S+3lZVjTvxRr+pdpNf14qOlfCiXmMiBqGlWBOS/I+DQqsYAsN6ydFqK084LSMMc/GPxCkOpySvBDXQvob5CqcG4bR+6Jl0d5mvo6iHeFDvHkJ2JXAMTrG5Qh9opQiCd3WcQP7bIIhXiXy3S7WeFXUr6glFgEUhXlEy+PUvSBLvGK2curMOIVw4h3lRbx8kDEKwYl5iogahpVgTm/mtJ0r5TlhhHnGgrxrpaGOf7B4F8Dqa6lBD/UtdRKrGsV57/Hs5SnyTEOJ/E6HeJZ8jpoHI6UIfZKUIgnd1kCGocT9K8wp0O8a2W63azwkhzilYBUpfjEs5Qi3XE4idfbyxsw4l2PEe8GLeJZEPGuhxJzAxA1jarAnN9IabolZblhxLmJQrwbpWGOfzD4N0GqmynBD3UttRLrWqX5xDOVp2mVg3hldIhnyusA4q0KyhB7ZSnEk7ss64d2WZZCvJtlut2s8HIc4pWFVLfwiWcqRSt1iVfeXt6KEa88RrxbtYhnQsQrDyXmViBqGlWBOb+N0nTLyXLDiHM7hXi3ScMc/2Dwb4dUFSjBD3UttRLrWnfwiWcoT1MLB/Hu1CGe/M+dAPFaBGWIvbsoxAsa9kO7vItCvAoy3W5WeEUO8e6CVHfziaf+bUxzXeLdYy8rYcS7ByNeJS3iGRDx7oESUwmImkZVYM4rU5puRVluGHGqUIhXWRrm+AeDXwVSVaUEP9S11Eqsa1XjEy9OeZrWO4hXXYd48kaqA8RbH5Qh9mpQiCd3WcMP7bIGhXhVZbrdrPCaHOLVgFS1+MSLU4rW6RKvtr2sgxGvNka8OlrEi4OIVxtKTB0gahpVgTmvS2m6NWW5YcSpRyFeXWmY4x8Mfj1IVZ8S/FDXUiuxrtWATryE08rTVMdBvIYaxAv+tLshQLw6QRkSu0YM4gV32cgP7bIRhXj1ZbrdrPDGHOI1glT30okXLFyFqLYu8e6zl/djxLsPI979OsRz/lwvCvHugxJzPxA1jarAnD9AabqNZblhxHmQQrwHpGGOfzD4D0KqhyjBD3UttRLrWk34xDulPE1jHcR7WId4p+R1APHGBmVI7B6hEE/u8hE/tMtHKMR7SKbbzQp/lEO8RyDVY3zinVKKxugSr6m9fBwjXlOMeI9rEe8URLymUGIeB6KmURWY8ycoTfdRWW4YcZpRiPeENMzxDwa/GaRqTgl+qGuplVjXasEn3knlaZrhIN6TOsQ7Ka8DiDcjKENi15JCPLnLln5oly0pxGsu0+1mhbfiEK8lpGrNJ95JpWi6LvGespdPY8R7CiPe01rEOwkR7ykoMU8DUdOoCsz5M5Sm20qWG0acNhTiPSMNc/yDwW8DqZ6lBD/UtdRKrGs9xyfeCeVpqucgXlsd4p2Q1wHEqxeUIbFrRyGe3GU7P7TLdhTiPSvT7WaFt+cQrx2k6sAn3gmlqK4u8Tray04Y8TpixOukRbwTEPE6QonpBERNoyow5xmUpttelhtGnM4U4mVIwxz/YPA7Q6oulOCHupZaiXWtrnziHVeepp4O4j2vQ7zj8jqAeD2DMiR2L1CIJ3f5gh/a5QsU4nWR6XazwrtxiPcCpOrOJ95xpaiHLvFetJcvYcR7ESPeS1rEOw4R70UoMS8BUdOoCsz5y5Sm202WG0acVyjEe1ka5vgHg/8KpHqVEvxQ11Irsa7Vg0+8Y7kiXk8d4h2T12HE6wnFrheFeHKXvTDi9aIQ71WZbjcr/DUO8XpBqtf5xDvGI94b9vJNjHhvYMR7U4t4xyDivQEl5k0O8TDnb1Ga7muy3DDi9KYQ7y1pmOMfDH5vSNWHEvxQ11Irsa71Np94R5WnaaSDeO/oEO+ovA4g3sigDInduxTiyV2+64d2+S6FeH1kut2s8Pc4xHsXUr3PJ95RpWiELvE+sJd9MeJ9gBGvrxbxjkLE+wBKTF8gahpVgTnPpDTd92S5YcTxU4iXKQ1z/IPBx5xnUYIf6lpqJda1+vGJd0R5moY6iNdfh3hH5HUA8YYGZUjsPqQQT+7yQz+0yw8pxMuS6Xazwj/iEO9DSPUxn3hHlKIhusT7xF5+ihHvE4x4n2oR7whEvE+gxHwKRE2jKjDnn1Ga7key3LAj8TmFeJ9Jwxz/YPA/h1QDKMEPdS21EgvRQD7xDitP0wYH8b7QId5heR1AvA1BGRK7QRTiyV0O8kO7HEQh3gCZbjcrfDCHeIMg1Zd84h1WitbrEu8rezkEI95XGPGGaBHvMES8r6DEDAGiplEVmPOhlKY7WJYb1k6HUYgnXwMP4/gHgz8MUg2nBD/UtdRKrGt9zSfeIeVpWuEg3ggd4h2S1wHEWxGUIbEbSSGe3OVIP7TLkRTiDZfpdrPCv+EQbySkGsUn3iGlSOgS71t7ORoj3rcY8UZrEe8QRLxvocSMBqKmURWY8+8oTfcbWW4Ycb6nEO87aZjjHwz+95BqDCX4oa6lVmJdayyfeAeVp6mQg3jjdIh3UF4HEK9QUIbEbjyFeHKX4/3QLsdTiDdGptvNCp/AId54SDWRT7yDSlFBXeJNspeTMeJNwog3WYt4ByHiTYISMxmImkZVYM6nUJruBFluGHGmUog3RRrm+AeDPxVSTaMEP9S11Eqsa03nE++A8jRNdRBvhg7xDsjrAOJNDcqQ2M2kEE/ucqYf2uVMCvGmyXS7WeGzOMSbCalm84l3QCmaoku8OfZyLka8ORjx5moR7wBEvDlQYuYCUdOoCsz5PErTnSXLDSPOfArx5knDHP9g8OdDqgWU4Ie6llqJda2FfOLtV56mPg7iLdIh3n55HUC8PkEZErvFFOLJXS72Q7tcTCHeApluNyt8CYd4iyHVUj7x9itFvXWJt8xeLseItwwj3nIt4u2HiLcMSsxyIGoaVYE5D1Ca7hJZbhhxBIV4AWmY4x8MvoBUKyjBD3UttRLrWiv5xPtXeZpqO4i3Sod4/8rrAOLVDsqQ2K2mEE/ucrUf2uVqCvHkB4Qr3azwHzjEWw2pfuQT71+lqJYu8X6yl2sw4v2EEW+NFvH+hYj3E5SYNUDUNKoCc76W0nR/kOWGEWcdhXhrpWGOfzD46yDVekrwQ11LrcS61gY+8fYpT5PfQbyfdYi3T14HEM8flCGx+4VCPLnLX/zQLn+hEG+9TLebFb6RQ7xfINWvfOLtU4oydYn3m738HSPebxjxftci3j6IeL9BifkdiJpGVWDON1Ga7kZZbhhxNlOIt0ka5vgHg78ZUm2hBD/UtdRKrGv9wSfeXuVp6ugg3p86xNsrrwOI1zEoQ2L3F4V4cpd/+aFd/kUh3haZbjcr/G8O8f6CVFv5xNurFHXQJd42e7kdI942jHjbtYi3FyLeNigx24GoaVQF5nwHpen+LcsNI84/FOLtkIY5/sHg/wOpdlKCH+paaiXWtXbxibdHeZpmOYi3W4d4e+R1APFmBWVI7PZQiCd3uccP7XIPhXg7ZbrdrPC9HOLtgVT7+MRTZ2GmLvH+tZf7MeL9ixFvvxbx9kDE+xdKzH4gahpVgTk/QGm68qXqPow4BynEOyANc/yDwT8IqQ5Rgh/qWmol1rUO84m3W3maijmId0SHeLvldQDxigVlSOyOUognd3nUD+3yKIV4h2S63azwYxziHYVUx/nE260UFdUl3gl7eRIj3gmMeCe1iLcbIt4JKDEngahpVAXm/BSl6R6T5YYR5zSFeKekYY5/MPinEVVSHCX4oa6lVkJdK8ngE2+X8jSl2sRLMnWIt0teBxAvNSgD7CVZFOLJXVp+aJcWg3hJwXS7WeF5KMRLsiBVPJ946ucfKZrES/LYywSIeEkeiHhJCVrE24UQL8kDJSYBiJpGVWDOExlNNymPLDeIOElJDOIlJUrDHP9g8JMgVTIl+KGupVSCXSuFT7ydytPU3kG8VB3i7ZTXAcRrH5QhUU6jEE/uMs0P7TKNQrxkmW43K9zLIV4apPLxiaf+XKKdLvHS7WVejHjpGPHyahFvJ0S8dCgxeYGoaVQF5jwfpel6ZblhxMlPIV4+aZjjHwx+fkhVgBL8UNdSK7GudQmfeP8oT1NeB/Eu1SHeP/I6gHh5gzIkdpdRiCd3eZkf2uVlFOIVkOl2s8ILcoh3GaQqxCee+msA6brEu9xeFsaIdzlGvMJaxPsHIt7lUGIKA1HTqArM+RWUpltQlhtGnCIU4l0hDXP8g8EvAqmupAQ/1LXUSqxrFeUTT/39qTgH8YrpEG+HvA7aTNJVFJZJ/1dlUih1pUyRm1V5NYdSV0GqazSOBHBL0nAmv4y356qMr9Up4+3yOqyMi1PKWPovnknp2TJHxf0uFehFZ3Kbeh+OTF6nk8lt8jrs5FwH5bsEJd9ylyWwrJSgNDdZFSUwmF0N7bIko3aDUSqZyXklURJSlaK8kgiRRa3EyHI9pXGUkoaxllgSOCIXNI7EfrlrHIWBG8TfAMUVy9W7JX+vYVUyMlp03xhXTCTdIJJuFEk3iaSbRVJpkVRGJJUVSeVE0i0iqbxIulUk3SaSbhdJFUTSHSLpTpF0l0iqKJLuFkn3iKRKIqmySKoikqqKpGoiqbpIqiGSaoqkWiKptkiqI5LqYu/AbkiEZDdispsw2c2YrDQmK4PJymKycpjsFkxWHpPdisluw2S3Y7IKmOwOTHYnJrsLk1XEZHdjsnswWSVMVhmTVcFkVTFZNUxWHZPVwGQ1MVktTFYbk9XBZHWzPRPqH5lumefAIelyS0RVB7+tKh9JNaWjQ3UrwtP0arl9yZHtRiaGMSudV7pAVX1SeFVlp6pRjQiqKtCN1MrtjWyMK4LgGHpVcgP0LO9GpSp4uzepVGeCcnN0VdbZ0JWOqjpwLsBloqk2hdJQNoqq6vlklYug6nZBSm8Lr6p1YeJvD6vamq08KoRTlcteRHeEUZXIUWp35lQ1zVmQd+VQNQlTthWzq3qGK+67s6l6hj0C9zhUkxtHOihVbVXJKRFV1c6rBpWKrKoeUpUZHEVV45xqU9loqppnVZ02R1XVOqNqkBFdVTuoatlQoaojVaVbqVR1kVf86dUgVS36A4Wkusoes9rxQKGexgOFpLryOuAzvdVBGWKvPuOBQnCX9f3QLuvnNiu5/sAqmBWFaJXuB1YN7GVD7O1SA+wDq4Y6H1idOS5qyDWAgNkQiFruC6O+dI89aWrAP651lNEa6DiujXSOq3wf3Qg4rgODMsReY8pxlbts7Id22Zh/XOsoRQN0j+u99vI+7Ljeix3X+7SOax3ouN4LHZf7gKhpPJjEnN9P+TxH9orG2IPJ+tAuH6A8mLxfGva75v8iO1ptZUGNd3S0B3U6mnw4+CDQ0cYHZYi9hygdTe7yIT+0y4con2jI2n3Azdptwvnc4SFI9TD9S0XBwlWIxuk2/Ufs5aNY038Ea/qPajX92lDTfwRKzKNA1DSqAnP+GOXTqCay3LB22pTSzh+Thjn+weA3hVSPU4If6lpAf4NUT+S2ceSeeLWUp6mvg3jNdIgnPxFrBhCvb1CG2GtOIZ7cZXM/tMvmFOI9LtPtZoW34HxBqTmkepJPPPXjqA90idfSXrbCiNcSI14rLeLVgojXEkpMKyBqGlWBOW9NabotZLlhxHmKQjxZJU9x/IPBfwpSPU0JfqhrqZVY13qG/x6vpvI0OcbhJLXRIV5NeR00DkfKEHvPUognd/ksNA4n6F9hTod4T8t0u1nhz3GI9yykassnXk2lSHccTlI7e9keI147jHjttYhXEyJeOygx7YGoaVQF5rwDpek+J8sNI05HCvE6SMMc/2DwO0KqTpTgh7qWWol1rQw+8WooT9MqB/E66xCvhrwOIN6qoAyx14VCPLnLLn5ol10oxOsk0+1mhXflEK8LpHqeT7waStFKXeK9YC+7YcR7ASNeNy3i1YCI9wKUmG5A1DSqAnPendJ0u8pyw4jzIoV43aVhjn8w+C9CqpcowQ91LbUS61ov84lXXXmaWjiI94oO8arL6wDitQjKEHuvUognd/mqH9rlqxTivSTT7WaF9+AQ71VI1ZNPvOpKUXNd4vWyl69hxOuFEe81LeJVh4jXC0rMa0DUNKoCc/46pen2kOWGEecNCvFel4Y5/sHgvwGp3qQEP9S11Eqsa73FJ1415Wla7yBebx3iVZPXAcRbH5Qh9vpQiCd32ccP7bIPhXhvynS7WeFvc4jXB1K9wyee+uc563SJ9669fA8j3rsY8d7TIl41iHjvQol5D4iaRlVgzt+nNN23ZblhxPmAQrz3pWGOfzD4H0CqvpTgh7qWWol1Lf4ckaSqytNUx0E8vw7xqsrrAOLVEUnYlrMoxJO7zPJDu8yiEK+vTLebFd6PQzxM1Z9PvKpKUW1d4n1oLz/CiPchRryPtIhXFSLeh1BiPgKiplEVmPOPKU23nyw3jDifUIj3sTTM8Q8G/xNI9Skl+KGupVZiXeszPvGqKE/TWAfxPtchXhV5HUC8sUEZYm8AhXhylwP80C4HUIj3qUy3mxU+kEO8AZDqCz7xqihFY3SJN8heDsaINwgj3mAt4lWBiDcISsxgIGoaVYE5/5LSdAfKcsOI8xWFeF9Kwxz/YPC/glRDKMEPdS21EutaQ/nEq6w8TTMcxBumQ7zK8jqAeDOCMsTecArx5C6H+6FdDqcQb4hMt5sV/jWHeMMh1Qg+8SorRdN1iTfSXn6DEW8kRrxvtIhXGSLeSCgx3wBR06gKzPkoStP9WpYbRpxvKcQbJQ1z/IPB/xZSjaYEP9S11Eqsa33HJ14l5Wmq5yDe9zrEqySvA4hXLyhD7I2hEE/ucowf2uUYCvFGy3S7WeFjOcQbA6nG8YlXSSmqq0u88fZyAka88RjxJmgRrxJEvPFQYiYAUdOoCsz5RErTlU9dxmHEmUQh3kRpmOMfDP4kSDWZEvxQ11Irsa41hU+8e5SnqaeDeFN1iHePvA4gXs+gDLE3jUI8uctpfmiX0yjEmyzT7WaFT+cQbxqkmsEn3j1KUQ9d4s20l7Mw4s3EiDdLi3j3QMSbCSVmFhA1jarAnM+mNN3pstww4syhEG+2NMzxDwZ/DqSaSwl+qGuplVjXmscn3t25It58HeLdLa/DiDcf2vICCvHkLhdgxFtAId5cmW43K3whh3gLINUiPvHu5hFvsb1cghFvMUa8JVrEuxsi3mIoMUs4xMOcL6U03YWy3DDiLKMQb6k0zPEPBn8ZpFpOCX6oa6mVWNcK8IlXUXmaRjqIJ3SIV1FeBxBvZFCG2FtBIZ7c5Qo/tMsVFOItl+l2s8JXcoi3AlKt4hOvolI0Qpd4q+3lDxjxVmPE+0GLeBUh4q2GEvMDEDWNqsCc/0hpuitluWHE+YlCvB+lYY5/MPg/Qao1lOCHupZaiXWttXzi3aU8TUMdxFunQ7y75HUA8YYGZYi99RTiyV2u90O7XE8h3hqZbjcrfAOHeOsh1c984t2lFA3RJd4v9nIjRrxfMOJt1CLeXRDxfoESsxGImkZVYM5/pTTdDbLcMOL8RiHer9Iwxz8Y/N8g1e+U4Ie6llqJda1NfOLdqTxNGxzE26xDvDvldQDxNgRliL0tFOLJXW7xQ7vcQiHe7zLdblb4HxzibYFUf/KJd6dStF6XeH/Zy78x4v2FEe9vLeLdCRHvLygxfwNR06gKzPlWStP9Q5YbRpxtFOJtlYY5/sHgb4NU2ynBD3UttRLrWjv4xLtDeZpWOIj3jw7x7pDXAcRbEZQh9nZSiCd3udMP7XInhXjbZbrdrPBdHOLthFS7+cS7QykSusTbYy/3YsTbgxFvrxbx7oCItwdKzF4gahpVgTnfR2m6u2S5YcT5l0K8fdIwxz8Y/H8h1X5K8ENdS63EutYBPvEqKE9TIQfxDuoQr4K8DiBeoaAMsXeIQjy5y0N+aJeHKMTbL9PtZoUf5hDvEKQ6wideBaWooC7xjtrLYxjxjmLEO6ZFvAoQ8Y5CiTkGRE2jKjDnxylN97AsN4w4JyjEOy4Nc/yDwT8BqU5Sgh/qWmol1rVO8Yl3u/I0TXUQ77QO8W6X1wHEmxqUAfaS4yjEu10a9iO7DPpXmNMh3kmZbhcrPNmgEC85DlKZfOLdrhRN0SResmUv80DES7Yg4iXn0SLe7Qjxki0oMXmAqGlUBeY8ntF0k+V/TIg4yR4G8ZLjpWGOfzD4HkiVQCFeqGuplVjXSuQT7zblaepjEy85SYd4t8nrAOL1CcqQEkumEE/uMtkP7TKZQbzkBJluNys8hUO8ZEiVyifebUpRb13ipdlLL0a8NIx4Xi3i3QYRLw1KjBeImkZVYM59FOKlyHLDiJNOIZ5PGub4B4OfDqnyUoIf6lpqJda18vGJd6vyNNV2EC+/DvFuldcBxKsdlCGxK0AhntxlAT+0ywIU4uWV6Xazwi/hEK8ApLqUT7xblaJausS7zF4WxIh3GUa8glrEuxUi3mVQYgoCUdOoCsx5IUrTvUSWG0acyynEKyQNc/yDwb8cUhWmBD/UtdRKrGtdwSdeeeVp8juIV0SHeOXldQDx/EEZErsrKcSTu7zSD+3ySgrxCst0u1nhRTnEuxJSFeMTr7xSlKlLvKvs5dUY8a7CiHe1FvHKQ8S7CkrM1UDUNKoCc34NpekWleWGEedaCvGukYY5/sHgXwupilOCH+paaiXWta7jE+8W5Wnq6CBeCR3i3SKvA4jXMShDYleSQjy5y5J+aJclKcQrLtPtZoWX4hCvJKS6nk+8W5SiDrrEu8Fe3ogR7waMeDdqEe8WiHg3QIm5EYiaRlVgzm+iNN1Sstww4txMId5N0jDHPxj8myFVaUrwQ11LrcS6Vhk+8copT9MsB/HK6hCvnLwOIN6soAyJXTkK8eQuy/mhXZajEK+0TLebFX4Lh3jlIFV5PvHUWZipS7xb7eVtGPFuxYh3mxbxykHEuxVKzG1A1DSqAnN+O6Xpypeq5THiVKAQ73ZpmOMfDH4FSHUHJfihrqVWYl3rTj7xyipPUzEH8e7SIV5ZeR1AvGJBGRK7ihTiyV1W9EO7rEgh3h0y3W5W+N0c4lWEVPfwiVdWKSqqS7xK9rIyRrxKGPEqaxGvLES8SlBiKgNR06gKzHkVStO9W5YbRpyqFOJVkYY5/sHgV4VU1SjBD3UttRLrWtX5xCujPE2pDuLV0CFeGXkdQLzUoAyJXU0K8eQua/qhXdakEK+aTLebFV6LQ7yakKo2n3jq5x8pusSrYy/rYsSrgxGvrhbxykDEqwMlpi4QNY2qwJzXozTdWrLcMOLUpxCvnjTM8Q8Gvz6kakAJfqhrqZVY12rIJ15p5Wlq7yBeIx3iyXe+jQDitQ/KkNg1phBP7rKxH9plYwrxGsh0u1nh93KI1xhS3ccnnvpziXa6xLvfXj6AEe9+jHgPaBGvNES8+6HEPABETaMqMOcPUpruvbLcMOI8RCHeg9Iwxz8Y/IcgVRNK8ENdS63EutbDfOLdrDxNeR3Ee0SHeDfL6wDi5Q3KkNg9SiGe3OWjfmiXj1KI10Sm280Kf4xDvEchVVM+8dRfA0jXJd7j9vIJjHiPY8R7Qot4N0PEexxKzBNA1DSqAnPejNJ0H5PlhhGnOYV4zaRhjn8w+M0hVQtK8ENdS63EutaTfOKpvz8V5yBeSx3i3SSvgzaT3IrCMum/VSaFUi1kitysytYcSrWCVE9pHAnglqThTH4Z35irMn5ap4xvlNdhZfwMpYyl/2cyKT1bRuQZv0sFetGZvEG9D0cm2+hk8gZ5HXZy2kD5fpaSb7nLZ7GsPEtpbjK6z2Iwaw3t8jlG7Qaj9Fwm55XEc5CqLeWVRIgsaiVGlnaUxtFWGsZa4nPAEbmgcST2sxvHxrii55wYUbwIT4+zqmgiqep5RhVVJFW9gqroIql6zXHzRkTV67bKiGzrjfMqI4rHN0MqI9q+3sqWFCOsqveFKiO8rT4XqIwIHt92qoxI+3onTLEYOVTv5lQZOW29l0NlhPH4fnaVEW5fH0QoYuMCVd/wKuNCW5lhVUY2j2GPjZF9X9FagHFeFeWNs2Hb6h9RZTg8fhhJZTj39ZHi0BtnVB9HVxlnbX0SVWWc8/hpNJUR2tdnSDPyDFCqDGlroEplBD1+ATRW/MFLXLFcPaXx9xpWJSOjRfeNccVEsvz0qYNI7iiSO4nkDJEsH7B0EcldRfLzIvkFkdxNJHcXyS+K5JdE8ssi+RWR/KpI7iGSe4rkXiL5NZH8ukh+QyS/KZLfEsm9RXIfkfy2SH5HJL8rkt8Tye9jT37aJ0KyDpisIybrhMkyMFlnTNYFk3XFZM9jshcwWTdM1h2TvYjJXsJkL2OyVzDZq5isBybricl6YbLXMNnrmOwNTPYmJnsLk/XGZH0w2duY7B1M9i4mew+TvZ/tWXT/yK+qM8+9YJWvap+PqOrgt1UvRFJN6ehQdUNex6c3BXAT7UYmhjErnb92gar6pPCq152qRjUiqN6AbiTXT383xt0VexNwThV7ExBSxd4EhFSxNwGhff0vvAmAnsG0hz657KBUBZtsR5XqTCvuFF2VdbZhZ0RVHTjX1jtHU20KNf8uUVRVzyOiawRVtwtA0j28qtaFuHkxrGprNii9FE5VLju6Xg6jKpEDcK/kVDXNicFXc6iahIFlj+yqnuGQ2jObqmdY8PZyqCY3joTnN21VySkRVW+dVw0qFVnVO6QqMziKqs851aay0VRvn1V12hxV9c4ZVYOM6KogO8q0bKhQBdlRupVK9T7STdKbQirkRc/FfXyS/L6yx6x2fHzygcbHJ8nvy+uAbzCtDsoQe30ZH58Ed9nXD+2yb26zkuuv5wSzohCt0v16Tqa99GMPaTKxr+f4db6ec+a4qCGXCQHTD0Qt94XRV7rHPlfjf26d/J4yWgMdxzVL57jKp3dZwHEdGJQh9vpRjqvcZT8/tMt+/OP6nlI0QPe49reXH2LHtT92XD/UOq7vQce1P3RcPgSipvExLOb8I8q3V2Sv6Iedir7QLj+mfAz7kTTsd83/RXa0d5UFNd7R0T7R6WjyI4lPgI42PihD7H1K6Whyl5/6oV1+Svn+hqzdj92s3c8437L4FFJ9Dhzvi2z67ypF43Sb/gB7ORBr+gOwpj9Qq+m/CzX9AVBiBgJR06gKzPkXGk1fdYEsdFluWDsdRGnnX0jDHP9g8AdBqsGU4Ie6FtDfINWXuW0cuSfeO8rT1NdBvK90iCc/h/8KIF7foAyxN4RCPLnLIX5ol0MoxBss0+1mhQ/NZYWDx2sIpBrGJ947StEHusQbbi+/xog3HCPe11rEewci3nAoMV8DUdOoCsz5CErTHSrLDSPOSArxRkjDHP9g8EdCqm8owQ91LbUS61qj+O/x3laeJufwv291iPe2vA4b/vcttOXRFOLJXY7Ghv+NphDvG5luNyv8Ow7xRkOq7/nEe1sp0h7+N8ZejsWINwYj3lgt4r0NEW8MlJixQNQ0qgJzPo7SdL+T5YYRZzyFeOOkYY5/MPjjIdUESvBDXUutxLrWRD7x+ihP0yoH8SbpEK+PvA4g3qqgDLE3mUI8ucvJfmiXkynEmyDT7WaFT+EQbzKkmsonXh+laKUu8abZy+kY8aZhxJuuRbw+EPGmQYmZDkRNoyow5zMoTXeKLDeMODMpxJshDXP8g8GfCalmUYIf6lpqJda1ZvOJ11t5mlo4iDdHh3i95XUA8VoEZYi9uRTiyV3O9UO7nEsh3iyZbjcrfB6HeHMh1Xw+8XorRc11ibfAXi7EiLcAI95CLeL1hoi3AErMQiBqGlWBOV9EabrzZLlhxFlMId4iaZjjHwz+Yki1hBL8UNdSK7GutZRPvLeUp2m9g3jLdIj3lrwOIN76oAyxt5xCPLnL5X5ol8spxFsi0+1mhQc4xFsOqQSfeG8pRet0ibfCXq7EiLcCI95KLeK9BRFvBZSYlUDUNKoCc76K0nQDstww4qymEE8+9VnN8Q8GfzWk+oES/FDXUiuxrvUjn3hvKk9THQfxftIh3pvyOoB4dYIyxN4aCvHkLtf4oV2uoRDvB5luNyt8LYd4ayDVOj7x3lSKausSb7293IARbz1GvA1axHsTIt56KDEbgKhpVAXm/GdK010ryw0jzi8U4v0sDXP8g8H/BVJtpAQ/1LXUSqxr/con3hvK0zTWQbzfdIj3hrwOIN7YoAyx9zuFeHKXv/uhXf5OId5GmW43K3wTh3i/Q6rNfOK9oRSN0SXeFnv5B0a8LRjx/tAi3hsQ8bZAifkDiJpGVWDO/6Q03U2y3DDi/EUh3p/SMMc/GPy/INXflOCHupZaiXWtrXziva48TTMcxNumQ7zX5XUA8WYEZYi97RTiyV1u90O73E4h3t8y3W5W+A4O8bZDqn/4xHtdKZquS7yd9nIXRrydGPF2aRHvdYh4O6HE7AKiplEVmPPdlKa7Q5YbRpw9FOLtloY5/sHg74FUeynBD3UttRLrWvv4xHtNeZrqOYj3rw7xXpPXAcSrF5Qh9vZTiCd3ud8P7XI/hXh7ZbrdrPADHOLth1QH+cR7TSmqq0u8Q/byMEa8QxjxDmsR7zWIeIegxBwGoqZRFZjzI5Sme0CWG0acoxTiHZGGOf7B4B+FVMcowQ91LbUS61rH+cTrpTxNPR3EO6FDvF7yOoB4PYMyxN5JCvHkLk/6oV2epBDvmEy3mxV+ikO8k5DqNJ94vZSiHprES4mzlwZEvJQ4iHgphhbxeiHES4lDEpNiAFHLfVWAzk1K0z0lyw0iTorFIF6KKQ1z/IPBtyBVHkrwQ11LrYS6Vko8n3g9c0O8FI8O8XrK6yDiSRlSYgkU4kn3CRDxgv4V5jSIl5JHptvNCk+kEC8lAVIl8YnXk0e8ZHuZghEvGSNeihbxekLES4YSk8IhHuY8ldF0UxJluWHESaMQL1Ua5vgHg58GqbyU4Ie6llqJdS0fn3g9lKdppIN46TrE6yGvA4g3MihDYpeXQjy5y7x+aJd5KcTzynS7WeH5OMTLC6ny84nXQykaoUu8AvbyEox4BTDiXaJFvB4Q8QpAibkEiJpGVWDOL6U03Xyy3DDiXEYh3qXSMMc/GPzLIFVBSvBDXUutxLpWIT7xXlWepqEO4l2uQ7xX5XUA8YYGZUjsClOIJ3dZ2A/tsjCFeAVlut2s8Cs4xCsMqYrwifeqUjREl3hX2suiGPGuxIhXVIt4r0LEuxJKTFEgahpVgTkvRmm6V8hyw4hzFYV4xaRhjn8w+FdBqqspwQ91LbUS61rX8In3ivI0bXAQ71od4r0irwOItyEoQ2JXnEI8ucvifmiXxSnEu1qm280Kv45DvOKQqgSfeK8oRet1iVfSXpbCiFcSI14pLeK9AhGvJJSYUkDUNKoCc349peleJ8sNI84NFOJdLw1z/IPBvwFS3UgJfqhrqZVY17qJT7yXladphYN4N+sQ72V5HUC8FUEZErvSFOLJXZb2Q7ssTSHejTLdblZ4GQ7xSkOqsnzivawUCV3ilbOXt2DEK4cR7xYt4r0MEa8clJhbgKhpVAXmvDyl6ZaR5YYR51YK8cpLwxz/YPBvhVS3UYIf6lpqJda1bucT7yXlaSrkIF4FHeK9JK8DiFcoKENidweFeHKXd/ihXd5BId5tMt1uVvidHOLdAanu4hPvJaWooC7xKtrLuzHiVcSId7cW8V6CiFcRSszdQNQ0qgJzfg+l6d4pyw0jTiUK8e6Rhjn+weBXglSVKcEPdS21EutaVfjEe1F5mqY6iFdVh3gvyusA4k0NypDYVaMQT+6ymh/aZTUK8SrLdLtZ4dU5xKsGqWrwifeiUjRFl3g17WUtjHg1MeLV0iLeixDxakKJqQVETaMqMOe1KU23uiw3jDh1KMSrLQ1z/IPBrwOp6lKCH+paaiXWterxidddeZr6OIhXX4d43eV1APH6BGVI7BpQiCd32cAP7bIBhXh1ZbrdrPCGHOI1gFSN+MTrrhT11iVeY3t5L0a8xhjx7tUiXneIeI2hxNwLRE2jKjDn91GabkNZbhhx7qcQ7z5pmOMfDP79kOoBSvBDXUutxLrWg3zidVOeptoO4j2kQ7xu8jqAeLWDMiR2TSjEk7ts4od22YRCvAdkut2s8Ic5xGsCqR7hE6+bUlRLl3iP2svHMOI9ihHvMS3idYOI9yiUmMeAqGlUBea8KaXpPizLDSPO4xTiNZWGOf7B4D8OqZ6gBD/UtdRKrGs14xPvBeVp8juI11yHeC/I6wDi+YMyJHYtKMSTu2zhh3bZgkK8J2S63azwJznEawGpWvKJ94JSlKlLvFb2sjVGvFYY8VprEe8FiHitoMS0BqKmURWY86coTfdJWW4YcZ6mEO8paZjjHwz+05DqGUrwQ11LrcS6Vhs+8Z5XnqaODuI9q0O85+V1APE6BmVI7J6jEE/u8jk/tMvnKMR7RqbbzQpvyyHec5CqHZ94zytFHXSJ195edsCI1x4jXgct4j0PEa89lJgOQNQ0qgJz3pHSdNvKcsOI04lCPNkROnH8g8HvBKkyKMEPdS21EutanfnE66o8TbMcxOuiQ7yu8jqAeLOCMiR2XSnEk7vs6od22ZVCvAyZbjcr/HkO8bpCqhf4xFNnYaYu8brZy+4Y8bphxOuuRbyuEPG6QYnpDkRNoyow5y9Smq58qfoCRpyXKMR7URrm+AeD/xKkepkS/FDXUiuxrvUKn3hdlKepmIN4r+oQr4u8DiBesaAMiV0PCvHkLnv4oV32oBDvZZluNyu8J4d4PSBVLz7xuihFRXWJ95q9fB0j3msY8V7XIl4XiHivQYl5HYiaRlVgzt+gNN2estww4rxJId4b0jDHPxj8NyHVW5Tgh7qWWol1rd584nVWnqZUB/H66BBPHvU+APFSgzIkdm9TiCd3+bYf2uXbFOK9JdPtZoW/wyHe25DqXT7x1M8/UnSJ9569fB8j3nsY8d7XIl5niHjvQYl5H4iaRlVgzj+gNN13ZLlhxOlLId4H0jDHPxj8vpAqkxL8UNdSK7Gu5ecTL0N5mto7iJelQzz5zjcLIF77oAyJXT8K8eQu+/mhXfajEC9TptvNCu/PIV4/SPUhn3jqzyXa6RLvI3v5MUa8jzDifaxFvAyIeB9BifkYiJpGVWDOP6E03f6y3DDifEoh3ifSMMc/GPxPIdVnlOCHupZaiXWtz/nE66Q8TXkdxBugQ7xO8jqAeHmDMiR2AynEk7sc6Id2OZBCvM9kut2s8C84xBsIqQbxiaf+GkC6LvEG28svMeINxoj3pRbxOkHEGwwl5ksgahpVgTn/itJ0v5DlhhFnCIV4X0nDHP9g8IdAqqGU4Ie6llqJda1hfOKpvz8V5yDecB3idZTXQZtJ+ZrCMun/60wKpYbKFLlZlSM4lPoaUo3UOBLALUnDmfwy7pCrMv5Gp4w7yOuwMh5FKWPpf1QmpWfLHI3yu1SgF53J9up9ODL5rU4m5XOab7GT8y2U79GUfMtdjsayMprS3GRVjMZgNgLa5XeM2g1G6btMziuJ7yDV95RXEiGyqJUYWcZQGsf30jDWEr8DjsgFjSOxXy4bh+dL4Bbxt0BxxXL1fsnfa1iVjIwW3TfGFRMpY0XKOJEyXqRMECkTRcokkTJZpEwRKVNFyjSRMl2kzBApM0XKLJEyW6TMESlzRco8kTJfpCwQKQtFyiKRslikLBEpS0XKMpGyXKQERIoQKStEykqRsgp7DzY2EZKNw2TjMdkETDYRk03CZJMx2RRMNhWTTcNk0zHZDEw2E5PNwmSzMdkcTDYXk83DZPMx2QJMthCTLcJkizHZEky2FJMtw2TLMVkAkwlMtgKTrcRkq7I9FeofmW+Z59Ah+TI1oqqD31ZNi6Sa0tGhmo4QNb1jbl90ZLuRiWHMSucLL1BVnxRetcipalQjgmoxdCNdcnsjG+OKYECGXpmMhZ7njVOqgjc8XqU6E5YJ0VVZZ4M3MarqwLkQT4qm2hRKxOQoqqrn0zUlgqrbBUmdEV5V68LUzwyr2pqtQGaFU5XLXkazw6hK5Ci2OTlVTXOW5NwcqiZhCndedlXPcOU9P5uqZ9hDsMChmtw40lFZYqtKTomoWnpeNahUZNWykKrM4Ciq5edUm8pGUwXOqjptjqoSZ1QNMqKrVgRVLRsqVCulqnQrlWoV0gHSO0KqLvSHCimrlD1mteOhwmqNhwopq+R1wOd6q4MyxN4PjIcKwV3+4Id2+UNus5LrD62CWVGIVul+aPWjvfwJe8P0I/ah1U86H1qdOS5qyP0IAfMnIGq5L4wfpHvsadOP/OO6UhmtgY7jukbnuMp30muA4zowKEPsraUcV7nLtX5ol2v5x3WlUjRA97ius5frseO6Djuu67WO60rouK6Djst6IGoaDycx5xson+nIXrEWezj5A7TLnykPJzdIw37X/F9kR1uhLKjxjo72i05Hk48HfwE62vigDLG3kdLR5C43+qFdbqR8qiFr92c3a/dXzmcPGyHVb/QvFgULVyEap9v0f7eXm7Cm/zvW9DdpNf0VUNP/HUrMJiBqGlWBOd9M+UTqV1luWDvdQmnnm6Vhjn8w+Fsg1R+U4Ie6FtDfINWfuW0cuSeeUJ6mvg7i/aVDPPmZ2F8A8foGZYi9vynEk7v82w/t8m8K8f6Q6XazwrdyvqT0N6TaxieeUIo+0CXednu5AyPedox4O7SIJyDibYcSswOImkZVYM7/oTTdrbLcMOLspBDvH2mY4x8M/k5ItYsS/FDXUiuxrrWb/x4voDxNzpE4e3SIF5DXYSNx9kBb3kshntzlXmwkzl4K8XbJdLtZ4fs4xNsLqf7lEy+gFGmPxNlvLw9gxNuPEe+AFvECEPH2Q4k5AERNoyow5wcpTXefLDeMOIcoxDsoDXP8g8E/BKkOU4If6lpqJda1jvCJt1x5mlY5iHdUh3jL5XUA8VYFZYi9YxTiyV0e80O7PEYh3mGZbjcr/DiHeMcg1Qk+8ZYrRSt1iXfSXp7CiHcSI94pLeIth4h3EkrMKSBqGlWBOT9NabrHZblBxEmNoxDvtDTM8Y8FPzUOUhmU4Ie6lloJda1Uk0+8ZcrT1MImXqqlQ7xl8jqAeC2CMsBeah4K8eQu8/ihXeZhEC9V3pjpZoXHU4iXmgdSefjEW6YUNdckXmqCvUyEiJeaABEvNVGLeMsQ4qUmQIlJBKKmURWY8yRG002Nl+WGESeZQbzUJGmY4x8MfjKkSqEEP9S11Eqsa6XyibdUeZrWO4iXpkO8pfI6gHjrgzIkdl4K8eQuvX5ol14K8VJkut2scB+HeF5Ilc4n3lKlaJ0u8fLay3wY8fJixMunRbylEPHyQonJB0RNoyow5/kpTdcnyw0jTgEK8fJLwxz/YPALQKpLKMEPdS21Eutal/KJt0R5muo4iHeZDvGWyOsA4tUJypDYFaQQT+6yoB/aZUEK8S6R6XazwgtxiFcQUl3OJ94Spai2LvEK28srMOIVxoh3hRbxlkDEKwwl5gogahpVgTkvQmm6hWS5YcS5kkK8ItIwxz8Y/CshVVFK8ENdS63EulYxPvEWK0/TWAfxrtIh3mJ5HUC8sUEZErurKcSTu7zaD+3yagrxisp0u1nh13CIdzWkupZPvMVK0Rhd4hW3l9dhxCuOEe86LeIthohXHErMdUDUNKoCc16C0nSvkeWGEackhXglpGGOfzD4JSFVKUrwQ11LrcS61vV84i1SnqYZDuLdoEO8RfI6gHgzgjIkdjdSiCd3eaMf2uWNFOKVkul2s8Jv4hDvRkh1M594i5Si6brEK20vy2DEK40Rr4wW8RZBxCsNJaYMEDWNqsCcl6U03ZtkuWHEKUchXllpmOMfDH45SHULJfihrqVWYl2rPJ94C5WnqZ6DeLfqEG+hvA4gXr2gDIndbRTiyV3e5od2eRuFeLfIdLtZ4bdziHcbpKrAJ95CpaiuLvHusJd3YsS7AyPenVrEWwgR7w4oMXcCUdOoCsz5XZSme7ssN4w4FSnEu0sa5vgHg18RUt1NCX6oa6mVWNe6h0+8BcrT1NNBvEo6xFsgrwOI1zMoQ2JXmUI8ucvKfmiXlSnEu1um280Kr8IhXmVIVZVPvAVKUQ9d4lWzl9Ux4lXDiFddi3gLIOJVgxJTHYiaRlVgzmtQmm4VWW4YcWpSiFdDGub4B4NfE1LVogQ/1LXUSqxr1eYTb36uiFdHh3jz5XUY8epAsatLIZ7cZV2MeHUpxKsl0+1mhdfjEK8upKrPJ958HvEa2MuGGPEaYMRrqEW8+RDxGkCJacghHua8EaXpyqcu9THiNKYQr5E0zPEPBr8xpLqXEvxQ11Irsa51H59485SnaaSDePfrEG+evA4g3sigDIndAxTiyV0+4Id2+QCFePfKdLtZ4Q9yiPcApHqIT7x5StEIXeI1sZcPY8RrghHvYS3izYOI1wRKzMNA1DSqAnP+CKXpPijLDSPOoxTiPSINc/yDwX8UUj1GCX6oa6mVWNdqyifeXOVpGuog3uM6xJsrrwOINzQoQ2L3BIV4cpdP+KFdPkEh3mMy3W5WeDMO8Z6AVM35xJurFA3RJV4Le/kkRrwWGPGe1CLeXIh4LaDEPAlETaMqMOctKU23mSw3jDitKMRrKQ1z/IPBbwWpWlOCH+paaiXWtZ7iE2+O8jRtcBDvaR3izZHXAcTbEJQhsXuGQjy5y2f80C6foRBPRvcpNyu8DYd4z0CqZ/nEm6MUrdcl3nP2si1GvOcw4rXVIt4ciHjPQYlpC0RNoyow5+0oTbeNLDeMOO0pxGsnDXP8g8FvD6k6UIIf6lpqJda1OvKJN1t5mlY4iNdJh3iz5XUA8VYEZUjsMijEk7vM8EO7zKAQr4NMt5sV3plDvAxI1YVPvNlKkdAlXld7+TxGvK4Y8Z7XIt5siHhdocQ8D0RNoyow5y9Qmq6MaxeMON0oxHtBGub4B4PfDVJ1pwQ/1LXUSqxrvcgn3izlaSrkIN5LOsSbJa8DiFcoKENi9zKFeHKXL/uhXb5MIV53mW43K/wVDvFehlSv8ok3SykqqEu8HvayJ0a8HhjxemoRbxZEvB5QYnoCUdOoCsx5L0rTfUWWG0ac1yjE6yUNc/yDwX8NUr1OCX6oa6mVWNd6g0+8mcrTNNVBvDd1iDdTXgcQb2pQhsTuLQrx5C7f8kO7fItCvNdlut2s8N4c4r0FqfrwiTdTKZqiS7y37eU7GPHexoj3jhbxZkLEextKzDtA1DSqAnP+LqXp9pblhhHnPQrx3pWGOf7B4L8Hqd6nBD/UtdRKrGt9wCfeDOVp6uMgXl8d4s2Q1wHE6xOUIbHLpBBP7jLTD+0yk0K892W63axwP4d4mZAqi0+8GUpRb13i9bOX/THi9cOI11+LeDMg4vWDEtMfiJpGVWDOP6Q0Xb8sN4w4H1GI96E0zPEPBv8jSPUxJfihrqVWYl3rEz7xpitPU20H8T7VId50eR1AvNpBGRK7zyjEk7v8zA/t8jMK8T6W6Xazwj/nEO8zSDWAT7zpSlEtXeINtJdfYMQbiBHvCy3iTYeINxBKzBdA1DSqAnM+iNJ0P5flhhFnMIV4g6Rhjn8w+IMh1ZeU4Ie6llqJda2v+MSbpjxNfgfxhugQb5q8DiCePyhDYjeUQjy5y6F+aJdDKcT7UqbbzQofxiHeUEg1nE+8aUpRpi7xvraXIzDifY0Rb4QW8aZBxPsaSswIIGoaVYE5H0lpusNkuWHE+YZCvJHSMMc/GPxvINUoSvBDXUutxLrWt3ziTVWepo4O4o3WIZ786Gs0QLyOQRkSu+8oxJO7/M4P7fI7CvFGyXS7WeHfc4j3HaQawyfeVKWogy7xxtrLcRjxxmLEG6dFvKkQ8cZCiRkHRE2jKjDn4ylN93tZbhhxJlCIN14a5vgHgz8BUk2kBD/UtdRKrGtN4hNvivI0zXIQb7IO8abI6wDizQrKkNhNoRBP7nKKH9rlFArxJsp0u1nhUznEmwKppvGJp87CTF3iTbeXMzDiTceIN0OLeFMg4k2HEjMDiJpGVWDOZ1KarnypOg0jziwK8WZKwxz/YPBnQarZlOCHupZaiXWtOXziTVaepmIO4s3VId5keR1AvGJBGRK7eRTiyV3O80O7nEch3myZbjcrfD6HePMg1QI+8SYrRUV1ibfQXi7CiLcQI94iLeJNhoi3EErMIiBqGlWBOV9MabrzZblhxFlCId5iaZjjHwz+Eki1lBL8UNdSK7GutYxPvEnK05TqIN5yHeJNktcBxEsNypDYBSjEk7sM+KFdBijEWyrT7WaFCw7xApBqBZ946ucfKbrEW2kvV2HEW4kRb5UW8SZBxFsJJWYVEDWNqsCcr6Y0XSHLDSPODxTirZaGOf7B4P8AqX6kBD/UtdRKrGv9xCfeROVpau8g3hod4sl3vmsA4rUPypDYraUQT+5yrR/a5VoK8X6U6XazwtdxiLcWUq3nE0/9uUQ7XeJtsJc/Y8TbgBHvZy3iTYSItwFKzM9A1DSqAnP+C6XprpPlhhFnI4V4v0jDHP9g8DdCql8pwQ91LbUS61q/8Yk3QXma8jqI97sO8SbI6wDi5Q3KkNhtohBP7nKTH9rlJgrxfpXpdrPCN3OItwlSbeETT/01gHRd4v1hL//EiPcHRrw/tYg3ASLeH1Bi/gSiplEVmPO/KE13syw3jDh/U4j3lzTM8Q8G/29ItZUS/FDXUiuxrrWNTzz196fiHMTbrkO88fI6aDOpOygsk/53cH41vlWmyM2q/IdDqR2QaqfGkQBuSRrO5JfxuFyV8S6dMh4nr8PKeDeljKX/3ZmUni1ztNvvUoFedCbHqvfhyOQenUyOlddhJ2cPlO+9lHzLXe7FsrKX0txkVezFYPYPtMt9jNoNRmlfJueVxD5I9S/llUSILGolRpb9lMbxrzSMtcR9wBG5oHEk9std4ygJ3CD+BiiuWK7eLfl7DauSkdGi+8a4YiL1gEg9KFIPidTDIvWISD0qUo+J1OMi9YRIPSlST4nU0yItTqQZIs0UaZZIyyPS4kWaR6QliLREkZYk0pJFWopISxVpaSLNK9J8Ii1dpOUVaflEWn7sHdiBREh2EJMdwmSHMdkRTHYUkx3DZMcx2QlMdhKTncJkpyFZWhwmMzCZicksTJYHk8VjMg8mS8BkiZgsCZMlY7IUTJaKydIwmReT+TBZOibLi8nyYbL82Z4J9Y9Mt8xz4JB0ORFR1cFvq05GUk3p6FCdQnia3iO3Lzmy3cjEMGYlERIvUFWfFF6V5FQ1qhFBlQzdyOu5vZGNcUUQHEOvSg5Az/IOKlXBvB1Sqc5k93B0VdbZGjgSVXXgXKUcjabaFKqnY1FUVc9X3fEIqm7OlKaeDq+qdWHi48KqtmYrDyOcqlz2IjLDqErkKDUrp6ppzoLMk0PVJEzZxmdX9QxX3J5sqp5hj0CCQzW5caSDkmKrSk6JqEo9rxpUKrIqLaQqMziKyntOtalsNJXvrKrT5qiq9DOqBhnRVXmDqpYNFap8UlW6lUqVH3nFn94DUr1Of6CQll/ZY1bbDxTSCmg8UEjLL68DPtNbHZQh9i5hPFAI7vISP7TLS3KblVx/YBXMikK0SvMDq7RL7eVl0NultEuhD6zSLtP5wOrMcVFCLu1SBJhplwFRy31hXCLdQ0+a0i7lH9d8ymgNdBzXgjrHVb6PLggc14FBGWKvEOW4yl0W8kO7LMQ/rvmUogG6x/Vye1kYO66XY8e1sNZxzQcd18uh41IYiFruH0yCzq9gfJ4T7BWFsjCIQbsswngwmXaFNOx3zf9FdrS8yoIa7+hoV+p0NPlw8Eqgo40PyhB7RSkdTe6yqB/aZVHGJxrB2i3iZu0Wo3zukFYUUl1F/1JRsHAVonG6Tf9qe3kN1vSvxpr+NVpNPy/U9K+GEnMNEDWNqsCcX8v4NCqtmCw3rJ0Wp7Tza6Vhjn8w+MUh1XWU4Ie6FtDfIFWJ3DaO3BMvXXma+jqIV1KHePITsZIA8foGZYi9UhTiyV2W8kO7LEUh3nUy3W5W+PWULyillYJUN/CJl64UfaBLvBvt5U0Y8W7EiHeTFvHSIeLdCCXmJiBqGlWBOb+Z0nSvl+WGEac0hXg3S8Mc/2DwS0OqMpTgh7qWWol1rbL893g+5WlyjMNJK6dDPJ+8DhqHI2WIvVsoxJO7vAUahxP0rzCnQ7wyMt1uVnh5DvFugVS38onnU4p0x+Gk3WYvb8eIdxtGvNu1iOeDiHcblJjbgahpVAXmvAKl6ZaX5YYR5w4K8SpIwxz/YPDvgFR3UoIf6lpqJda17uITz6s8TascxKuoQzyvvA4g3qqgDLF3N4V4cpd3+6Fd3k0h3p0y3W5W+D0c4t0NqSrxiedVilbqEq+yvayCEa8yRrwqWsTzQsSrDCWmChA1jarAnFelNN17ZLlhxKlGIV5VaZjjHwx+NUhVnRL8UNdSK7GuVYNPvDTlaWrhIF5NHeKlyesA4rUIyhB7tSjEk7us5Yd2WYtCvOoy3W5WeG0O8WpBqjp84qUpRc11iVfXXtbDiFcXI149LeKlQcSrCyWmHhA1jarAnNenNN3astww4jSgEK++NMzxDwa/AaRqSAl+qGuplVjXasQnXqryNK13EK+xDvFS5XUA8dYHZYi9eynEk7u81w/t8l4K8RrKdLtZ4fdxiHcvpLqfT7xUpWidLvEesJcPYsR7ACPeg1rES4WI9wCUmAeBqGlUBeb8IUrTvU+WG0acJhTiPSQNc/yDwW8CqR6mBD/UtdRKrGs9wideivI01XEQ71Ed4qXI6wDi1QnKEHuPUYgnd/mYH9rlYxTiPSzT7WaFN+UQ7zFI9TifeClKUW1d4j1hL5thxHsCI14zLeKlQMR7AkpMMyBqGlWBOW9OabpNZblhxGlBIV5zaZjjHwx+C0j1JCX4oa6lVmJdqyWfeMnK0zTWQbxWOsRLltcBxBsblCH2WlOIJ3fZ2g/tsjWFeE/KdLtZ4U9xiNcaUj3NJ16yUjRGl3jP2Ms2GPGewYjXRot4yRDxnoES0waImkZVYM6fpTTdp2S5YcR5jkK8Z6Vhjn8w+M9BqraU4Ie6llqJda12fOIlKU/TDAfx2usQL0leBxBvRlCG2OtAIZ7cZQc/tMsOFOK1lel2s8I7cojXAVJ14hMvSSmarku8DHvZGSNeBka8zlrES4KIlwElpjMQNY2qwJx3oTTdjrLcMOJ0pRCvizTM8Q8Gvyukep4S/FDXUiuxrvUCn3iJytNUz0G8bjrES5TXAcSrF5Qh9rpTiCd32d0P7bI7hXjPy3S7WeEvcojXHVK9xCdeolJUV5d4L9vLVzDivYwR7xUt4iVCxHsZSswrQNQ0qgJz/iql6b4oyw0jTg8K8V6Vhjn+weD3gFQ9KcEPdS21EutavfjES1Cepp4O4r2mQ7wEeR1AvJ5BGWLvdQrx5C5f90O7fJ1CPGm4l5sV/gaHeK9Dqjf5xEtQinroEu8te9kbI95bGPF6axEvASLeW1BiegNR06gKzHkfStN9Q5YbRpy3KcTrIw1z/IPBfxtSvUMJfqhrqZVY13qXTzxProj3ng7xPPI6jHjvQVt+n0I8ucv3MeK9TyHeOzLdblb4BxzivQ+p+vKJ5+ERL9Ne+jHiZWLE82sRzwMRLxNKjJ9DPMx5FqXpfiDLDSNOPwrxsqRhjn8w+P0gVX9K8ENdS63EutaHfOLFK0/TSAfxPtIhXry8DiDeyKAMsfcxhXhylx/7oV1+TCFef5luNyv8Ew7xPoZUn/KJF68UjdAl3mf28nOMeJ9hxPtci3jxEPE+gxLzORA1jarAnA+gNN1PZLlhxBlIId4AaZjjHwz+QEj1BSX4oa6lVmJdaxCfeHmUp2mog3iDdYiXR14HEG9oUIbY+5JCPLnLL/3QLr+kEO8LmW43K/wrDvG+hFRD+MTLoxQN0SXeUHs5DCPeUIx4w7SIlwci3lAoMcOAqGlUBeZ8OKXpfiXLDSPO1xTiDZeGOf7B4H8NqUZQgh/qWmol1rVG8olnKU/TBgfxvtEhniWvA4i3IShD7I2iEE/ucpQf2uUoCvFGyHS7WeHfcog3ClKN5hPPUorW6xLvO3v5PUa87zDifa9FPAsi3ndQYr4HoqZRFZjzMZSm+60sN4w4YynEGyMNc/yDwR8LqcZRgh/qWmol1rXG84lnKk/TCgfxJugQz5TXAcRbEZQh9iZSiCd3OdEP7XIihXjjZLrdrPBJHOJNhFST+cQzlSKhS7wp9nIqRrwpGPGmahHPhIg3BUrMVCBqGlWBOZ9GabqTZLlhxJlOId40aZjjHwz+dEg1gxL8UNdSK7GuNZNPPEN5mgo5iDdLh3jyP7MA4hUKyhB7synECxr2Q7ucTSHeDJluNyt8Dod4syHVXD7xDKWooC7x5tnL+Rjx5mHEm69FPAMi3jwoMfOBqGlUBeZ8AaXpzpHlhhFnIYV4C6Rhjn8w+Ash1SJK8ENdS63EutZiPvHilKdpqoN4S3SIJ29kCUC8qUEZYm8phXhyl0v90C6XUoi3SKbbzQpfxiHeUki1nE+8OKVoii7xAvZSYMQLYMQTWsSLg4gXgBIjgKhpVAXmfAWl6S6T5YYRZyWFePKpz0qOfzD4KyHVKkrwQ11LrcS61mo68VJPK09THwfxftAgXuppeR1AvD5BGRK7HxnEC+7yRz+0yx8pxFsl0+1mhf/EId6PkGoNnXjBwlWIeusSb629XIcRby1GvHU6xEs9DRFvLZSYdUDUNKoCc76e0nR/kuWGEWcDhXjrpWGOfzD4GyDVz5Tgh7qWWol1rV/4xDulPE21HcTbqEO8U/I6gHi1gzIkdr9SiCd3+asf2uWvFOL9LNPtZoX/xiHer5Dqdz7xTilFtXSJt8lebsaItwkj3mYt4p2CiLcJSsxmIGoaVYE530Jpur/JcsOI8weFeFukYY5/MPh/QKo/KcEPdS21Eutaf/GJd1J5mvwO4v2tQ7yT8jqAeP6gDIndVgrx5C63+qFdbqUQ70+ZbjcrfBuHeFsh1XY+8U4qRZm6xNthL//BiLcDI94/WsQ7CRFvB5SYf4CoaVQF5nwnpeluk+WGEWcXhXg7pWGOfzD4uyDVbkrwQ11LrcS61h4+8U4oT1NHB/H26hDvhLwOIF7HoAyJ3T4K8eQu9/mhXe6jEG+3TLebFf4vh3j7INV+PvFOKEUddIl3wF4exIh3ACPeQS3inYCIdwBKzEEgahpVgTk/RGm6/8pyw4hzmEK8Q9Iwxz8Y/MOQ6ggl+KGupVZiXeson3jHladploN4x3SId1xeBxBvVlCGxO44hXhyl8f90C6PU4h3RKbbzQo/wSHecUh1kk88dRZm6hLvlL08jRHvFEa801rEOw4R7xSUmNNA1DSqAnLujaM0XflS9SREHK/BIJ43aJjjHwu+14BUJiX4oa6lVkJdy2vxiXdMeZqK2cTz5tEh3jF5HUC8YkEZUmLxFOLJXcb7oV3GM4jnNWW63axwD4V43nhIlcAn3jGlqKgm8byJ9jIJIp43ESKeN0mLeMcQ4nkTocQkAVHTqArMeTKj6Xo9stww4qRQiJcsDXP8g8FPgVSplOCHupZaiXWtND7xjipPU6qDeF4d4h2V1wHESw3KkNj5KMSTu/T5oV36KMSThtPcrPB0DvF8kCovn3jq5x8pusTLZy/zY8TLhxEvvxbxjkLEywclJj8QNY2qwJwXoDTddFluGHEuoRCvgDTM8Q8G/xJIdSkl+KGupVZiXesyPvGOKE9TewfxCuoQ74i8DiBe+6AMiV0hCvHkLgv5oV0WohDvUpluNyv8cg7xCkGqwnziqT+XaKdLvCvsZRGMeFdgxCuiRbwjEPGugBJTBIiaRlVgzq+kNN3LZblhxClKId6V0jDHPxj8opCqGCX4oa6lVmJd6yo+8Q4rT1NeB/Gu1iHeYXkdQLy8QRkSu2soxJO7vMYP7fIaCvHk49Kr3KzwaznEuwZSFecTT/01gHRd4l1nL0tgxLsOI14JLeIdhoh3HZSYEkDUNKoCc16S0nSvleWGEacUhXglpWGOfzD4pSDV9ZTgh7qWWol1rRv4xFN/fyrOQbwbdYh3SF4HbcZ7E4Vl0v9NmRRKXS9T5GZV3syh1E2QqrTGkQBuSRrO5JfxwVyVcRmdMj4or8PKuCyljKX/spmUni1zVNbvUoFedCYPqPfhyGQ5nUwekNdhJ6cclO9bKPmWu7wFy8otlOYmq+IWDGY3Q7ssz6jdYJTKZ3JeSZSHVLdSXkmEyKJWYmS5jdI4bpWGsZZYHjgiFzQOs1+vYVUyMlp03xi3CXjHEhcXE8VEMVFM9D8vigdf2ngWIP4wU/PdMzXPPVNz3TM1xz1Ts90zNcs9UzPdMzXDPVPT3TM1zT1TU90zNcU9U5PdMzXJPVMT3TM1wT1T490zNc49U2PdMzXGPVPfu2fqO/dMjXbP1LfumRrlnqlv3DM10j1TI9wz9bV7poa7Z2qYa6YSE9wz5XHPVLx7pvK4Z8pyz5TpninDPVNxrplKOO2eqVPumTrpnqkT7pk67p6pY+6ZOuqeqSPumTrsnqlD7pk66J6pA+6Z2u+eqX/dM7XPPVN73TO1xz1Tu90ztcs9UzvdM/WPe6Z2uGdqu3umtrlmKqmue6bquGeqtnumarlnqqZ7pmq4Z6q6e6aquWeqqnumqrhnqrJ7piq5Z+oe90zd7Z6piu6Zuss9U3e6Z+oO90xVcM/U7e6Zus09U7e6Z6q8e6Zucc9UOfdMlXXPVBn3TJV2z9TN7pm6yT1TN7pn6gbXTCW/756p99wz9a57pt5xz9Tb7pnq456p3u6Zess9U2+6Z+oN90y97p6p19wz1cs9Uz3dM9XDPVOvumfqFfdMveyeqZfcM/Wie6a6u2eqm3umXnDP1PPumerqnqku7pnq7J6pDPdMdXLPVEf3THVwz1R710ylrHLP1Er3TK1wz5Rwz1TAPVPL3TO1zD1TS90ztcQ9U4vdM7XIPVML3TPl3ncgU9z7DmSKe9+BTHHvO5Ap7n0HMsW970CmuPcdyBT3vgOZ4t53IFPc+w5kinvfgUxx7zuQKe59BzLFve9Aprj3HcgU974DmeLedyBT3PsOZMo490y59x3ItPzumcrnnqm87plKd8+Uzz1TXvdMpblnKtU9UynumUp2z1SSe6YS3TPl3ncg09z7DmSae9+BTHPvO5Bp7n0HMs2970CmufcdyDT3vgOZ6t53IFPd+w5kqnvfgUx17zuQqe59BzLVve9Aprr3HchU974DmeredyBT3fsOZKp734FMBb4DmYvJTHGbciOO85//EXW68N4uvBWE9w7hvVN47xLeisJ7t/DeI7yVhLey8FYR3qrCW014qwtvDeGtiY16qlQMklXGZFUwWVVMVg2TVcdkNTBZzWIXjhqAisQLfJFDx2wFjtk7OGbv5Ji9i2O2Isfs3Ryz9yiHpp240OyHWcBYCc/cLGAYm2eeUhUX/EmzShW8Ec8C6HYr5TaK2O3OhG53FnS7s6HbnQPdbuXc3m4/yPkMyHkVqbpiV+GD46wCH15n7txQad7JxwrmqXHjwdrDW7fKLPn9gNZPrxfppTgZmQhlZBKUkclQUKZAQanKud2x0O2Og253PHS7E6DbrcYpwDGQ8+pSde3aaQmHv+mbZ9z6vR1eOHh9v2W13p81qmKWuOmenvf/8dHuBiK9OCcjI6GMfANlZBQUlG+hoNTg3O4w6HaHQ7f7NXS7I6DbramDTfXYJPUPAuLDvCoce/8zLcrdelu1Du06ZsgXhW06tO8nX4DbLxI9Xd1fe2s5X5U7X3o7X187X0Q7Xyk7Xw47X/M6X9h+4nD8gGP9oGP9kGPdxLF+2LF+xLF+1LF+7BPhrS28dYS3rvDWE976wttAeBsKb6PYZKiYKCaKif7PiWKToUKmYpOhcFOxyVC4qdhkKNxUbDIUbio2GQo3FZsMhZuKTYbCTcUmQ+GmYpOhcFOxyVC4qdhkKNxUbDIUbio2GQo3FZsMhZuKTYbCTcUmQ+GmYpOhcFOxyVC4qdhkKNxUbDIUbio2GQo3FZsMhZuKTYbCTcUmQ+GmYpOhcFOxyVC4qdhkKNxUbDIUbio2GQo3FZsMhZvKcM9UbDIUbCo2GSoXpmKToXBTsclQuKnYZCjcVGwyFG4qNhkKNxWbDIWbik2Ggk3FJkPlwlRsMhRuKjYZCjcVmwyFm4pNhoJNxSZD5cJUbDIUbio2GYo4GaryBZOhGgvvvcJ7n/DeL7wPCO+DwvuQ8DYR3oeF9xHhfVR4HxPepsL7uPA+IbzNsMlQjbF5Sfdisvsw2f2Y7AFM9iAmewiTNcFkD2OyRzDZo5jsMUzWFJM9jsmewGTNimkMqkjMkwUMqkiMzwIGVSR6soBBFYkJyKH3NgYOvcbtxkG3a0C3a0K3a0G3e29ubxcaDJNwGnJ+XxYymagCJSMJR5CMJBxFMpJwDArKcSgo93Nu9wB0uweh2z0E3e5h6HYf4BTgfsj5g1nIZKLynIzshDKyC8rIbigoe6CgPMS53W3Q7W6HbncHdLv/QLfbhHK7SbWQ202qjdxuUh3kdpPqQrf7MOd2q0G3Wx263RrQ7daEbvcRSntJqgo5fxTiWy1ORu6CMlIRysjdUFDugYLyGOd2b4dutwJ0u3dAt3sndLtNOQV4G+T8cYhv1TgZKQ1lpAyUkbJQUMpBQXmCc7s3QLd7I3S7N0G3ezN0u82A2839iDxvY+czAueDAOe7fedbeuf7duebc+c7cOfbbOd7aecbZue7YudbX+f7W+ebWOc7VceIPG9tx7qOY13Xsa7nWNd3rBs41g0d60afCG9z4W0hvE8Kb0vhbSW8rYX3KeF9OjYiLyaKiWKi/3Oi2Ii8kKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpjLcMxUbkQebio3Iy4Wp2Ig83FRsRB5uKjYiDzcVG5GHm4qNyMNNxUbk4aZiI/JgU7ERebkwFRuRh5uKjcjDTcVG5OGmYiPyYFOxEXm5MBUbkYebio3II47I63nBiLxnhLeN8D4rvM8Jb1vhbSe87YW3g/B2FN5OwpshvJ2Ft4vwdhXe54X3BWxE3jPYALQ2mOxZTPYcJmuLydphsvaYrAMm64jJOmGyDEzWGZN1wWRdMdnzmOwFnRF5ye9kARMlkt/NAiZKJL+XBUyUSH4fOfTeZ4BDr3G7b0G32xu63T7Q7b4N3W6b3N4uNMEl+U3I+bNZyAih5pyMvAplpAeUkZ5QUHpBQXmOc7svQrf7EnS7L0O3+wp0u205Bdgdct4uCxkh1JSTkQwoI52hjHSBgtIVCkp7zu22h263A3S7HaHb7QTdbgfK7aYI5HZTViC3m7ISud2UVdDtduTc7lLodpdBt7scut0AdLudKO0lZQnkPAPiWxdORuZCGZkHZWQ+FJQFUFA6c253JnS7s6DbnQ3d7hzodrtwCnAG5LwrxDdSS5gIZWQSlJHJUFCmQEF5nnO7Y6HbHQfd7njodidAtwt8UUxnRN4zzmcEzgcBznf7zrf0zvftzjfnznfgzrfZzvfSzjfMznfFzre+zve3zjexzneqzhF5zR3rFo71k451S8e6lWPd2rF+yrF++hPh7Sa83YX3ReF9SXhfFt5XhPdV4e0RG5EXE8VEMdH/OVFsRF7IVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8nBTsRF5uKnYiDzcVGxEHm4qNiIPNxUbkYebio3Iw03FRuThpmIj8nBTGe6Zio3Ig03FRuTlwlRsRB5uKjYiDzcVG5GHm4qNyMNNxUbk4aZiI/JwU7ERebCp2Ii8XJiKjcjDTcVG5OGmYiPycFOxEXmwqdiIvFyYio3Iw03FRuQRR+TNuWBEXk/h7SW8rwnv68L7hvC+KbxvCW9v4e0jvG8L7zvC+67wvie87wvvB8LbFxuR1xMbgNYLk72GyV7HZG9gsjcx2VuYrLfOqLe09CxgMkJa3ixgMkJavixgMkJafqR4vcBHWDq3mwrdbhp0u17odn3Q7fbK7e1Ck0jSUiDnr2Uho3Be52QkD5SReCgjHigoCVBQSLcbB92uAd2uCd2uBd3uG5QCTD0NOQ9OJFSPwulByUjqESQjqUeRjKQeg4JyHArKW5zbPQDd7kHodg9Bt3sYut3eub1d6EWQtw/H7Nscs+9wzL7LMfsex+z7HLMfcMz21TGrPKZe5UvsBK3JUD2dL42dr3+dL3Kdr2SdL1edr0mdLzzttccx6cnT1Z21N9M5GaqbY93dsX7RsX7JsX7ZsX7FsX7Vse7xifD6hTdLePsJb3/h/VB4PxLej4X3kwsnQyX2s98CYcXhd/ctWJ5ciI240FsweUefCu9nwvu58A7A3lx9mgjJPsNkn2OyAYk5eRanDjF0nD5FqOf9DKGe93OEet4BQOovsrqy/iPVNVB4vxDeQcI7GKuugVg9fIHJBmGywVrVlQVV10Cour6AqmsQVF2D+dXV7z9SXV8K71fCO0R4h2LV9SVWD19hsiGYbKhWdfWDqutLqLq+gqprCFRdQ/nV1f8/Ul3DhHe48H4tvCOw6hqG1cNwTPY1JhuhVV39oeoaBlXXcKi6voaqawS/uj78j1TXSOH9RnhHCe+3WHWNxOrhG0w2CpN9q1Vd0NMG70iour6BqmsUVF3f8qvro/9IdY0W3u+E93vhHYNV12isHr7DZN9jsjFa1fURVF2joer6Dqqu76HqGsOvro//I9U1VnjHCe944Z2AVddYrB7GYbLxmGyCVnV9DFXXWKi6oKHhXmhouHcCv7o++Y9U10ThnSS8k4V3ClZdE7F6mITJJmOyKVrV9QlUXdAEfi80gd8LTeD3TsltdVm5rC4jN7W1Ma7oOZNGFP3ZJzcKUdzZJzcKUdzZJzcKkVQNcNyqEVE10FYZkW19cV5lRPE4KKQyou1rcLYUGGFVX16oMsLb+uoClRHB4xCnyoi0r6FhSsPIoRqWU2XktDU8h8oI4/Hr7Coj3L5GRChZ4wLVyPAq40Jb34RVGdk8jgqnMrLv69soR8k4rxodWWXYtr6LqDIcHr+PpDKc+xqjOOJGXIiKClHcWSoqRHFnqagQSRX2pzQmKVVG3NlOqRDFYZ0yV52xhNpgVtBiu45tWwvv1PPfnbpWeKcJ73ThnSG8M4V3lvDOFt45wjtXeOcJ73zhXSC8C4V3kfAuFt4lwrtUeJcJ73LhDQivEN4VwrtSeFcJ72rh/UF4fxTen4R3jfCuFd51wrteeDcI78/C+4vwbhTeX+dc3GuLku6+srg2N2LT7wzZb8L7u/BuEt7NwrtFeP8Q3j+F9y/h/Vt4twrvNuHdLrw7hPcf4d0pvLuEd7fw7hHevcK7T3j/Fd79wntAeA8K7yHhPSy8R4T3qPAeE97jwntCeE8K7ynhPS18ccJnYK9dfjMg2e+YbBMm24zJtmCyPzDZn5jsL0z2Nybbism2YbLtmGwHJvsHk+3EZLsw2W5MtgeT7cVk+zDZv5hsPyY7gMkOYrJDmOwwJjuCyY5ismOY7DgmO4HJTmKyU5jsNCTzxWEyw7jwvdnGuOIIpKD3Zr+p35udlv1arZKw2KRWSbxsVqsknLaoVRJ5f6hV8vXDn2pVL9mpoXepfytVp6Rqq1J1Qqq2KVVHpGq7UrVXqnYoVZuk6h+lao5U7VSqekrVLuj9+m6V6lRQtUelOhFU7VWpjgRV+1SqvUHVvyrVpqBqv0o1J6hSfs+wZ1Cl/J7hmdf2qu8Z7j6jOqxQ7TyjUn3dc9sZlerrnpvOqFRf91x1RnVcoRpzRnVCoep4RnUyuipr7xnVqegq/1nV6eiqvmdUPsUXlt89q0Ie/Tjbtb/fWaubIvdh48zXln6Dvt+TvkTPf6fNUf1/Bvtfmkv/mf3/Vx5+qW9km9aN/I8/U1PfyHbdjPzPPqpT38gO/RuJ6JvwBFB9I/9c5I2E3YP7DxbVN7Lzom/kf+R5pfpGdrmREf5jUPWN7HbnRi7wTXi6qr6RPS7eyPk9uP/QVn0je129EdqzYPWN7MvljfQ788qiQUb0Vxafy1cWQWHLhgrhgHPCc/ucHFE4EH6tsl/rjs5YLRl5o184Nzooyh0NcgjLRLv1wfAdHdC/ozNWe4b1/+WFoZfCieE3+lV2YfUIdzQEvqODF3NHjSJFdGiOOzojLJFDOCyssGlOi8PhOzp0kTnq1atJmDv6OsxGe4a79RHhbz0o7HaBcCR8R4cv+o7OWK114Ua/ibTRrdnuaFQEYbnst/4tfEdH3LmjM1arnvc/OnLopTDT3uh30YQdHHf0PXxHR926oynOiI6JekeOBxdjlcJz79jHwXd0zMUcVdt84NwdjVdsdFPo1ieob/3sM9RJ8B0dd/WOQs8kJwM5OvMwbspZoWIHxplPYsE7OpHbFz8b4wpiH0wj7n0m8iIpfQmkWgqptkGq7ZBqB6T6B1LthFS7INVuSLUHUu2FVPsg1X5IdQBSHYRUhyAV9LPv9COQ6iikOgapoF/f5/4IfwG9M5kGHWALe+aJPZnE3hNgr7Ox167Y60HsNRb2ugV7LYDxFWOWaxzI+VnnhMYdOrdu06pD+3KNW2e069qlRZc2Hdpn9Xd89mk61laEX1AP7i98eYQvXvg8wpeQ4+F3nLJUp8tPOCHc5U3J5VnxQy8gfpf7x/yn5vas9kfOqi8PdFYTEVt5oUE8pBvxToduJAnLtWsZ0Sn8RMc6KUrhJwtfivClCl+aRuHPkB/aY4WXRin8TXL/mH8vp/CToXrxQiWdBqk4N+KdAd2ID8u1axnRKXyvY+2LUvjpwpdX+PIJX36Nwp8pvJuxwvNRCn+z3D/mP51T+OlQvRSAShqa+0a6Ee9M6EYuwXLtWkZ0Cr+AY31JlMK/VPguE76CwldIo/BnCe8WrPDyUgp/i9w/5j8fp/Avherlcqik80Iqzo14Z0E3UhjLtWsZ0Sn8yx3rwlEK/wrhKyJ8VwpfUY3Cny28f2CFl59S+H/I/WP+C3AK/wqoXopBJQ0NNiXdiHc2dCNXYbl2LSM6hV/Msb4qSuFfLXzXCN+1wldco/DnCO+fWOFdQin8P+X+Mf+Xcgr/aqheroNK+hJIxbkR7xzoRkpguXYtIzqFf51jXSJK4ZcUvlLCd73w3aBR+HOF9y+s8C6jFP5fcv+Y/4Kcwod+AeC7ESrpyyAV50a8c6EbuQnLtWsZ0Sn8Gx3rm6IU/s3CV1r4yghfWY3Cnye8f2OFV4hS+H/L/WP+L+cU/s1QvZSDSroQpOLciHcedCO3YLl2LSM6hV/Osb4lSuGXF75bhe824btdo/DnC+9WrPAKUwp/q9w/5v8KTuGXh+qlAlTShSEV50a886EbuQPLtWsZ0Sn8Co71HVEK/07hu0v4Kgrf3RqFv0B4t2GFV4RS+Nvk/jH/V3IK/06oXu6BSroIpOLciHcBdCOVsFy7lhGdwr/Hsa4UpfArC18V4asqfNU0Cn+h8G7HCq8opfC3y/1j/otxCr8yVC/VoZIuCqk4N+JdCN1IDSzXrmVEp/CrO9Y1ohR+TeGrJXy1ha+ORuEvEt4dWOFdRSn8HXL/mP+rOYVfE6qXulBJXwWpODfiXQTdSD0s165lRKfw6zrW9aIUfn3hayB8DYWvkUbhLxbef7DCu4ZS+P/I/WP+r+UUfn2oXhpDJX0NpOLciHcxdCP3Yrl2LSM6hd/Ysb43SuHfJ3z3C98DwvegRuEvEd6dWOEVpxT+Trl/zP91nMK/D6qXh6CSLg6pODfihb7N6muC5dq1jOgU/kOOdZMohf+w8D0ifI8K32Mahb9UeHdhhVeCUvi75P4x/yU5hf8wVC9NoZIuAak4N+KFvqDtexzLtWsZ0Sn8po7141EK/wnhayZ8zYWvhUbhLxPe3VjhlaIU/m65f8z/9ZzCfwKqlyehki4FqTg34l0G3UhLLNeuZUSn8J90rFtGKfxWwtda+J4Svqc1Cn+58O7BCu8GSuHvkfvH/N/IKfxWUL08A5X0DZCKcyPe5dCNtMFy7VpGdAr/Gce6TZTCf1b4nhO+tsLXTqPwA8K7Fyu8myiFv1fuH/N/M6fwn4XqpT1U0jdBKs6NeAPQjXTAcu1aRnQKv71j3SFK4XcUvk7ClyF8nTUKXwjvPqzwSlMKf5/cP+a/DKfwO0L10gUq6dKQinMjXgHdSFcs165lRKfwHX/g1dc1SuE/L3wvCF834euuUfgrhPdfrPDKUgr/X7l/zH85TuE/D9XLi1BJl4VUnBvxroBu5CUs165lRKfwHX9g2PdSlMJ/WfheEb5Xha+HRuGvFN79WOHdQin8/XL/mP/ynMJ/GaqXnlBJ3wKpODfiXQndSC8s165lRKfwHX8y3NcrSuG/JnyvC98bwvemRuGvEt4DWOHdSin8A3L/mP/bOIX/GlQvb0ElfSuk4tyIdxV0I72xXLuWEZ3Cd/yNe1/vKIXfR/jeFr53hO9djcJfLbwHscK7nVL4B+X+Mf8VOIXfB6qX96CSvh1ScW7Euxq6kfexXLuWEZ3Cf8+xfj9K4X8gfH2FL1P4/BqF/4PwHsIK7w5K4R+S+8f838kp/A+gesmCSvoOSMW5Ee8P0I30w3LtWkZ0Ct/590X6RSl8+Z8Phe8j4ftYo/B/FN7DWOHdRSn8w3L/mP+KnMKH/i657xOopO+CVJwb8f4I3cinWK5dy4hO4X/iWH8apfA/E77PhW+A8A3UKPyfhPcIVnh3Uwr/iNw/5v8eTuF/BtULNEgu792QinMj3p+gGxmE5dq1jOgU/heO9aAohT9Y+L4Uvq+Eb4hG4a8R3qNY4VWiFP5RuX/Mf2VO4Q+G6mUoVNKVIBXnRrxroBsZhuXatYzoFP5Qx3pYlMIfLnxfC98I4RupUfhrhfcYVnhVKIV/TO4f81+VU/jDoXr5BirpKpCKcyPetdCNjMJy7VpGdAr/G8d6VJTC/1b4Rgvfd8L3vUbhrxPe41jhVaMU/nG5f8x/dU7hfwvVyxiopKtBKs6NeNdBNzIWy7VrGdEp/DGO9dgohT9O+MYL3wThm6hR+OuF9wRWeDUohX9C7h/zX5NT+OOgepkElXQNSMW5Ee966EYmY7l2LSM6hT/JsZ4cpfCnCN9U4ZsmfNM1Cn+D8J7ECq8WpfBPyv1j/mtzCh/70wQzoJKuBak4N+LdAN3ITCzXrmVEp/BnONYzoxT+LOGbLXxzhG+uRuH/LLynsMKrQyn8U3L/mP+6nMLHRk7Og0q6DqTi3Ij3Z+hG5mO5di0jOoU/z7GeH6XwFwjfQuFbJHyLNQr/F+E9jRVePUrhn5b7x/zX5xQ+NpUD+jMzeetBKs6NeH+BbmQplmvXMqJT+Esc66VRCn+Z8C0XvoDwCY3C3yh8cVjhNWAUvk/+ZxnmvyGn8LEfLq2ASroBpOLciHcjdCMrsVy7lhGdwl/hWK+MUvirhG+18P0gfD9qFP6vwmdghdeIUviy9FZh/htzCh/7btdPUEk3glScG/H+Ct3IGizXrmVEp/B/cqzXRCn8tcK3TvjWC9+GC+OVBezeAxXH2tymaoDKbC7+5N3PyBZjf6buvMrVP1OX28RDPcz3S0Sz1nmzGifGW8txYn4+v3YMXPb9Is+LfJEj2/1vwvd7r1FVM9q0bdvm6aD9/nn8vYbf36b9021bn72POFV4fBvV4cmck/NQKg1b2F+32aQ2FSaMw+6r0rBWDef3oTYV00niZqX3G3TMboluduveGqd1zP4R0Wye0EKrSW92rLecXxd3/OsfsuT+FL6/hO9v4dt64d77AdUADWr3/QlFYRsJVdsc678c678d660yDtuFb4fw/SN8Oy88evFZvYZVycho0b1fv8xMdQFg5xMYC4QZQqbJ5LJzbCd1Dt8mqA52udQ5dhW7MI+e/rkLhPG/EtncmtzktkmLlf1dUPZ3u5T93cV09rgb2uMel/a4J1uFJuQa8rv1kqW6xTjAeW7H3ECODcDx9QzHyN+uvoHh2AIc36jjWGUUGmRgTdZ5ka1yfTMjkHkAx6UZjuMBx2UYjpH3x2UZjhMAx+UYjpE/ensLw3ES4Lg8w3Ey4PhWhmPkLwffxnCcCji+neEY+ZOxFRiOkb9oewfDMfK3Qu9kOE4HHN/FcJwXcFyR4Tgf4PhuhmPkrwPew3BcAHBcieEY+bNwlRmOLwUcV2E4Rv4eWFWG44KA42oMx8gfgqrOcIz8LdoaDMfIXwCqyXB8BeC4FsMx8qdfajMcXwk4rsNwjPzNj7oMx8gfmq3HcIz8sYf6DMdXA44bMBwjU/4b6jhWGYU+L0YeKOX+/X5jxv3cCz2/mM7I4bXA9u5j3PP9Lj2e1MjhAwyjDzKMPsQw2oRh9GGG0UcYRh9lGH2MYbQpw+jjDKNPMIw2YxhtzjDagmH0SYbRlgyjrRhGWzOMPsUw+jTD6DMMo20YRp9lGH2OYbQtw2g7htH2DKMdGEY7Mox2YhjNYBjtzDDahWG0K8Po8wyjLzCMdmMY7c4w+iLD6EsMoy8zjL7CMPoqw2gPhtFAT4rVXhSrr1Gsvk6x+gbF6psUq29RrPamWO1Dsfo2xeo7FKvvUqy+R7H6PsXqBxSrfSlWMylW/RSrWRSr/ShW+1Osfkix+hHF6scUq59QrH5KsfoZxernFKsDKFYHUqx+QbE6iGJ1MMXqlxSrX1GsDqFYHUqxOoxidTjF6tcUqyMoVkdSrH5DsTqKYvVbitXRFKvfUax+T7E6hmJ1LMXqOIrV8RSrEyhWJ1KsTqJYpfw+JjCFYnUqxeo0itXpFKszKFZnUqzOolidTbE6h2J1LsXqPIrV+RSrCyhWF1KsLqJYXUyxuoRidSnF6jKK1eUUqwGKVUGxuoJidSXF6iqK1dUUqz9QrP5IsfoTxeoaitW1FKvrKFbXU6xuoFj9mWL1F4rVjRSrv1Ks/kax+jvF6iaK1c0Uq1soVv+gWP2TYvUvitW/KVa3Uqxuo1jdTrG6g2L1H4rVnRSruyhWKb/UClB+OxTYS7G6j2L1X4rV/RSrByhWD1KsHqJYPUyxeoRi9SjF6jGK1eMUqycoVk9SrJ6iWD3NsCqMOI5Zg2PW5Ji1OGbzcMzGc8x6OGYTOGYTOWaTOGaTOWZTOGZTOWbTOGa9HLM+jtl0jtm8HLP5OGbzc8wW4Ji9hGP2Uo7ZyzhmC3LMFuKYvZxjtjDH7BUcs0U4Zq/kmC3KMVuMY/YqjtmrOWav4Zi9lmO2OMfsdRyzJThmS3LMluKYvZ5j9gaO2Rs5Zm/imL2ZY7Y0x2wZjtmyHLPlOGZv4ZgtzzF7K8fsbRyzt3PMVuCYvYNj9k6O2bs4ZityzN7NMXsPx2wljtnKHLNVOGarcsxW45itzjFbg2O2JsdsLY7Z2hyzlOm6BuS67v+ea8qEXQtyrTVjV20W+uO8vu0c5w0h55s4FdyIY7Yxx+y9HLP3cczezzH7AMfsgxyzD3HMNuGYfZhj9hGO2Uc5Zh/jmG3KMfs4x+wTHLPNOGabc8y24Jh9kmO2JcdsK47Z1hyzT3HMPs0x+wzHbBuO2Wc5Zp/jmG3LMduOY7Y9x2wHjtmOHLOdOGYzOGY7c8x24ZjtyjH7PMfsCxyz3Thmu3PMvsgx+xLH7Mscs69wzL7KMduDY7Ynx2wvjtnXOGZf55h9g2P2TY7Ztzhme3PM9uGYfZtj9h2O2Xc5Zt/jmH2fY/YDjtm+HLOZHLN+jtksjtl+HLP9OWY/5Jj9iGP2Y47ZTzhmP+WY/Yxj9nOO2QEcswM5Zr/gmB3EMTuYY/ZLjtmvOGaHcMwO5ZgdxjE7nGP2a47ZERyzIzlmv+GYHcUx+y3H7GiO2e84Zr/nmB3DMTuWY3Ycx+x4jtkJHLMTOWYnccxO5pidwjE7lWN2GsfsdI7ZGRyzMzlmZ3HMzuaYncMxO5djdh7H7HyO2QUcsws5ZhdxzC7mmF3CMbuUY3YZx+xyjtkAx6zgmF3BMbuSY3YVx+xqjtkfOGZ/5Jj9iWN2DcfsWo7ZdRyz6zlmN3DM/swx+wvH7EaO2V85Zn/jmP2dY5b064zNHLNbOGb/4Jj9k2P2L47Zvzlmt3LMbuOY3c4xu0P9Qykds/9wdruTY3YXx+xujtk9HLN7OWb3ccz+yzG7n2P2AMfsQY7ZQxyzhzlmj3DMHuWYPcYxe5xj9gTH7EmO2VMcs5y5vSZnbq/Jmdtrcub2mpy5vSZnbq/Jmdtrcub2mpy5vSZnbq/Jmdtrcub2mpy5vSZnbq/Jmdtrcub2mrme2wvNhDDTs5CZEJwnOmZezj3lQ+7J4nwKa3JmAJucGcAmZwawyZkBbHJmAJucGcAmZwawyZkBbHJmAJucGcAmZwawyZkBbHJmAJucGcAmZwawyZkBbHJmAJucGcAmZwawyZkBbHJmAJucGcAmZwawyZkBbHJmAJucGcAmZwawyZkBbHJmAJucGcAmZwawWY5jljMD2OTMADY5M4BNzgxgkzMD2OTMADY5M4BNzgxgkzMD2OTMADY5M4BNzgxgkzMD2KxM+RTW5MwANjkzgE3ODGCTMwPY5MwANjkzgE3ODGCTMwPYrMMxW5djth7HbH2O2QYcsw05ZjmzdE3OLF2TM0vXvI9jljNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3TNDI5ZzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jWzOGY5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1xzHMcuZpWtyZumanFm6JmeWrsmZpWtyZumanFm6JmeWrsmZpWuSfsXJmaVrcmbpmpxZuiZnlq7JmaVrcmbpmpxZuiZnlq7JmaVrcmbpmpxZuiZnlq7JmaVrcmbpmpxZuiZnlq7JmaVrcmbpmpxZuiZnlq7JmaVr/sAxy5mla3Jm6ZqcWbomZ5auyZmla3Jm6ZqcWbomZ5auyZmla5Imr3Bm6ZqcWbomZ5auyZmla3Jm6ZqcWbomZ5auyZmla3Jm6ZqcWbomZ5auyZmla3Jm6Zo7OGY5s3RNzixdkzNL1+TM0jU5s3RNzixdkzNL1/yXY5YzS9fkzNI1ObN0Tc4sXZMzS9fkzNI1ObN0Tc4sXZMzS9fkzNI1ObN0Tc4sXZMzS9fizNK1OLN0Lc4sXYszS9fizNK1OLN0Lc4sXYszS9fizNK1OLN0Lc4sXYszS9fizNK1OLN0Lc4sXcvHMZvOMZuXYzYfxyxn/q3FmX9rcebfWpz5txZn/q3FmX9rcebfWpz5txZn/q3FmX9rcebfWpz5txZn/q3FmX9rcebfWpz5txZn/q3FmX9rcebfWpz5txZn/q3FmX9rcebfWpz5txZn/q3FmX9rcebfWpz5txZn/q3FmX9rcebfWuU4Zjnzby3O/FuLM//W4sy/tTjzby3O/FuLM//W4sy/tTjzby3O/FuLM//W4sy/tTjzb63KHLOc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bcWZ/6txZl/a3Hm31qc+bfWfRyznPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tlcMxy5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rZXFMcuZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3Fmf+rcWZf2tx5t9anPm3FjT/tkHrdh0yutdp36ZLP2Oj9Vap62+48aabS5cpW+6W8rfednuFO+68q+Ld91SqXKVqteo1ataqXaduvfoNGjZqfO999z/w4ENNHn7k0ceaPv5Es+YtnmzZqvVTTz/T5tnn2rZr36Fjp4zOXbo+/0K37i++9PIrr/YI9Az0CrwWeD3wRuDNwFuB3oE+gbcD7wTeDbwXeD/wQaBvIDPgD2QF+gX6Bz4MfBT4OPBJ4NPAZ4HPAwMCAwNfBAYFBge+DHwVGBIYGhgWGB74OjAiMDLwTWBU4NvA6MB3ge8DYwJjA+MC4wMTAhMDkwKTA1MCUwPTAtMDMwIzA7MCswNzAnMD8wLzAwsCCwOLAosDSwJLA8sCywOBgAisCKwMrAqsDvwQ+DHwU2BNYG1gXWB9YEPg58AvgY2BXwO/BX4PbApsDmwJ/BH4M/BX4O/A1sC2wPbAjsA/gZ2BXYHdgT2BvYF9gX8D+wMHAgcDhwKHA0cCRwPHAscDJwInA6cCp4URJwxDGKYwLGHkEUa8MDzCSBBGojCShJEsjBRhpAojTRheYfiEkS6MvMLIJ4z8wiggjEuEcakwLhNGQWEUEsblwigsjCuEUUQYVwqjqDCKCeMqYVwtjGuEca0wigvjOmGUEEZJYZQSxvXCuEEYNwrjJmHcLIzSwigjjLLCKCeMW4RRXhi3CuM2YdwujArCuEMYdwrjLmFUFMbdwrhHGJWEUVkYVYRRVRjVhFFdGDWEUVMYtYRRWxh1hFFXGPWEUV8YDYTRUBiNhNFYGPcK4z5h3C+MB4TxoDAeEkYTYTwsjEeE8agwHhNGU2E8LownhNFMGM2F0UIYTwqjpTBaCaO1MJ4SxtPCeEYYbYTxrDCeE0ZbYbQTRnthdBBGR2F0EkaGMDoLo4swugrjeWG8IIxuwugujBeF8ZIwXhbGK8J4VRg9hNFTGL2E8ZowXhfGG8J4UxhvCaO3MPoI421hvCOMd4XxnjDeF8YHwugrjExh+IWRJYx+wugvjA+F8ZEwPhbGJ8L4VBifCeNzYQwQxkBhfCGMQcIYLIwvhfGVMIYIY6gwhgljuDC+FsYIYYwUxjfCGCWMb4UxWhjfCeN7YYwRxlhhjBPGeGFMEMZEYUwSxmRhTBHGVGFME8Z0YcwQxkxhzBLGbGHMEcZcYcwTxnxhLBDGQmEsEsZiYSwRxlJhLBPGcmEEhCGEsUIYK4WxShirhfGDMH4Uxk/CWCOMtcJYJ4z1wtggjJ+F8YswNgrjV2H8JozfhbFJGJuFsUUYfwjjT2H8JYy/hbFVGNuEsV0YO4TxjzB2CmOXMHYLY48w9gpjnzD+FcZ+YRwQxkFhHBLGYWEcEcZRYRwTxnFhnBDGSWGcEsZpYcYJ0xCmKUxLmHmEGS9MjzAThJkozCRhJgszRZipwkwTpleYPmGmCzOvMPMJM78wCwjzEmFeKszLhFlQmIWEebkwCwvzCmEWEeaVwiwqzGLCvEqYVwvzGmFeK8ziwrxOmCWEWVKYpYR5vTBvEOaNwrxJmDcLs7QwywizrDDLCfMWYZYX5q3CvE2YtwuzgjDvEOadwrxLmBWFebcw7xFmJWFWFmYVYVYVZjVhVhdmDWHWFGYtYdYWZh1h1hVmPWHWF2YDYTYUZiNhNhbmvcK8T5j3C/MBYT4ozIeE2USYDwvzEWE+KszHhNlUmI8L8wlhNhNmc2G2EOaTwmwpzFbCbC3Mp4T5tDCfEWYbYT4rzOeE2VaY7YTZXpgdhNlRmJ2EmSHMzsLsIsyuwnxemC8Is5swuwvzRWG+JMyXhfmKMF8VZg9h9hRmL2G+JszXhfmGMN8U5lvC7C3MPsJ8W5jvCPNdYb4nzPeF+YEw+wozU5h+YWYJs58w+wvzQ2F+JMyPhfmJMD8V5mfC/FyYA4Q5UJhfCHOQMAcL80thfiXMIcIcKsxhwhwuzK+FOUKYI4X5jTBHCfNbYY4W5nfC/F6YY4Q5VpjjhDlemBOEOVGYk4Q5WZhThDlVmNOEOV2YM4Q5U5izhDlbmHOEOVeY84Q5X5gLhLlQmIuEuViYS4S5VJjLhLlcmAFhCmGuEOZKYa4S5mph/iDMH4X5kzDXCHOtMNcJc70wNwjzZ2H+IsyNwvxVmL8J83dhbhLmZmFuEeYfwvxTmH8J829hbhXmNmFuF+YOYf4jzJ3C3CXM3cLcI8y9wtwnzH+FuV+YB4R5UJiHhHlYmEeEeVSYx4R5XJgnhHlSmKeEeVpYccKSSDaFZQkrj7DiheURVoKwEoWVJKxkYaUIK1VYacLyCssnrHRh5RVWPmHlF1YBYV0irEuFdZmwCgqrkLAuF1ZhYV0hrCLCulJYRYVVTFhXCetqYV0jrGuFVVxY1wmrhLBKCquUsK4X1g3CulFYNwnrZmGVFlYZYZUVVjlh3SKs8sK6VVi3Cet2YVUQ1h3CulNYdwmrorDuFtY9wqokrMrCqiKsqsKqJqzqwqohrJrCqiWs2sKqI6y6wqonrPrCaiCshsJqJKzGwrpXWPcJ635hPSCsB4X1kLCaCOthYT0irEeF9ZiwmgrrcWE9IaxmwmourBbCelJYLYXVSlithfWUsJ4W1jPCaiM/5pcfycuPz+VH3fJjafkRsvy4V340Kz9GlR95yo8n5UeJ8mM/+RGd/DhNfvQlP6aSHynJj3/kRzXyYxX5EYj8uEJ+tCA/BpCP7OXjdfkoXD62lo+Y5eNg+ehWPmaVj0Tl40v5qFE+FpSP8OTjNvloTD7Gko+c5OMh+ShHPnaRj0jk4wz56EE+JpBv6eXbb/lWWb6tlW9B5dtF+dZOvg2Tb5nk2xv5VkS+bZAv8eXLcfnSWb7MlS9J5ctH+VJPviz75r7WXbpmtK/eokuLjXGl4gzTyhPvSUhMSk5JTfP60vPmy1/gkksvK1jo8sJXFLmyaLGrrr7m2uLXlSiZmbkxrkxWr6FVWrbJKJi1clXCPweWL3o6M/PcP12e858qZq38Zf4N962t4Ska+qe7c/7TPTn/STbtcP94Osw/mnFh/tH6M2vlJzsLDEv9PO1R+x93hPvHveH+8VC4fzwR5h/zmOH+MTHcP3rD/eMtYTafp3y4f7w1zD/GHwz3j4fC/ePhMP+YMDncP04J949Tw/xjUvdw//hiuH98Kcw/ptwV7h8rhvvHMEUjUk+G+8dwZZMarmx8RcKkw3dNuH8sFe4fS4f7x1vD/eNd4f6xSrh/rBXuH9tnrRz1bd9Wr/Rc0uv8P6bfnrXysenJxz5qvGSg/Y935zyAIr1muH+sE+4f6zn+8fOsDSVbnHm/16xlh3YdW3Rp82Tb1s06ZLRoKf/X860zOrfp0L7ZCxktOnZsnbEx7tJew6p1aN+5S79ew6u3yWjdsovZ6+s67bu0frp1xpAHbymnfquY/XojV9f3rJ79+rjc+bevH3Ff67byZp9vnbsdyPexOSyYubXwbbUWbdu2kj25WoeO3c/fSnXnnhzGhwbV/pRz/zvtou+gugt3MPT+Lh06+rMi7DhbjqoNq9mmdVv1Fynjh5+l1bk7Te81qmaHjNZtnm4f/D8/3HBt1y5t2rbp0v3s04lq54u10ZlafehsqWZm+nuNPvugoUqrVhmtO3c+vwt/r+H3t2nXsW3rs9sJOcu22Ty5CkW36r1GVW3TvkXwsUaXRh0/DFmxRtSXrh94pkX7oBW7WM87GV63a7uOdZ7KOn/BJb1G12nf6uxOI56Q26L8uvXnhQfXTqhbrl2voQ/I0+rPsq8PHdVzd5w16cmubdq2atau89PNnmzboeVzzZ5p3TZ4uo1L/pdP9+cXebo/z1nZuUtnXM2cFuLdOd01nHtyGJe17rjhGvYi5PWrBytkE9W0F5FFtexFZFFtexFZVMdeRBbVtReRRfXsRWRRfXsRWdTAXkQWNbQXkUWN7EVkUWN7EVl0r72ILLrPXkQW3W8vIosesBeRRQ/ai8iih+xFZFETexFZ9LC9iCx6xF5EFj1qLyKLHrMXkUVN7UVk0eP2IrLoCXsRWdTMXkQWNbcXkUUt7EVk0ZP2IrKopb2ILGplLyKLWtuLyKKn7EVk0dP2IrLoGXsRWdTGXkQWPWsvIouesxeRRW3tRWRRO3sRWdTeXkQWdbAXkUUd7UVkUSd7EVmUYS8iizrbi8iiLvYisqirvYgset5eRBa9YC8ii7rZi8ii7vYisuhFexFZ9JK9iCx62V5EFr1iLyKLXrUXkUU97EVkUaCnYxVF1suxiiJ7zbGKInvdsYoie8OxiiJ707GKInvLsYoi6+1YRZH1cayiyN52rJyvLrPr3nGsLtBd7HvAGhf9Ord6ryENOjyf5XxVe26vRk7bntzuLuybKmOIfEvnfD9lOD1kf/s0QvMtgJHNue3ivPuc92yei8a5/9NyJuaC/yaPc8sX/Dfx2d4VyHfAT2WPseF0ne2/Mx01le2/shxldNZyp3P/u0ukmzVz3qz9RjJngq3cxfjdi36jlh4x4GbEgFsRA57nfMAv9tHIuxcdm/ScD1dMp7GwRyMh+9Gw7Lu84KYTbcEF/55kxyusg+ThNTp1bdG2s9PHeVsJOR5nJHfsNbR+hxatzv+Dx75omLy9jNY5PXvCe07MfmuJdh2GvSAp+wVJ9gVDg/v0t4nw7Kda7jJVOfv11XN3fZ4Ln3cF9rjw8CHbyfdEacoJubOdN/dNOSFyU/a41JQTcvYpT5Q+lZjbsxjBbWJOt4nO+86WhiTnfxfBZPJ3oUeGjpMWznqSfdrsi+VLptC5Cuc1PpLXpJw3kuO4vJr9dhLsXKM1Yack+y4TnJmLhN4LH6eGb4w5o+IJfHbuFiQT8Uxadj+IFLWoubKcacu5q6TA+6ETfzCiA/UNhzedFbrhzIitoFpI8knkmNzf9ckokb7YqJhht/5RKCpHcm7dcdfnN5/j9adDf040IIoo3hZpvOCrHjF2UYNwwSZzBiExMNgujYttXkbkM58jvRdE+GIblCdsgxpmpzdivKu3eT5CLwrzoVVSbnt5DgvJjvdoZXPx6cZ5AykX/clbqvNtos6Hj2m520JizrcNOU/E6EgZ8qrbUrjkewPjQqbHhF4XjgjzniYh9IIo2x59bvLGB1AxfUiDrm2z36Lq5OfLWb7pyovyDg93mPJF75V5A9NCh+l49lh5w+RzRkTvEfLptfcdzvvKkOHZObLpdQY6+3/pA14GpatLLNwLoPTAglBITkV8a+i7uA975Uvgsy6EYWQPe7r9fitSrHPSJD3SOxlHTeW4KK8zJjmqO58zFdFea0V8aevN6fKCVx2R+4dX2T/yhYuB4/oIl+WPSp50593nrIz8gR+VL7fyRyi6fBeQP4zp9aFbXps9LnmdPf6c6M+I/sO9CHXsIsJlBdAXXPnDbL5AYKMyLvkixCW/E4E5TecL/G4fxkh7j/qAKcJFl+S8qIBzV9kbjiN/l0RJUD47QVEs+CJn7/5n2kYsnLTQQ91w/2XeCx/r4q0j/0WXR37nLsKVxz+Ol6JRIJo3F7v2RmkkXqfJ8+C6uG/nfO7Wt3MCB/7Hvp5zsY5C3+yjOyo8o/WqSht3bKQ7is9T+NNi3zevT3f0Z2LjGubE94qqHUV4uBnp6WyYh6eOp1TZqy1BGKGXbsJIyP7Q+ryrkKJABEWuXyznAZ+nWvYFF3hOjvBsOSXSa6Nz/5waJjzJjoe32cKTKoz82RKQaF+W7elyii0J/1w7+80lK54up2S/ICX74zJhpEYqxFw+zjWU39gb+7/7jb1et1/cN/aM2y/6g6AtsW/sxb6xF/vGXuwbe7Fv7MW+sRf7xl7sG3uxb+zFvrHX+n/kG3thZOG+sBdG9q5jFUX2nmMVRfa+YxVF9oFjFUXW17GKIst0rKLI/I5VFFmWYxVF5lxFkfV3rKLIPnSsosg+cqyiyD52rKLIPnGsosg+dayiyD5zrKLIPnesosgGOFZRZAMdqyiyLxyrKLJBjlUU2WDHKorsS8cqiuwrxyqKbIhjFUU21LGKIhvmWEWRDXesosi+dqyiyEY4VlFkIx2rKLJvHKsoslGOVRTZt45VFNloxyqK7DvHKorse8cqimyMYxVFNtaxiiIb51hFkY13rKLIJjhWUWQTHasoskmOVRTZZMcqimyKYxVFNtWxiiKb5lhFkU13rKLIZjhWUWQzHasoslmOVRTZbMcqimyOYxVFNtexiiKb51hFkc13rKLIFjhWUWQLHasoskWOVRTZYscqimyJYxVFttSxiiJb5lhFkS13rKLIAo5VFJlwrKLIVjhWUWQrHasoslWOVRTZascqiuwHxyqK7EfHKorsJ8cqimyNYxVFttaxiiJb51hFka13rKLINjhWUWQ/O1ZRZL84VlFkGx2rKLJfHasost8cqyiy3x2rKLJNjlUU2WbHKopsi2MVRfaHYxVF9qdjFUX2l2MVRfa3YxVFttWxiiLb5lhFkW13rKLIdjhWUWT/OFZRZDsdqyiyXY5VFNluxyqKbI9jFUW217GKItvnWEWR/etYRZHtd6yiyA44VlFkBx2rKLJDjlUU2WHHKorsiGMVRXbUsYoiO+ZYRZEdd6yiyE44VlFkJx2rKLJTjlUU2WnHKrJMGHHOZTSh4VxGE5rOZTSh5VxGE+ZxLqMJ453LaEKPcxlNmOBcRhMmOpfRhEnOZTRhsnMZTZjiXEYTpjqX0YRpzmU0ode5jCb0OZfRhOnOZTRhXucymjCfcxlNmN+5jCYs4FxGE17iXEYTXupcRhNe5lxGExZ0LqMJCzmX0YSXO5fRhIWdy2jCK5zLaMIizmU04ZXOZTRhUecymrCYcxlNeJVzGU14tXMZTXiNcxlNeK1zGU1Y3LkMCcP8gl8Y1zmXFyj/93/Dv4n4G/7Nsd/wn/utgKn1K/5gYUX6GX+wlELW086v0v9XfstvlPiP/pY/GPiL/DV/uHv7f/LX/MGXOf/h3/PLF6n/yV/0C+Pd2E/6I/1P7Cf9TmNhfjEbfEFF+01/8KXn/9Vf9QvjtvN3Ufw/9Lt+YZQ6f/D9bv+yXxg3n7/pG5W/7RdG+f/Uj/uFUe58aPoDP+8P7l/9+35hVAB+4B9U/Xd+4S+Mio4i+f/Xb/yFUcWR5f9Xf+W/6f/Gr/yFUcftn/kLo+F54/VjP/R34Yf+wnjo/In6GPipvzAedve3/sJ47rzpx/47v/YXRvPzcfnsf+D3/gNjv/fP+d951Z3kf+UH/8LooH4dpvuTf2F0OX/bGcCP/oXR8z/1q39hdFMHR/d3/8J4yXEs/w/98j+YpdhP/+0a6e18jfq/8+P/IMouqn13v92tX/8LIzP28//s/xP7+X+OZ6Gu/fz/y/NnYIjy5/9j/t/7+f/3/+2f/49w++f/s59u3aVZ27LNunRo1rZcs3at2z3ZOqPzM206NnuhTZf2spdtjCv3v/yXe9pe5F/uaXvRHyJZtDkA1Z17chjP8aneeX2kz/RqRPxEr+Y53l567n9fduERquV0E4G4VrjX8ZEfm+cyvLUvOrzXRnybZkX8lC+P8uPVqy76E7paFx2b4jk/43PcXbbPhHI8u43v5dpn7sVd/cw93qVHkWEessY7uuwFf+PtqnN/461W6y71yz7QoX65BuebXZOzvS4r+593c2RtZO3WLTpWycho0d35dPnarAv/8FuvYWcl2f4e3LX9Ilr+/9q7mt2mgSDsn6Q/ASEVEUD0BpWCBFTqnVtqCAcKIg9gJc5arGSc1LGj8hZV6AHO3JCQEEcED1KJh2Ftr392vevarOM6VU9pk13Pendmvvlm1x6Z+4vC/UX9REnN+6/UAYFkFiPNWo9N5CdN3kLeq6YcoFUV5Tiorxzgec+eutD8qBsOGLlgotueZUETAicqA9qY8p+aYJihCdd3kIXxpkCYoWSxkRVmhIByE3+KFwYVnx0pvzBobn3PPzMHLpD+HQXK2A918ShSRUZdz0TESip7amtY2fO8N/cdqQ5tHZwAA4Hp1NaNkfEeZEx5/5JNeSBoygNhQ2wJB34FTDkdCK6icm9plsRjILJwgN8qH322+dGnWlH02c45B/I/Jz7bFx48vJ8TzqlcbvgS936EP/eEtWWw8jrP6xF3Pmxy3LmLXTcJjY9LkHyZw6V+YzwNbvGVrUV40PfhwC8Gz2RLqsrnOksOc1JXAb+DquD3WY3w+xRH0sA+9oCHQumZN7agoZuebWAstqwEg3evHga3hTF4o3IMbqcvTj6fwXgxZ6BXZCvmmzkPKk4A8h7FiIAhOoxwu/nAQDqzLpXj6RGBvoZN5W1gKS+wofgtT0/Pqs3I8DNHZ0VyNaSG0F8ihWiY43tQo+N7jh3fHG1UfEDswwEL4LhwjBjHHE6ADkwTtdeNqYcEZ/MK967zCrXnFUgXd5j8Qaj5RdmH6PGjW+uWfdihvNI+4ZWGwH0N7XexFg+REmuBDvdDFS6WjyDG37C0xN363MPPUAyaGn8L0xlN4MlfaYeeiNLbdVT/DUGfsVmWSrPtTUpRkejGSFuT2V6KHk/Jk8+dgnRsO5H+PewQoNybWfzWRPUblnsIF5m7Uni9Wv5R2gzny2k+9MYMPeVRslZZhkU9miklQ2NzO6YBbfN55dam8IJF7iqzMssficVA23dCX2hhXUFtv1MNukjJeOIL01gehlEFRPD0ERN+hi5mvNpWJhIoKJ1rDdLXlBnIyRioxYtfZdBd/kovXjDF+rGHYAXY7md6eJ1yy6DQ/W9UvIyd5MKc+VDyvAN3FuW0d1AKNGd5B5lj0gq9GPGhnM4/LhhMv8XmCgA=",
|
|
3868
|
-
"debug_symbols": "tZ3fbvTGkbfvxcc+mPrTVdW5lUUQZLPehQEjCbzJAh+C3Ps3ZHfxUewV37GkPfH85Feqh91kPUMOW9Q/vvuPH/797//1hx///J9/+e/vfvdv//ju33/+8aeffvyvP/z0lz/98W8//uXPz//7j+8ex3/Ev/ud5j+//07OryS/+108v5Dar3O96mO/yn7V/Wr71ffr2K+xX3c93fV017Ndz3Y92/Vs17NnvTxenz9fx2vt17le/bFfnz8/j9cnTx5HyA7VYe4wju+RI2SH6jB3iGdd0SNIB+1gHbzDc7Biz5DHP/kRDsQ4wlH5GEjOHerR4ah8jK20g3XwDqPDUecY6Dx+6hjp1A7WwTuMDr0ZMztUh7mCPh4dpIN2sA7e4VlHH0eoDnMHeXR41lE5wpOueoTsUB3mDsfxtIJ00A5PutoRvMPocNTxIxx1jg07jiONI+z5UdMO1sE7jA7H/MznQa/HQa+5DjpN369jv8Z+zf1a+3UdxFqP/Sr7Vffrrle7Xu16tevVrle7Xu1683Ee9Hrs2Tpefb+O/Rr7Nc+D3s4d9jiCdfAOYwfRdWSbWAfvMDrEOqDt2GErVIe5gz46yDro7dgHx0Fvto8bOyc6jjA6RIdcB7QdjbzC3OFo5RWkg6+D3s5mPkZ6NvMZ5g7j0UE69GYM6+AdRofokB2qw24Mi0cHW0e2HQ2/wugQHXId9Jb78LXjYFrBO4wO0SE7VIe5DnE7jqkVpIOvg96Ow+g46O04jo6D3qrnp3p+qudn9vy0OGyJ43nQ23nQP6seDTTWS6yXXC+1Xp61xvP7vd8n/PnFOL449ua5ac+X5/+L8xuOETy/yPOLY8L/+fyq33D+8Leff/jh+Jc370DP96W//vHnH/78t+9+9+e///TT99/9zx9/+vv5Tf/91z/++Xz92x9/fv7rc6J/+PN/PF+fBf/zx59+ONI/v+enH+//qMbQ/dOaYlcBSX21hOfcFcLkIwVG9iaE5JsC/vIgZtquYA8ZlKjx8iCOI/qs4PPtLMTLg5BHb8Mz+lXC5fV5UOmZHOr2oRJe2SXGY36sxLU7Plxi6OMq4R+bi0zvEjnjsyXq8fhgiWunluiHSpTJVcI/tBWho7cinv36sa3IcW1Ffmg646FXmz7sYzt1zmsu5pwfm4vH45oLs88PpD5WIq+teNSH9kjIoy7rqXywhFNCP1YiroE8T+k/uEfk2iPiHysh9cmdKg/prZBHcIDLfPmtMGf1XNTjjX5F/vVdROv9GjX70JpvWuQ3bMTzfL97XZ/n21eJ5+nXv5Sw2/d06+NCw3lHfZ7hvLwZFv1WpP5mp/5yLkzvavi1Gf5gPutfJ8Psbpdcm/E0OHvV/Beb4Tc18tFviZnD368x3q9h10mSC1uh4xcV4m6/1jWhz+uS92vkzTH+vNbuY1zeWOc31bBHb8fzM4V6v8Z8v8b0fi+Z42MVBAU/u/X9kbjcnLEVp2w19E2zfWQgOT62W/O4etunz/Z4fyA3B6hwkvH8NOT9Q8PHZ3fJixVu5uKuwss7tT69U2+nc3KET31/Ou/s537t1fH2kuQX9htyNxvj6vjndEyOjXz8hiJ5nWg8zxfeGDB/wxXem3eDYDPGv74ZjJspndIVnp9zctp2XOb8S4m7g+P5yeblrvB3t+Km1xwJ15thyL8WyLvrq+sNfuibawqpfy1xc3xGcu6YXu+WuNuK0OsSLWx8usTbM5XfUiLrKjE/VmJwfTXyYwOpx5tLtPf3SNxdd19T4fHeURHj00dFxKePituteO2oeLnE+0fFfYmXjorbEq8dFbclPn9UzJDr3Wy+64q4fTPD3uPdAyv99nRtXMqb75945s1UBJdn+f6Vat4MpLwPzZrvX6jmTZP68+y9xas3F7t55815yTsfN5+O3dVIPifMMevTNd5+2PibatR1vpY1Hx+sYfOqkV9Q46Pb8XY+Hvmx48PGdc5mN5/q3NYY14Wzx3j/c4jKzx9jdzVe3bf3NV7bty/X+Oh2vNgvr9a4Oz5ernHXc3c+f1yfq4z3P+iatyegkpyBqr//Gei8fVtw4SLHtT64LfrmrcHk/U+85t1nTWFdpGLUB2vwAUvcfMx+Pxq7Pu5/5vH+0SoPufvo7PqcpubN3Y/bIpO7MPO5x7+giD4+XOQ6ZMXuhvP5c9Pn9eWnT06/MRg+19TH+w14ezqkfDygoe+eDsnj7hOb8fhfzuts1uslnpP15pLaP1pkcHpYH9yS6V1jfnQ7no3y2RLPoeinh/Ls+7gU8OZ0+bcWwYpvbkb8xiJvP2j4cJHrIub5Sat+tEjUK0VuPzYxz+vj2nr3YxNRuZPII7iv/NbPv/gQSVTvLsq4XfXmqm74L0rcfZp/3SjKN/1fv9wI//z9ANHx+RsCovHZOwKi+flbAnJ3w+nVewL3W/Lip9hyd9fp1Y+xxeSzn2Pflnj1Y2i5u/H04ufQ9xPy4gfRt20X17V3vTnZ/FXb3d2jeBqR07M3KxB+2Xj2+Y9On476/ImIff7D09drvP852TdqvPRB2X2N1z4pu6/x2kdl3zg+rn37fB95X8z+BSeq/gUnqv75j1Ffr3FzfPjnP0i9r/Hi8eHj//j40MHxEfPd42PY54+Pu7tQrx4ft9vx4vHxco2b4+O+xmvHx22NF4+P2xpfcXzYg3NUjXePj5DPHx+hnz8+brfjxePj5Ro3x8d9jdeOj9saLx4ftzW+5PjgOsimvH98zM8fH/n4guNjfsHxMb/g+JhfcHzMLzg+5v/x8eF2nbD7m+uxXx4f+QXnp/kF56f5Been+QXnp/kF56f5Been+X99fvrOheWvrl/uatQ1p8+r5PePsYrP38+V25tUL93QlarP3tGVmp+/pfu8hP38/bbbIq/epHq5yN0dpvsiL976+0aR1+79vV7kw1vy4p27++PkxVu790VevLcrc37FwTa/YhfPr9jF8yt28fyK3plfcJy8XOSuAe+89to9Xn3kV9zk1Ud9xV3eb2zNq7d5VR6fv8/7jSKv3ej9xoBevdN7/hbDZ+/03hZ59U7v60X08eEiL93pVfn8Cez5izKfPIH9xmBeu9N7f6b04q1evbtt9dqt3tsSr97q/UaR12713g/mpVu93yhhny3x6q3e+yIv3ur9VpGXbvV+o8hrt3q/UeS1W73fKPLard7bWz3PmzPXcPSNjH59j/WuCGf28vam4i+L6O2vTF03nTPQiP2qxLjdDv/fFPBLF91tRl2/uFDuN5txV+J6A643vzPwm0rMuK4cHw+5qXH7cc28fo849UaI/vj8fWu9+62p1+5bq+vn71ur2+fvW99vyYv3rfX215ZevG+td/euXrtvfVvi1fvW+gW/P3U/IV9x3/p5usuHvpYflBm/hSqu76860XF3kDwuI+rbX7T+xUc/Or7g91B1fMEvour49G+i6viCX0XV8QW/i3q/Ja/275hf0L/x+HT/xuML+vfuHtar/Xs7IS/37+0NOb9OAp453v3NQ737TR6VITTf8PF+ldsPb3FJxdvrmvFbNoWP1Z/5zQnFrzbl7rPX54fzfbQ985s99Mvf6rx9x7kWwj1PPrlg/MWiPr27mfW8Kc9HFM9OfftbmfaLMje7OXhsQjz0jZN+y5aEv7nae3Nt8ustuVHsU538murj3VUGml+wPFDzC5YHan56eaDmFywP1PyC5YH3RV58ZsD5EcYnDVtfYdj6AsPe7pq4PqzRt3fXfr0h/hWzOj4/q5/+xf/7o33WdbSPDx7tr54K1FecCszPH6i3JS6DTI2PlXj5WJ+fX8V6P6cvnk186z3iOkTkeSg93n+PmLfHWe9ef/PR/i8fFPeNLeGpYPIURdxsye3vTcb1KdgzD3v3bOLutsnLZxPf2JYcxX2gN5+F/6KK3f6Kz5s3ircLF15/jN+zhR+0sL53WmOPmyPW7HH9noGZvLmV9Kux3FYxl6uKvWnjX1UZX7B3vrUt1yM8nps14v0qd3r066h9nih96DGNGfNxnde8fYrH8VCT3z+//OOffvz5Xx+AfD6o9nhebh7rBI6n7e7XuV6PZ54en1kejzw9X3W/2rHXv1/P0NT9EE3bT9G0/RjNuZ+jOfeDNM8Htu5X2a+6X22/+n4d+zX2665nu57ter7r+a7nu57ver7r+a7nu57ver7r+a43dr2x641db+x6Y9cbu97Y9cauN3a9sevFrhe7Xux6x4NVj1V5x3NVz9exX4/n4z7n83io6vla+3Wu13zsV1nffzxz9Xzd9c7n9x7/Pvbrrpe7Xu56uevVrle7Xu16tevV3r7a21e7Xu16tevVrjd3veORq+er7lfbr3v75q53PM/3fM39Wvt1rld57ILykA7awTp4h9EhOmSH6tCVj6c2ryAdtIN16MrSlaUrS1eWrix7DtaTwrUfFa79rHDth4VLPy1c+nHh0s8Ll35guPQTw7UfGa79zHDth4ZrPzVc+7Hhup8bvkJvs/U2W1e26tCz4T0b3rPhXdm7sndl78relb1nw3ubvbd59DaPrjx6nkfPxujZGD0boyuPrjy68ujK0ZWjZyN6m6O3OXqbu8Mkep6jZyN6NqJno9tMsitnV86u3K0m3WvSzSbdbdLtdj4D/axcPc/dcdItJ91z5zPQz5+qrtxtJ9130o0n3XnSrSfde9LNdz4n/aw8e567/6QbULoDz+ekr5/albV7ULsHtXtQuwe1e1C7B7V78Hxy+lH5fHL6Cns2tHtQuwdVurJ05e5B7R7U7kHtHtTuQe0e1O7B8+nqZ2XVDtbBO4wOXVm7cvegdg9q96B2D2r3oHYPavfg+bz1s7JFh56N7kHtHlTvyt6Vuwe1e1C7B7V7ULsHtXtQuwfVu/Loee4e1O5B7R7U0ZVHV+4e1O5B7R7U7kHtHtTuQe0e1H6P036T0+5B7R7U7kHtNzrtdzrtHtTuQe0e1O5B7R7U7kHtHlxPrJd+ZL30M+ulH1ov/dR66cfWaz+3XvvB9dpPrtd+dL32s+u1H16v/fR63Y+vX6Erz57n7kHtHtTuwfOh9uununL3oHYPWvegdQ9a96B1D1r34Pno+6OyPaJDdqgOezZMurJ05e5B6x607kHrHrTuQesetO7B84H5Z2V9dJAO2sE6dGXtyt2D1j1o3YPWPWjdg9Y9aN2DZl3ZvEPPRvegdQ+ej+JfP9WVuwete9C6B6170LoHrXvQugfPx/Wflb3nuXvQugete/B8XP/5U6Mrdw9a96B1D1r3oHUPWvegdQ9adOXoee4etO5B6x60PtW0Pte07kHrHrTuQesetO5B6x607sHzIf9n5ex57h607kHrHrQ+8Twf8r9CV+4etO5B6x607kHrHrTuwfOx/2fl2fPcPWjdg9Y9aH0aarMrdw9a96B1D1r3oHcPevegdw/6Y1f2h3cYHaJDdqj+qa7cPejdg9496N2D3j3o3YPePejSlaU67Nnw7kHvHvQ+F3Xtyt2D3j3o3YPePejdg9496N2Dbl3ZtEPPRvegdw96n4u6deXuQe8e9O5B7x707kHvHvTuQfeu7D3P3YPePejdg97noj66cvegdw9696B3D3r3oHcPevegj64cPc/dg9496N2D3uei3j3o/T7o/T7o3YPe56KeXbmv+bx70LsHvXvQ+33Qzx70IxyV8wjVYe5w9uAZpIN2sA7eYXSIDl25unJ15dmVZ1eeXXl25dmVZ1eeXXl25dmV5648Ho8O0kE7WAfvMDpEh+xQHbqydGXpytKVzx48PxXwDqNDHB/zHCE7VIe5w9GDK8j+qbMHz9CVjx5c3zM6dGXtytqVtStbV7aubF3ZurL1Nltvs3Vl68rWla0re1c+enAF7WAdepu9K589eIbsUB3mDqMrj648uvLoyqMrj56N0ds8eptHb/PoymcPnqFnI3o2omcjunJ05ejK0ZWjK0fPRvY2Z29z9jZnV86e5+zZyJ6N7NnIrpxdubpydeXqytWzUb3N1dtcvc3VlavnuXo2Zs/G7NmYXXl25dmVZ1eeXXn2bMze5rm3OR6PDrtyPLSDdfAOo0P0T2WH6tCVpSuLdNAO1sE7dGWJDtmhOuzZiO7B0K6sXVm7cvdgdA9G92B0D0b3YGhXtkeHno3uwegeDOvK1pW7B6N7MLoHo3swugejezC6B8O7svc8dw9G92B0D4Z3Ze/K3YPRPRjdg9E9GN2D0T0Y3YMxuvLoee4ejO7B6B6M6MrRlbsHo3swugejezC6B6N7MLoHI7ty9jx3D0b3YHQPRnbl7Mrdg9E9GN2D0T0Y3YPRPRjdg1FduXqeuwejezC6B2N25dmVuwejezC6B6N7MLoHo3swugdj7sr5eHSQDtrBOuzK+RgdokN2qA57NrJ7MLsHs3sw+30w+30wuwezezC7B7PfB7PfB7N7MLsHs3swuwezezC7B7N7MLUra3Xo2egezO7BtK5sXbl7MLsHs3swuwezezC7B7N7ML0re89z92B2D2b3YHpX9q7cPZjdg9k9mN2D2T2Y3YPZPZijK4+e5+7B7B7M7sGMrhxduXswuwezezC7B7N7MLsHs3swoytnz3P3YHYPZvdgZlfOrtw9mN2D2T2Y3YPZPZjdg9k9mNWVq+e5ezC7B7N7MKsrV1fuHszuwewezO7B7B7M7sHsHszZlWfPc/dgdQ9W92A9duV6WAfvMDpEh+xQHfY2V/dgSVcW7WAdvMPo0JX7XLS6B6t7sLoHq3uwugere7C6B0u7skaH7FAdejb6XLSsK3cPVvdgdQ9W92B1D1b3YHUPlnVl73nuHqzuweoerD4XLe/K3YPVPVjdg9U9WN2D1T1Y3YM1uvLoee4erO7B6h6sPhet0ZW7B6t7sLoHq3uwugere7C6Byu6cvQ8dw9W92B1D1afi1Z25e7B6h6s7sHqHqzuweoerO7Bqq5cPc/dg9U9WN2D1eeiVV25e7C6B6t7sLoHq3uwugere7BmV549z92D1T1Y3YOzz0XnQzpoB+vgHUaH6JAdqkNXlkcH6aAdrENX7h6c/T44+31wdg/OPhed2pX7enB2D87uwdk9OPt9cJ7vg3qEY5vPn6oOc4ezB88gHbSDdfAOo0N06MrWla0re1f2ruxd+ejBkiN4h9EhOmSH6jB3OHpwBemgHbry6MqjK4+uPLry6MpHDx6/uziPHlxBOmgH6+AdRofokB2qw1G5jrvVjw7HH1/2I2gH6+AdRofokB2qw9zh6MEVunJ15erK1ZWrK1dXPv8c6vHLqvP8e6grzU7nX0Rd6fiTqMdylHn+TdSV7Ep+pXGluFJeqa40d3resH8QhahEIzpxEIOYxCJCE2gCTaAJNIEm0ASaQBNoAk2hKTSFptAUmkJTaApNoSk0g2bQDJpBM2gGzaAZNIN2/gni43fj5HH+EeIdhXjQjl98e0YjOnEQg5jEIs4rnn+8eEchQhvQBrQBbUAb0Aa0AS2gBbSAFtACWkALaAEtoAW0hJbQElpCS2gJLaEltPMvqh/L3p5xXvH8q+o7HrRz+dbj/MvqOxrRiYMYVEgitNMg63tPhewIbUKb0Ca0CW1Cm9AmtHmN7Vz90/GinSuAOhrRiYN40lZMYhGvsZ0rgjbtdMmOSjSiE6EJNIEm0ASaPoiMTRmbMjaFdrpkxyAmsYjQDJpBM2gGzZhJY2zG2IyxGTRjvzkz6cykM5MOzaE5NIfm0JyZdMY2GNtgbAPaYL8NZnIwk4OZHNAGtAEtoAW0YCaDsQVjC8YW0IL9FsxkMJPJTCa0hJbQElpCS2YyGVsytmRsuESK/VbMZDGTxUziEiloBa2g4RLBJYJLBJcILpEJbbLfcIngEsElMi+aPh5EISrRiE4cxCAm8aLp49pviksUlyguUYEm0HCJ4hLFJYpLFJcoLlFcogpNjejEQQwiNIWGSxSXKC5RXKK4RHGJ4hI1aJZEZhKXKC5Rh+bQcIniEsUliksUlyguUVyiA9pgv+ESxSWKS3RAG9BwieISxSWKSxSXKC5RXKIBLdhvuERxieISDWgJDZcoLlFcorhEcYniEsUlynmJcl6iuERxieIS5bxEOS9RXKK4RHGJ4hLFJYpLFJfohDbZb7hEcYniEp3QJjRcYrjEcInhEsMlhksMl9jjotkjiUW8ZtJwiQk0gYZLDJcYLjFcYrjEcInhElNoKkQlGtGJ0BQaLjFcYrjEcInhEsMlhkvMoNkgMpO4xHCJGTSHhksMlxguMVxiuMRwieESc2jOfsMlhksMl9iANqDhEsMlhksMlxguMVxiuMQCWrDfcInhEsMlFtACGi4xXGK4xHCJ4RLDJYZLLKEl+w2XGC4xXGJc4xjXOIZLDJcYLjFcYrjEcInhEpvQJvsNlxguMVxiXOPYhIZLDJcYLnFc4rjEcYnjEn9cNH8MYhCTWERoAg2XOC5xXOK4xHGJ4xLHJS7Q5Npvjksclzguca5xXKHhEscljksclzgucVziuMQNmhmRmcQljkucaxw3aLjEcYnjEscljksclzgucYfm7Ddc4rjEcYlzjeMDGi5xXOK4xHGJ4xLHJY5LPKAF+w2XOC5xXOJc43hAwyWOSxyXOC5xXOK4xHGJJ7Rkv+ESxyWOS5xrHMclznmJc17iuMS5xvGCxucljksclzgucc5LfLnEz3jS8oxGdOIgBjGJRZwdx3LJikJUohGdOIhBTGIRoQk0gSbQBJpAE2gCTaAJNIGm0BSaQlNoCk2hKTSFtlwyzzivuFyy4kE7HlUo5+q6jkZ04iAGFZII7XTJ+t7TJTtCc2gOzaE5NIfm0ByaM7bB2Aa0AW1AG9AGtNMlOyaxiIwtoC2XrKhEIzoRWkALaAEtoCUzmYwtGVsytoS2XLIiM5nMZDKTCa2gFbSCVtCKmSzGVoytGFtBK/bbZCYnMzmZyQltQpvQJrQJbTKT8xrbucqvoxAvWjyM6MRBDGJSoYjQBJpAEyUa0YmDCE2SWMRrJkMfRGgKTaEpNIWmQWRsytiUseGSMCEyk8ZMGjOJS87Vgh2hGTRcErgkcEngksAl4dCc/YZLApcELjnXEe4KAxouCVwSuCRwSeCSwCWBS2JAG+w3XBK4JHDJucZwVwhouCRwSeCSwCWBSwKXBC6JhJbsN1wSuCRwybn+sCtAwyWBSwKXBC4JXBK4JHBJFLRiv+GSwCWBS861ibvChIZLApcELglcErgkcEngknxctHwIUYlGdOKgQhCTWERouCRxSeKSxCUp0GQQg5jEIkJTaLgkcUniksQliUsSlyQuSc5LkvOSxCWJSxKXJOclyXlJ4pLEJYlLEpckLklckrgkHZqz33BJ4pLEJedayK4ADZckLklckrgkcUniksQlOaAN9hsuSVySuORcJ7krBDRckrgkcUniksQliUsSl2RCS/YbLklckrjkXEPZFaDhksQliUsSlyQuSVySuCQLWrHfcEniksQl5/rKXWFCwyWJSxKXJC5JXJK4JHFJTmjz2m+FSwqXFC45116uCufqy46DGMQkFvEaW+GSwiUl0MSIThzEIEITaLikcEnhksIlhUsKlxQuKYWmSSwiM4lLimuc4hqncEnhksIlhUsKlxQuKVxSDs3Zb7ikcEnhkuIa51zR2REaLilcUrikcEnhksIlNaAN9hsuKVxSuKS4xjlXe3aEhksKlxQuKVxSuKRwSQW0YL/hksIlhUuKa5xzJWhHaLikcEnhksIlhUsKl1RBK/YbLilcUrikuMY5V4l2hIZLCpcULilcUrikcElNaJP9hksKl0xcMrnGOVeQdjSiEwcxiEks4jW2KdBEiEo0ohOhCTRcMnHJxCUTl0xcMnHJxCVToekgBjGJRYSGSybnJZPzkolLJtc406DxecnEJROXTFwyOS+Z67xEz3iObZzRiE4cxCAmsYjzisslKwoR2oA2oA1oA9qANqANaAEtoAW0gBbQAlpAC2gBLaAltISW0BJaQktoCS2hLZfkGecVl0tWPGl1RiUa0YmDGFRIIrTlkvN7l0tWhDahTWgT2oQ2oU1oE9rssela97pj03Ste93RiE4cxCAmsYjzigJtnZesqEQjOhGaQBNoAk2g6YPI2JSxKWNTaOu8ZMUgJrGI0AyaQTNoBs2YSWNsxtiMsRk0Y785M+nMpDOTDs2hOTSH5tCcmXTGNhjbYGwD2mC/DWZyMJODmRzQBrQBLaAFtGAmg7EFYwvGFtCC/RbMZDCTyUwmtISW0BJaQktmMhlbMrZkbAWt2G/FTBYzWcxkQStoBa2gFbTJTE7GNhnbZGwT2mS/TWZyMpOTmZwXba173VGISjSiEwcxiEm8aGvd64q4RHCJ4JK17nVVEGi4RHCJ4BLBJYJLBJcILlnrXhdNjejEQQwiNIWGSwSXCC4RXCK4RHCJ4JK17nXRLInMJC4RXCIOzaHhEsElgksElwguEVwiuEQGtMF+wyWCSwSXrHWvuwI0XCK4RHCJ4BLBJYJLBJesda+LFuw3XCK4RHDJWve6KiQ0XCK4RHCJ4BLBJYJLBJdIQkv2Gy4RXCK4RApaQcMlgksElwguEVwiuERwyVr3umiT/YZLBJcILlnrXncFaLhEcYniEsUliksUlyguWeteT9pa97pjEa+ZVFyy1r2uCgINlyguUVyiuERxieISxSVr3euiqRCVaEQnQlNouERxieISxSWKSxSXKC5Z614XzQaRmcQlikvWutdVwaHhEsUliksUlyguUVyiuGSte100Z7/hEsUlikvWutdVYUDDJYpLFJcoLlFcorhEccla97powX7DJYpLFJesda+7AjRcorhEcYniEsUliksUl6x1r4uW7DdcorhEcYkWtIKGSxSXKC5RXKK4RHGJ4pK17nXRJvsNlyguUVyiE9qEhksUlyguMVxiuMRwieGSte71pK11rzsGMYlFhCbQcInhEsMlhksMlxguMVyy1r0umlz7zXCJ4RLDJcY1zlr3uiM0XGK4xHCJ4RLDJYZL1rrXRTMjMpO4xHCJcY2z1r3uCA2XGC4xXGK4xHCJ4ZK17nXRnP2GSwyXGC4xrnHWutcdoeESwyWGSwyXGC4xXLLWvS5asN9wieESwyXGNc5a97ojNFxiuMRwieESwyWGS9a610VL9hsuMVxiuMS4xjFcYpyXGOclhkuMa5y17nVHaLjEcInhEuO8ZK17Pf4Wlq51r2FnNKITBzGISSzi7LjWve4oRCUa0YmDGMQkFhGaQBNoAk2gCTSBJtAEmkATaApNoSk0habQFJpCU2inS46/gaVr3euKp0t2PGlxRiUa0YmDGFRIIrTTJet7T5fsCM2hOTSH5tAcmkNzaM7YBmMb0Aa0AW1AG9BOl+yYxCIytoB2umRHJRrRidACWkALaAEtmclkbMnYkrEltNMlOzKTyUwmM5nQClpBK2gFrZjJYmzF2IqxFbRiv01mcjKTk5mc0Ca0CW1Cm9AmMzmvsa11rzsK8aKtda87OnEQg5hUKCI0gSbQRIlGdOIgQpMkFvGaybXudUdoCk2hKTSFpkFkbMrYlLHhkrXudUdm0phJYyZxyVr3uiM0g4ZLBi4ZuGTgkoFL1rrXRXP2Gy4ZuGTgkrXudVUY0HDJwCUDlwxcMnDJwCUDl6x1r4s22G+4ZOCSgUvWutdVIaDhkoFLBi4ZuGTgkoFLBi5Z614XLdlvuGTgkoFL1rrXXQEaLhm4ZOCSgUsGLhm4ZOCSte510Yr9hksGLhm4ZK17XRUmNFwycMnAJQOXDFwycMnAJWvd60lb6153VKIRnTioEMQkFhEaLglcErgkcMla97poMohBTGIRoSk0XBK4JHBJ4JLAJYFLApcE5yXBeUngksAlgUuC85LgvCRwSeCSwCWBSwKXBC4JXLLWvS6as99wSeCSwCVr3euuAA2XBC4JXBK4JHBJ4JLAJWvd66IN9hsuCVwSuGSte10VAhouCVwSuCRwSeCSwCWBS9a610VL9hsuCVwSuGSte90VoOGSwCWBSwKXBC4JXBK4ZK17XbRiv+GSwCWBS9a611VhQsMlgUsClwQuCVwSuCRwyVr3umjz2m+JSxKXJC5Z617PCmvd646DGMQkFvEaW+KSxCVr3euiiRGdOIhBhCbQcEniksQliUsSlyQuSVyy1r0umiaxiMwkLkmucZJrnMQliUsSlyQuSVySuCRxyVr3umjOfsMliUsSlyTXOGvd647QcEniksQliUsSlyQuWeteF22w33BJ4pLEJck1zlr3uiM0XJK4JHFJ4pLEJYlL1rrXRQv2Gy5JXJK4JLnGWeted4SGSxKXJC5JXJK4JHHJWve6aMV+wyWJSxKXJNc4a93rjtBwSeKSxCWJSxKXJC5Z614XbbLfcEniksIlxTXOWve6oxGdOIhBTGIRr7Gtda+LJkJUohGdCE2g4ZLCJYVLCpcULilcUrhkrXtdNB3EICaxiNBwSXFeUpyXFC4prnHWutcdoeGSwiWFS4rzkrXu9fjj47rWvR5/t1vXutcdnTiIQUxiEecVT5fsKERoA9qANqANaAPagDagBbSAFtACWkALaAEtoAW0gJbQElpCS2gJLaEltIR2uuT4u8K61r2ueLpkx5PmZ1SiEZ04iEGFJEI7XbK+93TJjtAmtAltQpvQJrQJbUKb19jWutcdL9pa97qjEZ04iEFMYhGvsa11r4t2umRHJRrRidAEmkATaAJNH0TGpoxNGZtCO12yYxCTWERoBs2gGTSDZsykMTZjbMbYDJqx35yZdGbSmUmH5tAcmkNzaM5MOmMbjG0wtgFtsN8GMzmYycFMDmgD2oAW0AJaMJPB2IKxBWMLaMF+C2YymMlkJhNaQktoCS2hJTOZjC0ZWzI2XLLWve7ITBYzWcwkLlnrXneEVtBwycQlE5dMXDJxyVr3umiT/YZLJi6ZuGStez0q2Fr3uqMQlWhEJw5iEJPYNFvrXle8XGKPyyX2uFxia93rqiDQBJpAE2iXS+whjE0ZmzI2haZGdOIgBhGaQlNoBs2gGTNpjM0YmzE2g2ZJZCaNmXRm0qE5NIfm0ByaM5PO2JyxOWMb0Ab7bTCTg5kczOSANqANaAPagBbMZDC2YGzB2AJasN+CmQxmMpjJgJbQElpCS2jJTCZjS8aWjC2hJfutmMliJouZLGgFraAVtIJWzGQxtsnYJmOb0Cb7bTKTk5mczOSENqHhEsElgksElwguEVwiuGStez1pa93rjkW8ZlJwyVr3uioINFwiuERwieASwSWCSwSXrHWvi6ZCVKIRnQhNoeESwSWCSwSXCC4RXCK4ZK17XTQbRGYSlwguWeteVwWHhksElwguEVwiuERwieCSte510Zz9hksElwguWeteV4UBDZcILhFcIrhEcIngEsEla93rogX7DZcILhFcsta97grQcIngEsElgksElwguEVyy1r0uWrLfcIngEsElUtAKGi4RXCK4RHCJ4BLBJYJL1rrXRZvsN1wiuERwiUxoExouEVwiuERxieISxSWKS9a615O21r3uGMQkFhGaQMMliksUlyguUVyiuERxyVr3umhy7TfFJYpLFJeoQlNouERxieISxSWKSxSXKC5Z614XzYzITOISxSVq0AwaLlFcorhEcYniEsUlikvWutdFc/YbLlFcorhEB7QBDZcoLlFcorhEcYniEsUla93rogX7DZcoLlFcogEtoOESxSWKSxSXKC5RXKK4ZK17XbRkv+ESxSWKSzSh4RLlvEQ5L1FcogWtoBU0XKK4RHGJcl6y1r1mnPGkzTMa0YmDGMQkFnF2XOtedxSiEo3oxEEMYhKLCE2gCTSBJtAEmkATaAJNoAk0habQFJpCU2gKTaEptNMlxx9ksbXudcXTJTsetNIzKtGIThzEoEISoZ0uWd97umRHaA7NoTk0h+bQHJpDc8Y2GNuANqANaAPagHa6ZMckFpGxBbTTJTsq0YhOhBbQAlpAC2jJTCZjS8aWjC2hnS7ZkZlMZjKZyYRW0ApaQStoxUwWYyvGVoytoBX7bTKTk5mczOSENqFNaBPahDaZyXmNba173VGIF22te93RiYMYxKRCEaEJNIEmSjSiEwcRmiSxiNdMrnWvO0JTaApNoSk0DSJjU8amjA2XrHWvOzKTxkwaM4lL1rrXHaEZNFziuMRxieMSxyVr3euiOfsNlzgucVyy1r2uCgMaLnFc4rjEcYnjEscljkvWutdFG+w3XOK4xHHJWve6KgQ0XOK4xHGJ4xLHJY5LHJesda+Lluw3XOK4xHHJWve6K0DDJY5LHJc4LnFc4rjEccla97poxX7DJY5LHJesda+rwoSGSxyXOC5xXOK4xHGJ45K17vWkrXWvOyrRiE4cVAhiEosIDZcMXDJwycAla93roskgBjGJRYSm0HDJwCUDlwxcMnDJwCUDlwzOSwbnJQOXDFwycMngvGRwXjJwycAlA5cMXDJwycAlA5esda+L5uw3XDJwycAla93rrgANlwxcMnDJwCUDlwxcMnDJWve6aIP9hksGLhm4ZK17XRUCGi4ZuGTgkoFLBi4ZuGTgkrXuddGS/YZLBi4ZuGSte90VoOGSgUsGLhm4ZOCSgUsGLlnrXhet2G+4ZOCSgUvWutdVYULDJQOXDFwycMnAJQOXDFyy1r0u2rz2W+CSwCWBS9a617PCWve64yAGMYlFvMYWuCRwyVr3umhiRCcOYhChCTRcErgkcEngksAlgUsCl6x1r4umSSwiM4lLgmuc4BoncEngksAlgUsClwQuCVyy1r0umrPfcEngksAlwTXOWve6IzRcErgkcEngksAlgUvWutdFG+w3XBK4JHBJcI2z1r3uCA2XBC4JXBK4JHBJ4JK17nXRgv2GSwKXBC4JrnHWutcdoeGSwCWBSwKXBC4JXLLWvS5asd9wSeCSwCXBNc5a97ojNFwSuCRwSeCSwCWBS9a610Wb7DdcErgkcUlyjbPWve5oRCcOYhCTWMRrbGvd66KJEJVoRCdCE2i4JHFJ4pLEJYlLEpckLlnrXhdNBzGISSwiNFySnJck5yWJS5JrnLXudUdouCRxSeKS5LxkrXstP+NBm2eF0yU7OnEQg5jEIs4rni7Z8aBNO6MSjejEQQxiEos4r3i6ZEdoAS2gBbSAFtBOl8w6YxEZWzK20yU7MpPJTCYzmcxkMpPJTCYzmdAKWkEraAWtoBW0YmzFTBYzWczkZCYnMzmZyclMTmZyMpMT2oQ2oc2Ltta97ihE7Vlf617PUax1rzsOYhCTWMRrJte61x2FqERoAk2gCTSBJtAEmjI2ZWyqRCM6cRCDmMQiMpMGzaAZNINm0Aza6ZI164dLnvfYzljEecXDJR2FqEQjOnEQ44hxxiQWcV5xPIhCVKIRnTiI0Aa0AW1AC2gB7XDJ8+beGY140GSecRCDmMQiziseLukoRCUaEVpCS2gJLaEltIJW0ApaQStoBa2gFbSCVtAmtAltQpvQJrQJbUKb0Ca0edHOda8dhahEIzpxEIOYxCJCE2gC7XDJ847pGQ+axRmdOIhBTGIR5xUPl3QUohKhKTSFptAUmkJTaAbNoBk0g2bQDJpBM2gGzaA5NIfm0ByaQ3NoDs2hOTSHNqCdLvFzv50u2dGIThzEICaxiPOKp0t2hBbQAlpAC2gBLaAFtICW0BJaQktoCS2hJbSEltASWkEraAWtoBW0glbQClpBK2gT2oQ2oU1oE9qENqFNaBPabJqf6147ClGJRnTiIAYxiUWEJtAEmkATaAJNoAk0gSbQBJpCU2gKTaEpNIWm0BSaQlNoBs2gGTSDZtAMmkEzaAbNoDk0h+bQHJpDc2gOzaE5NIc2oA1oA9qANqANaAPagDagDWgBLaAFtIAW0AJaQAtoAS2gJbSEltASWkJLaAktoSW0hFbQClpBK2gFraAVtIJW0ArahDahTWgT2uUSf0xoE9qENqHhEsElgksElwguEVwiuERwieASwSWCSwSXCC4RXCK4RHCJ4BLBJYJLBJcILhFcIrhEcIngEsElgksElwguEVwiuERwieASwSWCSwSXCC4RXCK4RHCJ4BLBJYJLBJcILhFcIrhEcIngEsElgksEl5zrXnXIGQ/a8XgoP9e9dnTiQYs840GLVSGJB63W984rni7ZUYgHbfoZjXjQ5ok4XGLH9Zuf61475hH1jHXE9WPziodL7LiM8nPda0c9Yv3z++/+548///jHf//ph//+7nf/eH75n3//85/+9uNf/ry//Nv/+2v/y7///ONPP/34X3/4689/+dMP//H3n3/4w09/+dPxb989jv8cx/6/SXyv8vvnN8v+//+mI7/XjN8/3+OPf39u6bMfnl+d3642v1f340s5vvT6Xsfj+Hntn38eFd+76f55Hc/viOqff57uff98M++ff74/PL+M4+ft+PnjJ+z48f5+f/77PP7Zf73Fo39C/Xvz6yce3/s4/jmun1B5bsLxv5IizzHq7//5z3/+/p//Hw==",
|
|
3869
|
-
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdwAAAAAAAAAAAAAAAAAAAAoSaM+VQDeALhPStLpmlhQAIAAAAAAAAAAAAAAAAAAAAAACotEukxu6203JpLmrr8jAAAAAAAAAAAAAAAAAAAAC5gJaUgt64lUSDN0H7epgwnAAAAAAAAAAAAAAAAAAAAAAAaZNduOjHzu1KTwc5y6R4AAAAAAAAAAAAAAAAAAACNulzO7qxli78wQmLb99ti9gAAAAAAAAAAAAAAAAAAAAAAHlmQ8NkXHbFdyFWud4KIAAAAAAAAAAAAAAAAAAAA/8p8xmkAMhlRSv1/4GzxmncAAAAAAAAAAAAAAAAAAAAAAAP9hlvhudWn0kSOzfkG1QAAAAAAAAAAAAAAAAAAAGqO8LjvqcVSTLdTPRDtQvwAAAAAAAAAAAAAAAAAAAAAAAAW9Vmu2v+TPEf6CPd5+/sAAAAAAAAAAAAAAAAAAADPQHMdhh1/krYv/VTsG+2zcgAAAAAAAAAAAAAAAAAAAAAAG6oJboHc5WtBnakyhh7rAAAAAAAAAAAAAAAAAAAAEn7tkqRWvr5F4PcPYY+m7SIAAAAAAAAAAAAAAAAAAAAAABnVEGP9dgqz/+xXllay9wAAAAAAAAAAAAAAAAAAAJZXrrb8IHqEgRnGMEPevPH1AAAAAAAAAAAAAAAAAAAAAAAoNb61J189zrqOwzrhNSsAAAAAAAAAAAAAAAAAAAAZOAvXdsmPqvrd8uaKfXUQ2wAAAAAAAAAAAAAAAAAAAAAAHl49T0mlBs6wRbNa4tbaAAAAAAAAAAAAAAAAAAAAvE2SzJueGNjNNGrFmESdvkYAAAAAAAAAAAAAAAAAAAAAAAhJzAyauLtFMz0QMZ9PaQAAAAAAAAAAAAAAAAAAANbwS2G7D+OEFTqxgZmbWAY9AAAAAAAAAAAAAAAAAAAAAAAkdZNw1LXhPd0VLPd6YzsAAAAAAAAAAAAAAAAAAACYHDkk7c5XN3NghYThPZzAfgAAAAAAAAAAAAAAAAAAAAAAD5m+LCIZzXn6YstN4YIPAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAADXZSytT/7bmtUUvtUXXNWcDAAAAAAAAAAAAAAAAAAAAAAALzxAtw6k/wKUOXiU8y3zAAAAAAAAAAAAAAAAAAAAh1sDs0YAFv4LLEVlJprO148AAAAAAAAAAAAAAAAAAAAAAAVcCVujDZ8JOy6/irSpRgAAAAAAAAAAAAAAAAAAAJlVoDeJxwhBUMq9qCZ1bCRyAAAAAAAAAAAAAAAAAAAAAAARebaoSp74B2BxAA41gaUAAAAAAAAAAAAAAAAAAACx6b3W4qkq4TkOISJ1ZgkRcAAAAAAAAAAAAAAAAAAAAAAACw3tGIj/F7mWa40dAPdlAAAAAAAAAAAAAAAAAAAAt81DpMqRCfYg9fzmoCFS+EsAAAAAAAAAAAAAAAAAAAAAACGUPglJok8EndUleq0R+gAAAAAAAAAAAAAAAAAAAMcLvqqrui8m0+ffTUXnI/0/AAAAAAAAAAAAAAAAAAAAAAAX1VF9zShpyV48WTwuDUIAAAAAAAAAAAAAAAAAAABGQ2vhZb9bnURzjKQJ4BvfsgAAAAAAAAAAAAAAAAAAAAAAEvl1f3Zpgu1iWrBOmKbnAAAAAAAAAAAAAAAAAAAAyj6BzsoLXhB4zn1evSNWA/cAAAAAAAAAAAAAAAAAAAAAAAb8zukKA2adGm9RWix+OwAAAAAAAAAAAAAAAAAAAA75VcvFSWyvPGzlkyz4mO3zAAAAAAAAAAAAAAAAAAAAAAAVY1LaWfCsqntkHUPjqD4AAAAAAAAAAAAAAAAAAAB9u+7yRdFoevwewjv0Bmc4OAAAAAAAAAAAAAAAAAAAAAAAIb0eqlaaWlXbZacDzFUHAAAAAAAAAAAAAAAAAAAAXUMtv6z5G3h/c1HfE/5+llUAAAAAAAAAAAAAAAAAAAAAAAa5cEkmrRrWD9WHovVoAwAAAAAAAAAAAAAAAAAAAJgcabllGCC+AYK58iCxMF1/AAAAAAAAAAAAAAAAAAAAAAAKondW4XR0W8v/5qjkEAYAAAAAAAAAAAAAAAAAAABeN4LZu0HljNq4b74JrR5s9gAAAAAAAAAAAAAAAAAAAAAAFgnTkEe3bXQ7S6H6gUHjAAAAAAAAAAAAAAAAAAAAmL0MsMr4k5VEcs37f2Mm/lkAAAAAAAAAAAAAAAAAAAAAABj7WgeZNUbpYN0i5G0LAgAAAAAAAAAAAAAAAAAAANkMH/+muj/BLhpWzF2P75m9AAAAAAAAAAAAAAAAAAAAAAAtqP+tanTTIDfBsypRdR0AAAAAAAAAAAAAAAAAAAAMoWHcqf6aejRptz+Qb+8q3AAAAAAAAAAAAAAAAAAAAAAADReBqmAvEpSLC93DedxRAAAAAAAAAAAAAAAAAAAA1Z+i9Yz39SrUq/xPQ9lM5tEAAAAAAAAAAAAAAAAAAAAAABqPGc8CmZatlLtDiVXoNwAAAAAAAAAAAAAAAAAAANdAZhyA0QZAuNa7ZQR80dt+AAAAAAAAAAAAAAAAAAAAAAASMfr9d9CZrGJZ/O2zu04AAAAAAAAAAAAAAAAAAABiD4/i3JeDLv7uxWO5ZE+NWQAAAAAAAAAAAAAAAAAAAAAAIK3nq8A6FSPPDod5eHf2AAAAAAAAAAAAAAAAAAAAJjL2Cb7No3VhpSi9R8KsmGIAAAAAAAAAAAAAAAAAAAAAABWHF3BC0rTrLSVXOA7RMwAAAAAAAAAAAAAAAAAAANiBAX0N8AyOznoaDPmqZsxwAAAAAAAAAAAAAAAAAAAAAAALA6Otvub6Tkg2iuPM3b0AAAAAAAAAAAAAAAAAAACRBibYibVuGszgO/J0RbOcMQAAAAAAAAAAAAAAAAAAAAAAFuNMsA0iLMXxXrlMf8dOAAAAAAAAAAAAAAAAAAAAJFsaxNua9pGpyL4PW6c3xLEAAAAAAAAAAAAAAAAAAAAAACwV+ax3yCLZyKHVbDP9vwAAAAAAAAAAAAAAAAAAAKpPSvV4LSDr5wgRa6INQBBiAAAAAAAAAAAAAAAAAAAAAAAvJecSERrVDKT22EtlIO4AAAAAAAAAAAAAAAAAAABabhV9SoJqHz0z83Is38+l1gAAAAAAAAAAAAAAAAAAAAAAFTD1jLm4u65LGw59LN8eAAAAAAAAAAAAAAAAAAAAruX6ge1WxQqHaadx4qE0uQUAAAAAAAAAAAAAAAAAAAAAAAX+0E3yrN1KKQ1GkJlSVQAAAAAAAAAAAAAAAAAAAF3eRUo/OQZI2TY8iTScyLNrAAAAAAAAAAAAAAAAAAAAAAAn+jF8Il1Mtp3locZFc9wAAAAAAAAAAAAAAAAAAAC/OKVpJ8CsRSTWFjyzt3WX4gAAAAAAAAAAAAAAAAAAAAAAG3aQ+PzCaKJ3KC4pEkAjAAAAAAAAAAAAAAAAAAAAkN03mgZXqgqmeoOdGSafRdAAAAAAAAAAAAAAAAAAAAAAAC64WfPjJ+Q8Hhhn1hL2aAAAAAAAAAAAAAAAAAAAALyyPoj0qHwjDWLmhl+66oEKAAAAAAAAAAAAAAAAAAAAAAAnamBNIbCC2Q0sHZLn+XEAAAAAAAAAAAAAAAAAAABg/RDZHoDqYLizS7X9djpsnQAAAAAAAAAAAAAAAAAAAAAAGfLcRYbrs7szwCSGHGjjAAAAAAAAAAAAAAAAAAAAk3POd1x9UjsFSEN4OVjHpmcAAAAAAAAAAAAAAAAAAAAAABGduAA1D043vNZtBWpTBgAAAAAAAAAAAAAAAAAAAPSmxv/fgKctt4di4jfVjNX2AAAAAAAAAAAAAAAAAAAAAAAmgUpZgDVVY1o7bf0FbRkAAAAAAAAAAAAAAAAAAAD0W42WBpIx9I4NDDTVdZOmpgAAAAAAAAAAAAAAAAAAAAAAC53DI5kCV5YAWy9owVmRAAAAAAAAAAAAAAAAAAAAdQ4bXLmXo634VAv1W7kmTsQAAAAAAAAAAAAAAAAAAAAAAB9s1bbUP2d5iuRlXAFvNwAAAAAAAAAAAAAAAAAAAFlsxhg4SPMsYOx0/
|
|
3868
|
+
"debug_symbols": "tZ3djuzGkW7fRde6qPjJiEi/ysAwPB7NQIBgDzT2AQ4Mv/spMjO4WlunqVJ3z43r29buWMwkYxV/srn/+d1//PDv//ivP/341//82/9894d/++d3//7zjz/99ON//emnv/3lz3//8W9/ff6///zucfyP+Hd/0PzX99/J+SfJ7/4Qzz9I7c+5PvWxP2V/6v60/en7c+zP2J+7nu56uuvZrme7nu16tuvZs14en8+fr+Oz9udcn/7Yn8+fn8fnkyePI2SH6jB3GMffkSNkh+owd4hnXdEjSAftYB28w3OwYs+Qx3/yIxyIcYSj8jGQnDvUo8NR+RhbaQfr4B1Gh6POMdB5/NQx0qkdrIN3GB16M2Z2qA5zBX08OkgH7WAdvMOzjj6OUB3mDvLo8KyjcoQnXfUI2aE6zB2O42kF6aAdnnS1I3iH0eGo40c46hwbdhxHGkfY86OmHayDdxgdjvmZz4Nej4Necx10mr4/x/6M/Zn7s/bnOoi1HvtT9qfuz12vdr3a9WrXq12vdr3a9ebjPOj12LN1fPr+HPsz9meeB72dO+xxBOvgHcYOouvINrEO3mF0iHVA27HDVqgOcwd9dJB10NuxD46D3mwfN3ZOdBxhdIgOuQ5oOxp5hbnD0corSAdfB72dzXyM9GzmM8wdxqODdOjNGNbBO4wO0SE7VIfdGBaPDraObDsafoXRITrkOugt9+Frx8G0gncYHaJDdqgOcx3idhxTK0gHXwe9HYfRcdDbcRwdB71Vz0/1/FTPz+z5aXHYEsfzoLfzoH9WPRporI9YH7k+an08a43n3/f+nvDnH8bxh2Nvnpv2/Hj+f3H+hWMEzz/k+Ydjwv/1/FN/4fzp7z//8MPxX958Az2/l/77zz//8Ne/f/eHv/7jp5++/+7//Pmnf5x/6X/++89/PT///uefn//1OdE//PU/np/Pgv/5408/HOlf3/PTj/d/VGPo/mlNsauApL5awnPuCmHykQIjexNC8k0Bf3kQM21XsIcMStR4eRDHEX1W8Pl2FuLlQcijt+EZ/Srh8vo8qPRMDnX7UAmv7BLjMT9W4todHy4x9HGV8I/NRaZ3iZzx2RL1eHywxLVTS/RDJcrkKuEf2orQ0VsRz3792FbkuLYiPzSd8dCrTR/2sZ065zUXc86PzcXjcc2F2ecHUh8rkddWPOpDeyTkUZf1VD5YwimhHysR10Cep/Qf3CNy7RHxj5WQ+uROlYf0VsgjOMBlvvxVmLN6LurxRr8iv/wW0Xq/Rs0+tOabFvkdG/E83+9e1+f59lXieR72ixJ2+51ufVxoON+oz1OdlzfDor+K1N/s1G/nwvSuhl+b4Q/ms345GWZ3u+TajKfB2avPyr+s4Tc18tFfiZnD368x3q9h10mSC1uh45vJiLv9WteEPq9L3q+RN8f481q7j3F5Y53fVcMevR3Pewr1fo35fo3p/V0yx8cqCAp+duv7I3G5OWMrTtlq6Jtm+8hAcnxst+Zx9bZPn+3x/kBuDlDhJON5N+T9Q8PHZ3fJixVu5uKuwss7tT69U2+nc3KET31/Ou/s537t1fH2kuQb+w25m41xdfxzOibHRj5+R5G8TjSe5wtvDJi/4wrvzbdBsBnjl9+t42ZKp3SF531OTtuOy5xflLg7OJ53Ni93hb+7FTe95ki43gzjl99pI++ur64v+KFvrinkl1+t4+b4jOTcMb3eLXG3FaHXJVrY+HSJt2cqv6dE1lVifqzE4Ppq5McGUo83l2jv75G4u+6+psLjvaMixqePiohPHxW3W/HaUfFyifePivsSLx0VtyVeOypuS3z+qJgh17fZfNcVcftlhr3HuwdW+u3p2riUN98/8cybqQguz/L9K9W8GUh5H5o1379QzZsm9efZe4tXby52886b85J3Pm7ujt3VSO4T5pj16Rpvbzb+rhp1na9lzccHa9i8auQX1Pjodrydj0d+7PiwcZ2z2c1dndsa47pw9hjv34eo/Pwxdlfj1X17X+O1fftyjY9ux4v98mqNu+Pj5Rp3PXfn88d1X2W8f6Nr3p6ASnIGqv7+PdB5+7XgwkWOa31wW/TNV4PJ+3e85t29prAuUjHqgzW4wRI3t9nvR2PX7f5nHu8frfKQu1tn132amjdPP26LTJ7CzOce/4Ii+vhwkeuQFbsbzufPTZ/Xl58+Of2NwXBfUx/vN+Dt6ZBye0BD3z0dkse8u5kX1/3A8ebGZr1eoiqu/fL4aInrXol8cCvyeh5TH92KpHU/PJDrdP/DA5nXPclZ+tES18l65QdLXKcgHy4hjwe3Wh71we2Y/kqN2zsl5nndoa1375SIyp03HsGj5LdK/ua+kajeXYfxhOrNhdz4pl/17gb+9Wwo37R8fbsR/vlHAKLj888AROOzDwFE8/NPAeTuGdOrjwHut+TFG9dy96Dp1TvXYvLZW9e3JV698yx3z5pevPV8PyEv3nu+bbu4Lrfrzfnlr9ru7rHE8wSTM7I3iw6+bTz7/N3Sp6M+f+5hn79f+nqN92+N/UaNl+6N3dd47ebYfY3X7o79xvFx7dvn98j7YvYvODf1Lzg39c/fOX29xs3x4Z+/d3pf48Xjw8f/8vGhg+Mj5rvHx7DPHx93D55ePT5ut+PF4+PlGjfHx32N146P2xovHh+3Nb7i+LAH56ga7x4fIZ8/PkI/f3zcbseLx8fLNW6Oj/sarx0ftzVePD5ua3zJ8RF1HR9T3j8+5uePj3x8wfExv+D4mF9wfMwvOD7mFxwf83/5+HC7Ttj9zfXYt8dHfsH5aX7B+Wl+wflpfsH5aX7B+Wl+wflp/m+fn75zYfmr65e7GnXN6fMq+f1jrOLzj3Dl9rnUS89wpeqzD3Gl5uef4j4vYT//iO22yKvPpV4ucvdQ6b7Ii0/7fqPIa4/7Xi/y4S158WHd/XHy4tPc+yIvPs6VOb/iYJtfsYvnV+zi+RW7eH5F78wvOE5eLnLXgHdee+2xrj7yK57r6qO+4sHub2zNq092VR6ff7T7G0Vee7b7GwN69eHu+YsLn324e1vk1Ye7rxfRx4eLvPRwV+XzJ7Dn78Z88gT2Nwbz2sPd+zOlF5/u6t1jq9ee7t6WeO3p7m+UeOXp7m8M5JWnu/clXnq6ez+Ql57u3pZ47enub5R45enufYmXnu7elnj16e79drz2dPf26c7zecz1daVv/PPrx6p3RTiZl7fPEb8tore/GHU9Z854M5hh35QYt9vh/7+u/1Y/d5tR168nlPvNZtyVuL5z681vBvyuEjOSXSs3NW7v0Mzrt4VTbxzoj88/qta734167VG1un7+UbW6ff5R9f2WvPioWm9/OenFR9V697jqtUfVtyVefVStX/BbUvcT8hWPqp9nuNzntfygzPhdU3F9f6GJjruD5HEZUd/+OvU3d3t0fMFvm+r4gl831fHp3zfV8QW/cKrjC37j9H5LXu3fMb+gf+Px6f6Nxxf0791jq1f793ZCXu7f22dwfp0EPHO8+/uFevf7OipDaL7h4/0qt/drcUnF20uZ8Xs2hTvpz/zmhOJXm3J3u/V5P76Ptmd+s4e+/d3N22+ca+2b5JtL3m/W8end86vnc3juSjw79e3vXn5zYpI3uzkedr1A5PHmDon9ni0Jf3OB92Zd4q+35EaxT3Xyy6iPdxcWaH7BikDNL1gRqPnpFYGaX7AiUPMLVgTeF3nxzQDnXYtPGra+wrD1BYa93TVx3Z/Rtw/Ufr0h/hWzOj4/q5/+9f77o33WdbSPDx7tr54K1FecCszPH6i3JS6DTI2PlXj5WJ+fX7h6P6cvnk381nfEdYjI81B6vP8dMW+Ps969/ua76tvXwf3GlvDuL3mKIm625Pa3I8PietwSw949m7h7UvLy2cRvbEuO4tHPm9vf31Sxx0v3846b+W8m9+UXLT1b+EEL63unNfa4OWLNHtevFpjJm6dHvxrLbRVzuarYmzb+VZXxBXvnt7blelHHc7NGvF/lTo9+HbXPE6UPvYzxedv4cZ3XvH1Xx/Hqkj8+//jnv/z48y9fc3y+jvZ4K24eSwOOd+ruz7k+jzebHvcsjxebnp+6P+3Y69+vN2XqflWm7Xdl2n5Z5txvy5z7dZnna1n3p+xP3Z+2P31/jv0Z+3PXs13Pdj3f9XzX813Pdz3f9XzX813Pdz3f9XzXG7ve2PXGrjd2vbHrjV1v7Hpj1xu73tj1YteLXS92veP1qce98ePtqefn2J/HW3Cf83m8OvX8rP0512c+9qesv3+8WfX83PXOt/Qe/33sz10vd73c9XLXq12vdr3a9WrXq719tbevdr3a9WrXq11v7nrHi1XPT92ftj/39s1d73hr7/mZ+7P251yf8tgF5SEdtIN18A6jQ3TIDtWhKx/vZl5BOmgH69CVpStLV5auLF1Z9hys94FrvxBc+43g2q8El34nuPRLwaXfCi79WnDp94Jrvxhc+83g2q8G1343uPbLwXW/HXyF3mbrbbaubNWhZ8N7Nrxnw7uyd2Xvyt6VvSt7z4b3Nntv8+htHl159DyPno3RszF6NkZXHl15dOXRlaMrR89G9DZHb3P0NneHSfQ8R89G9GxEz0a3mWRXzq6cXblbTbrXpJtNutuk2+180/lZuXqeu+OkW0665843nZ8/VV25206676QbT7rzpFtPuvekm+98G/pZefY8d/9JN6B0B55vQ18/tStr96B2D2r3oHYPavegdg9q9+D5fvSj8vl+9BX2bGj3oHYPqnRl6crdg9o9qN2D2j2o3YPaPajdg+c71M/Kqh2sg3cYHbqyduXuQe0e1O5B7R7U7kHtHtTuwfOt6mdliw49G92D2j2o3pW9K3cPavegdg9q96B2D2r3oHYPqnfl0fPcPajdg9o9qKMrj67cPajdg9o9qN2D2j2o3YPaPaj9Haf9Jafdg9o9qN2D2l902t902j2o3YPaPajdg9o9qN2D2j243ksv/WJ66TfTS7+aXvrd9NIvp9d+O7326+m130+v/YJ67TfUa7+iXvsd9bpfUr9CV549z92D2j2o3YPnq+vXT3Xl7kHtHrTuQesetO5B6x607sHzBfdHZXtEh+xQHfZsmHRl6crdg9Y9aN2D1j1o3YPWPWjdg+dr8c/K+uggHbSDdejK2pW7B6170LoHrXvQugete9C6B826snmHno3uQesePF+4v36qK3cPWvegdQ9a96B1D1r3oHUPni/lPyt7z3P3oHUPWvfg+VL+86dGV+4etO5B6x607kHrHrTuQesetOjK0fPcPWjdg9Y9aH2qaX2uad2D1j1o3YPWPWjdg9Y9aN2D56v8z8rZ89w9aN2D1j1ofeJ5vsp/ha7cPWjdg9Y9aN2D1j1o3YPny/3PyrPnuXvQugete9D6NNRmV+4etO5B6x607kHvHvTuQe8e9Meu7A/vMDpEh+xQ/VNduXvQuwe9e9C7B7170LsHvXvQpStLddiz4d2D3j3ofS7q2pW7B7170LsHvXvQuwe9e9C7B926smmHno3uQe8e9D4XdevK3YPePejdg9496N2D3j3o3YPuXdl7nrsHvXvQuwe9z0V9dOXuQe8e9O5B7x707kHvHvTuQR9dOXqeuwe9e9C7B73PRb170Pt70Pt70LsHvc9FPbtyX/N596B3D3r3oPf3oJ896Ec4KucRqsPc4ezBM0gH7WAdvMPoEB26cnXl6sqzK8+uPLvy7MqzK8+uPLvy7MqzK89deTweHaSDdrAO3mF0iA7ZoTp0ZenK0pWlK589eN4V8A6jQxy3eY6QHarD3OHowRVk/9TZg2foykcPrr8zOnRl7cralbUrW1e2rmxd2bqy9TZbb7N1ZevK1pWtK3tXPnpwBe1gHXqbvSufPXiG7FAd5g6jK4+uPLry6MqjK4+ejdHbPHqbR2/z6MpnD56hZyN6NqJnI7pydOXoytGVoytHz0b2Nmdvc/Y2Z1fOnufs2ciejezZyK6cXbm6cnXl6srVs1G9zdXbXL3N1ZWr57l6NmbPxuzZmF15duXZlWdXnl159mzM3ua5tzkejw67cjy0g3XwDqND9E9lh+rQlaUri3TQDtbBO3RliQ7ZoTrs2YjuwdCurF1Zu3L3YHQPRvdgdA9G92BoV7ZHh56N7sHoHgzrytaVuwejezC6B6N7MLoHo3swugfDu7L3PHcPRvdgdA+Gd2Xvyt2D0T0Y3YPRPRjdg9E9GN2DMbry6HnuHozuwegejOjK0ZW7B6N7MLoHo3swugejezC6ByO7cvY8dw9G92B0D0Z25ezK3YPRPRjdg9E9GN2D0T0Y3YNRXbl6nrsHo3swugdjduXZlbsHo3swugejezC6B6N7MLoHY+7K+Xh0kA7awTrsyvkYHaJDdqgOezayezC7B7N7MPt7MPt7MLsHs3swuwezvwezvwezezC7B7N7MLsHs3swuwezezC1K2t16NnoHszuwbSubF25ezC7B7N7MLsHs3swuwezezC9K3vPc/dgdg9m92B6V/au3D2Y3YPZPZjdg9k9mN2D2T2YoyuPnufuwewezO7BjK4cXbl7MLsHs3swuwezezC7B7N7MKMrZ89z92B2D2b3YGZXzq7cPZjdg9k9mN2D2T2Y3YPZPZjVlavnuXswuwezezCrK1dX7h7M7sHsHszuwewezO7B7B7M2ZVnz3P3YHUPVvdgPXblelgH7zA6RIfsUB32Nlf3YElXFu1gHbzD6NCV+1y0ugere7C6B6t7sLoHq3uwugdLu7JGh+xQHXo2+ly0rCt3D1b3YHUPVvdgdQ9W92B1D5Z1Ze957h6s7sHqHqw+Fy3vyt2D1T1Y3YPVPVjdg9U9WN2DNbry6HnuHqzuweoerD4XrdGVuwere7C6B6t7sLoHq3uwugcrunL0PHcPVvdgdQ9Wn4tWduXuweoerO7B6h6s7sHqHqzuwaquXD3P3YPVPVjdg9XnolVduXuwugere7C6B6t7sLoHq3uwZleePc/dg9U9WN2Ds89F50M6aAfr4B1Gh+iQHapDV5ZHB+mgHaxDV+4enP09OPt7cHYPzj4XndqV+3pwdg/O7sHZPTj7e3Ce34N6hGObz5+qDnOHswfPIB20g3XwDqNDdOjK1pWtK3tX9q7sXfnowZIjeIfRITpkh+owdzh6cAXpoB268ujKoyuPrjy68ujKRw8evwk4jx5cQTpoB+vgHUaH6JAdqsNRuY6n1Y8Oxz+x7EfQDtbBO4wO0SE7VIe5w9GDK3Tl6srVlasrV1eurnz+o6fH76fO8189XWl2Ov/d05WOf/j0WI4yz3/5dCW7kl9pXCmulFeqK82djt+1IwpRiUZ04iAGMYlFhCbQBJpAE2gCTaAJNIEm0ASaQlNoCk2hKTSFptAUmkJTaAbNoBk0g2bQDJpBM2gG7fyHho/fjZPH+U8N7yjEg3b84tszGtGJgxjEJBZxXvH8J4p3FCK0AW1AG9AGtAFtQBvQAlpAC2gBLaAFtIAW0AJaQEtoCS2hJbSEltASWkI7/930Y9nbM84rnv92+o4H7Vy+9Tj//fQdjejEQQwqJBHaaZD1d0+F7AhtQpvQJrQJbUKb0Ca0eY3tXP3T8aKdK4A6GtGJgxjEJBbxGtu5ImjTTpfsqEQjOhGaQBNoAk2g6YPI2JSxKWNTaKdLdgxiEosIzaAZNINm0IyZNMZmjM0Ym0Ez9pszk85MOjPp0ByaQ3NoDs2ZSWdsg7ENxjagDfbbYCYHMzmYyQFtQBvQAlpAC2YyGFswtmBsAS3Yb8FMBjOZzGRCS2gJLaEltGQmk7ElY0vGhkuk2G/FTBYzWcwkLpGCVtAKGi4RXCK4RHCJ4BKZ0Cb7DZcILhFcIvOi6eNBFKISjejEQQxiEi+aPq79prhEcYniEhVoAg2XKC5RXKK4RHGJ4hLFJarQ1IhOHMQgQlNouERxieISxSWKSxSXKC5Rg2ZJZCZxieISdWgODZcoLlFcorhEcYniEsUlOqAN9hsuUVyiuEQHtAENlyguUVyiuERxieISxSUa0IL9hksUlygu0YCW0HCJ4hLFJYpLFJcoLlFcopyXKOcliksUlyguUc5LlPMSxSWKSxSXKC5RXKK4RHGJTmiT/YZLFJcoLtEJbULDJYZLDJcYLjFcYrjEcIk9Lpo9kljEayYNl5hAE2i4xHCJ4RLDJYZLDJcYLjGFpkJUohGdCE2h4RLDJYZLDJcYLjFcYrjEDJoNIjOJSwyXmEFzaLjEcInhEsMlhksMlxguMYfm7DdcYrjEcIkNaAMaLjFcYrjEcInhEsMlhkssoAX7DZcYLjFcYgEtoOESwyWGSwyXGC4xXGK4xBJast9wieESwyXGNY5xjWO4xHCJ4RLDJYZLDJcYLrEJbbLfcInhEsMlxjWOTWi4xHCJ4RLHJY5LHJc4LvHHRfPHIAYxiUWEJtBwieMSxyWOSxyXOC5xXOICTa795rjEcYnjEucaxxUaLnFc4rjEcYnjEscljkvcoJkRmUlc4rjEucZxg4ZLHJc4LnFc4rjEcYnjEndozn7DJY5LHJc41zg+oOESxyWOSxyXOC5xXOK4xANasN9wieMSxyXONY4HNFziuMRxieMSxyWOSxyXeEJL9hsucVziuMS5xnFc4pyXOOcljkucaxwvaNwvcVziuMRxiXNe4sslfsaTlmc0ohMHMYhJLOLsOJZLVhSiEo3oxEEMYhKLCE2gCTSBJtAEmkATaAJNoAk0habQFJpCU2gKTaEptOWSecZ5xeWSFQ/a8W9iyLm6rqMRnTiIQYUkQjtdsv7u6ZIdoTk0h+bQHJpDc2gOzRnbYGwD2oA2oA1oA9rpkh2TWETGFtCWS1ZUohGdCC2gBbSAFtCSmUzGlowtGVtCWy5ZkZlMZjKZyYRW0ApaQStoxUwWYyvGVoytoBX7bTKTk5mczOSENqFNaBPahDaZyXmN7Vzl11GIFy0eRnTiIAYxqVBEaAJNoIkSjejEQYQmSSziNZOhDyI0habQFJpC0yAyNmVsythwSZgQmUljJo2ZxCXnasGO0AwaLglcErgkcEngknBozn7DJYFLApec6wh3hQENlwQuCVwSuCRwSeCSwCUxoA32Gy4JXBK45FxjuCsENFwSuCRwSeCSwCWBSwKXREJL9hsuCVwSuORcf9gVoOGSwCWBSwKXBC4JXBK4JApasd9wSeCSwCXn2sRdYULDJYFLApcELglcErgkcEk+Llo+hKhEIzpxUCGISSwiNFySuCRxSeKSFGgyiEFMYhGhKTRckrgkcUniksQliUsSlyTnJcl5SeKSxCWJS5LzkuS8JHFJ4pLEJYlLEpckLklckg7N2W+4JHFJ4pJzLWRXgIZLEpckLklckrgkcUnikhzQBvsNlyQuSVxyrpPcFQIaLklckrgkcUniksQliUsyoSX7DZckLklccq6h7ArQcEniksQliUsSlyQuSVySBa3Yb7gkcUniknN95a4woeGSxCWJSxKXJC5JXJK4JCe0ee23wiWFSwqXnGsvV4Vz9WXHQQxiEot4ja1wSeGSEmhiRCcOYhChCTRcUrikcEnhksIlhUsKl5RC0yQWkZnEJcU1TnGNU7ikcEnhksIlhUsKlxQuKYfm7DdcUrikcElxjXOu6OwIDZcULilcUrikcEnhkhrQBvsNlxQuKVxSXOOcqz07QsMlhUsKlxQuKVxSuKQCWrDfcEnhksIlxTXOuRK0IzRcUrikcEnhksIlhUuqoBX7DZcULilcUlzjnKtEO0LDJYVLCpcULilcUrikJrTJfsMlhUsmLplc45wrSDsa0YmDGMQkFvEa2xRoIkQlGtGJ0AQaLpm4ZOKSiUsmLpm4ZOKSqdB0EIOYxCJCwyWT85LJecnEJZNrnGnQuF8yccnEJROXTM5L5jov0TOeYxtnNKITBzGISSzivOJyyYpChDagDWgD2oA2oA1oA1pAC2gBLaAFtIAW0AJaQAtoCS2hJbSEltASWkJLaMslecZ5xeWSFU9anVGJRnTiIAYVkghtueT8u8slK0Kb0Ca0CW1Cm9AmtAlt9th0rXvdsWm61r3uaEQnDmIQk1jEeUWBts5LVlSiEZ0ITaAJNIEm0PRBZGzK2JSxKbR1XrJiEJNYRGgGzaAZNINmzKQxNmNsxtgMmrHfnJl0ZtKZSYfm0ByaQ3Nozkw6YxuMbTC2AW2w3wYzOZjJwUwOaAPagBbQAlowk8HYgrEFYwtowX4LZjKYyWQmE1pCS2gJLaElM5mMLRlbMraCVuy3YiaLmSxmsqAVtIJW0AraZCYnY5uMbTK2CW2y3yYzOZnJyUzOi7bWve4oRCUa0YmDGMQkXrS17nVFXCK4RHDJWve6Kgg0XCK4RHCJ4BLBJYJLBJesda+LpkZ04iAGEZpCwyWCSwSXCC4RXCK4RHDJWve6aJZEZhKXCC4Rh+bQcIngEsElgksElwguEVwiA9pgv+ESwSWCS9a6110BGi4RXCK4RHCJ4BLBJYJL1rrXRQv2Gy4RXCK4ZK17XRUSGi4RXCK4RHCJ4BLBJYJLJKEl+w2XCC4RXCIFraDhEsElgksElwguEVwiuGSte120yX7DJYJLBJesda+7AjRcorhEcYniEsUliksUl6x1rydtrXvdsYjXTCouWeteVwWBhksUlyguUVyiuERxieKSte510VSISjSiE6EpNFyiuERxieISxSWKSxSXrHWvi2aDyEziEsUla93rquDQcIniEsUliksUlyguUVyy1r0umrPfcIniEsUla93rqjCg4RLFJYpLFJcoLlFcorhkrXtdtGC/4RLFJYpL1rrXXQEaLlFcorhEcYniEsUlikvWutdFS/YbLlFcorhEC1pBwyWKSxSXKC5RXKK4RHHJWve6aJP9hksUlygu0QltQsMliksUlxguMVxiuMRwyVr3etLWutcdg5jEIkITaLjEcInhEsMlhksMlxguWeteF02u/Wa4xHCJ4RLjGmete90RGi4xXGK4xHCJ4RLDJWvd66KZEZlJXGK4xLjGWeted4SGSwyXGC4xXGK4xHDJWve6aM5+wyWGSwyXGNc4a93rjtBwieESwyWGSwyXGC5Z614XLdhvuMRwieES4xpnrXvdERouMVxiuMRwieESwyVr3euiJfsNlxguMVxiXOMYLjHOS4zzEsMlxjXOWve6IzRcYrjEcIlxXrLWvR7/Fpauda9hZzSiEwcxiEks4uy41r3uKEQlGtGJgxjEJBYRmkATaAJNoAk0gSbQBJpAE2gKTaEpNIWm0BSaQlNop0uOfwNL17rXFU+X7HjS4oxKNKITBzGokERop0vW3z1dsiM0h+bQHJpDc2gOzaE5YxuMbUAb0Aa0AW1AO12yYxKLyNgC2umSHZVoRCdCC2gBLaAFtGQmk7ElY0vGltBOl+zITCYzmcxkQitoBa2gFbRiJouxFWMrxlbQiv02mcnJTE5mckKb0Ca0CW1Cm8zkvMa21r3uKMSLtta97ujEQQxiUqGI0ASaQBMlGtGJgwhNkljEaybXutcdoSk0habQFJoGkbEpY1PGhkvWutcdmUljJo2ZxCVr3euO0AwaLhm4ZOCSgUsGLlnrXhfN2W+4ZOCSgUvWutdVYUDDJQOXDFwycMnAJQOXDFyy1r0u2mC/4ZKBSwYuWeteV4WAhksGLhm4ZOCSgUsGLhm4ZK17XbRkv+GSgUsGLlnrXncFaLhk4JKBSwYuGbhk4JKBS9a610Ur9hsuGbhk4JK17nVVmNBwycAlA5cMXDJwycAlA5esda8nba173VGJRnTioEIQk1hEaLgkcEngksAla93roskgBjGJRYSm0HBJ4JLAJYFLApcELglcEpyXBOclgUsClwQuCc5LgvOSwCWBSwKXBC4JXBK4JHDJWve6aM5+wyWBSwKXrHWvuwI0XBK4JHBJ4JLAJYFLApesda+LNthvuCRwSeCSte51VQhouCRwSeCSwCWBSwKXBC5Z614XLdlvuCRwSeCSte51V4CGSwKXBC4JXBK4JHBJ4JK17nXRiv2GSwKXBC5Z615XhQkNlwQuCVwSuCRwSeCSwCVr3euizWu/JS5JXJK4ZK17PSusda87DmIQk1jEa2yJSxKXrHWviyZGdOIgBhGaQMMliUsSlyQuSVySuCRxyVr3umiaxCIyk7gkucZJrnESlyQuSVySuCRxSeKSxCVr3euiOfsNlyQuSVySXOOsda87QsMliUsSlyQuSVySuGSte120wX7DJYlLEpck1zhr3euO0HBJ4pLEJYlLEpckLlnrXhct2G+4JHFJ4pLkGmete90RGi5JXJK4JHFJ4pLEJWvd66IV+w2XJC5JXJJc46x1rztCwyWJSxKXJC5JXJK4ZK17XbTJfsMliUsKlxTXOGvd645GdOIgBjGJRbzGtta9LpoIUYlGdCI0gYZLCpcULilcUrikcEnhkrXuddF0EIOYxCJCwyXFeUlxXlK4pLjGWeted4SGSwqXFC4pzkvWutfjHx/Xte71+He7da173dGJgxjEJBZxXvF0yY5ChDagDWgD2oA2oA1oA1pAC2gBLaAFtIAW0AJaQAtoCS2hJbSEltASWkJLaKdLjn9XWNe61xVPl+x40vyMSjSiEwcxqJBEaKdL1t89XbIjtAltQpvQJrQJbUKb0OY1trXudceLtta97mhEJw5iEJNYxGtsa93rop0u2VGJRnQiNIEm0ASaQNMHkbEpY1PGptBOl+wYxCQWEZpBM2gGzaAZM2mMzRibMTaDZuw3ZyadmXRm0qE5NIfm0ByaM5PO2AZjG4xtQBvst8FMDmZyMJMD2oA2oAW0gBbMZDC2YGzB2AJasN+CmQxmMpnJhJbQElpCS2jJTCZjS8aWjA2XrHWvOzKTxUwWM4lL1rrXHaEVNFwyccnEJROXTFyy1r0u2mS/4ZKJSyYuWetejwq21r3uKEQlGtGJgxjEJDbN1rrXFS+X2ONyiT0ul9ha97oqCDSBJtAE2uUSewhjU8amjE2hqRGdOIhBhKbQFJpBM2jGTBpjM8ZmjM2gWRKZSWMmnZl0aA7NoTk0h+bMpDM2Z2zO2Aa0wX4bzORgJgczOaANaAPagDagBTMZjC0YWzC2gBbst2Amg5kMZjKgJbSEltASWjKTydiSsSVjS2jJfitmspjJYiYLWkEraAWtoBUzWYxtMrbJ2Ca0yX6bzORkJiczOaFNaLhEcIngEsElgksElwguWeteT9pa97pjEa+ZFFyy1r2uCgINlwguEVwiuERwieASwSVr3euiqRCVaEQnQlNouERwieASwSWCSwSXCC5Z614XzQaRmcQlgkvWutdVwaHhEsElgksElwguEVwiuGSte100Z7/hEsElgkvWutdVYUDDJYJLBJcILhFcIrhEcMla97powX7DJYJLBJesda+7AjRcIrhEcIngEsElgksEl6x1r4uW7DdcIrhEcIkUtIKGSwSXCC4RXCK4RHCJ4JK17nXRJvsNlwguEVwiE9qEhksElwguUVyiuERxieKSte71pK11rzsGMYlFhCbQcIniEsUliksUlyguUVyy1r0umlz7TXGJ4hLFJarQFBouUVyiuERxieISxSWKS9a610UzIzKTuERxiRo0g4ZLFJcoLlFcorhEcYnikrXuddGc/YZLFJcoLtEBbUDDJYpLFJcoLlFcorhEccla97powX7DJYpLFJdoQAtouERxieISxSWKSxSXKC5Z614XLdlvuERxieISTWi4RDkvUc5LFJdoQStoBQ2XKC5RXKKcl6x1rxlnPGnzjEZ04iAGMYlFnB3XutcdhahEIzpxEIOYxCJCE2gCTaAJNIEm0ASaQBNoAk2hKTSFptAUmkJTaArtdMnxD7LYWve64umSHQ9a6RmVaEQnDmJQIYnQTpesv3u6ZEdoDs2hOTSH5tAcmkNzxjYY24A2oA1oA9qAdrpkxyQWkbEFtNMlOyrRiE6EFtACWkALaMlMJmNLxpaMLaGdLtmRmUxmMpnJhFbQClpBK2jFTBZjK8ZWjK2gFfttMpOTmZzM5IQ2oU1oE9qENpnJeY1trXvdUYgXba173dGJgxjEpEIRoQk0gSZKNKITBxGaJLGI10yuda87QlNoCk2hKTQNImNTxqaMDZesda87MpPGTBoziUvWutcdoRk0XOK4xHGJ4xLHJWvd66I5+w2XOC5xXLLWva4KAxoucVziuMRxieMSxyWOS9a610Ub7Ddc4rjEccla97oqBDRc4rjEcYnjEscljkscl6x1r4uW7Ddc4rjEccla97orQMMljksclzgucVziuMRxyVr3umjFfsMljkscl6x1r6vChIZLHJc4LnFc4rjEcYnjkrXu9aStda87KtGIThxUCGISiwgNlwxcMnDJwCVr3euiySAGMYlFhKbQcMnAJQOXDFwycMnAJQOXDM5LBuclA5cMXDJwyeC8ZHBeMnDJwCUDlwxcMnDJwCUDl6x1r4vm7DdcMnDJwCVr3euuAA2XDFwycMnAJQOXDFwycMla97pog/2GSwYuGbhkrXtdFQIaLhm4ZOCSgUsGLhm4ZOCSte510ZL9hksGLhm4ZK173RWg4ZKBSwYuGbhk4JKBSwYuWeteF63Yb7hk4JKBS9a611VhQsMlA5cMXDJwycAlA5cMXLLWvS7avPZb4JLAJYFL1rrXs8Ja97rjIAYxiUW8xha4JHDJWve6aGJEJw5iEKEJNFwSuCRwSeCSwCWBSwKXrHWvi6ZJLCIziUuCa5zgGidwSeCSwCWBSwKXBC4JXLLWvS6as99wSeCSwCXBNc5a97ojNFwSuCRwSeCSwCWBS9a610Ub7DdcErgkcElwjbPWve4IDZcELglcErgkcEngkrXuddGC/YZLApcELgmucda61x2h4ZLAJYFLApcELglcsta9Llqx33BJ4JLAJcE1zlr3uiM0XBK4JHBJ4JLAJYFL1rrXRZvsN1wSuCRxSXKNs9a97mhEJw5iEJNYxGtsa93rookQlWhEJ0ITaLgkcUniksQliUsSlyQuWeteF00HMYhJLCI0XJKclyTnJYlLkmucte51R2i4JHFJ4pLkvGStey0/40GbZ4XTJTs6cRCDmMQiziueLtnxoE07oxKN6MRBDGISiziveLpkR2gBLaAFtIAW0E6XzDpjERlbMrbTJTsyk8lMJjOZzGQyk8lMJjOZ0ApaQStoBa2gFbRibMVMFjNZzORkJiczOZnJyUxOZnIykxPahDahzYu21r3uKETtWV/rXs9RrHWvOw5iEJNYxGsm17rXHYWoRGgCTaAJNIEm0ASaMjZlbKpEIzpxEIOYxCIykwbNoBk0g2bQDNrpkjXrh0uez9jOWMR5xcMlHYWoRCM6cRDjiHHGJBZxXnE8iEJUohGdOIjQBrQBbUALaAHtcMnz4d4ZjXjQZJ5xEIOYxCLOKx4u6ShEJRoRWkJLaAktoSW0glbQClpBK2gFraAVtIJW0Ca0CW1Cm9AmtAltQpvQJrR50c51rx2FqEQjOnEQg5jEIkITaALtcMnziekZD5rFGZ04iEFMYhHnFQ+XdBSiEqEpNIWm0BSaQlNoBs2gGTSDZtAMmkEzaAbNoDk0h+bQHJpDc2gOzaE5NIc2oJ0u8XO/nS7Z0YhOHMQgJrGI84qnS3aEFtACWkALaAEtoAW0gJbQElpCS2gJLaEltISW0BJaQStoBa2gFbSCVtAKWkEraBPahDahTWgT2oQ2oU1oE9psmp/rXjsKUYlGdOIgBjGJRYQm0ASaQBNoAk2gCTSBJtAEmkJTaApNoSk0habQFJpCU2gGzaAZNINm0AyaQTNoBs2gOTSH5tAcmkNzaA7NoTk0hzagDWgD2oA2oA1oA9qANqANaAEtoAW0gBbQAlpAC2gBLaAltISW0BJaQktoCS2hJbSEVtAKWkEraAWtoBW0glbQCtqENqFNaBPahDahTWgT2oSGSwSXCC4RXCK4RHCJ4BLBJYJLBJcILhFcIrhEcIngEsElgksElwguEVwiuERwieASwSWCSwSXCC4RXCK4RHCJ4BLBJYJLBJcILhFcIrhEcIngEsElgksElwguEVwiuERwieASwSWCSwSXCC4RXHKue9UhZzxox+uh/Fz32tGJBy3yjActVoUkHrRaf3de8XTJjkI8aNPPaMSDNk/E4RI7rt/8XPfaMY+oZ6wjrh+bVzxcYsdllJ/rXjvqEetf33/3f/78849//veffvif7/7wz+cf//Mff/3L33/821/3H//+f/+7/8u///zjTz/9+F9/+u+f//aXH/7jHz//8Kef/vaX47999zj+5zj2/03ie5U/Pv+y7P//33Tk95rxx+d3/PHfn1v67Ifnn86/rja/V/fjj3L80et7HY/j57V//nlUfO+m++d1PP9GVP/883Tv++eXef/88/vh+cc4ft6Onz9+wo4f77/vz/8+j//sv97i0T+h/r359ROP730c/zmun1B5bsLxfyVFnmPUP/7rX//647/+Hw==",
|
|
3869
|
+
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdwAAAAAAAAAAAAAAAAAAAAoSaM+VQDeALhPStLpmlhQAIAAAAAAAAAAAAAAAAAAAAAACotEukxu6203JpLmrr8jAAAAAAAAAAAAAAAAAAAAC5gJaUgt64lUSDN0H7epgwnAAAAAAAAAAAAAAAAAAAAAAAaZNduOjHzu1KTwc5y6R4AAAAAAAAAAAAAAAAAAACNulzO7qxli78wQmLb99ti9gAAAAAAAAAAAAAAAAAAAAAAHlmQ8NkXHbFdyFWud4KIAAAAAAAAAAAAAAAAAAAA/8p8xmkAMhlRSv1/4GzxmncAAAAAAAAAAAAAAAAAAAAAAAP9hlvhudWn0kSOzfkG1QAAAAAAAAAAAAAAAAAAAGqO8LjvqcVSTLdTPRDtQvwAAAAAAAAAAAAAAAAAAAAAAAAW9Vmu2v+TPEf6CPd5+/sAAAAAAAAAAAAAAAAAAADPQHMdhh1/krYv/VTsG+2zcgAAAAAAAAAAAAAAAAAAAAAAG6oJboHc5WtBnakyhh7rAAAAAAAAAAAAAAAAAAAAEn7tkqRWvr5F4PcPYY+m7SIAAAAAAAAAAAAAAAAAAAAAABnVEGP9dgqz/+xXllay9wAAAAAAAAAAAAAAAAAAAJZXrrb8IHqEgRnGMEPevPH1AAAAAAAAAAAAAAAAAAAAAAAoNb61J189zrqOwzrhNSsAAAAAAAAAAAAAAAAAAAAZOAvXdsmPqvrd8uaKfXUQ2wAAAAAAAAAAAAAAAAAAAAAAHl49T0mlBs6wRbNa4tbaAAAAAAAAAAAAAAAAAAAAvE2SzJueGNjNNGrFmESdvkYAAAAAAAAAAAAAAAAAAAAAAAhJzAyauLtFMz0QMZ9PaQAAAAAAAAAAAAAAAAAAANbwS2G7D+OEFTqxgZmbWAY9AAAAAAAAAAAAAAAAAAAAAAAkdZNw1LXhPd0VLPd6YzsAAAAAAAAAAAAAAAAAAACYHDkk7c5XN3NghYThPZzAfgAAAAAAAAAAAAAAAAAAAAAAD5m+LCIZzXn6YstN4YIPAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAADXZSytT/7bmtUUvtUXXNWcDAAAAAAAAAAAAAAAAAAAAAAALzxAtw6k/wKUOXiU8y3zAAAAAAAAAAAAAAAAAAAAh1sDs0YAFv4LLEVlJprO148AAAAAAAAAAAAAAAAAAAAAAAVcCVujDZ8JOy6/irSpRgAAAAAAAAAAAAAAAAAAAJlVoDeJxwhBUMq9qCZ1bCRyAAAAAAAAAAAAAAAAAAAAAAARebaoSp74B2BxAA41gaUAAAAAAAAAAAAAAAAAAACx6b3W4qkq4TkOISJ1ZgkRcAAAAAAAAAAAAAAAAAAAAAAACw3tGIj/F7mWa40dAPdlAAAAAAAAAAAAAAAAAAAAt81DpMqRCfYg9fzmoCFS+EsAAAAAAAAAAAAAAAAAAAAAACGUPglJok8EndUleq0R+gAAAAAAAAAAAAAAAAAAAMcLvqqrui8m0+ffTUXnI/0/AAAAAAAAAAAAAAAAAAAAAAAX1VF9zShpyV48WTwuDUIAAAAAAAAAAAAAAAAAAABGQ2vhZb9bnURzjKQJ4BvfsgAAAAAAAAAAAAAAAAAAAAAAEvl1f3Zpgu1iWrBOmKbnAAAAAAAAAAAAAAAAAAAAyj6BzsoLXhB4zn1evSNWA/cAAAAAAAAAAAAAAAAAAAAAAAb8zukKA2adGm9RWix+OwAAAAAAAAAAAAAAAAAAAA75VcvFSWyvPGzlkyz4mO3zAAAAAAAAAAAAAAAAAAAAAAAVY1LaWfCsqntkHUPjqD4AAAAAAAAAAAAAAAAAAAB9u+7yRdFoevwewjv0Bmc4OAAAAAAAAAAAAAAAAAAAAAAAIb0eqlaaWlXbZacDzFUHAAAAAAAAAAAAAAAAAAAAXUMtv6z5G3h/c1HfE/5+llUAAAAAAAAAAAAAAAAAAAAAAAa5cEkmrRrWD9WHovVoAwAAAAAAAAAAAAAAAAAAAJgcabllGCC+AYK58iCxMF1/AAAAAAAAAAAAAAAAAAAAAAAKondW4XR0W8v/5qjkEAYAAAAAAAAAAAAAAAAAAABeN4LZu0HljNq4b74JrR5s9gAAAAAAAAAAAAAAAAAAAAAAFgnTkEe3bXQ7S6H6gUHjAAAAAAAAAAAAAAAAAAAAmL0MsMr4k5VEcs37f2Mm/lkAAAAAAAAAAAAAAAAAAAAAABj7WgeZNUbpYN0i5G0LAgAAAAAAAAAAAAAAAAAAANkMH/+muj/BLhpWzF2P75m9AAAAAAAAAAAAAAAAAAAAAAAtqP+tanTTIDfBsypRdR0AAAAAAAAAAAAAAAAAAAAMoWHcqf6aejRptz+Qb+8q3AAAAAAAAAAAAAAAAAAAAAAADReBqmAvEpSLC93DedxRAAAAAAAAAAAAAAAAAAAA1Z+i9Yz39SrUq/xPQ9lM5tEAAAAAAAAAAAAAAAAAAAAAABqPGc8CmZatlLtDiVXoNwAAAAAAAAAAAAAAAAAAANdAZhyA0QZAuNa7ZQR80dt+AAAAAAAAAAAAAAAAAAAAAAASMfr9d9CZrGJZ/O2zu04AAAAAAAAAAAAAAAAAAABiD4/i3JeDLv7uxWO5ZE+NWQAAAAAAAAAAAAAAAAAAAAAAIK3nq8A6FSPPDod5eHf2AAAAAAAAAAAAAAAAAAAAJjL2Cb7No3VhpSi9R8KsmGIAAAAAAAAAAAAAAAAAAAAAABWHF3BC0rTrLSVXOA7RMwAAAAAAAAAAAAAAAAAAANiBAX0N8AyOznoaDPmqZsxwAAAAAAAAAAAAAAAAAAAAAAALA6Otvub6Tkg2iuPM3b0AAAAAAAAAAAAAAAAAAACRBibYibVuGszgO/J0RbOcMQAAAAAAAAAAAAAAAAAAAAAAFuNMsA0iLMXxXrlMf8dOAAAAAAAAAAAAAAAAAAAAJFsaxNua9pGpyL4PW6c3xLEAAAAAAAAAAAAAAAAAAAAAACwV+ax3yCLZyKHVbDP9vwAAAAAAAAAAAAAAAAAAAKpPSvV4LSDr5wgRa6INQBBiAAAAAAAAAAAAAAAAAAAAAAAvJecSERrVDKT22EtlIO4AAAAAAAAAAAAAAAAAAABabhV9SoJqHz0z83Is38+l1gAAAAAAAAAAAAAAAAAAAAAAFTD1jLm4u65LGw59LN8eAAAAAAAAAAAAAAAAAAAAruX6ge1WxQqHaadx4qE0uQUAAAAAAAAAAAAAAAAAAAAAAAX+0E3yrN1KKQ1GkJlSVQAAAAAAAAAAAAAAAAAAAF3eRUo/OQZI2TY8iTScyLNrAAAAAAAAAAAAAAAAAAAAAAAn+jF8Il1Mtp3locZFc9wAAAAAAAAAAAAAAAAAAAC/OKVpJ8CsRSTWFjyzt3WX4gAAAAAAAAAAAAAAAAAAAAAAG3aQ+PzCaKJ3KC4pEkAjAAAAAAAAAAAAAAAAAAAAkN03mgZXqgqmeoOdGSafRdAAAAAAAAAAAAAAAAAAAAAAAC64WfPjJ+Q8Hhhn1hL2aAAAAAAAAAAAAAAAAAAAALyyPoj0qHwjDWLmhl+66oEKAAAAAAAAAAAAAAAAAAAAAAAnamBNIbCC2Q0sHZLn+XEAAAAAAAAAAAAAAAAAAABg/RDZHoDqYLizS7X9djpsnQAAAAAAAAAAAAAAAAAAAAAAGfLcRYbrs7szwCSGHGjjAAAAAAAAAAAAAAAAAAAAk3POd1x9UjsFSEN4OVjHpmcAAAAAAAAAAAAAAAAAAAAAABGduAA1D043vNZtBWpTBgAAAAAAAAAAAAAAAAAAAPSmxv/fgKctt4di4jfVjNX2AAAAAAAAAAAAAAAAAAAAAAAmgUpZgDVVY1o7bf0FbRkAAAAAAAAAAAAAAAAAAAD0W42WBpIx9I4NDDTVdZOmpgAAAAAAAAAAAAAAAAAAAAAAC53DI5kCV5YAWy9owVmRAAAAAAAAAAAAAAAAAAAAdQ4bXLmXo634VAv1W7kmTsQAAAAAAAAAAAAAAAAAAAAAAB9s1bbUP2d5iuRlXAFvNwAAAAAAAAAAAAAAAAAAAFlsxhg4SPMsYOx0/ivNdrIPAAAAAAAAAAAAAAAAAAAAAAAO1i0QsBk1XwCLRkEtDi0AAAAAAAAAAAAAAAAAAAAgIN/auMnbgzW8o8goSxWFsgAAAAAAAAAAAAAAAAAAAAAAI6KQbQMgSqT3m1uAuS6qAAAAAAAAAAAAAAAAAAAAkRbE0V98mlHxfDgw/nweO0IAAAAAAAAAAAAAAAAAAAAAACSuyuMy20jgO5f8ZFp/BQAAAAAAAAAAAAAAAAAAAINMXpOM+ei9S9WEfiQIQHJ2AAAAAAAAAAAAAAAAAAAAAAAIUktAz4e2aBGQIvaRz6wAAAAAAAAAAAAAAAAAAADmmd+GBzFDfsV/mJD+SzpCBQAAAAAAAAAAAAAAAAAAAAAADh6dQyfmNfVH2meu9X6GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADzX1Ei2RnPccTcveJL79LpXgAAAAAAAAAAAAAAAAAAAAAAGedKY3bs4EQyyXV2u2pqAAAAAAAAAAAAAAAAAAAAkgjp0plNameayQzh9ZoI2eoAAAAAAAAAAAAAAAAAAAAAACQFV3mq4oHVeoj+cXL2awAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
|
|
3870
3870
|
},
|
|
3871
3871
|
{
|
|
3872
3872
|
"name": "process_message",
|
|
@@ -4116,8 +4116,8 @@
|
|
|
4116
4116
|
}
|
|
4117
4117
|
}
|
|
4118
4118
|
},
|
|
4119
|
-
"bytecode": "H4sIAAAAAAAA/+29eZxcR3UoPNM93T29T3fP2t0z3bNrZiRZsrExO7ZkWzKWLcsbko3tsdXIsmVpNIt2aSxssTuRZTmEkF/8WGwrGOOA/ZH4+3gPwgfZUIc8eF8gxECAkAAvgHksyZdHwhtZ3bfPvVXn3Fv3npZqmPYfyaDbdarq7HXq1Dn+E4+879mp6V13l2Zm7rh/4f9Mbivd9MjRpy+f3r5jx/ZtayZ37DjZ9L6jT1w2PT25/8Wm1KPHHznx+WIT/V9zk+1PmpwBauYC5OMC5OcC1MIFKMAFKMgFKMQFqJULUJgLUIQLUJQLUIwLUJwLUIILUJILUJs9oKNP3rB957YdJWcAU9wA0w4AVpXwG52BzHBhr50LUAcXoE4uQF1cgLq5APVwAcpyAcpxAcpzAerlAtTHBajABajIBaifC9AAF6BBLkBDXICGuQCNcAEa5QK0jAvQGBegcS5AE1yAlnMBWsEFaCUXoAu4AK3iArSaC9CFXIAu4gL0Ci5AF3MBuoQL0Cu5AF3KBehVXIBezQXoNVyAXssF6HVcgF7PBegNXIDeyAXoMi5Al3MBWsMFaC0XoCu4AF3JBegqLkDruACt5wJ0NRegN3EBuoYL0AYuQNdyAbqOC9BGLkDXcwHaZA9ILTR1AzfAG7kB3mQP8PhnX2y6eeEawN8SCIZaw5FoLJ5ItqXSmfaOzq7unmwu39tXKPYPDA4Nj4wuGxufWL5i5QWrVl940SsuvuSVl77q1a957ete/4Y3Xnb5mrVXXHnVuvVXv+maDddet/H6TTfceNPx4wuLtN6hvFgMHn1iza6dM7OPHn1y7fbp0t2zvqNPrd85W9pWmv7wTRfZe7HN1vHNSuMf+JZ1fJPa/LXxpzaVdkzObt9TalWDcLMIIawGoenox87cQG2dnJ1cs2tqv7GV0++CiwLQP7JmEuz49O+Bv+DE1t+9CP4y/U7YgBoRmt7lGQWpox/esGvPCbhfgx8E2BE12OmFe77tOyen9y8Mum7qMQPwhy/buvXl7RszgRmeWb9z68v/6pE7mi2T16Ywphf37Ktgo/I//ZAwpi8tcMmmLwELv+zY8ci4FcfNcGrLNx/gKcsnv/HpAyJtWtTQ8/ueOeeNdeScy36DOKeFk3NaCM4JAC1j+RQ0Pn3D+ilkfPpmZdKLK///kGf1JNHxPlUN/ZEbZndNPSIXHp+cTUJWNvHXUGzCeGvtB6Z/D9eIJZ0g8uQVu+cmd8zAOQxYCwi9eu7+qfVvNcBFXnH0I9fsmtxq/EOwNuiJhe1Nl8SZg/KZW61bAwwoHRC2DgjXBnzkzDofWfHkptLs3PROqz1f88SV20s7ti6Q6OczX33yiw8/9/lTs0898Tupr8ffH10emT927Ce5H+d/76VjH7YOXGuQ+EM32cdlBD/mCmPe1/+xf8s9n/j3XdGrHnx279f/7tq5eH7yc4V3PrHlC48UfnDH260DrzQGfv+9H5hPPnvivxQnyr8IXvXb/3LHz9YHLv16+VDP//u2X/3gpUetA68yBn55y6++8Xzy0QP7Hn7h4KXLMpMfe/SrP/3hn3/x48mfffuZ3V+92DpwnUeXa73a+Dbr+KvB+EschAmt49+kNl5Y/zVq433W8RsMxB/9yKlvXPZwedV3fxV594bJh/Zd9J6v3PKjA91PDX/v3mfyH0tZB15rDPzO7JpHZrvuv+RHrV96ePUHc73f+vlTz//zL/eXLv2Xf/7+p/p/Zh14XXVg94Wjr5r63b9pf3HZwN+/8bMfW3my5+dDr33xT9Z98KV//8t/k6BqoxqphK1erza+xTp+k9p4v3X8DQbG5P81V/+wDrxRVWFbxt9kM3H1v4B14M1gYPODAzPvCz/cvOFzb1vxfCzyuR9c9vjla8pffOjdheTHHrcOvKU6cPy14ZeeePeRY03/8NT//K1fjn/6jStSfZelVv6PD/xtbuf0rT0vWQe+WW2reev4zUDxrVbH1BaHmBIG3qo0ryDFtzmcVxj4FocDBWG4XQ3RAmvcoTY+bB1/p9r4iHX8pNr4qHX8XapnNMv4u1XPYZbxW9XGt1vHl5QsfNE6/K0O+WbCOnCb0ryrrMPvURq+2jp8u+r5yDL+XqXpL7MOv09p+Brr8B1Kw9dah9+vNPxK6/CdSsM3WofvUhp+o3X4lNLwSevw3UrD77YOn1YavtU6fEZpeMk6fFZp+Futw+eUhm+zDt+jNPwe6/C9SsO3W4fvUxq+wzp8v9Lw+63DDygNF85fB5WG77IOP6Q0fMo6/LDS8Gnr8CNKw2esw+eVhs9ah59+QGn8nDD+qNL4PcL4tymN3yuMf1Bp/H5h/ENK4w8K448pjT8sjH+7Qwv/r8LIdzg8/b9DGPlOh8f/k9V4x9koVzny8NGnr1yIwWzftvPMPzz2J3Oz23dsn91/VWn2prN/LUw0W9o3+9jRZzaU7t81vX8hojK9cA0DQ3HYlzD6JYJ+iaJfYo+dubi6f2pHyXyNIP7jJa+o/uNZrFD/6/hxa0wwTkRyE2peUK96JDeBR3LjTJHchBjJjVsjucaXJFxaNV4HvhouDjJZUpwsWZsMBzjDDfAwN8BZboAHtd/yfm6Ae7kBHuAGOMcNsKQ9UdhF74j2AKe0Z5sZ7flwWnvlwM42u7U3AQvO/JIzzAsHCIsTk6g5Wk4dMmMe1B1LMLljkm0matM7HxS3HdRGzwTPAc9WzgFrS3fNbbtm17bjx09aHfPKwLVH/3BdaXLq5eeTkBp55Pc3yn/f1nRS8OQXjl+Vd5knHpF9zMsPBNYhZx39JvMGP1XZ4JWl2bvvuXFy27bS1oVtzhw//giy7jUWeASPCceGpOr9mfKxIXne+RQi95MV5J65918zOTUzt2NBULFzXRxhoOYTEpqvRqjb/Kjzs2aVoMi/r3vUyenRJpUtpXpJYeGmdHU1TdYvGYg5y7d2SBrLtw7jAkLOXU1W7mqCu6mGCx4154qA3zQRJ8eM9VsbXHMlXxBsqwajgvRnzq745f9x3dRJeJbdMLdDOrRNgJvEZMLJCqw/ScBfm4Dh4QRl2yPYuDhBYEYF1L4IFZCw5za1aTMKVrMN7ttChhT8hoBMf/yaBYVz4z2TO0EqlQx6qpZOVRt8+vsiY6SqiNiCzZkSt5GqYe9sNtTp74pCjDOVRwQ7YKo2nKmSTEzVRjuZnvW6CjXAvgVzAL4hIDMkU6VMtkVgqszpX4hMlbZlqrS4jbTAVC+J2h9nKkUEu8iVTeFM1cbEVCmZysCZKq16t65CDbBv3JNIYSDbSaZKQ2AiU7WXmyU2LGPLVRlxHxmBq/5DVLw4VyliOK/OVWmcq1JMXJUmNThO3DRBg53uaIADPMwN8CA3wN3cAGe4AR7RHuBeboAHuAHOcQMscQPcp72k6I/D02/TnrPnuQHu0Z4q7FueWoKc/RA3xG3sSzyGRq0kLlim7s8nM7gLlmZywTLkeUfYc7tqqjPmhYvTtsN9C6E+8A0B2Uk69u0QmOjYd5abrxYZo8PWse8Q99FhdezLzVdUH4ydkjizSSYupqKTGYKNFUl6hTobt+NsnGFi43YaV9ZpO9SmXatEfrBvCxk64TcEZBfJxh0QmMjGXeXmLSJndNqycae4j06RjW8So/M4Wymi+HJ1turA2aqdia06ZGoKZ6tOb6Eemhxg3xYydMFvCMhukq06ITCRrbrLzdtEtuqyZasucR9dIlvdJWhHwOVt7jSvsNg2+DORWR0+jv2IZ5rfIkLoUo06CxC6VdWZAKFHlXOrxJsSiAcqbMQx4oVPVbkRyvaNEIjIheFy6/9jzDurUq5AsRRCj7ouCte/XEHYQbkC40sULk0Qhqi9Tx4VZ4sS4hUFLjQzxBI3wEPcAGe4AR7gBjjNDXCv9lueW3p8OMUN8DA3wHnt+ZAdh/u050N20TuoPduwa+wjogHG3ZFY3ZPnYrg7EmVyR2Ikptwnz4XlyXOxeifPXVHP5DnFhKGslZuy1dUIOWk5iDnLtzwkjeVbbxWii+S5hJvkuRhcs5BRBtZszUsLAxh2yXNRc/JcGE5hhRvDZMLJChrSDqUdJ2eMzPgLuzvreNdInpPBw92YusDUl3oyeLdKMngzcR72nqXZWjuiNzi/Yecadm6p2DnrT0xxJZoXwg6rwaWNmN63hVhiDKogREDj5liifN9iNDFebt1kzPw9syD/cUWQL5/bcd+m0uz09tKe0tm3NOrytgH592sfdf6k38pHYULpRuuudKO40g0zKV3JMSzMoXRb5Uo3Wm+le209lW78XCjdVkLphjmVbtyN0o0SSjdGKV1wWRG1U7phs9JthVM415MOVtBwsRouVsPFWiouFr6CSllqqa4IS1yaaNmX9qwiFry1G6cnz5TolumChiPScEQajshScUQI7dVKPhFmDj6BBRDHTLp2+M89a6ibPevWm6oHTt9K4agbd3DUTdilzcQlViFR9hnpOr4LzTrr74YrSuvmyR3bt07Olq7YuXuuNFfaeu2u2dLMZTu3XrGntHPW1bn3SuTfr1I593rtKRRFfWnKqYgQTkWz+Ejd+JMqNecnCga0EC+uA8TD2SDxRC6krvBaDYX3DK7wqtUWEQ7NffiGubvM9jJeC40jg/Ky3ERjEMnc+bLviuqysy+QuiMnGg7ceemtu/PSizsveSbnpVd0XvIczgtS36R3UTsvBTWkF63cVEQ1Sz/EnOXbACSN5dugB+el4MZ56YVrtnzrg2smqov02jkvebS+SZ8AtxeTCScrsP4kjzmqqoHlnEmcJIFl3+2GSvo0tdKcPa4WKCx1v+IifXBlpsjat6grswKuzPqYlFlBVGZ9HMqsV67MCjerKLObFZQZYB60ZLALhSYyYm/Zt9dw/O4RHM5e6FM4tyC9hKeehj8j5mtjmq8N/gwrHrQZLauwmSwxgFWbulF81VP5soV4mCEUQOlG4WVr8CrU83diCBshpGKdQIJhMBDXOiNC3Gm4CvI2CZuNlH3vNtjskDBnnwM26yNlm2KzPmq+Nqb52uDPsAiDwEwFgpmKKPH7UWYaIJhpEIU3JDKTYDtGCNsxqnpGVrYdo7jtGGGyHaMivUcAva3TLlM91SPTLhOnXQb3bSHDGPyGgBwnn3Etg8BESR0v+94ncvdYjUOQScfEfYzV0FcV/RPW/YxyBoFGIeksEw3XuL+6mN9HFSbi1AHVGJMqudY3GMAfpxTrKCFd3tEwArZqWQPAUFJBEEaJ2ZLEtupF3STq2dao+zQqcQh1DRh3S2i7rNy6zAD9cQGvJpElkJ5mQnr6PCA9LeoixonGahREUDQh05QGyaxIHwcDhfPVcvg78sw4AQYhZ0bTTFTAW8Kkn0E3izIpmFdk04lya9wA/jnXbDomfByD6gWzO4QJuBvdKGmsxuy26/tL4xiN4nIMweU4rc7Hyr7TBvDPKXDlMDhyygctFwdNwHUR2F+usJBx26jqchL7Js4WEbS87PsKwL7EDkERxOWzXYGhxgkV0g5/ZpG9cU5dZVq7vZC/6EHIe6RcH/qlAfxbAmZJThqHBwQetLedB7QLh5vlnBMtt7VFK0kB7hHQvgIMFQzIBfB3pDVaCQYh1sg0k6I1egndrj2jrpAw6spy6O8N4D+jTuEkoy6nWHzEnY7twYatIDXihIlJhA2vKPv+3d4eYWK/nLZHC8buP+zt0Qo39kjCzisc4n8lBnNYhLnc1h7R2F9u2pME+/4Wh/ZoGA3R3EqEaJaJIZpTNe8Jv9EZI8I0fWKYBlenQyaLioVqEuheUnDDeFyzIMY1wZaFyCbYMh7bHBBjm2DLQnQTbLkW35TlLfh7PF/MUtlseMiYw9CAvIAIypEcExnAriDuhLxP00fsp0gEEPvrfpPejwcQi0wBxH5R4RU5Lp8K8sun/kV9kz6ohvQhNGTdJAb6cD02QuixUQ836YNubtL7CXM0ANdsdfGAReq3ux0umm/SC3AKK9x+TCacrMD6kyL8tZOb9IL9TXpRYgEKZf+rDaP/BfxiWEg5Kto6I/3OUo5kq+ov+18PUo6wCZ6UeTk5iDkp6OsNm3iZgjLK2W54gPS+cpBTxHUNlP1XAO/Lyg8DCkzbj6Y0DKBLlxEYLB0ZNuh0xzIiD5b9b7InclFc2YAtJQadsd6AfFXXwVXJ7M6aXVP7K3ZH8qodtwzQnConLBRPKiR1Sq1Ileuvp/J2CnbcVUC5K2/G1vNGAYAdpdmSga8TLvBVOKHydLNAuErFurtKRdxVKjC5SkVROxVqrhJuJ4uiy9lvIh+SO0pOZ6L5cxWavzyNQXI3zpPUacs3086Tw7oNS5xB3PvSeTlZiov6td+AGtIH0cSQJiLekFfzs9370gNufOkiXDPlZxOGo2hvOEy+dB5O4dz9dbACwt3OO/Kl8/a+dEGaKO+fA1mpNimnFbKcfkftQ7yOh/5U49C/MF2biqJqY8k4rexmPYeqGlNDO36fJGiACUIdLYfEsXxbYfDx29V11ZghLX/hXFfl4aJxXbWciAmsIILGKwklfgGhxFcRwZLVYrDE+FO4WAJJBhfJlcxxz+nnVMi2IFxXAIxnFHzEPBHpzMCfEfN1Mc3XRVhi6o1Soe7eYKH+b5QKJK5wV6Ag4tHkKIjMmSq3dBjHzMfFJ344ohVLLlyijugEjug4E6ITIqLjKKJTcGl4a9b7scno1qw4wIPcAE8/wA3xADfAaW6AJe23fFD7Le/Wfsv7uQEe4ga4jxvgDDfAeW6Ae7VnmwPai94+7XE4xw3wiPZEmdWeKIe1xyG7gp3SHof6K9gp7dXXEnTn5rX3HNiJgvf91UZU2KmyR3uqzGuvbub05+yH2CEeE8JyINsyrxABSRDT5eHPXAVVnG8bK8vjuU9B4mK1PgUpF30KLlbrU1ArgaZwoTSsFgW7UD0EN1z/C6Vh8kIJfw0+TDypvM/do20c4EFugPu5AR7iBriPG+AMN8B5boB7tWebA9wAS9qzDTsO57TH4az2OMRvELTh7OkGmT0DPKw9DtnN3pT2ONTf7E1pb1RK2quvg9qzzYz2RMHDR9qICjtV9mhPlXnt1Y3+HiIePnIN8RhVvyuvcHofdhY+GnYXEHC+7bqFj4ZXq4WPxlyEj1arhY+kiV3HxIhRni/rUMwCBPlRI0zRzRH4M2K+DNN8GfgzIf3rSTQSp4jXqHokLo9H4lJMkbg8iSs86zAvyzqsjNui8OClSBCmAbABUDOAeFKyU+F2ZCcpPeR9IgOYWDqz6ECdK2LPVI4AAylt53Jn7QdoGdjhyuvyM+9DxOVslhjJ4XLLJ6ovGvIXoY8OjYJRLc85XDWAAdYtLqBYDv1XA/inKBLkSSYpyigLZiYAZ5hom3FCWxEkeFjRgRKWfLQ+alqfjMaftS9RNWzHdeieRmVcN0xx3Wi55fNKXPdnDlct47oOKUpCjxvA/1Jgjg6nXNdBcl2Rcti6mBy2LocOYh/1ZqVDwSOi3qyYEefxZcoYWn22SXwkBvCBPxPrJp6JZcVnYrgFAlX5hCpXF+BorS7fap9kHVryl7h6XzYuVnsCmLCyQDeEgbBAt8gC3c4MdzcKUloFBZQnFCW2uxz8jCGx/yRWD8NPJopcd5H6yYR4D5Wt33uoLHoyMb3TFghkaOYdTCGNYdvYoFuAR7gB7uYGeJAb4Omj3BBnuAEe1n6F09wAS+xkfogb4jb2JR7THosHtBfnee1l5Yj2VJ7VnsqHtcfhIW6AU9rjcF5794Ydh/saGnsJaGx+Z+Rt2osKO1X2aE+Vee3VzdwSdLPvqYObbY3KmIp/OQ8IFJxFZQpUsbE+eXnKYSK+otgK0K8eXyFaAQ4zxVdGSepRHfkkCSUAsVw5KsafQ+4iRMigIXLbvEkjhQuR32+U/37Ip540cqFK0ohPEDzQhAC98MuSeKYu/LLUfB1M83U4nC/DNF/G4XxdTPN1OZwvzzRfHv6sflHn2CKMOgt7HvKWA0RppSG4byrcjel38gJ1yKT+JNeVgYOEBd/iziWoXGYE9lD2uCi3x6BLdBXMEdWLeXD30ye9mA/8qQH8KHWzmKCe3faKjWVwoemse+m6TlxoOpiEplOkegdiU5Xqg2bkZrKTq5BxCv2SqGcp4241tOOlEJvEdjoAd/itaAeaf+CilHG3m1LGnYS4dME1WxUFML6ddqWMO8yljDNwCivcTkwqnKzA+pMO+GsnpYwz9qWMZTkdmXLgA/ZtQTJibwZDOtHeDJ3OejPIVtVZDjxu3zGi064tSAYnbNcZdoTCWlnYbfLVPG8o9Q8raDD7TiLdTvtqdEpv9wNPEZ1EuhX4vNOMji4IBR3UjQ6KY/uNyxgJ7BdzP52iScZM2XLg4/bM1CGuLG5LvqwzFo/LV/VJpvYjuA3qRL90o186uNqPnBEaC0vGgWzasWSG4i5P7UdwfGWU2o9kCKeso+5OWQfulGWYnLIOUaVl0PiOyfwJfn+nI+VATeep/QjlpkkdxLjLBiS1gixW9x4cl0aUznCOwiRD1HwdTPN1OJwvwzRfxuF8XUzzdTmcL880Xx7+DAOJHkQrcLdLjMtQOfAV+xa4Q2ecWwTqJoWYb942YjpGJnAPUU8IxxQWMmRrsMfdrF7aMR5shOhCP+Fm9RvP6+pNvXPxNuWCxZuou8WbwC3eOJPFkyKLIQwxKrcyE3ULQ1TWfGU9gxAr1JC+UswHx4IQF0DMWb6tgqSxfFvtIQixwk0QYgKuGU+TXyV4wkD9Tdh5wuPmIMQonMIKdwKTCScrsP7EpCdMwNC1vixAxi3tOwk6jtYkXPk9moBpNlArCA23Uo3fO9Q13Epcw61g0nDSFvYYNi6ASxPclwug/kGmu0Cc7gLCIwIg+/lBDvCDHOQHOcwG0u6qpQGwAbABsAGQGaDwbRTaGuGrYb1vp86BHe7ui6kYxjA1X5Zpviz8GZ4gpuy3SG7WwZzWja1wgMgVpGdAIXIFWn3YuGkPXoJOiwQ4DBh3SgIcK8rBPzJAv4ra7rDZmfebWLHiZFW+tahmn1QODH0p9GQTUJAuY9Ak6R4USNKvdECKNShr25FiUvoqPPh+A/SVVMmA5QoiBabE+Ia8EyqapEzGP2+CV2f4okdV+dYQ6q3yea8DgTmMNYseWbMDZ80VtqxJnxBU+BnghOJoNMRXJFQtGuIbI/li2MRiAn3GysEtylUfRKbdKpeTtzgg/Yr6kX7YlvRjdGarY34ZM7GylfSAMYYUIulFj6S3aWm5QPp77EmP5YUNUaQvloP3OSD9cP1IX3RDevvyeStI0g+JpAeGuVPBGgx5JL1NquIC6ffYk37IjcIfKgf3n1+FP+SG9EMeST9Mkn4ZeUQYYjUHo17MwWg5eAwwhuToAoY7X/VQ3W+1J+T3DcV2N7fa7QpbG7clyBBJkHGaIAvi9F4i5QnIOZIDzNgXxcUNlm59UUZJiXUik0O02WDlbuNOS/7yxWXGhnPe7q7xtpBZDnZfyy0nwgvLFfSq6SyD+d9OXZ8VEqm6oBz8A3v7Rx1ZUTOxShZFgsjCUbRK+Gi6FsQmRKz0CspKryoHn3BgpS+on5VeZWulV4uYXGWL/gvFQatNZw2rzF/oVCOscqOA1hHlYIft4xMr6UcCbk6mRSp2dIHw0XSmxdhkZf0CSxfYsskqMmyrwlsARwIj0Ew0DOdW0XMO2GQFiCgKFrwZPmu0xfOoCMCnBOAuEYBfCYAQOG0h3JOAGhfdre6eBHD3pIXJPQmIZG9B3ZMgXJrAZcHquHuxyYLiZEEiom18K3EDPMQNcIob4GFugPPcAPdqj8N92vPhAW6AB7Vnmxk2gMDKMK/xiPaMs1t7xtmvvc7epy9rLxqdfVB7jVjSnm3YcTinPQ6ntWfs6YbvoJ/6YsfhYe1NALsrgrd81UYh6s83e5ee2ZvSfsunH2zobP1kT3+NyEdl40+f9ljUX4Pp78XOai/N/MaencwaO9rGn37tWZFdbe/RXuHoH6Q7oj1RFoHC2beEFE69dCy794D399FmiYe1JzO7NLMf0Q5pD3DmnMleM+gPWfnt5uoft0pSmJrPNGck8hkcXdsL6ZL+6pTe8xG2uslHsCwnAFeG5irAhV3yCnxhT3d89i1rB399m0KuQqBGU+eMABIcBCSG1JB4F5p0FDR/aRGxWPkSgJOfTTQaF9cVVF2XCg7BLIJkGBje4o4s1c7zgFGANBDphmgJA2mVe+NPvFq908TzUemLhNBHiPdpINMerbWlWC0/A3+GgUT7xlbg3iXfykfta1FJShtlbGWNLm1UoAszWT+CkWh9rwkEAUYtE9lb1Yly6BMOkkvHPWYNRvGswYma7CMbWy5icsIW/ZIUvuUQJ9QTkDHxax7OLXxNQdlxnnpqsOY6sWAxAFhrmUw8BU0ppbx61RA2L1gXxOpzzjTECJOGGOHQEHfIt/IXrjTEyOLREMM2GuJLS1BDDNdNQ6g8xnKkIYqGhngOA70SoTwomt4jof3Kcuib9sx/gRvs028v+qjkdvLtxbjwcRWkL7Ka1Qh+jEcMskKWq8uhfzK4drhuDzMuwyVjta1kSN9Y2NHmInGQCScCd18E6YSxoCyN3+BujLVIK7QKTit7ORT6KfVAchzihHo+qbKnPlRi+yDAainelwR2nXBgHJfL5gUQMI1HYrMP7l1WHSL0v+3fYWEmBmAzJjcy/2mvaFbIDjt2zCytGAHWReBfrJO8HHIPJvDLPQr85ZoVyOgjC2RMkIK1QsH5cSQ6E4bovKjKgwb8u6Uc2Npmz4ESwVvm0dHoozhwBcWBo9TzsDFVV2AFdU5eWW7tdmDqvHJ+ul5Vi1y6IZLnY6sc6NkJQgZRU7ecVM4rTL6VQJ/l5dZBytSNQpwIX8fc7UlRXsVz4DIHpm6MNHXL0AOZU1M3JsHmeLl1hb2pW4YI0hht6paVW1e5OlAOezxQjlH4n6BOm6OowI95FPgMLvDjtgJvUw9b4ahImbrlEF+UYI2jjOJSdJYZovM0BnrEekGxDvKLIuOCGEpUzrhr7Bl3jNisT4HbTTEignHF896IE8Yd8ci4N+OMO2bLuONkbMuVcEvCFRNOGXfMnrtEJbSO6Nk4YjDu71t/lSDu7FJ1L3GSwu/lEkxviFMizhKAtq6L9MflhUVSXEX6I0hBkyvqWaRfsRER3q5VqH2fg5gT+gsC0ggdBisQXRTp73BTpD8F1yz0cAJrJtpVpeyK9CfMRfphpysBbgqTCScrsP4kAX/tpFNgHLFNMZM4CbYpXm6917BNn6ZWGrPH1WWgScA7CD5KEbpMsctVSl2XZXBdlmLSZRlRl6XqqMsybSq6rE1BlwHekWuz9RzarFcN7X2i64dpswLBhaY7QMu3foOP366uznoNgfoL5+osAReNq7Oi2EMYLBpv3jZANFMdJApfDYmWAzguuO0YIWyHLDUiUW59u8gYcTXGaDLyRESpjzccqkXuUG2op0PVp4b0AtoouYlQM3FRzeAO1YAHh6rPo0NVJPpH99fJoeo9Xw4VutaXBaj2P8MEIeOEMlG0bn51ZdKLK5M4kzLpFZVJvKZM8FBMr3iA7oOijkzXRwZDKJBo18gucgeealpGiGqXUl3Z5XNT1RKNcMQJTY+GzVNkoNckLqK5TpVbnyYqtsLR8oqtcV2tb7x+1hcXmC64NIG7uyBikekS55C7DXss5e0Eb8VWCW/HbHk7QfJ2jObtBVf0BepKqBUOr8Trmr+NLaUgdiBvtV1/0VkH8lZpVfrWz4AO5MLq48Q5gyqj3F93oeyvfxnlfllKJ4NL3CoXhf56u8Rr6ukSD6ohfQgtUd9ERLxbrd9GCC901INLPOjGJe4nDrsDcM1WAwh0RL+dS1w0u8StcAor3H5MJpyswPqTIvy1kxhjK5oHDMVJUEmt5davETFGsNKCPa5MLnkHwUgDhDJTZO03qyuzQVyZDTAps0FRmQ1wKLN+uTIbvEVFmd3ixlsuol86XSg0kRH7y60/rVrs1u9QjwKSCqnGReJgkoQ/I+ZrY5qvjdCe4eq4zdYvUbhgyzfD2boRvUPaQsQB28Q4IAavF4XXV/tSoV54Dxqx5ei6119bpJVogw6ccYlkDhKzJeDPLNsa5NyWae22HeVaf4XtbwjtlHWqdmaRtfmI7DGA/5pqUT9IoT3JhPbkeUB78mh9m0UaNHT+6nEIEo1MCbEablMWmtOu5MsQZ8Q0kwmYLaOGUe05as+oI9IGQZFbDeAZ14xKdiLtV8odASTCtur0Yap8w+EsdeTtN/m6+KYyCm/pqPaqGfizc9ReNeOA0dC+4CP2jNYtwftIObLWAC5idqBOaHCuHAZqUQdSNeCqSBwIlEG7wlJGCTK2w59hh0YOfjGt3Z5fXqGaSQj4pUeaSRgxOmWEX0ll941SaG9jQnvbeUB7G5o1yDHRmK0FnZA9ZABEI56XTghGz/QqhrSgICdxOWJBTTMpWtB1qk9CinBe2aOQSNoA/ia6Ey/BqGTm9bBCJq2JRK4y35eZmESS+R7exJL53i0V+/BNrjLfB2x1vqfMdxdZujijkdgfs2O38G322MeesY/T2B8rh++wx/6EG+zTOfXj1NMC9EXuAJHc7xL746Y9ybD/Vsp7HIbDCR+nX8F7HIA0cyXQJudKKtA7HLrEw2ik5VYi0jIkRlqMPweJrKsRItpSJLOu8JyOZcQN/hiIuYhoCpfD+z1fFlF5W/0ocjnsPcjpiNQ5ooRPNMA50UDtbog4mqaYYigp+DNivijTfFH4MwykWc0bvg4QNJGPB8vh9xgvU9DHcZK+qFH8oDNICPsQcTtxXjvWDtWvY+0Qmv8wApdGlagZVOCjlK35pddoukF5tnKDsrZ019y2a3ZtO378JHL3uha5Pslhd7Xy3w83n5Rct1wqXLfAjznkZhfJuDjX8qrRfGmm+dKEza5XDDnt4Dz3hHrovgLjLnngvskAfUrAqxOlXBTTYOzTeAadpcEg+vwZkAaDTBCTmoq7IFqwpYFCnuKONstX9ElR1w/xeUpDAmFi0NERpg6rTY3zd5No3MAS8NyPqFrux6maM2z5tgw6w0J46FTNGRZeSp+qOcNC7axTNWdYOdskbGSbPENkm1jpFYb+IiFlA+hVrMSbyNXdm8jh3kSWyZvIiWo5y5HrEJMb3xxX4lYY/RKtZ+qWYsp5EbUoVEZUjMiIyqLKwkXqVq+b1K0cXDN+KhZTrIDSzNmlI2XNqVsxOIUVbg6TCicrsP4kC3/tJHUrZp+6lZUYrVg5/HXDjH4BBS4a96ytcc85M+6yVeXK4W/aG/fck7KwTwFiDiVs3pxnZhzybpOv5meGd/QdBQ1WsMVRLxnBKkDmEtfVWw7/E5Gj36vA5zkzOvIQCjqoFx3UiiYYyhgJ7Bd7LeIUTTJm6iuHf2TPTFk3adx97tO4F1b1U7gqmYVbs2tqv5G/f9KFDcqhX3rRL9mTTuwTZa2qovIzKhPU9rV5jOIuiK3njZP7jtJs7b3DCRf4ip0gd4tlzkmcsmzdnbIs7pTFmJyyLPE0w0fY46x4vM05Ug7UdJ6euFBumtRBbHX5yKX6XGRKIcJYtNUzw4hxN4JZsrp9w+VIi/211ggR8VRJJBmBqyIyiEapPJPBulUlIurnGYkMAYUyVaO2OKIvqYtkrblhMj40SrxAHrKPEE24S01ZuPHvOC9lIIu6lYHcLi0DGek9B2UgL2uUgXRbBjKy7JyXgQSKHZfYCZCjw5QMU4QQXN2dF+HeZXfnkQvrmAwTuVjHZJjzUgbycs3KQBbPURlIR6KzDORhEl5Fv4IbY0ocx5brVHRG5dy93l50RtCONcafnfJ042vsRWeZG9Gh3RnSqxujMgBxWznqUXSuwEVnma3ojLnxY+hinUWyHPgImVa1TMF9dyQ6I/Yp76PuHgGNliO3u+LBIc8utdtE00FKt6OGdxw1b8ShbMFyvtWBn7jsN6x68BhpNkYVFLR9oukyp4mmiHreTfmJgxAnlMSOKhkdBxI7Cl5DEQ+WVHIsTedGTMF46Xa1YI8O2hu7IbT5EmnshsqRI67iG/bGjo5vDFP4H6WCH3h8Y9ijwLfjAj9iK/DS7drhSBoUoYzdMogvSrBG3MXOHARFWn/lDc37viWP0/qlaSZNtUkM7q0OKEdOCPFbI8brrA/q17/wi799/uoL7xczRqqke3JTaXZueqdxu/qwtAFt5P1V9ER+x4rEllrCi+ULaPhZHf1RST/Ss3FRW/Ydx+8BQpVbvtq/mNqnOo8l+/BEziAYKMFRqBx5wtjl4/hSfZKlGrfiIlhfOfJhz61lqYShkJVozXDL1Q095e5XLWgOfACCqjEHPkuL9ZsPABOZ2Eq9CByI8ENE5IcIkY3ngz/DQNqlIfslNI+UI8/bpyFHlbgX7D9KZRX5FKaLOkNOVHz/gN+JKV5Luaj8HMPvxKJMd2IxGlceq82hDzfjsvJvYN9C7VvwDQGZJD27OAQm8nGyHPkzWaELwyggkybImrVVZfGnxFWr91TbGMG/YSHVNvJFVGwQv9WAsV6CuGg5+5QB+q+pDMEYLq5CqoLf9lQUc5aq4JfmCEW+Yp9AIfeB1kNcY0uTpdr6qVTbhRV9rc7FpAXofpiI7wC4QrKA2sKbf6quGOP1TxaIk7f3T3grgt38kpJCAfu2kCEJvyEg25wWTk1KWLOtHPknshSNH9XH4k6Somr8NlFo1btqpGwKsw6u6VmLCkxAbejKjFCvABOeWbFJhJBULS4uQGhTFQfBYxbs1s8x5KUQu2Xy62QlgbO7DOD/SjmaceGjia+IVwxRBbcrRhA86sCMxuz897jc8vza3n+PKz0jjDnQSXHDRl4qHeg/+uFrdyE5xvEzhhU9tMbNKc4R+Cc6KIlWeY9IzJvDIECKqtS+4PIgWtyrNArPrdJocnwGrMj6rb066jr1BPikwVITzhPgTb2KCEqZMBevJTqjQ9IocZMEGwmxj3TtMOCUj4wXnTdJOxlFC1X9E+0QyZ5WvSIRiIuRvR1iQJm4tdSzza6I247q+s3i6QXq4Aqqxs4TqlI6oepWh6hCOTVj5tQw/FPAb7vSWeEOqv2bEwC7RQCdSgD2SaOT0bKBmAtUgp4p2yhAl+zE56NOfF3l6EUGc3wEJbPkcNWlxuuvVz9cdeGHKx/T4aqLCAgKmdjdcGmCa9RdHbcLm6xbnKyb8LWMb3u4Ac5wAyxpv+W93AAPcAOc154opx9qkFk/Mp8+pj3jTHMDPKi9RjyiPVEOaE8U/TXitPZ8uF97Kh/QXvTY+fAwN8Ap7besv8s5r71zoz+VdXY5jT87l6AHtrfh3+hn+fQXvyntV3iEXz90sOuHB7Sny2F+e48GNjuEwCa4/pFd/XeUo3/lOf54mRjNw2ObPaqwlWObPdbl9MCVoXHPHoc5zGOrXnP628n3/xVG1h6RrD01siKDsmSw1Gv9tNehOfxZ85cWEYuVLwE4+dmg9rjnEiKvU8IhmEUQDgPDb3FHFglA488wP8iUO5DV5C+Zau1Ck2w2o5fFRh58bIPK9YTiZfVqdRFO1v96IqlyPdEFlybphVwZt0vhLqSL4JQu23OOW4Az3ABL3AB3cwPcxw1wihvgXm6A+7Vnm2k2gMaf7dxrPMK/xg7uNR7mBjivvYLA4xbaaFl2gT6gPZnxQI02jLNXXwVRry2z883Bpadv5rVXN/o7dQ1TqiVZ2KV5Vt8tG392LiUPp367XjD4eIo0FYZMSZ9mxq6mMkodHfVfIZ7a8RhGtyps5RhGN5njiMY3uh2GIVe+8usX/PlXWu91F112Hn6iwpCK4b5VaBiyBw1DdqNhyCwehuxRXZcKDsEseIz+Le7IQt2dhPlBptyBFMKQJrOMhSFvFcOQYG+1QKTsFUXMeCIWu07laYER5xSeVGJfUjVo1RnvJjLsjfdY1WHXwf1Z3jd1gIFn0sgR5GdkmeZgrKy1UKYcu81Y8GaqQvmZpzXG5uFa0RcKMQPw7cSv0vivHL1oiJDPXp1QyfpGDfAX+kYvLTJ6mpCdKIGxNGFtMmoKKalubTK4RUkzRcwzNK48Wu8ENm2HOC0UJCJUn0HVG/lausPkQQii1l2OzRB+0RZ3jlaVjXdSzOPkXcwVXl/mvJm6D3YC4FrP3lZC+rYn9oCBpf2CsPsgUyIU8NHejZWkafgzC5dFUKMTI5VqZZRhzuK/Fi+rDeF2qgTwLfSYVCDsRvCpSjeCq0qzN9wzOV3aekPp7unS7KPOe0MBRwzt5aHWN2rB4OEdQ1pdNEpIol9SXjqGnDHMmKvh/bq0n/W6NFy/69IwofxTqs2+kGlT4rQpuG+8iVYSA0n3L0pBYLL+RbFHRDED06KlMvLiTvKi+n+voNiSDk4AdBkOqrREEvWMmz0T1a/OyCmckZNMjJwicYXzU4oke9gd2WmQuI7xbhnOEQ/0L0IeEPacZ1JmUl4A+7aQoRd+Q0DSXcZMPdFk/bxiz4ic0etAmfWKO+kVldkpmn1WX2KLylaaGA4gXEI3onQA4ZUihD6PrSzFyjex5zBU59DKNxUYG6Xt/3r+xQD9KaruTVjFk1GrOuSmGmKi/p5MQs2TUdQ5bUo2GuxbiHCAb1jSKCn8SQhMZJFsOfZ5UfhTDoRf6pMJwv+Zc14k6zd9PqFeJtuRI8B65EjU78iRQD0106mAYuuwO7b+TQB5jvzJenJqahFyqlcfuo3pcJyF3zBvw+nhWN4COfZDkTOyDkyK5PlDVjQp36MOxwmmw3GCwKDEb/sJOq0bvy1Z7nncAP2/aL/N+XaJOn5hBzyRIiBupEiSEj7WQcOFHc6XZJrvvO7PufgYFNpELTKL6gEC4vUCRCDiOYpp0Q0oVnNPwZ8R82WZ5ss6nO9c769H+JhzoBAltM05U4g5sYEyowuRI1wIUfPG0YymhJ3mldU4T5R7HjZA91BIz6m4N7m6uze5+rs3OTX3Js/k3tDhshwRLsthIAtewmWFcny0juGy+MB5k64E50SJmqjaC/EFKPHdCHG+3DNngL6QFmIKQVFiV+sVjvb2XclzpOPrXDBS6MG4l9BOhbprpwKunXqZtFORFC7TpffzlUvvy0ozqy+8dO3Cjff+qdkTR/9wXWly6rLp6cn9AG/FNvTyuHDi6BNnf/6I5G740jbhH8+s7qR8moQwjcFn0t/n2uT/nm876WJRNkPor4R49TI5Qr3wZxhIu5roBWlLk/ha+5roCYK11lH7T5yBbbHF4HdmEnhs+9OKHzRuuGeH1Wy7xec6W3xe4w2fG7nwiW3rQ9dNo9EMMpjbg2Yfei5v0fwP6iq1B1epKSaV2kMfUb2lgTd/SykKhJMhB79hppJ0+EznVpk7Eb+d9BP87o5YVQ9l87nK/Up5jUEu0Mzel9uK0tW+eYf8hqrnLgP4NiUJbeNEZBucU/HMmXKgcHtk+d6JWoKhiJmecnzK82uMJqKXVJbobhg1aDKtfgInCb5wBq9x0xxFcPTM2EYeVZ2ru6TtoCx5jYyf5Dwel91YjDxuMXJMFqOXVHiunfDe8oLmwdzwPO2Gnxmq4Ii3UVNF5WN6EGc8a+OMY0tjdcfDkBQI2cJ0LgRh+sKe/dYi7iWu3b4HjcxE8YuPDXMu3N2w2JnQSRZp9EmZQwFaMUp95HcZPvJTFL3STPRKw5+do9vfNNFe1ftE0RqCiewkJ68Uvk3dRTsB8F+ojmhOAJBNbpwA+BPq+OEEwKcoJ8IJgKNUdp0TAG+hglJOACwTARSVAFwkAuhXAvB9EcCAEoB1IoBBJQAviACGlAA8IgIYVgLwCxHAiBKAR0UAo0oAXhIBLFMCIPHMxlUNmgBhubeMeQPOhKj3x+EsFpU7pq5ya1PhzuIYk7Mo2c0YofMn4Kadg5xwClKg2gQT1cZl+wSzWKhmXpS45Mp2trHhoPJtmh+pXdxrPMy/xgT3Gu/hX2OSH2QbP8g0NyZ38q8xww+yhx9kdlGA7OAH2csPssAPssgPsp8f5AC3OJ5+kH+Rg9yLPMS/xiHuNd6nsxU7VXP92UGO8IMc5QfpXxQglwmRI1BICY30+cX5/M4ifX4cJBWn65MEaJw11W5ucnDZ9Ev1vGu4cVnmdYsB/P+nykuEKfxH0UIRtxKFInxEXR0/KBVBrAptGa9Y9MK0KhFNkXLivuqCEi0iiZuVztzLVarO+9VOZcvVj77++led95PUsGAjAJcmUCpQHXc/NllAnCxAkN74dpAbIN6lxS3EA9wAp7kBlrgB7tUeh6ePckOc4ga4T3uq6M+I+7kBznADPKI9QHbGntOeKOx8OMsN8LD2hnS/9kSZZwNo/Nmp/abxgs1uIW5jX+IxfsI0Lz2faU57J+yg9lpRf0d2znoSa+Y7l/pYz6XN9TuXNrs+lxp/trg7BiODWsg1mnIMn63kGK4t3TW37Zpd244fP4k8s1krz+DzTyC/Xyf/fUvzSVlWHpmyN+EsB/Bs0Ky5GnXp+oE8LLPTM2c2EQnBfiroFWMKOsbgzzCQ0rw7UFj1CbxulJOQ1HoRQEQJwKupxEgnADZ4zWy7wWtm21VeM9uuUXkxo1ie+lp1/Zmu/4uZtMqTzE64NEEKOiHrItN1itN1EoLVaWsp3QLEQz5uIU5xA9zHDXAvN8BpboAlboD7uQHOcAM8oj1Adsae05cowHbqztrs0jy/9KQZv9/RRvr0p8oe7RUOv7Gf0Z4qU0uPEfdpT+WphrrxLswP8Vv7KD/IDD/IhM4gK9/u5V9jclEQp31RrLKDm947FwEDdXGvcYfOtK7fGtuXmOKtfNulL4uz07peK9QYh/Vk77ZFYRTY9SN+Z6+NFzmrfTiG/fDBfjxiD/+ip5m0rNKQcSMnqzSULidXiFc2nWq3JhuJOldeqxhtVL8OyhKF8YnialmHjbkv/PG+R9742rFfYUSga90jg3Lk/ZLXErwb0MbcObQxdxZtzJ3HG3PnVNelgkMwiyAbBoZvc0cWHOA6dwCFHto9ULx0uWy3K60Zl6gMfzl5kX0pSEkV/FgNpcT+U0IpSNizqNKxU7xkxp4e/dryH946u9NSSlC6gLQEIZ3l5KsNhHxUWH4abhOqGGqjlf3gq02/3OhbjkAxUaSKnaG//b9D//rR32755Nde2rX3F+OP/tVVD/+3p197orzi9Q/c8N3f+fEGAjtnqi8hmyJ23Env2C/uWAF9FibqdCBEiiY3Bn8m3PLjRk6tSqjQG9uBkSMMWSdTzkMPjSuPhj3uTvefjyqhyU1HJQ8oK5jYomDSxRqhyQ3nqkZop2c3L27/bDP5ZpSq9s82O6U1Qrv/lwH8VuqBJEr8mFgALm5r3KUd5I1BpH3sLifvrJqD7AvYBHEEH06UWLfMzY9Tbv7CmkqetVQTkT+IYj9u5PMtaGxoRs+CuNrKU90e2B/ViN3104jdtq59j9TJ2uSAzlk79wwdmSfyb9dRTWXyKES7quHoWvqItYhFwUFF+D4UonQtGx2spUisRWykVAADvZah2+S1DN3NXsvQXSfRC/Fyx/OGesUfH9Ey/CYBcUEoHwjQoEiKIGHJuk0/EzYSKGdajY3Mu9zINVLAyc8ZgN/m9UH8TSIAnxKA+6z6soXwQgNqaq9b3QsN4Dq3hUnnSt54tNT4xIKNIFyawENBSDYetjS+HWADCDhD2zVWvh3kBnj6bdrvucQNcD83wCPcAOe0x+E8OyM+yA3xEDfAGe2pspcb4LT2W8azrtxC3Ma+xGMqrx8VC+O4eP3oq//rR5/L148+8vWjX2G6Fttjov8cvn70dam9fvS7eP3Y5fb1o0AOnDmDavzRq86cQZw5A0zMKZHjAMqcIbg0gTlD1XFoullInCxEKA3j22FugAe5Ae7mBjjDDfCI9gD3cgM8wA1wjhtgiRvgIe1Fj53K+LsRtxCnuAHOa68dStqvkJ/MM9rrm3ntybxfe6syd87jw648Lee77q6XXx7MI7+/Uf77UJO6X55X8cubhHQMQDpzbQXhl+CkFKzmduB8wBXs9MGfCdFh/CgRUvPm365+lAjhR4kg01EiROIKr0EcEvEIvqJVKuLidHGCNHFbLe0WIG6Z3EKc4ga4jxvgXm6A09wAS9wAD3EDPKw9URYBZ89zA5zRnhFn9CfzjPZKe157Mu/XnihHtAfIrm7m9CWK8WdEe9bW37/Z13BHPANsuCMNd6ThjjTckYY7shTdkXrhUH/GxuvVaYNE/dXNHu1lbxGYKf0dd/0ZcZ/2VJ5qqBvvwvwQN8Sd/Af7Ij/IMD/Ifm5M3ssNcBf/pjP8INsXxSr7F8UquxYBC9WB3lF+kAl+kEmdcVk/bd6mr56sp3lYDKJYBw3UsTQ1UHFRECexKFZZXGLWu/JtxyIwD/cvCtWbWQRGbMeikO52nTFZT3qzW2+8Cqk2sYFZ7S9G2UNK7EEv9vS+I9JaWamVnnNr32nNVA1Xp2ymmvc5hG3GQhWwgQNjJjCDZTkRuDI0pzfisJzoz6659oV3/P2P/xkjT0QkT6RGHmRQVBwEk6ata42rIfEYWk40ipYTjaDlRON4OdGo6rpUcAhmEZjcwPBt7siCA1znDqBQTjQMxetc59XL6rSlYFHQ35xE/7i6wjjvif5Ei1RH06Lls8LitCY+xBVlCNVUZGnGsEkYBK6LllNrCFnb4lLWzj5FT71efHxtENspU+D8a37J7ZFRYtalGpWBjdKMqfUoVZFShH5a5MPl9C8N4NdQJX1DOBsLpRljtooy7Kw0Y0y65NT19qUZMXwEHewoIivNaPgvm6WtnVM3e7Z8TURpxqhAmjCkkoqo49zshz+rn/uWcOO+odo4zKSNIySuLNiIwqUJeARfcwrOXZQgDQAZYANpp2EbABsAGwBNAAXniNGZiDhTv94nMoCJlVujDqyKIvZMJ0tbkMbK7M10jPAhNprWJtjrWDl1zPAhPoNOYF/eGb8alvkQMcqHiJdT76quKX+RfZnu1HtU1+2DSJUhJf01A/hvCawRI21eBP5QwnGnHHkyaocWnOdi8GfOQUbtD/jkSSdqWp3MS/xdwHXWt/ZQ/u06R4TNnRwMPXQDoaG8Roxa1P22uLPQmhe/LU4eAy3YSMClCVyTsDUcCXGyBMGG9QQoFALA6ZxQQ3VAnc4JnM5xJjonyAi3BRtJuDQBi0lbsiTFyZIEWRYDwHPmWwAxPEfeUpwQBu8TxWuWV9AmjNMkar6BIMBJrDGS5b/XiEPb1MSvy7rHruqymsQmDzhL9RBckCUIl4P4sHzLQ26W4rvJiu8miIdqYPsZ8yUG+E2T4JokHbgmipIYgz+zd/L+Gp3W3smTeb7JcvqzBvD/Tvn/6H1/TObaRinXdsHd/lsJV/OFx5Keg286Mb4yc0cN5v5HBeY2eaukt0+IRdzG2Vc8KJjyWXEdeatCFI/oWEcZqyjhUMXqXk85hjtUUSaHKkYe40010T5ZqYl2Bn1rJqdm5nYsUMVS5AxgUlrmLNZ8QlLJbDVWS/hRFH4zUl7tKqwc8qNm0PL/ZSmk5tGFdqdNIoQ2iYrapALxrer6IlHVF5FHCX1hmTAG14yXIeuhzrUxu3Nt1HquBVNY4cYwmXCyAutPTBF9mhdihjf25S2/+sbzyUcP7Hv4hYOXLstMfuzRr/70h3/+xY8nf/btZ3Z/9RJ8my8fWhFly+g0CxRkA5UgtKOiXc+oa8ckrh0TTNoxSR7MLdhoI61WG9RdyHRt4nRthBMJQAbYQNodORsAGwAbABsAdQdIHTkSsgM5ehvmpE+IpLVZwNltWEClS0ai7jkWifp3yUjQuPLoSMSVIjRg37g1R2MgKfIeKGniSyEckiqnX88vEpWgTvpVdQ5TAtKdZ3kRw2XpK9Fp7cNl8paU6U8YwNdTrc9DSHnsgMhplVWbtlZl/sq3FlVxrwaAUmgabUApD9X4s5PMevSTHBJ0QLEbsWX53TWb9pfTv2cAv4VqNo1GdCVdnEyTYixG6gQfRJqU0W6Dd8P4siOqLG6kkd4tn/dOY97PoQzq88igGZxBA7YMylXyP0jyLeBqNGdA0hTMXwsvYssn+cKEZJE+wXL6PvtMFVxWCNIvSMpOB6QP1I/0fjek93skPZ3G3YIBbZEpBTvSO1YJLXLR3G9Peh9C+haK9L5y+pAD0vvrR3qfLekDBMJ9SqoC4EQgPWCMVvLkoNLzr8UjY7TY2op3Asagrhj9SjZOHv1/rhL9f3maSvj/+HGFAL3xJY50JkzTIXr5FUFaQUnbJ3b5nSZ2+eSa9LeJxC6o4itbwqRBcvJrqftlUwt+8vMxnfxaSHbDm3dKJDagGXcb109I1003vA1baRJvcmJKutMebSGn5iogEYJQOf24vbmiH705jxuE4LoIFCWEjyEHrnQCMaoByqgmyuknHRjVUP2MasLWqNLXGs7jDkmTf0hcT/htwnEuBHidqD3BdLbnyqQbl5JGgY869bdR6RN4SCBZv5BAmy2bpMhIEzIoLQ5KkW53mmSiBJzbhY9IsUkABIys1GlzoF8Vg9Mx089kOVlfAO+u3Sd8dcqB/wXQSs43FLMluJRLCKFIQsZoZCp6ylR0rtwcCUQSJBwqpYI5KbUkTd0Gq8D2QnojpspEUrb/JhFPSzrwhhQTO/041VVkOCjfzD+6kmF/fWUYWwiyywStqdrK6R868J9iv2GGMUEaxiTpP7WR2ZdxhdQ/R1oiZv/2LOwmQhpBGCZMM0yknP53e7GIuokjxWUxBLAuq1iYE9XwRNsQUXXHG1vHcbaO27I1/bhG5SwBqE49QomQQdi4GCiGuDdqYVh+1UJEURSvsIfUoygBPIrSwhRFCRChRp948QeWJol7VsbtVAilUqV8jG+HuQEe5Aa4mxvgDDfAI9oD3MsN8AA3wDlugCVugIe4AU5pL8vz2vMhOw73ac+HB7TX2PPaa2z9lcNh7UUPbwWljTAvQUbcr70vMkeF37uZEhG74c9c+efOd92N3FU+W7mrXFu6a27bNbu2HT9+ErmNXCu/jQwMIr+/Uf77YNNJyaO9S4VbS/hxEHlSJ73obBJIB3IffAq3yS0E6Ux5NhhIJARhRMGvV8nWVqz8+Kj6aTNY/2xtOu1OKKsJluYqty4ku+TFiRqy9V7cAsTNkFuIU9wA93ED3MsNcJobYIkb4CFugIe1J8oi4Ox5boAz2jMiuwI72CCKZ4D7td/yEe0BsiuHOX2JYvwZ0Z619fdG9i0952FKe29kXnv3Rn/GbvgOS8F3aJwsGieLhhPbcGIXnRNbLxzqz9inH9AeifPaU2WP9rLHb6b0NwL6G1L2Le/TnspTDXXjXZgf4oa4kxvgvfzxpSL3GnfxrzG8CPDYxg+ynR9kFz/IgUXAQBmdicOuLOog23UQRePPfn2le4lypPFnlB9kgh9kcmlKd9sisIphnU3YopLujkWw7fZFYcIyi0KpZRYFLvt13njl245FYB7uXxSqN7MIjNiORSHd7Tpjsp70Zrfep49pH1ia1f66lT0eyR4xZc//xV+NyNqRGc8BNktrqrb/vpizH1JLm3+MaKP4hMdmp49Z9loFbKDOmAnMIPSNAStz1IX1klfgC/vSxq/c/fd/9MECRgRJ3y3QhRUZJKnMQJWDV+wkeoIotWD60iJisfIlACc/W15h3HOnuRNKOASzCLJhYPg2d2TBAV7vDmC1QR/gPCBe5/qljyj42XL7B0GhrfO/oHy5/UmtFtRXbn9aqwX1lNv/yL42GlUH7npqF2QPA5/CdAFnWwzU8RVZRN1qLLZXZJVxW7idiwbABkBXALFmGxytVoKE2jBqahmNNNr/O6qt7PpC3CGtMd7xQQP0/6Aq7AZxLXnD3F3mKWO2Doa0WYIxCAKSufV/Z5QDewGdwIwNAwUA1xiXyA4aQeqgESq3f1NU62G+vsdhUYHi5iRc90LixEEjxGROwqSouu9aG5Q/gA/Xu2vtFfXsWqt4MilaualYXY1QUrUfYs7ybQCSxvJtsArRRdfaqJuutWG4ZvyIPCAU7QfaN2zXtTZk7lobhFNY4YYxmXCyAutPQpiziK/1ZQEygnHvIOjoxZjVr4ktY1/ulLqGO+99ufHGy3Q39Rw2naTSZZxwSgDIXn6QBX6QLfwgU2wg7RzTBsAGwAZAE0DqmETFSG+nwkB+pmCWH/5MoTqtou2IqhuuaP2r00ZJXAm96CmqxWwZSGIlYwRhGgAbADUDiPu13kNHUSiC51nviT1fO9ag09r1sZSFqlrKHScM0FdS3dcCSI/eFog57NawxWOB9qiXFqgxIop+p4zNwPYp7nDQU7kDjdXZdh29U9orr+OgAfpGV41uqeZQd6Ks5aU77wKLbXbWnTeoytpGFHa9fN63nIPuvCmcNVtsWdNV0Uvp1b9Dnm0lfUD0vOeqd2/AS+/ehRj6dqpPp5Puoj4au/Xp0xmWB0N9bW56GbYpbC1kSxC6T2eIJsiC7plq9OlsWtJ9Oq84D306I0rotkdb1Etb6Wi54wH7Pp10bpZK6BKsi2xlSnTNQY1qzK75tcyoxsod73BgVKP1M6oxW6MaJ48VyCC6z5pEROl2PUE4twsBdtSnE/cuY4S99inhjeDAFogqovFdtG7tyKKa9W2SnO6SJBNF4dwuzArFJi32R8YAwSYob4XQ/r7Gn53S+/yOJ+wbjoVpo+Y4sTIM10V2MSZy2IIo4wY8Mm4EZ9ywLeNKt+vi0BBxemgIkfot7Ia71hFdygIgLQeTaokPmVIjQV7dh0zhPmScyYdMkUrJgo00XJpAonR1HPocV9JbMU0Eqoxvh7kBHuQGuJsb4Aw3wCPaA9zLDfAAN8A5boAlboCHtBc9dirjZcLcQpziBjivvXYoaS97BxtE8Qxwv/Y2QOwOBZovdys4MSlitm74M1d+kfNd1607VCqn1h0q7aI7VM5bd6g4dLF5ckvMj/zw+XxM8/ngz+p3NnjwN/9scMr2+KaNqVkEHsU+7d2y6YavrB9RGr5yw1duEOX8+MpLMKIzxX880JYoxp8R7Vlbf29kX8N58Ayw4Tw0nIeG89BwHhrOg/7OQ71wqD9j4718tEHivPZU2aO97PH7DvobAf29G/Yt79OeylMNdeNdmB/ihsiXMWT8WeQHGeYH2c+NyXu5Ae7i33SGH2Q7P8gufpADDeIwgYzyg0zwg0zqjMv6qd42fZVaPXV519KU7o5FsO32ReFfZBaFUsssClz267zxyrcdi8A83L8oVG9mERixHYtCutt1xmQ96c1uvfHeKdoc5Ge1v3Nkj/+wR6jY89yOSAvrd/V4rhF8jCj06bXImZXXq4ANHBgzgRmEokpgZY4qd1JNUD49vOadH3zzyY0YeSTvE0HlTmQQ/YRXQGJSDYlvQ59/JtAmKFG0CUoSb4KSUF2XCg7BLAKTGxi+zR1ZcICb3AEUmqCYOvFYE8zBI1+URSQPisPEBnymn0maoHT1ES0+zv2C8uWuQa0W1FfuWnYeF1S/vlIu6kYSajPM9CaAfgtOaXRcdrdwK4MGwAZAPQAyllYXpokQekhsOdK1HlV/dsXuZJUBw+Xubxmgr3FVTylMtBxBzXmEaDmyyQRIWHKk3HW9fcuRiLTlyJ0Q1xiXyFqOGBTfLK3u1HWz58L4TUTLEbFQk6kGh3MdTzWiM9Ha627ctbUIEG0tgmJbC+NPoeXFUO3PZuu34dqfvdZvIzhaq8u3inaTiUxn2TJ/ifNmGRGICdzwDtSxidlydRdlkTYx42t8bBcpYW+56hbgbm6AB7kB4kll2rTqPaz9Ctl7/7J3eMbTjdxC3Ma+RP37ZB/QXpzntZeVI9pTeVZ7BcbONvu1J8qU9is8pD3b7NXfeZhaegqxpL0w628DjmjPh3P8RLGGJUxdGJ2f64LOwmNBql1jVF49nmrOGqt79fhY/ZuzxkjiuW1dGHR3Kne1Rt6CWsEJrLur/PexZvWCWhMqBbWaqVLBaPBOsd29uQwuPl+Eab4I/Fn9IlOxRRiZesKjpEeV1DTYN97tDZXmuNPOHrJAfLzc9R2RM7y276peRnzDSW9e20ZKXd9DsYk2UqqZFGk58q4fGsC/X2tF8eSm0uzc9E7q4trPdHHthz8j5oswzWe6oFK8fDIosl16+dT1Myel3TfM7UCgovdLcfLuQyUtiMA1kLCEwkLCNYuEDEq6WX2bOCgJN2JdPeg/0OZm9RvP6+rDcPUWNZAkDFBb3X2+NtwAJZkMkBRZcn/qkxV/6gz6Kh18TqD9e+JyF6mt+YTEC1qN+Tvq/YGuxFw2uj+Q3AmzIj19Lm4u48TNZVK8uaxAfKv6HWO6qjAjjzq/Y2yDa7Z8S8E1W00uUH9tFaSjTe6TZ/S0dGhKgNuGyYSTFVh/YtITJmDoWl8WICOE9E6CjqA6rHKqh4BpNlBpQsNl1Pi9Q13DZXANl2bScBky69qCjXa4NMF9aYf6B5muXZyunfCIAMgcP8hefpAFfpAxNpB254UGwAbABsAGQGaAVPgzLX41rPft1DnQ7y7oQZ3xY9R8Aab5AvBnWOdEjmxX09qtG0s7QKTieyw//Bl2N2CEi7pvRqdFAhwGDFl2bbrc/TcG6M3UdmPom6G0x5ZxMbxlXKYKMqAgXcagSdI9CJKkzzggxd0oa9uRYlLagLT7BQP0W6nWfik3txiTKN94ibAu8M99RAv0ENRdinxrCPVW+by7HHRrDXlkzQ6cNdO2rEmfEFT4GeCE4uiEQlw+ZhviS5B8ETOxmECfRLn7gH07YVs52SqXk8MOSJ+uH+ntG/UmSNvmnF8SJla2kh4wRlghkh7ySPoQnFZK+nfakx673AhTpA+Vu9/jgPSx+pE+5Ib0IVvSp0nSh8l6Ai0K1iDskfRh2hoskP537EkfdqPww+Xu959fhR92Q/qwR9LHSNK3kkeEMKs5iHsxB/Fy9xOAMSRHFzDc+arDyJXCc5UrhZenqdwpHD+uEPU3vrTJ7xtC7XTcX37v0K6wtaQtQcIkQZI0QRbE6WPQb7MErIGchxpZSxI97jZryZWd5uZu405LytvhZje83azA246avIdAggQRXkgp6FXTWQbzv526PmmJVLWXu/+bvf2jjqyomeiQRZEgsnAUdQgf2x0cyzoQK52mrHRHufsLDqx0e/2sdIetle4UMdlhi/4ucVCn6axhlfkupxqhw40CWke8LozZxyckJw2/x5NpiIodtQsfTWdajE0y9QsstduySQcZtlXhLYAjgRFoJorBuVX0nAM2SdtHFMMEm+BlcNCDHdi07IV693ftM63ihDFhS5oyVRYis9cwxg17ZNwozrhxN6cQ+4bCSfIU4hdZMwnxRSXkxd1w1zqxzAQkmF2hiSzpcyCDcgjjZmt/dksYN1fu/qU94+bdBIR6xUF5uC4rb+bAUOEjGNmDMm7eI+MmcMbttWXcPnG7vbY4KoiD+iDVBdYsQHwJX3vg3Lhzmq3yYPLNYiYT411UW+0yEM+v8T6NAWwzmqho3Hr0oK5zDyJASUgaWcnBnmUG8KTAt0na5U6We4yEs0KOGt0mfGyjrEAaKjjFHadplbGw425DUIZRYWzzKIxJXBh7bIVRokJ73CisLOng9EJKOTdNaVtl3kYe49ImBhfo01buGaSiVWGIE0lRJld7cnQoTlYFJf5LgWF7oGLDGJakqrCVHPwZClKS/A4EHmWVtdv3WFdiPyz7pIyevSY0Smob9qwydESfEsfbk7KX5LQeKAniynrLPa+wDxj02HsmebmaeSUoWOgeeEoO/NX2bo9EIeTcmPReyu3pgcbd+jEL9SmabdtrzgzOQi/YGhsFH3vsMo5f3gqyDYmxd7aPtJzFrzeM6BViSLagZjr8CgQdg7O4ImmS2i0Ks9eognapirzV0HQNCtkQCUXY1wFPBHeybjVWcL2Cnk6i9iEJl1jz0ggxaZPe3fXc4iB01+PNKWn+B9wpSbhxShK26iRHOiW01fOTUppQOII7Mu8Jw7xPuzna3uXhaNsmPdr2vNXV0TZx9JwebaFGRhk3Wz/GzdsyrnS73uygl6Nt3l3gxMF5OL6VCjwk3LEDjiHS98pDvIncXSj3OEhRKoors6/e3i8OKsLtWFEECNcvfCxCqmITIgJuxE/WSxDQX+456kDjFz0eQ1O44PTbCs6AiMl+W/QPioMGIE4E0RiEpKDsQb/4NeFArPIuxSpviNUF7kwNth6EXRK0PciXex5x5fNHPeq6BKVURF+5F9IOY+ve+rF1wZatJVql4FmrCKzZD/FFsXXBkU/SqWA1op7dMitRU3DlhAeQUlhlloh9pCh3JOvApinOl4A/s5AjyxnszVJylXOwsRx5qKc2lrNuLMe5MdPa7ePYz6lqxyRlTBd0Y9kA/SkqDp11zdphnCJ4AYqN9fKImwKaecQ50iNWicXmrMaZ/6aMQF7WFnk5UrWoxOIAeqjgfIoMgmfrFuaO/URhNymP/JN07WVkl4yXkVT1MpxE8vJEtGu9fZAOPfX1yaN037D3YQtuuEuKbrAugoGKFOvl6qaEFhd39dr4sC64i4ql5oGnYL0DMPndNZSvvkT4ZQEOIuuIFOEgE0yUSW+4Z8fLP5DBSNnQDQ4zsSlGOSHWgkAoykMNP7ePtfSTK0OLTgw4XVm/ZGUD5Z5/IxLh4b7kifBFIhF+QE0cW9QT4QfwRPgiUyL8gExkDTnHW54M2MRZnAdvBgmnH4CM8oPMeqbpIFpaqYloCVMUW8IYeZdCQxgjd0fKPVSppgHjvqrfeammAlwxocT65fLSr6u89NdPXvq9y0uxIS+EvPRrLC9FuGICPR+6abWDFlwK0jSohvl+dWkarL80DZLSJOx5SLWU3qnLd0zefd/lu/YdferGXZsmt27f95hU1SWk/D5kEl9m2hZ0pW2hfrQtnDPaFpVoS1zKJRUOSEVCjSYJ81/kjJOa1o4FZI04afbVqKFDTuA5Kk46UM5ebYB+HRV/LlLXpGH0TFzweCb242fiou2ZuJ8kuYrDYPwpIeAAxBcVmCsqBBAdBeZyRmDuOXw3QrPNPggA1QXCsAHbe8whokfnOhMggQ+Hytnr7Ht0Yiw+CDcnZfJN9kGmITd328PioCG4LqvMDECfyPpRcuIQBWrIo0D14wI1bCtQI+J2h21xNCoOGiFFZhTiy1ZKDe1mz9UjbmJk9PIHKSqOouKFMPIAzciD5exWBykiw/VjkUE3LDLoEccDJIsMkSZ1UEHN51CdmzM5H4YlJp7RopeDGfK5OWU+MhKOSJWzs/ZJ5Sm7Yvvr5aD32mvNjJsiK/TbZTLZoF2IcYCRqWpNBKuv2n72wwLn/5r+D88d77AYN+kC2qWP8LPzBok+Klmbt2NJhjiWdKi66MrHkg78WJJhOpZ00AJjnbZTbdoCfSxJSY8lHXA6QEjsUWDNe3+Xqoim4elAKqS/bQB/LwrcpX+ZqoKO/FxJlO3kn66ekabk36Z6hvUjoBT6ULITQT0YK0u/6yxn3+fg2aDH4hrNP8WNcaetMZbWybCjTrc4qAtiRbBR3ZBSzlmww/ZAQVd/6YDTyqq/ZD9EPRuMQ5xQtR5U9pRGxSotEStcHUQJs4rXBEMY2cj+u0taCyz7tL2Zp/JaXVYxiArCGoe6jug+g5coSdTvBj5pK2w2TVYc85DpHTSVCBkn2TYpVsyDuK8o9i8KBtww8jXMXfIKHHO5T5f+5g0v/vDFox+5cXpy6pETYsir2unK40TvurAl9VubN6yr+0R/E/qfP//in207XveJ/rF14xW+/+u9hbpP9Ls/v/biB7sHf2I/UbVXzMNEWxPB5UqoCVlE3c1M4G5mnMnNpOu04HkpCVnouDJui4JmTJKx6AbABkAvAEW731zO/sTwQ74jmNtmKAbIcprF5VAXHXH4M4tAtdSugbHmoELNlSD6JYR+aUW/hNEvpupJlm/R2hEPq0q9pYrl3L9KTuhGYIL+75d4YKLzSWtAwg99ZOcnA3AkJI5RXQrHBpD1boXYBY8Pzp9dg0aOVojgFNLj5kHl9dQT7aybq5vbqdcDOemRMvd2Qyb/Ayd5TkLyypyn3y59OZyTmO28muVsEr0HAEooEGb8yPsNqb+GUPzBitftRdW9kjzuleSYvJI8+bhHqOkFliZ5P2BnXnpl+fg4WRoAGwA1A4i9e+LQQpInADXFLUR6c+jNJVb9wYBxp1yD7zJAD1N5Gnnq7UJcQc/knbly+XOFdNZOm5IdGRREUNRHqOI7qdckfVQaey/9CgHkahSQbqammUzA7JkUfczQhzIpFDuBTfvKuRrwVwlI6aTYNAeJQYQG/Qo8HK8RCNM1ZIjZxOey10u5N9q/o4ijT6OI29d4ObfG1eN++7BsH/nsLk/hHq3W5iP0xzp3uDdVHJHi/moqvO+Hwy2SYLrAFMoenaqdUfCwT7dYaPRU7dyAt0zOEvcCneLdLm5yzNdeFZH7kbo8E0ZnQZpvcfU4z76oHP04r1PgQaAHi1QiYp5KDUWtH1avxUgWvEP6iCp3h4P7P68JkBHN6rUUyRcHfQpKp2irIOiCQkU4raygUO5eSkHkIU4oD0dlT521PQnWFzoEhv0lrKBK1b9OCAFbLolNe8s+a2/qcm4KHy34tg4SjfrcmDq6HHUvhX3yhXm+bi/MiVrzfbbiLt2uV1VMZdflSLHqUwiaORKcHDhdnZPDwO2oDy0JOOXqHnDK4QGnTqaAU47MGBGOejQn2B30FU+dDYANgJoBPEcFlDrR+HrtuP2Uan6bn/L9O8t5o+JC7qPUST5Xx6C8i1SBRlC+AbABcBHG0Jl1p4twbueiCudKTMCXVMM/frtDX77ZAP5lASmm0kekhSBjvS60rMtwrumaRBpS/Dv3Z9y8zRn3RU3CuTkHB7TzEs79rsNs7cUSzvUT4dxOIpybA+FcLE3qVjFNCqBDSJQC6BBSpQA6hGQpgA48mThFJEylxYQpgA4hZQqgo5Y0hVO7RcQP2Bi+0wjx5iVAYLaVwFBU1M+AADhFwgRmY9W0XGW1Tkb18y2uovr2L0foUJK/PlF95SrsNlH9fKwR1X95gAM7cT6i+vku91H9nLs9OWqE2QfcMMIZUvF3/BCCK6vrt/N48v32Hk+nG49nIYAwpInHY756OR+VPaOaNeL0k7WZO0nBQQs/droUnE4QwvL40OWxz69Y95Prf9Tn4aFLKxG9CqtR/U/Vo1dhPHrVyhS9kjT6bQUnaeu0EbVpP4tNGxGnjcB9CxNHVQsFCTdCADr26IdUnqbEf1mLrvzVhAsrfZ1nF7aRdJmPEWGO8wAwLsuyAkSryHL+jZT4fOimS20JeqF4rMAlU5FZblGXzCgumREmyYzKRASLK8fg0nA63svNGPPaA5zhBrifG+Ah7XG4lxvgAW6Ac9wAS9pv+aD2K9ytvSyzU3lae9E7oj2V2Rn79FHtGfEw+54f1F5W9Fdg7Fs+/RA3xG3sSzymPRYPac+J+nuxB7TfMrvlm+IGuK/hdC4BSTnSMKT6bVl/p1N/BXtYewW7W3scLgIP8Z4l6CHOaq8eDmuPwyPaC5/+RGHXiHPau0v68+E+7flwSZkp489wHQyVNb8DpNOpXImHielM9/XW/G0wn0/ecs+oGSe5x4zVveVeDL/HjDLdY0qoF62hE7+mj5Fpv2GlG2mcegBkCz9INIunhbzcRQYFSEw+feXCMrZv23kmleWxZ+dmt+/YPrt/bemuuW3X7Np2/PjJo89sKN2/a3r/Aozp0sxMdeDao3+4rjQ5ddn09OR+sImWm5Hfb5L/PuA/efTJG7bfP7WjBO/1jz5x9oePyD7eLPzjy5uzDjkrN2K+KEjvDSrguYUgXRD+jJivmWk+OnsZVwwBNdkcU1cMAVwxtDAphgCJKzwPOiDi0dDPu5iUuvFtDzfAvdwAj3ADLHED3M0N8CA3wAPcAOe5AR7mBjilPZXntWfsae0Ze2bpaZsD2hNFf8Y+/YD2fDOjPRIPaW8D2H0RPNNGGzM1v/QYcQlqxDrYPayrgPHgvvc+9KSDPJkCj1Blr6AD5d4XDeA7xZev+PnQp3ZEW65+PvTh58NmpvOh5Nl5M3o+NBX4FMhovDy6H5vML07mJ/jCbysKbgHiptctxAPcAKe5AZbYkXiUG+IUN8B93AD3Lj0yH9BemtlXuJsb4Aw3wCPas82s9mxzWHscTmm/wnntqTy/9IxUSXuizOrv3DzEDXEb+xKPNXwH/dRDHUy99Y4UlE5qVTjX+YjZWuHPhEpN+BnYr3YM9amfgf34GdjHdAb2k7jC611JSnoYd6tbFCYDB27nN96wZgtrUoJ/Avn9OiSJoVk9KWFCJSmhmeqUiQqAYqfMVvgzvPxZKyocNxplTnBpDTJJaxD+jJivmWk+U0gKwzcafqvA3S7tiNr7PVCxyJrYBeYNyRO7KN0UqHtiV6D+uimgopuCcGkSrqmMews2WVCcLOiMDf38IL1bG0ldwcrMTQTmfGgQehNauGiznHearLzTBPdS4ftCv7kGFvhNE6GJgpTgtzAJfosDwfdVOqN+6KbVNXRU/rhVIvO+MxW5vJJ2HCWthG2CqrCVFUGQlERUSQQd1tj60JoPhF936+RKd0KGDArRWXQea2EtQwu7hcxfWkQsVr6YqoCeFZZxcV0h1XWp4BDMgqvTLe7IUq2XBhgFKoezwl35dbCGRylvhp4ExbSsY8CtV/Xn5b6O6p1XX5cV68ZU1V8MIb9QrhqOmNiwdYC/NsA0c6T2A9O/R2tLk04Qk6DHgBUW0BMr9w1aCNBaG1ZlBOvcrfK5I9bNoSnIVYDWASD9uEqRPFa1T9Hnaa46rR6LAD538fJXx9888oB9EUCPE8W/8CfXffvfpkY8VBtscc2+PuK8d5tns+OjdNuCcXXgQyrYREV1/mt1m9iK270Ak3PcKirYAGHCFGtJ/ufRU5fvmLz7vst37Tv61I27Nk1u3b7vMeRcd0pyjgyjNs8vHihFaxg2HMS3e849+E/P3Pkf9r0Q+t6Auhr2vRBkqRkLZmqtAfxyKgrQgh2+Q1BUnzm7upcPktdNnYR8tGFuh3RQCPeebpi7C3UX0ONQ2Gnp4KAEH+FyX63/6gvoFO7yYBaAb7AvHhwhJQ4ZJC2yCNZFvB+LCjEBsI1wJSaA0jWM0rUZHxQ5Q9maWgej0SEvu9LS9UccL66VdDZNesG5Q++oGHAICHDNaj7h8UWKu8N3M3r4vln9iG3U3O+bcH7EpnoIeHEdUD4ImPnAD/9EBwXNg6hWFAFOfycAsUPIA7alZpK1Q0T6nfe1U+d1P+dEBrBbPJvdHB5vNqR2VtXs+mgzs2B29xvA9zoyu6h/VjWSlUW/GS4CTR4VLGtrTY1hdklmV41BEJCw3Ui57wiwqpj+WWegBM0dbLW3vGHJAlrLfX9gAH9QwHerSaFRT61xk1Y5/5rWUTVwUoy8x1jQO6k5/UTHl7AB4mEUqbeB39TBUBLeoN+dNyiRdbAwYr4Fc3jtLuTReuRM6NTq54CuPRGkb1nEvSsUgcsmMGHya6Jw9S6crlbSnoRtXv0793p8qNfjk3k9s5TIkY4ixpet5FYiCsfZELoVE15rqsljfOUd3/n11957sOfHdQ/kvO7xve+KXfzsJ+o+0TPRL1/+Xx9vvV0lYmTlB9OLdYwPwTUINK/GjYjMzj7nOTDTJO6LUEhOjqimWLK4k03ynZw2ePCPKTXYTMmaT/VISy5q4UD7aXCgxa8jvPWZacH7zISxsDRQIdRDGVfH6aCoe6JQ3zq/Zw7ael0hMpphugOTMs2fU22lmknT4CO1rR9OjQdtNxtM+13PnnoIdXKaiBZ2zUQJBh/R5M9PNPlrUT8pBw0m/kfipExok2ZK6H20T4tJZlBXyVwnslSEZDjHrBwiDpPrSGe35gN81/YGJCCeIf8ZvcNEVG+AUr3Bct9/GqB/KFA/QLFG0IGyUkwqMQUthNgTfkcSUo14Kd+RhJzlBni5Iwmp3ZG0qsoYeoqnSFS7WHl+466Z0vatu3ZeuLE0ff/c7MIvd+08gfi5UIJbKLZqpo9+pDqipDdASm+QNET0YbUVu8Fw5LKhQgqRL7HABeNKudBNa3DnZA7ZOjBS3QoWTZAn4qrYXNSNmyUtqUasEpiAGH5ojJqP1OTWHFlJr/5rALeSEVsrGZO5onaIlVR6i5EiZmp25t64RkjxDDozrwty4twoBdDTu0kya0bY41n3NcO/1Z37y92xuh+qAy259xefvfMapUO1JXoFvQC76JVw3VGZ5gaVlIeQN9PmzZwHzok5xw8aIVnKe2XcFoWAVCvhZ9UTIHa48p7a4sJtI1JbQvVLbQmhdA7DpeHlNbZw1+vQGOApJx6/96s+02nlHF28hghh8D4RKLmCt+n1Pg1Inccu2Y3TaeFq1cBgCx0YLEwboDdIfuAvF64zfrBFVDCKtVfCaPShiYjwBIkIT4DoTBoiqv0Kr5cStYs45ZhRs5Gf9rtUzMhAo5tHXD5ZUL2ZCqr7yoU7PL8uoILq/t8ofvBA9S8pRAqdvlsRT1X0Adr8XIjQmVJFB2mK6qdb3bwaXUdhwG+TNYErNTiRTK3NGeL2oMLZ2/75KX3j0EIn8Hltbx4VGR8TlxghLnFCXBKEuCQJ9dkGt6wsShElBfqggmvUgp47zekRhnm1hBCUM9elew98eO32PXDvLTX4pv221n5gWUhYVW/Ln2AQyUGB2lTWZyCRcuF9coBCXlMrJkKVf46iL1zC2EufqCqkVgukkGtIYfSNS0h9URiooMO3QMDNr/Lru8/fjX3hD35TbuwLf2zg80Pa3NgXnmrc2Au+nUY39oVP6nJjX/jrxo29uh/euLGXkeY839gX/trFjX3hy8w39oUfGKD/v8aNfePG3kKixo29IL/n58b+R1UxLfobN/aNG/vGjb2deS2q1CZSu7EvfPn/ABSYQEOdJAUA",
|
|
4120
|
-
"debug_symbols": "tb3druTMcWZ9L++xDpgRmRkRvpXBwJA9siFAkAxZ/oAPhu99KoPMXNXds3NzV+33RL0kdcfiXz4kk1Hkf//2f/70L//17//857/+29/+87d/+l///du//P3Pf/nLn//9n//yt3/94z/+/Le/Pv7X//7tGP9RpP32T/qHx5/9t39q40+7/vTrzzj/1OP6s1x/yvWnXn/W6892/XnV06ueXvX0qlevevWqV6969apXr3r1qlevevWqV6969arXrnrtqteueu2q16567arXrnrtqteueu2q1696/arXr3r9qtevev2q1696/arXr3r9qmdXPbvq2VXPrnp21bOrnl317KpnVz276vlVz696ftXzq55f9fyq51c9f9Sz8adff8b5ZxzXn4965RggE3TCo2QZx0o8apb8y32CTfAJcYIcx4RR2QfIBJ1QJ7QJfYJN8AlxQTkmzMplVi6jcgyoE9qEUbkNsAk+4VFZBsgxoUyQCTqhTmgT+gSb4BNmZZ2VdVYeA0nG9hkj6YQ6oU3oE2yCT4gLxoA6oUyYleusXGflOivXWbnOynVWrrNym5XbrNxm5TYrt1m5zcptVm6z8hhiMnbBGGMJY5CdUCbIBJ1QJ7QJfYJNmJX7rGyzss3KNivbrGyzss3KNivbrGyzss3KPiv7rOyzss/KPiv7rOyzss/KPiv7rByzcszKMSvHrByzcszKMSvHrByzclyV9TgmlAkyQSfUCW1Cn2ATfMKsXGblMiuXWbnMymVWLrNymZXHGFQZ4BPigjEGTygTZIJOqBPahD5hVpZZWWblMQa1DSgTZMI1ulXrhDahT7AJPuEa3VqPCWWCTJiV66xcZ+UxBrUPsAk+IS4YY/CEMkEm6IQ6oU2Yldus3GblMQZ17IIxBk8oE6481DGa6iP5dYydOjbdGDsn1AltQp9gE3xCXDDGzgllwqzss7LPyj4r+6zss7LPyj4rx6wcs3LMyjErx6wcs3LMyjErx6wcV+V6HBPKBJmgE+qENqFPsAk+YVYus3KZlcusXGblMiuXWbnMymVWLrNymZVlVpZZWWZlmZVlVh5jp7YBfYJN8AlxwRg7J4zKfYBM0Al1QpvQJ9gEnxAXjLFzwqxcZ+UxdqoNqBNGZR/QJ9gEnxAXjLFzQpkwLpbKAJ1QJ4zrJR3QJ9iEcQk2lievEQfkRWJCmSATdMKoPJY5rxQT+gSb4BPigrxcTCgTZIJOmJVtVs6LxrGCedWY4BfkdWIdMOrEgMe/6mOVx/jq+X/ZBJ8QF4zxdUKZ8KjTx5EwxtcJdUKb0CfYBJ8QJ7Qxvk4oE2SCThiV+4A2YVSOATbBJ8QFY3ydUCY8KtsxQCfUCW1Cn2ATfEJcMMbXCWXCrCyz8hhfVga0CaOyDLAJPiEuGOPLxgqO8XWCTNAJdUKbMCrbAJvgE+KCMb5OKBNkgk6oE9qEWbnOymN8mQ+IC8b4OmFUrgNkgk7wCeNfjX0xRoqPVR4jxXVAndAm9Ak2wSfEBWOknFAmyIRZ2WZlm5XHAPGxPGOAnBAXjJPUCWXCKDhWcJykTqgT2oQ+wSaMymNNxyBKGIPohDJBJuiEOqFN6BNswqwcV+U+BlEcA8oEmfCoHGVAndAmPCqHDnhUjjrgUTn6gLhgDKITygSZoBNGnbEYY8ic4BPigjFkTigXaN5pyiBZlPeaY5HGIV2ONsgW+aKYNA7ri8qklv/bWLJWFskiXVQXtUV9kS3yRTGpL0dfjr4cfTn6cvTlyAus4zGYuuW/9UHj347b7D6O2ovqovFvy9hnI+IvskW+KCaNo/iirDe2rue/HVvX89+OZXFfFJMi/+3YkjkbcJIs0kV1UVuUjrFuOSdwUjrGWuaswCDLaYGTsl4MGv9WjkG2KP9tHTT+rTzWyPLG/6SySBaNeiKD6qK2KB06yBb5ouWQ5ZDlkOUQXVSv7WzSFvVFtsgXzX1kedyPPWParj1jedyPvWBqi3xRXNvZ6rGoLJJFuqguatf+sNoX2dwL1RetfZRjJvdMjo/cH23toxwfuWdyfOTWaGv79bX9+tp+OT5yL/S1j/raRzk+ci/0tY/62kd9Ofpy2HLYctjaR3kUjxssy6P4JFmUSzC2QR7FJ7VFfZEt8kVxkedRfFJZNBxaBumiuqgt6ots0XCMm1TPoz0pj/aTyiJZpIvqoraoL7JFy1GWI4921UFlkSxKRx1UF7VF6WiDbJEvikmajj4o641tpXVRW9QXZb0YNOqNW1HPEVDHtsoRcFJZJIuGY9zfeI6Ak9qivmg46liPPO7H/Ybn+WPcZ3ieP+pYghwLbfyLPH+cVBe1RX2RLfJFwzFuJjzHx0nDMS7fPcfHSbqoLmqL+qJ0+CBfFJNyfJxUFskiXVQXtUV90XLYcuR5ZtxFeJ5nTiqLhqOPvZXnnpPqouHoY2vk+WjcTHiej07yRTEpR/JJZVE6xnGVI/mkuqgt6otskS+KiyJH8kllkSzSRXVRW9QX2SJflI7H3oocySeVRbk/6iBdVBe1RX2RLUqHD4pJOZJPKotkkS6qi3KZY5Avikk5ak8qi2SRLqqL2qK+aDl0OXQ56nLU5ajLUZejLkddjrocdTnqctTlaMvRlqMtR1uOthxtOdpytOVoy9GWoy9HX46+HH05+nL05ejL0ZejL0dfDlsOWw5bDlsOWw5bDlsOWw5bDlsOXw5fDl8OXw5fDl8OXw5fDl8OX45YjliOWI5YjliOWI5YjliOWI6YjnIcB1hAARWsYAM7aKCD2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYKrZMhDF98kABFWxXkD2wgwY6GAvbARZQQAUriK1ha9gatoatY+vYOraOrWPr2Dq2jq1j69gMm2EzbIbNsBk2w2bYDJthc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsMWyleMACyigghVsYAcNdBBbwVawFWwFW8FWsBVsBVvBVrAJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFFvFVrFVbBVbxUaWFLKkkCWFLClkSSFLsv2kjInOkh0oExUctjFpW7IVZWIHs5WiJToYCzNLLiyggGmLxAo2sIMGOhgLM0suLKCA2AybYTNshs2wGTbH5tgcm2NzbI7NsTm2zBLLPZRZcmJmyYUFFFDBbFEpiQ3sYDaqSKKDMfFshLkwG1+y7epYFa5WlxMdzApjx14NLycWMJteeqKCFWxg2izRQAdjYSbBmMku2eJSxkRzySaXiQbm9j3/WSzMMX9hAQVUsILZqnMkdtBAB2NhjvkLCyigghXEVrFVbBVbxdaw5ZiP3Fk5uiP3cY7uCztooIOxMEf3hQUUUEFsHVvH1rF1bB2bYTNshs2wGTbDZtgMm2EzbI7NsTk2x+bYHJtjc2yOzbEFtsAW2AJbYAtsgS2wBbZYtmyxmVhAARWsYAM7aKCD2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGjSxRskTJEiVLlCxRskTJEiVL9MwSTVSwgg3soIEOxsIzS04sYNp6ooIVTFtN7KCBDsbCM0tOLKCAClYQm2M7s8QTHYyF2Zo3ni2WbDCaKKCCFWxgBw10MCZmy9HEAgqYtp7Y50LWMx/GKbSe+XDiqJD9u9leNFHBCjawg2N5xwOrkq1GE2NhtsteWEABFaxgAzuITbBlA+14VFayBWliAdOmiQpWMG01sYMGOpi23NTZ0pcdzdmGJCU3dTbxXdjADo66kpsvG2ol1yJbaiUXJ5tqJW3ZVnuhgAoOm+TiZHvthR00MG25vNldK7k42V87Oi5LdiiJ5uJkj62mIrtsL2xgBw10MBZmx63mMmTP7YW6Ds9zzJ/YQI5fM9DBNQrrOeZPLKCA2BybY3NsjPlsdxLNbZbNuCfmmL8wVyj/bo75CxWsYAM7aKCDMTHboCYWUMBhG4+2SrZDTWxgBw10cNjGQ6+SrVETCyigghVsYAcNdBCbYMt8qJoooIJpa4lp64kdTJslOpi23FCZDxcWUEAFK9jADhroILaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gato6tY+vYOraOrWPr2Dq2jq1jM2yGzbAZNsOWzfvjEe0DO2igg+scm11eEwsooIIVbGAH1xk9e7weN4eJ6yydXV3SchRmPlzYQQMdjInZ4TUxW8klcW3ffqw17oeDsfAc8ydme7omCqhgBdfe7AVbMdDBtTe7HGABZS3DOeZPrGAD+1qG8wc1JzqIjTHfGfOdMd8Z850x3xnzXdex05UtqWxJZUuebf65DJUtWdmSjPnOmO+M+c6Y74z5zpjvjPne2G/nmD+RLdnYko39lmP+QrYkY74z5jtjvjPmO2O+M+Y7Y74z5ntnv3W2ZGdLdrZkZ0vmmB/Psku2wk3MLdkSFaxgA3PdchlyzF/oYCzMMX9hAQVUMG25kDnmL8zrhxNjjcIc86O3oWTD3EQBFWQPBXso2EPBsR4c62cSDLTjANceskNABSvYwA4a6OA6HrKvTkabeMnGuokVHHVHO0fJ3rrH/FSigQ7GwsyHCwsooIIVzKu2FJ+zByfGwnP24MQCCqhgBRvYQWyKTbFVbBVbxVaxVWwVW8VWsVVsFVvDxpzj2aV3IbaGrWFr2Bq2hq1h69g6to6tY+vYOraOrWPr2Do2w2bYDJthM2yGzbAZNsNm2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yxbGdP4oUFFFDBCjawgwY6iK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBRpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAl2Ugpo4m1ZCflRAUr2MAOGuhgLMw7lAuxVWwVW8VWsVVsFVvFVrE1bJkl+dA4uytldMCWbK+cWMEGdtBAB9N2vnPiAAuYthTnHcqFFUxbT+yggQ7mU/BxmX/2W15YQAEVrGADO2igL8zUyG6A7LKUfv6vClawgR000MGxzbJJLrstJxZw2MbPDks2XE6s4LBZvvsj71AuNNDB3GYl3/hxgAUUUMEKNrCDBvrCnMEwTRRQwVyLmtjADuZatEQHc5v1fEvJARYwbfk+k7xDubCCDeyggQ6mzfNVKAdYQAEVrOD8YY6crZTjYYicrZSSmFcVFxZQQAUr2MD5axw5uyovdDAW5lVFObGAAipYwQZ20EBf2NnznT3f2fOdPd/Z850939nznT3f2fPGnjf2vLHnjT1v7Hljzxt73tjzxp439ryz55097+x5Z887e97Z886ed/Z8sOeDPR/s+WDPB3s+2PPBng/2fLDnY+35s1OynFhAARWsYAM7aODa8+Uc85EooIIVHPvCj8QOGujgWIvxI0w5eyIvLKCAClawgR20hTm6x2+JJbsfJwqoYAUbmGvREg10MBbm2f/CAgqoYAUbiK1iy7P/aCST7H68MM/+F6bNEgVUMG25h/LsH7kD8uw/mhMkux8nOhgLz1cGnVjAYYs8Ss4XB51YwQZ20EAHY+H5GqETC4jNsBk2w2bYDJthO18slNv3fLXQiQVMW26z8wVDJ1awgR008GHTIzf1yIcLRz5MLKCAClawgR00EFssW3Y/6lESCyhg2jQxbT2xgR000MFYWA6wgAKmzRIrmDZP7KCBDg5byUXPVxVdWEABFaxgAzs4bBnm2VU5MW25dfL1RRcWUEAFU1ETO2igg7GwpiI3SS2ggApWsIFpyw2VbzW60MFYmO82urCAAipYwQZia9jyXUf5zrdssLww33d04bDlKTQbLCcqOGx5LswGS81TXTZYquSGGgEy0cFYOAJkYgHzRJXUFvVFtsgXxaQcwddL5Q6wgPk8I0kX1UVtUV9kv82302XFnpibwRLr+XosyXbFi/qisQ1qki+KSTkSTyqLZFFKPLGCua0jsYO2MAecHomjwmhnkfNtYBeOCpo0CozfOMv5SrALHYyFObIuLHOTqCzSRXVRW9QXxdqIOWSul/rlguYy5ZC5MBc0t0UOmQtzSbPYfBWYrHeByXoZmKy3gcl6HZis94HJ+fqvC3Mtc0HmC79kvfFLsifwovGvcy/kwX9SW9QX2SJflJLEPO4vHJaz+DhxTlRwFK25Ny2Pm9yFfoCjQi67y9owrmAFG5hlc2+6gQ7G2uA5ki4sILbAFtgCW2ALbIEtli37+yYWcNmyv29iBRvYQbsO9XzD2Hn4ZivgheUACygL8zxVcxFyMF1Ywby+SOqLbJEvikl5uXtSWSSLdFFdtBy6HLocuhy6HHmOGi1Bkm8MmyhgrownVnBsxJpbLgfchQY6GAtzyF1YwGEbTRmS7XoTK5i2XN4cjBcaOGwt90MO0RNziF6YwZ4ki3RRXdQW9UVZMY+NHHktd2eOvJbLbxVsYAfHkrbz/aAOxsIcpRcWMC+0klKWWz5H6YUN7KCBDsbCHKUXFlBAbIEtsAW2wJajtOcmy1GamB15EwsooILDNp5QS3bkTeyggQ7GwhymFxZQQAWxFWx5qhyzsJIdeRMdTNvYr9mRN7GAaeuJClawgWk7XwabtnE4Z++djvlAyd67iQIqOOpabr68TM3Zm+y905yRyd47zbmX7L2bGAszAi5M2/kmWgEVrGDacnlz3OcsQDbcaU4uZsOdei5Ojvu8uc2Gu4kCKljBBnYwbedbcn1hDvYxZS7ZZTdRQAVTkYt+npRP7KCBPod8O4MgMU/MFxZQQAUr2MBRN2/cs5/uwgyCC/OyIrdkBsGFCo66eeOe/XQTx1rkPXH20010MG25DJkEFxZQQAUr2MC05XGWSXChgzExe+8mFjBPNSUxz8w9cV0H9MNAB2PheW18YgEFzOuAmljBBnYwrwMs0cF13dfPi+YTCyigghVsYN7i5GrmVXMk5pi/sIACKljBBua+SEWO+QsdjIU55uXEAgqoYAUb2EEDfWEO9NEZLtllN1HBXItIbGAHbbw490h0MAbmATPG/MQCysDc82PMT6xgAztooINpGwMnu+wmFlBABSuYez6XzNjzxp539ryz55097+x5Z887e97Z886ed/a8s+eDPR/s+WDPB3s+2PPBng/2fLDnY+357HDzPDNkh9vENt7oWBI7GOsvjJE1sYCyMN+IO/qDJRvNJnYwd2EuQ74Z98JYmG/HPbJYvh/3wrELc9ooG80mVnDYciooG80mGuhgLMw35l5YQAEVrCC2hq1ha9gato4tD/ucg8rmsZqv5c/msTrefyfZPDYxFuYBfmEurycKqGAFGzhsktvsfH/1iQ7GwvMt1icWUEAFK9hAbI7NsTm2883WR2IBBVSwgg1MmyQa6BP9fH31ifkXNNHB3NTjkMt+r4kFzMVpiQpWMBfHEjuYNk90cNjy9iH7vWpGUPZ71byvyX6vicOWZ97s95rYwA4a6GAszJdbX5i2XMh8wXVOZWS/V81Ji+z3qnn2z86umifs7OyaGAtz8F5YQAEVzGK51XNsXhgLc2xeWEABFcxiuQNyZOWNcTZYTWxgB/Of5crneLswFuZ4u7CAAipYwQZ2EJthM2yOzbE5Nsfm2BybY3Nsjs2xBbbAFtgCW2ALbIEtsAW2WLZssJpYQAEVrGADO2igg9gKtoKtYCvYCraCrWAr2Aq2gk2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYOraOrWPr2Dq2jq1jI0uCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSWFmix8oSPVaW6LGyRI+VJXqsLNFjZYkeK0v0WFmix8oSPQ5sBVvBVrAVbAVbwVawFWxnVHiigApWsIEdNNDBWHhGxYnYFJtiU2yKTbEpNsWm2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYOraOrWPr2Dq2jq1j69g6to7NsBk2w2bYDJthM2yGzbAZNsfm2BybY3Nsjs2xOTbH5tgCW2ALbIEtsAW2wBbYAlssWzkOsIACKljBBnbQQAexFWwFW8FWsBVsBVvBVrAVbAWbYCNLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLsteqjoc7mr1WdTyn0uy1quNzNZpdVXU8xtFsearXd7oEVHAoxhMQzZaniR000MFYmIPswgIKqCA2x+bYcoiMZx2aDUsT28RsQqrjWYdmE9JEAbOCJY4K40mFZhPSxA4a6GAszMP+wgIKqCC2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJNsWm2PKwH73lmk1IEyvYwA4a6GAszMP+wgJiq9gqtjwBjidMmn1DdTxh0uwbqpa7OwfDhQY6GAvzVHdhAQVUsILYOraOrWPr2AybYTNshs2wGTbDZtgMm2FzbI7NsTk2x+bYHJtjc2yOLbAFtsCW43g819NsXJrYwA4a6GBMzJamiQUUUMEKNjBtlmigLzxHtydmhUgcFcazRc0upokGOhgLcxxfWEABFawgNsEm2HIcj6lrzZanC3McX1hAARWsYAM7aCA2xVaxVWw5jsfjVs0mqYkVbGAHbeH5hbeamBVaYlbI3ZJj/sIOGuhgLMwxf2EBBVQQW8fWseWY9zxgcsxfGAtzzF9YQAFH3ci9meM4cvPlOD4xx/GFo8J4sKrnNxYvVLCCDeyggQ7GwhzHF2ILbDmOI3dLjuMLG5i2HGQ5ji9MW65xjuPx0E3P7zBe+LC18UxNs2lqooJ1oCQ2sA/URBtYE31gS4yBQ5xdUxMLKKCCFWxgBw10EJtgE2yCTbAJtvxG95GbJD/LPR4KaTZatfH4R7PTamIFx0KW3CT5le4LDXQwFuYXuktuvvwod8nNl9/lzq+F1vw094UOxsL8RveFBRRQwQqmrSd20MC05SbJTzOemB9nvLCAacttlp9ovLCC69IyO6kmGpgXsrklc/CemIP3wgIKqGDacmflpxsv7KCBDsbC/Pr3hQUUUEFsjs2xOTbH5tgCW2ALbIEtsAW2wBbYAlssW/ZdTSyggApWsIEdNNBBbAVbwVawFWwFW8FWsBVsBVvBJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2BSbYlNsFVvFVrFVbBVbxVaxVWwVW8XWsDVsDVvD1rA1bA1bw9awNWwdW8fWsXVsHVvH1rHlZ1/Ho1nNHq2JsTA//nphBfOflURfmGf0PJNlW9XEBubflcRYmEP6wgIKqGAFG9hBA7HFsmUD1cQCCqhgBRvYQQMdxFawFWwFW8FWsBVsBVvBVrAVbIJNsAk2wSbYBJtgE2yCTbApNsWm2BSbYlNsik2xKTbFVrFVbBVbxVaxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8PWsXVsHVvH1rF1bB1bx9axdWyGzbAZNsNm2AybYTNshs2wOTbH5tgcm2NzbI4tLw/yQ/X9zJITY+EZIJYooIKpiMQGdnAoRseHZjfWxJiY7zybWEABFaxgAztooIPYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYlNsik2xKTbFptgqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGTbH5tgcm2NzbI7NsTk2x+bYAltgC2yBLbAFtsBGlhhZYmSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyV+ZklJ7KCBadPEWHhmyYlpa4kCps0TK9jADhqYtkiMidm+18ZPVzXb99poCNVs35s4bKOzU7N9b2IDh238zlKzfW+ig8M2+jI12/cmFlBABSvYwA4a6CA2wSbYBJtgE2wZFdnKk314LR87Zx9eq7nNMhQurGADx0Lmc+nsw5voYCzMULhw2Fpu1AyFlpsvQ+HCCjYwbbm8GQotlyFDoZ91Y2GGwvi1nWYfXsuHxtmHN3HY8vlx9uG1nsUyFE7M0Z0PS7OhruXTyWyom1jBsTj5zDKb5Jrl8uaIvVBABSvYwA4a6GAsdGyOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsMW01WySm1hAARWsYAM7aKCD2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsGWI3Y8Y63ZRTexgR000MFYmGf/8dSzZhfdRAHrdfzWbJ2b2EEDHYyFObovLKCACmKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hq1j69g6to6tY+vYOraOrWPr2AybYTNshs2wGTbDZtgMm2FzbI7NsTk2x+bYHJtjc2yOLbAFtsAW2AJbBsh4Nl6zdW6igcPm59+Nidk6N3HYxk97a7bOTRy28QS6ZuvcxAamzRINdDAWZoBcWEABFaxgA7EVbAVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsHVvH1rF1bB1bx9axdWwdW8dm2AybYTNshs2wGTbDZtgMm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2WTY4DLKCAClawgR000EFsZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZ5Z4YkysZ5acOGyj57SevZYXDtto8qxnr+WFDRy20eRZz17LCx2MhZklFxZQQAUr2EBsBVvBVrAJNsGWUTHe61PPrsrRiVrzjXZtdKLWfKXdxAIKmAsZiRVsYAcNzB2Qy3CGQuIZCic+bH10rdbswJyoYAUb2EEDHYyFIxQmYmvYGraGrWFr2Bq2hq1h69g6to6tY+vYOraOrWPr2Do2w2bYLG0lUcEKNrCDBqYtDxiLhX6AacvDyAVUsIJpy8PIO2igL4ysm2MzskIeRtHADo4KJZd3DPSJMTF7Lfto763ZazlRQAWHbfT/1uy17KP/t2avZR9tuDV7LSc6GAvLARZQQAUr2EBsJW2W6GAslAMsoIAKVrCBHcQm2ASbpq0lFlBABSvYwA4a6GAsrNgqtsyH0cVcs9dyYgUb2EEDHYyFmQ8XFhBb5sNobqzZazmxgb4wx7zk0ZdjXvLgyjF/YQUbOJZX8ujLMX+hg7Ewx/yFBRRQwQo2EJthM2yGzbE5thzzkkMkx/yFacvtkGP+wg4a6GAsHBcCfTwhrdm4OVFABSvYwA4a6GBMzMbNiQVMW0lUsIJp08QOpq0nOpi2MYaycXNi2jxRQAUr2MAOGuhgLMx8uBCbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW+bDeGJes3FzYgM7OGw1D6NMjQtjYV4/XFhAARWsYAM7iK1j69gMm2EzbIbNsBm2TI3xsL9mM2avORgyHy7MCjWxgg3soIEOxsJMgvHKp9qDvRls33PMn+hgTMxeyz6e5dfstZwooILr2LGjgR000MF17Fg5wLKW4RzzJypYwbaWIcf8hQZiY8wbY94Y88aYN8a8MeZN1pFq0kEDHYy1DMqWVLYkY94Y88aYN8a8MeaNMW+MeWPM2znmcxkqW7KyJStbsrIlc8yPfo2avZYTc0uedR2MhTnmLxy20YNRs9dyooIVbGAHDXRw2EZDR81ey4nrAM8Gyz7eb12zwXJiAzvIoXEO9BPZWcbOMnaWcdgbh72xs4ydZewsY2cZO8vYWc6B6ByIzqGRw390qNRspZxoYG6o3A45/FsuWV4eXFhAARWsYAM7aBP9vFGIxAIKmHU9sYKj7vjwdc2myYkGjrUYzTU1myYvzFC4cNjGD+9qNk1OVLCCDeyggQ7GwgyFC7Hl8M/7rGyPnJh1NdFAB2NhDv8LCyhgrkVLrGAD05Y7IIf/hQ6mbRwP2R45sYB565l76JwyOLGCDeyggQ7GwnPK4MQC5lpYYgM7aGCuRW7UHOgn5kC/sIAyp2TORsgLK9jADhroYCw8+x/yQDz7H06sYAM7aKCDsfDsfzixgNgcm2NzbI7NsTk2xxbYAltgC2yBLbAFtsAW2GLZzpbHCwsooIIVbGAHDXQQW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BRbxVaxVWwVW8VWsVVsZy+VJDoYCzMfxltYanZKThRwpFF2pWWn5MQGjtTITrN8Y+FEB2NhpsaFBRRQwQo2EFvH1rF1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYYtpaNmNOLKCAClawgR000EFsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bB1bx9axdWwdW8fWsXVsHVvHZtgMm2EzbIbNsBk2w2bYDJtjc2yOzbE5Nsfm2BybY3NsgS2wBbbAFtgCW2ALbIGNLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBI5s6QnGuhg2nzgmSUnpi0SBVRw2MaLA1v2ZU4ctvGzjZZ9mRMdHLbxs42WfZkTh80lUUAF05YrlFlyYdos0cC05UJmliRmX+bEYRuv52vZlzlRwQo2sIMGOhgLM0suxFawFWwFW8FWsBVsBVvBJtgEm2ATbIJNsAm2TI3RPday17KPj7617LXso0erZa/lxAZ2MJe3JzoYCzMfLizgw2bjxYEtey0nVrCBHTTQB+ZajHy4cOTDxAIKqGAFG9hBA7E1bD1tufl6AQVMW26onjZLbGDaPNHAtOXx22OhHWABBVSwgg3soIHYDJtjc2yOzbE5Nsfm2BybY3NsgS2wBbbAFtgCW2ALbIEtli17LScWUEAFK9jAYStHooEOxsKRDzb6uVr2Wk4UUMEKNrCDBjoYCwWbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWLL1BidcS3bLm10xrVsu5yYFVpiLMx8uLCAAipYwaw7kqt2jp0c8+c+zjF/oYIVzDW2xA4a6CBHKmO+MuYrY74y5itjvjLmK2M+WymvxTGOVONIzTF/IeuWY340nbVspZyY65Z1c8xf2EEDh01yv+WYPzHH/IUFFFDBCjZw2CQPghzzF8bcWdlraaMNrGWv5UQBFaxzB2Sv5cQOGuhgLDwH+olrZ2Wv5UQFK9jADhro4Do0sqvSxtvAWnZVTqxgbqjcDjmkJZcsh/SFDsbCHNIXFlBABSuYdT3RwViYg/fCrJtrkRcCFypYwTavS87+yQsNdDAW5o3ChQUUUMHxkGV0OrTzrZQXOhgL8+cVFxZQQAUr2EBsHVvH1rEZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYItlO1+HeWEBBVSwgg3soIEOYivYCraCrWAr2PIR6mg1aefrMC80cIwsPf9uLMxT/oVp00QBFRwjS09sYAfTZokOxsJ8hHphAQVUsIIN7CA2xabYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9g6to6tY+vYOraOrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wBbbAFtgCWyzb+WbMCwsooIIVbGAHDXQQW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIKNLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJNtEH2ftxAo2MG2RaGDe47TEWHje45w4bKObu51toheOdRtt5O1sE72wgcPWc8kySy5M24mxMOdALhxzFZpLlnMgFypYwQZ20EAHY2HOjFyIrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1hy4nR8YrWlq2fNn6U1bL102rui5wCvdBAB8fy1jxKcgr0wgIKqGDaemIDO5i23LE5BXphLMwp0AsLKKCCFWxgB7E5NscW2AJbYAtsgS2wBbbAFthi2nq2fk4soIAKVrCBHTTQQWwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsHVvH1rF1bB1bx9axdWwdW8dm2AybYTNshs2wGTbDZtgMm2NzbI7NsZ1Z4okN7KCBDsbCM0tOLOCwjd/29Wz9nFjBtEViBw0ctjF52LP188Rs/Zw4bOOnZT1bPycqWMEGdtBAB2NhZsmF2Aq2gi2zZPyQrWeT57WQmQQXKljBBnbwqUIu2YmxMJPgwlyymiigghVsYAcNdDAWZhJciK1iyyQYVzY9GzcnNrCDBjqYtnHsZOPmxAIKqGAFG9hBAx3E1rFlEoyXd/ds3Jyo4LBZ7uNMgvEDmJ6NmxOHzXK3ZBJcOGyWGyqT4MICCqhgBRvYQQMdxObYHJtjc2yOzbE5Nsfm2BxbYAtsgS2wBbbAFtgCW2CLZcvGzYkFFFDBCjawgwY6iK1gK9gKtoKtYMuritEk17Nxc6KBDq7cycbNiQUUUMEKNrCDK+WyRdNGS16XMx9KYi6vJTawgwY6GAszHy7M7eCJbN/KGlfWOMf8iTnmL8ztG4kCKlhB9mbD1tibjb3Z2JudvdnZmznmz2XIMX9hBdmb55jPZTjH/IkOYmPMC2NeGPPCmBfGvDDmxTh2jC1pbEljS55jPpfB2ZLOlmTMC2NeGPPCmBfGvDDmhTEvwX47x/yJbMlgSwb77RzzJ7IlGfPCmBfGvDLmlTGvjHllzCtjXo+13/TooIEOri2ZDZY2Wkp7NlhOHLbRidqzwXJiBRs4bJ7LkGP+QgdjYY75CwsooIJpy4XMMX9hXj+cfyHmKMxXXNp4XXnPV1xOFFDBtYdUG9hBAx2MhfUA2UOVPVTZQ5U9VBvYQQMd5HjIfBgduf1ssLywgrl1cjtkPnguWebDhQ7GwsyHCwsooIIVHHUjj5JMggtjYSbBhaNu5FGSSXChghXMa+UTO2igg7HwvA84sYACKjjqjo7cfjZNXuhgLMwxP1pY+tk0eaGACo45sbwlOF9QeWEHDXQwJp4vqLywgLl1amIDO2igg7Ewx/F4DWQ/Wx5Hg3A/Wx7HWx772fJ4oYNZIZchR+yFuR0iUUAFH8vro4O4Z8vjxA4a6GAsHON4YhlYEgVUsIIN7ODY6pKYI/bcDjliL2Tr1KwriRVsYAcNzLXQxFjYDrCAuRZpawpWMG25A1oHDUxb7osWC/sBpi33fE9b7pYxjr3kRh3j2EtuknGen9jBUbfkuo1xPLGAAmbdXLccsefBlSP2QgdjYQ7TC8fAOSucn/I+sYNjF5ZcofNT3ifGwvNT3icWUEAFK9jAsVEvjInZ3DixgLnyLVHBCjZwrEXugPOj3Rc6GAtzuv/CAgqoYAUfdWsmbbYx+ujL7NnGeKEcYAFzLSxRwQo2sIMGOhhjGcaxk82NEwsooIIVbGAHDfSFNdfCEwVUsIK5FrmhcvBeaKCDYy3yAiObGycWUEAFK9jADo59IbmHcpheWEABFazgqJt3M9ncONFAB2PhGLwTx1rkfUs2N05UsIIN7GCuRe4Az+WVRAUrmBVyo3oHDXQwFsYBFlBABSuILbAFtsAWy5YNixMLKOA4dkbHc8/WxIkGOphbZ+RDtiZOLKCAClawgR1MW0t0MBbm6L4wbT1RQAUr2ObOytbEiQY6GAvz1HxhAQVUMOtaooEOZt0xTLMJ0SW3eo7uCwVUcKzFeGdnzybEiR00cNg091CemjU3VJ6aLyyggApWsIEdNNBBbDnmNVczx/yFAipYwQZ20EAHhy0vb7MJ0WuucZ6wLxRQwQo2sIMGOhgLHZunLQ+uzIcLFaxgAztooIOxMNKWB0EUUEAFK9jADho4bC0P2jz7J2YT4sQCCqhgBRuYaVQSDXQwFpYDLGDW1cSxvHnPm42FE7NC/gU5wAIKqGAFG9hBW5hjfryTr2cLoY935/VsIZyoYAUb2EEDcy0sMRZmElxYwLR5ooIVbGAHDXQwbWPPZwuh54xhthBOFFDBCjawr33R2EONPZRJcGImwYUFFFDBCo59kZmazYITY2GO+X5iAXMtskKO+QsrmGuROzbH/IUGjrXIhxbZLHhhjvkLCyjgsFlunRzzFzawgwY6GAtzzF+YdXNc5Hk+z7zZ6uf5TCJb/SYWcCxZHsrZ6jcxl6wmNrCDuWQt0cFYmOf5CwsooIJp64kN7KCBDsbCHN25xtnU53lRlk19ExvYwazriQ7GwhzdF47UyPuWbOqbqGAFG9hBA33hGBeR04TZDjcxFo5xMbGAAipYwQZ2EFvH1rEZNsNm2AybYTNshs2wGTbD5lk395srWBfm2SkvOLMVbWLWzQMxHIyJ2Yo2sYACKljBBnYwpjjOo/rEAgqYdVtiBbNuT8y6lmigg7FQDrCAAipYwQZiE2yCTbApNsWm2BSbYlNsik2xKTbFVrFVbBVbxVazridmhdzUbR2p2Ug2UcCscCRWsIEdNNDBYcvZg3zf4MRhy5vtfN/gRAVH3ZwjzUayyCnQbCSbOCqcB8w5svLQOEfWiRXk2MmRlbOW2Ug20UFGgDMCnBHg2BybY3Ns3hdGivNQzqF3oYO5mo+/a9nlNbGAuaEsUcEhHjOnll1eEzuYtkh0MBaWAyyggAo+bOUYU6eWbV6L+xPbE/sTByxzR9pxDsBc1ByAYzdYdnVN7KCBDsbCHIAXzl1mhwqoYAXbNSTsOAfgiQY6GAvPAXhiAQVUsF9RZtm/NdGvA8SOOge2He0ACyigghVsYAcNdBBbx9axdWwdW8fWsXVsHVvH1rEZNsNm2AybYTNshu0crHnsOFvd5+nVDq9gAztooIOxMA6wgAJiC2yBLbAFtsAWy1aOAyyggApWsIEzkC17siY6GAtz5F9YwBz5JyqYYzMVeSq+sINxJbZlp9Y5urNTa2K9EtuKzIi0Ih000ME1ugujOzu1Jq7RXRjdhdFdFJtiU2yK7Rzdied5ZwzTcp53Tixgrmb+3TxoL6xgbihL7KDNbC7neefEWOgrkLPVaKKAClawgR0kjbPXaDFpnN1Gi8sTyxOzI2NeS1iJFcglHFy7TI4DLKCACq5dJusq0mRdRZocBq5AlmMFspQDLKCAClawgSv+szHIc49kY9DEBnbQQAdjYd4FXVhAAbEpNsWm2BSbYlNsFVvFlnMceQxma9HECjawgwY6GAtzjuPCAmJr2Bq2hq1ha9gatoatY+vYOraOrWPr2Dq2jq1j69gMm2EzbIbNsBk2w2bYDJthc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsMWyZcPRxAIKqGAFG9hBAx3EVrAVbAVbwVawFWwFW8FWsBVsgk2wCTbBJtgEm2ATbIJNsCk2xabYFJtiU2yKTbEpNsVWsVVsZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSeWRKJ4xomr8+yFWpiBw10MBbmJfWFBRRQQWx5ST0ajixboSYamLaSGAvzhvnCtLVEARVMmyc2sIMGOhgL8zb6wgIKqCC2hq1ha9gatoatY+vYOraOrWPr2Dq2jq1j69gMm2EzbIbNsBk2w2bYDJthc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsMWyZQ/WxAIKqGAFG9hBAx3EVrAVbAVbwVawFWwFW8FWsBVsgk2wCTbBJtgEm2ATbIJN1zhuZz7UxAZ20EAHY+GZDycWUEAFsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsDVvD1rF1bB1bx9axdWwdW8fWsXVshs2wGTbDZtgMm2EzbIbNsDk2x+bYHJtjc2yOzbE5NscW2AJbYAtsgS2wBbbAFthi2fpxgAUUUMEKNrCDBjqIrWAr2Aq2gq1gK9gKtoKtYCvYBJtgE2yCTbAJNsEm2M58iMRYeF5rnFhAARWs4LCNXmDLjq+JBg7b6Dy27Pi6MLPkwjozqp9RcWIHDXQwFmZUlFy3jIoLBRyLPhpfLRu6ouSiZ1Rc2EEDHYyFGRUXFlBABbFlVEhukoyKCw10MBZmVFxYQAEVXCeJzqVE51IiG7pCcpNkVFwYCzMqLiyggApWsIEdxObYHFtgC2yBLbAFtsAWy5Y9TTE6UCx7miZ2cCzO+Hmr5cvSJsbCHAEXFlBABSvYwA5iU2x5hhztLJZ9SjHaWSybk+b/OhZnNK5YNifF6FaxbE6aKKCCFWxgB8fiWG6oPKovjIV5VI9uFcvmpBhtJ5bNSWG5+fKoHp0ils1J16LnUX0hK5QHbcu6edBeKKCCFWxgBw10MBbmQdty0fOgbbnoedBeqGAF05brlgfthQY6GAvzoL2wgAJmsdxQeaIarWaWHUkxesYsO5Ji/CLVsiNpYgUb6AvzjDN6uyy7jCZmBU3Mo29sknwdWIwuLsvXgU1UMG09sYEdtFX3HC3n/xoLz9FyYgFlrXGOlgsr2EDWLc8M5wrlmeFC1jhnk/zEcefuuWQ5m3ShgQ7GwpxNyscT2U/k+Yg3+4kmNrCDBmbdXM2cNzox540uLKCAClYwbZbYQQMdjIU5b3RhAQVMhSc2sIMGOhgLc7LowgIKqCC2wJaTRfmYxnOy6EIHY2I2Mk0soMytno1MEyu4dtbZp5SPQeOc3ymJDeyggTm/o4mx8JzfObGAAipYwQamTRINdDAWnnPFJxZQwLrW7ZwgrokOxlqhcyr4xAIKmIue2+ycCj6xgbnoPdFApwK2hq1ha9jOqeAT2S2N3dLYLY3d0rB1FOdVUC7keRWUS3ZeBXmighVsYAcNdDAWnldBJxYQ23kVlEfqeRV0YgM7aKCDsfC8CjqxgAJiC2yB7bwKskQDHYwL/exeurCAAipYwQZ20BbmrdH41YVn69HjeE7soIEOxsK83bmwgAIqWMFUaGIqaqKDsTDPWRemoiUKqGAFG9hBAx2MhXkmuxBbxVaxVWwVW8WWN0HaE31hXiNq7oC8Ghy/B/Gz6+jCBmaxSDTQwViYV4MXFlBABSvYQBR5rNc8NPJYr7nf8li/UEAFKzjqjhfX+dmZU3N351GdeHbmXFhAAbNuTaxgAztooIOxMI/12hILKKCCFWxgBw1Mxdix+XXMiQUUUMEKNrCDBjqITbHluBivzPKzdedCBSvYwA7a2urqIDursrPyAB8/dPd8L1KMH+R4vhdpYgEFzEvLI7GCDeyggQ7GwjzWLyzzSM33Ik1UsIIN7KCBsdbtvB8qiQrWtUJ5orqwgwbmoktiLDzvfE7Me5HcqOedz4m6Kjg2x+bYHFueqC5ktwS7JdgtwW4JbOeIjf/5nz/89pe//esf//Hnv/31n//x9z/96bd/+u/1P/znb//0v/77t//449//9Nd//PZPf/2vv/zlD7/9f3/8y3/lX/rP//jjX/PPf/zx74//97FF//TX//P481Hw3/78lz8N+p8/8K+Pj//p4zgeZ+385w92WSUeWfFDkfJxkTpGaJZ4PAhaBUx/+Pfy8b/XcV+W//7x2JUF+KnAdi10zKdda/F4bvrhWtSPi8RciUcWrX9f9e4/1/zqz7kWjxkFlkD6DyX6psTog7y2g7Id/e6/72UeCY+Zx/XvVesPBXyzHWufFR7h4h+WiN2+lLUZHtNvH5bYbcm8VLq2Q68fbsmyOSRFxvsRsoZIPNVoPx3Vu8NS21oMNucjNu6viLEirh+vyKbG+OTJVWN8pWTV6D+tR9vt1fHI/dqrTT4ssTmy8nVhWeExXfE0Qu9X8DpXwx/eDyvcXQ37eDV2GzM/nXhuTDvioxKyiRqpvg6sx5O+D0uUdzeFbI5MOWLGnTwuzkgr+bGEbhaiz9h/TEN8vBC7vBSZW+KBHBXa/P6KlHF9fq1IKx+uyObAEkLz+LDAfoRFXwdF0Q/3qL8fersaVdZiVNWPzx96bPN7nQbb09YQjR9rbI7O5nOPPB4EPlXw+wdGbevAaE+j7OcDQ3V3MrZYNYIjXP2nNdksh3RZo6TXp8C4vxQ3D/Ftjbtbw75ha/i7W2M/UNoaKL1/GH2bCtWOdaX4SMEPj/G6O7P7OkD1MR/zVMNv19DDdNUI/7iGvn1WrfXds+quwr1Tye3V+Pisendrlqcj/Gt7ZF276uOu/+Ma8f7Vazu+4fJ1ty6VC8e2WZe2OTGO+9C5Zx/3oR9ev25ryFqXx3Os8nGN+vZR3tq7R/muwr2j/PZqfHyU77dmX3tE4sU90mJddT2e7X5Yo+/O8fnuw3NV7Dn/fr4vKdsbzVlDvX6coV3ePjK6vntk7CrcOzJur8aL+ed1nZH8qcQvW9Pe35r+9tb0t7em/c5b8+nYfB4jXzmb5NPw68a7fLxHTN++8bb3w9PeDk97Ozzt/fDcb8x3Lx3bse7z2mO678NLR99E53jD2ry3+WFz/hS/vjm0oqxpwscDmw/TdztZWdddxePRQNMPJyv3W9TYov7aTrk3G+JtNxtyzKWQWuqHJfrbg8Tt3UGyq3BvkNxejY8HyXZj6ro6eGzM/lKJfJ3vNTulH85lxOaE2LJb7DwqosdrJbTeKLE/sG5Ns8Xb0RlvR2fY2/Nb4W/Ob22X4d5kYTmOd2cLy1F2Dyd0rsj4lAx3ViGvFmkvFqnHmuKqUjZF6rvTjvt18brWxV9dF9F5lI8PZbxaxNoqEq/uGl33JeMF9Zsiu1v4x4zOuod/cPlwumxb5u683SdFYu6f0BIvFtF2rCJPD0e/VuTmFGIp9f05xLJ7BnNzEnG7HPne5nM5/Oni59fluFukH68WWeeYB/bXijzGxLq0fbBtymx3cVvBFs+XD1882JyD7Xkcf61ID4p8PADvn70/fmi5e4qQ3zXLEmYfnrT2V8i3nusU6e/fSG6LPK7l1pOdEnVTZHcZYGtSUaxu1ibefxC8e8R080nwrsTNR8G312TzLHi/RdfDMjGvL9XQskL1cYqwV2scb9d4ah15Hvlfq7Eu8h7lPq6xe8h08+bhkxq37h7261Lrmsav3d+v8eIxphJrarD6x/t2+4Smr4nnYrK5+t4uSH5w81yQR7J+vCDt/Z27r/ENO9cK67IZuHXX6XTYmkV/7vf64kZdV4jqm6Ns+8Bp3Zw97ko+Xoy2ufIu+YOqc13CNvczu+WohR4+3WyO3XlO1imqSj8+Ps/tntTcnFEq7Rsantr7HU/tG1qevqHnabtF700r7Wvcm1cqvbw/9PdHx61pofL+U6fy/mOnL6zJx9nR+5uXyPshqytKa7V48fpWzNa4313f9m9oPc2LpXef3u9XJz8Qdq5O9I+bQ4rJd6yO/t6rE+sM045jtzrt9zzSGt20rfbNnZTZ7iQlHGirxOO081OJ99ugtkuxptyeT5W/LMXuSdR4duQ8R3rKof6VIvnp3quImb9WxNctzIM9XtoitvZLbPaL19+1xGMb8GDtsPrxRq3fsVHrN2zUfZGbx8h22LVjPcWO6q8FfC/8sKCovVpkzZONL/S+WKQqU/f91dVRncfa+Cbfx0WifkPA7x4wfUvAjw/5rdWx3ersGjdafgrsWp/nnqD+pSJP/cfPU6o/F4ndQ/r1dGa8jvvD1ZHd86ra1pxK7ZvWNzm291V1nSqO8uHNuxzy7u2dHJurgB9+ymLPDzPipyK7w/UxN73274Prh9PUn5RpuoLtcefiH5bZHrLjfaFzH9enx2e/7mN7e0ZUDn/7TlF2E+b37ie2JW7+IuT2mthmTeztGdFtjZszop/VON6ucW/CS3a/WfrhjrW9tk1vzsx+UuPWzKyUeHvy7pMat+7g9+tSj3V8PD98/7mGyO+9HLdmiO/XeHHM3Zwhll2c3p0h/uRgv3mA9N95x9yb3RU93p/d/WRBbs3uir5/+t/9fuju7O52OW7O7n52cVefLu4+unXOhpR3rxC3RWpZHcL1+Xakf+HSzuq6ybP68YGq7z9Nlfr209RtiZvXDvr+09RPLpbXee5xef/x+Xb3a6bb8bG7Wu6+Zru7x+ZqeVfE1kZ9YHmtSDnWj92kbq/bd0vSlGni/vrFv3cu/p/OMl+9+D+e3pGgfVNGt88j2v/recTXtktdc85Sny4Rfy3ydipuD/vHZf06UsrhLw0dIc+kbM54u2dNN080zb7hRNP6+5t0u2vXZPNjL+urh3w2F81LAH35flcq97vSXx45si5qRslNk9iur9rmGj09qfnpBSWfzShKeZpR1BenJdcc3IPbR9OSsntypeLrLkAPe6XEvauAz2bhb26P4xu2h33D84BtkZtbZN/NeFSm0I/nRsSvNUUe2p/KbLo8ZbtVbvdW7sqMD3vPCVJ76mjsXyjhsuZYvdprJdbl8/g08kcl9i3WBy/4OV7uGA+lyMd92tvfseq6UPMRyx9Or+5+SXWz00P8/R+hir/dD7AtcfMa3N//Hep+i97r9NjXuNfpIf5+F+AnNe7dC+yPsHvv6ony9tER77/v5/6afHyZGe82VO9H/XpG6xqbUR/9/TvveP/H0hL+/n59++fS99dkM+q3W/Tenbce3zCjul+OW4/L9Kjv3sbo0d6/7d4ux83bmN3muHtnuK1x785Qd8+Wbm7Scrx/Z7hdjnubdP/2jPVoydvTD+Z+eaff9h1Gt342vX8D3K3rFv2GV/Lp++/k0/dfyqff8Fa+7Qa9edlyvH3VolLevmr5pMa9HH3/guOTu697P6Lcv97v3s8ftzVu/vpx+/60m78XvF1j83PBfY17vxbcPsu5fUO73ao3fyu4X5K7x8h2m9z8reD+TX/vr83dY3W/LjePVfuGY9W+4Vi1bzhW7TuO1f1WvfeT1PuvXP3wSkp3P6K6dfOzfT0nPZCPybWn13/9/HrO3a+fHueO1cghH07yfVLizsypVnv7+eluYzC9V59fa/HrxviG1/Xpd7yvb//W1FuXMLp/DcOcU/uhMd3vV1iXYv3p8cAvFbYvhjvo4HxqnPzl5a/bTSFsCtGPa7TtjWA+5b3uF6S9dITxNonaVD48wrY12rohra19/MoobbF7FHyry1D73QNsc7Xf374s3Ja4ebXfv2Go7LforS7DbY2bXYaf1TjernGvy1D73ZnO9to2vdll+EmNW12Gat9wD2Xv30Pt1+Vel6Fa/b2X41aX4f0aL465m12Guvvl1N0uw08O9nsHSPffecfc6zLU7SObm12GnyzIrS5D9fdnTXdvbLk9xedvz5pur4LWi476Dz+t+8p1VKwK9eMK9h3PwD+pcvMRuO7eZPqFu7BdmXuPwPclbj0C/6TEnUfg+wmlm7eT9fedtPjCMaLfcozo9xwj+v4xou8fI/r2MbK7RLU1W/B4ZPKUyvpjDNX98587t8jbEuWRRKvVubenTovx+tofy/R3pww+KXFnyqAe/jtvj8YPax+36sfH22P3LEr6upJ54Ee/zt2WuPuVlLr7ONS9z6RsS9ybNNiXuDVrsN8aN6cNPtmk9+YNarH35w0+Ocycq7IeTxPbvx5mu5vUYrw09amN/PGA6sci24nLW+8a2C+HrL5AefDHy7Et0mhnb21TZLth7Vj3IQ9+iuZfNuzu7Hszz/YlbuWZ9N83z37cHs/Po3/J920ZFW6rnu+7f92s2+OVXfz8Ylyp7dUi8Q1Fnrphv1hknSseI/H4uIhuG8kbjeT9+d24P3/lZ39v9fRRRt0U2b0P09f0zOPYbS8WCfoOopSXixSKyHcUsU2R7Q91lB/qPL1m45ciux8/NVvvPmj2/NDuK7v4cWys9xc95jhePU7WXYVGlBe3yXMbQ91tk+2bVNZzlWpWXtywx3pnafvh9uYrRbp2+pVDvmN1Nrv4fp5sQmn3wOrmi9Tr7nmVCDX0aej8siC7F/5Zs7k21p5fuPXTFtk1Uz1u1Feu1adH5o9l+rHG7v1Ux8Fn1KR+XGP/27T1lObBvX28NtsWovUJHtGnWbRfN+u2iLNvfHOQfOV8Xj8+nzf/hmNt94A1PJ46Q2VzhdK3m2VdUMvzh3Dl52XZPXu6eSm83ST3vqVQdy/uu/XW/v1G/cL+3ZapRplWNrcpux9BxdNrpp4HsftXFqUZF7JWNhMVu1n5XtZVeden123/WmTbJLpe/vO4722vFWm0ajywvLgkdbXh1OcnSF9bEm3r3Xva64sbVoWb/GNTxPafkabvtb1axNZDggfGq0WcIv5qkb5uz9tz28fXisSatHicReXVgcz1yWB/tYwXBqHLq7Hix3ogXbyUzeb19ye3/P3JLX9/cmu/Pdq60S/j64ub7bHraBm7Z12k2MfTjrtvTN08Be6Xw/mZaHGJD4vsPvBwrO8iRPl4+mRboqxViVI/3Br7PdPX1VZxay8f8M6rDTx2s+yhb89K7UvcmpXavQ7w5qzUF7bH7mT+WZlGGXk1HB//1ChTN3OGEe/vnXh377TdD2e/Ze/8sD2avb536lOZV885cay7pgeHvlpGeOIW2j6+amu7p1T3zjnbEvfOOfsS33DOCfoOS/Tj473T3n/QtS3xuLIPbjKel+RLRYw3Rz44XiyifLXYan9p9Dym2J6aVHanjG0P4zfdFsuqIs+J8utt8d0iT9OxXytS1/3O4wHa8WIR3iIr7ak99EtFHtthfS7pcP2wyHbvrHccyPObin5+fL9bFe7/ZLxA+qMSTXT7kPhWd3rbPqm62Z2+W5mj1LU96m5l3v1QQNu9cvER8evi1ftuMfz9zbEt0mT9Tqf98B12lS8UaavXpdnRXizCW8Iet8Pl4yLbNwTeurb5pMStaxt9u9/lk62xGhmba2y2xvb0u2YYenXdFLHdkqzLgHJ8NJ28XwzuGn98Q/iX1qW11cn0w8+Vv1iEjsgjXi6yXnjei714tPsKkRa7IrufYX1Lkbv9O237Iap7l5u7EjcvN7clbl1u7rfGzf6dTzbpvf6d1ran7nv9O5+caNa8+OPaqG5ONLsiIRTZna2a/t6rE2tuXbX4Zkl236FeP1SJHyYGj59K7HoAdTXva31uiqpfKRKNZ9xPT1F/LeJvn/D2JW6d8Prb70rbbo3HXPx6QnA83/X+vDX6+6f//v7pv9ffd2uUNeTq8+e9f90a/f2t0d/fGm83u26HvfKCtPHTrNdSTPldhz7f1/1SxMrvnGLa18sCHhfux4urY+tVto8V6y8WiXWVWY9XTw8a60cijyKbJbH+DTeIuw8n3b8j2u4dnmrbD1O1P6/OboLUn9rcVgnz+xU6Hwl6uun+ZU12rzm7vU1dvmGb7p8Nro8V/fD79p8uh3x/8x8sx/O17k8bdfe7rHu7ZbsYtiZU1PpuMbYniDV2qx7Hi0V0vZK36g93iD8XeftZwH456np6VesPjwR/Wo7dS/2+pcjtO5nQt+9kdiVu3slsS9y7k9lujbt3MvtNevNOZvdmv9snzV2EkMpePo6QvvuM1eMh6crDeNqs1n+qUd5/Ztx37we898B3vy7ReCry1Eb2y7ps32z19Ku7p0lq/enXsp8UufeZwM+K3PpM4CdF7n0m8JMi914dvd05csjTywrjw51Tfuca0Y51nP1wAfBTC+YnRSpvlGr95SLrpvv5q3pfLLLetRzPE2+/FtlcAsSaEInn9uefD/ntS/rujpvtynCWiK6vbta+vtsQP3ye40tFeIfsY+O0j4vI713khxd06mbvbIvIegOayNPPs75W5HGNuZ4k+sdFtqcsX2sTcXx8ypLtvOpTU135+MuLXd5/SXD+buPjC4FbL93p8vZLgrcl7r105/6a2GZN3n9JcNf3XxL8yXLceklw17dfd9G3v2C6+ZWgfZGbXwnaFrn7uuL9ktz8StC+yM3vjPbdT37uf2f0szI3v1j0SZm7nyv9rMzNDx/tN/DNDx/ti9z88FHXt1/Ush3IN19vva9x7/XWvb79euvevuH11tvluLlJ97v23oePPjlW73746JMydz989FmZmx8++uSCbzXBhD09AvvlWq3ZuzNHn5S483Cht/hdS9x7PvHJBl2Tgo9tqx9v0OMbPif1WZFbn0/q/Tvugb/hIdh2EuzW66s+mUe78/6q7SOfexPxvX/Du1m7fcO7WfcPNypvWOybBz75g6CPT1ar3Ut+fHmv/1Rks2ceZ9v127R4nvGt5X6Rxk+iW33uTfxSEZfVnnQ8NwV9pUgXZmyl7Zbk/UzdL8c6c/bnd3d/bWV0zdf2Hz5I9XOR3ZfcvmNl6gqzXp9uOn9dDvl9l6MRI883BL8ux9uvavmkxK2znb/9qpb91rD1q4vuT6epX7eG/85F7j7w6XG8+8BnW+LeA599iVsPfPZb4+YDn0826b0HPj3a+w989meZpym451uzX84y2y9C3Zz62j6+ujn1tfvB1M2pr12Jm1Nft9dkM/W13aL3pr5s903au1Nf++W4NfVlu49b3bvbtd0vnO5Ofe2L3Jz62ha5O/W1X5KbU1/7IjenvvKlwe9PfX1W5ubU1ydl7k59fVbm5tTXfgPfnPraF7k59bUdQTfnaXYD+e7U17bGvakv2z3yuRkGUt6f+toux71N+smuvTf19cmxenfq65Myd6e+Pitzd+pre5l1a0rhkyu1W1MKu174e1MKtv+0yL0pBdu9Hfj2lMK2jV3WbIBKbBq3t0Vs/QxNo7xahMuKerxapMr61kEV/7gr3/T3LnL37iZ/C/ze3c22xL27m32JW3c3+61x8+7mk0167+7G6nf8kmX3I5RYTQpF5Lnf8acDpP7ONYqvn/fJDz80+EoRkbVZRfqrRQovnZO+W51vmGm17/gK1ifbhF9e/djj+9Pq7F4rWJorR73Xj54JfFbkKUieP2D3c5G6u+RkF/cfXlb18+rsrhbb+ulV/aER/KduFmvv9zzY9snTvWu97fvz7t7kbN/BcP8mZ1/m9t3JZwdKfTpQPnqpkvXvONp2Re7NUu4Pk3szP9bf/66w9be/K7wtcW/m5/6afDzz88nAuzfzs3uIdXPmZz/y7k65bIvcnXLZFbk95bJdkrtTLp8Eyd1pjk+C5O78xHaV7s5PbIvcnZ9o9vbNdHu/NWdf4+b8xPY51r1zlus3zE+4vL9J/RvmJ/bH6u35iX2Z2/MTn5S5OT+xv1G6NT/xyb3WrfmJ7XsU7jVe7F/FcGcpPnmHEjnffvhoyFdexNR5JVQPfbGIr+euEkd7rYge64nnAz9enbabYbz7SqhtkXufptqXuPVpqk9K3Pk01X6/2LqaGOfzF3fuD0Xqq0WEIvrxfvHj7Q6BT0rc6RDw979vtS1x892O+w3K09/n34N9ca/woRCLVxPkeUleLuLrQ50PfLkId767IvtXMt7L9v1bHW9l+/6Vt+s70FHqi2/NXa1sD/z43b3y7rb45K3Kt7bF/hXe60s0j1uzV1/hzQuvH+ivFlnfJnice199D7hXlqS/+m505r1+mPb64hvJ188fH/jyNlk3Vo8im72zff1963x/3fo3FPFXX8TPs6fa66urw88Oq+0Otm2Rpy/RuH5cxHdPsIw3AFvUj3926LtfYlXenf1Y4vbhlftnS9LXkrTdkux+5H6sm4j+/AmYL22R9eUkP46+WY7tpNX6cIQ9vxn21yK7Sdb1C/XnOYDRHHv/GOEX3XX3fmfX+IZjZPfTi/vHSHzDMVLl/WMkvuEY2X1J6vYxsrtN/I5jJIJva22+lOJ195JL8f/3a1D9pxr7ltb1Xkh7eqvDz19e2n7i5FiXJO2wj79e6LvnV3dXppXfeWXKekt1+/HZ4pc++rK+jte01BeLCEsi9VuK+KtF1vPWx26yV4usRyyPeq9vWGPD6qtFCkVe/jqsVB6lteeb5x/nFH33SaybN8/7ErfufLv+riVu3jxvN6jy9nG1Y7NBd18QuPPe3/1iVG6/n1/q9Oti+PthtjtK74bZ/qu/wmMaaR+uzCdFGl+k7B9vkSrbz1re/P6w6LtzgPsSt+YAPylxaw6wvH8PX96+h9++q+fW5wV9974/Xzd3Hh8/3vHtL67KuvPW8nx5Gbe/F1Bt5Vf1Qz68zD22DQDrsUx/LtFvf3KgdL7e1Z9ebfeVEv705a722lIEP3M8jvJKCTkIjeNpGuMrS8HXBsaXzF4rwYc+nl+e9pUSxXnrWby2FMp3Qp4/vPeVEnUNksfkX/uwhMfubt95gPl8ZJT7R7iuzHmcoF/bGJVfWD9/D/HV7fliCaen0uX5FUX20/Z8+0Nst19lVz5cim2JYJw9T0h9oYSvWYLHUJUPS8TxDW9cjeMb3rh69x1Yz29s/2Vldq8BeJxQ17sEHmfGj07PnxXpZPnzE9ifi+zaJ3y1YOgPnyD9ZXXs3evq7blxTTQ8HgnYKwdZ5c0bjznPzX4p39D6H+UbWv8/27nr09kP/vCNi1H09z5CWuOa+Okh3a8bdteye6z2GHl+uP7zjNa2yHgb57oWlLYpYu9PFEbxdycKP1mOexOFsftB092Jwtg2PtyaKNwGQCn29OpWe/7O31F+WpLN8bouCo3DrOrtZObBp5Tnm7ef1mRfgtdvPN+wfKUEXTHy9FDrl+0p2znT9WpCPV4ssT7K158u576yIs8nuqez9ldK9DXB8GOH0BdK2LpfeUzvbbbF7inUtxR5BOg6N/TntokvFTHjliPkxSKxfgJVnr94+qWdu1ZGnqc5v1JC1xXu40gpry0FzV96vLQi5ViXyI/pgZcO9FLWNyPK8yujv1SCxvziry2FrgH7wNeWoglXL0/XlF8q0Wlm93htRTg6VV5bEV6S88j0l1bEVj/P8zc8v1Ag1jzv82drfxmn2webb98Oxzq9P3+H5CtrsY7LsPbmZnitwOPRxfqYij79LnAc47dLrN+bPLC/XeL5zcVfKdH4QFaXl0rU9Rq6B9pLJRqfx2rx2raoa47lgfF2if7aTq2r/0Crt9e2xbrle1zDvrZTefTwwPpaidVj9pi8enGn1vWArbWXlqI4t4vu5aUSsVbkcQ3rH5aI3TOl8vQDXnkaJeULi8EP7qLKa2uyzmJyaHutBBOR8dogKbyGr4T7iyUaJeLtEvHqUjzN1r802h//jilArW8vxWanbp/jBMEV7Xj+gdtPx/jueVK0FV3xQwb/9CQn/Pgd53Yf96rG7W756MlY+PYblut8dHxYYb9BdQ21x7gtH27QbZHyOKrWleuDXyzzGLJ8TuP54cGXiggfj5DnM8LXiqyPv8XzqyK/VkTXxNtjK/cXj1Vf9wThTw0gvxyrt4s8vYTgi0V8bdjn3y5/qchjOmldhT3YPi7zyaZ1Nu3TByS+tGkfR+rTx0oOk1dX6dD+VGazj3av472/ZbZl7jUv7Evcal74pMSHzQv/+/Ff/vivf/77P//lb//6x3/8+W9//c/Hv/ufUervf/7jv/zlT9d//bf/+uu/Pv2///j//2P+P//y9z//5S9//vd//o+//+1f//R//uvvfxqVxv/323H9x/+y8UYse0wa/e8//FYe/90PO/7gh9vjv+vjvz/uLZuM/2/85cf0SfnD4z/yL4+//fiH+a/jf//PWNz/Cw=="
|
|
4119
|
+
"bytecode": "H4sIAAAAAAAA/+29eZxcR3UoPNPr9D7dPWv3LD37aEa7l5gdW5Itg2TLkmws2dgeW4MseyyNZtEujWVbbMFEluQkhPweAW8iYPyCHR585IXlI+ED1AkJ+UEeOCxJgIQQMB9L8vJIeCOr+/a5t+qcqrq3Wqph2n8kg27Xqaqz16lT5/hPPfY7z01O7blnfHr6zgfm/8/YzvGbHzv+oWumdk1M7Nq5Zmxi4kzd7xx/6uqpqbGDL9alT5987NTnCnX0f/V1wp/UyQGq1wXIpwuQXxeggC5AQV2AQroAhXUBatAFKKILUFQXoJguQHFdgBK6ACV1AUrpAtQoBnT86S27du+cGJcDmNYNMCMBsKyEXy8HMqsLe026ADXrAtSiC1CrLkBtugC16wKU0wUorwtQhy5AnboAdekC1K0LUEEXoB5dgHp1AerTBahfF6ABXYAGdQEa0gVoWBegJboAjegCNKoL0FJdgJbpArRcF6AVugCt1AVolS5Aq3UBukwXoMt1AbpCF6ArdQH6DV2ArtIF6BW6AL1SF6BX6QL0al2AXqML0Gt1AXqdLkCv1wXoal2ArtEFaI0uQGt1AVqnC9C1ugBdpwvQel2ArtcF6A26AL1RF6ANugBt1AXoBl2AbtQFaJMuQDfpArRZDEgtNLVFN8CtugHeLAZ48tMv1t0yfw3gDwRD4YZINBZPJFON6Uy2qbmlta09l+/o7Oou9PT29Q8MDg0vGRldumz5ipWrVl92+RVX/sZVr3jlq179mte+7vVXX7Nm7bprr1t//RveuGHjDTduumnzlq03nzw5v0jnHcqLhYbjT63Zs3t65vTxp9fumhq/Z8Z3/Jnrd8+M7xyfeuLmy8RebL1zfL3S+Ae/5RxfpzZ/ZfzZzeMTYzO79o03qEG4hYUQUYNQd/zD52+gdozNjK3ZM3nQ2sq5d8BFAehPrhkDOz73e+AvOLHzdy+Cv2y/YzagRoS6d3hGQfr4Exv37DsF92vxAwM7qgY7M3/Pt2v32NTB+UE3Tj5uAX7i6h07Xt6+NROY4dnrd+94+V89cke9Y/LKFNb07J59JWyU/qcfEsb2JQCXbPsSdPDLxMRjI04c18OpHd98gKccn/zWp/eytAmooef3PXPO66vIOVf/GnFOQCfnBAjOCQIt4/gUsj79nfNT2Pr0zdKkV5T+/xHP6omj432qGvrJLTN7Jh/jC4+PzyZhJ5v4Kyi2Ybyh8gPbv0cqxOJOEH163d7ZsYlpOIcFax6hb5h9YPL6t1jgopcff3LDnrEd1j+EKoOemt/e1Dg7c4g/c4Nza4ABuQMizgGRyoAnz6/zsWVPbx6fmZ3a7bTna566dtf4xI55Ev1s+mtPf+nR5z93duaZp347/fXEe2JLo3MnTvw4/6OO33vpxBPOgWstEn/gZnFcJuQcvs6a97X/w7/93j/6jz2x6x5+bv/X/9cNs4mOsc92v/2p7X/2WPc/3/lW58BrrYH/9K73zqWeO/UHhdHiz0PX/dYP7/zp9cGrvl480v7/PvTLf37ptHPgddbAv97+y797IXX60IFHP3H4quHs2IdPf+0nP/j8lz6S+ul3nt37tSucA9d7dLmuVxvf6Bz/BjD+SokwoXP8G9XGM+vfoDbe5xy/0UL88SfP/t3VjxZX/sMvo+/cOPbIgct+8ytv+tdDbc8MfPe+Zzs+nHYOvMEa+Pczax6baX3gyn9t+MtHV70/3/mtnz3zwvd/cXD8qh9+/58+1vNT58AbywPbVg+9YvJ3v9z04nDvN17/6Q8vP9P+s/5Xv/jx9e9/6T++8O8cVG1SIxWz1ZvUxgec4zerjfc7x2+xMMb/r778h3PgVlWF7Rh/s2Di8n9B58BbwMD6h3unfyfyaP3Gzz607IV49LP/fPX7rllT/NIj7+xOffh9zoFvKg8ceXXkpafeeexE3bef+Zd3/2LkT16/LN11dXr537z3q/ndU7e1v+QceKvaVjuc47cBxbdKHVPbJTHFDLxNaV5Gim+XnJcZ+GbJgYww3KGGaIY17lQbH3GOv0ttfNQ5fkxtfMw5/m7VM5pj/D1q47PO8TvUxjc5x48rWfiCc/hbJPlm1Dlwp9K8K53D71Uavso5fJfq+cgx/j6l6a92Dr9fafga5/AJpeFrncMfUBp+rXP4bqXhm5zD9ygN3+ocPqk0fMw5fK/S8Hucw6eUhu9wDp9WGj7uHD6jNPwtzuGzSsN3OofvUxp+r3P4fqXhu5zDDygNn3AOP6g0/AHn8ENKw5nz12Gl4Xucw48oDZ90Dj+qNHzKOfyY0vBp5/A5peEzzuHnHlQaP8uMP640fh8z/iGl8fuZ8Q8rjT/IjH9EafxhZvwJpfFHmfFvlbTw/8aMfJvk6f9tzMi3Sx7/z5TjHReiXMXoo8c/dO18DGbXzt3n/+Hxj8/O7JrYNXPwuvGZmy/8NT/RzPiBmcePP7tx/IE9UwfnIypT89cwMBSHfYmgX6Lolxj6Jf74+YurByYnxu3XCOw/Xnl5+R8vYIX6XydPOmOCCSKSm1TzgjrVI7lJPJKb0BTJTbKR3IQzkmt9ScGlleN14Kvl4iCTpdjJUpXJcIDTugEe1Q1wRjfAw8Zv+aBugPt1AzykG+CsboDjxhNFu+gdMx7gpPFsM208H04Zrxy0s81e403AvDO/6Azz/AHC4cQkK46WrENmzYO6Y0lN7hhnm8nK9PKDEsJBjfRM8BzwXOkcsHb87tmdG/bsPHnyjNMxLw1ce/yD68fHJl9+Pgmp0YH8fiv/9411ZxhPfv74VXqXeeox3scO/oHAOeSCo19n3+DHShu8dnzmnnu3ju3cOb5jfpvTJ08+hqx7jQMewWPMsSGlen+mfGxIXXI+hcj9aAm55+/914xNTs9OzAsqdq5LIAxUf4pD81UIdetPy581ywRF/n39aZnToyCVLa2aLObgpkx5NXXOL1mIOce3Jkgax7dm6wKCz111Tu6qg7sphwtO23NFwG/qiJNj1vmtEa65lC8ItlWBUUL6sxdW/PL/uHHyDDzLbpyd4A5tZOCmMJmQWYHzJ0n4axswPJygbHsYG5cgCKxRATUtQAXE7LlR9Z5Q3mo2wn07yJCG3xCQmY9smFc4W+8d2w1SqXjQ05V0qsrgc//EMka6jIjt2JxpdhvpCvYuZEOd+wdWiHGm8ohgCaZqxJkqpYmpGmkn07NeV6EG2DdjDsA3BGSWZKq0zbYwTJU993OWqTJCpsqw28gwTPUSq/1xplJEsItc2TTOVI2amCrNUxk4U2VU79ZVqAH2jXsSaQxkE8lUGQiMZaqmYj3HhmWFXJVl95FluOo/WcWLc5UihjvUuSqDc1VaE1dlSA2OEzdD0GC3OxrgAI/qBnhYN8C9ugFO6wZ4zHiA+3UDPKQb4KxugOO6AR4wXlLMx+G5h4zn7DndAPcZTxXtW55chJz9iG6IO7Uv8QQateK4YNmqP5/M4i5YRpMLliXPO8yem1RTnTEvnJ22Ce6bCfWBbwjIFtKxb4LAWMe+pVj/BpYxmoWOfTO7j2anY1+sX1d+MHaW48ymNHExFZ3MEmysSNJ16mzchLNxVhMbN9G4ck7brDbtWiXyg307yNACvyEgW0k2bobAWDZuLdZvZzmjRcjGLew+Wlg2vpmNzuNspYjia9TZqhlnqyZNbNXMU1M4W7V4C/XQ5AD7dpChFX5DQLaRbNUCgbFs1Vas38myVauQrVrZfbSybHU3ox0Blze607zMYhvhz1hmlXwc+6Rnmr+JhdCq6kcwENpU1RkDoV2Vc8vEm2SIBypsJDDiRc6WuRHK9lYIhOXCSLHhk9a8MyrlChRLIbSr66JI9csVRCTKFVhfYnBpjDDExD55jJ0tRohXDLjQmiGO6wZ4RDfAad0AD+kGOKUb4H7jtzy7+PhwUjfAo7oBzhnPh9pxeMB4PtQueoeNZxvtGvsYa4BxdyRe9eS5OO6OxDS5I3ESU+6T5yL85Ll4tZPn1lUzeU4xYSjn5KZceTVMTloeYs7xrQOSxvGtswzRRfJc0k3yXByumckoA2t25qVFAAxR8lzMnjwXgVM44cYxmZBZQU3aobTj5IyTGX8Rd2cd7xrJczJ4pA1TF5j6Uk8Gb1NJBq8nzsPeszQbKkf0GufX7FzNzi0WO+f8iS2uRPNCRLIaXMaK6X2HiSXGoQpCBDRhjyXy981GExPFhs3WzN+1C/L/KAnyNbMT928en5naNb5v/MJbGnV524j8+w2n5Z/0O/koQijdWNWVbgxXuhFNSpdzDIvoULoNfKUbq7bSvaGaSjdxMZRuA6F0IzqVbsKN0o0RSjdOKV1wWRETKd2IXek2wCnk9aTECmouVs3FqrlYi8XFwldQKkvN1RURjksTK/oynlXEvLe2dWrsfIluni6oOSI1R6TmiCwWR4TQXg3kE2HNwSewAOKYSdcO/5lnDXWLZ916c/nA6VvOHHUTEkfdpChtJsGxCsmiz0rX8a2266z/NVBSWreMTezaMTYzvm733tnx2fEdN+yZGZ++eveOdfvGd8+4Ovdei/z7dSrnXq89hWKoL005FVHCqahnH6lbf1Kl5vxEwYAA8eI6SDycDRFP5MLqCq/BUnjP4gqvXG0R4dCOJ7bM3m23l4lKaBwZ1MnLTbQGkczdWfStKy8790lSd3SgxoHjvHRV3Xnpwp2XTk3OSxfrvHTqcF6Q+iZdC9p5KaghvcfJTT2oZumFmHN864OkcXzr9+C8FNw4L11wzY5v3XDNRHWRLpHz0onWN+lm4HZhMiGzAudPOjFHVTWw3GETJ05g2XeHpZL+lFpphxhX8xTmul8Jlj64MlNk7TepK7MCrsy6NSmzAqvMunUosy6+MivcoqLMblFQZoB50JLBLhQay4hdRd9+y/G7l3E4u6BPIW9BughPPQN/RszXqGm+RvgzrHjQNrSswjayxABWbWor+6qn9GW780sbXCp22N3KHnYteCXq+VswhA0RUrGeIcEgGIhrnSEm7jRYBnk7h82Gir53Wmx2hJmzW4LNuknZptism5qvUdN8jfBnjM3EmKlAMFMPSvxelJn6CGbqR+ENsMzE2I4hwnYMq56RlW3HMG47hjTZjmGW3kOA3s5pl6ie6pFpl7DTLoH7dpBhBH5DQI6Sz7iWQGCspI4Wfb/DcvdIhUOQSUfYfYxU0FcW/VPO/QzrDAINQ9I5JhqscH95Mb+PKkzEqQOqMc5Vcg2vs4C/j1Ksw4R0eUfDENiqYw0AQykFQRgmZksR26oWdVOoZ1uh7odQiUOoC4wC733jkmLDsAX8IwxmbUJLoD2jCe2ZS4D2DKuNNE40UqEhgqKlpK5sZdA+CoYyZ6xl8HfkuXEpGIScG20zUUFvDqN+Ct2umFFHOYy6tNiQsIB/1jWjjjAfR6CKwWwPzwwAEmFbJU3WiGjDvi9Yh+nPoAYKweYordRHir5zFvDPKXDmIDh48gctYwcthesi8L9MYSGjwtjqMhL7Nt5mEbSs6PsKwD7HGkEhxCW0SYGlRgk10gR/5pC+UZ36yrZ2sZi/6EHM27lcH/6FBfxbDGZJThqFxwQ9aG+8BGhnjjjLdE60TGiPVpAC3M6gfTkYypiQlfB3pD1aAQYh9sg2k6I9egndrphRl3MYdUUx/A0L+E+pszjJqMsoFh9yp2PbsWHLSY241MYkzIaXF33/IbZHmNgvo+3RvLH7T7E9Wu7GHnHYebkk/ldgMAdZmMuE9ojG/jLbnjjY9wck7dEgGqi5jQjULGEDNWcr/hN+rzNCBGu62WANrk4HbBYVC9gk0b2k4Ybx6GaBjW6CLTPxTbBlPMLZx0Y4wZbxhJ4BEOXkZS/42z1fz1I5bXjgWIehAdkBUZQjdUxkAVtH3Ax5n6ab2E8PEUbsrfp9ei8eRuzRFEbsZRVej44rqAL/Cqp3Qd+n96shfQANXNex4T5cjw0RemzYw316v5v79F7CHPXBNTtdPGCRekV3xD32+/QCnMIJtxeTCZkVOH/SA38tc59eEN+n93AsQKHof6Vl9D+PXw8ziUc9QmekVy7xiLeq3qL/tSDxCJvgaZ6X0wExxwV9k2UTr1ZQRh3CDfeR3lcH5BR2XX1F/zrgfTn5oU+BaXvRxIY+dOk8AoOlI8P6ZXfMI3J/0f9GMZF72JX1CSnRL8d6ffxV3QhXxbM7a/ZMHizZHc7bdtwyQHOqnLbQc0YhtZNrRcpcfxOVvVMQcVcB5a5OO7ZesMoATIzPjFv4OuUCX4VTKg84C4Sr1FN1V6kHd5UKmlylHlY7FSquEm4ne1iXs9dGPiSDlJzORvPnSzR/eRqL5G6cJ67T1llPO0+S1RsWOYO496U7+WTpWdBv/vrUkN6PpofUEfGGTjU/270v3efGl+6Ba6b8bMJw9IgNh82X7oRTyLu/Eisg3O1OKV+6U+xLF7jp8v5ZkJsqSDwtkeXc2yofElU89Kdrh/756RpVFFWjlrzT0m6u16GqRtTQjt8nMRpgKaGOlkHiOL4tt/j4req6asSSli/K66pOuGhcVy0jYgLLiaDxCkKJrySU+CoiWLKaDZZYf17m/AbSDC7nK5mTnpPQqZBtgbmuABjPKviInUSkMwt/RszXpmm+NsISUy+VClX3BgvVf6lUIHGFuwIFFo82R4FlznQx0GwdM9/HPvTDEa1YeOFKdUQncUQnNCE6ySI6gSI6DZeGN2h9AJuMbtCKAzysG+C5B3VDPKQb4JRugOPGb/mw8Vvea/yWD+oGeEQ3wAO6AU7rBjinG+B+49nmkPGid8B4HM7qBnjMeKLMGE+Uo8bjULuCnTQeh+Yr2Enj1dcidOfmjPcctBMF7/5rjKhop8o+46kyZ7y6mTWfsx/RDvEEE5YD2ZadChGQJDFdJ/yZq6CK/Lax4jyeuxUkr1DrVpB20a3gCrVuBZVCaAoXSoNqUbDV6iG4wepfKA2SF0r4m/BB4lnl/e6ebuMAD+sGeFA3wCO6AR7QDXBaN8A53QD3G882h3QDHDeebbTjcNZ4HM4Yj0P8BsEYzp6qkdkzwKPG41C72Zs0Hofmm71J443KuPHq67DxbDNtPFHw8JExoqKdKvuMp8qc8erGfA8RDx+5hniCquLVqXB6H5QLHw26CwjIb7tq4aPBVWrhoxEX4aNVauEjbmLXCTZi1Kkv65DNAgT5UUOaoptD8GfEfFlN82Xhz5j0r6fRSJwiXmPqkbhOPBKX1hSJ6yRxhWcddvKyDkvjtis8eOkhCFMDWANoGEA8KVlWuKXsJKWHvE9kAWMLaPZIqHNF7NnKEWAguU1d7qr8AC0GO1h6XX7+fQi7nG0cIzlYDPxR+UVDxxXoo0OrYFTgeclVAxhg3ewCeorh/2kB/xhFgk6SSXp4lAUzE4CzmmiblaEtCxI8rGhGCUs+Wh+2rY9H40+LS1QNirgO3dMwj+sGKa4bLgY+p8R1fy65ah7XNXNREn6fBfwLDHM0y3JdM8l1PZTD1qbJYWuTdBC7qTcrzQoeEfVmxY44jy9TRtAKtHXsIzGAD/yZWI54JpZnn4nhFghU5WOqXK3E0VpevtM+8fq0dFzl6n3ZKFvtCWDCyQI5CANhgRzLAjk5w51DQXKroIDyhKzE5oqhT1kS+z22ehh+MlHkusvUTybEe6h89d5D5dGTie2dNkMgSzNPaAppDApjg24BHtMNcK9ugId1Azx3XDfEad0Ajxq/windAMe1k/kR3RB3al/iCeOxeMh4cZ4zXlaOGU/lGeOpfNR4HB7RDXDSeBzOGe/eaMfhgZrGXgQaW78z8pDxoqKdKvuMp8qc8epmdhG62fdWwc12RmVsxb/kAwIFuahMgSo21s0vTzlIxFcUGwL61eMrREPAQU3xlWGSelRfPk5CCUCsrhwV688BdxEiZNAAuW29SSOF1cjvN/F/P+BTTxpZrZI04mMEDzQhQC/88iSeqQu/PDVfs6b5miXny2qaLys5X5um+dok5+vUNF8n/Fn1os7xBRh1ZvY84C0HiNJKA3DfVLgb0+/kBeqATf1xriuDhwkLvt2dS1C6zAjuo+xxD98eg17RZTDHVC/mwd1PN/diPvgZC/hx6mYxST277WIby+BC01L10nUtuNA0axKaFpbqzYhNVaoPmuWbyRZdhYzT6JdkNUsZ59TQjpdCrGPb6QDc4beizWj+gYtSxjk3pYxbCHFpg2t2KgpgfFtEpYyb7aWMs3AKJ9wWTCpkVuD8STP8tUwp46y4lDEvpyNbDL5X3BYky/ZmsKQT7c3QItebgbeqlmLwfeKOES2itiBZnLBt59kRCmtpYbfzV/OCpdSfUNBg4k4iOdm+Gi3c2/3gM0QnkZwCn7fY0dEGoaCDcuigBLbfBI+RwH4x91MWTTxmyheDHxEzUzO7soSQfHk5Fk/wV/VRTe1HcBvUgn7JoV+adbUfOS80DpZMANkUsWSW4i5P7UdwfGWV2o9kCaesuepOWTPulGU1OWXNrErLovEdm/lj/P4WKeVATeep/QjlpnEdxITLBiSVgixO9x4cl4aUznBSYZIBar5mTfM1S86X1TRfVnK+Nk3ztUnO16lpvk74MwwkehAtwd3FMS4DxeBXxC1wB847twjUzQox305hxHSETOAeoJ4QjigsZEBosEfdrJ7bMR5shOhCv9TN6jdd0tXbeufibcoZi7e06hZvKW7xRjVZPC6yNIQhhvlWZmnVwhClNV9bzSDEcjWkr2DzwbEgxEqIOce3VZA0jm+rPQQhlrsJQiyFa8bT5FcxnjBQf0tFnvCoPQgxDKdwwl2KyYTMCpw/sekJGzB0rS8LkHVL+3aCjsMVCVd+j8ZgWhuo5YSGW6HG783qGm4FruGWa9Jw3Bb2GDZWwqUx7stKqH+Q6Vay060kPCIAslc/yD79IPv1gxzUBlJ01VIDWANYA1gDqBkg820Y2hrmq2W976DOgc3u7oupGMYgNV9e03x5+DM8QUzZb+HcrIM5nRtbLoHI5aRnQCESrz5s3bSHrkSnRQIcFoy7OAGO5cXQf7dAv4La7qDdmffbWLHkZJW+BVSzT0oHhq4serIJKkiXNWiMdA8KJOlXSJBiDcraIlKMcV+Fh95jgb6WKhmwTEGkwJQY35B3Qj02KePxzxvh1Rm+6GFVvrWEegd/3htBYA5jzR6PrNmMs+ZyIWvSJwQVfgY4oTgaDfH1EKoWDfGNkHwxaGMxhj4jxdB25aoPLNPu4MvJmyVIv7x6pB8Ukn6EzmyV5pcRGys7SQ8YY0Ahkt7jkfSClpbzpL9XTHosL2yAIn1PMXS/BOkHq0f6HjekF5fPW06SfoAlPTDMLQrWYMAj6QWpivOk3ycm/YAbhT9QDB28tAp/wA3pBzySfpAk/RLyiDCg1RwMezEHw8XQCcAYnKMLGC6/6oGq32ov5d839DS5udVuUtjaqJAgAyRBRmmCzIvTu4iUJyDnSA6wxr4oLm6wTOuLMkxKrIxMDtBmQyt3W3da/JcvLjM25Hk7V+FtJrMc7L6SW06EF5Yp6FXbWQbzv2Vdn+UcqVpZDP03sf2jjqyomVjFiyJBZOEoWsV8tF0LYhMiVno5ZaVXFUNPSVjpldWz0quEVno1i8lVQvRfxg6y4YSR+ctkNcIqNwpoPVEOdlAcn1hBPxJwczLtoWJHK5mPtjMtxiYrqhdYWilkk1Vk2FaFtwCOGEagmWgQzq2i5yTYZDmIKDIWvB4+axTieYgF4FMCcDcLwK8EYJlzowHCPQmqcdE96u5JEHdPAprckyBL9gDqnoTg0hguC5XH3YdNFmInCxERbevbuG6AR3QDnNQN8KhugHO6Ae43HocHjOfDQ7oBHjaebaa1AQRWRvMajxnPOHuNZ5yDxuvsA+ay9oLR2YeN14jjxrONdhzOGo/DKeMZe6rmO5invrTj8KjxJkC7K4K3fDVGIZrPN/sXn9mbNH7L5x6u6WzzZM98jaiPytafPuOxaL4GM9+LnTFemvUbe+1kNtjRtv70G8+K2tX2PuMVjvlBumPGE2UBKJwDi0jhVEvHavce8P4+xizxqPFk1i7N2o9oR4wHOH3RZK8e9Ics/XZb+Y/bOClM9eebMxL5DFLX9ky6pL88pfd8hB1u8hEcywnClaG5CnBhV16OL+xDzZ9+89q+X92ukKsQrNBUnhFAggODxLAaEu9Gk45C9i8BFoulL0E4+YVEoxF2XSHVdangEMzCSIaF4e3uyFLuPA8YBUgDkW6IljDgVrm3/sSr1csmng9zXySEnyTep4FMe7TWlmK1/Cz8GQYS7Rtbgns3fyt/KK5FxSltlBXKGl3aqEAXZnJ+BCPR+l5LEQRYtUx4b1WXFsN/JJFcOuoxazCGZw0urcg+srFlLCaXCtHPSeFbBnFCPQEZYb92wrmZr2koO/KppxZrrmcLFgOAlZbJxFPQtFLKq1cNIXjBOi9Wn5XTEEOaNMSQDg1xJ38r/58rDTG0cDTEoEBD/OUi1BCDVdMQKo+xpDSE9aoj8DwGegVCeVA0vZ1D+xXF8DfFzL/SDfbptxfdVHI7+fZilPm4CtIXWc1qBD/W8YZXyHJ1Mfw9i2uHqvYw42pcMlYLJYP7xkJEm8vZQZdBnDDcfTmkE8aCvDR+i7sx1iKt0Co4Le/lUPgn1APJUYgT6vmkyp66UYnthgDLpXhfYth1qYRxXMabF0DANB6JzW64d151iPD/Eb/DwkwMwGacb2T+S6xolvMOOyJm5laMAOsi8L+C+bgMcg8m8Ms8Cvw1hhXI6CYLZCwlBWu5gvMjJTpLLdF5UZUHAZRWLg82NIp5kCN6Szy6Gt0UDy6neHCYeiA2ouoMLKdOyiuKDW0Sxs4r72eqVbfIpSPCeUC2SkLTLiWkEDV2y0j1vNzmXTH0WVZs6KOM3TDECfN1xN2eFCX2Uwy7LpEwdiOksVuCHslkjd0IB5ujxYZlYmO3BBGkEdrYLSk2rHR1pBz0eKQcofC/lDpvDqMCP+JR4LO4wI8KBV5QEVvhsEgZu2UQX5RgjaKM4lJ0llii8yEM9JDzimI95BdFxgVRlBifcdeIGXeE2KxPgdttUSKCcdkT35AM4w55ZNxbcMYdETLuKBndciXcnIDFUlnGHRFzF6uE1hNdG4csxv1956+SxK1duupFTtL4zVxS0yviNIuzJKCt6zL9CX5pkbSuMv1RpKTJumqW6VdsRZRD22bWsa1cAeYc3zogabDugy7K9De7KdOfhmtmujiBNRMNq9KiMv1Je5l+2OuKgZvGZEJmBc6fJOGvZXoFJhDbFLeJE2ObEsWG+yzb9KfUSuNiXF0N2gS8jeCjNKHLFPtcpdV1WRbXZWlNuizL6rJ0FXVZtlFFlzUq6DLAO3xtdr0ObdalhvZu1vXDtFmB4ELbLaDjW6/Fx29VV2ddlkB9UV6dJeGicXXWw3YRBovG27f1Ee1U+4nSVwOEfRgk7MMQax+AB8XqoWSx4a0sYyTUGKPOyhRhpT5Rc6gWuEO1sZoOVbca0gtoq+Q6Qs0kWDWDO1R9Hhyqbo8OVQ/RQbq3Sg5V16VyqNC1vixAlf8ZIQiZIJSJonXzqyuTLlyZJDQpky5WmSQqygQPxXSxB+huKOrIdN1kMIQCifaNbCN34KmqZZSod8nVlW0+N3Ut0QhHgtD0aNg8TQZ6beLCmut0seFDRM1WOJpfszVhqvVNVM/64gLTBpfGcHcbRCwyXfIicrdlj7m8ndRbs5XD23EhbydJ3o7TvD3vin6CuhJqgMNL8br67+CajOlB3iBcf0GuB3kDZ/WFYsOnQA9yZvUJqDUxJ4YjlD1VF8oeXCgLmoSSShXz4hI3IKW5q+0Sr6mmS9ynhnTmFNmPusQDEHN4NJxxsoc8uMR9blxiW3sJ3HcfZAwg0BE9Ipe4YHeJGyhXuweTCZkVOH9SgL+WiTE2iDNEChyV1FBs+FsixghW2i3Glc0lbyYYqZdQZoqsfau6MuvDlVmvJmXWxyqzXh3KrIevzPrepKLM3uTGWy6gX1pcKDRez5aGn5QtdsPfM/efQB5SqGUmLQhjbVPwZ8R8jZrmayS0Z6Q8bpvzSwwu2PHNcra2ondI24kYYSMbI8TgdaLwuipfStSL7COaQMgKK45G2GDNQbQ+CWecI5l9xGxJ+DMsCqRjW7a1Y76f1VOu4ZfY/vpFL0Lu4QhffzG6zwL9Kwav/TZTjSM9pQnpqUuA9BTax0fHRAMVCsqnJfRXSEa8oxyiOo0P0o4IzCpBHBHbTDZgQiaNoJpzCGVSMC/LpkPF6G0W8KxrNh1gPsI+NgqPzgYqBMI26qVN1lAxkqMOu/ZmDviW0CerA8SW6CerA1WWFjCnmM3QNuODYjZr43YOjK61gLOY7a0SGuQVQ28l3kAqBlwNracSzJoUljJEkLEJ/gw7LurgF9vaxfxyOfryXMwv7dyuZdFlFvDfYDA7bNPVONobNaG98RKgnXEll+icaInQenKSD4ch0Yg84FHG5C2FvyPtJ8hVXIrYT9tMivYTjUGOihmVnwIezVjA30ideUhGXUKx+IBCwrCNRK4ebQ/bmITz0jmyWZzzjon9EtpMDBcjN7tKHe4V6nw6dZjE/6jCQpYIg930i4MlInaL3K7lxUEbN3E7cqerFwdi7Ht6cYDA7CWyo11if8S2Jx7230J5jwNwOOHj9Ch4j72QZq4E2uZccQV6QtIlHkBjLLcRMZZ+NsZi/dlH5GINEnGWgutcLDzTYwmItrBoihQjBz1fE1EZWz0ocnXYe5DNEa1yLAmfqFfnRL2VWyHiYJrWFD9Jw58R88U0zReDP8NA2tW85esAQWP5uK8Y+U3rTQr6oqOfXW0MP+j0EcLeT9xLDFT9knUAv5fo13QvMUBEmXzEdR+ntfigDNHpXGs3a7TdnTxXujtZO3737M4Ne3aePHkGuXVdi1yc5LFbWqzp7RnORctVzEUL/JhH7nSRXIuLLa8GzZfRNF+GsNnVih9nJM5zT7kO2t/ND9rXWaDPMniVUcoFNgFGnMDTJ5cAg+jzZ0ECDDJBnGsq7oZowZYGiniyO9rGX9FHWV3fr89T6mcIE4eODjN1RG1qnL/rWOMGloBnfcTUsj7OVpxhvNl5ng0Pna04w8xT07MVZ5h5P3224gwr55lErDyTZ4k8Eye9ItBfJKSsF72E5XgT+ap7E3ncm8hp8ibyrFrO6chyiPONb15XylYE/RKrZtJW58V4xxAncqFyOt8xdLpJ2srDNeOnYja5CijNvCgRKWdP2orDKZxw85hUyKzA+ZMc/LVM0lZcnLSV4xiteDHydcuMfh4Fzhr3nNC45+WMO29V+WLkm2Ljnn9aULskjhO2w55hZh3ybuev5qeWd/T3ChqsW4ijTtkyLHnOujqLke8R2fmdCnyet6OjA0JBB3WigxrQ1EIeI4H9Ys9SZNHEY6auYuRfxcyUc5PA3eU+gXt+VT+Bq+JZuDV7Jg9amftnXNigPPqlE/2SOyNjnyhrVRaVn1I5oMJ35nGKuyC2XrBO7hPjM5WXDqdc4Ct+itwtljPHccpyVXfKcrhTFtfklOWIRxk+wh7n2ONtXko5UNN5etxCuWlcB7HB5fOW8kORSYUIY0GoZwYQ4w7OYbyafQPFaEB8sTVIxDxVUkkG4bqIHKIhKtOkD61INFi92nlWKgNakWiYzJtwdU1d4CUnAHxREaIh1p+HuBfFiEbdJafM3/k3i9lpKW/XIlTRVccKVD3vZXSNWKI+JFocbzlaprW0j13cCrDRTokSkEurV+/4kpQ/XUaWPx1VuE1fJlSDS0k30FZ9llfANDpM3fcOQZxQoqmyJ6kK5aMgS0dTOkwBQnB1e16Ae+fdnkdXVzEdJnqFiekwZH1OTOCXVK/e8SWppFcgK+kNu2s+MexSdIZBJibhVfQouDG2xHFsubKiM8Tn7uvFojMoLkLZwk843iAWnWE3okO7M6RXt4TKARyoWhHKdbjoDAtFZ4kbP4abGUeJzojNwSUSq4YV3He1zjl40vuQmwdAQ8XoHa44sN+zQ+020bSP0uyo2R0RG7dWvuV8i4SfOFy9ysGXxGwsIc3GkIKCFqeaDsummiLqeS/lJ/ZBnFASO6RkdCQkdgi8hiIeLKlkWdrOjZiCkTV2A3x7dFhs7LCkhQHa2PUXo8dcxTfExo6ObwxQ+B+igh94fGPAo8A34QI/KBR4qpKxTykoQhm7YYgvSrAG3UXPJIIiDb/0huYD3+JHav3cRJO6yiQW95YHFKOnmAiuFeWV64L69T/7+VdfeMPqB9ickTLpnt48PjM7tdu6X32U2342+p4yeqK/7URioJLy4vgC2n2WR/8hpxvphciokH1H8JuAcOmer/Ivtuap8tFkH57KGQIDOTgKF6NPWbt8H75UH2ep1r04C9ZXjD7hubEslTIUdhKtHm65vKFn3P0qgGbBByGoCnPgswSc33wAGMvETupF4UCEH6IsP0SJfDwf/BkGUpSI7OfQPFqMviBORI4pcS/Yf4zKK/IpTBeTQ06MfQGB34opXky5qPocx2/FYppuxeI0rjxWmkOfbiZ4pd/Avpm6t+AbAjJFenYJCIzl41Qx+ue8IheWUUAmTZL1asvK4jPEZav3ZNs4wb8RJtk2+iVUbBC/1YJxPQdxsWLugxbov6ByBOO4uDLJCn7hqSgul6zg52YJRb8iTqHg+0DXQ1xjS+Ml2/qpZNv5Ff1tlQtJM9D9MBVfArhCuoDawut/oq4YE9VPF0iQ9/dPeSuAXf+SkkIB+3aQIQW/ISAbZYumpjis2ViMfo8sRONH9TG7kxSrGr9DFFn1rhopm6JZB1f0rEMFJqE2dGVGqHeASc+sWMdCSKn2NmAgNKqKA+MxM3brZxjy0ojdsvl1vHLAub0W8H+jHM0E89HGV8Q7hpiC2xU/LvVQKK72OmSrTbJ4ludXYv89ofSQMC6hkxKWjbyKO9B//Ikb9iBZxonzhhU9tCbsSc5R+Cc6KIVWeI9yzJtkECBNVWmfd3kQLe5VGpkHVxk0PT4LVuT81lQedaN6CnzKYqll8inwtj5FBKVsmEtUUp3RIRmUuCmCjZjYR6ZyGJDlI+tN583cLkax7rL+iTWzZM+oXpEwxMXI3gQxoEzcSurZba6I24Tq+m3s6QXq4BKqllwiVKVNQtVtkqhCOTVr59QI/JPBb5PSWeFOqvWbDIC9LIAWJQAHuNHJWNFCzAqVoGdaGAVo5Z34fNSJr7UYu8xijqdRMnMOV61qvP5a9cNVK3648mk6XLUSAUGq0UArr9FAadwebDJOE402wteyvu3TDXBaN8Bx47e8XzfAQ7oBzhlPlHOP1MhsHpnPnTCecaZ0AzxsvEY8ZjxRDhlPFPM14pTxfHjQeCofMl70tPPhUd0AJ43fsvku55zxzo35VDbZ5bT+bFmEHtj+mn9jnuUzX/wmjV/hMf36oVm7fnjQeLoc1W/v0cBmMxPYBNc/vKv/5mLsi57jj1ez0Tw8ttmuCls5ttnuXE47XBka92yXzGFesvJV576Tes8XMbK2s2Rtr5AVGZQjg6VeK6i9Bs3hz9m/BFgslr4E4eQXgtojnouIvEYJh2AWRjgsDL/ZHVk4AK0/I/pBpt2BLCd/8VRrK5pksw29LLby4OMbVa4nFC+rV6mLcKr61xMpleuJVrg0hrCt5XF7FO5CWglOaRWec9wCnNYNcFw3wL26AR7QDXBSN8D9ugEeNJ5tprQBtP5s0r3GY/rX2Kx7jUd1A5wzXkHgcQtjtKx2gT5kPJnxQI0xjLPfXAVRrS1r55vDi0/fzBmvbsx36mqm1EiyaJfmGXO3bP3Zspg8nOrtet7g4ynSVBgyzX2aGX8DlVEqddS/nD214zGMNlXYyjGMNjLHEY1vtEmGIZf/xtdXfP4rDfe5iy7Lh5+oMKRiuG8lGoZsR8OQbWgYMoeHIdtV16WCQzALHqN/szuyUHcnEf0g0+5AMmFIm1nGwpC3sWFIsLdKIJL3iiJuPRGL36jytMCKczJPKrEv6Qq08oz3EBn21nus8rAb4f4c75uawcDzaeQI8rO8THMwltdcKFuM324teBtVo/z80xpr83Ct6AuFuAX4DuJXGfxXUi8aouSzVxkqOd+oAf5C3+hlWEbPELITIzCWIaxNVk0hpdStTRa3KBlNEfMsjSuP1juJTdvMTgsFiQjVZ1H1Rr6WbrZ5EIyotRXj04RftN2do1Vm490U88i8i1nn9WXOrdR9sAyAGzx7W0nu2574gxaWDjLC7oNMiVDAR3s3TpJm4M8cXBZFjU6cVKqlUZY5S/yKvay2hFtWCeBbaLepQNiP4GOlfgTXjc9suXdsanzHlvF7psZnTst3hwKOGNrNQ61z1LzBw3uGNLholZBCv6S99Aw5b5gxV8P7dWmP1uvSSPWuSyOE8k+rtvtCpk2z06bhvvE2WikMJN3BKA2B8ToYxR9jxQxMi5bK6GB30sGq/3cxii0lcQKgy3BQpSVSqGdc75mofnVGTuOMnNLEyGkSVzg/pUmyR9yRnQaJ6xjvluEi8UDPAuQBZs8dmpQZlxfAvh1k6ITfEJB0nzFbVzReR6/4syxndEoos052J52sMjtLs8+qK4WobKCJIQHhSroVpQSE32AhdHlsZslWvok/j6E6j1a+KcHYxG0A2P4jC/THqLo3ERVPRq3qkJtqiMnqezJJNU9GUec0KtlosG8mwgG+YUmjpPCnIDCWRXLF+OdY4U9LCD/XJ2OE/1MXvUjWr/t8TL1MbUeOoNYjR7J6R44k6qnZTgUUW0fcsfWvA8iL5E9Wk1PTC5BTvfrQjZoOxzn4DfM2ZA/H/CbI8R+wnJGTMCmc5w851qR8lzocJzUdjpMEBjl+24/Rad34bali+/st0P8/7bfJb5eo4xeR4Ik0AXETRZI087EKGi4iOV9K03yXdH/y4mNRaDO1yByqBwiINzEQgYjnKaZFN6BYzT0Nf0bMl9M0X05yvou9v3bmY15CIXJom5dTiHm2hbJGFyJPuBCs5k2gGU1Jkebl1ThPFtt/ywLdTiE9r+Le5Kvu3uSr797k1dybDk3uDR0uyxPhsjwGsttLuKy7mBiqYrgs0XvJpCupc6JkRVTFQrwCJb4bIe4otu+3QK+mhZhCUIzY1fUKR3txV/I86fjKC0YaPRh3Etqpu+raqRvXTp2atFOBFC7bpfcLpUvvq8enV62+au38jffByZlTxz+4fnxs8uqpqbGDAG+FRvTyuPvU8acu/Pwxzt3wVY3MP55f3Rn+NElmGovPuL/PN/L/vaPxjItFCYbQXwnx6tTkCHXCn2EgRTXRu7ktTRJrxTXRkwRrraf2nzwP22GLwe/sJPDY9qcBP2hsuXfCabbd4nO9EJ8bvOFzky58Ytv6wI1TaDSDDOa2o9mHnstb1H9bXaW24yo1rUmlttNHVG9p4PXfUooC4WTIw2+YqSQdPtu5ledOJO4g/QS/uyNW2UPZdrFyv9JeY5DzNBP7cjtQuoqbd/BvqNp3WMB3Kkloo05ENsI5Fc+caQmF287L905WEgxZzLQXE5OeX2PUEb2kckR3w5hFkyn1EzhJ8Pkz+C0W8FmK4OiZsZE8qsqru5RwUI68RsZPch6Py24sRgduMfKaLEYnqfBcO+GdxXnNg7nhHbQbfn6ogiPeSE0V449pR5zxnMAZx5am1R2PQFIgZIvQuRCE6Yt49lsLuJe4dtc+NDITwy8+Ns66cHcjbGdCmSzS2NM8hwK0YuT6yO+wfOQPUvTKaKJXBv7sIt3+Zoj2qt4nilUQTGQnybxS+A51Fy0D4A+ojmgyAMgmNzIAPk4dP2QAfIxyImQAHKey62QAvJkKSskAGGYBFJQAXMYC6FEC8E8sgF4lAOtZAH1KAD7BAuhXAvAYC2BACcDPWQCDSgBOswCGlAC8xAIYVgLA8cxGVA0aA2Gpt4x5C84oq/dH4CwOlbtEXeVWpsKdxSWanEXObpYQOn8Ubloe5KgsSIZqo5qoNsLbJ5jFQTX7otgll7azUxsOSt+m9CO1Vfcaj+pfY1L3Gu/Vv8aUfpCN+kFmdGNyt/41ZvWDbNcPMrcgQDbrB9mpH2S3fpAF/SB79IPs1S2O5x7Wv8g+3Ys8on+N/brXeL/JVuxsxfXXDnJQP8gh/SD9CwLkMBM5AoWU0Eifn53PLxfp8+MgqThdFydAI9dUu75O4rLpF+p513DjvMzrkAX8f1PlJSIU/mNooYjbiEIRPqKujh+UiiBWhbaMVyx6YVsVi6ZoMXl/eUHJAEvieqUz91KVqvN+tVPZUvWjr7/6Vef9JDUc2AjCpTGUCpbHPYBNFmQnCxKkt74d1g0Q79LiFuIh3QCndAMc1w1wv/E4PHdcN8RJ3QAPGE8V8xnxoG6A07oBHjMeoHbGnjWeKNr5cEY3wKPGG9KDxhNlThtA688W4zeNF2x2C3Gn9iWe0E+Y+sXnM80a74QdNl4rmu/IzjpPYvX6zqU+refS+uqdS+tdn0utPwPujsHIoAC5RluO4XOlHMO143fP7tywZ+fJk2eQZzZr+Rl8/lHk9+v5vw/Un+Fl5ZEpe6NyOYAXgmb15ahL67/wwzK7PXNmHZEQ7KeCXnFNQcc4/BkGkpt3BwqrPoXXjZIJSV3PAogqAXgllRgpA2Cj18y2LV4z267zmtm2QeXFjGJ56hvU9Wem+i9mMipPMlvg0hgpaIGsi0zXwk7XQghWi9BSugWIh3zcQpzUDfCAboD7dQOc0g1wXDfAg7oBTusGeMx4gNoZe9ZcogDbaTpra5fmucUnzfj9jjHSZz5V9hmvcPQb+2njqTK5+BjxgPFUnqypG+/C/Ih+ax/TDzKrH2TSZJClb/fpX2NqQRCnaUGsslk3vXcvAAZq1b3GCZNpXb01Ni0yxVv6tsdcFtdO62qt0GAcVpO9GxeEUdCuH/E7e2O8yBnjwzHaDx/aj0faw7/oaSbDqzRk3cjxKg1liqll7JVNi9qtySaizpXXKkab1K+DckRhfKK4Wk6yMffqHx147PWvXvJLjAh0rXtkUJ68X/Jagncj2pg7jzbmzqGNuTvwxtx51XWp4BDMwsiGheHb3ZEFB7jeHUCmh3Y7FC9TLttFpTUTHJXhL6YuE5eC5FTBj1dQSuw/zZSChD2LSh072Utm7OnRrxz/4a2zWxylBLkLyHAQ0lJMvdJCyIeZ5WfgNqGKoTZa2g++2szLjb75CGQTRcrY6f/q/xP+tz/8rcBH//alPft/PnL6i9c9+qcfevWp4rLXPrjlH377RxsJ7JyvvoRsithxC71jP7tjBfQ5mKhFQogUTW4c/oy55ceNnFqVUKY3toSRIwxZi6ach3YaVx4Ne8Kd7r8UVUJTm49zHlCWMLFdwaSzNUJTGy9WjdAWz25eQvxsM3UrSlXxs80Wbo3Qtp9ZwG+jHkiixI+zBeASQuPO7SBvDSLtY1sxdVfZHOQ+iU2QQPAho8TaeG5+gnLz59c07llL1RH5gyj2E1Y+37zGhmb0Aog3OHmqzQP7oxqxrXoasU3o2rdznazNEnTOidwzdGQHkX+7nmoq04FCFFUNR9fSRayFLQoOKsJ3oRC5a9kksZYCsRa2kVI3GOi1DN1mr2XobvFahu5Gjl5IFJs/ZqlX/PERLcNvZBAXgvKBAA2xpAgRlqzN9jNmI8FiNmptZM7lRjZwAac+awF+yOuD+JtZAD4lAPc79WWA8EKDamqvTd0LDeI6N6BJ53LeeAQqfOLARggujeGhECSbHra0vh3SBhBwhrFrLH07rBvguYeM3/O4boAHdQM8phvgrPE4nNPOiA/rhnhEN8Bp46myXzfAKeO3jGdduYW4U/sST6i8flQsjOPi9aOv+q8ffS5fP/rI149+hekCwmOi/yK+fvS1qr1+9Lt4/djq9vUjQw6cOUNq/NGpzpwhnDmDmpiTI8dBlDnDcGkMc4bL49B0szA7WZhQGta3o7oBHtYNcK9ugNO6AR4zHuB+3QAP6QY4qxvguG6AR4wXPe1Uxt+NuIU4qRvgnPHaYdz4Feon87Tx+mbOeDIfNN6qzF70+LArT0t+123V8stDHcjvt/J/H65T98s7VPzyOiYdA5DOXluB+SU4KYXKuR04H+gKdvrgz5joMH6UCKt5829VP0qE8aNESNNRIkziCq9BHGbxCL6iVSoS7HQJgjQJoZZ2CxC3TG4hTuoGeEA3wP26AU7pBjiuG+AR3QCPGk+UBcDZc7oBThvPiNPmk3naeKU9ZzyZDxpPlGPGA9SubmbNJYr1Z9R41jbfvzlQc0c8A6y5IzV3pOaO1NyRmjuyGN2RauHQfMbG69UZg0Tz1c0+42VvAZgp8x138xnxgPFUnqypG+/C/IhuiLv1H+wL+kFG9IPs0Y3J+3QD3KN/01n9IJsWxCp7FsQqWxcAC1WB3jH9IJP6QaZMxmX1tHmjuXqymuZhIYhiFTRQ8+LUQIUFQZzkglhlYZFZ79K3iQVgHh5YEKo3uwCM2MSCkO4mkzFZTXprt954FVJjYgMzxl+Mag8paQ96aU/vO8atlZVe7jm39u3OTNVIecp6qnmfJGw7FsqALRxYM4EZHMuJwpWhOb1RyXKiP91wwyfe9o0ffR8jT5QlT7RCHmRQjB0Ek6ada02oIfEEWk40hpYTjaLlRBN4OdGY6rpUcAhmYZjcwvDt7siCA1zvDiBTTjQCxeti59Xz6rSlYVHQX59E/4S6wrjkif5Ei1SpadHyWRF2Whsf4ooyjGoqsjRjxCYMDNfFiuk1hKxtdylrF56ip1/LPr62iC3LFDj/2l9ye2SUuHOpVmVgqzRj+nqUqkgpQj8t8pFi5t8t4Buokr5hnI2Z0oxxoaKMyJVmjHOXnL5JXJoRw0dIYkdRXmlGy3/Zxm3tnL7Fs+WrI0ozxhjSRCCVVEQd52Y//Fn13LekG/cN1cYRTdo4SuLKgY0YXBqDR/A1r+DcxQjSAJBBbSBFGrYGsAawBtAGkHGONDoTUTn1630iCxhbuTUmYVUUsWc7WQpBWisTm+k44UNssq2NsdfxYvqE5UN8Bp1AXN4Zvxrm+RBxyodIFNPvKK+p4wpxme70b6qu2weRykNK5usW8HczrBEnbV4U/pDDcWelPBm1QwvOc3H4M3mQMfEBnzzpxGyr43mJvwu4zvnWHsq/qHNExN7JwdJDWwgN5TViFFD32xJyoTUvfluCPAY6sJGES2O4Jik0HEl2siTBhtUEyBQCwOmcVEN1UJ3OSZzOCU10TpIRbgc2UnBpDBZTQrKk2MlSBFkWAsCL5lsAMbxI3lKCEAbvEyUqlpfRJhqnSVZ8A0aAU1hjJMd/r2KHNqqJX4dzjx3lZdU5v3QSLNVFcEE3QbgCxIfjWw/kZi6+65z4roN4KAe2n7NfYoDf1DGuSUrCNVGUxDj8mdjJ+wt0WrGTx/N8U8WMVQo//VeU/4/e98d5rm2Mcm3n3e2vcrhaX3gs5Tn4ZhLjKzN3zGLu7ykwt81bJb19QiwSAmdf8aBgy2fFdeRtClE8omMdZaxihEMVr3o95TjuUMU0OVRx8hhvq4n20VJNtPPoWzM2OT07MU8VR5EzgElumbN4/SlOJbNVWC3h0yj8eqS82nVYOeTTdtD8/+UopObRhXanTaKENomx2qQE8S3q+iJZ1hfR04S+cEwYh2vGy5B1UefauOhcG3Oea8EUTrhxTCZkVuD8iS2iT/NC3PLG/nr7L//uhdTpQwce/cThq4azYx8+/bWf/ODzX/pI6qffeXbv167Et/nyoRVRthqdZoaC2kAlCe2oaNeb1LVjCteOSU3aMUUezB3YaCStViPUXch0jex0jYQTCUAG9YPMawMpOsXWANYA1gDWAJoOkDrFJHln/NJIth2hTOsRTre0oNwFW1Cl8Uay6mkbyeo33kjSuPLomySUgj5g37iDgIZV0uTVUsrGl0yEJV3MvF6/SJTiRJlXVTnyCUh3ieWFjcBl0LvAoDgCx+9ymXneAv5Gqpt6GKm4HWQ5rbRq29bKzF/6FlAV93JMKYtm5gaVUlutP1vIREo/ySEhCYrdgi3L765/tb+Y+X0L+DaqfzUaJOY0hrJNirEYqRN8EGlcRrsDXjfjy46qsriVmXoPf967rXk/hzKozyODNuEMGhQyqK4uAiGSbwFXo2kInD5j/krEEls+yRc2JLP0CRUzD4iTX3BZIUg/LymTEqQPVo/0fjek93skPZ0ZHsCABnhKQUR6aZUQ4IvmYTHpfQjpAxTpfcXMMQnS+6tHep+Q9EEC4T4lVQFwwpAeMEYDeXJQaSMY8MgYAaGteCdgDOrW0q9k4/gXCs+XLhRenqZ0o3DypELM3/qSQJodZumoP//WIaugpMW5Yn7ZXDEfX5M+RuSKQRVf2hImDZyTX6Dq91cB/OTn03TyC5DshvcD5Uhs0DDutm60kEaebngbducknvnElXSnGG1hWXMV5AhBuJh5v9hc0e/o5OMGYbguAkVJ5mNYwpVOIkY1SBnVZDFzVsKohqtnVJNCo0rflMjHHVI2/5C4nvALwnEuBHg9qz3BdMJzZcqNS0mjwEed+hupjAw8JJCqXkigUcgmaTLShAzKsIPSpNudIZkoCed24SNSbBIEASMndRol9KticDpu+xkvzevz4Cm3+xyyFj7wLwKtJL+huJDgXC4hhCIFGaOW/Ogp+VFeuUkJRArkMCpll8lUb+Jmg4NVYHshvRFbsSMu23+biKelJLwhxVxRP051FRkO8TfzPVcy7K+uDGMLQXaZpDVVYzHzQwn/Kf5rZhiTpGFMkf5TI5nQmVDIJpTSEnHxc7aImwhpFGGYCM0w0WLml2KxiLmJIyV4MQSwLqdY2HPf8NzdMFHIxxtbJ3C2TgjZmn6vo3KWAFSn3rVEySBsgg0UQ9xb5TUcvwoQURTFK+x+9ShKEI+iBDRFUYJEqNHHXvyBpXHinqVxuxVCqVR1IOvbUd0AD+sGuFc3wGndAI8ZD3C/boCHdAOc1Q1wXDfAI7oBThovy3PG86F2HB4wng8PGa+x54zX2OYrh6PGix7eXcoYYV6EjHjQeF9klgq/t2lKRGyDP3Pln8vvug25q3yudFe5dvzu2Z0b9uw8efIMchu5ln8bGexDfr+V//tQ3RnOO8CrmFtL+LEPeaXHveisY0gHch98CrfJAYJ0tjwbDCQSgrCi4DepZGsrFpM8rX7aDFU/W5tOu2MqdYKlucqtC/MueXGihoXei1uAuBlyC3FSN8ADugHu1w1wSjfAcd0Aj+gGeNR4oiwAzp7TDXDaeEbUrsAO14jiGeBB47d8zHiA2pXDrLlEsf6MGs/a5nsjBxaf8zBpvDcyZ7x7Yz5j13yHxeA71E4WtZNFzYmtObELzomtFg7NZ+xzDxqPxDnjqbLPeNnTb6bMNwLmG1LtWz5gPJUna+rGuzA/ohvibt0A79MfXyroXuMe/WuMLAA8NuoH2aQfZKt+kL0LgIGyJhNHu7KogmxXQRStP3vMle5FypHWnzH9IJP6QaYWp3Q3LgCrGDHZhC0o6W5eANtuWhAmLLsglFp2QeCyx+SNl75NLADz8MCCUL3ZBWDEJhaEdDeZjMlq0lu79T53wvjA0ozx163a45HaI6ba83/xVyO8DmfWc4Bt3JqqTf+NzdkPq6XNP050ZnzKY//Uxx17LQO2UGfNBGZgWtGAlUk1dr3ycnxhf7npK/d847+/vxsjAqeVF2jsigziVGagysErNic9RZRasH0JsFgsfQnCyS+UVxjx3LzulBIOwSyMbFgYvt0dWXCAN7kDWO75BzgPiNfFfunDCn6u2PQEKLR16RfUUWw6a9SCuopNzxq1oPZi00fFtdGoOnA3Ubsgexj4FKYLym0xWMVXZFF1q7HQXpGVxm3X7VzUANYAugKINdvQ0WolRKgNq6aW1Uij6SuothL1hbiTW2O8+QkL9FepCrshXEtumb3bPmVc6GBwmyVYgyAgnlv/Dasc2CfRCezYsFAAcI1xCe+gEaIOGuFi07dZtR7R10o5wipQ3JxEql5InDhohDWZkwgpqu4b4Yb4D+Aj1W6Eu66ajXAVTyYFtshpaTV1RIlTpslPLySN41tfGaKLRrgxN41wI3DN+BG5lynaD7RvRNQIN2xvhBuCUzjhRjCZkFmB8ydhzFnE1/qyAFnBuLcRdPRizKrXF1djq++0uoa75K2+8V7OdIN2tE0sp9JlgnBKAMhO/SC79YMM6AeZ1gZS5JjWANYA1gDaAFLHJCpGegcVBvJrCmb54c8UqtMq2o6YuuGKVb86bYzEFdPenqJaXMhAHCsZJwhTA1gDaBhA3K/1HjqKQRG8xHqP7fnavA6dVtTHkheqChSbz1ig11Pd14JIj94AxBx2axjwWKA95qUFapyIot/FYzOwfYo7JHoqN2/BFiXsOnoXt1de81EL9C2uGt1SzaHuQlnLS3feeRa7Ta47b0iVta0o7PX8ee+8CN150zhrBoSs6aroJffqX5JnG0gfED3vuerdG/TSu3c+hn4/1adTpruoj8Zudfp0RvjBUF+jm16GjQpbCwsJQvfpDNMEmdc9U7U+nXWLuk/nukvQpzOqhG4x2mJe2krHis0Pift00rlZKqFLsC6ylSnRNQc1qnFR82ueUY0Xm98hYVRj1TOqcaFRTZDHCmQQ3WeNI6J0u54QnNuFAEv16cS9yzhhr31KeCM4MABRRTS+i1WtHVnMsL5NnNNdimSiGJzbhVmh2CQgPjIGCTZBswzCaH9f688W7n1+8zPihmMR2qhJJ1ZG4LrILsZEDlsIZdygR8aN4owbETIud7suDg1R2UNDmNRvETfctZ7oUhYEaTmYVHN8yLRqD1RlHzKN+5AJTT5kmlRKDmxk4NIYEmXK49DnuJzeihkiUGV9O6ob4GHdAPfqBjitG+Ax4wHu1w3wkG6As7oBjusGeMR40dNOZbxMmFuIk7oBzhmvHcaNl73DNaJ4BnjQeBvAdocCzZfbFJyYNDFbG/yZK79IftdV6w6Vzqt1h8q46A6V99YdKgFdbD25JfZHfvh8Pk3z+eDPqnc2ePjX/2xwVnh8M8bULACP4oDxbtlUzVc2jyg1X7nmK9eIcml85UUY0ZnUfzwwlijWn1HjWdt8b+RAzXnwDLDmPNSch5rzUHMeas6D+c5DtXBoPmPjvXyMQeKc8VTZZ7zs6fcdzDcC5ns32rd8wHgqT9bUjXdhfkQ3RH0ZQ9afBf0gI/pB9ujG5H26Ae7Rv+msfpBN+kG26gfZWyOOJpAx/SCT+kGmTMZl9VRvo7lKrZq6vHVxSnfzAth204LwL7ILQqllFwQue0zeeOnbxAIwDw8sCNWbXQBGbGJBSHeTyZisJr21W2+8d4oxB/kZ4+8ctcd/tEeotOe5HeMW1m/Ne64RfIIo9Om1yJmT18uALRxYM4EZmKJKYGVSlTupJih/MrDm7e+/9cwmjDyc94mgcicyiH7CyyAxpYbEh9Dnn0m0CUoMbYKSwpugJFXXpYJDMAvD5BaGb3dHFhzgZncAmSYotk48zgRz8MgXZRHOg+IIsQGf7WecJiitBaLFx8VfUEexdcCoBXUVW0cu4YKq11fKRd1IQm1GNL0JoN+CUxodl93tupVBDWANoBkANZZWZ6aJEnqIbTnS+kZU/YmK3fEqA0aKbd+xQN/gqp5ShGg5gprzKNFyZLMNELPkaLF1i7jlSJTbcuQuiGuMS3gtRyyKb+NWd2q91XNh/Dqi5QhbqMlWg0Nex1ON6Gy09robd20tgkRbixDb1sL6k2l50V/5s975baDyZ6fz2yCO1vLynaJdZyPTBbbsuEq+WUYUYgI3vL1VbGK2VN1FWaBNzPQ1PhZFSrS3XHULcK9ugId1A8STyoxp1XvU+BVq7/2rvcMznm7kFuJO7Us0v0/2IePFec54WTlmPJVnjFdg2tnmoPFEmTR+hUeMZ5v95jsPk4tPIY4bL8zm24BjxvPhrH6iOMMSti6M8ue6kFx4LES1a4zxq8dTzVnjVa8eH69+c9Y4STy3rQtD7k7lrtaot6BWaBTr7sr/fbxevaDWqEpBrXqqVDAavFNsd28vg4vPF9U0XxT+rHqRqfgCjEw95VHSY0pqGuwb7/aGSnNCtrMHLxCfKLb+I8sZXtt3lS8jviXTm1fYSKn1+yg20UZKFZPCLUfe+kML+A8qrSie3jw+Mzu1m7q49mu6uPbDnxHzRTXNZ7ugUrx8siiyi3v51PpzmdLuG2cnEKjo/VKCvPtQSQsicA0kLKmwkEjFIiGDUm5W38gOSsGNOFcP+g80uln9pku6+ghcvUMNpAgD1Fh1n68RN0ApTQaIiyy+P/XRkj91Hn2lDj6n0P49Cb6L1Fh/iuMFrcL8HfX+QNdiLhvdH4jvhDmRnrkYN5cJ4uYyxd5cliC+Rf2OMVNWmNHT8neMjXDNjm9puGanyQXqr7GEdLTJfeq8nuYOTTNwGzGZkFmB8yc2PWEDhq71ZQGyQkhvJ+gIqsMqp3owmNYGKkNouKwavzera7gsruEymjRclsy6dmCjCS6NcV+aoP5Bpmtip2siPCIAMq8fZKd+kN36Qca1gRSdF2oAawBrAGsANQOkwp8Z9qtlve+gzoF+d0EP6owfp+YLapovCH+GdU7Uke1qW7tzYxkJRCq+x/LDn2F3A1a4qO1WdFokwGHB4GXXZoptf22Bvo3abhx9M5Tx2DIujreMy5ZBBhWkyxo0RroHIZL0WQlSoJeScREpxrgNSNs+aYG+l2rtl3ZzizGG8o2XCOs8/zxAtEAPQ92lyLeWUO/gz7tXoltr2CNrNuOsmRGyJn1CUOFngBOKo5MKcfm4MMSXJPkibmMxhj7JYtsRcTthoZzs4MvJnATpM9UjvbhRb5K0bfL8krSxspP0gDEiCpH0sEfSh+G0XNK/U0x67HIjQpE+XGx7VIL08eqRPuyG9GEh6TMk6SNkPYGAgjWIeCR9hLYG86T/XTHpI24UfqTY9t5Lq/Ajbkgf8Uj6OEn6BvKIENFqDhJezEGi2PYMYAzO0QUMl191BLlSeL50pfDyNKU7hZMnFaL+1pdG/n1DuImO+/PvHZoUtpYSEiRCEiRFE2RenD4C/TZHwBrIebiWtcTR426zllzZad3cbd1pcXk7Uu+Gt+sVeFuqyXsYJEgQ4YW0gl61nWUw/1vW9clwpKqp2PZpsf2jjqyomWjmRZEgsnAUNTMfmySOZc2Ilc5QVrq52PZ5CSvdVD0r3Sy00i0sJpuF6G9lB7XYzhpOmW+V1QjNbhTQeuJ1YVwcn+CcNPweT6ZhKnbUxHy0nWkxNslWL7DUJGSTZjJsq8JbAEcMI9BMFIdzq+g5CTbJiCOKEYJN8DI46MEObJr3Qr3tu+JMqwRhTLQlTdkqC5HZaxjjRjwybgxn3ISbU4i4oXCKPIX4WdZMQXxRCXkJN9y1ni0zAQkmKjSRI30OZFAeYdxc5c82DuPmi23/LmbcDjcBoU52UAdcl5M382Ao8xGMbEcZt8Mj4yZxxu0UMm4Xu91OIY662UFdkOoMa3ZDfDFf2+HcuHOaK/Ng6lY2k0njXVRj5TIQz6/xPo0FbBuaqGjderSjUeZ2RIBSkDS8koPtIxbwNMO3KdrlThXbm8pM191JjW5kPjZSViADFZzijjO0ypjfcc4SlCFUGBs9CmMKF8Z2oTByVGi7G4WVIx2cTkgpedOUESrzRvIYl7ExOEOfxmL7ABWtikCccIoyudqT1KE4VRaUxC8Yhm2Hig1jWJKqzFby8GcoSE7yOxB4lFXW7trnXIl4WO5pHj07bWjk1DZsX23piIISx4tJ2UlyWjuUBHZlncX2K8UBg3axZ9LBVzOvAAUL3QNP84G/Wuz2cBRC3o1J76TcnnZo3J0fc1Cfotm2nfbM4Bz0gp2xUfCxXZRx/PJWkG1wjL3cPjJ8Ft9iGdHr2JBst5rp8CsQdAmcxRVJU9RuUZidVhW0q1TkrYKmG1DIlkgowr4JeCK4k3WbtYItCno6hdqHFFxixUsjxKSRe3fXvk0idNfuzSmp/zbulCTdOCVJoTrJk04JbfX8pJQmFY7gUuY9aZn3KTdH27s9HG0buUfb9ntdHW2Txy/q0RZqZJRxc9Vj3A4h43K3680OejnadrgLnEichxM7qMBD0h074Bgifa8OiDeWu7uL7RIpSgV2ZeLq7T3soALcjhNFgHA9zMcCpCo2ISLgVvzkeg4CeortD0to/ILHY2gaF5weoeD0spjsEaK/jx3UC3HCiEYfJAVlD3rYr0kJsepwKVYdllitcGdqsPUg7JKk7UFHsf20K58/5lHXJSmlwvrKnZB2GFt3Vo+tu4VszdEq3Z61CsOaPRBfFFt3S/kkLQpWI+bZLXMSNQ1XTngAaYVV5ojYR5pyR3ISNk1xviT8mYMcOZ3B3hwlV3mJjeXJQz21sbxzY3mdG7OtXRzH/mNV7ZiijOm8bvxLC/THqTh0zjVrR3CK4AUoNlXLI64LGuYR50mPWCUWm3caZ/03ZQTyckLk5UnVohKLA+ihgvNpMgieq1qYO/5jhd2kPfJPyrWXkVs0XkZK1cuQieR1ENGu68VBOvTU18WP0n1L7MN2u+EuLrrBuggGKlCsl6+aElpY3NUp8GFdcBcVS+0AnoLzDsDmd1dQvupK5pfdcBBZR6QAB9lgoky65d6Jl3/Ag5EW0A0Os7EpRjkm1oJAKPBDDb8Qx1p6yJWhRSd6ZVfWw1lZb7H9P4hEeLgvfiJ84TieCN+rJo4B9UT4XjwRvqApEb6XJ7KWnOMtT3oFcRb54E0f4fQDkDH9IHOeadqHllaqI1rCFNiWMFbeJdMQxsrd4XIPVaqp17qv6pMv1dQNV0wosR6+vPSYKi891ZOXHu/yUqjJCyEvPQbLSwGumEDPB25eJdGCS0Ga+tQw36MuTX3Vl6Y+UpqYPferltI7e83E2D33X7PnwPFntu7ZPLZj14HHuaouyeX3fpv4aqZtt6m07a4ebbsvGm0LSrQlLuVSCgekAqFGU4T5L+iMk9rWjgVkrThp7tWooUNO4HkqTtpbzG2wQL+Oij8XqGvSCHom7vZ4JvbjZ+KC8EzcQ5JcxWGw/uQQsBfiiwrMFRQCiFKBubwVmHse3w3TbLMLAkB1ATOsV3iP2U/06FxvA8TwYX8xd5O4RyfG4n1wc1wm3yoOMvW7udseYAf1w3U5ZaYX+kTOj5wTBytQ/R4FqgcXqAGhQA2y2x0Q4miIHTRIiswQxJdQSi3tJubqQTcxMnr5fRQVh1DxQhi5l2bkvmLuLRIpIgPVY5E+NyzS5xHHvSSL9JMmtU9BzedRnZu3OR+WJSae0aKXg1nyuTllPrIcjkgXc/vESeVpUbH96/mgD4q1ZtZNkRX67TKZbNDExDjAyHS5JoLTV2268GGe839F/4fnjjc7jBt3AU3cR/i54xaJPsxZm7djSZY4ljSruujKx5Jm/FiS1XQsaaYFxjlti9q03fSxJM09ljTD6QAhsUeBFe/9N1VFNANPB1whfcwC/m4UuEv/Ml0GHf2ZkiiL5J+unpGh5F9QPcP5EVAKrTHSgqAejOWl37UUc++ReDbosbhG/U9wY9wiNMbcOhki6rSxg1ohVhgb1QYpJc+CzcIDBV39pRlOy6v+knuSejaYgDihaj2o7CmDilWGI1a4OogRZhWvCYYwspX9dze3FljuWbGZp/JaXVYxiDHCmoC6jug+g5coSVbvBj4lFDZBkxVpHrK9g6YSIRMk26bYinkQ9yXF/iXGgFtGvoK5Ky/HMZf/k/Evv+7FH7x4/MmtU2OTj51iQ17lTlceJ3rH6kD63ds2rq/6RF8O/8vPvvTnO09WfaJ/bNi0zvfH7+qu+kS/+7Mbrni4re/H4onKvWIeJdqaMC5XUk3IoupuZhJ3MxOa3Ey6Tguel5LkhY5L47YraMYUGYuuAawB9AKQtfv1xdxPLD/kHxlzWw/FAFlOPbsc6qIjAX/mEKhA5RoYaw7K1FwJoV/C6JcG9EsE/WKrnuT4Fqsc8bCq1NvLWM7/b84J3QpM0P/9Ag9MtDztDEj4oY8sfzIAR0LiGNWqcGwAWe9OiK3w+CD/7Bo0cnRCBKeQdjcPKm+inmjn3Fzd3EG9Hshzj5T5t1syScSi8hySl+Y891buy+G8n+W9DjXLWcd6DwAUUyDM+pH3G1J/BaH4gxWv24upeyUduFeS1+SVdJCPe5iaXmBpnPcDIvPSycvHx8lSA1gDaBhA7N2TDi3EeQJQUdxMpDffj1oMJEpjwbiLr8H3WqCHqDyNDurtQkJBz3TIuXIdFwvpWjttcnZkURBBURehiu+iXpN0UWnsnfQrBJCr0Y10M7XNZAMmZtKr0M2iTArFjmHTrmL+Fgv4qxiktFBsmofEIEKDfgUeTlQIhOkaMsRs43Pe66X8NeJ3FAn0aRRx+5oo5te5etwvDst2kc/uOijco4XgfIT+WO8O97aKI1zcb6DC+3443CEJtgtMpuzR2coZBQ/7tLGFRs9Wzg14y+QccS/Qwt7t4ibHfu1VErkfq8szYXTmpXmbq8d54qJy9OO8FoYHgR4sUImIHVRqKGr9sHotVrLgndxHVPkxifs/rwmQUcPqtRTIFwddCkqnIFQQdEGhApyWV1AoP0EpiA6IE8rDUdlTS2VPjPWFDoFlfwkrqFL1rwVCwJZLYlNs2feJTV3eTeGjed9WItGoy42po8tRd1LYJ1+Yd1TthTlRa75LKO7c7XpVxVR2XZ4Uqy6FoJmU4OTB6eqiHAbuQH1oTsApX/WAUx4POLVoCjjlyYwR5qhHc4LooK946qwBrAE0DOBFKqDUgsbXK2f5D6rmt/kp37+l2FFxUz5MneTzVQzKu0gVqAXlawBrABdgDF2z7nQRzm1ZUOFcjgn4K9Xwj1906OvwW8D/hkGKrfQRaSHIWK8LLesynGu7JuGGFL/h/ozbITjjftOQcG5e4oB2ScK535XM1l4o4Vw/Ec5tIcK5eRDOxdKkbmPTpAA6mEQpgA4mVQqgg0mWAujAk4nTRMJUhk2YAuhgUqYAOipJUzi1Ayx+wMbwnUaJNy9BArMNBIZirH4GBMApEiEwGy+n5SqrdTKq3xFyFdUXvxyhQ0n+6kT1lauwC6L6HclaVP/lARJ24lJE9Tva3Uf18+72JNUIswu4YYQzpOLv+CEEV1bXL/J4OvrEHk+LG49nPoAwaIjHY796uRSVPWOGNeL0k7WZW0jBQQs/trgUnBYQwvL40OXxzy1b/+Ob/rXLw0OXBiJ6FVGj+mfUo1cRPHrVoCl6xWn02wBO0s5po2rTfhqbNspOG4X7ZiaOqRYKYm6EAHTs0Q+pPG2J/7wWXR0bCBeW+zpPFLbhdJmPE2GOSwAwwcuyAkQryXLHNZT4fODmq4QEXc0eK3DJVGSWN6lLZgyXzKgmyYzxRASLK8fh0nA63qebMeaMBzitG+BB3QCPGI/D/boBHtINcFY3wHHjt3zY+BXuNV6WtVN5ynjRO2Y8lbUz9rnjxjPiUe17fth4WTFfgWnf8rlHdEPcqX2JJ4zH4hHjOdF8L/aQ8VvWbvkmdQM8UHM6F4GkHKsZUvO2bL7Tab6CPWq8gt1rPA4XgId47yL0EGeMVw9HjcfhMeOFz3yiaNeIs8a7S+bz4QHj+XBRmSnrz0gVDJUzvwOk06lciUeI6Wz39c78bTCfj99yz6oZx7nHjFe95V4cv8eMabrH5FAvVkEnfk0fJ9N+I0o30jj1AMiAfpBoFk+AvNxFBgVJTH7o2vll7Nq5+3wqy+PPzc7smtg1c3Dt+N2zOzfs2Xny5Jnjz24cf2DP1MF5GFPj09PlgWuPf3D9+Njk1VNTYwfBJgK3IL/fzP990H/m+NNbdj0wOTEO7/WPP3Xhh4/xPt7C/OPLm3MOuSA3bL4oSO8NKeA5QJAuBH9GzFevaT46exlXDEE12VyirhiCuGIIaFIMQRJXeB50kMWjpZ/3aFLq1rd9ugHu1w3wmG6A47oB7tUN8LBugId0A5zTDfCoboCTxlN5znjGnjKesacXn7Y5ZDxRzGfscw8azzfTxiPxiPE2QLsvgmfaGGOm5hYfIy5CjVgFu4d1FbAe3Hc+gJ50kCdT4BEq7xV0sNj5TQv4JPvyFT8f+tSOaEvVz4c+/HxYr+l8yHl2Xo+eD20FPhkyWi+PUBL52cn8BF/4haLgFiBuet1CPKQb4JRugOPakXhcN8RJ3QAP6Aa4f/GR+ZDx0qx9hXt1A5zWDfCY8WwzYzzbHDUeh5PGr3DOeCrPLT4jNW48UWbMd24e0Q1xp/Ylnqj5DuaphyqYeucdKSid1KBwrvMRszXAnzGVmvAzsF/tGOpTPwP78TOwT9MZ2E/iCq93xSnpYd2tbleYDBy45W+8Yc0WrUkJ/lHk9+uRJIZ69aSEUZWkhHqqUyYqAIqdMhvgz/DyZw2ocGy1ypzg0hrSJK0h+DNivnpN89lCUhi+0fBbCe4ubkfUzu+DikXOxC4wb5if2EXppmDVE7uC1ddNQRXdFIJL43BNadybsclC7GQhOTb06wfp3dpw6gqWZq4jMOdDg9Cb0cJF2/i8U+fknTq4lxLfd/fZa2CB39QRmihECX5Ak+AHJATfV+qM+oGbV1XQUfrjNo7M+85X5PJK2hGUtBy2CanCVlYEIVISUSURkqyx9YE174285rax5e6EDBkUprPoPNbCGkYLu4XtXwIsFktfbFVALwjLCLuusOq6VHAIZsHV6XZ3ZCnXSwOMApXDBeEu/TpUwSOXN8NPg2JazjHg1qv882JXa/nOq6vdiXVrqvIvBpFfKFcNR0xsxDnAXxlgmzla+YHt32OVpXEniHPQY8GKMOiJF7sGHARoqAwrM4Jz7gb+3FHn5tAU5DJA5wCQflymSBdWtU/R56kvO60eiwA+f8XSVyZuHXxQXATQ40SJP/v4jd/598lBD9UGA67Z10ec9273bHZ8lG6bN64SPqSCTVRU579St4kNuN0LanKOG1gFGyRMmGItyf86fvaaibF77r9mz4Hjz2zds3lsx64DjyPnurOcc2QEtXl+9kDJWsOI5SC+3XPuwX955s7/FPdC6LoadTXEvRB4qRnzZupaC/haKgoQwA7fYSiqz15Y3csHyRsnz0A+2jg7wR0Uxr2nLbN3o+4CehyKyJYODnHwESl2VfqvfhKdwl0ezDzwG8XFg6OkxCGDuEUWwbqI92MxJiYAthEpxQRQukZQutbjg6LnKVtR62A0OuRlV5q7/qj04hpIZ9OmF+QdeqliwGEgwBWr+ZTHFynuDt/16OH7FvUjdsAqAb1M/ohN9RDw4jqgfBC084Ef/okOCtkHUa0ogjr9nSDEDiEP2JbqSdYOE+l33tdOndf9OieygL3Js9nN4/FmS2r3qZpdH21m5s3uYQv4QSmzi/pnZSNZWvStcBFo8ihjWRsqagyzSzy7ag2CgJjtRotdDwKriumf9RZKHkK3K7a8Ec4CGopdf2ABZ19TN9gUGvXUGjdppfOvbR1lA8fFyKPWgt5JzeknOr5ELBC/hSL1dvCbKhhKwhv0u/MGObIOFkbMN28Ob9iDPFqPng+dOv0c0LUnivQti7p3haJw2QQmbH5NDK7ehdPVQNqTiODVv7zX40O9Hh/P69lHiRzpKGJ82UBuJapwnA2jW7HhtaKaPMZX3vb3v/rbdx1u/1HVAzmved/+d8SveO6Pqj7Rs7G/vuZ/vq/hDpWIkZMfbC/WMT4E1yDQvFo3Ijw7+8eeAzN17L4IhSRzRLXFktmdbObv5C8sHvwEpQbrKVnzqR5pyUXNH2j/FBxo8esIb31mAnifmQgWlgYqhHoo4+o4HWJ1TwzqW/l75pDQ6wqT0QzbHRiXab5AtZWqJ02Dj9S2fjg1HrTdZjHtdz176mHUyakjWtjVEyUYfESTPz/R5C+gflK2utN1fY84KRPapJ4Seh/t02KSGTJVMtezLBUlGU6alcPEYXI96exWfIDvCm9AguwZ8p/RO0xE9QYp1RsqdtdZoH/IUD9IsUZIQlkpJpXYghZM7Am/IwmrRryU70jCcrkBXu5Iwmp3JA2qMoae4ikSVS5WXti0Z3p81449u1dvGp96YHZm/pd7dp9C/FwowQGKrerpox+pjijpDZLSGyINEX1YbcBuMKRcNlRIIfI5Frg7UBbT7hytweXJHBY6MFzdChZNkCfqqthczI2bxS2pRqwSmIA4fmiM2Y/U5NakrKRX/zWIW8mo0ErGea6oCLGcSm9xUsRszc7cG9coKZ4hOfM6LyfyRimInt5tklkxwh7Puq8aeHdb/gt741U/VAcD+fcUnrtrg9Kh2hG9gl6AKHrFXHeUptmikvIQ9mbavJnz4EUx5/hBI8xLeS+N264QkGog/KxqAsQOV95TW1y4bURqS7h6qS1hlM4RuDS8vMZ23fU6DAZ4Vsbj937VZzutXKSL1zAhDN4nAiVX8Da93qcBqfPYJbt1Ou3eoBoYDNCBwe4ZC/SNnB/4i903WT/gJPYp1l6JoNGHOiLCEyIiPEGiM2mYqPbLvF5KVi7ilGNG9VZ+2u9RMSMLjW4ecfl4QfV6KqjuK3aPeX5dQAXV/b9W/OCB6n+lECmUfbfCnqroA7T9uRChM7mKDtIU1U+3uXk1up7CgF+QNYErNTgRT63tt8TthMLZW/z8lL5xCNAJfF7bm8dYxsfEJU6IS4IQlyQhLilCfTbCLSuLUlRJgZ5QcI0C6LnTnh5hmVdHCEE5c5279+ATa3ftg3sPVODb9ttQ+YFjIRFVvc1/gkEkBwUrUzmfgUSL3e/hA2TymhowESr9cwx94RLBXvrEVCE1OCCFXUOKoG9cwuqLwkCFJN8CATe/zK/vunQ39t1/8OtyY9/9CQufTxpzY9/9wdqNPePbGXRj3/2CKTf23V+u3dir++G1G3seaS7xjX33l13c2Hf/je4b+3+xQH+tdmNfu7F3kKh2Y8/I76W5sf9xWUwLwdqNfe3GvnZjLzKvBRWjpHZj3/03/xcmFkFd9CQFAA==",
|
|
4120
|
+
"debug_symbols": "tb3dzuS8kWZ7Lz7uA0UEyQj2rQwGDU+PZ2DAcA883RvYaPS972RI5Mqq2slXb2Z9J65luyqW/vhIoiKl//zT//zL//iP//0vf/37//q3//unf/5v//mn//GPv/7tb3/93//yt3/71z//+1//7e+P//U//3SM/xCtf/pn+6fHn+1P/1zHn379Gdef/fzTjutPuf7U60+7/izXn/X686pnVz276tlVr1z1ylWvXPXKVa9c9cpVr1z1ylWvXPXKVa9e9epVr1716lWvXvXqVa9e9epVr1716lWvXfXaVa9d9dpVr1312lWvXfXaVa9d9dpVz696ftXzq55f9fyq51c9v+r5Vc+ven7Vi6teXPXiqhdXvbjqxVUvrnrxqOfjz7j+7Oef/bj+fNSTY4BOsAmPkjKOlf6oKfmX2wSfEBP6CXocE0blGKATbEKZUCe0CT4hJvQL5JgwK8usLKNyH1Am1Amjch3gE2LCo7IO0GOCTNAJNqFMqBPaBJ8QE2Zlm5VtVh4DScf2GSPphDKhTmgTfEJM6BeMAXWCTJiVy6xcZuUyK5dZuczKZVYus3KdleusXGflOivXWbnOynVWrrPyGGI6dsEYYwljkJ0gE3SCTSgT6oQ2wSfMym1W9lnZZ2WflX1W9lnZZ2WflX1W9lnZZ+WYlWNWjlk5ZuWYlWNWjlk5ZuWYlWNW7rNyn5X7rNxn5T4r91m5z8p9Vu6zcr8q23FMkAk6wSaUCXVCm+ATYsKsLLOyzMoyK8usLLOyzMoyK48xaDogJvQLxhg8QSboBJtQJtQJbcKsrLOyzspjDFodIBN0wjW6zcqEOqFN8Akx4RrdVo4JMkEnzMplVi6z8hiD1gb4hJjQLxhj8ASZoBNsQplQJ8zKdVaus/IYgzZ2wRiDJ8iEKw9tjKbySH4bY6eMTTfGzgllQp3QJviEmNAvGGPnBJkwK8esHLNyzMoxK8esHLNyzMp9Vu6zcp+V+6zcZ+U+K/dZuc/KfVbuV+VyHBNkgk6wCWVCndAm+ISYMCvLrCyzsszKMivLrCyzsszKMivLrCyzss7KOivrrKyzss7KY+yUOqBN8AkxoV8wxs4Jo3IboBNsQplQJ7QJPiEm9AvG2DlhVi6z8hg7xQeUCaNyDGgTfEJM6BeMsXOCTBgXSzLAJpQJ43rJBrQJPmFcgo3lyWvEAXmRmCATdIJNGJXHMueVYkKb4BNiQr8gLxcTZIJOsAmzss/KedE4VjCvGhPigrxOLANGnT7g8a/aWOUxvlr+Xz4hJvQLxvg6QSY86rRxJIzxdUKZUCe0CT4hJvQT6hhfJ8gEnWATRuU2oE4YlfsAnxAT+gVjfJ0gEx6V/RhgE8qEOqFN8AkxoV8wxtcJMmFW1ll5jC+XAXXCqKwDfEJM6BeM8eVjBcf4OkEn2IQyoU4YlX2AT4gJ/YIxvk6QCTrBJpQJdcKsXGblMb48BvQLxvg6YVQuA3SCTYgJ41+NfTFGSoxVHiMlbECZUCe0CT4hJvQLxkg5QSbohFnZZ2WflccAibE8Y4Cc0C8YJ6kTZMIoOFZwnKROKBPqhDbBJ4zKY03HIEoYg+gEmaATbEKZUCe0CT5hVu5X5TYGUT8GyASd8KjcZUCZUCc8Kncb8Kjcy4BH5d4G9AvGIDpBJugEmzDqjMUYQ+aEmNAvGEPmBLnA8k5TB+mivNccizQOaTnqIF8Ui/qkcVhfJJNq/m9jyaos0kW2qCyqi9oiXxSL+qS2HG052nK05WjL0ZYjL7COx2Bqnv82Bo1/O26z2zhqLyqLxr+Vsc9GxF/ki2JRnzSO4ouy3ti6kf92bN3IfzuWJWJRn9Tz344tmbMBJ+kiW1QW1UXpGOuWcwInpWOsZc4KDPKcFjgp6/VB49/qMcgX5b8tg8a/1ccaed74nySLdNGopzqoLKqL0mGDfFEsWg5dDl0OXQ61ReXazq51UVvki2LR3Eeex/3YM2712jOex/3YC26+KBb1azt7ORbJIl1ki8qieu0PL22Rz71QYtHaRzlmcs/k+Mj9Udc+yvGReybHR26NurZfW9uvre2X4yP3Qlv7qK19lOMj90Jb+6itfdSWoy2HL4cvh699lEfxuMHyPIpP0kW5BGMb5FF8Ul3UFvmiWNQvijyKT5JFw2EyyBaVRXVRW+SLhmPcpEYe7Ul5tJ8ki3SRLSqL6qK2yBcthyxHHu1mg2SRLkpHGVQW1UXpqIN8USzqkywdbVDWG9vKyqK6qC3Ken3QqDduRSNHQBnbKkfASbJIFw3HuL+JHAEn1UVt0XCUsR553I/7jcjzx7jPiDx/lLEEORbq+Bd5/jipLKqL2iJfFIuGY9xMRI6Pk4ZjXL5Hjo+TbFFZVBe1RemIQbGoT8rxcZIs0kW2qCyqi9qi5fDlyPPMuIuIPM+cJIuGo429leeek8qi4Whja+T5aNxMRJ6PTopFfVKO5JNkUTrGcZUj+aSyqC5qi3xRLOoX9RzJJ8kiXWSLyqK6qC3yRbEoHY+91XMknySLcn+UQbaoLKqL2iJflI4Y1CflSD5JFukiW1QW5TL3QbGoT8pRe5Is0kW2qCyqi9qi5bDlsOUoy1GWoyxHWY6yHGU5ynKU5SjLUZajLkddjrocdTnqctTlqMtRl6MuR12OthxtOdpytOVoy9GWoy1HW462HG05fDl8OXw5fDl8OXw5fDl8OXw5fDliOWI5YjliOWI5YjliOWI5YjliOfpy9OXoy9GXoy9HX46+HH05+nL06ZDjOEABFTSwgBVsoIMBYhNsgk2wCTbBJtgEm2ATbIJNsSk2xabYFJtiU2yKTbEpNsNm2AybYTNshs2wGTbDZtgKtkyEMX3yQAUNrFeQPbCBDgbYF9YDFFBBAwuIrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLJscBCqiggQWsYAMdDBCbYBNsgk2wCTbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbEZNsNm2AybYTNshs2wGTbDVrAVbAVbwVawkSVClghZImSJkCVClmT7iYyJTskOlIkGDtuYtJVsRZnYwGylqIkB9oWZJRcKqGDaemIBK9hABwPsCzNLLhRQQWyOzbE5Nsfm2BxbYAtsgS2wBbbAFtgCW2aJ5x7KLDkxs+RCARU0MFtUJLGCDcxGFU0MsE88G2EuzMaXbLs6VoWr1eXEALPC2LFXw8uJAmbTS0s0sIAVTJsnOhhgX5hJMGayJVtcZEw0Sza5THQwt+/5z/rCHPMXCqiggQXMVp0jsYEOBtgX5pi/UEAFDSwgtoKtYCvYCraKLcd8z52Vo7vnPs7RfWEDHQywL8zRfaGAChqIrWFr2Bq2hq1hc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS9btthMFFBBAwtYwQY6GCA2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2IzbIbNsBk2w2bYDJthM2yGrWAr2Aq2gq1gK9gKtoKtYCvYKraKrWKr2MgSI0uMLDGyxMgSI0uMLDGyxM4ssUQDC1jBBjoYYF94ZsmJAqatJRpYwLSVxAY6GGBfeGbJiQIqaGABsQW2M0siMcC+MFvzxrNFyQajiQoaWMAKNtDBAPvEbDmaKKCCaWuJbS5kOfNhnELLmQ8njgrZv5vtRRMNLGAFGziWdzywkmw1mtgXZrvshQIqaGABK9hAbIotG2jHozLJFqSJAqbNEg0sYNpKYgMdDDBtuamzpS87mrMNSSU3dTbxXVjBBo66mpsvG2o11yJbajUXJ5tqNW3ZVnuhggYOm+biZHvthQ10MG25vNldq7k42V87Oi4lO5TUcnGyx9ZSkV22F1awgQ4G2Bdmx63lMmTP7YW2Ds9zzJ9YQY5fdzDANQrLOeZPFFBBbIEtsAU2xny2O6nlNstm3BNzzF+YK5R/N8f8hQYWsIINdDDAPjHboCYKqOCwjUdbku1QEyvYQAcDHLbx0EuyNWqigAoaWMAKNtDBALEptsyHYokKGpi2mpi2ltjAtHligGnLDZX5cKGAChpYwAo20MEAsRVsBVvBVrAVbAVbwVawFWwFW8VWsVVsFVvFVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA2bY3Nsjs2xObZs3h+PaB/YQAcDXOfY7PKaKKCCBhawgg1cZ/Ts8XrcHCaus3R2dWnNUZj5cGEDHQywT8wOr4nZSq6Ja/u2Y61xOwLsC88xf2K2p1uiggYWcO3NJtjEwQDX3mx6gALqWoZzzJ9YwAq2tQznD2pODBAbY74x5htjvjHmG2O+MeabrWOnGVvS2JLGljzb/HMZCluysCUZ840x3xjzjTHfGPONMd8Y862y384xfyJbsrIlK/stx/yFbEnGfGPMN8Z8Y8w3xnxjzDfGfGPMt8Z+a2zJxpZsbMnGlswxP55lS7bCTcwtWRMNLGAFc91yGXLMXxhgX5hj/kIBFTQwbbmQOeYvzOuHE/sahTnmR2+DZMPcRAUNZA919lBnD3WO9c6xfibBQD8OcO0hPxQ0sIAVbKCDAa7jIfvqdLSJSzbWTSzgqDvaOSR76x7zU4kOBtgXZj5cKKCCBhYwr9pSfM4enNgXnrMHJwqooIEFrGADsRk2w1awFWwFW8FWsBVsBVvBVrAVbBUbc45nl96F2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gcm2NzbI7NsTk2x+bYHJtjC2yBLbAFtsAW2AJbYAtsga1j69g6to6tY+vYOraOrWPry3b2JF4ooIIGFrCCDXQwQGyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbIqNLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMl2Uipo4lVspNyooEFrGADHQywL8w7lAuxFWwFW8FWsBVsBVvBVrBVbJkl+dA4uyt1dMBKtldOLGAFG+hggGk73zlxgAKmLcV5h3JhAdPWEhvoYID5FHxc5p/9lhcKqKCBBaxgAx2MhZka2Q2QXZbazv/VwAJWsIEOBji2WTbJZbflRAGHbfzsULLhcmIBh83z3R95h3KhgwHmNpN848cBCqiggQWsYAMdjIU5g+GWqKCBuRYlsYINzLWoiQHmNmv5lpIDFDBt+T6TvEO5sIAVbKCDAaYt8lUoByigggYWcP4wR89WyvEwRM9WSk3Mq4oLBVTQwAJWcP4aR8+uygsD7AvzqkJOFFBBAwtYwQY6GAsbe76x5xt7vrHnG3u+secbe76x5xt73tnzzp539ryz55097+x5Z887e97Z886eD/Z8sOeDPR/s+WDPB3s+2PPBnu/s+c6e7+z5zp7v7PnOnu/s+c6e7+z5vvb82SkpJwqooIEFrGADHVx7Xs4x3xMVNLCAY1/EkdhABwMcazF+hKlnT+SFAipoYAEr2EBfmKN7/JZYs/txooIGFrCCuRY10cEA+8I8+18ooIIGFrCC2Aq2PPuPRjLN7scL8+x/Ydo8UUED05Z7KM/+PXdAnv1Hc4Jm9+PEAPvC85VBJwo4bD2PkvPFQScWsIINdDDAvvB8jdCJAmJzbI7NsTk2x+bYzhcL5fY9Xy10ooBpy212vmDoxAJWsIEOPmx25KYe+XDhyIeJAipoYAEr2EAHsfVly+5HOyRRQAXTZolpa4kVbKCDAfaFcoACKpg2Tyxg2iKxgQ4GOGySi56vKrpQQAUNLGAFGzhsGebZVTkxbbl18vVFFwqooIGpKIkNdDDAvrCkIjdJEVBBAwtYwbTlhsq3Gl0YYF+Y7za6UEAFDSxgBbFVbPmuo3znWzZYXpjvO7pw2PIUmg2WEw0ctjwXZoOl5akuGyxNc0ONAJkYYF84AmSigHmiSqqL2iJfFIv6pBzB10vlDlDAfJ6RZIvKorqoLfI/zbfTZcWWmJvBE8v5eizNdsWL2qKxDUpSLOqTciSeJIt0UUoisYC5rXtiA31hDjg7EkeF0c6i59vALhwVLGkUGL9x1vOVYBcG2BfmyLpQ5iYxXWSLyqK6qC3qayPmkLle6pcLmsuUQ+bCXNDcFjlkLswlzWLzVWC63gWm62Vgut4Gput1YLreB6bn678uzLXMBZkv/NL1xi/NnsCLxr/OvZAH/0l1UVvki2JRShLzuL9wWM7i48Q50cBRtOTe9DxuchfGAY4Kueyha8OEgQWsYJbNvRkOBtjXBs+RdKGA2Dq2jq1j69g6to6tL1v2900UcNmyv29iASvYQL8O9XzD2Hn4ZivghXKAAurCPE+VXIQcTBcWMK8vktoiXxSL+qS83D1JFukiW1QWLYcthy2HLYctR56jRkuQ5hvDJiqYKxOJBRwbseSWywF3oYMB9oU55C4UcNhGU4Zmu97EAqYtlzcH44UODlvN/ZBD9MQcohdmsCfpIltUFtVFbVFWzGMjR17N3Zkjr+byewEr2MCxpPV8P2iAfWGO0gsFzAutpJTlls9RemEFG+hggH1hjtILBVQQW8fWsXVsHVuO0pabLEdpYnbkTRRQQQOHbTyh1uzIm9hABwPsC3OYXiigggZiE2x5qhyzsJodeRMDTNvYr9mRN1HAtLVEAwtYwbSdL4NN2zics/fOxnygZu/dRAUNHHU9N19epubsTfbeWc7IZO+d5dxL9t5N7AszAi5M2/kmWgUNLGDacnlz3OcsQDbcWU4uZsOdRS5Ojvu8uc2Gu4kKGljACjYwbedbcmNhDvYxZa7ZZTdRQQNTkYt+npRPbKCDMYd8PYMgMU/MFwqooIEFrOComzfu2U93YQbBhXlZkVsyg+BCA0fdvHHPfrqJYy3ynjj76SYGmLZchkyCCwVU0MACVjBteZxlElwYYJ+YvXcTBcxTjSTmmbklruuAdjgYYF94XhufKKCCeR1QEgtYwQbmdYAnBriu+9p50XyigAoaWMAK5i1OrmZeNffEHPMXCqiggQWsYO6LVOSYvzDAvjDHvJ4ooIIGFrCCDXQwFuZAH53hml12Ew3MteiJFWygjxfnHokB9oF5wIwxP1FAHZh7foz5iQWsYAMdDDBtY+Bkl91EARU0sIC553PJnD3v7Plgzwd7PtjzwZ4P9nyw54M9H+z5YM8He76z5zt7vrPnO3u+s+c7e76z5zt7vq89nx1ukWeG7HCbWMcbHSWxgX39hTGyJgqoC/ONuKM/WLPRbGIDcxfmMuSbcS/sC/PtuEcWy/fjXjh2YU4bZaPZxAIOW04FZaPZRAcD7AvzjbkXCqiggQXEVrFVbBVbxdaw5WGfc1DZPFbytfzZPFbG++80m8cm9oV5gF+YyxuJChpYwAoOm+Y2O99ffWKAfeH5FusTBVTQwAJWEFtgC2yB7Xyz9ZEooIIGFrCCadNEB2NinK+vPjH/giUGmJt6HHLZ7zVRwFycmmhgAXNxPLGBaYvEAIctbx+y36tkBGW/V8n7muz3mjhseebNfq+JFWyggwH2hfly6wvTlguZL7jOqYzs9yo5aZH9XiXP/tnZVfKEnZ1dE/vCHLwXCqiggVkst3qOzQv7whybFwqooIFZLHdAjqy8Mc4Gq4kVbGD+s1z5HG8X9oU53i4UUEEDC1jBBmJzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzZYTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gaNrKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlvSVJXasLLFjZYkdK0vsWFlix8oSO1aW2LGyxI6VJXasLLHjwCbYBJtgE2yCTbAJNsF2RkUkKmhgASvYQAcD7AvPqDgRm2EzbIbNsBk2w2bYDFvBVrAVbAVbwVawFWwFW8FWsFVsFVvFVrFVbBVbxVaxVWwVW8PWsDVsDVvD1rA1bA1bw9awOTbH5tgcm2NzbI7NsTk2xxbYAltgC2yBLbAFtsAW2AJbx9axdWwdW8fWsXVsHVvH1pdNjgMUUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFBtZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZkr1WZTzcsey1KuM5lWWvVRmfq7HsqirjMY5ly1O5vtOloIFDMZ6AWLY8TWyggwH2hTnILhRQQQOxBbbAlkNkPOuwbFiaWCdmE1IZzzosm5AmKpgVPHFUGE8qLJuQJjbQwQD7wjzsLxRQQQOxCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKzbAZtjzsR2+5ZRPSxAJWsIEOBtgX5mF/oYDYCraCLU+A4wmTZd9QGU+YLPuGiufuzsFwoYMB9oV5qrtQQAUNLCC2hq1ha9gaNsfm2BybY3Nsjs2xOTbH5tgCW2ALbIEtsAW2wBbYAltg69g6to4tx/F4rmfZuDSxgg10MMA+MVuaJgqooIEFrGDaPNHBWHiO7kjMCj1xVBjPFi27mCY6GGBfmOP4QgEVNLCA2BSbYstxPKauLVueLsxxfKGAChpYwAo20EFshq1gK9hyHI/HrZZNUhMLWMEG+sLzC28lMSvUxKyQuyXH/IUNdDDAvjDH/IUCKmggtoatYcsxH3nA5Ji/sC/MMX+hgAqOuj33Zo7jnpsvx/GJOY4vHBXGg1U7v7F4oYEFrGADHQywL8xxfCG2ji3Hcc/dkuP4wgqmLQdZjuML05ZrnON4PHSz8zuMFz5sdTxTs2yammhgGaiJFWwDLdEHlsQYWBP7wCHOrqmJAipoYAEr2EAHA8Sm2BSbYlNsii2/0X3kJsnPco+HQpaNVnU8/rHstJpYwLGQkpskv9J9oYMB9oX5hW7JzZcf5ZbcfPld7vxaaMlPc18YYF+Y3+i+UEAFDSxg2lpiAx1MW26S/DTjiflxxgsFTFtus/xE44UFXJeW2Uk10cG8kM0tmYP3xBy8FwqooIFpy52Vn268sIEOBtgX5te/LxRQQQOxBbbAFtgCW2Dr2Dq2jq1j69g6to6tY+vY+rJl39VEARU0sIAVbKCDAWITbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKTbDZtgMm2EzbIbNsBk2w2bYCraCrWAr2Aq2gq1gK9gKtoKtYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWHLz76OR7OWPVoT+8L8+OuFBcx/JomxMM/oeSbLtqqJFcy/q4l9YQ7pCwVU0MACVrCBDmLry5YNVBMFVNDAAlawgQ4GiE2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2AybYTNshs2wGTbDZtgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsfm2BybY3Nsjs2xOTbH5tgCW2ALbIEtsAW2wJaXB/mh+nZmyYl94RkgnqigganoiRVs4FCMjg/LbqyJfWK+82yigAoaWMAKNtDBALEJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFJthM2yGzbAZNsNm2AybYTNsBVvBVrAVbAVbwVawFWwFW8FWsVVsFVvFVrFVbBVbxVaxVWwNW8PWsDVsDVvD1rA1bA1bw+bYHJtjc2yOzbE5Nsfm2BxbYAtsgS2wBbbAFtgCW2ALbB1bx9axdWwdW8fWsZElTpY4WRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZxZIokNdDBtltgXnllyYtpqooJpi8QCVrCBDqatJ/aJ2b5Xx09XLdv36mgItWzfmzhso7PTsn1vYgWHbfzO0rJ9b2KAwzb6Mi3b9yYKqKCBBaxgAx0MEJtiU2yKTbEptoyKbOXJPryaj52zD6+W3GYZChcWsIJjIfO5dPbhTQywL8xQuHDYam7UDIWamy9D4cICVjBtubwZCjWXIUOhnXX7wgyF8Ws7yz68mg+Nsw9v4rDl8+Psw6sti2UonJijOx+WZkNdzaeT2VA3sYBjcfKZZTbJVc/lzRF7oYIGFrCCDXQwwL4wsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq1PW8kmuYkCKmhgASvYQAcDxCbYBJtgE2yCTbAJNsEm2ASbYlNsii1H7HjGWrKLbmIFG+hggH1hnv3HU8+SXXQTFSzX8VuydW5iAx0MsC/M0X2hgAoaiK1gK9gKtoKtYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to4tA2Q8Gy/ZOjfRwWGL8+/2idk6N3HYxk97S7bOTRy28QS6ZOvcxAqmzRMdDLAvzAC5UEAFDSxgBbEJNsEm2BSbYlNsik2xKTbFptgUm2IzbIbNsBk2w2bYDJthM2yGrWAr2Aq2gq1gK9gKtoKtYCvYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gcm2NzbI7NsTk2x+bYHJtjC2yBLbAFtsAW2AJbYAtsga1j69g6to6tY+vYOraOrWPry6bHAQqooIEFrGADHQwQG1miZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaW2JklkdgnljNLThy20XNazl7LC4dtNHmWs9fywgoO22jyLGev5YUB9oWZJRcKqKCBBawgNsEm2ASbYlNsGRXjvT7l7Kocnagl32hXRydqyVfaTRRQwVzInljACjbQwdwBuQxnKCSeoXDiw9ZG12rJDsyJBhawgg10MMC+cITCRGwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsDVvD5tgcm6dNEg0sYAUb6GDa8oDxvjAOMG15GIWCBhYwbXkYRQMdjIU96+bY7FkhD6NewQaOCpLLOwb6xD4xey3baO8t2Ws5UUEDh230/5bstWyj/7dkr2Ubbbgley0nBtgXygEKqKCBBawgNkmbJwbYF+oBCqiggQWsYAOxKTbFZmmriQIqaGABK9hABwPsCwu2gi3zYXQxl+y1nFjACjbQwQD7wsyHCwXElvkwmhtL9lpOrGAszDGvefTlmNc8uHLMX1jACo7l1Tz6csxfGGBfmGP+QgEVNLCAFcTm2BybYwtsgS3HvOYQyTF/YdpyO+SYv7CBDgbYF44LgTaekJZs3JyooIEFrGADHQywT8zGzYkCpk0SDSxg2iyxgWlriQGmbYyhbNycmLZIVNDAAlawgQ4G2BdmPlyITbEpNsWm2BSbYlNsis2wGTbDZtgMm2EzbIbNsBm2gq1gK9gKtoKtYCvYCraCrWCr2Cq2iq1iq9gyH8Zz9JKNmxMdDHDYSh5cef1woYAKGljACjbQwQCxOTbH5tgcm2NzbI7NsWVqjBaAks2YreQQyXy4MCuUxAY6GGBfmPlwoYBZtyayNzvb9xzzA/0c8ycKmGvcEg0sYAXXseOHgwGuY8flAAVU0NYynGP+xAo20Ncy5Ji/sC9kzDtj3hnzzph3xrwz5p0x77qOVNcA2ZLGlswxfy6DsSWNLcmYd8a8M+adMe+MeWfMO2PeGfN+jvlchsKWLGzJwpYsbMkc86OLo2Sv5cTcklk3x/yFAio4bKMzo2Sv5cQKNtDBAPvCHPMXDtto8yjZazlxHeDZYNnGW69LNlhOdDBADo1zoJ/IznJ2lrOznMPeOeydneXsLGdnOTsr2FnBzgoOxOBADA6NHP6jb6VkK+XEvjCHf83tkMO/5pLl5cGFBhawgg10MMA+Mc4bhZ5oYAGzbiQ2cNQdn8Mu2TQ5sS/MUBgtNyWbJicqOGzj53glmyYnVrCBDgbYF2YoXCiggthy+OfdV7ZHTsy6ltgX5vC/UEAFDSxgrkVNbKCDacsdkMP/xBz+F6atJCpo4LpxjFLBBjoYYF94ThmcKKCCBuZaeKKDAfaFOdBbbtQc6BcqaGCZEzVnI+SFDXQwwL4wZwwvFDB7BPJAPPsfTmyggwH2hWf/w4kCKmggtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+2s+XxQgEVNLCAFWyggwFiE2yCTbAJNsEm2ASbYBNsgk2xKTbFptgUm2JTbIpNsSk2w2bYDJthM2yGzbAZNsNm2Aq2gq1gK9gKtoKtYCvYCrazl2rk5NkpeaGAYxyPd7OU7JScWMCRRtmrlm8snOjgSI3sP8s3Fl6YqXGhgAoaWMAKNtBBbA2bY3Nsjs2xOTbH5tgcm2NzbIEtsAW2wBbYAltgC2yBLbB1bB1bx9axdWwdW8fWsXVsfdpqNmNOFFBBAwtYwQY6GCA2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2IzbIbNsBk2w2bYDJthM2yGrWAr2Aq2gq1gK9gKtoKtYCvYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gcm2NzbI7NsTk2x+bYHJtjC2yBLbAFtsAW2AJbYAtsga1j69g6to6tY+vYOraOrWMjS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEzyxpiX3hmSUnpi0SFUxbTyxgBYdtvE6wZl/mxGEbP+ao2Zd5YWbJhcM2fsxRsy9z4rCFJhawgmnLFcosuTBtntgnZl9mG19kq9mXOVHBYRsv7avZlzmxgg10MMC+MLPkQgEVxCbYBJtgE2yCTbApNsWm2BSbYlNsik2xKbZMjdFTVrPXso1PwdXstWyjc6tmr+VEBwPM5R0HV/ZaThRQQQMfNh+vE6zZazmxgQ4G2BeOfPAj12Lkw0QFDSxgBRvoYIB9YcPWsLW05eZrBhYwbbmhWtryoG0Opi0S+0JPWx6/LqCCBhawgg10MMC+MLAFtsAW2AJbYAtsgS2wBbaOrWPr2Dq2jq1j69g6to6tL1v2Wk4UUEEDC1jBBjo4bHIk9oUjHyYKOGyjy6tmr+XEAlawgQ4G2BfqAQqITbEpNsWm2BSbYlNshs2wGTbDZtgMm2EzbIbNsBVsBVvBlqkx+uVqtl366Jer2XZ5YebD6Nyq2XY5UUEDC1jBBmbdkVylcezkmD/3cY75CyvYwFxjTwywL8wxfyFHKmO+MOYLY74w5gtjvjDmC2M+WymvxQmO1OBIzTF/IeuWY360otVspZyY65Z1c8xfGGBfmGNec7/lmL9QQQMLWMEGOjhsmgdBjvnE7LU8d1b2WvpoDqvZazmxgBVscwdkr+XEANfOqnKAAiq4dlb2Wk6sYAMdDHCFWPZaThQw16ImVrCBuaFyO+SQ1lyyHNIn5pC+UEAFDSxgBRuYdcehkf2TEwVUMOvmWuSFwIUVbKDP65Kzf/LCvjBvFC4UUEEDC1jB8ZBldDrU862UJ+bPKy4UUEEDC1jBBjqIrWFzbI7NsTk2x+bYHJtjc2yOLbAFtsAW2AJbYAtsgS2wBbaOrWPr2Dq2jq1j69g6to6tL9v5OswLBVTQwAJWsIEOBohNsAk2wSbYBJtgE2z5CHW0mtTzdZgX9oWZBJZ/N5PgQgXTZokFrOAYWXaigwGmbQzp83WYFwqooIEFrGADHQwQW8FWsBVsBVvBVrAVbAVbwVawVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx9axdWwdW8fWl+18M+aFAipoYAEr2EAHA8Qm2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiI0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WZJvo41ye2EAH09YT+8LzHqcmCqjgsI1u7nq2iV441m20kdezTfRCB4et5ZJllpyYcyB2ooAKjrkKyyXLOZALK9hABwPsC3Nm5EIBFcRWsBVsBVvBVrAVbBVbxVaxVWwVW8VWsVVsFVvF1rDlxOh4cWvN1k8fP8qq2frpJfdFToFe2BfmFOiFY3lLHiU5BXqhgQWsYNpaooMBpi13bE6BXiigggYWsIINdDBAbB1bx9axdWwdW8fWsXVsHVuftpatnxMFVNDAAlawgQ4GiE2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2AybYTNshs2wGTbDZtgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsfm2BybY3Nsjs2xOTbH5tgCW2ALbIEtsAW2M0si0cEA+8IzS04UUEEDh238tq9l6+fEBqatJwbYJ2brp4/Jw5atnxMVHLbx07KWrZ8TK9hABwPsCzNLLhRQQWyCTbBllowfsrVs8rwWMpPgwgo20MEAqZBJ0E4UUMFcspJYwAo20MEA+8JMggsFVBBbwZZJMK5sWjZuTnQwwL4wk+DCtEWiggYWsIINdDDAvjCT4EJsDVsmQcujL5PgwgoOm+c+ziQYP4Bp2bg5cdg8d0smwYXD5rmhMgkuNLCAFWyggwH2hZkEF2ILbIEtsAW2wBbYAltg69g6to6tY+vYOraOrWPr2PqyZePmRAEVNLCAFWyggwFiE2yCTbAJNsEm2ARbXlWMJrmWjZsT+8K8qrhw5U42bk40sIAVbKCDAa6UyxZNHy15Tc98kMRcXk90MMC+MPPhQgEVzO0QiWzfwhpX1jjH/IUK5vbtiQWsYAPZmxVbZW829mZjbzb2ZmNv5pg/lyHH/IUNZG+eYz6X4RzzieeYPxEbY14Z88qYV8a8MuaVMa/OseNsyWBLBlvyHPO5DMGWDLYkY14Z88qYV8a8MuaVMa+Mee3st3PMn8iW7GzJzn47x/yJbEnGvDHmjTFvjHljzBtj3hjzxpi3Y+03OwJcW9LkAAUcttFS2rLBcuKwjU7Ulg2WExvo4LBFLkOO+RNzzF8ooIIGFrCCacuFzDF/YV4/5F/IK4UchfmKSx8vMW/5isuJBazg2kNmDga4jnUrByigguyhwh4q7KHCHioOBsjxUDkeKsdD5sPoyG1ng+WFDcytk9sh8yFyyTIfTsx8uFBABQ0sYAUbOOr2PEoyCS4UUMFRt+dRkklwYQUbmNfKJwbYF573AScKqKCBBazgqDs6ctvZNHlijvkLBcy1sEQDC1jBMSeWtwTnCyovDLBPPF9QeaGAChqYW6ckOhhgX5ij+0IBc3lrYlZoiVnBE/vCHLEXZoVchhyxF+Z26IkFrOBjeWN0ELdseZwYYF84rvgnCqigDZTEAlawgQ4GOLa6JuaIPbdDjtgL2Tol62piAx0MsC+suRaWKKCCBuZapK1WsIFpyx1QA+wLW9pyXzQBFUxb7vmWttwtYxyH5EYd4zgkN8k4z0+MhWMch+S6jXE80cACZt1ctxyx58GVI/bEHLEXCmjgGDhnhfNT3icGOHah5Aqdn/I+UUAFDSxgBRvoE/NFknGhgAoamCtfEyvYQAfHWuQOOD/afWJO918ooIIGFrCCDXzULZm02cYYoy+zZRvjRAUNzLXwxAo20MEA+8IcvBfKWAZJVNDAAlawgQ4G2BeOk/DEXItILGAFG5hrkRsqB++FfWEO3gvHWuQFRjY3TjSwgBVsoIOxMIep5h7KYXqhgQWsYANH3bybyebGiX3hOAlPFFDBsRZ535LNjRMr2EAHY2HkWuQOiFxeTaxgA7NCbtQIsC/sByigggYWsIINxNax9WXLhsWJAipoYAHHsTM6nlu2Jk7sC8c4nphbpyQqaGABK9hABwNM2ziMsjVxooAKpq0lFrCCDfS5s7I1cWJfmKP7QgEVNLCAFcy6ntgXlgPMupGYdXOr5+i+sIAVHGsx3uTZsglxYoB9YY5uyz2Up2bLDZWn5gsNLGAFG+hggH1hnpovxJZj3nI1c8xfWMAKNtDBAPtCP8Bhy8vbbEKMkmucJ+wLC1jBBjoYYF84TuMTBcQWacuDK/Phwgo20MEA+8J+gAKmLQ+CbmABK9hABwPsE7MJMUaDcMsmxIkKGljACjbQwUwjSewL5QAFVNDArGuJY3nznjcbCydmhfwLqqCBBaxgAx0MsC/MMT/eydeyhTDGu/NathBOrGADHQywL8wkGI0MLVsIJypoYNoisYINdDDAvjCT4MK05Z7PJMgZw2whnFjACjbQwVj7orKHGnsok+BCBQ0sYAUbOPZFZmo2C04UMNfiRANzLbJCjvkLG5hrkTs2x/yFfWGO+Xxokc2CExU0sIDD5rl1csxf6GCAfWGO+QsFVDDr5rjI83yeebPVL/KZRLb6TTRwLJmff7eCuWQl0cEAc8nGdshWv4kCKmhgASuYtpboYIB9YY7uCwXUtcZ5Rs+Lsmzqm+hggFl3HPbZ1DdRQAVHauR9Szb1TaxgAx0MsC/M6/UTx7joOU2Y7XATBVTQwAJWsIEOBojNsTk2x+bYHJtjc2yOzbE5tsAW2CLr5n6LCraFeXbKC85sRZuYdceBmK1oEwVU0MACVrCBDsbC86juiQoaWMCsWxMbmHVbYtb1xL5QD1BABQ0sYAUb6CA2xWbYDJthM2yGzbAZNsNm2AxbwVawFWwFW8FWsJWsO0ZhNpL1nGXNRrLzMMpGsokFzApHYgMdDLAvPEfhicPWT1Rw2PJmO983OLGCo27OkWYjWc8p0GwkmzgqnAfMObLy0DhH1okN5NjJkZWzltlIdmGOrAsZAcEICEZAYAtsgS2wRSzsKc5DOYfeQM8ur4m5mi1RQQNzQ3liBYd4zJx6dnlNDDBtfaAcoIAKGljACj5scoypU882r8XxxB0eg3KxPPHckX6cAzAXNQfg2A2eXV0TA+wL7QAFVHDuMj+sgBVsoF9Dwo9zAJ7YF54D8EQBFTSwgBWMK8o8+7curMd1gPhR58D2oypoYAEr2EAHA+wL2wFia9gatoatYWvYGraGrWFzbI7NsTk2x+bYHJtjc2znYM1jJ9jqMU+vfkQDHQywL+wHKKCCBhYQW8fWsXVsfdnkOEABFTSwgBVsoIMzkD17si6UAxRQQQNz5J9YwRybqchT8YWxME+6I7E9O7XO0Z2dWhPbldguOiPSRQPsC+0A1+gWRnd2ak1co1sY3cLoFsNm2AxbwXaO7sTzvFMTFTQwV/P8uxVsYG4oTwywz2yW87xzooArkLPVaGIBK9hABwMkjbPXaLE8sT6xPXF5YnZkn9cSLn0Fsh4HKKCCBhawgmuX6bqKdF1Xka5HXygrkFUEVNDAAlawgQ6u+M/GoMg9ko1BEx0MsC/Mu6ALBVTQwAJiM2yGzbAZtoKtYCvYCrac48hjMFuLJjbQwQD7wpzjuFBABQ3EVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA2bY3Nsjs2xOTbH5tgcm2NzbIEtsAW2wBbYAltgC2yBLbB1bB1bx9axdWwdW8fWsXVsfdmy4WiigAoaWMAKNtDBALEJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFJthM2yGzbAZNsNm2AybYTNsBVvBVrAVbGSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiScmZJTxzXMHl9lq1QEwPsC/OS+kIBFTSwgBXElpfUo+HIsxVqYl+Yl9SjQcrz7W8TFUxbTSxgBdMWiQ4G2BfmbfSFAipoYAEriK1iq9gqtoatYWvYGraGrWFr2Bq2hq1hc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS9b9mBNFFBBAwtYwQY6GCA2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2IzbLbGcT3zoSQ6GGBfeObDiQIqaGABK4itYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsfm2BybY3Nsjs2xOTbH5tgCW2ALbIEtsAW2wBbYAltg69g6to6tY+vYOraOrWPr2PqyteMABVTQwAJWsIEOBohNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYlNsik2xKTbFptjOfOiJAipoYAEr2MBhG73Anh1fE/vCzJLReezZ8TVRwTYzqp1RcWKAfeEZFScKmMVy3TIqLizgWPTR+OrZ0NUlFz2j4sIA+8KMigsFVNDAAlYQW0aF5ibJqLiwL8youFBABQ0sYAXXSaJxKdG4lMiGrq65STIqLhRQQQMLWMEGOhggto6tY+vYOraOrWPr2Dq2vmzZ09RHB4pnT9PEAMfijJ+3er4sbaKAChpYwAo20MEAsRVseYYc7SyefUp9tLN4Nidd/2se1aNxxbM5qY9uFc/mpIkFrGADHQxwLI7nhsqj+kIB01YT09YS05abL4/q0Sni2Zx0LXoe1ReyQnnQ1qybB+2FBaxgAx0MsC/Mg/ZCAdOWi54Hbc1Fz4P2wgo2MG25bnnQXtgX5kF7oYAKGljALDY2VDYn9dFq5tmR1EfPmGdHUh+/SPXsSJrYQF+Y56ELs4ImFjArWGIefWOT5OvA+uji8nwd2MQKpq0lOhhgX3XP0ZL/6zlaTlTQwLLWOEfLhQ30hYV1yzPDuUJ5ZriQNc7ZpDhx3LlHLlnOJl3YF+Zs0oUCjjv3fDyR/USRj3izn2iigwH2hTlvlE+fsp9oooIGFrCCDUybJwbYF+a80YUCKmhgAVORR19OFl0YYF+Yk0UXCqiggQWsILaOLSeL8jFNNjKdmI1MEwVU0MAyt3o2Mk1s4NpZZ59SPgbt5/yOJDoYYF94zu9YooAKGljACjbQwbRpYl94zhWfKKCCBhawrXU7J4jH8dvPqeATZa3QORV8ooEFzEXPbXZOBZ/oYC56S+wLz6ngrFCxVWwVW8V2TgWfyG6p7JbKbqnsloatoTivgnIhz6ugXLLzKigSK9hABwPsC8+roBMFVNBAbOdVUB6p51XQiQ4G2BeeV0EnCqiggQXE1rF1bOdVkCf2C+PsXrpQQAUNLGAFG+hggNjy1mj86iKy9ehxlCcG2Bfm7c6FAipoYAEr2MBUWGIqysA8Z10ooIKpqIkFrGADHQywL8wz2YUCKoitYCvYCraCrWDLmyBrA/Ny8cJU5A7Iq8Hxe5A4u44udDCL9cS+MK8GLxRQQQMLWMEGOogij/WSh0Ye6yX3Wx7rFxawgg0cdceL6+LszBk/OYmzM+dCBQ0sYNYtiQ10MMC+MC+/LhQwbTXRwAJWsIEOBtgX5mAYv3WJ/DrmRAMLWMEGOhhgX5jj4kJshi3HxXhlVpytOxdWsIEOBtjXVi/srMLOKuysPMDHD90j34vUxw9yIt+LNNHAAual5ZHYQAcD7AvzWL9QQAVtHqn5XqSJFWyggwH2hXkTf67beT8kiRVsa4XyRHVhgH3heeeTI+C88zlRwbwXyY163vmcWKmALbAFtsCWJ6oL2S2d3dLZLZ3d0rGdI7b/13/905/+9m//+ud//+u//f1f/v0ff/nLn/75P9f/8H//9M//7T//9H/+/I+//P3f//TPf/+Pv/3tn/70//z5b/+Rf+n//p8//z3//Pc//+Px/z626F/+/j8ffz4K/q+//u0vg/7rn/jXx+t/+ji6x1k7//mDQ1eJR4L8UEReFyljhGaJx+OhVcDth3+vr/+9jfuy/PePh7EswE8FtmthYz7tWovH09SXa1FeF+lzJR4Jtf59sbv/3PKrP+daPOYZWAJtP5RomxKjD/LaDsZ2jLv/vsk8Eh7zkevfm/24DrHZjqXNCo/IiZcl+m5f6toMj0m5lyV2WzIvla7t0MrLLSmbQ1J1vB8ha6j2pxr1p6N6d1haXYvB5nyEyf0VcVYk7PWKbGqMD6FcNca3S1aN9tN61N1eHY/cr71a9WWJzZGVrwvLCo9JjKcRer9ClLkaj3mH1xXuroa/Xo3dxsxPJ54b04/+qoRuokZLrAPr8fzvZQn5dFPo5sjUo8+408clG2mlP5awzUK0GfuPyYnXC7HLS9W5JR7IUWGP8Lu9IjKuz68VqfJyRTYHlhKax8sC+xHW2zooxF7u0fg89HY1iq7FKGavzx92bPN7nQbr09ZQ6z/W2BydNeYeeTwefKoQ9w+MUteBUZ9G2c8HhtnuZOx91egc4RY/LodtlkObrlHyeKbGjr2/FDcP8W2Nu1vDf8PWiE+3xn6g1DVQWnsZfZsKxY91pfhIwZfHeNmd2WMdoPaYpXmqEbdr2OG2avR4XcM+PquW8ulZdVfh3qnk9mq8Pqve3ZrydIR/b4+sa1d7zAW8rtE/v3qtx2+4fN2tS+HCsW7WpW5OjI+HVHO0PtBeXr/ua6z98nhiFa9rlI+P8lo/Pcp3Fe4d5bdX4/VRvt2a3GI+1uPNPdLWnfLjYZW8rNF25/h89+G5Kv6cf/GNIzTfAHYeoVFeZ2jTj4+MZp8eGbsK946M26vxZv5FWWekeCrxy9b0z7dmfLw14+Ot6X/w1nw6Nr28dzbJp+HXjbe83iNuH994++fh6R+Hp38cnv55eO435qeXjvVY93lV7PVcSmyic7xya97bRLyO39gcWl3WNOHRj5fpu52sLOuu4vHAoNrLycr9FnW2aLy3U+7NhkTdzYYccym0SHlZon08SMI/HSS7CvcGye3VeD1IthvTerAx21sl8nW+1+yUvZzL6JsTYs1usfOo6K2/V8LKjRL7A+vWNFv/ODr7x9HZ/eP5rR4fzm9tl+HeZKEcx6ezhXLI7uGEzRUZH5jhzqq/XaS+WaQca4qrPF2F/1qkfDrtuF+XKGtd4t11UZtH+fh8xrtFfJ0Xtb+7a2zdl4zX1m+K7G7hHzM66x7+wfJyumxb5u683RdF+tw/3aS/WcTqsYo8PRz9XpGbU4gi5fM5RNk9g7k5ibhdjnxv87kc8XTx8+ty3C3SjneLrHPMA9t7RR5jYl3aPtg3Zba7uK5g68+XD9882IKD7Xkcf69I6xR5PQDvn71fP7TcPUXI75plCfeXJ639FfKt5zqi7fMbyW2Rx7XcerIjvWyK7C4DfE0qqpfN2vTPHwTvHjHdfBK8K3HzUfDtNdk8C95v0fWwTD3KWzVMVqg+ThH+bo3j4xpPrSPPI/97NdZF3qPc6xq7h0w3bx6+qHHr7mG/LqWsafzS4vMabx5jpn1NDZZ4vW+3T2haW1MOrpur7+2C5Ac3zwV5JOvrBamf79x9jd+wc11Yl83ALbtOp8PXLPpzv9c3N+q6QrTYHGXbB07r5uxxV/J6MermylvyB1XnunTf3M/slqMIPXy22Ry785yuU1TRdrw+z+2e1NycUZL6Gxqe6ucdT/U3tDz9hp6n7Ra9N620r3FvXkmafD7090fHrWkh+fypk3z+2Okba/I6O1r78BJ5P2RtRWkp3t+8vlX3Ne5317ftN7Se5sXSp0/v96uTHwg7V6e3180h4vo7Vsf+6NXp6wxTj2O3OvWPPNIq3bS1tM2dlPvuJKUcaKvE47TzU4nP26C2S7Gm3J5Plb8sxe5J1OMOXDrPkZ5mMtt3iuT3pq8iHv29IvkTyvVE63hri6zleBxtmy1S/tASj22wzjAPrq83avkdG7X8ho26L3LzGNkOu3qsp9i9xHsB34QfFoj5u0XWPNn4bu+bRYoxdd/eXR1bvVXjS32vi/TyGwJ+94DptwT8+LzfWh3frc6ucaNGWWOnRi2vDrYviqyOswc/z2X8VKTvHtKvpzMu+vpEobvnVaWuOZXS6usn/Xps76vKOlUc8vLmXQ/99PZOj81VwA8/ZfHnhxk/b5Dd4fqYm1675sHl5TT1F2WqrUx63LnEyzLbQ3a8RXTu4/L0+OzXfewfz4jqER/fKepuwvze/cS2xM1fhNxeE9+siX88I7qtcXNG9Ksax8c17k146e43Sz/csdb3tunNmdkvatyamVXpH0/efVHj1h38fl3KsY6P54fvP9dQ/aOX49YM8f0ab465mzPEuovTuzPEXxzsNw+Q9gfvmHuzu2rH57O7XyzIrdndbNT/8PS/+/3Q3dnd7XLcnN396uKuPl3c2YuLu2xI+fQKcVukyOoQLs+3I+0bl3ZeZI2Y8vpAtc+fpmr5+GnqtsTNawf7/GnqFxfL6zz3uLx/fb7d/ZrpdnzsrpZbrNnuFn1ztbwr4mujPlDeKyLH+rGblu11+25JqjFN3N6/+I/Gxf/TWea7F//H0zsSrG3K2PZ5RP3/ex7xve1S1pyzlqcY+bXIx6m4Pewfl/XrSJEj3ho6Sp6pbM54u2dNN0801X/Diaa2zzfpdteuyebHXrZ3D/lsLpqXAPb2/a4W7ne1vT1ydF3UjJKbJrFdX7XPNXp6UvPTC0q+mlE0fZpRLG9OS/IDtKO3V9OSuntyZRrrLsAOf6fEvauAr2bhb26P4zdsD/8NzwO2RW5ukX0341HW9dlxPDcifq8p8rD2VGbT5anbrXK7t3JXZnzue06Q+lNHY/tGiVB+OVT8vRLrLUfjg8mvSuxbrA9e8HO83THejSKv+7T3v4VdF3uPy8/2enp190uqm50eGp//CFXj436AbYmb1+Dx+e9Q91v0XqfHvsa9Tg+Nz7sAv6hx715gf4Tde1dPl4+Pjv75+37ur8nry8z+aUP1dtSXdY56PCzajPrePr/z7p//WFp7fL5fP/659P012Yz67Ra9d+dtx2+YUd0vx63HZXaUT29j7Kif33Zvl+Pmbcxuc9y9M9zWuHdnaLtnSzc3qRyf3xlul+PeJt2/PWM9LY9m+jJ/9u8wuvWz6f0b4G5dt9hveCWfff5OPvv8pXz2G97Kt92gNy9bjo+vWkzl46uWL2rcy9HPLzi+uPu69yPK/ev97v38cVvj5q8ft+9Pu/l7wds1Nj8X3Ne492vB7bOc2ze0261687eC+yW5e4xst8nN3wru3/T3+drcPVb363LzWPXfcKz6bzhW/Tccq/47jtX9Vr33k9T7r1x9eSVlux9R3br52b6ekx7Ix+Ta083Pz6/n3P366XHuWI0caq+mG78ocWfm1Ip//Px0tzGY3ivPr7X4dWP8htf12e94X9/+ram3LmFs/xqGOaf2Q2N63K+wLsXa0631LxW2L4Y7eLT+1Dj5y8tft5tC2RRqr2vU7Y2griupBz+3Ttw/wnibRKnP1/r6jRp13ZCWWl+/Mspq3z0KvtVlaO3uAba52m8fXxZuS9y82m+/Yajst+itLsNtjZtdhl/VOD6uca/L0Nrdmc763ja92WX4RY1bXYbmv+Eeyj+/h9qvy70uQ/PyRy/HrS7D+zXeHHM3uwxt98upu12GXxzs9w6QFn/wjrnXZWjbRzY3uwy/WJBbXYYWn8+a7t7YcnuKLz6eNd1eBa0XHbUfflr3neuoviqU1xX8dzwD/6LKzUfgtnuT6TfuwnZl7j0C35e49Qj8ixJ3HoHvJ5Ru3k6WP3bS4hvHiP2WY8R+zzFinx8j9vkxYh8fI7tLVF+zBY9HJk+pbD/GUNk//7lzi7wtIY8kWs1FrT53Sfz8LvmjfTpl8EWJO1MG5Yg/eHvUtp5TPm7Vj9fbY/csStu6knngq1vLbYm7X0kpu49D3ftMyrbEvUmDfYlbswb7rXFz2uCLTXpv3qCIfz5v8MVhFlyVtf40sf3rYba7SRXnpalPbeSPB1Q/FtlOXN5618B+OfJHf2eJB79ejm2RSjt7rZsi2w3rx7oPefBTNP+yYXdn35t5ti9xK8+0/bF59uP2iLrJ920ZU26rnu+7f92s2+OVXfz8Ylwt9d0i/TcUefod+TeLrHPFYyQer4vYtpF8PVnS8sMbh3/+ys/uYIs14/W4WJRNkd37MKPOIhrPl3nfK7LeF/zA/m4RZ0n68TuK1E2R7Q911vcy9XFp8LrI7sdPjznIefKq/tS//a1d/HgOwX1rsTePk85HQJ4nJb63TZhe1aq7bbJ9k4qtbHvusPvehj3W6yDqUY/3ijSzp1dCH79hdepmF9/Pk00o7R5Y3XyRetk9r1Klhj01yf2yILsX/nn1uTZen1+49dMW2TVTPW7U1wRYeXpkLv5Tjd37qY6Dz6hpeV1j/9u09ZTmwa2+XpttC9EafWpPF46/btZtkWDfxOYg+c75vLw+n9f4Dcfa7gFrj/7UGaqbK5S23SzrglqfP4SrPy/L7tnTzUvh7Sa59y2Fsntx36239u836jf277ZM4dfUj4dIm9uU3Y+guvOroedBHPGdRanOhazLZqJiNyvfZF2VN3t63favRbZNouvlP4/73vpekUqrxgPlzSUpqw2nPD9B+t6SWF3v3rNW3tywptzkH5sivv+MNH2v9d0ivh4SPLC/WyQoEu8Waev2vD63fXyvSF+TFo+zqL47kJ02lgfHu2VCGISh78ZKHOuBtITIZvPG55Nb8fnkVnw+ubXfHnXd6D+4b/bO9uNO4szlPrbxq5cClt03pm6eAvfLEfxMVJ6/oPtzkd0HHo71XYQur6dPtiVkrUqX8nKebr9n2rrakvD69gEfvNrgcUO7OXl1+3hWal/i1qzU7nWAN2elvrE9difzr8pUyui74fj4p06Zspkz7P3zvdM/3Tt198PZ37J3ftge1d/fO+WpzLvnnH6su6YHd3u3jPLErVt9fdVWd0+p7p1ztiXunXP2JX7DOafTdyi9Ha/3Tv38Qde2xONR8MFFRZP+XhHnTRr+/Nzue0V4j4Z7fW/0PObVnppUdqeMbQ/jb7ot1lVFnxPl19viu0Wevi/0vSJl3e/8MM/9vSK8RVbrU3vot4o8tsP6XNIR9rLIdu+sdxzo85uKfn58v1sV7v90vED6VYmqtn1IfKs7vW6fVN3sTt+tzCFr1v8ou5X59EMBdffKxUfEr4vXaLvFiM83x7ZI1fU7nar9+fpGv1Gkrl6X6kd9swhvCXvcDsvrIts3BN66tvmixK1rG/u43+WLrbEaGWtY32yN7el3zTC0ErYp4rslWZcBcryaTt4vBneNP74h/FvrUuvqZKpR3y5CR+TR3y6yXnjexN882mOFSO27IrufYf2WInf7d+r2Q1T3Ljd3JW5ebm5L3Lrc3G+Nm/07X2zSe/07tW5P3ff6d7440ax58ce1UdmcaHZFulJkd7aq9kevTl9z62YSmyXZfYd6/VCl/zAxePxUYtcDaKt538pzU1T5TpFe6YV4eor6a5H4+IS3L3HrhNc+flfadms85uLXE4Lj+a73563RPj/9t89P/638sVtD1pArz5/3/nVrtM+3Rvt8a3zc7Lod9o8r2vWrDgt5L8WM33XY833dL0Vc/uAUs7ZeFvC4cD/eXB1fr7J9rFh7s0hfV5nlePf0YH1NRjyKbJbE22+4Qdx9OOn+HdF27/BU23+Yqv15dXYTpNR4mgj0uF+h8ZGgp5vuX9Zk95qz29s09Dds0/2zwfWxoh9+3/7T5VDsb/47y/F8rfvTRt39Luvebtkuhq8JFfO2W4ztCWKN3WLH8WYRWxOJxX64Q/y5yMfPAvbLUdbTq1J+eCT403LsXur3W4rcvpPp9vGdzK7EzTuZbYl7dzLbrXH3Tma/SW/eyeze7Hf7pLmLEFI55HWEtN1nrB4PSVce9qfN6u2nGvL5M+O2ez/gvQe++3XplaciT21kv6zL9s1WT7+6e5qktnZ8p8i9zwR+VeTWZwK/KHLvM4FfFLn36ujtztFDn15W2F/uHPmDa/R6rOPshwuAUr5TpPBGqefO8m8WWTfdz1/V+2aR9a7l/jzx9muRzSVAXxMi/fmnnT8f8tuX9N0dN9uV4SzRm727Wdv6bkP/4fMc3yrCO2T78/j9pYj+0UV+eEGnbfbOtojyOxV97rX/VpHHNeZ6khivi2xPWUGz1PE8df7zOUu3E6v0PPbnV9X89JbOpp+/Jbjp528JbvrxW4K3Je69def+mvhmTT5/S3Czz98S/MVy3HpLcLOP33fRtj9huvmZoH2Rm58J2ha5+77i/ZLc/EzQvsjND4223W9+7n9o9KsyNz9Z9EWZu98r/arMzS8f7TfwzS8f7Yvc/PJRs4/f1LIdyDffb72vce/91q18/H7rVn/D+623y3Fzk+537b0vH31xrN798tEXZe5++eirMje/fPTFFd/qgun+9Azsl4u16p9OHX1R4s7ThVb7H1ri3gOKLzbomhV8bFt7vUGP3/A9qa+K3Pp+Umu/4yb4NzwF286C3Xp/1RcTaXdeYLV95nNvJr613/By1ua/4eWs+6cbhVcsts0Tn/xF0OuT1er30h/f3vtTCPlmzzzOtuvHaf15yrfI/SLV1oat5bk58VtFQld/0vHcFfSdIk2ZstW6W5LPM3W/HOvM2Z5f3v29lbH1e/XHMb8psvuU2+9YmbJ+pNrK003nr8uhf+xyVGLk+Ybg1+X4+F0tX5S4dbaLj9/Vst8avn520eLp8xC/bo34g4vcfeLT+vHpE59tiXtPfPYlbj3x2W+Nm098vtik9574tF4/f+KzP8s8zcE935r9cpbZfhLq5tTX9vnVzamv3S+mbk597UrcnPq6vSabqa/tFr039eW7j9LenfraL8etqS/ffd3q3t2u737idHfqa1/k5tTXtsjdqa/9ktyc+toXuTn1lW8N/nzq66syN6e+vihzd+rrqzI3p772G/jm1Ne+yM2pr+0IujlPsxvId6e+tjXuTX357pnPzTBQ+Xzqa7sc9zbpF7v23tTXF8fq3amvL8rcnfr6qszdqa/tZdatKYUvrtRuTSnsmuHvTSn4/tsi96YUfPd64NtTCts+dl2zAaZ907m9LeLrd2iPwfJuES4ryvFukaLrYwdF43VbvtsfXeTu3U2+0u2zu5ttiXt3N/sSt+5u9lvj5t3NF5v03t2Nl9/xU5bdr1D66lIQ1eeGx58OkPIH15BYv+/TH35p8J0iqmuzqrZ3iwhvndO2W53fMNPqv+MzWF9sE3569WOT70+rs3uvoNRYM3EPrq9mjb4q4gyd6P6ySNldcrKL2w9vq/p5dXZXi3X99qr80An+UzeL1897Hnz75Onetd72BXp3b3K2L2G4f5OzL3P77uSrA6U+HSj26kBpv+No2xW5N0u5P0zuzfx4+/zDwt4+/rDwtsS9mZ/7a/J65ueLgXdv5mf3EOvmzM9+5N2dctkWuTvlsitye8pluyR3p1y+CJK70xxfBMnd+YntKt2dn9gWuTs/Uf3jm+n6eWvOvsbN+Yntc6x756yw3zA/Efr5Jo3fMD+xP1Zvz0/sy9yen/iizM35if2N0q35iS/utW7NT2xfpHCv8WL/LoY7S/HFS5TI+frDV0O+8yamxjuhWrc3i8R67qr9qO8VsWM98Xzg69WpuxnGu++E2ha5922qfYlb36b6osSdb1Pt9wu/PRrn8zd37g9FyrtFlCL2er/E8XGHwBcl7nQIxOcfuNqWuPlyx/0G5emve7y7V9YVq3p/N0Gel+TtIrGmjMbnS94twp3vrsj+nYz3sn3/Wsdb2b5/5+36EHSX8uZrc1cr2wNfv0RYP90WX7xW+da22L/De71X8nFr9u47vHnj9QPj3SLr4wSPc++7LwKPwpK0d1+OHuum6FHv7VeSH/x46nh7m6wbq0eRzd7Zvv++Nj7A7u03FIl338TPs6fSyrurw+8Oi+8Otm0RXvVewl4Xid0TLOcVwP7cqPxz53XsfolVeHn2Y4nryyv3r5akrSWpuyXZ/cr9WId9O57vIb6zHOuDrHEcbbMc20mr9eUI/+EzQb8U2U2yrp8uPs8BjObY+8cI38Yquxc8h/XfcIzsfnpx/xjpv+EYKfr5MdJ/wzGy+5TU7WNkd5v4O46Rvt4u83hK+vpUEWX3lkuN///3oP60d8u+pXW9GNKfXuvw86eXtt84OdYlST389ecLY/f86u7KVPmDV0bWx8bqj88Wv/XVl2Ne5lWT8mYRZUm0/JYi8W6R9XTksZv83SKrM+BR7/0N62xYe7eIUOTtz8Nq4VFafb55/nFOMXbfxLp587wvcevOt9kfWuLmzfN2gxqvHzc/Nht09wmBOy/+3S9G4fb7+a1Ovy5GfB5mu6P0bpjtP/urPKbR+nJlviiy7lkfz3peb5Gye5n67Q8Qq306B7gvcWsO8IsSt+YA5fN7ePn4Hn77sp5b3xeM3Qv/Yt3cPT8z//mxSmx/cSXrztvk+fKy337bf/GVXyUOfXmZe2wbANZjmfZc4qd3p+xK8DVbaU/vtvtOiXj6dFd9byk6P3M8DnmnhB6ExvH8MdxvLAWfGxifMnuvBF/6eH572ndKyHoWI9LfWwrjQyHPX977TomyBslj8q++LBF9d7cfPMB8PjKk31+TlTmPE/R7G6OsL9HL8wcR392eb5YIeipDn19R5D9tz4+/xHb7XXbycim2JTrj7HlC6hslYs0SPIaqvizRj9/wytV+/IZXrt59CdbzK9t/WZndawAeZ8N1kLZWX/W5flVkzRVK86O8LLJrn+DNfvbDN0h/WR3/9Lp6e25cEw2PRwL+zkFWePPGY85zs1/kN7T+d/kNrf9f7Vw+O/jYua9eudjF/ugjpFauiZ8e0v26YXctu8dqj9Hnh+s/z2hti4zXca5rQa2bIv75RGGX+HSi8IvluDdR2Hc/aLo7Udi3jQ+3Jgq3ASDinHTFnz/0d8hPS7I5XtdFoXOYlfvJzINPleebt5/WZF+C128837B8pwRdMfr0UOuX7anbOdP1wV873iyxvsrXni7nvrMizye6p7P2d0q0NcHwY4fQN0r4ul9R322L3VOo31LkEaYHWRpvFnE6uL3rm0X6+gmUPH/y9Fs7d62MPk9zfqeErSvcx5Ei7y0FzV92vLUicihvdmpvHegi66MR8vzO6G+VaE+fXX5vKWwN2Ae+txRVuXp5mjX6VolGM3v091aEo9P0vRXhJTmPTH9rRXz183hp7xToa573+bu1v4zT7YPNj2+H+zq9P3+I5DtrsY7L7vXDzfBeAePLoY9p++fG6NvTXo+nH8z8P79U790S8V6Jp0/lPD1y+1aJ9VORR4X6Vom6Hug8RsZ726KsE/sD/eMS5b2dWurq2X3udv9WiafvDvX3dmpdj0AfqO8txZqUtR9mzr6zFNwxVntrKSRotX9uYPxWieePdbeXJfrumZIo0f2Yvnr1PGg74SR87FvfGmfS+b3rc9/Ct0rwC+D+3iB5TL7xW+bW3izBF8ubf1zC310KZhFD3isRlT2iHy7Fdqdun+M8Tmfr2wD1eP6B20+TGbvnSb2u1qle++ufo/Q4/sC53ce9qnO7K6+ejPXYfsRypd/xssJ+g9q6YOzW5eUG3RaR4+AS/MFvlnkc6XxP4/nhwbeKKF+P0OeLje8VWV9/68+vivxeEVsTb4+t3N48VmPdEzyGoL0+Vm8XeXoJwTeLxNqwEe29Io/ppLqeXx7ir8t8sWmDTduP9zbt40h9+lrJ4fruKh3Wnsps9tHudbz3t8y2zL3mhX2JW80LX5R42bzw3x//5c//+td//Mvf/u1f//zvf/23v//fx7/7r1HqH3/98//421+u//q//uPv//r0//77//t/5v/zP/7x17/97a//+1/+zz/+7V//8j//4x9/GZXG//en4/qP/+bjbYHuEv/9n/4kj/8e46dhcUR//Hd7/PfHvWXV8f+Nv/yYPpF/evxHG//D+NuPfzj+tcp//6+xuP8f"
|
|
4121
4121
|
},
|
|
4122
4122
|
{
|
|
4123
4123
|
"name": "public_dispatch",
|
|
@@ -4181,7 +4181,7 @@
|
|
|
4181
4181
|
}
|
|
4182
4182
|
},
|
|
4183
4183
|
"bytecode": "JwACBAEoAAABBIBNJwAABE0nAgIEAScCAwQAHwoAAgADAEwtCEwBJQAAAEElAAAAjycCAQRNJwICBAA7DgACAAEsAABDADBkTnLhMaApuFBFtoGBWF0oM+hIeblwkUPh9ZPwAAAAJwBEBAMnAEUBACcARgQAJwBHAAAnAEgBAScASQQBJwBKAAEnAEsEAiYlAAAH2ykCAAIA5/BF/woqAQIDJwIEBAAnAgYEAwAqBAYFLQgBAgAIAQUBJwMCBAEAIgICBS0OBAUAIgUCBS0OBAUnAgUEAwAqAgUEJAIAAwAAAOgjAAADBy0IAQMnAgQEAwAIAQQBJwMDBAEAIgMCBB8wAEsASQAELQgBBAAAAQIBLQ4DBC0IAQMAAAECAS0MRgMnAgYEBy0IAActCgQILQoDCQAIAAYAJQAACAEtAgAALQoIBQAiBUkHLQsHBicCBwQILQgACC0KBAktCgMKAAgABwAlAAAIAS0CAAAtCgkFACIFSQQtCwQDHAoDBQYcCgUEABwKBAMGHgIABAAeAgAFAB4CAAcBCiIHQwgWCggJHAoJCgAEKgoHCQoiCEUHJAIABwAAAcEnAgoEADwGCgEKKgkFByQCAAcAAAHTJQAACHItCAEFJwIHBAMACAEHAScDBQQBACIFAgctCgcILQxKCAAiCAIILQ4GCCcCCAQJLQgACS0KBQotCEsLLQhFDAAIAAgAJQAACIQtAgAALQoKBwoiB0cFCiIFRQgkAgAIAAACOiUAAApmLwoABwAFHAoFCAYcCggHABwKBwUGACoFAwcOKgUHCCQCAAgAAAJmJQAACngtCAEDJwIFBAMACAEFAScDAwQBACIDAgUtCgUILQxKCAAiCAIILQ4GCCcCBgQILQgACC0KAwktCEsKLQhFCwAIAAYAJQAACIQtAgAALQoJBQoiBUcDCiIDRQYkAgAGAAACzSUAAApmHAoHAwAwCgADAAUtCwIDACIDAgMtDgMCACICAgYtCwYGLQoGBScCBwQDACoCBwM7DgAFAAMjAAADBykCAAMA8CQ52woqAQMEJAIABAAAAyIjAAAEoy0IAQMnAgQEAgAIAQQBJwMDBAEAIgMCBB8wAEkASQAELQgBBAAAAQIBLQ4DBC0IAQMAAAECAS0MRgMnAgYEBy0IAActCgQILQoDCQAIAAYAJQAACootAgAALQoIBQAiBUkELQsEAxwKAwUGHAoFBAAcCgQDBh4CAAQAHgIABQAeAgAGCSQCAAYAAAOzJQAACt8eAgAGAQoiBkMHFgoHCBwKCAkABCoJBggKIgdFBiQCAAYAAAPhJwIJBAA8BgkBLQgBBicCBwQDAAgBBwEnAwYEAQAiBgIHLQoHCS0MSgkAIgkCCS0OCAknAggECS0IAAktCgYKLQhLCy0IRQwACAAIACUAAAiELQIAAC0KCgcKIgdHBgoiBkUIJAIACAAABEglAAAKZi8KAAcABhwKBggGHAoIBwAcCgcGBgwqBgMHCiIHRQMkAgADAAAEdCUAAArxLQsCAwAiAwIDLQ4DAgAiAgIHLQsHBy0KBwYnAggEAwAqAggDOw4ABgADIwAABKMpAgACAP95SfIKKgECAyQCAAMAAAS+IwAABhotCAECJwIDBAIACAEDAScDAgQBACICAgMfMABJAEkAAy0IAQMAAAECAS0OAgMtCAECAAABAgEtDEYCJwIFBAYtCAAGLQoDBy0KAggACAAFACUAAAqKLQIAAC0KBwQAIgRJAy0LAwIeAgADAB4CAAQAHgIABQkkAgAFAAAFQCUAAAsDLQgBBScCBgQDAAgBBgEnAwUEAQAiBQIGLQoGBy0MSgcAIgcCBy0OAgcnAgYEBy0IAActCgUILQhLCS0IRQoACAAGACUAAAiELQIAAC0KCAIKIgJHBQoiBUUGJAIABgAABaclAAAKZi8KAAIABRwKBQYGHAoGAgAnAgYEAScCCAQDACoGCActCAEFAAgBBwEnAwUEAQAiBQIHLQ4GBwAiBwIHLQ4GBycCBwQDACoFBwYtCgYHLQ4CBwAiBQIHLQsHBy0KBwYnAggEAwAqBQgCOw4ABgACIwAABhonAgICVScCAwJuJwIEAmsnAgUCbycCBgJ3JwIHAiAnAggCcycCCQJlJwIKAmwnAgsCYycCDAJ0JwINAnInAg4CeycCDwJ9LQgBECcCEQQcAAgBEQEnAxAEAQAiEAIRLQoREi0OAhIAIhICEi0OAxIAIhICEi0OBBIAIhICEi0OAxIAIhICEi0OBRIAIhICEi0OBhIAIhICEi0OAxIAIhICEi0OBxIAIhICEi0OCBIAIhICEi0OCRIAIhICEi0OChIAIhICEi0OCRIAIhICEi0OCxIAIhICEi0ODBIAIhICEi0OBRIAIhICEi0ODRIAIhICEi0OBxIAIhICEi0ODhIAIhICEi0OCBIAIhICEi0OCRIAIhICEi0OChIAIhICEi0OCRIAIhICEi0OCxIAIhICEi0ODBIAIhICEi0OBRIAIhICEi0ODRIAIhICEi0ODxIKIEVIAiQCAAIAAAfbJwIDBB4tCAEEJwIFBB4ACAEFAS0KBAUqAwAFBa2jcsb6poRzACIFAgUAIhACBicCBwQbLQIGAy0CBQQtAgcFJQAACxUnAgYEGwAqBQYFLQxKBQAiBQIFLQ4BBQAiBQIFPA4DBCgAAAQEeE0MAAAEAyQAAAMAAAgAKgEAAQXaxfXWtEoybTwEAgEmJQAAB9stCwIDLQsBBAwiA0sFJAIABQAACCAlAAALRwAiBAIGACoGAwctCwcFLQgBBicCBwQCAAgBBwEnAwYEAQAiBgIHLQoHCC0OBQgAIgNJBQ4qAwUHJAIABwAACGUlAAAKeC0OBAEtDgUCLQoGASYqAQABBXff7AtjnJehPAQCASYlAAAH2xwKAgUAKwIABgAAAAAAAAAAAQAAAAAAAAAABCoFBgctCAEFJwIGBAQACAEGAScDBQQBACIFAgYtCgYILQxHCAAiCAIILQxHCAAiCAIILQxHCC0IAQYnAggEBQAIAQgBJwMGBAEAIgYCCC0KCAktDEcJACIJAgktDEcJACIJAgktDEcJACIJAgktDgcJLQgBBwAAAQIBLQ4FBy0IAQUAAAECAS0OBgUtCAEGAAABAgEtDEYGLQgBCAAAAQIBLQxFCC0IRgQjAAAJUgwiBEsJJAIACQAACggjAAAJZCQCAAMAAAlxIwAACaEnAgEECS0IAAktCgcKLQoFCy0KBgwtCggNLQhKDgAIAAEAJQAAC1ktAgAAIwAACaEtCwgBCiIBRQIkAgACAAAJuycCAwQAPAYDAScCAQQJLQgACS0KBwotCgULLQoGDC0KCA0ACAABACUAAAxYLQIAAC0LBwEtCwUCLQsGAy0OAQctDgIFLQ4DBi0MSAgAIgJJAy0LAwEmDCoEAgkkAgAJAAAKGiMAAApYACIBAgoAKgoECy0LCwknAgoECy0IAAstCgcMLQoFDS0KBg4tCggPLQoJEAAIAAoAJQAAC1ktAgAAIwAAClgAIgRJCS0KCQQjAAAJUioBAAEFursh14IzGGQ8BAIBJioBAAEF0Afr9MvGZ5A8BAIBJiUAAAfbLQsCAy0LAQQKIgNGBSQCAAUAAAqpJQAAC0cAIgRJBS0LBQMtCAEFJwIGBAIACAEGAScDBQQBACIFAgYtCgYHLQ4DBy0OBAEtDEkCLQoFASYqAQABBQ7+IEnrN048PAQCASYqAQABBYRygMKEIwtGPAQCASYqAQABBdwbbuv7trxDPAQCASYAAAMFBy0AAwgtAAQJCgAIBwokAAAKAAALRi0BCAYtBAYJAAAIAggAAAkCCSMAAAsiJioBAAEF5AhQRQK1jB88BAIBJiUAAAfbLQsEBgoiBkUHJAIABwAAC3gnAggEADwGCAEtCwMGCiIGRAckAgAHAAAL9CMAAAuOLQsBBy0LAggMIgZECSQCAAkAAAuoJQAAC0ctAgcDJwAEBAQlAAANVC0IBQkAIgkCCgAqCgYLLQ4FCwAiBkkFDioGBQckAgAHAAAL3yUAAAp4LQ4JAS0OCAItDgUDLQxFBCMAAAxXJwIGBActCAAHLQoBCC0KAgktCgMKLQoECwAIAAYAJQAADFgtAgAALQsBBi0LAgctCwQILQIGAycABAQEJQAADVQtCAUJACIJSQotDgUKLQ4JAS0OBwItDEkDLQ4IBCMAAAxXJiUAAAfbLQhGBSMAAAxmDCIFRAYkAgAGAAAMziMAAAx4LQsCBS0LBQYAIgYCBi0OBgUtCAEGJwIHBAUACAEHAScDBgQBACIFAgcnAggEBAAiBgIJPw8ABwAJLQsBBS0LAwctCwQILQ4FAS0OBgItDgcDLQ4IBCYtCwMGDCoFBgckAgAHAAAM5CMAAA1GLQsCBwAiBwIJACoJBQotCwoILQsBCQAiCQILACoLBQwtCwwKACoICgstCwQILQIHAycABAQFJQAADVQtCAUKACIKAgwAKgwFDS0OCw0tDgkBLQ4KAi0OBgMtDggEIwAADUYAIgVJBi0KBgUjAAAMZi0BAwYKAAYCByQAAAcAAA1qIwAADXMtAAMFIwAADbItAAEFAAABBAEAAAMECS0AAwotAAULCgAKCQwkAAAMAAANrS0BCggtBAgLAAAKAgoAAAsCCyMAAA2JJwEFBAEm",
|
|
4184
|
-
"debug_symbols": "tZvdbh4pD4DvJcc9AAzY9FZWq1W2m64iRWmVbT/pU9V7X/yDPclqpm/mTU7KM07HgPEPMMmPm7/u/vz+9x/3j5+//HPz8bcfN38+3T883P/9x8OXT7ff7r88TumPm8T/5Eo3H/OHm9xQ215uPhZuUVu0Z7RnytZ2bYc9D30uKVnbrB3a5qotTH2V265tzdbac7PnZs99vte4JW0RrEVteTzSdm3H7B+5bdYOaSGBtahtLtbac8nWzvdymgBpQdWfgGmqpqnam83e5BFz2+25N2vne3maFrAuYJtPYwDBgiUZLOkMU1Jm95UHXioDS+aPaoYFaD8qZQFLaAKbWaCmBW0Br8iY0KqBrLnAfB3mMCrmBd2AloSWZCwJm1phKLRUF8wxw1yWxmNWQAM2uEJbMAzY4gpLUtfrbHSYVm2tLFgStrcAzilX7p0HX6dZGg9eYUl48LUzdIWe8oJhwC5bBwMZFFiwJLAksCS1LOgG4tICc4RtDqz3tKAuIAOON4VuIB4usCRjvT749cowFDCZBNm/FThQ5rojO0nPDCShiFCs1dBGDsUODN2gpQV1wTDoS4JNEgdSlZaSBjglDWDK2Vp7LvZc7Bk0wAk0wKmCtRrg1LK1GuDUNcDJwou6hiUhWKthSVSsteeRrW0ahYMzlULV4Bu88gJ5SfLQcBylajgOdtLOEh53nwoHL7gC98QK2TcRGNBAcgL/qHcDjjBsDN2ADagwDDgZIDGgQk5sXSOXZZdll0k6U2qLOKMZza4oC41FbHcjXMS2N2qL2P5GIXMtvAoEQrSIXMZrYDRnTTyWzDMaSQgXZZfxjAZrzuy+Ri6Dtqhq2ZlQFwyDBuqpk2gRZzyjvgizk8vIqqKUNwapY1WADCQpCCwJLAksSVXnzYUjSqEtGAYdFpABqgvnYj6dpdoptAXDYNQFJlklL0vN41KWpeoZdfXsLJWviIxDsosMsvp0lqqnxJYdVYgWsW2NXNZd1l3GMzHqi3guRryM0gdnNqPqREZVXEWpL+L0YuSykpxYyxAai8BlHLlGYiEeTOUpTY8WJMcuUtHZyRFDiiGlEoiOI6TDpY2rzsLumFNgcywh5XktlI55Fg0gEB1rDuyOLaRdRkaC6IghxZBSSCmkI6TDpT2VwJDmkOaQlpCWkEJIoTvqhBRD2kLaQtpTYA0cjrqEiuQY0+wxzT6ii+FdYEqBLdC7wFwDvQssEOhdYMwYY8YYM8YaXbTouEUXLTru0UWPjmNhMRYWKbqg6HhEFyM6Ht4FpRroXVCGQO+CYo2l+BtCDvQuqKbA6KJGxy26aNFxuDKFKxNGFxgdU3RB0TFFFyM65hyUebOQB2dVQ849C7ujhKlhc4SQQnWUvKPIm4aFIe0h7dEFhjIMZTgcKaQU0hFD9wkV2VIsREfxqKonOf6/FRhlOIboKFtARTEq77AnNscRUjFqbYK0MItRDUOaQ5pDKm5kyCbhvXrJ4kaGIRXfMRyO4juKMsgsB1QZZOZZFF1YRbE691Z0YRWbI4QUQlpDKmMwJEcZgyE66nIrSsc8yKLLrdgcKaQU0hFSMbUhLQT1X0V0lKxs6B3L1mChdCEn9zIc1ZUVybGWQHSUBG0YyiRBG4ayHsokQStKYsootwailxjFHwy7oy6LYg0kxxqv1XhNB6kYUt7pZt4jTZQzAodIldBTlHphiI5SL0oR7Aub1AvDGkiOshaG8VrJgSGFUAahDEJZDWU1XmvxWovXJNALyO0LBIpU7mRkAQq7Z9O5Kbq069y6YAscjhLShuioc1OM10q8pnNTDKmEkyBqAimCnphQ4tiwO8rmyVCSQpV7pRroyQZrCUTHFtIW0h5SCV5FCV5JNoiejYbs8IpcUOlhkwSHo+wJFGVPYNgdJcPwrc286uLxArun1gvD7igF0HA4SpGALEiOUiQMlxS0SBiiYw6p2JfvfEDOngtDKvY1HI4VAtGxhQbJDwCCLXA4Sn4wREfZzhjGayOUjY3UlWkdMnRlWdwIqmBzlHJguJEOR52x4lohyLUEdkcJSEXxEr7sgiz7auiCfaFcsS5sgdIxyVUmBJJjCWkJKYQUQlpDKnUT9GoUAtGx58AWGK9hvCZbbJlbkZQJQ25aU2BdEwKdkGAOqU5IUDcCckUr0aIIIdWNQJY73BzoNoMaXbToooVU0qBhdIwhVZcTVJdTjC4olGk49Z8/P9ysi/g/vj3d3fE9/OZmft7Xf719unv8dvPx8fvDw4eb/90+fJf/9M/X20dpv90+zZ/OOd49/jXbqfDz/cMd088P8Xbaf7UC7/Lk7Tot5grmafdSFTD4iC0qJo4zKuaOapiK6ZJ5VwUcjGIWZFjDmOfx6kowXzwM4C2ODmPuMU7NBPnCTlXggF0VfV8FjbWeIzVXMO88LlbAd3umgHYV0L4CvitcY+
|
|
4184
|
+
"debug_symbols": "tZvdbh4pD4DvJcc9AAzY9FZWq1W2m64iRWmVbT/pU9V7X/yDPclqpm/mTU7KM07HgPEPMMmPm7/u/vz+9x/3j5+//HPz8bcfN38+3T883P/9x8OXT7ff7r88TumPm8T/5Eo3H/OHm9xQ215uPhZuUVu0Z7RnytZ2bYc9D30uKVnbrB3a5qotTH2V265tzdbac7PnZs99vte4JW0RrEVteTzSdm3H7B+5bdYOaSGBtahtLtbac8nWzvdymgBpQdWfgGmqpqnam83e5BFz2+25N2vne3maFrAuYJtPYwDBgiUZLOkMU1Jm95UHXioDS+aPaoYFaD8qZQFLaAKbWaCmBW0Br8iY0KqBrLnAfB3mMCrmBd2AloSWZCwJm1phKLRUF8wxw1yWxmNWQAM2uEJbMAzY4gpLUtfrbHSYVm2tLFgStrcAzilX7p0HX6dZGg9eYUl48LUzdIWe8oJhwC5bBwMZFFiwJLAksCS1LOgG4tICc4RtDqz3tKAuIAOON4VuIB4usCRjvT749cowFDCZBNm/FThQ5rojO0nPDCShiFCs1dBGDsUODN2gpQV1wTDoS4JNEgdSlZaSBjglDWDK2Vp7LvZc7Bk0wAk0wKmCtRrg1LK1GuDUNcDJwou6hiUhWKthSVSsteeRrW0ahYMzlULV4Bu88gJ5SfLQcBylajgOdtLOEh53nwoHL7gC98QK2TcRGNBAcgL/qHcDjjBsDN2ADagwDDgZIDGgQk5sXSOXZZdll0k6U2qLOKMZza4oC41FbHcjXMS2N2qL2P5GIXMtvAoEQrSIXMZrYDRnTTyWzDMaSQgXZZfxjAZrzuy+Ri6Dtqhq2ZlQFwyDBuqpk2gRZzyjvgizk8vIqqKUNwapY1WADCQpCCwJLAksSVXnzYUjSqEtGAYdFpABqgvnYj6dpdoptAXDYNQFJlklL0vN41KWpeoZdfXsLJWviIxDsosMsvp0lqqnxJYdVYgWsW2NXNZd1l3GMzHqi3guRryM0gdnNqPqREZVXEWpL+L0YuSykpxYyxAai8BlHLlGYiEeTOUpTY8WJMcuUtHZyRFDiiGlEoiOI6TDpY2rzsLumFNgcywh5XktlI55Fg0gEB1rDuyOLaRdRkaC6IghxZBSSCmkI6TDpT2VwJDmkOaQlpCWkEJIoTvqhBRD2kLaQtpTYA0cjrqEiuQY0+wxzT6ii+FdYEqBLdC7wFwDvQssEOhdYMwYY8YYM8YaXbTouEUXLTru0UWPjmNhMRYWKbqg6HhEFyM6Ht4FpRroXVCGQO+CYo2l+BtCDvQuqKbA6KJGxy26aNFxuDKFKxNGFxgdU3RB0TFFFyM65hyUebOQB2dVQ849C7ujhKlhc4SQQnWUvKPIm4aFIe0h7dEFhjIMZTgcKaQU0hFD9wkV2VIsREfxqKonOf6/FRhlOIboKFtARTEq77AnNscRUjFqbYK0MItRDUOaQ5pDKm5kyCbhvXrJ4kaGIRXfMRyO4juKMsgsB1QZZOZZFF1YRbE691Z0YRWbI4QUQlpDKmMwJEcZgyE66nIrSsc8yKLLrdgcKaQU0hFSMbUhLQT1X0V0lKxs6B3L1mChdCEn9zIc1ZUVybGWQHSUBG0YyiRBG4ayHsokQStKYsootwailxjFHwy7oy6LYg0kxxqv1XhNB6kYUt7pZt4jTZQzAodIldBTlHphiI5SL0oR7Aub1AvDGkiOshaG8VrJgSGFUAahDEJZDWU1XmvxWovXJNALyO0LBIpU7mRkAQq7Z9O5Kbq069y6YAscjhLShuioc1OM10q8pnNTDKmEkyBqAimCnphQ4tiwO8rmyVCSQpV7pRroyQZrCUTHFtIW0h5SCV5FCV5JNoiejYbs8IpcUOlhkwSHo+wJFGVPYNgdJcPwrc286uLxArun1gvD7igF0HA4SpGALEiOUiQMlxS0SBiiYw6p2JfvfEDOngtDKvY1HI4VAtGxhQbJDwCCLXA4Sn4wREfZzhjGayOUjY3UlWkdMnRlWdwIqmBzlHJguJEOR52x4lohyLUEdkcJSEXxEr7sgiz7auiCfaFcsS5sgdIxyVUmBJJjCWkJKYQUQlpDKnUT9GoUAtGx58AWGK9hvCZbbJlbkZQJQ25aU2BdEwKdkGAOqU5IUDcCckUr0aIIIdWNQJY73BzoNoMaXbToooVU0qBhdIwhVZcTVJdTjC4olGk49Z8/P9ysi/g/vj3d3fE9/OZmft7Xf719unv8dvPx8fvDw4eb/90+fJf/9M/X20dpv90+zZ/OOd49/jXbqfDz/cMd088P8Xbaf7UC7/Lk7Tot5grmafdSFTD4iC0qJo4zKuaOapiK6ZJ5VwUcjGIWZFjDmOfx6kowXzwM4C2ODmPuMU7NBPnCTlXggF0VfV8FjbWeIzVXMO88LlbAd3umgHYV0L4CvitcY+DbwlgQaPhMyThYEClwuh7zliFUjHzpOObO1t2CMl2tovRdFUf+3dtSAfPwu7ukGY48i3wYNW1iJL/QUQ9WZd6kLyWTkfY8nI8Nu5OZmztflpm8y66So9lQXh429yd5fzZ4FPJE1WN+Xr3HQOpzJfQWJhnvbJJZHj0Jzg3rrkn4PLBrkpo97CZT2jMJb9J3TTK/I7hJxrzY2ZtNOZxNLxDTgV27/mI6w3PhvIDF3ekc+WtdKtg4rqGdWxjc99Vy4KvYlzEQI4XUcm4QdBD+h0GHEXQpPKw9HwYcZLJ5dFzFfh4dN7YYzxcEDlfVXbTFIOa9/uUacmjo+xoOTDGPUugL0iJzzC8Tz3UcZFPg76bmWDGKmQout+a8X3ZrbrLGf6x5UKrnDfRyrXnBHP5d0knHyHnXMY6qZCnZc3Htu8OAozSaBix78Kmq7+WMelRrU6lebNMsEbtK8tHSdljTmdx3t4K/mE7ZTGeTOV6OBI7q0+ieizNsdh/p5PLi3vLWgyRahtt04x8wLh9DLO28ZBi7Y8Drc0+la3PPoYaLck9L1+eelq/NPYfWvDD3NHjn3LN1jL7rGO3IOdHPbXNfOXaH0fpRfYUeBRb2Nz3twKb8ZSv2krQbrL8YCKQYSNvdS7bDk1P42OS2mwT7USZt6NEymfKJ8/D89r4SR00p7R9my9E4chyf2vxyd2p33TAS+qDd/VOvh67qVWFy3fWRfrQd5XunNRK+TLp2Nn1r1lfsBkFu6s1FYLcqdHqD40Yfb3DcwPQGx41fTOey4waW9zxubNdls5N6sS5Y3/O0keJCLpfdDSH266s14rXV+lDDRdUax/XVmtK11frQmhdWayrvW62fOcbGGi8cg+r1JwVqb3BSoP4GJwXCNzgp/GI6l50UaLzvSeHZ8u5vxg5VQPf0tb0Bf6FilOtTx4BrU8ehhotSx2jXp47Rr00dh9a8MHUMeufUsXWMzQ7spW+ldH3uyCm/QfKYHzHeIHvMzx9vkD5+NaPL8kdO7foEcvQtsOTl8bXAqQ950839xDA3YfvfShK9wZHhaCDdfa32zQnqPwPJR2f99YECwxgVLv4UmONsvN1Mvgz/YxX+jSRv3OtVKkYE3ebL00sV+ejTUytrPRqkkyq8NvXcTk2kwCZ7lFMqOnlV6JuPs69RgfGJGA9tMd5ZCf9Ks2f1zZev1ylB9NKAo5xUMlIcAcu5lSk+Gf4tx1MqIPk90vaa81WjiK+0kE5NpFL2EyS1bb2+VEPOfoM0A4rODIL/rMVV0Kloy+Dxmrf1/jUqWvGJtM1x/FUq4nKh0Tg3kXDO+e3tnIpaXUU7NRGsa0Gw9jMKhl9MjHZuEskvJvgPtvYjHfA9vXv4pnqUc4Zw1x7YrrTkOQW9rTzTN8eCl79ec6TAKzKmfkoBhQI8pcDDals5XqEAi5+NKjxX8Pt8vP10//Tsb8x/sqqn+9s/H+7s8fP3x0+bn377/9f1k/U36l+fvny6++v70x1rij9Un//8hvOYgXn8/uEG5lObdy+N+nziX6b9rU4Xq7nwY+afzvWe6ef3nzy0fwE="
|
|
4185
4185
|
},
|
|
4186
4186
|
{
|
|
4187
4187
|
"name": "sync_private_state",
|
|
@@ -4338,8 +4338,8 @@
|
|
|
4338
4338
|
}
|
|
4339
4339
|
}
|
|
4340
4340
|
},
|
|
4341
|
-
"bytecode": "H4sIAAAAAAAA/+29eXxcR5U/arW6W619X1q7HVuyvC9JCBASHDu2Y0lO21Jrl205VmzFsqRosSU7NhgmDBkIYzsOs/AYIDs/CGHJMDAPfh/WYX5Af+DBMMwA82H78QthIBOGsLw8Znhy3H373Ft1TlXdWy2XUPsP6Oje+lbV2evUqbqZly7+xUen5sbuOjgxOXJyaHr44NT0/P8uu3j+A7dNjoyOjhzdPjQ6ennZhQufuTD/7+Ilzsvfa/jW+ce3j49NTT90/okdI5PDd037zj95x9j08NHhyUejW7d8oXEZ/S/D2T5Dqf0b3+Bsv0yt/2T7p/YPjw5Nj5wcVhvBsmUsgk8V4YNXSH1kaHpo+/jEnDWVN8AxAfDHrrx9MTf+/7s9z+ANGmbwWMf0+MTFS8iIHTza/vjOkeHRI/OwL019+4mvPPixLzw1/eTj7yz+Tv5f5a7LecP99/9HzQu1f/3i/Y86G+6whvVI9CbhqILO5rdb/d7yd5l9xz7y8njurjc/c+o7/7p3Jr926HMNb32874sXG54/+BZnw51Ww5++/V1vKHzm0nsb18Z+Hdz15z8/+Ks7Ajd9J3Zf+PNv+v3zLz7kbLjLaviNvt//27OFD52effCTZ25aXTr0wYe+/cuffekrHyr81Q+fvvfbNzgb7vaoRneotS9ytt8D2t94vYISxNu3qrVnxt+m1p4RsXaL8Ocfe+rftj0Y2/Tj3+f8WfvQn8xufds3u39xuurJVT+55+naDxY7G+61Gv5oevvF6coTN/4i9LUHN7+vpu77Lz357HO/mRu+6efP/fTjy3/lbHhnomHVluZXT/zl18u+t3rFd1//mQ9uuBx+aeXN3/vE7ve9+PL/+h2HVBE1VjFT3afW3u9sv1+tfaazfYdFMf6/jMQPZ8NOt4Y23j4q6DjxL+Bs2AUaZrx5xdRfZD+Y0f65N61/Ni/nc89ve89t22Nf+ZM/ayj84HucDbsTDdfcnP3i43927v5lP3jy39/xmzWfev364vptxRv+6V3/XDM22R9+0dmwR22qtc72vcDwbVanVJ8kpZiG/Ur9Mlo8INkv03BQsiGjDAfUCM2IxkG19tnO9ofU2uc42w8pebhGZ/PDSs03OZvfpdR8s7P5EUmuvcbZcFiNaq93tr9badzbnM2PKjXf6Wx+TKl5p7P5iFLzIWfze5Sa3+Vsflyp+RFn81Gl5sPO5ieUmt/tbD6m1Pyos/m4UvNjzuYTSs1HnM3vldQWpuGkUr+jzuZTSs1POJtPKzUfczafUWo+7mx+Uqn5hLP5KaXmk87ms0rNp5zN55SaTzubn1ZqPuNsfkap+Uln8/uUms85m59Van7G2fycUvOzT+wfnp6ZHIsvkWPVg+c/sHN8cnjk6NiVPzz8iZnpkdGR6bldw9PRq7/me5senp1++PzT7cMnxifnth05Mjk8NQXXs9gTH/okE33iR58EHj7/RMfIiYlRu0/k/PHG6xN/vGpIqP+6cIFd4weVSBo5/2j7+EmwwM9KZmwY6JCaP6+bTzmNjA1Nzs03unPiYQv40XnqXJ18oifQw9N3jB25mk1wdJ6lunS2d57swuqenbPPSY1sOLTH55Mhk8P8p0Gsu2y2u+xkdxxIywNrBjylG/CEbsAZ46c8pRtwQjfgtG7AMd2AQ8YzRbvqzRoPOGK82IwaL4fHjTcO2sXmHuNdwJml55fvcwYxoWSgJRuQWd2g4VhIUzjGmWUo2b18oyxhoxy6J7iQeCa+kNgxfHjmaNv40QsXLjsje2vr6v27h4cmtk1ODs1BZtQi73fy389ZdplZCsyH7+cfv/riRd7DWv6Kwtnk6kphmX2CH49PcOfw9F3HOoeOHh0+Mj/Nqfn9YGTc2x14bKCMLxtyVHdClJcNObicZmuS0xxSG23E/WicuG3jQ0e2D01MzYzO6ym2MMxCBCLjEofnmxHuZjwkv1hNMBT5++6HZJafDpFzEj1Pjej5TmnKT4xmmfNJAaSc41khZI3jWZGVzOZL1zKndC2Ds0nkG+6Kw7LvMAPNgWN2PMuFY57Hdqxzkxhxoj99dcSv/MedE5ehHWyfGeU2zWVwczCdkBmB85Vs+LYNDE8nKPsexsVlEQzWaIDKFqEBYuacq9ZtKdZtLtttLpy3gw158BkCmf+htnmD03lsaOz2e2eGRqdQ9LzzT+yZOTFxx93QNHz1b1nByLN2RLE+89hp5CWp99iVbi5+9cOsEuNC5ZHAEkKViwtVjiah4nA3hxAqRbteosQNMG/GHYBnCGQBKVR5Nt/CCFXBVz/HClW+UKjy2WnkM0L1adb640KlSOBt6kKVhwtVriahyuOZDFyo8lV3iVW4AeaNRxJ5GGQhKVT5EIwVqsKvfo0VqgKhUBWw0yhghOrLlOjI5P1PoSEXRyoLVMtclKWyAJfKfE1SWUAqKx5KFrBMBE/RvH8h210hEdoUCtMBbgFndAPeoxtwVDfgrPGAE7oBp3UDjukGHNINOGm8phhMQwnfZ4poz+kGHDdetLVPeWTpmYezugEP6wY8x4akeAxW6G3pJRGDFeIxWIGmGKyQjG2ZORepdVuMdVvEdlsE5+1gQzF8hkCWkCuDIgjGrgxKYhlVrFwUC5cGxew8ip1Lg1hG6fnHrmSe+eY+R5MQ5xD0KyTE2CNLJcS4CBfjQk1iXETTytltseqhHRX2g3k72FACnyGQpaQYF0MwVoxLYxmrWckoEYpxCTuPElaMr0NT+BmeSXy7ulgV42JVpEmsinlmCherErVudyixA8zbwYZS+AyBLCPFqgSCsWJVFsu4gRWrUqFYlbLzKGXFahMlPDKZk2WsnuFyWarEo4xfqstlKS6XJZrkspTUV2bOZWpzfhEVIrbbMjhvBxvK4TMEsoKUyzIIxsplRSxjOyuX5RLqUM7OpJyVzFtYTcMFS43Iy25TF6wyXLBKNQlWGamxzJzLvSXHaXaAeTvYUAGfIZCVpGCVQzBWsCpjGRFWsCqEBq+CnUcFK1atTDgI5DxXSfnwcDAXvkYIq4yBPUhxXgbgXhagQglg1ikClYQmVqlJ5WZ1TazCNbFSkyZWseyuRJPjYTg0RhTCiXbHsM7CbGdhQrbCwryNW8BR3YBDugHv0Q04qRtwRDfghG7AKePF5rg2QLGncjvGWf1jLNc9xlO6AeeMNxBnjTey2vV52ngunzNebCbMNQ+pmrJ2sZlZetZmznhrY35Il3akRrJFuzafMHfK1s+KJRTfpG7SzD5uFZEuCKut2G9RTxeE8XRBlaZ0AYdSVWi6oBoOjaFitTBdUM12Vk2wpVroW9wCjuoGHDJ+yhO6Aad1A84Zz5SzaS6bx+VzxovNcd2AM8bbw1njmTJtPFPMt4fHjZfDKeO5PG286mmXw1O6AUeMn7L5Aeec8bGN+Vw2OOC0flYsvfhrIh3dmOf3zFe+EeNHOKvfPJTrHuNp49lySr+zZwoatWURl2vNIpanLosIyiKZOVerdduoxCAwbwcbauAzBLKWLP+rhmBs+V9tzLeLlQvQLVpXWsPOpCZJwHgBoO82pgAwBVtH5QQFw4QgKzI1U12Qq3FBDmsS5GqSVrg8VZNsL3fHdhqSyc3jrKlRo06hOmtqcNZUa2JNDW2Nnd3WqnVbgBoEtttaOG8HG+rgMwSynrQxtRCMtTH1Md8hVjLqEpRAS4zr2HnUsRamnxIemYLbOyhOyAC8hgWoUwJoZwHqlQBuZwEalAA6WIBGJYBdLMByJYAeFmCFEsBeFuA6JYAdLMBKJYA2p2atIgxck5qy71U3cE24gVulycA1sRq6CvU9zXBojDlolrBCzWx3zYTvaRYuLd0CntENOKIbcFI34IRuwOO6AYd0A07pBhzVDThrPKB2wR4zlykgfDBdtLVr89zS0+bTxiuf+UwZN97enDHeCQwZT0Pz5XDSeC6PpK2NZ8Cz+l19nX7Iev2QDSZDxp/drX+MjYuCOWWLYpTL9UMGF4EIrdAPed2i4Pd1i0LQjTa/8WfHFoGYX2fuGBcRFVMg4CsXhbFYoZs554yPJU8Yn5LRvgTRvkjSngJm7s5pSjzh7MA0e9tuTQATOzDN+A5Mk6YdGA6lmgClnN2uVv02EtLtarbb1XDeDja0wGcI5Bpyi3k1BGO3mNfEMitYuWhJUALdYm5h59GSJF98izmzmBIemZ3BdU6CrCbkskWNR+vU5bIFl8vVmuSyhScgFmEd1FgDh8ZwcU2i3VFUdNjO1hDmwno2oxvwtG7Aad2Ax3UDDukGnDCehmd0A47oBpw0ninmy+GUbsBR3YCzxgNqF+wx45miXQ5P6AY8ZbwbnTKeKXPaAK2fFcZP+qxuwMO6Ac/pZ0vz0guYxoyPwGaMt4nmR7FjzMkMcNc0Wv5PX/tMncyoYK+21pabcfGlDiI3U5G63EwFkZtRXPcXKeU0wLzxxTdq69aSuZkWm3QxuZm1scw3kSa22J1oJ7IzZxlBbpbwqoopxgr42h97f0zhtrZkVUBrsqo5dcmqZtfJKjFrTIgRUwvpFNgWif7oVCwlsC1/9P0x6XRcIdek/HO5a3CFbNGkkGtIWjmosRYOjaEjeIrWm6xlu1tLsGatMGp0CzijG/Ae3YCjugFnjQec0A04rRtwTDfgkG7Ak8arnnYun9ENOKIbcM544zBkvOrNpJniGXDKeBfA5kpAuBvSFEGHbHEMHtfJFBzsZwHWKgF0sQDrlADudIZp64mgdYNa3Phm9aB1Ax60rtcUtG5g2b0eDVo3wqExogCeooehN7LdbSSka6PQBLoFPKMbcEQ34KRuwAndgMd1Aw7pBjypG/CU8UwxX7DndAOOGi+H2s3XTJopngGnjJ/yrPGA2o3DmLlMsX7WGi/a5gcjk+nYwTNgOnZIxw7p2CEdO6RjB+Njh1TR0HzBPm08DeeMZ8q48ap3Zum5APNjG+1TnjSeyyNpa+MZ8Kz+FXNQP+Qa/ZA1+iHX6mbO3boBj+mfdL1+yDL9kCv0Q65LM0cTZJ1+yAb9kI2LgpYpML4rzTVrqbTmK5amfi9fBNMuWxQRRv2iMGv1i4KWaxfFxK8zWdTjz44uCuNbb7IbSyW/G0wWoVTSsn4RePBzxi/nTxi/7ag9C6Q9T6W90o25821D4gmn0HSjWq1nrmOwCWBrqFZPoAe00HSDpkJTDqU2JCnloMYmODSGipsS7dAb0jaxnW0i2JIGTAMaBshUXuPmYZOahq5UNw+bcPOwUZN52EQaUgc1NsOhMVQET9HUx2a2u80EY6xnp3QDzugGvEc34KhuwFnjASd0A07rBhzTDTikG/CkbsAR43V5zng51E7DSePlcNp4iz1nvMU23zicMl71zhivy0tQDqeMD0XYQ7xgbRzStO4IwdeYpTi+8tisFvw/pL7y2IyvPDZpWnlsJmnloIaNfQwdwVM0Ab6F7W4LwZotQj/mFvCMbsAR3YCTugEndAMe1w04pBvwpG7AU8YzxXzBntMNOGq8HGo3XzNppngGnDJ+yrPGA2o3DmPmMsX6WWu8aJsfjEwuvdhhxPhgZM746MZ8wU7HDkshdkgvLNILi3QMm45hF1sMmyoami/Yp42n4ZzxTBk3XvXOLD0XYL4b1T7lSeO5PJK2Np4Bz+rP3AR1j/Fu/WNco3uMx/SPsWYR0HGlfsgy/ZAr9EOuWwQCVL8omBM0WbtToIzWz7Xm6vdSl8k6/ZAN+iEbl6p+r1wEnrHGZDe2qPR7+SKYdtmicGL1i8Ks1S8KWq5dFBO/zmRRjz87uiiMb73JbiyV/G4wWYRSScv6ReDBzxmfYDph/J6r9ryk9syp9hpg5m6AdYkn3kvwcxyDTQBbQ7V6Aj2gJfjrUleCvy5JKcUS/Hi7Pt1sSQOmAV0BOg/wgPPpFQoaQR0XqoCvMYflceuxRU2B16lbjy249disyXpsIWnloMZWODSGjlslgrWtbHdbCdZsFbpGt4CzugHv0Q04oxvwjG7AUd2Ap4wf4XHdgEO6Ac/qBjysG/Cc8TScNl6X54zXlFnjuXzCePOlXWymjGfKiPEjPGm82EwYHzmMLD17OGS8LpvvAmaNl8Mx/UxhMjj4inSr2qKwTn1FuhVfkW7RtCLdSuYKHNS4Hg6NoSJ4iu7VX892dz3BmOuFVtst4IxuwHt0A47qBpw1HnBCN+C0bsAx3YBDugFPGq962rl8RjfgiG7AOeONw5DxIzxj/AinjRcb7VyeMt6nsLeSgcx5SFMAGYKvMWl8PIS8Xi2Ke4t6CHk9HkJu1RRCXk/SykGNG+DQGDqCp2jpzQ1sdzcQrLlBqJ1uAc/oBhzRDTipG3BCN+Bx3YBDugFP6gY8ZTxTzBfsOd2Ao8bL4ajxXB413mLPGc/lKeOZMms8oHZrM2YuU6yftcaLtvnRzWQ6GPEMmA5G0sFIOhhJByPpYGTpBSOpoqH5gn3aeBqab23GjVc9852U+UG7+XI4aTyXR9LWxjPgWf1L8KB+yDX6IWv0Q67VzZy7dQMe0z/pev2QZYtilGsXxShXLAIRSgG/6/RDNuiHbFwUtEyBPV9prqVMpYNYDMqYAhu0fGnaoDWLgjkNi2KUa5aq/77OZFGPPzu6KIxvvcluLJX8bjBZhFJJy8UQTp8zPkNwwvitUe2JJe2pL+3lfcyFQ2WJJ5zq2hq1Atd8x2ATwNZQrZ5AD2h1bZmm6toallJlgFLObmvVus3Duq1lu62F83awoU7ChTV8qG14aqrz2NDY7ffODI1Ooeh155/YM3Ni4o67QQcNsVAbKxd1CUqgd+HUsfOoS5LvsSv9XIyFdlHC80j0JiEdoxQnZACOsxTFBbtBjclV6oLdgAt2nSbBbiA546BGIxwaIwaNEtLXyHbXSFgc69m0NkAgGcaOMf5sRv+k84yf9JBuwCndgLO6AceMp+GcbsD7dAOe1A04ajxTJnQDHjd+ymd1Ax7WDXjO6TNriAhCLUzM+IF6BFGLRxA1miIIToxaQ4TGalFTxvcVApcGOG88dEEd/0oyNG6wcZsJjVfGQu8gXW+xO1FLBMcPMCcoQay+QWkBgYvxBoKCtfpCYb/WULg2daFwretQWLQicmtfUgDomFkDwedGb+taCT434nxu0MTnRp7lwA3WSrVuc1Hrwna7Es7bwYY18BkCuZY0WCshGGuw1sZC72flYo1Q0Naw81jDmqvHGHMFNKZakxBXw9cIYZVZ+v+Q4rwMwHtZgDVKAC0swFolgE9QR9tlAD7OAtygBHCeBbhRCWCQBXiVEsBqFuAmJYCtLMCrlQB+ygK8RglgNwvwWiWAT7IANysBXGQBXqcEsJ0FuEUJ4NcswK1KAA+xAK9XAniRBdimBMBxn9vVXAnHpt2uhpCJGdodrKHdDntxOKPbkp5a2aPvwD36bZo8Omc2txFuYwectDzkDllIhms7NHFtO2+eoBcH1+yDYocsWgMr00CUR3BP1BW6x3hK/xgbdY/xLv1jXKkfco1+yLX6IYP6Iev1Q16vH/KGRQG5XD/kjfohX6Uf8ib9kK/WD/ka3abtPv1jfK3uMZ7UP8ab9UO+zmRH9lQy+tcOeat+yNfrhyxeFJDbmGxNMPmzCesvyPYXJPprgq8xMXLw8Z0jw6NH5oPjl6a+/cRXHvzYF56afvLxdxZ/J/+vctflvOH++/+j5oXav37x/sfYpvVq4XW357xmKYuwXA2hhEVYoYZQ7DlTuYOTsLKYcMvfZfYd+8jL47m73vzMqe/8696Z/NqhzzW89fG+L15seP7gn1KpKqnOt3m9hjFjGSdZZQ1fmXY3qg2/gcpTSQ3/RSpR9Wh0843CMYSoTJUUwo1UqkoK4VWcXFWCCSv/+e+zfvs//tz/0X95cfzUr9c89OVdD/7PD9x8Kbb+ljd2/PidL7RTWSrJUkEiy+Q2w3KrGkIBlWeSQghRiSbJbRaPmab5XVY2Z2Hp0k/f/q43FD5z6b2Na2O/Du76858f/NUdgZu+E7sv/Pk3/f75Fy9zklSSavhatulO1c0WBmGXGkIZi7DbGv43+n7/b88WPnR69sFPnrlpdenQBx/69i9/9qWvfKjwVz98+t5vc7TnDrmZz9uu+D5J9hrG84LUWRbmeX1PJTZ+YNKtE4KwGz6+WNFuq98NzmRRBrHt51OjaVg9SejDk4QZmpKEPjZayUC3d/1waEwk4xfWo/jZzvxEaORPlo9oBhzSDXhSN+CobsBp3YDHdQNOGD/lsaUnhyO6AU/pBpwzXg6103DSeDnUrnozxouNdos9y7pfPBgJqMUDPvVgJIAHI35NwUiApNQHds4TauTo2Pah0dGHPzozPTI6Mj13JUzcPjQxNTM6T8On24dPjE/OzYNMzgeCMFh5/+7hoYltk5NDc4CegYxL55/oGDkxMToM9rA3n3/86osXEw+vhq8ZD6H4mc4n8THfjvx990N2aP5/2YjKcjxLjei7ndK0OzGaZc4nd0DKOZ7tgaxxPGtNIB7hS9cyp3Qtg7N57ApfL8aq74rDsu8wAw3AMTueBeGY57EdoXsSI070p6+O+JX/uHPiMlTf9plRbtMggxvAdEJmBGlth9qOszPA2swgJKyrlY53i/RM3CLtGD48c7Rt/OiFC5cR9d/BN0e+KsxcYObrMsd83cSYL/iwCjEufItHrIZlBQr3cxnJBXpa8tN+Lu3nloqfc75iyyrRsuCzMonnH3vq37Y9GNv049/n/Fn70J/Mbn3bN7t/cbrqyVU/uefp2g+WWBm9dzGZxAA0Qdgenj2TyJ83m0sMxgq/b/X8Hrsi/11ckW+bGT2+f3h6cmT45PC8l5i6cEFd39qRv++V0jd+uOEjjK4/5UbXjxtdnyajy1mG+XQY3Qy+0fWn2ujuTaXRDS6E0c0gjK5Pp9ENujG6fsLoBiijC8VaZHR9dqNrC0Pk7aTECNIhVjrESodYSyXEwkfwxNUzcVxb4eOENP5Y9lc9m4j5aK1zcmji4iWuLUgHIulAJB2ILJVAhLBe9pqGFCefwACIZeaPprdfnK48ceMvQl97cPP7auq+/9KTzz73m7nhm37+3E8/vvwlzxaqy7NtjVoLzp9S5aqoNcoSFc0EOV4hK5b9gtXvz+02619XxY1W19DoyJGh6eHbx+6dGZ4ZPrJ3fHp4atvYkdtPDo9Nu1r37kT+vkth3fvE/OJ7ZhLdyS97tGPmMFK9uxtrVM47cW41IilZHsv+T8sonCUFtcypEeWEp6xIuaeswD1luSZPWcF6ynIdnjLI95QVi9pTVi2EpwwSnrJcp6escuMpKwhPWUl5SmAoK0SestzuKYOwCyduBaYTMiNwvlKORUWqWcwymzpxspg5uRb130iNtExMq3kOIwsehj+4MVMU7W51Y1aFG7NKTcasijVmlTqMWQXfmFV1qRizLgVjBoQHe+J3YdBYQayI5axMRBk55Ux0A5SrQMGDVBBhYQF8jegvV1N/ufA1h0JkJdr1Op+E0CfZcCqOZ/nofmth4glz61ERHKrjWTGKV5LES3Dv8wp321QmQycnC+pBQ9zqNDJJjvoE5ABHzBpjOa+yBtrC9FkpIWaVpG5TYlZJ9Zerqb9c+BrjMzFhqiKEKYwyvxoVphpCmGpRvDpWmP6evXYM9x0rVRdkyr5jJe47GjX5jpX0DVDOblepLiGRblex3a6C83awoQk+QyCbycu5VkEwVlObYzk7eCcoLQlBOm1i59GUJF9CrG51zmelzowDdatZfVL6E4O5AzWYSFAHTGOAa+QKv2qBt1GGdSWhXd7J0Aim6hgDoFCO0nVxeG85xLRSxd0cNLJNcrcH1TiEu8ApLOdwd1Ws8G8t8H6GsjalJcheoInsBdeA7AWsNdLYUVOShwiJVpO2cjlD9mbQlFljtcD3yHXjatAIWTfaeqIyrBxBRYvaV4sFtZkjqKtjhX9tgY+7FtQm5mETNDGY7+G5AcAibKqky2oSTTjnpLWYfjPqoBBqNtNGvSmWM2eBv0VBMuvBwpPfqIVttBqOi6B/i8JAmoW51RaS+jbZZgnUEst5I6A+xxtBJcQ1tFRBpJoJM1IKX3NoX7NOe2Ubu1jNH/Cg5mv5av5mC/ztDGVJSWqGywQ9ZM+9BmRnljgtOjtqEfqj9aQCr2XIvg40ZVzIRvge6Y/Wg0aIP7L1pOiP3o1OVyyo6ziCuj5WeMwCfy+1FicFtYUS8UZ3Nha97m0daRFX24SEmfC6WM6TYn+EqX0L7Y/mnd3/EPujdW78EUec10nSfz2GWc9itgj9EU39FtuceNT/iKQ/qkcTNf1EomYVm6h5Khk/Maka4L7xZE0lm6zBzWmdzaNiCZssdC4hOGE8u1nFZjfBlJn8JpgynuGsYTOcYMpMjhNMOZnl5G2V5/yD5+1ZqoAKTxzrcDRZyZ+ZqETq6MgCu53YGfLeTSUxnzCRRqxO+X56NZ5GDGtKI1azBi+sYwuqir8FVb2o99NrF2I/vYrYTw/r3E+vdbOfXg3HjDsIdj8deKRq0R5x2L6fXgW7cOJWYzohMwLnK2H4tsx+epV4Pz3M8QBVsZznLOo/gG8PM4VHYWEwUi1XeMQbVXUs599B4RHWwRO8KKcMUo4L/d+WT3xBwRiVCSdcQ0ZfZVBS2HHVxHL+E0RfTnmoURDaarSwAf3IYw2PwWDoSLNa2RnzmFwby/mdmMlhdmQ1Qk7UyoleDX9Uv4ej4vmd7eMTc3G/wzlIjXsG6E6VyxbClxXOz3G9SELq/5uq3qkSSVcVKl3ldmo9a505Hx2eHrbodckFvaouqZwWrCJCpXDKQ6UwHipVaQqVwqx1qkqGSrifDJPf4ylHK0jJ7mw8/1ic5690Y7HcTfDEDdrKM+jgSfKqgCUuIO5j6XI+W8KL+oBZzULE0uVELF2lM5aucRNLh4lYupqKpYHjCIsdhy2WLoddyIe/EiMgwu1yqVi6XBxLV3HL5XNXgNpU2cJT8Nm4YApX/cXpVf98d0UqlqpIS+FpfDZ36LBVTeau++9Vt1VNlra8Xd5WlcvaKjwn0EokjduIpHE7Wxtl/dzLViZZP+9k60ysnxHnM1BmsI9vZF7nuQidStlWMdsVgOLZCjFiOZHpzIavEf0VaeqviPDE1EmlqpRHg1WpP6lURdIKDwWqWDqGoV6wwhmK5X4usczMbWOPquOEVjzlf6M6obNwQgc1ETqL/LoGvpmUxRLaKqM/inUWYjsLERpgPZvRDXhaN+C0bsDjugGHjJ/yjPFTvsf4KU/pBjypG3BSN+CobsA53YATxovNtPGqN2k8Dcd0A84az5QTxjPllPE01G5gR4ynofkGdsR487UEw7k54yMHfUyxfuYZryva2TJuvK7MGW9vxoyn4VndgOeYpByotSxXyH9kEb2Vw9dcpVTkZ41dzeP5YvysG9Quxg+5uBj/BrWL8ZN3binsJil+kXWLegKuPvW7SfXkbhJ+Iryed6jS+vk6d0e3OZAib+4WcEo34EndgJO6AUd1A87pBpwwXmymdQMOGS822mk4ZjwNTxhPw9PGC/bxNJc9A54ynobavd6I8TQ03+uNGO9Thow3XzPGi82ouUyxfuYZryva2TJuvK7MGW9vzI8Qz+oGPEfd4VWusHqvl0sf1btLCMjPOmXpo/rNaumjJhfpo81q6SNeWVcepxa1XF/NIVsDCLL2jZqSm43wNaK/bE39ZUv2t0FTfxvga0yxmUV02bwdlSUGfeLFlN47ssDY+/jCEvIRJpWfko8wCsn9IMGh5Avo3ZL18cOqV6rN2eH0crSuPpa3O1EgXfNb9AyTdf9M3h7JUQMMMG52AOFY4R4LvJ1iQYgUkjBpu1dSwNmaeJstw1sWEtRp56OMJc/ArrSNj8fjbvGNN/UiqUPntJIndfWU1K2M5fUrSd2g5Kh5UpfPJUnhOgv8ECMc+bJSl09KXZiyyEWaLHKRpAeopErg8zWVwOfD167NBxqKiIMlxezBEutnifNZG+Hq2pM/mUtz9uJkTQyfOK5iffah5mU9x1Xsn31wiEAxxEBEoJgVgWK5iLkYheReqgBuO2M1tjhW0GZp7Fn2MiLL03uVuq3qm47E8YqS1B2vKEkyAT8xxDleAZ5ep2mVVC9MNrgFnNUNeI9uwBndgGd0A47qBjxl/AiP6wYc0g14VjfgYd2A54yn4bTxujxnvKbMGs/lE8Zz+ZTxNDypG3DEeBrOGR/baKfhZNpiLwGLrY8p1s8843VFO1vGjdeVOePtzdjSi7Lv0h9lO3MytpuE5NMBVXI5mSrq5qJK/l139UR2RfHrYpnq2RXi62L1mrIrK0nmUR/5oko5qvRXh9S5yw8hjerIaevdg67agrwf4b9f51Pfg96isgftYxSvJPkT3e4rIelMbfeVUP3la+ovX7K/bE39ZUv2V6SpvyLJ/so19Vcu2V+Dpv4abP05DDXoL8w31MXMzlk++gUZ7C5nsCVQyb3LOX+vBV5AbThlUce7KtjPF+A+pjDlFyQV4j4mX5OPKWQlIR8xtkqX0GXz7WehrusyQ+iTrFRemFm8EHuF2cReYb7OCzOL3VyYWQjHjH+1g70wE1jlQtGFmfn2CzOzYRdO3EJMK2RG4HwlH74tc2FmtvjCTN5Wf3Ysf7X48vls9gZwSzvRG8AL5W4A542qMJa/TnwveaHo8vlsnLFFV8QRKmt8YAP80WyzjPomBQsmvq++WPb29kLupm/+9cR99cUKcl5oJ0cRREEbFaONgth8gzxBAvPF4gRZMvGEqSSW/1qxMOWzIwsK2VciJ+JB/qhu1XTJPe6DCtEnxeiTfF2X3F9RGodIBoFuikQym5IuT5fc4/TKVrrkPpsIyvJTHpTl40FZtqagLJ81adnowt/m/pjQvVDKOFDdebrkngrTuAFi0OU198mD/wtdLkv0l6+pv3zJ/lJSMkr0V6SpvyLJ/so19VcOX1MsHLYWs8PcsuH8Q+IPLb7yZSUEdb9CJrdcmErjZhAJWoMLn1e6OVey2+W5En4j+rvQ9dSHqJvdjD5yTUcfhqNnkru4x2tOucdrxj1ekyaP10zmnt2nIer5XqY5ZWmI+Jh3pjIJ0bIQSYh6IgnRpDMJ0eImCdEMx+x4thqO2RkJA/PXLIqEm+xJiHrYhRO3GdMJmRE4X7HZCRsYOtZme9S+g2Ak2DdTPqfEkFobVAth4tapCXy5uolbh5u4Fk0mjvN55RaUGuvh0Jj4ZT00QEh3nA8zrydCIgBZrR+yRj9krX7IOm2Q8Wd9acA0YBowDbhAgFQxXQv71PLeB6iFYL5CnUadXBKjjuqvQVN/DfA15sNG7uMWpiPb2J0Ta5EgZAsZGVCEbBEfUs3/PNotekg1jnGIk+FoiRW8zoL+B2q6dfZoPtMmivEgK/7MrxZi5SVWDHXfcs5/XQIyoKBd65I/d5IBQgnJ/HUSzPg6KtziE8M7OeyoixU0WeDfpIr2Viuola1TTHrIraEqm65xpCj/X+AOGj7selXpBQzZxe/5eyBDh4lolUcRLcdFtEUoovRKwZVc15FyvVKhfq9OmOtbSUpGnU0/OGfw858T3wogoS27uNqS/zMJ5rekjvl1QuavJL2cvMSstAmzk/lANFQuhajyyPwq2C2X+b8WMx8rEQvTzK+K5f9Ogvl1qWN+lRvmVwmZ30Iyn3MDCXDShQpeIeyR+YIP6K2MFWSKmR92Z/bDsYLgtTX7YTfMD3tkfh3J/FXkgiGs1SnUe3EK9bGCEiAanIUMaC4/6nDKN7mbkarzMjeb3GUKU2sSMiRMMqSJZsi8OoWJCij4IU1+CQf1Gfq6lG9o1aX+M/R1pCXHb8aoc6eTCl+99yzd1hYXV7bDLgs45GW7OCnbTKE5mH2y1JxINqxWsKu2NQ0WhcuGPy0crVofK1gr9oDcQF/kJjbyckqQWDiJNjIP10PZxDpE/HQL7ac3xgq2SPjp9anz0xuFfnoTS8uNQgZsZhttsq04nFq/WdYmbHRjgnazBhl0J8xWrKNPDbhZoVZRuaT1zEPb2hYTk3WpSzStF4rJRjKNqyJbgEaMINBCVAf7VrF0EmLSAjKMjA/PgAfghHRuZgF8SgCHWYBMJYD1zon6iQAloCZFd6kHKAE8QPFrClACLNv9aIAShENjpMyq175bocI0SGS4rWdDugFP6gYc0Q14SjfgnG7ACeNpOGm8HE7rBpwxXmxGtQECL6N5jLPGC849xgvOlPE2e9Jc0V40NnvGeIs4ZLzYaKfhmPE0PG68YB9Pxw7mmS/tNDxlvAvQHoqcNt4emi82E0vP640YP+X70hbbPNUz3x7q47L102c8Fc03YObHsCeM1+bTxnPZ4Cjb+plpvCRqt9rjxtsb8zN0s8YzxXx7M7mE7E2qTKz22OGM8SM8ZTyXteuy9uXZSeMBRxdM9TLAJwTj7/YmfvRzqpcyrny/jyhlkNqxZ2olMxNdei9FOOKmFMExnAAcGVqmAAd24/X4wD5Q/pnBHdf9YUChTCGQ5Km8IIDaBoaIWWpEPIzWGwXtT/wsFeNPArDzRI3R8+zIgqojU6Ei6IXRDYvGfe4Yk/jeMRAVoA9uvpBNX2WEX2pOFmQCBN5XYJtihZuJY2qgSBq9eauJqM3m2KRs+BoGKT78tII/mVeJ76biXMSTLdS31WyjZjgugnCrmYegJXq5xWqEBCsTQ+UdXV0dK7xFora02WPRYC5eNLg6qf/yxXirheTnnhcENKFOfzWxT0Owb+ZpOdQeZED1LksK68GXdd1cA8e93MurjQjD8XHV6k45G9GoyUY0erIRcdyD/KlEXVmIxsVjIeoFFmJgCVqI+pRZCJdnS3ELERZ/8X09wnnwxeG13MMXhcfFwr/RDfXpou5K6nzFJubhRiiHzoe2anBkNJsR+mxKzIN3seXmWOGUJbUvoZqx0aNmbMM1Y7NQM7awZN4s5M1WtpGNJox0b4V8wkTwUc5hD0u6MdEivdAm2C3v3EzhOeqEZDOkCXUmVGVOlajGVkLAuMbmvJsR19USzrGF1y9AwCweSc1KOHeWmutihW8VH8RaLT7iFOA7mbeJDc063nJHJMz0CZsWiv7rqeM3zSm7KuE27Ve5iGhEn4SrZJVjI+nsmmHf8sGPlOqstlTnAVUZBCjL+TL4brEMclRvlcdQo5KSwXWUDK6kjoA1qQYDoO0KfjDwuIS78yr9JYadL1tHni9brSDf64Tujr4/aJ0tvuLc4lP4YcrdrYQ0YZ42uZuTos6OMgK7SsLdNZHubhW6KJN1d00cajbHCv9e7O5WIarURLu7VbHCT7taVNZ7XFQ2UfRfTa04V6IK3+RR4UtxhW8WKjx3uiIacZeLlLuj7weRuWJ9lUvVWWWpTg8G3ejcqNgN5UVRcEEexc8X3K+LBbeJmKzLq+EbKcFl13yNMoLb6FFwu3DBbRIKruBydzfKXU9eAkMLbpNYulgjtJu4s6PRElzmLvIsYu8ulPJ7TkL4/lyWpmPEIZZmWYC3ri/uD/JvFwnpurg/E7nV5PZUXtyv+HEidxf3B4mL+7N0Xtyf7+bi/hAcM/NdJzBm4hNWIdHF/Vn2i/vh168Y3BCmEzIjcL6SBd+W+XpgEPFNtg1i1jcFY4W/taj/RmqkATGttsEPB6whBClEGDPFT18VqxuzbNyYhTQZs2zWmIVSaMyyi1SMWZGCMQPCwzdnd+gwZxXX2pyFUHN2r7o5q7AU6u3y5ixL1pwx3xUGY8Y/6NZGfGC1nbj9aq/zWUny553OZ+AzjhHns/Lkz30cO5QVKyr1XLWyzKoWYZU+mA6oFnlA1Z7KgKryjyqgqtQdUFWkPqCquFYBFTrWkD2g8RGMDBLGRNG5ZaobkwrcmAQ1GZMKsiIWT8VUsAvoSqjqSHeVZDKEgkS/JFlEzsDTxZaZxJWXXFtZ5HNztaVKlWqWMG0eIhO9NnVh3XUoVnQTcW0rbM2/tjVoqvcNps774gpTBIfGSHcRJCzSXdYCSrflj7mynaX32tYgUR2MynYWKdsBWrbnQ9Gd1JaQLahMfC34XdhQ7mS/Sp4hHH9E7qvkGZzRR2JFbeCr5Mzos4j4PUIo5b6UK+U+XCkjmpRyHytMER0hcQZfFfalOiTensqQuEON6J1OaepEQ+IopJzjWRexhuz2EBJ3uAmJ98ExO57th2N2OkAo1qKQOGIPiTNgF07cfZhOyIzA+UoEvi2TY8xAcox32tSJc5ipaJjIMYKR3immlS0kDxKCtJ8wZoqi3aNuzDpwY7ZfkzHrYI3Zfh3GbB/fmHV0qxizbjfRcgT/+rILg8YK4r5Y0bmExy4aZ/Y/gT7koJ6Z9CCMt82BrxH95WrqL5ewnr7z1slD5opiMGDmkF68VSebvLBOdjGpCzAgx7M2FK8dxdubfBLnXnEma6otJZRVVpyM+5KDdDKtI/kzW0EzO85LHdXqcE6rQ+e0bGPHYj/rE3NFaK1gJ+IHgEA3ctSvM1a90wJ/O0PZTpuzxsmeo4nsOdeA7DlsKKSxo2iShwiJulkSdUKmOcneBYMvp+Puge+RwUg3aIQEI7aebGBiQX03Ol2xoHZxBLU7Vr3WAn+va0GNMg+j0MQgY+5iWRSFLMKmSi55o6IJFz1JLXn32WJdfFJo8i3KmxQuyEXwtdRqDOhTLGgfRpkmFjTeseCuWHWZBf4xhrL7U0QGeeOwP5l1IE0DborYhsAYlCoMpZtgYyl8DVs06pAX29jF8vJZbH49YnnhHS3riYX/ywL/AkPZHpu1xsmeq4nsudeA7ExA2auzo16hB+1nSdQDmeYkex9oyji9Afge6UH7QSPEg9p6UvSg30KnKxbUPo6g9sfCP7LA/4Va+ZCC2kuJeBQbc6+ARUizPtKD9tiEhJlwX6zo++LKd0zte2k30RMr+pG4gLiPzgdIi3OfJP37FQbSK0x595PU7xWJW9HzYur3ItTvo6nfGyv6uZj6/W6oP8A26ofjclK/F5oOBHM/j6PeqN9nmxOP+r+ioscobE7EOPsUosf9kGeuFNoWXHEV+v+VDImjaKaln8i0dJ7Hr0PqIApFuohsS4TNtuAeuh1qNZNxgTbAyrmwZPLFioOeN4uouq19KHF1+HtQ05HqjBLe0X6dHe1P7g0RS9N8TTmUfPga0Z9fU39++BoGaTfzVqwDFI2V445YcZV1MuW3aOKLuA5sNzV/fHOMszsRTflWaxTfnejUtDsR5WWasPqHLjg0huldMkxnuxN/R5Ieo20H5Zn4DsqO4cMzR9vGj164cBnZe92BbJ/UYHu1/PejGZc52y03Mdst8GENsrOLVFwstL4a1F+Bpv4KCJ+dqhxygXg9V7zFQ+p+BTd1H/66BX4DtZ4jNJQphBEX8nTKFcIEuEMufg0ohEE6CCD0WCExo05wqSc7p17+mG71bO+paIlNOQdgsON86IMsRGbpYzXCRwhqBL6GQYo8dAc/0tzpykNHcA/tg4afSPNHFLrrlCMO2V+hpv4K5SIQ7+bJNnZmzcOYJ1Sloog6Whh3cCQjGgv/Twu6izJOnThdGePUITROUTnj1MEdcnG/2DjxI9k7JOYT5ZmmDso0zY/oEGuauvSZpi7KH5do8scl18AflyzUni6xAxNR2E3skjNQXRJ6PKa6H2bLf/D2w8JvscDvTc3Ga6emPcpO+JqcOZNzdPOaOCd2dNTaZTdNHKHNuInbsPj8o3vH7VV0ybZXDA1atRe1Vzj64E+0UZe9UVSqUfSKHedqyA2scetWrQJ0KERPgt7L2D0pMG7HMysZe6d6EWu3JRcvyxexdsFxoZTrdlIujjyAN+mxc8i2IYyzNS5lHDL2UaNzCEO8SZRrRIr/0jIi72DZ3qPG9l50w3EZy1pAAWXm9iSYW7/aFXP7UIPdy64YoVuOk+qRa0SqqEmk6pckFSqpvXZJjcCfrKz6Y8VfslAfx1H9jNZEk1qDbX/wYkA/FQP2xYrfb1F2inEiwHmjN2D7iQwpx4lWwdcUZt8LNY1L1i+w0tyneoWsQxT6iZztgCq2cs52wDmcATgyNJ87IPn5jJZNr/3qDwv/6ssKW5UDwgTrIHE5M+fzGQfUiPg69JKqwfPY5zMGzmOfzzhAfT5jUHVkKlQEvTAKYtF40B1jOIDAIGmHjLqDZD7y0U/Y6i7UrYFIImFTf0JZsUpNVqzSuxWL8q3YjzxHrdej8SfHivWrYitbsX7WqIKRoVasX9KKbXjVdzZ+6ZuhexSqNPrdVGlUElZM0VZsQq3YAGrF+lErNkhZsQHVkalQEfTCKEi/0IrRjOEAiq2Ye8ioO0jGitnWA5gV62etGJhb0o5xFzo/t154TiX6t8wklrnqQ8s5k+Ug/x8RBFt5j+RiF8zPkUeABWdXglWsfIsXz4K2HdzareKXrAH/Eh/wK5tTycnDsaKLiA4L+DfEWz34W1KLDh9xeLZLiktECR+aC+vhlVBK5cJ6uI6sJCsxoJJllEeu1uSRq+Fr0ufgOiAApq9W9rPk62j8oSPxa2cTrEX4eLwWYdfwdMexocnhIx3Dd00OT+MnLjvRJ73okz61E5fzSnkZxdrr4sRnFH3SfVlmZPg4qQ2ick3nMMttNtyc/sKa+gvD1x5Fb5HwrgW2sQs3JErCrjcWI/yNxUwLupbeICaIXqGJ6BXp/q5Jf82a+mu+BkrTLKE0mzUrTdXHLejrXVVVqO1tRaDTUDn3ak2C2C0kj6dENJ2jkj0OE9XU3zWdn/yhHYtD++kzQvLHUCzEfdTRij5KaLs1leZ0w9eI/no19dcr2d9Cz6+HOjFXocDbPjlL30fkw7xbXtvYxZa3R/XYHVkH1R+resyC7qeI3rdkiN6vs6P+JAfFvD2KphPd8HYgVvV2C/oemrcUgTqJWd3hxpKqnCzsdZNqBY7FQfRBIpOtuJXk4hb5A3i2elDTGYqDLDUGAQlhTuDZeE5g2/DU5i037ZhPCMxNTF/iHy04WISurQ9cIg8YFHEPGFzmd9NXhF0Zz3+/v4j/94Giyy4GJWhCPyXUa1CTfxyEr8kV61smBsggr8a85D5x+Vg3IVq76fiAuNylU+oauc5HO46NOpXc+vl6dMhcauymqdEdK3mzmBq9BDUiggPqDmrYKhNkqNH9yJ2TTrGB+CqhE8gZ1mhK7dbA1xYo31kj4V4vqJ7yBlnm7dydgqo5C/whmuwLl/ZVO8SzXSKM5+6idFJVQb2xkv/LczHNMqIyvI84Jd1t8eRvVKkhYHhnrOq4Bf4+muHyqiSOi3rJMmP5CCyCxkX66pQyfuCmTklqF99LXDRI7+K7jYsGYxnfRyOjAToyutJUITbqobrq5rfpLcLirMuuhqY1QopAVuhJl9r2+B/3eE65Ec817hg5iVZkERfptc+MOrVY3CzCnjMakDDaiZOGCPE6+WHg31q1nCcpflVr4lc1fG2B0tvVKT7Vlgw78BTxbQppbOpAyW3wNaK/fk39yRS80Npxi0Sc9iXJcJ7ntqPcgL6qxgL/MlVLEKFPAkrf2WI7pk7dVp6sCyBG1aGpwsE2Kt5p2ZIfWwP6FnXwdbWmg7+r4Wv4nS2MIVf8fqyL2y78eETi0xSR+Ela4Rf9+Fk6gqd7FLpbLYwhA+QY9d524V+rdttFwMVtF2sVb7u4qgwVn+Vry/9hJTOib4kToTSwQ5MGdsDXMEhuJNGFOzpgM1dpChRWwdcwSN4y1UctUyOx0kzPYWKEOMvrtRI7om65OLdqgpGhVq1bslp6ywuzF19/c8vv3W3zyi+KVwFhcI61V42I7Wi1dA9aLd2NVkv3UtXSPaojU6Ei6IWzdRof6YCm/ffupPV1BcgUNtuWOqZYNlGyvItr+EuzxenhCHEJwW76UhXimyu+xAexGJt19QErcX9w/CPOQTuupkBiYF71TmmRtWycY4bfyQ+dbryemmin6KsunfazxzYCoo189oOWYGSvZQYTlR42PNWP3LPr43uXG6+nFm0dmhZtsrccNGnqrwm+tkA3sTeJl5WlKzwsK2/mLyuzLfBV1AIuil9VwuR2uoSGV/IOmS6+qq4R3yGD1fDdLCGbXbwgLEoFYV2x0o2eAyUqkO4W3V7xiiKyTmWP5E0lVsWZmDrd4ss95LcAiGskbTdPy216sQLUoVCm4ce3Pm13jMvVLllY4rEMEmNhawBtB2d56lFxu6XRN2NdttJi08oBbo2Vb7aAb3UJ3MYFLrWSSKW3UXFFnaa4qg6+ls7Z6MjZdCp0V2dWzqYy9TmbSrc5G6cygEuv0cqKVpZ4rYQy2F4j+gtp6i8EX5OH3CIUmja2UShVQtNai7zfyX+/bZm60NSqCM0yJl5vg8sJ8iMbgMltieDfIQdt0A7I07+NkAM/fI3ob6um/rbaXuOUe5SeZC1+m5rRfSt72TzuTSKq2MreJEIcsG2X++wwlUf7VdveT/7pd194zl1+VL6ecCuRR1O8RPZ+NI/WiebRImgeLUrl0TpVR6ZCRdALZ59YlEdTTFxHhMs5GpDJo7VLqn5KTA1vEVx6BmTDDLJ9ZZr6K4OvMd/K0JjOsI0di6yT6Qz0szLtyPIdLAa2cTjZHitvsMAfoNIZbThlXVyJ2+7+Stz2WOk7xOkMjB7bJGbE3VNqF+wpPeT569FUOoO9xrRdQsnaWaFvl1Oy9hT65QI3fhn1ve2aVnkRklZ4qUeEzL324ElAfKuATue2aoOMP+tLA6YB04BSgAtUrkiZX+8dteN522v1KSbn8CMSbpr65keEjiE6Y6WfE38HsNPDlkhU+fjE/DbNPyTGVPNbiVjwH1XH7YNE5RGl3MqklX6FvpCB/mIFR+KekopkOjVFMp3wNXlIcdwaIT8V2GEbHS9K/BaQOmInvF20E97uvD04PvAOqi6rVtPytha+hltEr6mHgHqcGJXL0Wj+Xhl+wkb0vTKRo1L8KsNiAFwwHwfEdYHqEVJ9msHyANiVczq6AbfmXpsPIbSTV8Djt8JGiHuvu9grAayft/OJJvV5hfr7iGvliePAxHEhpYI923lrYcRQ5lMthvHRYVR3rOx5CzxABZNdohNL8h8g6oyV5aS4dMRrJgf/yP0y4hLXdrWvg+CC34/TXUK4Oyzh/piCcNtCHyJ0jNL3SNGRI2V8OwXXSeGGTuUcInG9WDvBkQ4iKupMeY1EJx4VdWiKijrJNaFtK/mj8a3kK+TbPjQxNTM6zxX83k/u7nBnxiXujZ1IfQB+42kA2ZXehZU4PKR0i+jV/WePH0tzZ00ihDXpQK9ZOqJuL7qsJc1dhL1gjl+CMeMXF/d6KhfuQD+xEqXqeTvozX/OCJyvdGDLDqq0eZ7Cyf/cnaKoUmMkjAehXp1zqZsDMKiJ69Jk4rrJlQ6uiN3k3R0BheMx1PUrALJVG6Ro8ZcGTAOmAdOApgPSny/lrCrQ/RFQ+efXVN7ph68R/TVp6q8JvuZwW606M0m2sRPfpPVryi364WviZMi45EkPgGH93MY90lL2HQt8kokJYSmNuGa0FS27a7PCq/gzv2r1RaJw61toCBdQioGsnzfzTpQCAlASIsMxtNjHL+bYzdzPjZR93gJ/I3WOIqp0NgB0iqksuY3kg0TjHf8oux9uI1HHSrH+xYfflvN7fsDq+S2oiPo8imgpLqKtQhFtI62hvKVpIyXXto8hf8YGnN7Chk9Kht+mHwx/2mJll8Xb2hLaspyvLX8hwfzW1DHf74b5fiHz20nm03tL6HHBPTzDIGK+tFnYw1fOR8TM9yHM30Mz3xcre1yC+f7UMd8nZH4rQXKfkrkAVKEKdveSgaVPwWfs8Sgae4Qe4yNANKg0ul/J0/EzvB+LZ3hf6Sae4r1wQSEJaz1BDgf5S+g0LD8NXKJgqMWVIH7ZShAf35Z+gqgEgWY+PiWFQ5d7Ur6hsCf1hy73qBy6pDW21TDptrYY+LKd4Ua2qSOQMncStJJxrN9dtOKzhWC8aOUfxQ6rjVwEyq9TbC6dIFE3tSyLqG6gt9JudX4D/WsSbrUtdW61W+hWe9xc7tTLy9XAGJH47Izf3YeB/GTExdhP0J1wfdntJqzsIa9z8lEZkR5qkxxPDXSnLjXQIxSTXjI7hzTiXFfdS4befZBelKXvUVjqSYlJF0gcXfsvpc4bjhckPt7gLi8yD/5LYJXkJ9Tp0S746E8oeL15rZfdEsc20oGctRPlNVGi5ixC1Jwx2a4DuIGT2ILvkapHkzduUgrRDcrKlL54GYW0ldfSKBwFNhcyHonaQgiO2JdnEXm1bol4SLF8zy/h1rrdZaPnJ5PvSof9qdVhbCDILLtoS9UTKy+ViJ86/8gcYxfpGLvJ+KmHzGdFFQq8pKyExHGVdjepsggiMO20wERi5deJ1aLTjVpwP0YKxkV+jpQwoG0pE+t8XKyjQrHmWmgX67IuMt6ji0PbCE/ss9HeOj7vJDTInG1UyEXsIaz6Rvga0V9IU38h+Jo85EYht1oX8H6gPdep3Q/U6uJ+oOsU7wfCWefXxDq/DOsQS2elKPdRVQObNFUNbIKvYZC8Wn5r+r38K/K6Pd8h9LDKXQWdqtguqq3xWlfiDqFOyTuEvhb55l3f/fD7GhR8V6cb37UJCIPH71ZeQj1YFL1DqBO9Q2iQukMoqjoyFSqCXjjr9fhIB9wxBgfc5w5Q7Q6hVNs27gJlgLhDaOEH1BsrHzJqQP2x8ruNGlBXrPy4OOnUSgTP+6hZtJpUbbdOU3/r4GsLVG23TlxLVT6L7reg+YY4xkHuVk7FFgv6DLW9QtxgiV8jtU9p/8lqBIE4Qy5/o/gaqTbuHcUHJebTzguG2qhgqD1Wfn+KL5FSCJQ6Ur6L3JH6S506yGsj3B9La+MvSjpSfSzt9lQeS1OMnQbZ/DaWTT8AKed4dhCyxvHsUALRxbG0qJtjaR1wzHgYf5C6O7ZD8e6ONtgFcZKsnT6WxhmB8xVbBCh3LK3DfixtDcFIL9ciMqTWBkV9l0nxZFixuonrwk1cVJOJo/NwzG4/GBqVbOvRtMMBIPv0Qw7oh9yjHzKiDTL+rC8NmAZMA0oB0nsGeNblwIKvt4n+NmjqbwN8zeEa9uhcjNrGTmx8oYRUvJGMc/m49QfO4vefVHcVycVvJFZxnQX9baqYtxU5+NXK8oXNlXo9WJGL7/ZFhLt91K1nhwQF5ZR0yHDrR+oHWayR8UqvK/Is6J9Qp6dUvtACusRU1cuRrz2x8p/JHflqU91GsnJzd/D7fWEBDnwV46K5RyiaraQNlLcvraTMAqO1l3Qqe7QeB2v1chxsfnftZerYh+0jjfKj3oNkUPQd++jgp1d8RW5K44sUptYuZAh97KOdZsi87clIH/tYtqSPfdx+DY59dCqRW0w2j+cUK4rFxz5ayQBQPkppheMiT8YQQRnqVKPoaUrCqUZjFVULcJC22LDqrj2qtwPYVmqpOvSBR5dRwl/7lOhGSKDtIhKiUHoPUUKRsmWBy/sgRDQSHYyh7raKkKuJLoVwT0pMIuIlYxsBje5bYl+nASJ/M3eHsOLGa1K92kbddhm9NheZ5OCC2+lmPdvpWbnpWyKoAKXTjXRRgtsGNvoJm9OiKf/SYlMZvL+Qpv5C8DV5yBYhizsXsOQ1UqNW8trpouS1xlvJawRKqx7WtUqKSkpSg0R/6zX1t972GqeGqmLU8xe07ic2TL1/8FF5XRglbnDtlNsBpSpeP7Vq+1vf13M5omDLxbEq5xPi6wFXnWM9oEbEN6FebxCteI2iFa8HqIrXQdWRqVAR9ILfkjfgjjE44H53gEzFa+e1NDW8iteKe4l6zoUfUG+s4qRRA+qPVZy5hgMi+tugqb8N8LXUfi0E9CncY6nAFxNu9lg6Y5W/saDJr4oS0RteDoraB+qLYPttQJwhV0h8VbSDWw56SGI+br5zUfGQZ2++jCgHjS7419+uTclhK1Fy2MaWHFo/mXLEoeTPgPPZ4eRP5iuBd+FkTQxfppCx5uVUFDLiWc/NmkrgN8PXiP46NPVn+1aqc48FLrr5eyxtRCzdnvI9FuKEWJumPRbufYfYHksUDo3a529V4N5mYXhOj1HvOrx1LVZVzX+/PUN9Hb5WZR2eYdJBmIXWyohg5zMZs3xa/QgLsIG8EyGVyf20zxA7awBnHxXc7CdqrBjT0ppy09KKm5Y9mkxLq3y1gNJ5iwCiubrOW/jQJ/5UnrhQdCf4ioHx//uIUGU/ZA4TN8QRXZy4aHdz4qIVjpnxxGDMTpMB8iOtohMXe+wnLgKwC8IU7aFPXHBG4HxlD3zbBoYoUAAxXXfaFIoxXYFYxXct6j+AgrNrKpcXz1qNyFHN7/R/X7ymStwagE44gDO2zX48xZ9MSXFH85Jl1H+sYMHuFNKonayHuNPmIHmbes8RRUHtCnLeaidHmy2sxI8jYY1QM5/BEyQwX6TZXlky8YRpb6ziBbEw7WFHliFk3145Ec/gj+o/4ah4Hm77+MScVTB02YUPakWftKNP9lyW8U+Ut0qoykuMSIKYIiASyQAlXZBaz1ph/OjwdLLA6pILegUukbN1eJmAqTV1gdTV1AW819QRxoHqzlNNHRWmcQPEDG9VddlrqLoHv8LitV1uJdZO9dehqT/bmVLFAhVrGTbM9WSVOeLylFeOvyKoKjs/HR7rNdrpYiz5gYiLhrvdjL6XLJOKUvcH97oZfeSajr4djh67o5pjoXtTbqF7cQvdrclCc4mlYdkc5VvF3lRfU7AzlYtmxQ3vA+zOALZoPggph+8LdLP7Au4XzYNuFs29cMz47cSHmMgNmL9eUeTWbV80R2EXTtxeTCdkRuB8xWYn5K4p6LVHmTsIRmr85G2/PqhBwsQp1p6Uq5u4A7iJG9Rk4g6wJm4QpcZBODQmfjkIDRDS3UG2u4NESAQge/RD9umHHNAPGdEGGX/WlwZMA6YB04ALBEjtTnPqFy3vfcCkQrMGTf01wNcWqNCsgZnYoAQhB8nIgCLkIFq6YW0SV55Au0WP4BCFbYOxyucs6AlquhGiAtjbuZc8/NyLtbRRiYtApdROMkBoJZl/QIIZp1HhFp+H2sm9eaPy6xb4WeoYUr+CWtk6xaSH3MqwfTGMK0VvIm5zkDn3iEkvYMgufs9vWYDvjZXjIjooFFF6peBKriOkXHcpHL6KCHN9XaRkRGz6wTkdUnlRfDZaQlt28bXlsgTzB1PHfPE9M11ujn0fIM8dt7HMB6LRrpBUb/PIfNt+LJf575H4HqL4wye7+MVNj0gwP5I65re5YX6bkPmDJPM5NYvASe9R8ArtHpnfTvuEeeY/LWZ+uzuzP78x8+Fra/bb3TC/3SPzIyTz95ILhnatTiHqxSlEY5Wfoq7x6YfN5UfdrmlTFr/Gp5e//dBW5mZTtkxhat0eK3a6aYbMq9Pn5Sp22tRLzCMp39CKpL7EPOKyxDziTicVqsV1XeOzE6sNd1dwIC/basf/Kz5NJRv6FeyqzFeQD8qGP4McrToYq/yW2ANyA32RmzjEyylBYuEkOsQ8tO0SYh0ifnqQ9tOHYpXfk/DTB1Pnpw8J/fQQS8tDQgYcZhsN2VYcTq0/LGsTDrkxQbuJSuOIOFtxwM0FK/QKtY3KJbGntGxrW0xMDqQu0XRQKCaHyDSuimwBGjGCQAtRBPatYukkxGRQnGGkPpmJFzohlgMc2ruZHyO+LC696nIjuPStXp3UrVXd9IeBU/Vdy4W/0qpX9UqrXkgvSnC73EiX1AdZ8TPf1Ofu0Yga+4IvoMOt3C/4Vkl8p7jXTQka/Q3dbuor7n3MQxvDMMHtTd13hvuEgtvPTrdPSKMBtlE/5DojmgOQXpRjZk5B2z52nfgg6wr0e8o69qZ6kpuDTAWVxm4sMLxy0dK6qutQcRUr0C0cBeqLVd1qgTfRH9/m3UlS1WJ9PP5nVOseSl8ilL50qs64lzYZ8zPeaCnKS6gy9nhUxkIvyjjoRhm5Ox/QuBB57G4FY94rNubkQs5mRbkm/TVUvioCaUJdSt3tzkFJ2J2SLzEC2wctoLxH6SPsQj98DYVkquH9UOFRUdkxctI5EnGzQe5ZuwM2MnI2Dat2WTbiF0oSL2blAVLS+qAmsCM7EKtqFacM+sSL8QG+mdkr/tqlBPh2Pvg+cdhzgOedvS00BynBP0itQnvw8tsD9lJh0OgOJjsKHvaJSpAP2st6bdPgOHu5efTyRfyY5UQH2KTsQTXXkanA0NtgL65Y2k3nDrChWBcS3aSib0ky3YUiWyqhiH03iETwIKvfGsExBTvdjfoH2yfKklEaEdD0cG9rqhqTSN15XCFk/MDLpbccsogvve0n7bqf9HrFpJZ2Kixtpdy7FWSX/I3CQhIArPAQqb6Kb+XPiq18vxu20Au3XsrKD9CyfQ1Et18ougNuPCEnJBkgRXeQjEx7JCLEXpei22uJ7gWGOwMS/Yqm6ir6GhBa7IuuNmzE0k1v2PipfDi5YdOnvmETH+od3O2aqr9cgO2a4kW1XcM5sNMH+6b8xYCC+kup1YClVkcVrK842TmAiEs/7Q8GYlVPif3BoBuNoXMH/ZRROUDFj30pqxMs1l7H7NWqMKJ5CNKLEusDhAxa8WpJj4LXEHOcTm/7qVwemd7uVhhlL5H96KbCEdBfhab+KuBrqU33gj6JOKtCUxqpgtVGtp2OidnGjh2bTWayv4yaVMQ6Riln2h+r+t8WdIzaVex1LdoRpSxcfLCRlG33BAyLiPvIiBgtdokS4rwbJV5/6ojX62Yl3OtmydUHyUPtlXWTaXCV+zqk4p6o5XM2K8ym26P8sLd6gHhokApBelExGUhdlHFNjqJEyaMo/aS3GVSIYYGtdR/D3sKPYV9yFcOKpUtrDGvbfEmVEVpc0kXHsK6kazdRzNsPIgXnLoAthZgk+eYbqdtA+uirRWzbTTZMdBux49joKy/wMG4SOA/YDAzy1SgZmVwLgtDHjY7CueJcSz85steglkB2ZP1cexAuJIrh4bz4xfB9RDH8gJo6+tWL4QfwYvg+TcXwA2S4z5gNSl0HIWHlTS91nhpAduqH7PXMU3fffOhDK1b3ozm0Xr70ULc3DVg7Vi/K397UbXNbuBHr5+tLv6n60p86fen3ri99aX0h9KXfYH2x5dkI8jwS3SzxPRwFbVK8+2q5ujYNpl6bBklt8nrZWOP5p24bHbrr+G3js+ef7BzfP3RkZPZhrqm7nivvB2zqq5m33abytjt1vO1eMN72KfGWyJOWa8qTlhPuP1V50nJxnjS8T3UFTuZJ5+PtIQuaPH3RR+VJ8axmt8c1ceaiKmKPCupTU5aYC+OzYa6wvwUCoLaAaTYg3Mc8IHfz/QB39z98t/g+/gFxeSQ/yRQeMaQ8cgDGRETdQV/KzuEtN+wcXpQ8hyexh29ZN7FUH3KTR6SHP0hxcQhVL0SQB2hBHoyFzyxAichyL3nIQ27ykDSNB0gROeAuDzngMg85ADwxeYYFOwzB9ttDRAcR22uci17CbxOXlXch4uanQoN56HeIrWaPmyuWenk0AKMiL6N35jhAy67EvQjMve5XH8xL/h/of3j1eJ/DuXEH0Mst2wy/01qozlF3zrtalvQQy5I+1RBdeVnShy9LejQtS/pohfG40m2glyVd3GWJ7XQPYKTwvF74vaoqCoLsG/lK+oQF/igK7jK+7EpAF48pqbK3YqNuSv/JiowOamEYVS0wAW1fxd9E+ZDEwUGvhc6/XFRlHV0KItgnXFD0yh7n6uJ+jz78SergYAekCXX2WGVOUgdDusTmIOqmjrQLzQBYP1fwbcjnxI6+242j7+FRCIyLUPQeKt/QmbJ8A7EH3yNUtxQYQz8Z3XaRJ157ZFIHxR0KB2ck7qYT3ziynHvjSPifFsONI13QfmAy2OVRBktwGewWymCPmzUuHZBHVG8c6YB9M7e2QtrHZXCLqm8GKGv5vvknYnEacKOutHeMuC5a66ZPmQpPRyJL7mF+su0XEpGL12K5bYaV5A+SJfn9CknkQaEZHCAjF1sdGjdf+TsqcrFt+VOqqTKnCBq52K74i2ts0beo5EdUwc7YEhyYi5S98JS//q72iYudesRnMldyb6eoDogNDcfF7xcKM31Utpeifz99IiNVFei3GbZXE1G9cMhWNuci4UWpTo+lOp+loop9SvE3QMCGK6s6/LtXqsNi1ZFIXdRzlx3Vta7yi/s9hjPdgvwivuyIpmzZcbthy46I6rIjKmHGu1yqjrVeLvowqh3iOLGRe2FV9QZXMtjpOaQmr9YibHsHfZkcxm2xe1vO9503LsDlWKWGOY5ewekbeROd8suxqrdJ5rjoL1p1K7kdCZ21Lscqejd1bec+hQSYbeWImRhZdxfleySJC6A6xVm2eu6VLtV7XWU49nvMcEQp+ndT6Q88wxH1qPBlC36nKp2JjAiulqEUS+VOVSnVsdIiRQ94I/PsG/gbepl2CbaKZq1OLOlNNIhVH2Y2+qzNwOSQbrweH9J3vvjrf352z5YT5x/rnByauHiJLY17Yv/w9Mxk8t4j3i0hGbHqkQR5qu9m85tWMbHjSSDxxLqUqfo0u3cYtLaJ6X+vxreJs55wbg8DtQliohJiRQVcv+tU0SBoyKFRVqx6xprlOD5UH2eo8T6PcGB9seoplmRZaoq/jGU/gHIwLQNOOTGhU+7eskSjnxUNAJUUDrwXP3EfciAhxB61peZTw1+/9Xs/+55YWzx29MAWf/E7ett3p7yjr2f9+0tf+YejF1Le0f8ORW73/e3bG1Le0V++tPeGN1dd9x8qFs0hOflE8UaBmmblqBdvFODFG/maijcKWMOWn/TVDmoUwqExLrcwacKRzgrZzgqJ0qo0YBrQGyA3PvmY5USeYDx3BlQDZDgZ7HCo4wP58DU38ZDjSRB9koU+CaFPstEnOXAKjme5ycIpx5M8Jo6r+b9Z01kuGccdw4OjCiqOQ8+YVCrFceWgIYZYRSCySaRK0BBDDBOI+xnEKtAQQ6wmENki2TBoiCHWEIjs5QzVoCFHJytiNXssnfwszvIaPB6+lwNbE6v+Iit6tfri4Vqn8GcmX/J+7CgzSU9HNzVEUKI4vVz1oKQWD0pqNAUltax01aBBSR0cGkPFOqF3qWM7qyPYkgZMAxoG6FCIWp1WqBaqoKOjimQUkLDe/wd1GEhS1sI4xLXgNVst6OcZt1IDh+l8WCsRyXHsTK1cJFe7UETPJ1ak3jvKT3IQIVE9YYoPMUQHtrieOQfSAN8jr/apB43iJ0acr9h6soGJhfRldLKokEK1Y8S0PlZTZYH/F0OUCkpMayAznA/zYTQgL8P5SQZhtobchbHJOTvduliNX7wLk4/Q0lIU3pGm/FhNlngPpo4IPn0KglxHMSYfChiC6SPsx253tK+1zYlH+wJqPzETNsczpMw59gK4RMGzPlXOZ0Vw2eB4VgwXAI5nJVA9HM9KCZdTZlOX+ALzI+r6TDideW2uEctgAxmiIo0a2UYNcFROGQR2sJF52EBJb6OE91uOUKcxMY+DHOosj9VcJ1Fw0OBx/zEH339cfl60/7iCJfNyIW+uYxutgDRhVO06CQPBMTqNQgPRQBqIRtgty5+GWM0GykDUQppQEY7KnCqSc2K8LwwILP9LeMFMBatfARGw4ZLUFHv2m8SuDott6yhXNx/bvlZsZurduDqObaqHoyKo30CFdLWoutel7hOu9UJ1507XqylmVKMR0otSq3qFnJmU4tSA1dWCLAYOoDE0J+FUk/KEUw2ecKrQlHCiWONjl3q0JIgW+oqrzjRgGtAwQDwf7d0K1RArg0xmLV9zHJtdBeKUM6nYf34n4gcW9Bi1kq9JYVLeRaVAOimfBkwDLsIcumbb6SKdW7Go0rkcF/CQavonU7jo+6IF/k6GKJmQsaSHIHO9Lqysy3SubZuEm1J8t/s1bq1gjfteQ9K5NRILtGuSzn2Sytbkw+aLI52bSaRzK4h0bg1I57orDWbqpAA5mEopQA6mVgqQg6mWAuTA66VK2HopQA6mYgqQI1kzpVDe7IcTw2eaQ5VFE5QNERTKZe0zYADOkWyCsnmJqlxls05n9f/RVVa/wmMqKTM1Wf0a3Vn9r6ez+q80kPAT1ySr/133Wf0ad3PKRJOTmRAwGYYRwZBKvJMJEVx53UxhxPMTccRT4SbimU8g/NSQiMe+9YJXx9Sg6l6buqx+nVDd68mlnKudj0xWNeicfw3sGxMTl4pTAVJYHs+5PPyF9bv/Y98v6j2ccwkR2atsNa5/Vj17lY1nr0KaslfZLJtCYCXt7DZHrdvPYN3msN3mwHkzHeeq3r7P7AgBdOzMD2k8bXX/rIUriNUWECFsPqtFecK0TR5LpTwizXENAPN5VVaAaXFdrvVT6vNI9CYhQ7ewywpcMxWFpVtdM3NxzczRpJm5PBXB8sp5cGg4H+/WLRhzxgOO6gac0g140ngaTugGnNYNOKYbcMj4Kc8YP8J7jNdl7Vw+brzqzRrPZe2CfcZ4OTylG/A+4zXFfPOlfcpndQMe1g14znganjReDs2PYKeNn7J2rzeiG3AyHXAuAU2ZTbtR86ZsfsBpvoE9ZbyBvcd4GpofH9619OLDE8Ybh1PG03DWeNUznyna7eGY8cGS+XI4abwcLiUnZf3M1u+mnHUdoIxOZSs8m+jNtk/vrNsG/fnipd3YVXGc/cs8tS1Ev/r+ZR6+f5mraf+Sw7zcJDnx7fk8stw3W2knGucegPTrh0Srd/zkpi7SKEBS8gM754cxcnTsSgnLw8/MTI+MjkzP7Rg+PHO0bfzohQuXzz/dPnxifHJuHmNyeGoq0XDH+ffvHh6a2DY5OTQHJuHvQt7fz38/kHn5/BMdIycmRofhfv75x6++eJH3sIv54yuTcza5qjdsnSgo6w0q0NlPsC4IXyP6y9DUH121jBuGgJputqgbhgBuGPyaDEOApBVe/xxg6WjZ52OajLr1bFw34IRuwFndgEO6Ae/RDTijG3BaN+CcbsBTugFHjOfynPGCfdx4wR5detZm2nimmC/Yp40Xm1HjaXjSeBegPRQ5Y7yTmlt6crgE7WEKvB72KQHrmH3dRnSdgxyUAkdPeWefA7G691rgW9jzrvjq0Ke2QFunvjr04avDDE2rQ85h8wx0dWi71pNho3Xe6CjWWSbbWSYhF5lCVXALeFo34LRuwOO6AYd0A57RDTiiG3BSN+DE0uPytPG6rH2E9+gGHNUNOGu82JwwXmxOGU/DEeNHOGc8l+eWnpMaMp4pJ4yf8lndgId1A55LRw7mGYcUOHrn7ii4LCmksKbzEb2F4GvM3Uz4+jdTbQnqU1//ZuLrX5+m9W8mSSv8hivOJR7WrmqfQmdgsS2/1w1vadFajpC5Fnl/N1K+kKFejrBWpRwhg/o0JqoAip/GDMHX8AvPQqhydFoXm+DaGtSkrUH4GtFfhqb+bOkojN5o6i2OO8z9BGrd+8EdRc6SLvjBb35JF2WbAikv6Qqk3jYFVGxTEA6NIzXxdoNYZ0G2s6CcGGbqh/TubTg3CcZ7XkZQzocmoPejVxX18mVnmVN2lsG5xOW+/kX7rVfgnWX09+txxfdrUny/hOL74p9CfSS6OUmO+I9+js77rtzB5ZW1a1DWcsQmqIqtbAiCpCaiRiIoeavWI9vflf26/qEN7pQMaZRF1895vP1qNXqVW5b9iZ+lYvyJ7d7PxPVtz7Mjy1IdmQoVQS+4Qe1zx5jEHWlAVKB5uKre8beDSUpypTPrCXCBlrMN2PNKvB6r+1drx+u7TrpbXSXe+CnyhvJN4YiTzXY2yEw2sPWck3zB9vfc5NC4HeRxyGNhZTPkyYvVPedgQCjZLCEIzr5D/L5znJNDy48TgM4GoPQ4wZEfYDf1KUY9GfwbbhNigvIlYKd/COFLtoDxORy+WFhZDF9yYnW/whQj5ORLdvIVbt8h5+RCAr4wUprN8uXnCXp6vEjxYzese01+T9MbxRcpeuwo/4ufuPOHv5to8nBjo9+1OfARK+gBz47cR/mK+XBFIipXiDIUHeQf1KOMEB5JBDQtN0KswwoQQYHifZz/ff6p20aH7jp+2/js+Sc7x/cPHRmZfRhZKT/FWZlno1FEJrtEZ+OL7IQIN0Q9V3L8t2fp/C/x9yTqC9DgTfw9CV6hS1asvtQCL6byKn4snZEFVfXpq6N7ZWl+58RlKEftM6PcRll4PNoxcxgNv9AFZrbs9ctBDj2yY/Vhy66hCf9sd1VF8+C14guYc0iNQxpxL6oE4yLO4uUyWRYwjex4lgXlazbK1wy8Uc4VzibNOmiNNnkl8OCOP0d6cCEyeLfZBfklktSFyllAgZNe83GPp3vcpTMy0HRGl3rSwvrYdt3L8kkL6jsMXkIHVA4CdjnIhD/RRkF7I+pzHgGd8U4AUofQB2xKGaRoZxHFjN7HTmVAMnV2ZIF1e3a7NXgG39La7apu10e7mXm3u9sC3ynldtH4LOEk44PugYNAS3EZzxpKmjHML/H8qtUIAjHTzYnVtwOvitmfJEnuRKcr9rzZnAGEYvUnLPD9DL1DNoNGHVvHXVp83WobR8LBcSnSZw2om+ozk/hqTrYFMYASdQC8kwJHSUSDme6iQY6ug4ER/c27w73jyAUAOVeS0c44B3z5KAf59luO+1AoBw6boIQtrsmFo3cRdIVIf5ItuEFBPurxoVGPjxf1bKdUjgwUMbkMkVPJUVjOZqFTsdE1aZo85lf+9Ed/+Je3nwm/kPJEzuvec+qBvBue+UjKO3o69xu3ffo9oQMqGSOnPNhO/2NyCDaWoHu92kkv38++yXNiZhk7L8IgySxRbbl5dib7+TN5lyWDb6HMYAalaz7VJS05qPkF7dvAghbf4PH2rR4//q2ebCzND0wIdezI1XI6yNqeXGhv5Xfug8KoK4vMZth2FblC807q01wZpGvwkdY2E3aNJ217LaH9qOdIPQsNcpYRnwHMIK6z8BEfSswkPpToV18pB63t/Y8RK2XCmmRQSu+jY1pMM4OmauZuVqRySIGTFuUsYjG5mwx2kzHAR4U7IAF2DflxdE8YMb0ByvQGY/UxC/qTDPcDlGgEJYyVYpmOLWnB5J7wPZIs1YyX8h5Jlly1hZc9kiy1PZKQqo6hq3iKRcmNlWcj41PDI0fGx7ZEhidPzEzPvzk+dgmJc6EG+ymxyqCXfqQ5orQ3QGpvkHRE9GI1hO1gSIVsqJJC4vM88P9jqelztAWXZ3OWMIDh2lYwaII9Oa4u7st1E2Zxr6cjRglcQB6+aMy1L6nJqUl5Sa/xawD3kjlCL5nHC0VFhOXcmpdHqpjtg3HunWsOqZ5BSff6nIJTCqCrd5tmJp2wx7Xua1e9o6rmf92bl/JFdcBf81eNzxxqU1pUO7JXMAoQZa+Y7Y54Nx0qJQ9Z3lybN3ceWBB3ji80sniHCOLt+hQSUiEizkolILa48l7a4iJsI0pbslJX2pKF8jkbDg2/rKRPwYtL3X5iMOBTMhG/960+22plgTZeswhl8N4RuMAG/9Sx927AYQRsk91anTaEVRODfjox2LDNguZ95jwz1mB9nb2hhTUwijfZZKPZh2VEhidIZHgCxNdds4ibk5nzYAXJjTjlnFGGVZ92lMoZWWR0cyzOx0uqZ1BJdV+sYYPn8xpUUj3zj0oePHD9bxQyhbIngdhVFb2Ath/AImwm19BBnqL2qd/NOdzdFAUyBVUTuFGDHfHM2g5L3fYrrL3FB3rpHQc/XcDn9RPxuazgY+qSR6hLPqEuBYS6FBLmswhOWVmVcpQM6H6F0MiPrjvt5RGWe3WkEJQr17lzDzy6Y+QknLs/ic8/juF3DiRb1W7zj20QxUGBZFfs8Y2Gu7GzGI66JtFZjFz0ZEo2dkAkVxUp5EDKco2UjZ4ZylIfFAYVdH1qpaH32u3YN5z4Y9mxb3iLRc97jdmxbziZ3rFnYjuDduwbzpuyY9/w7vSOvXocnt6x57HmGu/YN7zbxY59w/s079g3fMKCfiy9Y5/esXewKL1jz+jvNdmxb/iUpabfSO/Yp3fs0zv2Qvf6jZTt2De87/8H9S3rTMMBBQA=",
|
|
4342
|
-
"debug_symbols": "tb3fjuU8cmf7Ln3ti80/wSD9KoOB0ePpGTTQaA967AMcGH73s/WTItauqpMsZe78bjpX15cZS6IYlESFqP/80//8y//4j//9L3/9+//6t//7p3/+b//5p//xj7/+7W9//d//8rd/+9c///tf/+3vz3/9zz89jv/x9qd/bv/0J+9/+md7/rDzxzh/+Pljnj+WfszH+aOcP+r5o50/zijzjDLPKPOMMs8o84yyzijrjLLOKOuMss4o64yyzijrjLLOKOuMUh6P62e5ftbrZ7t+9uunXT/H9dOvn/P6ecUrV7xyxStXvHLFK1e8csUrV7xyxStXvHLFq1e8esWrV7x6xatXvHrFq1e8esWrV7x6xWtXvHbFa1e8dsVrV7x2xWvPeH789OvnvH6u82d/xiuPA0pADXiGLO2AZ8yiX7aAEeABM2BdYEfkeUAJqAEtoAdYwAjwgBmwLhgReUTkcUReB7SAHnBEPlpijAAPeEaugnWBPwJKQA1oAT3AAkaAB0Rkj8gzIh9pU4/2ORLnhBbQAyxgBHjADFgXHIl0QkReEXlF5BWRV0ReEXlF5BWR1xW5Ph4BJaAGtIAeYAEj4Ii8DpgB64Ijy04oATWgBfQACxgBEblE5BKRa0SuEblG5BqRa0SuEblG5BqRa0SuEblF5BaRW0RuEblF5BaRW0RuEblF5BaRe0TuEblH5B6Re0TuEblH5B6Re0TuEdkiskVki8gWkS0iW0S2iGwR2SKyReQRkUdEHhF5ROQRkUdEHhH5yMFWD5gB64IjB08oATWgBfQACxgBEdkjskfkIwebHVACasAzcn8c0AMsYAR4wAxYFxw5eEIJqAEReUXkFZHXNW7U5QEz4Bo32uMRUAJqQAvoARYwAjxgBhzb/BzV25GDJ5SAGtACeoAFjAAPmAERuUbkGpFrRD5ysPcDeoAFjAAPmAHrgiMHTygBNSAit4jcIvKRg90P8IAZcJxWyxOOHDyhBNSAFtADLGAEeMAMiMgWkS0iW0S2iGwR2SKyRWSLyBaRLSKPiDwi8ojIIyKPiDwi8ojIIyKPiDwiskdkj8gekT0ie0T2iOwR2SOyR2SPyDMiz4g8I/KMyDMiz4g8I/KMyDMiz4i8IvKKyCsir4i8IvKKyCsir4i8IvK6IvfHI6AE1IAW0AMsYAR4wAyIyCUil4hcInKJyCUil4hcInKJyCUil4hcI3KNyDUi14hcI3KNyDUi14hcI3KNyC0it4jcInKLyC0it4jcInKLyC0iRw72yMEeOdgjB7tysB3QAyxgBHjADFgXKAcFJaAGRGSLyBaRLSJbRLaIbBF5ROQRkUdEHhF5ROQRkUdEHhF5ROQRkT0ie0T2iOwR2SOyR2SPyB6RPSJ7RJ4ReUbkGZFnRJ4ReUbkGZFnRJ4ReUbkFZFXRF4ReUXkFZFXRF4ReUXkFZHXFdkej4ASUANaQA+wgBHgATMgIpeIXCJyicglIpeIXCJyicglIpeIXCJyjcg1IteIXCNyjcg1IteIXCNyjcg1IreI3CJyi8gtIreI3CJyi8gtIreI3CJyj8g9IveIHDlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWjKwXlACagBLaAHWMAI8IAZsC6YEXlG5BmRZ0SeEXlG5BmRZ0SeEXlG5BWRV0ReEXlF5BWRjxwcjwNGgAfMgHXCOHLwhBJQA1pAD7CAEeABR+R2wLrgyMETSkANaAE9wAJGgAdE5BKRa0SuEblG5BqRa0SuEblG5BqRa0SuEblF5BaRW0RuEblF5BaRW0RuEblF5BaRe0TuEblH5B6Re0TuEblH5B6Re0TuEdkiskVki8gWkS0iW0S2iGwR2SKyReQRkUdEHhF5ROQRkUdEHhF5ROQRkUdE9ojsEdkjskdkj8gekT0ie0T2iOwReUbkGZFnRJ4ReUbkGZFnRJ4ReUbkGZFXRF4ReUXkFZFXRF4ReUXkFZFXRF5XZH88AkpADWgBPcACRoAHzICIHDnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnokYMeOeiRgx456JGDHjnoysFxwAxYFygHBSWgBrSAHmABIyAiz4g8I7JysBxQAmpAC+gBFjACPGAGrBPm4xFQAmpAC+gBFjACPGAGROQSkUtELhG5ROQSkUtELhG5ROQSkUtErhG5RuQakWtErhG5RuQakWtErhG5RuQWkVtEbhG5ReQWkVtEbhG5ReQWkVtE7hG5R+QekXtE7hG5R+QekXtE7hG5R2SLyBaRLSJbRLaIbBHZIrJFZIvIFpFHRB4ReUTkEZFHRB4ReUTkEZFHRB4R2SOyR2SPyB6RPSJ7RPaI7BHZI7JH5BmRZ0RWDvoBLaAHHJHXASPAA2bAukA5KCgBNaAF9ICIvCLyisgrIq8r8no8AkpADWgBPcACRoAHzICIXCJyicglIpeIXCJyicglIpeIXCJyichHDvrjgBJQA56RvRzQAyzgeILXDvCAGXA8xOvHY9NHQAmoAS2gB1jACPCAGRCRe0TuEblH5B6Re0TuEblH5B6Re0TuEdkiskVki8gWkS0iW0S2iGwR2SKyReQRkUdEHhF5ROQRkUdEHhF5ROQRkUdE9ojsEdkjskdkj8gekT0ie0T2iOwReUbkGZFnRJ4ReUbkGZFnRJ4R+chBHwesC44cPOGIfPTDIwdPaAE9wAJGgAfMgHXC89n7I6kk1aSW1JMsaSR50kxKR0lHSUdJR0lHSUdJR0lHSUdJR0lHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR09HT0dPR09HT0dPR09HT0dPR0+HpcPSYemwdFg6LB2WDkuHpcPSMdIx0jHSMdIx0jHSMdIx0jHSMdLh6fB0eDo8HZ4OT4enw9Ph6fB0zHTMdMx0zHTMdMx0zHTMdMx0zHSsdKx0rHSsdKx0rHSsdKx0rHRknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5zTyvmec187xmntfM85p5XjPPa+Z5zTyvmec187xmntfM85p5XjPPa+Z5zTyvmec187xmntfM85p5XjPPa+Z5zTyvmec187xmntfM85p5XjPPa+Z5zTyvmec187xmntfM85p5XjPPa+Z5zTyvmec187xmntfM85p5XjPPa+Z5zTyvmec187xmntfM85p5XjPPa+Z5zTyvmec181y1QrMedOT5RSWpJrWknmRJI8mTZlI6PB2eDk+Hp8PT4enwdHg6PB2ejpmOmY6ZjpmOI89nE1nSSPKkmbSCjjy/qCTVpJaUjpWOlY6VjpWOFQ4VFV1UkmpSS+pJljSSPGkmpaOko6SjpKOko6SjpKOko6SjpKOko6ajpqOmo6ajpqOmo6ajpqOmo6ajpaOlo6WjpaOlo6WjpaOlo6WjpaOno6ejp6Ono6ejp6Ono6ejp6Onw9Jh6bB0WDosHZYOS4elw9KhPD9rjR9JJelwTFFL6kmWNJI8aSatIOX5SSUpHZ4OT4enw9Ph6fB0eDpmOmY6ZjpmOmY6ZjpmOmY6ZjpmOlY6VjpWOlY6VjpWOlY6VjpWOlY4VLh0UUmqSS2pJ1nSSPKkmZSOko6SjpKOko6SjpKOko6SjpKOko6ajpqOmo6ajpqOmo6ajpqOmo6ajpaOlo6WjpaOlo6WjpaOlo6WjpaOno6ejp6Ono6ejp6Ono6ejp6Ong5Lh6XD0mHpsHRYOiwdlg5Lh6VjpGOkI/O8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzXLVbqxx05PlFJakmtaSeZEkjyZNmUjo8HZ4OT4enw9Ph6fB0eDo8HZ6OmY6ZjiPPVxe1pJ50OIZoJHnSTFpBR55fVJJqUkvqSelY6VjpWOlY4VCR10UlqSa1pJ5kSSPJk2ZSOko6SjpKOko6SjpKOko6SjpKOko6ajpqOmo6ajpqOmo6ajpqOmo6ajpaOlo6WjpaOlo6WjpaOlo6WjpaOno6ejp6Ono6ejp6Ono6ejp6Ono6LB2WDkuHpcPSYemwdFg6LB2WjpGOkY6RjpGOkY6RjpGOkY6RjpEOT4enw9Ph6fB0eDqU5y7ypJm0gpTnJ5WkmtSSepIlpWOmY6ZjpmOlY6VjpWOlY6VjpWOlY6VjpWOFQ4VkF5WkmtSSepIljSRPmknpKOko6SjpKOko6SjpKOko6SjpKOmo6ajpqOmo6ajpqOmo6ajpqOmo6WjpaOlo6WjpaOlo6WjpUJ4v0UxaQefL8FVYwAo2sIMGDtDBCa5Ew2bYDJthM2yGzbAZNsNm2Aa2gW1gG9gGtoFtYBvYBraBzbE5Nsfm2BybY3Nsjs2xObaJbWKb2Ca2iW1im9gmtoltYlvYFraFbWFb2Ba2hW1hW9hW2lToFljACjawgwYO0MEJYivYCraCrWAr2Aq2gq1gK9gKtoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYWvYGraGrWFr2Bo2xpLFWLIYSxZjyWIsWYwli7FkMZYsxpLFWLIYSxZjyWIsWYwli7FkMZYsxpLFWLIYSxZjyWIsWYwli7FkMZYsxpLFWLIYSxZjyWIsWYwli7FkMZYsxpLFWLIYSxZjyWIsWYwli7FkMZYsxpLFWLIYSxZjyWIsWYwli7FkMZYsxpLFWLIYSxZjyWIsWYwli7FkMZYsxpLFWLIYS1aOJfWRY0l95FhSHzmW1EeOJfWRY0l95FhSHzmW1EeOJfWRY0l9PLAVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNW8fWsXVsHVvH1rF1bB1bx9axGTbDZtgMm2EzbIbNsBk2wzawDWwD28A2sA1sA9vANrANbI7NsTk2x+bYHJtjc2yOzbFNbBPbxDaxTWwT28Q2sU1sE9vCtrAtbAvbwrawLWwL28LGWFIYSwpjSWEsKYwlhbGkMJYUxpLCWFIYSwpjSWEsKedYYsIKNrCDBg7QwQmuxHMsORFbxVaxnWPJQ2jgAB2c4Eo8x5ITC1jBBmJr2Bq2hq1ha9g6to6tY+vYOraOrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBm2gW1gG9gGtoFtYBvYBraBbWBzbI7NsTk2x+bYHNs5lrhwgivxHEtOLGAFG9hBAweIbWKb2DSWFOWbxpILK3jYyhB20MABOjjBFai6w8ACVrCBh612oYEDdHCCK1FjyYUFrGADsRVsBZvGEi13pkrEwJWosaROYQEr2MAOGjhABye4Ehu2hq1ha9gatoatYWvYGraGrWPr2Dq2jq1j69g6to6tY+vYDJthM2yGzbAZNsNm2AybYRvYBraBbWAb2Aa2gW1gG9gGNsfm2BybY3Nsjs2xOTbH5tgmtoltYpvYJraJbWKb2Ca2iW1hW9gWtoVtYVvYFraFbWFbaVNtY2ABK9jADho4QAcniK1gK9gKtoJNY0nrQgNHopLBRIdXC9Opbu95VhcWsIIN7KCBA3RwgitxYBvYBraBbWAb2Aa2gW1gG9gcm2NzbI7NsTk2x+bYHJtjm9gmtoltYpvYJraJbWKb2Ca2hW1hW9gWtoVtYVvYFraFbaVNlX6BBazgYdOqg6r2CzRwgA5O8LD1cqB6/YUFrGADO2jgAB2cILaKTWfQXoUVlK0JO2jgAB2c4ErUGbQPYQErKNsUdtBApbG2V2fQCye4EnUGvbCAh820bzqDXthBAwfo4ARXosaSCwuIzbBpLDE1icaSCweoNlsHatSwLlQENZTGBzt/wcABOjjBlajxYaj3aXy4sIIN7KCBA3RwgitxYpvYND4MHRaNDxfKpj3W+HDhAB2c4ErU+DBMWMAKNrCDBg7QwQmuQFUIBhZQtiFsoGwuNHCADh624zX1qlLBCzU+XFjACjbwsHkVGjhABye4EjU+XFjACjYQW8Wm8eF4o76qeDBwgmrJo0+qfjCwgANUhOMYqw7weWcn1OZMYQM7aOAAj2BTG6mUvnAlnqtsn1jACh62qb04V9s+0cABOjjBlXiuvH1iASuIbWBT+k81idL/QgdlU59U+p+o9L9QNrWk0n+qdZT+6yHsoIEDdHAmKtGXNlKJfmEDO2jgSFQWLiWOsvBCKY7tValeOZ4vV9XqBTawgwaORC2ArWkCVdgFOjjBlailsC8sYAUb2EFsFVvFVrFVbA2blsN+FKEiVKEidOEEV6KWwdakmsrpAivYwA4aqLjHAVCxXNVchqrlatGWadHrCzuoCGpqLX19oYMTXIlaAvvCw1a0x1oG+0LZtPNaCvtCA4+4xxL7VUVxz9kGYQW1x1OoCNpNLTx/4QAdVFy1gxagP1FL0F8om1pHy9Bf2EBsE9vENrFpSfoLVx6LxdFcHM3F0VwczcXR1FLYOoSqgjsPocrgzoOlOrjABvY4FiqFCxyggxPMo6l6uPO4qSAusMbBUklcYAc9DqGq3c7jpnK3wBqHUAVvZ0Op4i3QwAF6HCxVvQXm0VTd23mwVPgWWEFsDVvD1rC1PJqqKqtFTaJkuNDBY3OqWkfJcKKS4cICVrCBHTRwgIdN66CrxCxwJeo7DRcWsIKyqaGUOBcaOEAHJ7gSlTgXFrCC2CY2JY4mAVV0FuigbOoaSpwTlTgXyqZWV+Jc2MAOHramZNAq8k0tqXXkhSo2CyzgEbc14RFXMxEqOKvnwvhKpwsH6KBsQ7gSlU4XFlC2KTwU5yr6Or/pBk8VZ1U3Yio5q/38swmuROXbhQWsYANlc6GBh023XCo+C5zgSlS+XVjAw6YbJpWgBXbQwAE6OMGVqHPhhQXE1rHpXKh7MlWiBQ5QNh1YnSEvXIn6TIRu2lSJVk1HSOfNCxvYQQMHKNsSTnAlaqi4sIAVbGAHDRwgtoFtYHNsjs2xOTYNFbrBUyVa4ADVJ7WbGiouXIkaKi4sYAUP29Bx01BxoYEDdHCCK1GDwtAx1qBwYQcNHKCDE1yBqjkLLGAFG9hBAwfo4ASxFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDVvH1rF1bB1bx9axdWwdW8fWsRk2w2bYDJthM2yGzbAZNsM2sA1sA9vANrANbAPbwDawDWyOzbE5Nsfm2BybY3Nsjs2xTWwT28Q2sU1sE9vENrFNbBPbwrawMZYsxpLFWLIYSxZjyWIsWYwlK8eS9sixpD1yLGmPHEvaI8eS9sixpD1yLGmPcyw5P4bj4Ew8B5AqLGAFG9hBAwfo4ARXYsVWsVVsFVvFVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA1bx9axdWwdW8fWsXVsHVvH1rEZNsNm2AybYTNshs2wGTbDNrANbAPbwDawDWwD28A2sA1sjs2xOTbH5tgcm2NzbI7NsU1sE9vENrFNbBPbxDaxTWwT28K2sC1sC9vCtrAtbAvbwrbSVh4PsIAVbGAHDRyggxPExlhSGEsKY0lhLCmMJYWxpJxjyRQ6OMHDdqz62lRoFlhA2ZawgR00cIAOHrZj6rqp0OxCjSUXyqbt1VhyYQM7aOAAD5ubcIIrUWPJsfBoU6FZYAUbqLguVAQ1lMaHCwt4RJhqKI0PF3bw2N5ZhAN0cIKHbWqHND5cWMAKKq6aTzl/TF2389uRJyrnL9T2SqGcv7CBHTRwgA7KpkZVzp+onL+wgBVsYAcNHKCD2Ca2hW1hW9gWNuX81IFVdk8dWGX3hSvw/MbkhQWsYAM7aOAAHZwgtoKtYCvYCraCrWAr2Aq2gq1gq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWHr2Dq2jq1j69g6to6tY+vYOjbDZtgMm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoHNsTk2x+bYHJtjc2yOzbE5toltYpvYJraJbWKb2Ca2iW1iW9gWtoVtYVvYFraFjbGkMpZUxpLGWNIYSxpjSWMsaYwl51czjweK7fxu5oUOTnAlnmPJiQWsYAM7eNiOpQlaO79ne6KDsi3hSjzHkhMLWMEGdtDAATqIrWI7v3XbhAWs4NPWjqd9TQvfBRo4DtQOnd+51Z+d37WtwgYqggkNHKCDE1yJx/jQjqdGTUVygRVsYAcNHKCDE1yJA9vANmRTjxoN7KBs6gRjgA7KpgOgr+GeqO/hXljAw1bU1PoqblFL6iu4RU2t7+BeOMGVqK/hFjWfvodbtBf6Im7R5kzFle0YCQINHOBhq9qcYyQIXInHSBB42Kq290j/Z88VHoqqz7Ue6d+qNudI/1alWA5OcAWqBi6wgBU8bMcjkqYauMAR3bOfX6w+cYLZf3t5gAWsYAM7aCC2gq1gK9gqtiPn2/ER46bCt8AGaofO3zVwgA5OcCUeOR9YwAo2EFvDppw/HvQ0Fb4FTnAl9gdYQNlc2MAOGjhABye4EjU+XFhAbIZN48PxjKqp8C1wgIetq+9ofDieXDWVw12o8aHrsGh8uPCw6SPIKpIL7KCBA3RwgitR48OFBcTm2BybY3Nsjs2xObaJbWKb2Ca2iW1im9gmtoltYlvYFraFbWFb2Ba2hW1hW9hW2lQkF1jACjawgwYO0EHZunAllgdYQJ1FHsIGdtDAATo4wZVYH6D2woR5llbhWzseljYVvgWuRI0PFxawgg1UO7iQ9u3scWePlfMXNlDtO4UGDtDBiQKbcTSNo2kcTeNoGkdTOX9ug3L+Qgc5mmfOaxvOnD+xgNjIeSPnjZw3ct7IeSPnbdB3nJZ0WtJpyTPntQ1OSzotSc4bOW/kvJHzRs4bOW/kvE2O25nzJ9KSk5acHLcz50+kJcl5I+eNnDdy3sh5I+eNnDdy3hbHbWVLjscDLGAFZVvCDh42ewgH6OAED9vxJL5pcb3AAlawgR00cICyaSOV8xfq+kGoKwVloUr9nv1V2EEDB5hHaNQJ5hEa7QEWsIINzCOk9fUCB+jgBLP3jf4AC1hB7cUQDtBBtY7aQeODacs0PlxYwAo2sIMGDtATz9kDic/ZgxMr2MAOGjhABye4Eh2bY3Nsjs2xOTbH5tgcm2Ob2Ca2iW1im9gmtoltYpvYJraFbWFb2BY25hzHwrawLWwL20rbWW54YQEr2MAOGjhAByeIrWAr2Aq2gq1gK9gKtoKtYCvYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9g6to6tY+vYOraOrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBk2xhJnLHHGEmcsccYSZyxxxhJnLHHGEmcsccYSZyxxxhJnLHHGEmcsccYSZyxxxhJnLHHGEmcsccYSZyxxxhJnLHHGEmcsccYSZyxxxhJnLHHGEmcsccYSZyxxxhJnLHHGEmcsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsUdllO2oim8ouAwfo4ARXou5QLixgBRuIzbE5Nsfm2BzbxDaxTWwT2zmWNOFhO17zayq7DHRwgitRdygXFvCwqQRAxZiBHZRNYt2hXOigbEW4AlWMGVhAHbcubGAHDRyggxPMZ9hnMeaFBdTTahdqL85/HaCDE1yJmn+4sIBqsyFsYAdlk1h3KBc6KJsJV6LuUC4soJ7ET2EDO2jgAB2cYNYpnGWXFxZQe3GigQPUXizhBFei7lBUEqICy8CjzVQYoALLwA4eNhVpqMAy0MEJrkTNYFxYQNmasIEdNHCADur1FR1uXVXoaclZSllObGAHDRyggxPUazHqD+dLTicWsIJ67ejEDho4QAcnuBLPl5xOLCBHfnHkF0d+ceQXR37Fke8qmtTh7iqaDIwj31U0GdjBOPJdRZOBDk5wJZYHWMA48l31k4EdNHCADsaR72el5HHk+1kpWU5sYAcNHKCDE4wj3x/5QlR/5AtR/ZEvRPWzUvJxYgcNHKCDE1yJ/QEWUK2jPVbOXzhAB3UsTLgSz5w/sYB6iUyHRdcEF3bQwAE6OMGVeL7CeKKOsXrfmd0nGjhAByd47MVUT9XZ/8ICVrCBHTRwgA5OENvEprP/VDLo7H9hA2XTHuvsf+EAZdMR0tl/6gDo7D91jHX2v7CAFWxgB2WbwgE6OMEVqOrHwAJWsIEdNHCADk4QW8FWsGkkON6X7qp+DOzgYTvmHLuqHwMdnOBK1DXBhYdtmbCCDeyggQN0cIIrUdcEF2Jr2DRreby+3VX9GGigbGqSY3zox4OTrurHwJV4jA+BBaxgAzto4DiwCh2UrQlXoj3AAsqmTbcGdtDAATo4wZU4ZHNhAWVT64wGdtDAAUqxhCvRH2ABK3goiprkGEACDRyggxM8bEUNdQwggQWsYAM7aOAAHZwgtoVtyaYMWBVsoGzqnsvAAcqmA7BkU6Mu2Y6GUoFlYAEr2MAO6qJXNJNWkO4STipJNejI4H7UenRVOAZ28DhbmWgkedJMWkHn25ciRSzCoxmOQpKuesV2/veZtILORwiiklSTWlJPsiRJmtDBo63r+QsrUWl4oTZTdqXWUc7SVXoYqEIFkQKo5ZRZFxawgg3s0SQjm3Nkc45szpHNObI5lUhnIyplzkZUyhxvHnfVEQZqV9UplDInKmWajqZSRjutjDmpJfUkSxpJR8SmDVECNG2IEkA7qf5/kiUdf602VOc/aSati1QOeFFJkqQJG3hYdLhVDBg4QG3m0XQq8OtNwUoDjwjnf7doGNX3BTo4QYU9dkr1fYEFrNHg7cykEzuIrWKr2Cq2iq1ha9gatoatYWvYGraGrWHTufDEs9ZHlJ1apYCBDeygJeo81bQJSqYLHVT9lGgF6dr2pJJUk1pST7KkkeRJ6Rjp8HR4OjwdOkcdJUFdq9cFGqg8UMso4S48GrGr5ZRwJyrhLixgBRvYQdnUR8+sO9FB2dTLlYwn6hx1oWw6DkrRCxuoyj2RJY0kT5pJ6yJV5/XjSXHXWnT9eLreVZLXj4fnXSV5gRNcicepqJuCHeeiwAo2sIMqoxFJ1oQOTlCyI7lVkRdYQMlc2EDJtGvK0gsHqOss0UxaQUrRk0pSTVJENZZybpz/qrHv6FqqrwssYAWPLR3aQSXdhQYO0EFluGgF6bR3kvJbVJNaUk+ypJEkSRdOcCXqNHihNlONr0vJC3UtJJpJK0iXlEOHRpeUF1ZQLaI2VbpeqPOOmlfpeuGh8jPu4dKUierkuuY+VCfXj5ebuurkAivYwA4aOEAHZdP2Kl1dXUnpqrtw1cl13QyrIq7rtlcVcYEDdHCCK1AVcYEKVoUGDtDBCa5EZeqFCtaE+rMunOBKVM5d+Nw35aRWd7uoJfUkSxpJnjSTVtCRbRelo6WjpaOlo6WjpaOlo6WjpaOno6ejp6Ono6ejp6Ono6fjSDbTsTmS7aKW1JMsaSR50kxaQcep86J0jHSMdIx0jHSMdIx0jHSMdHg6PB2eDk+Hp8PT4enwdCgx1onqPEeOqJisL/U5nbGOauqumi6ddMbZq0WW9Iyk8VSVWycdffei4/c0aaFarEAHtSFDeOytYh6d+KKSVJNaUk+ypJHkSTMpHS0duno7Vp/rqrTq6/zX519rTFOh1UUr6OidF5WkmtSSepIljaR09HT0dFg6LB2WDkuHpUMnhSVUp3zoGKhXapZEdVWBDeyggQN0cIIrUd3zQmyOzbGpi2p6RnVVgQN0cIIrcT7AAlawgdgmtoltYjuSQucjlVWddKTERSWpJrUkRTxRW3r07vPTpCeVpJr0/Gul2Plp0pMsaSR50gwq2vEh1C660MABahencIIrUfl2YQEr2MAOGjhAbBWbEu94A6er4CmwgBrNqrCBGs+0xzqFaJ5HBU+mRxoqeAqcoGwS6zxyoWxLeNg0vaKCJ9PdvZ9f8FCbnV/wOHGADk5wJercovkBFTGZ5j9UxGSaS1ARU+AEj+3VTIeKmAILWMEGKq7ESkZNQagwyXRPpcKkwAo2sIMGDtDBCeo0reZTMl5YQJ2p1ahKxgs7aKDO1mozJeOFEzza99zNc3X8EwtYD1STnKvjn9hBAwfo4HE0z+bL1fH7zNXxuwqTTLflKkwKbGAHPbGodbqwgHo4JPKkGXSkoO46VCZ0UUvqSZY0kjxpJq2gI/Mu0sZId164ndhAHZ8lHKCDx/HR7ZVKgi5Utl147IYaQSfGk1pST7KkkeRJM2kF6cR4UjosHZYOS4elw9Jh6bB0WDpGOkY6RjpGOkY6RjpGOnTi1A2VCn8CV6JyVXeDKvwJrOBxSDRXpsKfwOPo6PpLhT+BDk5wJSpXNWmgwp/Aw6bpARX+mK4QVfhjuvtX4U/gAA+brq1V+BO4Eo9cPepSuup+LqpJLaknWZIiHsmiMh7T1IHKeOyoUu8q4wnsoIHa0il0cIIrUVl64XGWl/eYFNFNolZUM13PqrTHjgKlrtKewMM1zr86XNoHlfYEHq4hgc61ui1WaU/gM67u8FZ817ev/NJVX/mlq77yS1ddZTmm22qV5QQaOEAHJ7gSlbnnnus8eWEFe2yYPtd90kjy87PAXdU5F60gU3D9ou7DLqygduX83Q5qV9RsOoVe6KBOwjoG+ZG8zgc3Ox/c7Hxws/PBzc4HNzsf3Ox8cLPzwc3OBzc7H9zsfHCz88HNzgc3Ox/c7Hxws/PBzc4HNzsf3Ox8cLPzwc3OBzc7H9zsqtgxTWOoYiewg7o/On93gLpDUrdTCl+4Es+P5Cn3zo/knVjBBnbQQMV9diBTbY4dBQKm2hw7iidNtTmBHTRQ2zuFDk5wJSqRL9T2FmEFG3jY1okGDtDBCa5EpfKFBaxgA7FVbBVbxVaxVWwNW8PWsDVsDVvD1rA1bA1bw9axdWwdW8fWsWkO5lgVwVTHE+jgBFeixocLZWvCCjZQNvUojQ8XDtBB7Zu6nC6xT9Ql9oUFVFx1OZ22j3HNVLETuBJ12l7qZzptX1hBba92SKftCw0c4HEhcozopoqdcXZP5XzR5ijnLyzgcSo90t9UsRPYQQMH6OAEV6JO2xcWENvCtrCdH7NTS54fszvRwQmuwPPDmBcWsIIN7KCBA9S+NeEEV+I5MXViASvYwA4aOEDZunCCK1GX7xcqwhAqggsdnOBK1AX7cQNtqsIJrGADO2jgAB2c4Ers2Dq2jq1j69g6Nl3BHyUnpiqcQN2KVOFK1FX8hQWsYAN106NW16X8hQN0cIIrUdfzFxawgg3ENrDpqr7oaA4HJyibjrHLpkPoBZRNDeUNlE0N5QYO0MEJrsT5AAtYwQZim9gmtoltYpvYFraFbWFb2Ba2hW1hW9gWtpU2FeQEFrCCDeyggQN0cILYCraCrWAr2Aq2gk3jwzGxZFrxLHCCK1Gf4jlmBOz82OWFFWxgBw0coIMzUaPGMbllWsVsHFNTplXMArW9TejgBFeixocLC1hBxZW4076dPVbOX1jACh7te8yJmVYmCzRwgBxNw2YczcHRHBzNwdEcHE3l/LkNyvkLOZqDo6mcP7dBOX+icv5CbI7NsZHzlZyv5Hwl51VRdImdlpy05KQllfPnNkxactKS5Hwl5ys5X8n5Ss5Xcr6S85WcVw3StQ2Llly05KIlFy2pnD9m4EyVSCeqFGkcM3umWqTACjZQ8y8PoYEDdHCCK1E5f2EBNddThA3MDq5ypXHMT5rKlQInuBJrdg2VKwVWsIEdNHCAebBanWAerNYeYAEr2MAOGqi9aMKVqPS/UA2ldjgn97Rl5+zeiR00cIAOTnAlnpN8J+qyQzYNChcaqLjqD+es3omKqx065/WE58TeicdedB1uDQoXNvCwdR15DQoXDtDBCa5EDQoXFrCCDcSmmTzdi6i+KVBx1aOU/hcWsIIN7KCB2gs1n9L/wgnKpgOg9L+wgLKpPyj9L+ygxQ2TKpwCHZxg3lxpZbLAAlawgR3UXgzhBFeiEv1C7YX+TIl+YQM7aDFtoeKnQAcnuBLPZ9gnFrCCdk75maqcLvKkZ9Dr91bQkdgXHdt/TNmaqpwCG3hs/zGRayp+ChzgYZqimbSCjlS/qCTVpJbUkyxpJKWjp6Onw9Jh6bB0WDosHZYOS4elw9Jh6RjpGOkY6VCmH5PZpoXFAg1Ue3Whg0fvMh0HZfqJyvQLdXTUeZTpF8qm7qdMv9BA2ZbQQdm0vcr/E5X/F2pyXQdV+X+hptfVlZT/F2qCXXuh/L/QwWPy9gywgo7sv6gk1aSWpIhqAZ3Mj6lvU1HUOErGTMuEBVawgdrSJTRwgA5O8LAdNWWmqqnAAlawgR08bMeDfNMyYYEOTnAl6rx+YQEr2MAOYqvYdF4/ptpNNVeBK1HndVejKv9dbab8v1C2KeygbGoo5f+FDk5wJepsf2EBK9jADmLr2Dq2jq1jM2yGzbAZNsNm2AybYTNshm1gG9gGtoFtYBvYBraBbWAb2BybY3NsGhmOeXpT/VaggQPUhJo6rR4QXLgSz8nCEwtYwQZ20MBjL44yRtOSYmPqX3W2v1Dbq06rs/2FBg7QwQmuQC0eNvSAQEVlZ5NombBzj7VMWOAEV6JyXudFLRMWWMEG5tEcBVsZoIMTzKM56gMsYM3NqQ3soIHsm3JejzlUoxaofTtSWlVqgQWsoMrAFEw5f6GBA3RwgivxrGo7USVnRVjBngfrrGerwgE6OMGVB8A4WMbBMg6WcbCU6BcayMEi0QeJPkj0QaIPEn2Q6INEHyS66t2Gnjao3i1wJSql9YhB9W5DTxBU7xbYwA4aOEAHJ7gSdVrXLYAq2wI7aKDiqmvotH7hBFfi+YBef3Y+oT+xgg3soIEDdHAGquxNZy+VvV3Ukp5B/fw9SxpJz4iu5yKqewtciUfiH298m6rhLqpJh0bPUlQhF2jgOB/wmwrkLppJK+jI+ItKUk1qST3JktJR01HTUdPR0tHS0dLR0tHS0dLR0tHS0dLR0nFkt+thjSrhAisYdQ6mSrhAtVgTDtBB1TnogOqR3ol6pKerTi39FVhB2aawg7KdEQbo4HGZr83VZb5Il/knlaSa1JIUUb1jqBupn7naxYUFrGAD1ZPUnG7gAB2c4GEras7j/BxYwON6WltzZPhFPcmSRpInzaQVpGv2k0pSOlY6VjpWOlY6VjpWOlY4VB13kXakCCvYwA4aOEAHJ6hmOw67CukCCyhbFTawg7KZcIAOyqa9UHaf/3oupCMaSccfadpStXWBK1E5fGEBK3hsoibjtfhWoIEDdHCCK1HZfGEBK4itY1M2a+pf5XaBDsrWhCvRHqBsan6rYAM7KJuaVNmsOVtV2flRVmkqswssYAVVYa3mO07QrnlY1dq5piJVbOeailS1XeAEV6IyXXOKqrYLrGADZdP2Kr2bNkfprdlDldi5putUYueaNVOJXWABK9jADhp42DTDphK7wJWdUyXpF9JlVZR+YQM7KIV2aA3QQe2QdnOtQC2oFVjACjawgwYO0MEJYjtP6UVYwAo2sIMGHjZN36gWL3CCK1Fn9gsLWMEGdtBAbBWbxoejCNK0zNaFGh8ulM2Esg1hA2VzoYGyqaE0Plw4wZWo8eHCAlawgR00EFvH1rF1bIbNsBk2w2bYDJthM2yGzbANbAPbwDawDWwD28A2sA1sA5tjc2yOzbE5Nsfm2BybY3NsE9vEpgFEE4Iq8AvsoIGqcO9CBye4Es96+hMLWMEGdvDYi+PycGjxLZ1Ahwr8/Jh+HCrwC2xgBw0coCdqJDjKa8ejRPuOR4k9Ho9i4AAdPNr3uNYcKtq7UDl/YQFrKiq22kEDB+jgBFduw5nzJxawgi23QTl/oYHYGraGLXN+PDLnxyNzfjw6+9Zbijst2WnJTksq589t6LRkpyUNm2EzbEZLGi1ptKSxb8ZxO3P+RFpy0JKD46acv5CWHNgGtoFt0JKDlhy0pLNvzr45x81pSaclnZZ0WlI5f9wVDRX4Baol7UDl/IUFrKD2TdugnL/QwAE6OMGVqOuHC2XTRur64ULNEJ6/MDILlfOunNeVwoUrUKV8gXmEyqOCDeyggQN0MI+QSvkuLA+wgBVsYAcNHKD24hh3tMxWYAGPuMezgqFltty1ZRofLjRwgA5OcCVqfLiwgIrbhQYO0EHFNeFK1EhwYQF1TzuEDeyggQN0cIIrUSPBhWqdEzto4AC1Fy6c4EpUzl8Yb4EMFe0FNrCDBg7QwZmo7HZ1AmX3hQ3soIED1PYeiaOSO5/KAGXsVN9Rxl5o4BFhqkcpYy882mGqEyhjT1TGXnhs79SRV8Ze2MAOGjhAB2VTOyiPhSq5CyxgBRt4tPpxczVUXHe2g4rrArN1VFznxwz3UHFdYAUb2EHthQsH6OAEtReyKY8vLKDm1IqwgR3UtFoVDtBB2aZQU2vHYann/J3a4ZzAU+ucM3gnNlBxtW/nhN2JE1yJyuOlfVPGqnNp5a1AAwc4EzX5VhXhfDn1xAYeh7Bqh85XVk8coIMTXInnK6snFrCCatQTB+jgBLXzOlg6CV9YwApqL3QAzhdZTzRwgA5OcCXq5bgLC3jE1dCm2rn5UKMeyRvo4ASPucmHetSRvIEFrGADO2jgsRcPHSwVz1w4wRWo2rnAAlawgR00UHtRhSuxPMACai+asIEdNFB70YUOTnAlni+kn1jACjZQx+JEBye4ElVBc2EBdVoUtaSeZEkjyZM0fyhaQUrak0pSTWpJ2nITahuPbqbCt8ACat+lVO5e2EEDB+jgBFdirhMx2rlOxInYBraBbWAb2Aa2gW1gc/UXdTNvYAcNVOtMoYMTXInzARawgg2UbQkNHKCDh61o05XRJyqjLyxgzYN1ZvSJHTRwgA5OMPuDyuECj7jH1PhQ4VuggUfcY+Z7qBxuHm8uDJXDBa5EZfSF2osurGADOyibC2VbQgcnuBLrAyxgBRvYQQOxKc+rdlN5fuFKVJ5fWMAKNrCDBh62Y+Z6nKVyOleetXIXrkRVy11YwAo2sIMGDhCbquaOue9xls2dqPHhwgJWsIEdNHCAKjhUJ9CDtQtXoh6tXVjACjawg7Kp044BOjjBlegPsIAV1PN6UU+ypJHkSTNII0M7UVs6hQaOa/Wfca4hduEEV+K5VNKJBaxgAzuoFlAnVrZ3HQVlu1DlcoEFrGADO3jsxfEwYqhcLtDBCcp29HKVywUWsIIN7KCBsjWhbF04wZWoMeDCAlawxbGw2kEDB+jgBFeixoALC9ivZfGGCuMCB6i9GMIJai8UQdl+YQG1F0vYwA4ee2E6AMr2Cx2c4EpUtpu2TNl+YQUb2EEDB+iJymvdAqvYTWsCDpW1TdMeK1cvnKC27MghlbUFasvUDsrVCxuoLVM76Ax/4QAdnOBK1Bn+wsOmyWeVtQU2sIMGDtBzj3Uu14yzit0CK9hAxVW317n8wgE6OK91Joeda+weOM5Fdk8sYAUb2EEDj9bRvJhK4C5UHl9YQO1FFzawgwYeGaCeeq7OduEEV6LWGLywgBVsoFrHhA5OUHtxdC4VuwUWUHvhwgZqL6bQwAHKpm1QHl+4EpXHFxawgg08bLrgV91b4AAdnOBKPFf91A5pic/jOfZQhZuWEx7jXLX3xAE6OMGVqDWwLzyORdX2nmtgn9jADspWhQN0cIIrUauCXljACjbwiFu1m8puP3GCK1HZfWEBK9hAHQsplN0XDtDBYy/qiStR5+4LC1jBBnbQwAFqL45802pvgQXUXnRhAzuovTDhALUXQzjBlaic1+Soyt8CK9jADho4QNmmcIIrUefuCwtYQbWZtqzmkVfV23ncVPYWmEdehW+BBaxgA/PIq/otcIAO5pFXBdyF/QEWsIIN7KCBeeRVa7Z0r6pis8Cjtkp3j/rGZKDzCxNciUdmXaiqK11dnWVXF67As/DqwgJWsIEdNHCADk4QW8FWsBVsBVvBVrAVbAVbwVawVcXtwgb2xOPInw2lcqlAxTXhBFdif4AFrGADO2jgAPO4qTAqsIAVVNwh7KDinr+guFPo4ARX4niABaxgAztoILaBbWAb2BybY3Nsjs2xOTbH5tgcm2Ob2Ca2iW1iUxmkLjBUGLWOl96GCqOubrToqYueqrpH3QSpMCrQwAE6OEHZDlRhVOBhO0p/hgqjAht4xD1Kf4aKnZauwVXsFKjtfQhrdI11ZtaJHTRQcU3o4AQzA1TsFFhAbBVbxVax1ZGo1NMtgSqRAieo3dTvKvUuLKAaagobeIh1mX+uMnbhAFWSqobSQmMXrkQl5IUFrGADVf2qQ6iEvHCADk5wJQ4O4Zl62kil3nkAlHoXcrAGB2twsJR6Jyr1LuRgeQUb2EGLZFDNUaCDE8zEUc1RYAEr2MARg5iqiwJndo2ZKb3WAyxgBRvYQQMH6OAEw+aPxwMsYAUb2EEDB+jgBLEVbAVbwVawFWwFW8F2puk6sEar+6PGidUftYMGDtDBCa7E9gALWEFsDVvD1rA1bA1bw9axdWwdW8fWsXVsPYZiVyVS4ARXonL+wgKqJU9soHJTCuX8hQNUXrQDdWI9sttVXRSo7dURGjE4+mMM0MEJRnb7I7PbVV0UGNntj8xuf2R2+8OxOTbH5tjOE+uB5TzjjAPPM86JBdRu6nfVaS/soBpqCgeoYWUJJ7gSawzFrlKawAo2sIMGDjCGYlcpTeBKVAe/sIAVzENYWlw/eGkxFHtpE8yDVfoDLGAFG5gHq+SVo5e8cvTSHYyh2FVKc6E9wAJWsIEdNHAkam5+nthBAwfo4ARXoub7LixgBbE5Nsfm2BybY3NsE9vEds4I6LidMwIndtDAATo4wZWoWcALC4htYVvYFraFbWFb2Fba6uMBFrCCDeyggQN0cILYCraCrWAr2Aq2gq1gK9gKtoKtYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hq1j69g6to6tY+vYOraOrWPr2AybYTNshs2wGTbDZtgMm2Eb2Aa2gW1gG9gGtoFtYBvYBjbH5tgcm2NzbI7NsTk2x+bYJraJjbGkMpZUxpLKWFIZSypjSWUsqYwllbGkMpZUxpLKWFIZSypjSWUsqYwllbGkMpY0xpLGWNIYSxpjSWMsaYwljbGkMZY0xpLGWNIYSxpjSWMsaYwljbGkMZY0xpLGWNIYSxpjSWMsaYwljbGkMZY0xpLGWNIYSxpjSWMsaYwljbGkMZY0xpLGWNIYSxpjSWMsaYwljbGkMZY0xpLGWNIYSxpjSWMsaYwljbGkMZY0xpLGWNIYSxpjSWMsaYwljbGkMZY0xpLGWNIYSxpjSWMsaYwljbGkndclRagrhSo0cIAOTnAlntclJxawgg3Edl6XmHCADsrWhCvxvC45UTYXVrCBh+1YTsHPSqMLB+jgBFeixpILC1jBBmJb2Ba2hW1hW2k7K40uLGAFG9hBAwfo4ASxFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDVvH1rF1bB1bx9axdWwdW8fWsRk2w2bYDJthM2yGzbAZNsM2sA1sA9vANrANbAPbwDaweeZxP8eHITRwgA5OcCWe48OJBaxgA7FNbBPbxDaxTWwL28K2sC1sC9vCtrAtbAvbSttZm3RhASvYwA4aOEAHJ4itYCvYCraCrWAr2Aq2gq1gK9gqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9gGtnN8KMKVqGuNCwtYwQZ2UKNRFw7QQdmqcCVqLLmwxxh1ljRdOEAHJ7gSz0sJ7dt5KXFiBbXpU6gH19p0zcVfOEAHJ7gCVegUWMAKNrCDsnXhAB2c4ErUtOaFBaxgA/MkMbiUGFxKqPxpHfXWrvKnwJWoac0LC1jBBnbQwAFiq9gqtoatYWvYGraGrWFr2DSDfO6mZpAvdPDYBnU5ledcqOdDFxawgg3soIEDdBDbxKbed7xW5VpUailFVGdz/uv5VcXjXSo/P6uo/nt+V/HCBnbQwAE6qM1x4UpU57pQtimUbQmbvsj0EHdxEVtsvCptAnOXVEizXJHVey5sYAcNHKCDE1yJ6j0XyqaNV+/RrZjKawI7aOBh0+yrymsCJ7gSNVV+YQEr2EAFU0Npzlt3ZVofaun2SutDramG0kT3hQYOcCXqmY3u4M5SnAsVQUdZT2c0JmqNpzXVJHricmEHZVM7KF8udHBmXOXL+a/KlwsLWMGWe6x8udDAAbJvep567pCep16Ye3yW+BwFqH6W+Bx1oH6W+Fw4wZWoLn6hHp10oR7JKK668oUDdHCCins0yTwfAJ1YwAo2sIMGyuZCBye4Es8HQCcWsIINlGIKB+jgBFeiOviFBaxgAzuIrWM7SxmWcIIr8SxlOLGAFWzZ6sbBMg6WcbCUF0ctqp/lQEdJnZ/lQBc6OEGNJeoaemp5YQEr2MAOGjhA2dRTlUMXrkTl0IUFrGADLfdNiePqv0qcE5U45w4pcS6sYAO16WozXfxcOEBturqnLn4uXBHhrAy6sIAVbGAHDRyggxPEVlAoyY630fys6ynnvx6240UvP+t6LjRwgA5OcCUqyS4sYAWx6YRyvDXmWsQocIAOTnAlKt8uLGAFG4itY+vYlG/Hy3F+lg5duBKVbxcWsIIN7KCBA8Rm2FS1d6zH5Wc50LFwjp/lQBdOcCUq9S4sYAUb2EEDpZhCKZZwJSrfLizgoajqUcq3Czto4AAdnOBKVEJeWEBsC9vCtrAtbAubErKq2yshD5xnOdBRtDvPwp/j1e55Fv5cOEAF68IJrkSdLC8sYAUb2EEDB4hCff1443CeJTNHLfU8S2YubGAHDVRcF2p754Hq1RcWsIINVNwlNHCADk5wJaog7sLDdrxmOM9Cmgsb2EEDB+jgTFQyNB1YJcOFFWxgBw0coIMTXIkT28SmvGjqUcqLCzto4AAdnNnqk4O1OFiLg6UOfrxYObXIzjoW3JhaZCewgg3U5gyhgQN0cIIrUX39wgLKZsIGdtDAATo4E3WNeO6bTl/HuyzzLAe60HKHdKK60MEJatOPNjvLgS4soDZ9CRvYM0LD1rA1bA2bTlQndg5L57B0DkvnsHRs/VT813/905/+9m//+ud//+u//f1f/v0ff/nLn/75P/Mf/u+f/vm//eef/s+f//GXv//7n/757//xt7/905/+nz//7T/0S//3//z57/r573/+x/O/PvPjL3//n8+fz4D/669/+8tB//VP/PXj4z8ttR4F6/rzJ4+SIZ4d7Ycg5eMg/ShtUojntHsG8PbD39eP/74ddx76++dDLjbgpwDbvWjHahPXXjwfhH24F/3jICt24tmR8+97u/vnTcvhnXvxnM9jC+r4IcTYhGiW7fCyC7PdDTBKdIXnTFAGaOpqBJibhtT7hmcrPKfMPwyxdgezZjuM5yH8KMSuKTXkXw0x+odNWTZ9stYSPaLW9RLDfurW9d3jsd0RZ0dm+3hHNjFsZGMcC/hnjPHTftjuqB5TVtdRtfphiE3P0tpdijDbS2P6/Qh6Zf2M8DrK+Bd3wz/ejV1jahH4szGfs30fhaibsab2mR3r+WDlwxDl3aaom55ZH8ek6bkRz1M7w1X9MUTbbMQxHXFuxPKPN2I3YNYaLfFEekWzeX9HSvPcESsf7simY9UZh7Q9Pgywz7A1slOU9uERne8PersYveZm9NY+PoG0x3b8rpkiL63xPCf+GGPTO23GEXk+mHmJMO93jG7ZMewly37uGK3tzsa+Msaih7f5055stqPqa6dn5xr9ZcC4f0xajyx57lP9+Jhs+mfxHDDKc06QGO3H/nUkwocxho3o5eV4ffYlyo9noza/oXesd3vHfl/07vC1L887qw/3pe/O78UZASd9rPafLvjqu/1j20tvDoHbGDezpdv72dLH262xO7JHFWYc2aNo7uMjO3dHNrv68yA/Xo6s/Rhj00ur1cJJ+uU6dv3YprYZS7vntXB/Xv58GGO7HaPNbFPfbMemlx6rteVV/cv90c8xPnNk+odHxvrbVx22u4Y7aiFyQ563TB9vyPY+Z65skpcz9i8xNk3SS9749udsw9ca5N7Vi603r162p5f1iO5RnzNNH55exm4wnS0P7PM50ccxNt30+Mx3XEXV9Xpc6/0YWsLmjLGKfxyjv3+SG/buSW7Xu6zkrfgTy9d6eauZ+P3xccqOub17zGvbYV+MoeWyr+tjW1+MMYkxP46xHTuOqey8kirl4yhe3z22+2zxGEvr8yHT1zJuVWJsMs537fF8hBATZ09+mXMan9iOHI5be5nw+WU7Nn195iTHqq+t8eMkpO9un9rImZb+ekHY78fo9RHnhF5fT3A/xZjfcPs0yx/Zv1prOR/aZvlS/2otT9Wt98eHMWb/Y/tX65mybWxyZe4uTB/e8yzbXs4s9cc2nbvxmIuo49vYL72j3I4x9CGr89DO1j6Osd7vYevx9tlpO5JayVuwaWt+OJKuzUj6fLSTFy9PfonyY/9Y7d2bjt3oo0dz8fxifjj8rG1zeE7plR+S5XG/ozNN+5wBenwtaQcXg17rhzHWfPsZwm4r9Im1eBwzPtyK8tj10ZzLGi/Xxc8ndT+F2G5HXtg2H68Xg/N+kN6zf/X+Qz//OUh7P2nLo/+hWft8LpwzSc/nqB/fs5THeHdDtgNyG3nb018nj+vPjbqbjNKKH9d9y8u1/s+z+Y/ds6Y8yfXHx3PYuhS/9ZzIX2dwfjq2u4dNT0NGObh/OAGzTRrSf5ZN0pTdePrIe4bnLTpXyP7zk7Ptg9CVE1Lj5ci0nyZgyu5hzcpr5PU6d/LT0d2Nys/DkZfI7fHxqFzKbuLD5kvuzjk+OMPow0cf9/e68iT1ww3Qz1uy6avd8jK5/zAm/vJA8vF+0uyePt1Mmu1Tm7tJs3sAdT9p9oOi3ra5BsW1mcgpddfZWs5J/1A/UH9+jlTfnkHdb0fPeYP6et3+y3bsxpGZF3drPT4eR+p2mj+7/PFNzo97a/uG3tre763tO3pr+5beun/UaEzHjA8fHvfdrPQji23m67XqzyUFbfvINK8BniNr+/gEvgvSHnnV3B6vl1a/BJnvlybsHkndrE3YhbhZnHB7TzbVCXeb9PXs/cnjkkNIK2Vzddb3s6i3CoHK7qnU3afi+93p3NHYdnd8OyJaXlq9XAT8Mpxtg9TcnVl3Z/C+3u/wuydTNzv8LsTNDn97T3blONsmzYm/+cNDg08dF1tZyuK+KfXaXkdYPul/PnRsH9457/sqZ97nM7bNuLp7dHC7h8z3e8h8u4fc3pOvDomz56lqev24SXfPlW4XwLW3m3QX4maT3t6TLzfpSy99zZdPnWW0oM41S1R2x2X/dOpWbeP4hgHV3x9Q/f0BdXzDgLpv0XcvMO2RsxBW2qZmdfdoalD3MH5o0p+HZN90Mb0xdTbH4/U+5ucRed8eTnvML7bpvaLR4rvH/P0x8r7u5ebh5xj7p1P3evru6dTNnj7frl69vyebnr5t0ZZn/WeLjq/FeC0Tau3jFt1Np2oR2OtOeawvxsgnftsY+x52qy65zPfvpOb7d1JrW9p3q6qm7J5N3SsK3m7FvWKnsjZj6b0a67KbBR0ln2+N12dTRyXYF4PYF4P0LJg6vua4CTLfPi7bfZk992V+dV9qlsUcH0j+apCcoD6+9/vFIFQYHx8//TBI3T6gek7i5O36k18Ozs+1+I9vqGb9TZAVx+f5aHZ9MUjLYrLVXt4p+1yQm4W1dfeY6m5lbX2sdyeG99sx88HOmtY223E3yHh8NUieaNbrA5VPBXnOoOaF6pN9F2b7lkAObOv1QuKTnW3S2V7z+HNBxiLIxwn4iXP4h/dDdfewyrOE8rVo+ecRdn/NfO99mN2Dqru3h9sgz8u6fCOmrL4JsrsS8Jw/fE7+b/amvX3lXXcvxdy7ttqGuPve2N098c2ebFs0H6lWn/1LMVrJYfV5kvCvxni8HaNxQfKa+5+LkZd57fWlh59j7J5R3byL+E2MW3cR+33pPafs+5jvx/hiH3s+cc9pvz4/Prb7F40G7zzUzTuO2w1xChifQ+vHG7K+4eCuP/jgemFfNom7e2eqPHh56/VF+U82al4jtrnpZb2/+2C49m3tQBa2P8ePj+9ottvRC4sftE1z7M5zNU9RvY7Hx+e57WtT92aY6jc8nKrvP5yq7z+cqt/wcGrfovdmmPYx7s0w1d2jqbupv+8d995a3z3OuXtk/f0je3tPPh47xuPNa+R9yrYcSnv39cXr2+r5ClrdXd/unwjde1Jfdy9N3X5/fbs78xH9tK8xN7szvmN3/I/enZVnGHs8druz/sieZlR0Wx+bOynflUGXSkfLEM/Tzk8h3n5Zer8VOen2eqr8dSu2Z9t8dtlL8w+3om+vYHiX/uE+vxZk5g3Mk1/eaPtUkPWYPOJ6GVQ/06j5Hvyzw24adf2hIZ4NmXOHT+4f78r6jiOzvuPIrG84MtvMtXyBwVafXztHDF4kHaX5V4PkZNvziXv7YpDemP8fX92dlm8aD2ubS93fvER17xyxe4vqW84Rw3Lps2G+2Z3te1Q2842bJ7/OUX0qyK1C97p7XjVGPuI5vti52Z3N5erdQnctd/Pxrdmt0mHNErx5h7h9XHWzdLiuXXe9XTr8mzDWcmB73p7Nj8PsuuzxZaw4xv1RPjzG7fH+pGp7vD+p2h5vT6puQ9y7Jbm/J77Zk/cnVbcxbk6q/i7G4+0Y9+bM2u6Vqh9ueu1rbXpzcvc3MW5N7rZt1f+9+b/fxLg1CbDfl56vyLfXJ/i/bIf/0dtxa5L5fowv5tzNSea2e5vq7iTzbzr7zQ5S/uADc2+CuO3eYLo7QfybDbk1Qdzq26f/Vuf7E8Tb7bg5Qfy7i7v+cnH38VJl5f0rxG2Qm/ff20s773mT5/3jjtr6+9cOzd6+dtiFuHntcHtPNhPV+4vl+fIK5Mfn2+94vrS9Wh6T1c7m2lwt74J4NuoTy9eClEe+JVf79rp9O3ffmGkeX7/4n4OL/5ezzGcv/h8v61O3Tb3M2j/SsP+/Rxqfa5fu/7+v//8a5BtGxe26MOvlXff5pdSpjGe1bM549vYrqm23xt/tE42V95t0e2hzvvp5lNtXu3ypnUuA9uX7XT3hu8LU8eXMqYVVap47+HGY3eI/uQTRy8OenxaH/92MYi0vM4rti9OSOQf3ZPtoWrLt1ne5O7e5DfIt8/B3W6R/R4vYd7SIvd0i+6LIR2cS/fFaz/i52spHGy9hNsWiZdu0t0s0d2GGZ+oMfymMHJ8IMXOxvDG7fy1EXkCP6R+F+E2l9oN1WB9fLjzPtVWeQT4u996/8MoCcbO9rkfy0wxr271ddbNepPn7r6o2f/tV1W2Im5fh/v6rqvsWvVcvso9xr16kzfb+bMI+xr3ZhH0Pu1Vz0ubb353YhrjbO27vycfTEfPdSoDfpH0+p51tbdJ+91rT3bvv9f7r1G29/Tr1NsTNA3t7TzZpv23Rm3ff6xtmVffbceuRWVtvL6jWd4sP3b313m7HvVuZ9pv39+7cHe5j3Ls77I/+fpN+Q53qdjvuNelvFtrI50vTXl69+3W1jk1Pv/dC9v4LPLeuXHp5/13qXt5+l3ob4t4Qdn9P/GsNerPQ9fH2dUsv779J/ZsY96Yx3z6ste9vwG6+jrn9vNLNFyl3MW6+R7n9PsnNNw9vx9i8eLiPce+9w+0qbvfvabcLZN5767B9yyu77RveOmztj92bu321fcM7v9vv4Nzsq7djbPrqPsa9vrp9O+V2X23f8nLr27c/vb37Wur2U1wUQvYfV4H/cQ6n913RX2Xpo/rhPN9vQuS3Z1p7+Ich6ttThbvGYIavlx8W2P55M75hjb/+HWv8tbebdPdYemTx8fihvn3ej9D51sr4OMLuQsz4Bq29FE/+8nW17cVc5WKutg9jdNveCN77bkPzd7vo/u3Lnnc+Zdjj4y899d0nlm5m7D7ErYzdfYrnZnNsn41nrdETP6ps3z2hv9nH19t9fH5DH5/f0Me3bz3d7OPbTwjWfOpTn8yG/PwJwV0Mo1rB7OMY+4+zPTrfRHu4f5wpuzenbmbKPsStTBnzDx04fmyO+fGK3vuvCHJgXpc8+uUrgrdjrPdjvDye/NTXDFnIpr6+AvbLlwh9Pw+VtX2vD1t/DbJbnnzmXOezq9gXgyzmb17XFv9skEKQ+h1B/MMgu9IN83wFxHyMrx2c51HNN0HHsK8e4bwZfE6uftyu9z96Wb7WIo9ctsV+eIj9887c/gjoJm2mbaeA7yzh1rffOqnEaC9d5NcN2RWPmMfeuL2+6Ptzg+w+7NOpze2v377zn2LspvcfD5Zsf/1W208xdu9NPW/D8jnDk1+/XTc/0awtl/Wt7aXA99dm3QaZHJv5cSfZf5D09pdRt1G6E8U2H3zsa/vRFN5cfD3E8/6HJ583npnArzX+n/k0qqlW7UzgNr764cl8WGmv94WfirFePkLR6xePDCPawfOLUWbhmmTWj9tk9wr1vSv4bYRbV/D7j7ZNap3KrB+9Hmu7B1LrkSuErfLhdeI+RMnXyVfpH90P7T9iNzL9y3T7YubOSX3uXJvbVNt+ierWxfdvQty5+LbydlXeJ5pj933m30QxotQvpu7zL50o/eP7Itt9iermodmHuHdo/I89ND80h/mXD01/ifLF8XA98vz95PXx+L79FN29AXEf4taIuN8X44JmjcemRXYPhe5N8GxDPK8cFlcRr1vyqSDO28ZPXl8M0vgchvfxlf76vB15KVvYjM/bL2J91we+akapryn86we+7gZ5uen8XBDWDKj28tT/U0Geu5Draz5m+zBI27/7kFMTtX38DWrbvQJ19yGCbT8mcfchwvZtkJJfCX703d68+5RqNy95d092McyyYtr88bon97fDeIvK/PUB0U8xrNe3z5z7ELfOnP3tJX/2jZFPp222tWmM7Ykmi7BGn20TZHdnlWsvjPL46MZ5vxl8ufnHBVQ+tS9mWQ3/QyHXJ4PkzozH+nKQXA/m9Vujv/T17Zd1M2tt7WLYu1ciw969ENntx92HK9sYNx+u2Pa7TTcfruxq8tsyJiNfPzLUHz9tyPt3Vfb+XdX77zr59nF9do7+eP1u88+Nsft61M3G2Ie41xj2hzZGyQm3/sPX1n9pDH+/Mfz9xlhvn5q2747mqam/rgz0qc/Gr3xP8hnj4w+2m3/DMpI6g7179bN7BXWw3tnLNemvm/Ed16T+Ddek+2/YjxyOn0E+/oa9bYfS+fLgLkP4vL8ZveSb7P3HT2l/JkjLt3p7++Eq6qd92X086l7elt1qS89p7ayo76/fnf1lZ/r7Mw/93RP+dlfunvH3Qe6e8uc3nPK3H59/zshm3q2XNvnp4/O2Xdvv7vz07hnVvcnl/b4sY1Lo5Un3z/uynWt/fZ335U6//VQ4+Zsg91bW/F2QWytr/ibIvZU1fxPk3rvWZfcSSX3Ul3d71kcHZxtj2SP7yA8niZ8eHv4mSKd22saXg2SJ7usikr8Gsff72n5LGBbXaF/dnZHLg6wfVoH5VBBeU3xOHdqHQcb2GdN3BPnhHbDXNvmpYfdBatbY1/pSJva5IG3wzHx+HKRsK0zvvf85vuHlqfH+y1Pj/Zenxje8PLVv0Xvvf47y/hL/pW0X6L63+tI+yM3Vl7ZB7r4Cut+Sm6svle1bNrdXX/pNmLtLr/4uzM1FnPYtc3MRp32Qm4s4lfb2ikPb7Ln5mu4+xr3XdEfdzlfdeU1Xt3ObS8Zbr+mO/Wsu95p0e2jvLeL0m756dxGn34S5u4jT78LcXMTpN1cV+Yxo+esHLn++IGhv11n/JsSdqaexe1L1DSHuzV79pkFzTZz1+qnAnxv0d7cEtxaC+l2QWwtBjd7evznZBrnZrNuphZcnK+2rsxMrQ/QPQ8z+7kTc6PP9ibixq36/OxG3m954nuGyvnq9zhn99JrGLobNmk/eHq/Puz4RY1QmjeoPDwJ+Os/Y2w8C9puRZ5nx+rrup3al5YTR+GERql92Zfyhu/L6VYqXe5FfN2P+oZth5Nvr1eovmzHefjv1NyFunRbG22+n7ubwhmeh2pgvw/nPjbGbwrs3QbuNcGt+djsXeXN6dv+tknuzs2PMb5id3S4LePPO37/hzt/fv/P39+/8/Rvu/LctevPO37/hzn83i3H7zn8b5O6df/mGxZ/2W3L3zn83OfSJO/99mNt3/r8Jc/fOvzy+4c5/G+Tunf/j7QW6ttlz985/G+Pmnf98/85/fsed/3z/zn9/aG/e+e/76u07/32Y23f+vwlz885/ey1w64ZqfzVx535qN9LfvJ9a33E/tb7hfmpbklCzRLXV9XFB0zaG53o/bZUvxuDs2R+bGHP7Fdb8Kk6v8+NKtfn2+iPz7fVH5jesPzK/Yf0Rf3zD1er2Tch8XvZ8lP9a4/G4HaLW3Jf6w1e1PxOj8JpqHR9vh5dvKK3y8g2lVWX3EtLdLw2W+i0PQ7bz3Lx0081eP0n5UyXhbn9ufobOy3z7lsbLeveWZhvi3i3N/T3xzZ5sW/TWZ+i2MW5+hu53MR5vx7j3GTqvd9eTtK+16c3P0P0mxq3P0HndfuLn1vqav4lx63Z1vy/3PkPnu2dc37Mdtz5Ddz/GF3Pu5mfofPdE6e5n6H7T2W92kPEHH5h7n6Hzvp2JuPcZut9syK3P0Pn2Dahbt5fe2/u3l75fdPDe7eX+8uHWZ+h898bP3c/QbYPcfMZW3y+E8r7ev3bYrbhz89phF+LmtcPtPdlMh9b3C6Hc3v/Mqep7354Ord9RCFW/oxCqfkchVP2eQqj6PRVM9TsqmOp3VDDV9yuY6jdUMNX3K5h8u3jfvRPN8G840YzxfpN+RwVT/Z4Kpvo9FUz1WyqYtrNEt+Yx9/NMd+Yxty+63tqG/auyd7bhN4soMMbbfF2a8TMrMQyWcxirfTHIzCfudT3sa0HaI5+YP/Hj3bHdp2TvrgmxDXLvc237ELc+1/abELc+17Y9Lp5XEse5/IsH94cg/atBKkHax8fF59slKr8Jcac2xNfjDw1x99J926C8CPH6LtMnjwpLmfr66gjyuiVfDjLztvuJXw7C15+2QbaLKd2sOxzvju2/WRouZ3VX6V9cXS6n/p740Ytq25X2bjXFfq2+W2fa3fqHngvlPu/JXt+4/cQaiixc+MT5xRg5l/I87X5xLcfZ2Y6vrinJ04sfHl58bk3JfO3viV9tj7yXesb4+Lhs1+m0nNDt5uP9GPNra312Hkv30b+4L7zx133Tx7YxXhYenu3jGHP3GpWzQt5z5u7jF/7m7hNSnWUl+3hd4/qX6/T9lozcEtttyW4phEfeMozX5Xo/1SK5JvR8PD5+o3PW7RTVI5v1dR23X4Ps3vzP96lf7/iPIujbXYTXj/tu+cO5uw+73UVq/4Yu8pstuddFdtPtN7vIfjvudpH5HV1k/aFdZC2WHi8fnyHm7q02q/nJJKvrZWj+6S5793xqeK5AMPxlBYJyfyXn5wVOnu0e/tjsS/+GfbE/dl9KLidpP6z586lVqXOxfmulfy1GZTtq/44Y84sxciG45xHyL8bI5yjPcF9uU6dN2xdjFGK0zcrn20+x5OoFtdrrLfJPL6T0txf6/U2IO/e3s/sfGuLeLfK2PRtrjDb/+LM0c/dY6dZihdut6Nxiv67U8+tW1PdHsN0bUzdHsP2HfipPYap9uC/7GMZHUsfH7dHHfvnYW18c2ga5N8u3D3Frlu83Ie7M8m2/aHXrLn3/Taw7d+nt7Tn59vac/P5bka/Lv/zw0ZVPfXGSzwoeUTbfz9zWotz+cOU2zM0+ug1xr4/uQ9zpo/tv8N78Auc2xvvfeb3fR3733dqbfaR+Tx+p7/eR+n4fqW/3kV3lxKR0e758ia7UHz/Moxvgj59m5Umujl6/sBU/LHlWPtyKbYiVZ8nH60zQJ0LMvEGvj9ePvvzcFnO7Jt69kuu5ewH+bsn17rn+67pPr59K+mVn9rV9LG3wPEN8eE35myD5Va4nr/ZhkN3rVnNRlVvKZnd2pUa10duPShDCPMrdhu2eN/p9vtY73u9oncVAnjOOm2OzvqG2f65vqO3/3QHOj4w9+cPV+ebufYfv6SVmXKG+PBT7tWF3heiPLEWprw+zf5lQWtt6FuqMSt1Mse3el7o7T7cej7fn6fbbcW+eTg843p2nW7sVR+/N0+0HgeIvy3z662doHj8vErCb3u55ZDJAb7dH53vfB1yPTReb+Qhmro+rrtbufannZFamf3ntYD9VXW3rx3gRprzeFP50TPYhskqhvN6GfCYE9TT15bnYzyFW2d7v5zff2uOLIbKefrxUfn9mR15P2y/XIJ8JMfKq/8faok+E8Hx0+5wu3LWF/8FByuAsN14LLj4VxJ3vEq36xSAr3x0pr98V+9TBHXz2xr+WK1zBPHtK+dpWUDbWHl/akT6ptJyvS9+s29faWlbvGoT7/MpGlEI1f5lfyrbSMl9LW1/bCqtchr1cIH8qxKACfq6v7Qids9Wv7QirKj2H9C/tiGch0Ot3uz4RYOXc8evn4T6zE4+8E/3hA7G/ZPruqdP7vXvlpc7zCu5LDZFde7m92ZKbANuLg8W3v5c91oczP2v3MtTzaXlOH9naLKGwnb1+d37heYXhXKSUDy+3dq9CVV6lfHwcYdugN6fStkGOWbAHs2Dti2GWNZYPf52Q+1SQyqLd9fXW4nNB8k239boi3OeCNGOm8/VT6J/qqzOH8jWtbfrq3SAv7/5/MsjMhn19T+1TQe5PdP6mae9NIv9mW+7OAP8uzM0p4LV71esTLWNvF6zvQ9yaAv5NiDengO89891ev/Bd1/FyQfnz6vC7EIOPXI+XL7x8JsTMR5zl9az9mRDL+ZDjo3wlRH3wsPbxUij6ma3gU5DHB7+/FoLvn87ypR15dgpmSdbXtqLx+dT+6F8K0XOS43netg9DrF059DfcrbS8FHpmyNcaozPr9Lr0wFfb82shWssv9Lb2ssrOcfNzO0RnTYnXl8m+GOL1mxSfCZEjeHtOYn8pRM+1n5/oXwphufZB++Hq9jNbkV3rievtEONrB7WzcEqf9rW2yIcaz1narx1UKl2e2L8WIl9ceObsFw9qz2Iusy9tRZk8EJmzfCnEyh15zm3OD0OstVvC7mU5rPqSJeUTm8GKS6vXr+1J3vbUR7OvhWD8XV9LksI63OV5Tf3FEEaI9XaI9dWteLlI+VK2P/+OB92tv70VPx/U//78v3/+17/+41/+9m//+ud//+u//f3/Pv/yv45g//jrn//H3/5y/d//9R9//9eX//rv/+//if/yP/7x17/97a//+1/+zz/+7V//8j//4x9/OSId/+1Pj+t//psfT6Z92Pjv//Sn8vz/8/Eczeejzef/b/rvdvz34cd/P/5gHKtQjOeTp+Mfin7jeW3hwx///b+OTf7/AA=="
|
|
4341
|
+
"bytecode": "H4sIAAAAAAAA/+29e3ycR3kvbq1Wq9X9Yt1Wq5sdW7J8ia8JBkLAseObJGdt7eou20qs2LJlSdHFluLYqYGUUAh1EocD5ccBcqeQhkKglNP2UC7ld4D9wA9a0lL4UWh7QriGEji0J6ccOd5993nfmeeZmfedlUdo/Qds9L7znZnnPs88M2/2Qw/+l49PzY3dcWRicuTM0PTwkanp+f9d9uDFj9wyOTI6OnJ859Do6OVlly599tL8vwcf4rz8ncbnLz6xc3xsavrhi0/uGpkcvmPad/GpfWPTw8eHJx+Lbd3yhaZl9L8sZ/sspfa/d6+z/TK1/lPtnz40PDo0PXJmWG0Ey5axCD5VhI9eIfWxoemhneMTc9ZU7oVjAuCPX3n7wYLE/+/1PIN7Nczg8c7p8YkHH0JG7ODRzid2jwyPHpuHfXnq+Se/8sAnvvD09FNPvLvs20XvLViff+999/08/LO6P3rpvsecDXdZw3o0tl04qoCz+a1Wvzf/WXbfiT/9j/GCPW959uy3/+HATFHd0Oca73+i74sPNr545PedDXdbDX/4zvfdW/LsQx9sWhf/VWDPH/7kyC/35Wz/dvye0Off/MqLLz3sbLjHaviNvle++1zJw3fPPvDn57avWT700Yef/8WPvvSVPyn55fefuev5G5wN93pUo31q7Uud7feD9jduU1CCRPs2tfbM+NvV2jMi1mER/uLjT393xwPxTf/8Sv4fdAy9dXbrO77Z/dO7a55a/a8nn6n7aJmz4QGr4Q+mdz44XX36xp8Gv/bA5g+F67/38lPPvfDrueHtP3nhh59a8Utnw9uSDWu2tLx24j1fr/jOmpX/+KbPfvT6y6GXV930nU/v/dBL//E/fsMhVUSNVcxUD6q19zvbH1Jrn+1s32lRjP8vK/nD2TDq1tAm2scEHSf/5TgbdoGGWW9ZOfVf8h7I6vjcmzc8V5j/uRd3fOCWnfGvvPUPGks++gFnw+5kw7U35b30xB9cuG/ZPz3143f9eu1fvGlDWcOOsuv/9n3fCo9N9odecjbsUZtqnbN9LzB8m9Up1SdJKaZhv1K/jBYPSPbLNByUbMgow2E1QjOicUStfZ6z/VG19vnO9kNKHq7J2fx2peabnM3vUGq+2dn8mCTXXudsOKxGtTc529+pNO4dzubHlZrvdjY/odQ86mw+otR8yNn8pFLzO5zNTyk1P+ZsPqrUfNjZ/LRS8zudzceUmh93Nh9Xan7C2XxCqfmIs/ldktrCNJxU6nfU2XxKqflpZ/NppeZjzuYzSs3Hnc3PKDWfcDY/q9R80tl8Vqn5lLP5nFLzaWfzu5Wazzibn1NqfsbZ/B6l5nPO5ueVmp9zNr+g1Pz8k4eGp2cmxxJL5HjtkYsf2T0+OTxyfOzKHx759Mz0yOjI9Nye4enY1V/zvU0Pz04/cvGZjuHT45NzO44dmxyemoLrWeyJD32SjT7xo09yHrn4ZOfI6YlRu0/k/PHGbck/XjUk1H9dusSu8QNKJI1cfKxj/AxY4OemMjYMdFDNn9fPp5xGxoYm5+Yb3TbxiAX82Dx1rk4+2RPo4Zl9Y8euZhMcneeqLp3tnae6sLpn5+xzUiMPDu2J+WTI5DD/aQDrLo/tLi/VHQfS8sCaAc/qBjytG3DG+ClP6Qac0A04rRtwTDfgkPFM0a56s8YDjhgvNqPGy+Ep442DdrE5abwLOLf0/PI9ziAmmAq0ZAMyqxs0HAtqCsc4swymupdvlCtslE/3BBcSzyYWEruGb5853j5+/NKly87I3tq6+vDe4aGJHZOTQ3OQGXXI+1H++/nLLjNLgfnw/eITV198kPewjr+icDa5ulJYZp/gpxIT3D08fceJ6NDx48PH5qc5Nb8fjIx7pwOPDZTxZUO+6k6I8rIhH5fTPE1ymk9qo424H08Qt3186NjOoYmpmdF5PcUWhrmIQGQ9xOH5ZoS7WQ/LL1aTDEX+vvdhmeWnQ+ScRC9UI3qRU5qKkqNZ5nxSDCnneFYCWeN4Vmols/nStcwpXcvgbJL5huEELPsOM9B8OGbHswI45nlsxzo3hZEg+jNXR/zqf9w2cRnawY6ZUW7TAgY3H9MJmRE4X8mDb9vA8HSCsu9hXFwuwWCNBqhiERogZs4Fat0ux7otYLstgPN2sKEQPkMgi/6kfd7gRE8Mjd1618zQ6BSKXnjxyf0zpyf23QlNw1c/yQpGobUjivVZyE6jMEW9x6908+BXP8YqMS5UHgksIVQFuFDlaxIqDnfzCaFStOvlStwA82bcAXiGQBaTQlVo8y2MUBV/9XOsUBUJhaqInUYRI1R/yVp/XKgUCbxDXagKcaEq0CRUhTyTgQtVkeousQo3wLzxSKIQgywhhaoIgrFCVfLVr7FCVSwUqmJ2GsWMUH2ZEh2ZvP9ZNOTiSGWxapmLslQW41JZpEkqi0llxUPJYpaJ4Cma9y9huyshQpsSYTrALeCMbsCTugFHdQPOGg84oRtwWjfgmG7AId2Ak8ZrisE0lPB9poj2nG7AceNFW/uUR5aeeTivG/B23YAX2JAUj8FKvC29JGKwEjwGK9YUg5WQsS0z51K1bsuwbkvZbkvhvB1sKIPPEMhycmVQCsHYlUF5PKuGlYsy4dKgjJ1HmXNpEM9afvHxK5lnvrnP1yTE+QT9Sggx9shSCTEuxcW4RJMYl9K0cnZbpnpoR4X9YN4ONpTDZwjkclKMyyAYK8bL41lrWMkoF4pxOTuPclaMr0NT+FmeSXyruliV4WJVqkmsynhmChercrVudymxA8zbwYbl8BkCWUGKVTkEY8WqIp51AytWy4VitZydx3JWrDZRwiOTOVnG6hkul8uVeJT1C3W5XI7LZbkmuVxO6isz5wq1Ob+EChHbbQWct4MNlfAZAllFymUFBGPlsiqetZOVy0oJdahkZ1LJSubNrKbhgqVG5GW3qAtWBS5YyzUJVgWpscycK70lx2l2gHk72FAFnyGQ1aRgVUIwVrCq41kRVrCqhAavip1HFStWbUw4COS8QEn58HCwAL5GCKuMgT1CcV4G4C4WoEoJYNYpAtWEJtaoSeVmdU2swTWxWpMm1rDsrkaT4yE4NEYUQsl2J7DOQmxnIUK2QsK8jVvAUd2AQ7oBT+oGnNQNOKIbcEI34JTxYnNKG6DYU7kd46z+MVbqHuNZ3YBzxhuI88YbWe36PG08ly8YLzYT5pqHdE1Zu9jMLD1rM2e8tTE/pMs4UiPZol2bT5s7Zetn1RKKb9I3aWYft4ZIF4TUVuw3q6cLQni6oEZTuoBDqRo0XVALh8ZQsVaYLqhlO6sl2FIr9C1uAUd1Aw4ZP+UJ3YDTugHnjGfK+QyXzePyBePF5pRuwBnj7eGs8UyZNp4p5tvDU8bL4ZTxXJ42XvW0y+FZ3YAjxk/Z/IBzzvjYxnwuGxxwWj+rll78NZGJbszze+Yr34jxI5zVbx4qdY/xbuPZcla/s2cKGrVlEVdozSJWpi+LCMoimTnXqnXbpMQgMG8HG8LwGQJZR5b/1UIwtvyvLu7bw8oF6BatKw2zMwmnCJgoAPTdwhQApmHrqJKgYIgQZEWmZqsLci0uyCFNglxL0gqXp1qS7ZXu2E5DMrl5nDVhNeqUqLMmjLOmVhNrwrQ1dnZbp9ZtMWoQ2G7r4LwdbKiHzxDIBtLG1EEw1sY0xH1HWcmoT1ICLTGuZ+dRz1qYfkp4ZApu91GckAF4HQtQrwTQwQI0KAHcygI0KgF0sgBNSgB7WIAVSgA9LMBKJYADLMB1SgC7WIBVSgDtTs1aTRi4ZjVlP6Bu4JpxA7dak4FrZjV0Nep7WuDQGHPQImGFWtjuWgjf0yJcWroFPKcbcEQ34KRuwAndgKd0Aw7pBpzSDTiqG3DWeEDtgj1mLlNA+GC6aGvX5rmlp813G6985jNl3Hh7c854JzBkPA3Nl8NJ47k8krE2ngHP63f19fohG/RDNpoMmXh2p/4xNi0K5lQsilGu0A8ZWAQitFI/5HWLgt/XLQpBN9r8Jp6dWARifp25Y1xEVEyDgK9aFMZipW7mXDA+ljxtfEpG+xJE+yJJewqYuTunOfmEswPT4m27NQlM7MC04DswzZp2YDiUagaUcna7RvXbSEi3a9hu18B5O9jQCp8hkGvJLeY1EIzdYl4bz65i5aI1SQl0i7mVnUdrinyJLebsMkp4ZHYG1zsJsoaQy1Y1Hq1Xl8tWXC7XaJLLVp6AWIR1UGMtHBrDxbXJdsdR0WE7W0uYC+vZjG7Au3UDTusGPKUbcEg34ITxNDynG3BEN+Ck8UwxXw6ndAOO6gacNR5Qu2CPGc8U7XJ4WjfgWePd6JTxTJnTBmj9rDJ+0ud1A96uG/CCfra0LL2Aacz4CGzGeJtofhQ7xpzMAHdNo+X/9LXP1MmMKvZqa225GRdf6iByM1Xpy81UEbkZxXV/qVJOA8wbX3yjtm4dmZtptUkXk5tZF89+M2liy9yJdjI7c54R5BYJr6qYYqyCr/2u98cUbmtLVuVoTVa1pC9Z1eI6WSVmjQkxYnohnQLbKtEfnYqlBLb1d74/Jp2OK+TatH8udy2ukK2aFHItSSsHNdbBoTF0BE/RepN1bHfrCNasE0aNbgFndAOe1A04qhtw1njACd2A07oBx3QDDukGPGO86mnn8jndgCO6AeeMNw5DxqveTIYpngGnjHcBbK4EhLtBTRF00BbH4HGdTMHBIRZgnRJAFwuwXgngNmeYtoEIWq9Xixvfoh60Xo8HrRs0Ba3Xs+zegAatG+HQGFEAT9HD0BvZ7jYS0rVRaALdAp7TDTiiG3BSN+CEbsBTugGHdAOe0Q141nimmC/Yc7oBR42XQ+3maybDFM+AU8ZPedZ4QO3GYcxcplg/64wXbfODkclM7OAZMBM7ZGKHTOyQiR0ysYPxsUO6aGi+YN9tPA3njGfKuPGqd27puQDzYxvtU540nssjGWvjGfC8/hVzQD/kWv2QYf2Q63Qz507dgCf0T7pBP2SFfsiV+iHXZ5ijCbJeP2SjfsimRUHLNBjfVeaatXRa85VLU79XLIJpVyyKCKNhUZi1hkVBy3WLYuLXmSzqiWfHF4XxbTDZjaWT340mi1A6admwCDz4BeOX86eN33bUngXSnqfSXunG3Pl2ffIJp9B0o1qtZ4FjsElga6hWT6AHtND0ek2FphxKXZ+ilIMam+DQGCpuSrZDb0jbxHa2iWBLBjADaBggU3mNm4dNahq6St08bMLNw0ZN5mETaUgd1NgMh8ZQETxFUx+b2e42E4yxnp3VDTijG/CkbsBR3YCzxgNO6Aac1g04phtwSDfgGd2AI8br8pzxcqidhpPGy+G08RZ7zniLbb5xOGu86p0zXpeXoBxOGR+KsId4wdo4qGndEYSvMUtxfOWxWS34f1h95bEZX3ls0rTy2EzSykENG/sYOoKnaAJ8C9vdFoI1W4R+zC3gOd2AI7oBJ3UDTugGPKUbcEg34BndgGeNZ4r5gj2nG3DUeDnUbr5mMkzxDDhl/JRnjQfUbhzGzGWK9bPOeNE2PxiZXHqxw4jxwcic8dGN+YKdiR2WQuyQWVhkFhaZGDYTwy62GDZdNDRfsO82noZzxjNl3HjVO7f0XID5blT7lCeN5/JIxtp4BjyvP3MT0D3GO/WPca3uMZ7QP8bwIqDjKv2QFfohV+qHXL8IBKhhUTAnYLJ2p0EZrZ/rzNXvpS6T9fohG/VDNi1V/V61CDxj2GQ3tqj0e8UimHbFonBiDYvCrDUsClquWxQTv85kUU88O74ojG+DyW4snfxuNFmE0knLhkXgwS8Yn2A6bfyeq/a8pPbMqfYaYOZugPXJJ95L8PMdg00CW0O1egI9oCX469NXgr8+RSnFEvxEuz7dbMkAZgBdAToP8IDz6VUKGkEdF6qCrzGH5XHrsUVNgderW48tuPXYrMl6bCFp5aDGVjg0ho5bJYK1rWx3WwnWbBW6RreAs7oBT+oGnNENeE434KhuwLPGj/CUbsAh3YDndQPerhvwgvE0nDZel+eM15RZ47l82njzpV1spoxnyojxIzxjvNhMGB85jCw9ezhkvC6b7wJmjZfDMf1MYTI4+Ip0q9qisF59RboVX5Fu0bQi3UrmChzU2AaHxlARPEX36rex3W0jGLNNaLXdAs7oBjypG3BUN+Cs8YATugGndQOO6QYc0g14xnjV087lc7oBR3QDzhlvHIaMH+E540c4bbzYaOfylPE+hb2VDGTOg5oCyCB8jUnj4yHkNrUo7vfVQ8hteAi5VVMIuY2klYMaN8ChMXQET9HSmxvY7m4gWHODUDvdAp7TDTiiG3BSN+CEbsBTugGHdAOe0Q141nimmC/Yc7oBR42Xw1HjuTxqvMWeM57LU8YzZdZ4QO3WZsxcplg/64wXbfOjm8lMMOIZMBOMZIKRTDCSCUYywcjSC0bSRUPzBftu42lovrUZN171zHdS5gft5svhpPFcHslYG8+A5/UvwQP6Idfqhwzrh1ynmzl36gY8oX/SDfohKxbFKNctilGuXAQilAZ+1+uHbNQP2bQoaJkGe77KXEuZTgexGJQxDTZoxdK0QWsXBXMaF8Uo1y5V/32dyaKeeHZ8URjfBpPdWDr53WiyCKWTloshnL5gfIbgtPFbo9oTS9pTX9rL+5gLhyqSTzjVtWG1Atcix2CTwNZQrZ5AD2h1bYWm6towS6kKQClnt3Vq3RZi3dax3dbBeTvYUC/hwhr/pH14aip6Ymjs1rtmhkanUPT6i0/unzk9se9O0EFjPNjOykV9khLoXTj17DzqU+R7/Eo/D8aDeyjheTS2XUjHGMUJGYBTLEVxwW5UY3KNumA34oJdr0mwG0nOOKjRBIfGiEGThPQ1sd01ERbHejatDRBIhrFjTDyb0T/pQuMnPaQbcEo34KxuwDHjaTinG/Ae3YBndAOOGs+UCd2Ap4yf8nndgLfrBrzg9JlhIoJQCxOz/kk9gqjDI4iwpgiCE6OGidBYLWrK+p5C4NII542HLqjjX0WGxo02bjOh8ap48F2k6y1zJ2rJ4PjtzAlKEKtfr7SAwMX4eoKCdfpCYb/WULgufaFwnetQWLQicmtf0gDomFkjwecmb+taCT434Xxu1MTnJp7lwA3WKrVuC1Drwna7Cs7bwYa18BkCuY40WKsgGGuw1sWDH2blYq1Q0Nay81jLmqvHGXMFNKZWkxDXwtcIYZVZ+n+f4rwMwAdZgLVKAK0swDolgE9TR9tlAD7FAtygBHCRBbhRCWCQBXiNEsAaFmC7EsBWFuC1SgA/ZAFepwSwlwV4vRLAn7MANykBPMgCvEEJYCcLcLMSwK9YgDcqATzMArxJCeAlFmCHEgDHfe5UcyUcm3arGkI2Zmh3sYZ2J+zF4YxuSXlqZY++C/fot2jy6JzZ3EK4jV1w0vKQu2QhGa7t0sS1nbx5gl4cXLMPih2yaA2sTANRHsE9UVfqHuNZ/WNs0j3GO/SPcZV+yLX6Idfphwzoh2zQD7lNP+QNiwJyhX7IG/VDvkY/5Hb9kK/VD/k63abtHv1jfL3uMZ7RP8ab9EO+wWRH9nQq+tcO+Ub9kG/SD1m2KCB3MNmaQOpnM9ZfgO0vQPTXDF9jYuTAE7tHhkePzQfHL089/+RXHvjEF56efuqJd5d9u+i9Bevz773vvp+Hf1b3Ry/d9zjbtEEtvO72nNdcziKsUEMoZxFWqiGUec5U7uIkrCwm3Pxn2X0n/vQ/xgv2vOXZs9/+hwMzRXVDn2u8/4m+Lz7Y+OKRt1GpKqnOd3i9hjFrGSdZZQ1fmXY3qg2/kcpTSQ3/JSpR9Vhs843CMQSpTJUUwo1UqkoK4TWcXFWSCau+9Znc//XHf+j/+N+/NH72V2sf/vKeB/7qIzc9FN9w8+91/vO7f9ZBZakkSwWJLJPbDMsb1RCKqTyTFEKQSjRJbrN4zDTN77KyOQtLl374zvfdW/LsQx9sWhf/VWDPH/7kyC/35Wz/dvye0Off/MqLL13mJKkk1fD1bNPdqpstDMIeNYQKFmGvNfxv9L3y3edKHr579oE/P7d9zfKhjz78/C9+9KWv/EnJL7//zF3Pc7Rnn9zM521XYp8kby3jeUHqLBfzvL6nkxs/MOkWhSDsho8vXrrX6vd6Z7Ioi9j286nRNKSeJPThScIsTUlCHxutZKHbu344NCaS8QvrUfxsZ34iNPKnykc0Aw7pBjyjG3BUN+C0bsBTugEnjJ/y2NKTwxHdgGd1A84ZL4faaThpvBxqV70Z48VGu8WeZd0vHozkqMUDPvVgJAcPRvyagpEcklIf2T1PqJHjYzuHRkcf+fjM9MjoyPTclTBx59DE1MzoPA2f6Rg+PT45Nw8yOR8IwmDlw3uHhyZ2TE4OzQF65mQ9dPHJzpHTE6PDYA9788Unrr74YPLh1fA162EUP9v5JDHmW5G/733YDs3/LxtRWY7nqhF9r1Oa9iZHs8z5ZB+knOPZfsgax7O2JOIxvnQtc0rXMjibx6/w9cF47XACln2HGWgOHLPjWQCOeR7bEbqnMBJEf+bqiF/9j9smLkP17ZgZ5TYNMLg5mE7IjCCj7VDbcXbmsDYzAAnraqXj3SI9m7BIu4ZvnznePn780qXLiPrv4psjXw1mLjDzdZljvrYz5gs+rEGMC9/iEathWYHC/VxWaoGekfyMn8v4uaXi55yv2LJKtCz4rEzixcef/u6OB+Kb/vmV/D/oGHrr7NZ3fLP7p3fXPLX6X08+U/fRciuj9z4mk5gDTRC2h2fPJPLnzeYSA/GS71k9f8CuyH+WUORbZkZPHRqenhwZPjM87yWmLl1S17cO5O8HpPSNH274CKPrT7vR9eNG16fJ6HKWYT4dRjeLb3T96Ta6B9JpdAMLYXSzCKPr02l0A26Mrp8wujmU0YViLTK6PrvRtYUh8nZSYgSZECsTYmVCrKUSYuEjePLqmTiurfBxQhp/PO+rnk3EfLQWnRyaePAhri3IBCKZQCQTiCyVQISwXvaahjQnn8AAiGXmD6Z3PjhdffrGnwa/9sDmD4Xrv/fyU8+98Ou54e0/eeGHn1rxsmcL1eXZtsasBecPqXJV1BrliopmAhyvkBvP+5nV70/sNusfVieMVtfQ6MixoenhW8fumhmeGT52YHx6eGrH2LFbzwyPTbta9+5G/r5HYd375Pzie2YS3cmveKxz5nakencv1qiSd+LcakRSsjKe92+WUbiXFNQKp0ZUEp6yKu2esgr3lJWaPGUV6ykrdXjKAN9TVi1qT1mzEJ4yQHjKSp2essaNp6wiPGU15SmBoawSecpKu6cMwC6cuFWYTsiMwPlKJRYVqWYxK2zqxMli5hdY1H8zNdIKMa3mOYwseBj+4MZMUbS71Y1ZDW7MqjUZsxrWmFXrMGZVfGNW06VizLoUjBkQHuyJ34VBYwWxKp6/Khll5Fcy0Q1QrmIFD1JFhIXF8DWivwJN/RXA1xwKkZts1+t8EkSf5MGpOJ4VofutJcknzK1HpXCojmdlKF55Ci/Jvc8r3G1TnQqdnCxoAA1xq9PEJDkakpADHDFriue/xhpoK9NntYSYVZO6TYlZNdVfgab+CuBrjM/EhKmGEKYQyvxaVJjChDDVoXj1rDB9hr12DPcdq1QXZMq+YxXuO5o0+Y5V9A1Qzm5Xqy4hkW5Xs92uhvN2sKEZPkMgW8jLuVZDMFZTW+L5u3gnKC0JQTptZufRnCJfUqze6JzPKp0ZB+pWs4aU9CcHsw81mEhQB0xjDtfIlXzVAm+nDOsqQru8k6EJTNUxBkChfKXr4vDe8olppYu7+Whkm+JuD6pxCHeBU1jB4e7qeMknLfB+hrI2pSXIXqyJ7MXXgOzFrDXS2FFziocIidaQtnIFQ/YW0JRZY7XC98h14xrQCFk32nqiMqwcQUWL2teIBbWFI6hr4iV/ZIGPuxbUZuZhMzQxmO/huQHAImyqpMtqFk04/4y1mL4PdVAINVtoo94cz5+zwO9XkMwGsPDkN2plG62B4yLo36owkBZhbrWVpL5NtlkCtcbzfw9Qn+ONoBLiGrpcQaRaCDOyHL7m0L4WnfbKNnaxmr/dg5qv46v5WyzwdzKUJSWpBS4T9JC94BqQnVnitOrsqFXojzaQCryOIft60JRxIRvhe6Q/2gAaIf7I1pOiP3o/Ol2xoK7nCOqGeMkJC/yD1FqcFNRWSsSb3NlY9Lq39aRFXGMTEmbC6+P5T4n9Eab2rbQ/mnd2fyz2R+vd+COOOK+XpP8GDLOBxWwV+iOa+q22OfGo/6eS/qgBTdT0E4ma1Wyi5ulU/MSkaoD7xpM11WyyBjen9TaPiiVsctG5BOGE8exmDZvdBFNm8ptgyniGM8xmOMGUmRwnmHIqy8nbKs//G8/bs1QBFZ441uFoclM/s1GJ1NFRVarSEd8Z8t5NNTGfEJFGrE37fnotnkYMaUoj1rIGL6RjC6qGvwVVu6j30+sWYj+9hthPD+ncT69zs59eC8eMOwh2Px14pFrRHnHIvp9eA7tw4tZiOiEzAucrIfi2zH56jXg/PcTxADXx/Bcs6r8D3x5mCo9CwmCkVq7wiDeq2nj+j0HhEdbBk7wopwJSjgv9n5ZP/JmCMaoQTjhMRl8VUFLYcYXj+f8Goi+nPIQVhLYWLWxAP/IY5jEYDB1pVic7Yx6T6+L5vxEzOcSOLCzkRJ2c6IX5o3oFjornd3aOT8wl/A7nIDXuGaA7VS5bCF1WOD/H9SJJqf9PqnqnRiRdNah0Vdqp9Zx15nx0eHrYotdDLuhV85DKacEaIlQKpT1UCuGhUo2mUCnEWqeaVKiE+8kQ+T2eSrSClOzOxvNPJHj+ajcWy90ET9ygrTKLDp4krwpY4gLiPpau5LMltKgPmIUXIpauJGLpGp2xdNhNLB0iYulaKpYGjiMkdhy2WLoSdiEf/kqMgAi3K6Vi6UpxLF3DLZcvWAlqU2ULT8Fn4wJpXPWXZVb9892VqliqUi2Fp4nZ7NNhq5rNXfffpW6rmi1teZe8raqUtVV4TqCNSBq3E0njDrY2yvp5gK1Msn7extaZWD8jzmegzOAg38i8wXMROpWyrWG2KwDF8xRixEoi05kHXyP6K9XUXynhiamTSjVpjwZr0n9SqYakFR4K1LB0DEG9YIUzGC/4XHKZWdDOHlXHCa14yv9GdULn4oQOaCJ0Lvl1DXwzKZcltFVGfxzrLMh2FiQ0wHo2oxvwbt2A07oBT+kGHDJ+yjPGT/mk8VOe0g14RjfgpG7AUd2Ac7oBJ4wXm2njVW/SeBqO6QacNZ4pp41nylnjaajdwI4YT0PzDeyI8eZrCYZzc8ZHDvqYYv0sNF5XtLNl3HhdmTPe3owZT8PzugEvMEk5UGtZqZD/yCV6q4SvuUqpyM8au5rH88X4uTeoXYwfdHEx/g1qF+On7txS2E1S/CLrFvUEXEP6d5MayN0k/ER4A+9QpfXzDe6ObnMgRd7cLeCUbsAzugEndQOO6gac0w04YbzYTOsGHDJebLTTcMx4Gp42noZ3Gy/YpzJc9gx41ngaavd6I8bT0HyvN2K8Txky3nzNGC82o+YyxfpZaLyuaGfLuPG6Mme8vTE/QjyvG/ACdYdXpcLqvUEufdTgLiEgP+u0pY8aNqulj5pdpI82q6WPeGVdhZxa1Ep9NYdsDSDI2jdpSm42wdeI/vI09Zcn2d/1mvq7Hr7GFJtZRJfN21FZYtAnXkzpvSMLjL2PLyQhHyFS+Sn5CKGQ3A8SHE29gN4t2ZA4rHql2pwdTi9H6xrihXuTBdLhf0fPMFn3zxTulxw1wADjZgcQipfst8A7KBYESSEJkbZ7FQWcp4m3eTK8ZSFBnXYRyljyDOwq2/h4PO4W33jTIJI6dE6reFLXQEndqnhhv5LUDUqOmid1RVySlKy3wI8ywlEkK3VFpNSFKItcqskil0p6gGqqBL5IUwl8EXzt2nygoZQ4WFLGHiyxfpY7n7UTrq4j9ZO5NOcATtbk8InjKtZnH8Kv6DmuYv/sg0MEyiAGIgJlrAiUyUXMZSgk91IFcNsZq7Fl8eJ2S2PPs5cRWZ7eq9RtVd90JI5XlKfveEV5ign4iSHO8Qrw9DpNq6QGYbLBLeCsbsCTugFndAOe0w04qhvwrPEjPKUbcEg34HndgLfrBrxgPA2njdflOeM1ZdZ4Lp82nstnjafhGd2AI8bTcM742EY7DSczFnsJWGx9TLF+FhqvK9rZMm68rswZb2/Gll6UfYf+KNuZk7HdJCSfDqiRy8nUUDcXVfPvumsgsiuKXxfLVs+uEF8Xa9CUXVlFMo/6yBdVylGjvzqk3l1+CGlUT05b7x50zRbk/Qj//Xqf+h70FpU9aB+jeOWpn+h2XzlJZ2q7r5zqr0hTf0WS/eVp6i9Psr9STf2VSvZXqam/Ssn+GjX112jrz2GoQX8hvqEuY3bOitAvyGB3OYMtgWruXc5FByzwYmrDKZc63lXFfr4A9zElab8gqQT3MUWafEwJKwlFiLFVuoQuj28/S3RdlxlEn+Sm88LMsoXYK8wj9gqLdF6YWebmwswSOGb8qx3shZnAKpeILswssl+YmQe7cOKWYFohMwLnK0XwbZkLM/PEF2bytvrz4kVrxJfP57E3gFvaid4AXiJ3AzhvVCXxovXie8lLRJfP5+GMLb0ijlBZEwMb4I9mh2XUNylYMPF99WWyt7eXcDd9i7YR99WXKch5iZ0cpRAFbVSGNgpg8w3wBAnMF4sTZMnEE6byeNHrxcJUxI4sIGRfuZyIB/ijeqOmS+5xH1SCPilDnxTpuuT+itI4RDIAdFMkknmUdHm65B6nV57SJfd5RFBWlPagrAgPyvI0BWVFrEnLQxf+NvfHhO4lUsaB6s7TJfdUmMYNEAMur7lPHfxf6HJZor8iTf0VSfaXlpJRor9STf2VSvZXqam/SviaYuGwtZgd5pYNFx0Vf2jx1S8rIaiHFDK5lcJUGjeDSNAaXPi8ys25kr0uz5XwG9HfhW6gPkTd4mb0kWs6+hAcPZPcxT1eS9o9Xgvu8Zo1ebwWMvfsPg3RwPcyLWlLQyTGvDudSYjWhUhCNBBJiGadSYhWN0mIFjhmx7M1cMzOSBiYvxZRJNxsT0I0wC6cuC2YTsiMwPmKzU7YwNCxttij9l0EI8G+mfI5JYbU2qBaCRO3Xk3gK9VN3HrcxLVqMnGczyu3otTYAIfGxC8boAFCuuN8mHkDERIByFr9kGH9kHX6Ieu1QSae9WUAM4AZwAzgAgFSxXSt7FPLex+mFoJFCnUa9XJJjHqqv0ZN/TXC15gPG7mPW5iObGN3TqxVgpCtZGRAEbJVfEi16PNot+gh1QTGUU6GozVe/AYL+m+o6dbbo/lsmygmgqzEM79aiFWYXDHUP++c//okZI6Cdq1P/dxNBgjlJPPXSzDj66hwi08M7+awoz5e3GyBf5Mq2lujoFa2TjHpIbeGamy6xpGior+HO2j4sBtUpRcwZA+/5++ADB0mojUeRbQSF9FWoYjSKwVXcl1PyvUqhfq9emGubxUpGfU2/eCcwS96QXwrgIS27OFqS9GPJJjfmj7m1wuZv4r0cvISs8omzE7mA9FQuRSixiPza2C3XOb/Ssx8rEQsRDO/Jl70Gwnm16eP+TVumF8jZH4ryXzODSTASZcoeIWQR+YLPqC3Kl6cLWZ+yJ3ZD8WLA9fW7IfcMD/kkfn1JPNXkwuGkFan0ODFKTTEi8uBaHAWMqC5/KhDad/kbkGqzivcbHJXKEytWciQEMmQZpoh8+oUIiqg4Ic0+SUc1Gfo69O+oVWf/s/Q15OWHL8Zo96dTip89d6zdFtbXFzZDrks4JCX7bKUbDOF5mD2qVJzItmwRsGu2tY0WBQuG/60crRqQ7x4ndgDcgN9kZvYyMspQWLhJNrIPNwAZRPrEPHTrbSf3hgv3iLhpzekz09vFPrpTSwtNwoZsJlttMm24nBq/WZZm7DRjQnayxpk0J0wW7GePjXgZoVaQ+WSNjAPbWtbTEzWpy/RtEEoJhvJNK6KbAEaMYJAC1E97FvF0kmISSvIMDI+PAsegBPSuYUF8CkB3M4CZCsBbHBO1E8EKDlqUnSHeoCSgwcofk0BSg7Ldj8aoATg0Bgps+q171SoMA0QGW7r2ZBuwDO6AUd0A57VDTinG3DCeBpOGi+H07oBZ4wXm1FtgMDLaB7jrPGCc9J4wZky3mZPmivai8ZmzxhvEYeMFxvtNBwznoanjBfsU5nYwTzzpZ2GZ413AdpDkbuNt4fmi83E0vN6I8ZP+Z6MxTZP9cy3h/q4bP30GU9F8w2Y+THsaeO1+W7juWxwlG39zDZeErVb7XHj7Y35GbpZ45livr2ZXEL2Jl0mVnvscM74EZ41nsvadVn78uyM8YCjC6Z6WeATgol3e5M/+jnVS1lXvt9HlDJI7dgztZLZyS69lyIcc1OK4BhODhwZWqYAB3bjNnxgH6n87OCu6347oFCmkJPiqbwggNoGhoi5akS8Ha03Ctif+FkqJp7kwM6TNUY/ZkcWUB2ZChVBL4xuWDTuc8eY5PeOgagAfXDzhWz6KiP8UnOyIBMg8L4C2xwv2UwcUwNF0ujNW81EbTbHJuXB1zBI8eGnlfzJvEZ8NxXnIp48ob6tYRu1wHERhFvDPAQt0cst1iAkWJUcKu/o6pp4yc0StaUtHosGC/CiwTUp/ZcvxlsjJD/3vCCgCXX6q5l9GoR9M08rofYgA2pwWVLYAL6s6+YaOO7lXl5tRAiOj6tWt8nZiCZNNqLJk41I4B7hTyXmykI0LR4L0SCwEANL0EI0pM1CuDxbiluIkPiL7xsQzoMvDq/jHr4oOSUW/o1uqE8XdVdT5ys2MQ83Qjl0PrRVgyOj2YzQZ1NyHryLLTfHS6Ysqf01qhkbPWrGDlwzNgs1YwtL5s1C3mxlG9lowkj3VsgnTAQf4xz2sKQbEy3SC22C3fLOzZRcoE5ItkCaUGdCVeZUjWpsNQRMaGz++xlxXSPhHFt5/QIEzOKR1KyGc2epuT5ecr/4INYa8RGnHL6TeYfY0KznLXdEwkyfsGml6L+BOn7TkrarEm7RfpWLiEb0SbhqVjk2ks6uBfYtH/xIqc4aS3XeriqDAGUFXwbfL5ZBjuqt9hhqVFMyuJ6SwVXUEbBm1WAAtF3JDwaekHB3XqW/3LDzZevJ82VrFOR7vdDd0fcHrbfFV5xbfEo+Rrm7VZAmzNNmd3NS1NlRRmBXS7i7ZtLdrUYXZbLurplDzZZ4yWfE7m41okrNtLtbHS/5S1eLygaPi8pmiv5rqBXnKlThmz0q/HJc4VuECs+drohG3OUi5e7o+0Fkrlhf7VJ1Vluq04NBNzk3KvZCeVEUXJBH8fMF9+tiwW0mJuvyavgmSnDZNV+TjOA2eRTcLlxwm4WCK7jc3Y1yN5CXwNCC2yyWLtYI7SXu7GiyBJe5izyX2LsLpv2ekyC+P5er6RhxkKVZLuCt64v7A/zbRYK6Lu7PRm41uTWdF/crfpzI3cX9AeLi/lydF/cXubm4PwjHzHzXCYyZ+IRVUHRxf6794n749SsGN4jphMwInK/kwrdlvh4YQHyTbYOY9U2BeMn/sqj/ZmqkOWJa7YAfDlhLCFKQMGaKn74qUzdmebgxC2oyZnmsMQum0ZjllaoYs1IFYwaEh2/O9ukwZ1XX2pwFUXN2l7o5q7IU6l3y5ixX1pwx3xUGY8Y/6NZOfGC1g7j96oDzWXnq523OZ+AzjhHns8rUz4McO5QbL13uuWplmVUtwip9IBNQLfKAqiOdAVX171RAVa07oKpKf0BVda0CKnSsQXtA4yMYGSCMiaJzy1Y3JlW4MQloMiZVZEUsnoqpYhfQ1VDVke6qyWQIBYl+SbKUnIGniy2ziSsvubay1OfmakuVKtVcYdo8SCZ6berCuutgvHQ7cW0rbM2/tjVgqvcNpM/74gpTCofGSHcpJCzSXe4CSrflj7mynav32tYAUR2MynYuKds5tGzPh6K7qS0hW1CZ/Frw+7Ch3MZ+lTxLOP6I3FfJszijj8RL28FXyZnR5xLxe4RQyoNpV8qDuFJGNCnlQVaYIjpC4iy+KhxMd0i8M50hcaca0aNOaYqiIXEMUs7xrItYQ3Z7CIk73YTEB+GYHc8OwTE7HSAUa1FIHLGHxFmwCyfuQUwnZEbgfCUC35bJMWYhOcbbbOrEOcxUOkzkGMFIbxPTyhaSBwhBOkQYM0XR7lE3Zp24MTukyZh1ssbskA5jdpBvzDq7VYxZt5toOYJ/fdmFQWMF8WC89ELSY5eOM/ufQB/yUc9MehDG2+bD14j+CjT1V0BYT99F6+Qhc0UxGDBzSC/RKsomL6yTXUzqAgzI8awdxetA8Q6kniS4V5bNmmpLCWWVFSfjwdQgnUzrTP3MU9DMzotSR7U6ndPq1Dkt29ix2M/6xFwpWisYRfwAEOgmjvpF47V7LfB3MpSN2pw1TvZ8TWTPvwZkz2dDIY0dxVI8REjUzZIoCpnmJHsXDL6cjrsHvkcGI92gERKM2HqygYkF9f3odMWC2sUR1O54rVVsXvpB14IaYx7GoIlBxtzFsigGWYRNlVzyxkQTLn2KWvIetMW6+KTQ5FuMNylckEvha+nVGNCnWNA+hjJNLGi8Y8Fd8doqC/wTDGUPpYkM8sbhUCrrQJoG3BSxDYExWK4wlG6Cjcvha9iiUYe82MYulpe/xubXI5YX3tGynnjotxb4FxjK9tisNU72Ak1kL7gGZGcCyl6dHfUKPWg/S6IeyDQn2ftAU8bpDcD3SA/aDxohHtTWk6IH/Tt0umJB7eMIan889C8W+N9TKx9SUHspEY9hY+4VsAhp1kd60B6bkDAT7ouXfk9c+Y6pfS/tJnripT8QFxD30fkAaXHuk6R/v8JAeoUp736S+r0icSt9UUz9XoT6fTT1e+OlPxFTv98N9QfYRv1wXE7q90LTgWAe4nHUG/X7bHPiUf+XVPQYg82JGOegQvR4CPLMlULbgiuuQv+7ZEgcQzMt/USmJXoRvw6pkygU6SKyLRE224J76A6o1UzGBdoAK+fCkskXLwt43iyi6rYOosTV4e9BTUe6M0p4R4d0dnQotTdELE2LNOVQiuBrRH9+Tf354WsYpN3MW7EOUDRWjjvjZTXWyZR/RxNfxHVge6n545tjnN2JWNq3WmP47kRU0+5EjJdpwuofuuDQGKZ3yTCd7U78HUl6jLYdlGcTOyi7hm+fOd4+fvzSpcvI3usuZPskjO3V8t+PZV3mbLdsZ7Zb4MMwsrOLVFwstL4a1F+xpv6KCZ+drhxysXg9V7bFQ+p+JTd1H/qGBX4DtZ4jNJQphBEX8kTlCmFyuEMuex0ohEE6yEHosVJiRlFwqSc7p17+mN7o2d5T0RKbcs6BwY7zoQ+yEJmlj9UIHyGoEfgaBiny0J38SHO3Kw8dwT20Dxp+Is0fUeguKkccsr8STf2VyEUg3s2TbezMmocxT6hKxRB1tDD2cSQjFg991oLuooxTFKcrY5w6hcYpJmecOrlDLusXGyd+JLtPYj4xnmnqpEzT/IiOsqapS59p6qL8cbkmf1x+Dfxx+ULt6RI7MBGF3cQuOQPVJaHHY6r7Ybb8B28/LHS/BX5XejZeo5r2KKPwNTlzJufo5jVxTuzoqLXLXpo4Qpuxnduw7OJjB8btVXSptlcMDVq1F7NXOPrgT7RRl71RTKpR7Iod52rIDaxx61atAnQoRE+S3svYPSkwbsczKxl7m3oRa7clF6/IF7F2wXGhlOt2Ui6BPIA36bFzyLYhjLM1IWUcMvZRo3MIQ6JJjGtEyt5jGZF3sWzvUWN7L7rhuIxlLaCAMnN7ksxtWOuKuX2owe5lV4zQLSdI9eg1IlXMJFL1S5IKldReu6RG4E9WVv3xsi9ZqE/gqH5Ga2IprcG2P3gxoJ+KAfviZR+2KDvDOBHgvNEbsP1EhpTjRGvgawqz74WaxiXrF1hp7lO9QtYhCv1EznZAFVs5ZzvgHM4AHBmazx2Q/HxG66bXf/X7Je/9ssJW5YAwwTpIXM7M+XzGYTUivgG9pGrwIvb5jIGL2OczDlOfzxhUHZkKFUEvjIJYNB50xxgOIDBI2iFj7iCZj3z0E7a6C3VrIJJI2tR/paxYtSYrVu3disX4VuwHnqPWbWj8ybFi/arYylasnzWqYGSoFeuXtGLXv+bbG7/0zeBJhSqNfjdVGtWEFVO0FZtQKzaAWrF+1IoNUlZsQHVkKlQEvTAK0i+0YjRjOIBiK+YeMuYOkrFitvUAZsX6WSsG5payY9yFzk+sF15Qif4tM4llrvrQcs5UOcj/JoJgK++RWuyC+TnyCLDg7EqwipVv8eJZ0LaTW7tV9rI14F/gA351cyo1eThWdBHRaQH/mnirB39LatHhIw7PdklxiSjhQ3NhPbwSSqlcWA/XkZXnJgdUvozyyLWaPHItfE36HFwnBMD01cp+ln8djT90JH7tbIK1CJ9K1CLsGZ7uPDE0OXysc/iOyeFp/MRlFH3Siz7pUztxOa+Ul1GsAy5OfMbQJ92XZUaGj5PaIKrUdA6z0mbDzekvpKm/EHztMfQWCe9aYBu7cEOiPOR6YzHC31jMsaDr6A1iguhVmohelenvmvTXoqm/lmugNC0SSrNZs9LUfNqC3uaqqkJtbysCnYbKuVdrEsRuIXk8JaLpHJXscZiYpv6u6fzkD+1YHDpEnxGSP4ZiIR6kjlb0UULbrak0pxu+RvTXq6m/Xsn+Fnp+PdSJuSoF3vbJWfo+Ih/m3fLaxi62vD2qx+7IOqj+eM2TFnQ/RfS+JUP0fp0d9ac4KObtcTSd6Ia3A/Gad1nQJ2neUgSKErPa58aSqpws7HWTagWOxUH0QSKTrbiV5OIW+cN4tnpQ0xmKIyw1BgEJYU7guUROYMfw1OYt23fNJwTmJqYf4h8tOFKKrq0PP0QeMCjlHjC4zO+mrxS7Mp7/fn8p/+8DpZddDErQhH5KqNegJv84CF+TK9a3TAyQQV6Nefk94vKxbkK09tLxAXG5S1TqGrnoY50nRp1Kbv18EzpkLjX20tTojpe/RUyNXoIaEcEBdQc1bJUJMtTofvS2SafYQHyV0AnkDMOaUrth+NoC5TvDEu71kuopb5Bl3sndKag5Z4E/TJN94dK+aod4dkqE8dxdlChVFdQbL/9/PBfTLCMqw/uIU9LdFk/+qyo1BAyPxmtOW+Afohkur0riuKiXLDOWj8AiaFykr04p65/c1ClJ7eJ7iYsG6V18t3HRYDzre2hkNEBHRleaKsRGPVRX3fw2vaVYnHXZ1dC0RkgRyAo96VLbHv8THs8pN+G5xl0jZ9CKLOIivY6ZUacWi5tF2HNGAxJGO3nSECFelB8GftKq5Zyl+FWriV+18LUFSm/XpvlUWyrswFPEtyiksakDJbfA14j++jX1J1PwQmvHzRJx2pckw3me245xA/qaegv8y1QtQYQ+CSh9Z4vtmDp1W3mqLoAYVaemCgfbqHinZcv/2RrQ31EHX9doOvi7Br6G39nCGHLF78e6uO3Cj0ckPk0RiZ+kFX7Rj5+lI3i6X6G7NcIYMocco97bLvzr1G67yHFx28U6xdsuripD1ef52vI/WcmM6FviRCgN7NSkgZ3wNQySG0l04Y4O2MzVmgKF1fA1DJK3TPVRy9RIfHm25zAxQpzl9VqJHVG3XJxbNcHIUKvWLVktveVnsw++6abWV9xt88ovilcDYXCOtVeNiB1otXQPWi3djVZL91LV0j2qI1OhIuiFs3WaGOmApv337pT1dQXIFDbbljqmWDZRsryLa/iX54nTwxHiEoK99KUqxDdXfMkPYjE26+oDVuJ+6/hHnIN2XE2BxMC86p3lpday8Rwz/Cg/dLpxGzXRqOirLlH72WMbAdFGPvtBSzCy1zODiUkPG57qR+7Z9fG9y43bqEVbp6ZFm+wtB82a+muGry3QTezN4mXl8pUelpU38ZeVBRb4amoBF8OvKmFyO11Cwyt5h0wXX1XXiu+QwWr4bpKQzS5eEBajgrCu+PKNngMlKpDuFt1e8aoisk5lv+RNJVbFmZg63eLLPeS3AIhrJG03T8tterEC1KlQpuHHtz5td4zL1S5ZWOKxDBJjYWsAbQdneepRtcfS6JuwLttosWnjALfFK7dawG90CdzOBV5uJZGW30LFFfWa4qp6+FomZ6MjZxNV6K7erJxNdfpzNtVuczZOZQCXXqOVFW0s8doIZbC9RvQX1NRfEL4mD7lFKDTtbKNguoSmrQ55P8p/v32ZutDUqQjNMiZeb4fLCfIjG4DJ7cng3yEH7dAOyNO/nZADP3yN6G+rpv622l7jlHssP8Na/HY1o3s/e9k87k0iqtjK3iRCHLDtkPvsMJVH+2X7gT9/2z/+7AV3+VH5esKtRB5N8RLZ+9A8WhTNo0XQPFqMyqNFVUemQkXQC2efWJRHU0xcR4TLORqQyaN1SKp+WkwNbxG8/BzIhhlk+yo09VcBX2O+laExnWEbOxZZp9IZv4/NrwNZvoPFwA4OJzvilSss8LdT6Yx2nLIursTtcH8lbkd8+bvE6QyMHjskZsTdU+oQ7Ck97Pnr0VQ6g73GtENCyTpYoe+QU7KONPrlYjd+GfW9HZpWeRGSVnipR4TMvfbgSUB8q4BO57Zpg0w868sAZgAzgFKAC1SuSJlf7x114Hnba/UpJufwIxJumvrmR4SOIaLx5Z8Tfwcw6mFLJKZ8fGJ+m+ZvkmMK/7tELPj/qo7bB4nKI0pltgX+FfpCBvqLFRyJe1oqkolqimSi8DV5SHHcGiE/FdhpGx0vSvw7IHXETniHaCe8w3l7cGLgnVRdVp2m5W0dfA23iF5TDznqcWJMLkej+Xtl+Akb0ffKRI5K8asMiwFwwXwcENcFqkdI92kGywNgV87p6Abcmut1f97dNe8dxM2vMeJu6wh77B9MyvHscOrnrXyiSX1eoeECca08cRyYOC6kVLBnO28tjBgqfKrFMD46jOqOV/zYAs+hgsku0Ykl+Q8QReMV+WkuHfGayTFJ8JWFu9MS7k8qCLct9CFCxxh9jxQdOVLGNyq4Tgo3dCrnEInrxToIjnQSUVE07TUSUTwq6tQUFUXJNaFtK/njia3kK+TbOTQxNTM6zxX83k/u7nA06yHujZ1IfQB+42kOsiu9BytxeFjpFtGr+88eP5bmzppECGvSyVqTBOIxdXvRZS1phgl7wRy/BGPGLy7u91Qu3Il+YiVG1fN20pv/nBE4X+nElh1UafM8hVP/uTdNUaXGSBgPQr065wo3B2BQE9elycR1kysdRkUp19MLDZB87WcvEQkCyDb9kD3aIEXryQxgBjADmAE0HZD+IipnoZJoeYiqGPVrqhj1w9eI/po19dcMX3N4wjadySnb2InP3Po1pSv98DVxfuUuycMjAMP6uYN7SqbiOxb4NBNmwuoccRlqG1rJ125FbIlnftWCjmQt2PNoVJijFFZZP2/iHVIFBKAkRIZjaP2QX8yxm7hfMKn4ogX+ZupoRkzpuAHoFFNZcmfKB4nGO1FS8Ta4M0WdVMX6F5+na+L3/A6r5/tREfV5FNEKXETbhCLaTlpDeUvTTkqubWtE/tgOOBCGDZ+UDL9NPxj+tMcr3i3eKZfQlia+trxXgvlt6WO+3w3z/ULmd5DMp7er0BOI+3mGQcR8abOwn6+cj4uZ70OYv59mvi9e8ZQE8/3pY75PyPw2guQ+JXMBqELVAB8gA0ufgs/Y71E09gs9xieAaFCZeb+Sp+MnjT+RSBq/2k0ia3zpkkJe13qCnDfyL6czu/zM8nIFQy0uLvHLFpf4+Lb0M0RxCTTziSkpnOPcn/Y9iv3pP8e5X+UcJ62xbYZJt7VrwZftLDeyTZ2qlLnmoI2MY/3uohWfLQTjRStfFjusdnIRKL9Osbl0gkTd1LIsoron30a71fk9+f9Pwq22p8+tdgvdao+b+6I4uZoeW4xI5K/97r415CcjLsZ+gu6E68tuN2FlD3lDlI/KiPRQ++54aqA7famBHqGYcDkuolEfL6X3NBF690F6UZa+R2GpJyUmXSBxRHxmKqope2n7XADXcLwk8T0Id3mRefBfAqskP6GoZ4YTct/n+Zo5/INFy4j99w6imidGVPNEiDI2Jtt1BDdwErv6vVIlbvLGTUohukGlmtJHNGOQtvJaGoOjwOZCxiMxWwjBEfvKPCKv1i0RDylWBPol3Fq3u2z0/GRKXOmwP706jA0EmWUXbal645WVEvFTNH2OsVfoGPtIw4804lzgRLu+flsYQMRPvWQ+K6ZQMyZlJSROwHS4SZVFEIHpoAUmEq9cLVaLqBu14H7fFIyL/MIpYUDb0ybWRbhYx4RizbXQLtZlXWS8R9ebthOe2GejvXUi30lokDnbqJCL2E9Y9Y3wNaK/oKb+gvA1eciNQm61LeCVQ/uvU7tyqM3FlUPXKV45hLPOr4l1fhnWIZbOSlEepKoGNmmqGtgEX8MgeccDrOn38m/d6/V8LdEjKtcfRFWxXRRw4+WzxLVEUclrib4W+eYd//ixDzUq+K6oG9+1CQiDx09hPoR6sBh6LVEUvZZokLqWKKY6MhUqgl446/XESAfcMQYHPOgOUO1aonTbNu4C5TBxLdHCD2h+LXGHUQPqj1eeMGpAXfHK0+KkUxsRPB+kZtFmUrXdek39rYevLVC13XpxLVXl3eh+C5pvSGAc4W7lVG2zoM9T2yvEpZj4zVQHlfafrEYQiDPkyjeLb6Zq5157fERiPh28YKidCoY64pVvS/O9VAqBUmfad5E7039PVCd5E4X7k27t/EVJZ7pPut2azpNuirHTIJv7xrLphyHl8Mw3k2k/mkR0cdIt5uakWyccMx7GH6Guo+1UvA6kHXZBHE7roE+6cUbgfMUWAcqddOu0n3RbSzDSy02LDKm1QVGfelI8bFambuK6cBMX02Ti6Dwcs9sPhkYl23o07XDI5P7dQw7oh9yvHzKiDTLxrC8DmAHMAEoB0nsGeNbl8IKvt4n+rtfU3/XwNYdr2K9zMWobO7HxhRJS8ZIzzn3m1h84i99vqe4qkovfSLxqtQX9D1Qxbxty8KuN5QubK/V6sKIA3+2LCHf7qIvUjgoKyinpkOHWv6gfZLFGxiu9riq2oF+gTk+pfPQFdImpqpcjX/vjlT+RO/LVrrqNZOXm9vH7fWkBDnyV4aK5XyiabaQNlLcvbaTMAqN1gHQq+7UeB2vzchxsfnftFerYh+27j/Kj3o9kUPQd++jkp1d8pW5K40sVptYhZAh97KODZsi87cnOHPtYtqSPfdx6DY59RJXILSabx3OKVcvFxz7ayABQPkppg+MiT8YQQRnqVGPoaUrCqcbiVbULcJC2zLDqrv2qtwPYVmrpOvSBR5cxwl/7lOhGSKDtIhKiUHo/UUKRtmWBy/sgRDQSHYxhBKEH0otaTXQphHtSYhIRLxnbCWh03xL74A0Q+Zu4O4RV269J9Wo7dYFm7NpcZJKPC27UzXo26lm56VsiqAAl6ka6KMFtBxv9hM1p1ZR/abWpDN5fUFN/QfiaPGSrkMXRBSx5jYTVSl6jLkpew95KXiNQWvWwrk1SVNKSGiT626Cpvw221zg1VFVjnj/KdR+xYer9G5LK68IYcSlsVG4HlKp4/YvVO+//UM/liIItF8eqnK+SbwBcdY71sBoR34x6vUG04jWGVrwepipeB1VHpkJF0At+S96AO8ZQ1+65AmQqXqPX0tTwKl6rpoh6zoUfUG+8ataoAfXHq85fwwER/V2vqb/r4Wvp/QAJ6FO4x1KFLybc7LFE49W/saDfQaVdiOgNLwdF7QP1kbFDNiDOkKsuictBO7nloEcl5uPm0xlVj3j25suIctDYgn9Q7tqUHLYRJYftbMmh9ZMpRxxK/cxxPrs99ZO5ZuAOnKzJ4csUMoZfSUchI5713KypBH4zfI3or1NTf7bPrzr3WOCim7/H0k7E0h1p32MhToi1a9pj4d53iO2xxODQqH3+NgXubRaG5/QY9a7D29ZhVdX89zuy1Nfh61TW4VkmHYRZaK2MCHY+UzHLf1c/wgJsIO9ESLX1Sc2qzxE7awDnIBXcHCJqrBjT0pZ209KGm5b9mkxLm3y1gNJ5ixxEc3Wdt/ChT/zpPHGh6E7wFQPj/w8SocohyBwmbkggujhx0eHmxEUbHDPjicGYnSYD5EfaRCcu9ttPXOTALghTtJ8+ccEZgfOV/fBtGxiiQDmI6brNplCM6cqJV33Xov47UHB2TeXy4lmrETmq+Z3+74vXVMlbA9AJ5+CMbbcfT/GnUlLc0fzaMur/qmDBbhPSqIOsh7jN5iB5m3ovEkVBHQpy3mYnR7strMSPI2GNUDOfxRMkMF+k2QFZMvGE6UC86iWxMO1nR5YlZN8BORHP4o/qZTgqnofbOT4xZxUMXXbhg9rQJx3ok/2XZfwT5a2SqvJrRiRBTJEjEskcSrogtZ6zwvjR4elUgdVDLuiV8xA5W4eXyTG1pi4nfTV1Od5r6gjjQHXnqaaOCtO4AWKWt6q6vLVU3YNfYfHaIbcS66D669TUn+1MqWKBirUMG+Z6supCcXnKq8dfEVSVnZ9Oj/UaHXQxlvxAxEXD3W5G30uWScWo+4N73Yw+ck1H3wFHj91RneX5ClgXFroXt9Ddmiw0l1gals0xvlXsTfc1BbvTuWhW3PA+zO4MYIvmI5By+L5AN7sv4H7RPOhm0dwLx4zfXHyUidyA+esVRW7d9kVzDHbhxO3FdEJmBM5XbHZC7pqCXnuUuYtgpMav6PbrgxokTJxi7Umluok7jJu4QU0m7jBr4gZRahyBQ2PilyPQACHdHWG7O0KERACyRz9kn37IAf2QEW2QiWd9GcAMYAYwA7hAgNTu9CDvxvREy8MmFZo1auqvEb62QIVmjczEBiUIOUhGBhQhB9HSDWuTuHoc7RY9gkMUtg3Gq1+0oCep6UaICmBv514K8XMv1tJGJS4ClVK7yQChjWT+YQlm3IMKt/g81G7uzRvV37DA76WOIfUrqJWtU0x6yK0M2xfDuFL0VuI2B5lzj5j0Aobs4fd8/wJ8b6wSF9FBoYjSKwVXch0h5bpL4fBVRJjr6yIlI2LTD87pkOqHxWejJbRlD19b3i3B/MH0MV98z0yXm2Pfh8lzx+0s84FodCgk1ds9Mt+2H8tl/ockvoco/vDJHn5x0+MSzI+kj/ntbpjfLmT+IMl8Ts0icNL7FbxCh0fmd9A+YZ75z4qZ3+HO7M9vzHz82pr9DjfM7/DI/AjJ/APkgqFDq1OIeXEKsXj1X1HX+PTD5vKj7tC0KYtf49PL335or3CzKVuhMLVujxU73TRD5tXpi3IVO+3qJeaRtG9oRdJfYh5xWWIecaeTCtXiuq7x2Y3VhrsrOJCXbbXj/1X/nUo29CvYVZmvIB+RDX8GOVp1JF79vNgDcgN9kZs4ysspQWLhJDrKPLTtEmIdIn56kPbTR+PV/7+Enz6SPj99VOinh1haHhUy4Ha20ZBtxeHU+ttlbcJRNyZoL1FpHBFnKw67uWCFXqG2U7kk9pSWbW2Licnh9CWajgjF5CiZxlWRLUAjRhBoIYrAvlUsnYSYDIozjNQnM/FCJ8RygEN7N/FjxFfEpVddbgSXvtUrSt1a1U1/GDhd37Vc+CutelWvtOqF9KIEt8uNdEl9kBU/80197h6NqHsQwQV0eCNHcHviNe6+UywuQaO/U8zKJrhmrI/6xHsMFdze9H1nuE8ouNxPBotoNMA26odcZ0RzANKLcszMKWjbx66TH2Rd6XyrR+feVE9qc5CpoNLYjQWGVy5aWlezGhVXsQLdzFGgvnjNDgt8DfXx7V7unSQ166yPx/+Eat1D6UuE0peo6ox7aZMxP+PNlqL8GlXGHo/KWOJFGQfdKCN35wMaFyKP3a1gzHvFxpxcyNmsKNek30TlqyKQJtSl1N3uHJSE3Sn/EiOwfdACynuUPsIu9MPXUEimGt4PFR4VlV0jZ5wjETcb5J61O2wjI2fTsGafZSN+riTxYlYeJiWtD2oCO7LD8ZoOccqgT7wYH+CbmYj4a5cS4Dv54J3isOcwzzt7W2gOUoJ/hFqF9uDlt4ftpcKg0T4mOwoe9olKkI/Yy3pt0+A4e7l59PJF/KTlRA+zSdkjaq4jW4Ght8BeXLG0m84dYEOxLiTarqJvKTINo8iWSihinwCRCB5k9VsjOKlgp7tR/2D7RFkqSiMCmh7ubU01ExKpO48rhKx/8nLpLYcs4ktv+0m77ie9XhmppVGFpa2Ue7eC7PL/qrCQBAArPUSqr+Fb+XvFVr7fDVvohVsvZeUHaNm+BqLbLxTdATeekBOSDJCiO0hGpj0SEWKvS9HttUT3EsOdAYl+RVN1FX0NCC32w642bMTSTW/Y+Kl8OLlh06e+YZMY6j7udk3NHy3Adk3Zotqu4RzY6YN9U/5iQEH9pdRqwFKr4wrWV5zsHEDEpZ/2BwPxmj8W+4NBNxpD5w76KaNymIof+9JWJ1imvY7Zq1VhRPMopBcl1ocJGbTi1fIeBa8h5jid3vZTuTwyvd2tMMpeIvvRTYUjoL8qTf1VwdfSm+4FfRJxVpWmNFIVq41sOx0Ts40dOzabymR/FTWpiHWMUc60P17zPy3or1G7ir2uRTuilIVLDDaStu2eHMMi4j4yIkaLXWKEOO9FidefPuL1ulkJ97pZcvVB8lB7Zd1kGlzlvg6puCdm+ZzNCrPp9ig/7K0e/VCSiBCkFxWTgfRFGdfkKEqMPIrST3qbQYUYFtha9zHszfwY9teuYlixdGmNYftlYtj+JSVddAzrSrr2EsW8/SBScO4C2FKIKZJvvpG6DaSPvlrEtt1kw0S3ETtPjL76Ag9ju8B5wGZgkK9FycjkWhCEPm50FCoS51r6yZG9DrUEsiPr59qDUBlRDA/nxS+G7yOK4QfU1NGvXgw/gBfD92kqhh8gw33GbFDqOggJK296qfPUADKqH7LXM0/dffOhD61YPYTm0Hr50kPd3jRg7Vj9m/ztTd02t4UbsX6+vvSbqi/96dOXfu/60pfRF0Jf+g3WF1uejSDPo7HNEt/DUdAmxbuvVqhr02D6tWmQ1Cavl401XXz6ltGhO07dMj578ano+KGhYyOzj3BN3TauvB+2qa9m3nabytvu9PG2e8F426fEWyJPWqkpT1pJuP905UkrxXnSUKfqCpzMk87H23dY0OQ3w/uoPCme1ez2uCbOXlRF7DFBfWraEnMhfDbMFfY3QwDUFjDNBoT7mIflbr4f4O7+h06I7+MfEJdH8pNMoVOGlEcOwJiIqDvoS9s5vBWGncOLkefwJPbwLesmluqjbvKI9PAHKS4OoeqFCPIALciD8dD5BSgRWeElD3nUTR6SpvEAKSKH3eUhB1zmIQeAJybPsGCHIdh+e4joIGJ7jXPRS+gBcVl5FyJufio0mIe+JLaaPW6uWOrl0QCMiryM3pnjAC27kvciMPe6X30wL/m/pf/h1eN9DufGHUAvt2wz9B5roXqOunPe1bKkh1iW9KmG6MrLkj58WdKjaVnSRyuMx5VuI70s6eIuS2ynewAjhef1Qo+qqigIsm/kK+nTFvgTKLjL+LIrCV02pqTK3oqNuin9JysyOqmFYUy1wAS0fQ1/E+VjEgcHvRY6/2JRlXV0KYhgn3BB0St7nKuL+z360H+jDg52QppQZ49V5iR1MKRLbA5ibupIu9AMgPVzJd+GfEHs6LvdOPoeHoXAuAhF76HyDdG05RuIPfgeobqlwRj6yei2izzx2iOTOijrVDg4I3E3nfjGkRXcG0dC31oMN450QfuByWCXRxksx2WwWyiDPW7WuHRAHlG9caQT9s3c2gppn5DBLaq+GaCs4/vmF8TiNOBGXWnvGHFdtNZNnzIVno5EltzD/GTbzyUiF6/FcjsMK8kfJEvy+xWSyINCMzhARi62OjRuvvI/qMjFtuVPqabKnCJo5GK74i+hsaV/RyU/Ygp2xpbgwFyk7IWn/PV3rV9c7NQjPpO5ins7RW2u2NBwXPwhoTDTR2V7Kfr30ycy0lWBfothezUR1QuHbGVzLhJelOr0WKrz11RUcVAp/gYI2HBlVYd/90ptWKw6EqmLBu6yo7bBVX7xkMdwpluQX8SXHbG0LTtuNWzZEVFddsQkzHiXS9Wx1sulH0O1QxwnNnEvrKrd5EoGo55DavJqLcK2d9KXyWHcFru3FXzfuX0BLsdabpjj6BWcvpE30Wm/HKt2p2SOi/6iVbeS25HQWetyrNL3U9d2HlRIgNlWjpiJkXV3Mb5HkrgAKirOsjVwr3SpjbjKcBzymOGIUfTvptIfeIYj5lHhKxb8TlU6ExkRXC1DKZbKnapSqmOlRUrf7o3Ms/fyN/Sy7RJsFc1anVjSm2wQrz3GbPRZm4GpId24DR/St7/4q289t3/L6YuPRyeHJh58iC2Ne/LQ8PTM5JilJEc4WpQVrz2VJE/tCTa/aRUTO57kJJ9YlzLV3sPuHQasbWL632vxbeLcJ53bw0BtApioBFlRAdfvOlU0ABpyaJQbrz1rzfIufKg+zlATfR7jwPritTMsyXLVFH8Zy34A5WBaFpxyckJz7t6yRKOfFQ0AlRIOvBc/cR9yTlKIPWpL+C+Gv/7G7/zoO2Jt8djR27f4y97V27E37R19PffHL3/lb45fSntH/xKM3Or75Dsb097Re14+cMNbaq77uYpFc0hOEVG8UaymWfnqxRvFePFGkabijWLWsBWlfLWDGiVwaIzLLUmZcKSzErazEqK0KgOYAfQGyI1PPmk5kacZz50F1QAZThY7HOr4QBF8zU085HgSQJ/kok+C6JM89Ek+nILjWUGqcMrxpJCJ48J/yZrOSsk47gQeHFVRcRx6xqRaKY6rBA0xxBoCkU0iVYOGGGKIQDzEINaAhhhiLYF4kEEMgYYYYphAZC9nqAUNOTpZFQ9bX7Cq/TzO8jAeD9/FgQ3Ha7/Eil6dvni4zin82amXvB87yk7R09FNmAhKFKdXoB6U1OFBSVhTUFLHSlcYDUrq4dAYKtYLvUs921k9wZYMYAbQMECHQtTptEJ1UAUdHVWlooCk9f4h6jCQpKyFcZRrwcM3WNA/ZtxKGA7T+bBOIpLj2Jk6uUiubqGIXkSsSL13VJTiIEKiBsIUH2WIDmxxA3MOpBG+R17t0wAaJU6MOF+x9WQDEwvpK+hkUSGFaseIaUM8XGuB/5YhShUlpmHIDOfDIhgNyMtwUYpBmK0hd2Fscs5Otz4eDoh3YYoQWlqKwjvSVBQP54n3YOqJ4NOnIMj1FGOKoIAhmD7Cfux1R/s625x4tC+l9hOzYXM8Q8qcYy+GSxQ861PjfFYKlw2OZ2VwAeB4Vg7Vw/FsOeFyKmzqklhgfkJdnwmnM6/N9WIZbCRDVKRRE9uoEY7KKYPADjYxDxsp6W2S8H4rEOo0JefB299ZEQ+vlig4aPS4/5iP7z+uuCjaf1zJknmFkDfXsY1WQpowqnadhIHgGJ0moYFoJA1EE+yW5U9jPLyJMhB1kCZUhKMyp6rUnBjvCwMCy/8SXjBbwepXQQRsuCQ1xZ79dWJXh8W29ZSrm49t3yA2Mw1uXB3HNjXAURHUb6RCujpU3evT9wnXBqG6c6fr1RQzqtEE6UWpVYNCzkxKccJgdbUgi4HDaAzNSTiF055wCuMJpypNCSeKNT52qUdLgmihr7jqzABmAA0DxPPR3q1QmFgZZDNr+fBpbHZViFPOpmL/+Z2IH1jQE9RKPpzGpLyLSoFMUj4DmAFchDl0zbbTRTq3alGlczku4BHV9E+2cNH3JQv8PQxRsiFjSQ9B5npdWFmX6VzbNgk3pfgB92vcOsEa91FD0rlhiQXaNUnnfpjK1hTB5osjnZtNpHOriHRuGKRz3ZUGM3VSgBxMpRQgB1MrBcjBVEsBcuD1UuVsvRQgB1MxBciRqplSKG/2w4nhM82nyqIJygYJChWw9hkwAOdIHkHZwmRVrrJZp7P6X3aV1a/ymErKTk9WP6w7q/+NTFb/1QYSfuKaZPW/6z6rH3Y3p2w0OZkNAVNhGBEMqcQ72RDBldfNFkY8L4gjnio3Ec98AuFHhkQ89q0XvDomjKp7Xfqy+vVCdW8gl3Kudj6yWdWgc/5h2DcmJi4VpwqksDyec3nkCxv2/vzgTxs8nHMJEtmrPDWu/7V69ioPz14FNWWv8lg2BcFK2tltvlq3n8W6zWe7zYfzZjouUL19n9kRAujYmR/SeNrq/lkLVxyvKyVC2CJWiwqFaZtClkqFRJrjGgAW8aqsANMSulwXoNTn0dh2IUO3sMsKXDMVhaVbXTMLcM3M16SZBTwVwfLKhXBoOB/v1C0Yc8YDjuoGnNINeMZ4Gk7oBpzWDTimG3DI+CnPGD/Ck8brsnYunzJe9WaN57J2wT5nvBye1Q14j/GaYr750j7l87oBb9cNeMF4Gp4xXg7Nj2CnjZ+ydq83ohtwMhNwLgFNmc24UfOmbH7Aab6BPWu8gT1pPA3Njw/vWHrx4WnjjcNZ42k4a7zqmc8U7fZwzPhgyXw5nDReDpeSk7J+5ul3U866DlBGp7IVnkf0Ztund9Ztg/58idJu7Ko4zv5lodoWol99/7IQ378s0LR/yWFeQYqc+PZ8IVnum6e0E41zD0D69UOi1Tt+clMXaZRDUvIju+eHMXJ87EoJyyPPzkyPjI5Mz+0avn3mePv48UuXLl98pmP49Pjk3DzG5PDUVLLhrosf3js8NLFjcnJoDkzC34W8f4j/fk725YtPdo6cnhgdhvv5F5+4+uKDvIddzB9fnZyzyVW9YetEQVlvQIHOfoJ1Afga0V+Wpv7oqmXcMOSo6WarumHIwQ2DX5NhyCFphdc/57B0tOzzCU1G3Xo2rhtwQjfgrG7AId2AJ3UDzugGnNYNOKcb8KxuwBHjuTxnvGCfMl6wR5eetZk2ninmC/bdxovNqPE0PGO8C9Aeipwz3knNLT05XIL2MA1eD/uUgHXMvn4zus5BDkqBo6e8s8858fpHLfBt7HlXfHXoU1ugrVdfHfrw1WGWptUh57B5Fro6tF3rybDROm90HOssm+0sm5CLbKEquAW8WzfgtG7AU7oBh3QDntMNOKIbcFI34MTS4/K08bqsfYQndQOO6gacNV5sThsvNmeNp+GI8SOcM57Lc0vPSQ0Zz5TTxk/5vG7A23UDXshEDuYZhzQ4eufuKLgsKaiwpvMRvQXha8zdTPj6N1ttCepTX/9m4+tfn6b1bzZJK/yGK84lHtauap9CZ2CxLb/XDW9p0VqOkL0OeX8vUr6QpV6OsE6lHCGL+jQmqgCKn8YMwtfwC8+CqHJErYtNcG0NaNLWAHyN6C9LU3+2dBRGbzT1lsAd5n4Ctf4j4I4iZ0kX/OA3v6SLsk05aS/pykm/bcpRsU0BODSO1CTaDWKdBdjOAnJimK0f0ru34dwkmOh5GUE5H5qAPoReVdTLl51lTtlZBueSkPuGf7PfegXeWUZ/vx5XfL8mxfdLKL4v8SnUR2ObU+RI/Ojn6Lzvyh1cXlm7FmUtR2wCqtjKhiBAaiJqJAKSt2o9uvN9eW/oH7renZIhjXLp+jmPt1+tQa9yy7U/8bNUTDyx3fuZvL7tx+zIclVHpkJF0AtuUPvcMSZ5RxoQFWgerqp34u1AipJc6cx9Elyg5WwD9rySr8fr/9Ha8fquk+5WV8k3foS8oXxTOOJk85wNslMNbD3np16w/b0gNTRuB4Uc8lhYeQx5CuP1LzoYEEw1SwqCs+8gv+985+TQ8uMkoLMBKD1OcuQH2E19ilFPFv+G26SYoHzJsdM/iPAlT8D4fA5fLKxchi/58fpfYYoRdPIlL/UKt++gc3JBAV8YKc1j+fKzJD09XqT4iRvWv66op/n3xBcpeuyo6Iufvu37v5lo9nBjo9+1OfARK+gBz47cR/mK+XBFIipXiDIUHeRv1aOMIB5J5GhabgRZh5VDBAWK93H+58WnbxkduuPULeOzF5+Kjh8aOjYy+wiyUn6aszLPQ6OIbHaJzsYX1vdcG7s9V3L8p2fp/D/i70k0lKLBm/h7ErxCl9x4Q6UFvpzKq/ixdEYuVNVnro7u1aX5bROXoRx1zIxyG+Xi8WjnzO1o+IUuMPNkr18OcOiRF28IW3btXrQLd1VF8+AN4guY80mNQxpxL6oE4yLO4hUwWRYwjbxElgXlax7K1yy8Uf4VzqbMOmiNNnk18OCOP196cEEyeLfZBfklktSFyrlAgVNe8wmPp3vcpTOy0HRGl3rSwm+tw16RT1pQ32HwEjqgcpBjl4Ns+BNtFLA3oj7nkaMz3smB1CH0AZtSFinauUQxo/exUxmQbJ0dWWDdnt1uGM/gW1p7q6rb9dFuZt7t7rfA90q5XTQ+SzrJxKB74CDQUlzGswZTZgzzSzy/ajWCQMx08+MNtwGvitmfvRZJDqLTFXvePM4AgvGGcQs8ytA7aDNo1LF13KUl1q22cSQdHJciA9aAeqk+s4mv5uRZEIdRog6Ad9LgKIloMNtdNMjRdTAwor95d3hgHLkAIP9KMtoZ54AvH+Uj337Ldx8K5cNhE5SwxTUFcPQugq4g6U/yBDcoyEc9PjTq8fGinlsplSMDRUwug+RU8hWWs7noVGx0TZkmj/mVt/3gt3//znOhn6U9kfOGD5x9e+ENz/5p2jt6puAbt/zlB4KHVTJGTnmwnf7H5BBsLEH3erWTXr6ffavnxMwydl6EQZJZotpy8+xMDvFn8n5LBu+nzGAWpWs+1SUtOaj5Be0DYEGLb/B4+1aPH/9WTx6W5gcmhDp25Go5HWBtTwG0t/I79wFh1JVLZjNsu4pcoXkP9WmuLNI1+Ehrmw27xpO2vZbQPuc5Us9Fg5xlxGcAs4jrLHzEhxKziQ8l+tVXygFre/+TxEqZsCZZlNL76JgW08yAqZq5lxWpfFLgpEU5l1hM7iWD3VQM8JxwBySHXUN+Gt0TRkxvDmV6A/GGr1nQ/43hfg4lGgEJY6VYpmNLWjC5J3yPJFc146W8R5IrV23hZY8kV22PJKiqY+gqnmJRamPlucj41PDIsfGxLZHhydMz0/Nvjo89hMS5UIP9lFhl0Us/0hxR2ptDam+AdET0YjWI7WBIhWyokkLi8zzwNy01fZG24PJszhUGMFzbCgZNsCff1cV9BW7CLO71dMQogQsoxBeNBfYlNTk1KS/pNX7Nwb1kvtBLFvJCURFhObfmFZIqZvtgnHvnmk+qZ0DSvb6o4JRy0NW7TTNTTtjjWvf1q99VE/4fdxWmfVGd4w+/t+nZo+1Ki2pH9gpGAaLsFbPdkeimU6XkIdeba/PmznMWxJ3jC41c3iGCRLs+hYRUkIiz0gmILa68l7a4CNuI0pbc9JW25KJ8zoNDwy8r6VPw4lK3nxgM+LRMxO99q8+2WlmgjddcQhm8dwQusME/dey9G3AYAdtkt1anjWHVxKCfTgw27rSgeR+Nz443NlkvrGMNjOJNNnlo9mEZkeEJEBmeHOLrrrnEzcnMebDi1Eaccs4oy6pPG6FyRhYZ3RyL8/GS6llUUt0Xb9zk+bwGlVTP/p2SBw9c/6BCplD2JBC7qqIX0PYDWITN5Bo6yFPUPvW7OYdLVk1kC6omcKMGO+KZtd2WukUV1t7iA730joOfLuDz+on4AlbwMXUpJNSliFCXYkJdSgjzWQqnrKxK+UoGNKoQGvnRdae9PMJyr44UgnLlOnfuOY/tGjkD5+5P4fOPY/idA8lTtdv8YxtEcVBOqiv2+EbjCewshqOuSXQWowA9mZKHHRApUEUKOpByXSPloWeGctUHhUEFXJ9aaey/djv2jeO/Kzv2jfdb9JwyZse+cTazY8/Edgbt2De+xZQd+8YPZHbs1ePwzI49jzXXeMe+8QMuduwbH9O8Y9/4GQv6ycyOfWbH3sGizI49o7/XZMe+8a8sNf3bzI59Zsc+s2MvdK9/m7Yd+8bH/i/DO8j0FgIFAA==",
|
|
4342
|
+
"debug_symbols": "tb3Rjuw6cmD7L+fZDyKDwSD9K4OB0ePpGTTQ6Dba9gUuDP/7TYYUsXLvc5NblVnnpWv1PlWxJIpBSVSI+q/f/vef/9d//t9/+cvf/s/f//23f/4f//Xb//rHX/7617/833/569//9U//8Ze//+3xr//127H+x+S3f5Z/+s3ab/+sjx96/ujnDzt/jPPH9B/jOH+U80c9f8j544wyzijjjDLOKOOMMs4o84wyzyjzjDLPKPOMMs8o84wyzyjzjDLPKOU4rp/l+lmvn3L9bNdPvX7266ddP8f184pXrnjlileueOWKV6545YpXrnjlileueOWKV6949YpXr3j1ilevePWKV6949YpXr3j1iidXPLniyRVPrnhyxZMrnjzi2fpp189x/Zznz/aIV44FJaAGPEIWWfCIWfyXNaAHWMAImBfoijwWlIAaIAEtQAN6gAWMgHlBj8g9IvcVeS6QgBawIq+W6D3AAh6Rq8O8wI6AElADJKAFaEAPsICIbBF5ROSVNnW1z0qcEySgBWhAD7CAETAvWIl0QkSeEXlG5BmRZ0SeEXlG5BmR5xW5HkdACagBEtACNKAHrMhzwQiYF6wsO6EE1AAJaAEa0AMiconIJSLXiFwjco3INSLXiFwjco3INSLXiFwjskRkicgSkSUiS0SWiCwRWSKyRGSJyC0it4jcInKLyC0it4jcInKLyC0it4isEVkjskZkjcgakTUia0TWiKwRWSNyj8g9IveI3CNyj8g9IveIvHJQ6oIRMC9YOXhCCagBEtACNKAHRGSLyBaRVw6KLigBNeARuR0LWoAG9AALGAHzgpWDJ5SAGhCRZ0SeEXle40adFjACrnFDjiOgBNQACWgBGtADLGAErG1+jOqycvCEElADJKAFaEAPsIAREJFrRK4RuUbklYOtLWgBGtADLGAEzAtWDp5QAmpARJaILBF55WCzBRYwAtZptTxg5eAJJaAGSEAL0IAeYAEjICJrRNaIrBFZI7JGZI3IGpE1ImtE1ojcI3KPyD0i94jcI3KPyD0i94jcI3KPyBaRLSJbRLaIbBHZIrJFZIvIFpEtIo+IPCLyiMgjIo+IPCLyiMgjIo+IPCLyjMgzIs+IPCPyjMgzIs+IPCPyjMjzityOI6AE1AAJaAEa0AMsYARE5BKRS0QuEblE5BKRS0QuEblE5BKRS0SuEblG5BqRa0SuEblG5BqRa0SuEblGZInIEpElIktElogsEVkiskRkiciRgy1ysEUOtsjB5jkoC1qABvQACxgB8wLPQYcSUAMiskZkjcgakTUia0TWiNwjco/IPSL3iNwjco/IPSL3iNwjco/IFpEtIltEtohsEdkiskVki8gWkS0ij4g8IvKIyCMij4g8IvKIyCMij4g8IvKMyDMiz4g8I/KMyDMiz4g8I/KMyPOKrMcRUAJqgAS0AA3oARYwAiJyicglIpeIXCJyicglIpeIXCJyicglIteIXCNyjcg1IteIXCNyjcg1IteIXCOyRGSJyBKRJSJLRJaILBFZIrJEZInILSK3iNwicuSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KB6Do4FJaAGSEAL0IAeYAEjYF4wIvKIyCMij4g8IvKIyCMij4g8IvKIyDMiz4g8I/KMyDMirxzsx4IeYAEjYJ7QVw6eUAJqgAS0AA3oARawIsuCecHKwRNKQA2QgBagAT3AAiJyicg1IteIXCNyjcg1IteIXCNyjcg1IteILBFZIrJEZInIEpElIktElogsEVkicovILSK3iNwicovILSK3iNwicovILSJrRNaIrBFZI7JGZI3IGpE1ImtE1ojcI3KPyD0i94jcI3KPyD0i94jcI3KPyBaRLSJbRLaIbBHZIrJFZIvIFpEtIo+IPCLyiMgjIo+IPCLyiMgjIo+IPCLyjMgzIs+IPCPyjMgzIs+IPCPyjMjzimzHEVACaoAEtAAN6AEWMAIicuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgeQ72BSNgXuA56FACaoAEtAAN6AEReUTkEZE9B8uCElADJKAFaEAPsIARME8YxxFQAmqABLQADegBFjACInKJyCUil4hcInKJyCUil4hcInKJyCUi14hcI3KNyDUi14hcI3KNyDUi14hcI7JEZInIEpElIktElogsEVkiskRkicgtIreI3CJyi8gtIreI3CJyi8gtIreIrBFZI7JGZI3IGpE1ImtE1oisEVkjco/IPSL3iNwjco/IPSL3iNwjco/IPSJbRLaIbBHZIrJFZIvIFpEtIltEtog8IvKIyJ6DtkACWsCKPBf0AAsYAfMCz0GHElADJKAFROQZkWdEnhF5XpHncQSUgBogAS1AA3qABYyAiFwiconIJSKXiFwiconIJSKXiFwiconIKwftWFACasAjspUFLUAD1hM8WWABI2A9xGvrsekRUAJqgAS0AA3oARYwAiJyi8gtIreI3CJyi8gtIreI3CJyi8gtImtE1oisEVkjskZkjcgakTUia0TWiNwjco/IPSL3iNwjco/IPSL3iNwjco/IFpEtIltEtohsEdkiskVki8gWkS0ij4g8IvKIyCMij4g8IvKIyCMirxy0vmBesHLwhBV59cOVgydIQAvQgB5gASNgnvB49n4klaSaJEktSZN6kiWNpHSUdJR0lHSUdJR0lHSUdJR0lHSUdNR01HTUdNR01HTUdNR01HTUdNR0SDokHZIOSYekQ9Ih6ZB0SDokHS0dLR0tHS0dLR0tHS0dLR0tHS0dmg5Nh6ZD06Hp0HRoOjQdmg5NR09HT0dPR09HT0dPR09HT0dPR0+HpcPSYemwdFg6LB2WDkuHpcPSMdIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdOReV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnNfO8Zp7XzPOaeV4zz2vmec08r5nnNfO8Zp7XzPOaeV4zz2vmec08r5nnNfO8Zp7XzPOaeV4zz2vmec08r5nnNfO8Zp7XzPOaeV4zz2vmec08r5nnNfO8Zp7XzPOaeV4zz2vmec08r5nnNfO8Zp7XzPOaeV4zz2vmec08r5nnNfO8Zp7XzPOaeV4zz2vmec08r5nnNfO8Zp7XzHOvFRp10crzi0pSTZKklqRJPcmSRlI6LB2WDkuHpcPSYemwdFg6LB2WjpGOkY6RjpGOledDnDSpJ1nSSJpBK88vKkk1SZLSMdMx0zHTMdMxw+FFRReVpJokSS1Jk3qSJY2kdJR0lHSUdJR0lHSUdJR0lHSUdJR01HTUdNR01HTUdNR01HTUdNR01HRIOiQdkg5Jh6RD0iHpkHRIOiQdLR0tHS0dLR0tHS0dLR0tHS0dLR2aDk2HpkPToenQdGg6NB2aDs/zs9b4SCpJyzGcJKklaVJPsqSRNIM8z08qSemwdFg6LB2WDkuHpcPSMdIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdMxw+GFSxeVpJokSS1Jk3qSJY2kdJR0lHSUdJR0lHSUdJR0lHSUdJR01HTUdNR01HTUdNR01HTUdNR01HRIOiQdkg5Jh6RD0iHpkHRIOiQdLR0tHS0dLR0tHS0dLR0tHS0dLR2aDk2HpkPToenQdGg6NB2aDk1HT0dPR+Z5yzxvmect87xlnrfM85Z53jLPW+Z5yzxvmect87xlnrfM85Z53jLPW+Z5yzxvmect87xlnrfM85Z53jLPW+Z5yzxvmect87xlnrfM85Z53jLPW+Z5yzxvmect87xlnrfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmec8875nnPfO8Z573zPOeed4zz3vmudduzbJo5flFJakmSVJL0qSeZEkjKR2WDkuHpcPSYemwdFg6LB2WDkvHSMdIx8rz2ZwkqSUtR3fqSZY0kmbQyvOLSlJNkqSWlI6ZjpmOmY4ZDi/yuqgk1SRJakma1JMsaSSlo6SjpKOko6SjpKOko6SjpKOko6SjpqOmo6ajpqOmo6ajpqOmo6ajpkPSIemQdEg6JB2SDkmHpEPSIelo6WjpaOlo6WjpaOlo6WjpaOlo6dB0aDo0HZoOTYemQ9Oh6dB0aDp6Ono6ejp6Ono6ejp6Ono6ejp6Oiwdlg5Lh6XD0mHp8Dw3J0saSTPI8/ykklSTJKklaVI6RjpGOkY6ZjpmOmY6ZjpmOmY6ZjpmOmY6Zji8kOyiklSTJKklaVJPsqSRlI6SjpKOko6SjpKOko6SjpKOko6SjpqOmo6ajpqOmo6ajpqOmo6ajpoOSYekQ9Ih6ZB0SDokHZ7n02kkzaDzZfjqWMAKCthABTto4ABnomJTbIpNsSk2xabYFJtiU2wdW8fWsXVsHVvH1rF1bB1bx2bYDJthM2yGzbAZNsNm2AzbwDawDWwD28A2sA1sA9vANrBNbBPbxDaxTWwT28Q2sU1sM21e6BZYwAoK2EAFO2jgALEVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsQk2wSbYBJtgE2yCTbAJNsHGWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjyWQsmYwlk7FkMpZMxpLJWDIZSyZjycyxpB45ltQjx5J65FhSjxxL6pFjST1yLKlHjiX1yLGkHjmW1OPAVrAVbAVbwVawFWwFW8FWsBVsFVvFVrFVbBVbxVaxVWwVW8Um2ASbYBNsgk2wCTbBJtgEW8PWsDVsDVvD1rA1bA1bw9awKTbFptgUm2JTbIpNsSk2xdaxdWwdW8fWsXVsHVvH1rF1bIbNsBk2w2bYDJthM2yGzbANbAPbwDawDWwD28A2sA1sA9vENrFNbBPbxDaxTWwT28TGWFIYSwpjSWEsKYwlhbGkMJYUxpLCWFIYSwpjSWEsKedYoo4VFLCBCnbQwAHOxHMsORFbxVaxnWPJ4ahgBw0c4Ew8x5ITC1hBAbEJNsEm2ASbYGvYGraGrWFr2Bq2hq1ha9gaNsWm2BSbYlNsik2xKTbFptg6to6tY+vYOraOrWPr2Dq2js2wGTbDZtgMm2EzbOdYYo4DnInnWHJiASsoYAMV7CC2gW1g87GkeL75WHJhBZetdMcGKthBAwc4A73uMLCAFRRw2WpzVLCDBg5wJvpYcmEBKyggtoKtYPOxxJc780rEwJnoY0kdjgWsoIANVLCDBg5wJgo2wSbYBJtgE2yCTbAJNsHWsDVsDVvD1rA1bA1bw9awNWyKTbEpNsWm2BSbYlNsik2xdWwdW8fWsXVsHVvH1rF1bB2bYTNshs2wGTbDZtgMm2EzbAPbwDawDWwD28A2sA1sA9vANrFNbBPbxDaxTWwT28Q2sc20eW1jYAErKGADFeyggQPEVrAVbAVbweZjiTRHBXuiJ4M6La8vTOd1e4+zumMBKyhgAxXsoIEDnIkdW8fWsXVsHVvH1rF1bB1bx2bYDJthM2yGzbAZNsNm2AzbwDawDWwD28A2sA1sA9vANrBNbBPbxDaxTWwT28Q2sU1sM21e6RdYwAoum6866NV+gQp20MABLlsrC73XX1jACgrYQAU7aOAAsVVsfgZt1bGCbhPHBirYQQMHOBP9DNq6YwEr6Lbh2EAFPY19e/0MeuEAZ6KfQS8s4LKp75ufQS9soIIdNHCAM9HHkgsLiE2x+Vii3iQ+llzYQW+zudBHDW2OHsEbyscHPX9BwQ4aOMCZ6OND997n48OFFRSwgQp20MABzsSBbWDz8aH7YfHx4UK3+R77+HBhBw0c4Ez08aGrYwErKGADFeyggQOcgV4hGFhAt3VHAd1mjgp20MBlW6+pVy8VvNDHhwsLWEEBl82qo4IdNHCAM9HHhwsLWEEBsVVsPj6sN+qrFw8GDtBbcvVJrx8MLGAHPcI6xl4H+Lizc/TNGY4CNlDBDq5gwzfSU/rCmXiusn1iASu4bMP34lxt+0QFO2jgAGfiufL2iQWsILaOzdN/eJN4+l9ooNu8T3r6n+jpf6HbvCU9/Ye3jqf/PBwbqGAHDRyJnujTN9IT/UIBG6hgT/QsnJ44noUXumJtr5fqlfV8uXqtXqCADVSwJ/oC2D5N4BV2gQYOcCb6UtgXFrCCAjYQW8VWsVVsFZtg8+Wwj+LoEaqjR2iOA5yJvgy2T6p5OV1gBQVsoIIedx0AL5arPpfh1XK1+Jb5otcXNtAjeFP70tcXGjjAmehLYF+4bMX32JfBvtBtvvO+FPaFCq64a4n96kVxj9kGxwr6Hg9Hj+C76QvPX9hBAz2ut4MvQH+iL0F/odu8dXwZ+gsFxDawDWwDmy9Jf+HMYzE5mpOjOTmak6M5OZq+FLYfQq+COw+hl8GdB8vr4AIFbHEsvBQusIMGDjCPptfDncfNC+ICaxwsL4kLbKDFIfRqt/O4eblbYI1D6AVvZ0N5xVuggh20OFhe9RaYR9Pr3s6D5YVvgRXEJtgEm2CTPJpeVVaLN4knw4UGrs2p3jqeDCd6MlxYwAoK2EAFO7hsvg66l5gFzkT/TsOFBayg27yhPHEuVLCDBg5wJnriXFjACmIb2DxxfBLQi84CDXSbdw1PnBM9cS50m7e6J86FAjZw2cSTwVeRF29JX0fe0YvNAgu44oo4rrg+E+EFZ/VcGN/T6cIOGui27jgTPZ0uLKDbhuNSnKvo+/nNb/C84qz6jZiXnNV2/tkAZ6Ln24UFrKCAbjNHBZfNb7m8+CxwgDPR8+3CAi6b3zB5CVpgAxXsoIEDnIl+LrywgNgaNj8X+j2ZV6IFdtBtfmD9DHnhTPTPRPhNm1eiVfUj5OfNCwVsoIIddNt0HOBM9KHiwgJWUMAGKthBbB1bx2bYDJthM2w+VPgNnleiBXbQ+6Tvpg8VF85EHyouLGAFl637cfOh4kIFO2jgAGeiDwrdj7EPChc2UMEOGjjAGeg1Z4EFrKCADVSwgwYOEFvBVrAVbAVbwVawFWwFW8FWsFVsFVvFVrFVbBVbxVaxVWwVm2ATbIJNsAk2wSbYBJtgE2wNW8PWsDVsDVvD1rA1bA1bw6bYFJtiU2yKTbEpNsWm2BRbx9axdWwdW8fWsXVsHVvH1rEZNsNm2AybYTNshs2wGTbDNrANbAPbwDawDWwD28A2sA1sE9vExlgyGUsmY8lkLJmMJZOxZDKWzBxL5MixRI4cS+TIsUSOHEvkyLFEjhxL5DjHkvNjOAaOxHMAqY4FrKCADVSwgwYOcCZWbBVbxVaxVWwVW8VWsVVsFZtgE2yCTbAJNsEm2ASbYBNsDVvD1rA1bA1bw9awNWwNW8Om2BSbYlNsik2xKTbFptgUW8fWsXVsHVvH1rF1bB1bx9axGTbDZtgMm2EzbIbNsBk2wzawDWwD28A2sA1sA9vANrANbBPbxDaxTWwT28Q2sU1sE9tMWzkOsIAVFLCBCnbQwAFiYywpjCWFsaQwlhTGksJYUs6xZDgaOMBlW6u+iheaBRbQbdNRwAYq2EEDl21NXYsXml3oY8mFbvPt9bHkQgEbqGAHl83UcYAz0ceStfCoeKFZYAUF9Ljm6BG8oXx8uLCAK8LwhvLx4cIGru0dxbGDBg5w2YbvkI8PFxawgh7Xm89zfk1dy/ntyBM95y/07XWF5/yFAjZQwQ4a6DZvVM/5Ez3nLyxgBQVsoIIdNBDbwDaxTWwT28TmOT/8wHp2Dz+wnt0XzsDzG5MXFrCCAjZQwQ4aOEBsBVvBVrAVbAVbwVawFWwFW8FWsVVsFVvFVrFVbBVbxVaxVWyCTbAJNsEm2ASbYBNsgk2wNWwNW8PWsDVsDVvD1rA1bA2bYlNsik2xKTbFptgUm2JTbB1bx9axdWwdW8fWsXVsHVvHZtgMm2EzbIbNsBk2w2bYDNvANrANbAPbwDawDWwD28A2sE1sE9vENrFNbBPbxMZYUhlLKmOJMJYIY4kwlghjiTCWnF/NXA8U5fxu5oUGDnAmnmPJiQWsoIANXLa1NIHI+T3bEw1023SciedYcmIBKyhgAxXsoIHYKrbzW7fiWMAKPmyynvaJL3wXqGBf6Dt0fufW/+z8rm11FNAjqKOCHTRwgDNxjQ+ynhqJF8kFVlDABirYQQMHOBM7to6tu817VBewgW7zTtA7aKDb/AD413BP9O/hXljAZSve1P5V3OIt6V/BLd7U/h3cCwc4E/1ruMWbz7+HW3wv/Iu4xTdneFy3rZEgUMEOLlv1zVkjQeBMXCNB4LJV396V/o+e67gU1T/XutJfqm/OSn+prpgGDnAGeg1cYAEruGzrEYl4DVxgj+7Zzi9WnzjA7L+tHGABKyhgAxXEVrAVbAVbxbZyXtZHjMUL3wIF9B06f1fBDho4wJm4cj6wgBUUEJtg85xfD3rEC98CBzgT2wEW0G3mKGADFeyggQOciT4+XFhAbIrNx4f1jEq88C2wg8vWvO/4+LCeXImXw13o40Pzw+Ljw4XL5h9B9iK5wAYq2EEDBzgTfXy4sIDYDJthM2yGzbAZNsM2sA1sA9vANrANbAPbwDawDWwT28Q2sU1sE9vENrFNbBPbTJsXyQUWsIICNlDBDhrotuY4E8sBFtDPIoejgA1UsIMGDnAm1gP0vVDHPEt74Zush6XihW+BM9HHhwsLWEEBvR3MkfZt7HFjjz3nLxTQ23c4KthBAwcKbMrRVI6mcjSVo6kcTc/5cxs85y80kKN55rxvw5nzJxYQGzmv5LyS80rOKzmv5Lx2+o7RkkZLGi155rxvg9GSRkuS80rOKzmv5LyS80rOKzmvg+N25vyJtOSgJQfH7cz5E2lJcl7JeSXnlZxXcl7JeSXnlZzXyXGb2ZL9OMACVtBt07GBy6aHYwcNHOCyrSfx4ovrBRawggI2UMEOus030nP+Qr9+cPQrBc9CL/V79FfHBirYwTxCvQ4wj1CXAyxgBQXMI+Tr6wV20MABZu/r7QALWEHfi+7YQQO9dbwdfHxQ3zIfHy4sYAUFbKCCHbTEc/bAxefswYkVFLCBCnbQwAHORMNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtomNOcc+sU1sE9vENtN2lhteWMAKCthABTto4ACxFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrEJNsEm2ASbYBNsgk2wCTbB1rA1bA1bw9awNWwNW8PWsDVsik2xKTbFptgUm2JTbIpNsTGWGGOJMZYYY4kxlhhjiTGWGGOJMZYYY4kxlhhjiTGWGGOJMZYYY4kxlhhjiTGWGGOJMZYYY4kxlhhjiTGWGGOJMZYYY4kxlhhjiTGWGGOJMZYYY4kxlhhjiTGWGGOJMZYYY8lgLBmMJYOxZDCWDMaSwVgyGEsGY8lgLBmMJYOxZDCWDMaSwVgyGEsGY8lgLBmMJYOxZDCWDMaSwVgyGEsGY8lgLBmMJYOxZDCWDMaSwVgyGEsGY8lgLBmMJYOxZDCWDMaSwVgyGEsGY8lgLBmMJYOxZDCWDMaSwVgyGEsGY8lgLBmMJYOxZDCWDMaSwVgyGEsGY8lgLBmMJYOxZDCWDMaSwVgyGEsGY4mXXcqqiRQvuwzsoIEDnIl+h3JhASsoIDbDZtgMm2EzbAPbwDawDWznWCKOy7Ze8xMvuww0cIAz0e9QLizgsnkJgBdjBjbQbS72O5QLDXRbcZyBXowZWEA/bs1RwAYq2EEDB5jPsM9izAsL6E+rzdH34vzXDho4wJno8w8XFtDbrDsK2EC3udjvUC400G3qOBP9DuXCAvqT+OEoYAMV7KCBA8w6hbPs8sIC+l6cqGAHfS+m4wBnot+heEmIF1gGrjbzwgAvsAxs4LJ5kYYXWAYaOMCZ6DMYFxbQbeIoYAMV7KCB/vqKH26/qvCnJWcpZTlRwAYq2EEDB+ivxXh/OF9yOrGAFfTXjk5soIIdNHCAM/F8yenEAnLkJ0d+cuQnR35y5Gcc+eZFk364mxdNBsaRb140GdjAOPLNiyYDDRzgTCwHWMA48s3rJwMbqGAHDYwj385KyXXk21kpWU4UsIEKdtDAAcaRb0e+ENWOfCGqHflCVDsrJY8TG6hgBw0c4ExsB1hAbx3fY8/5CztooB8LdZyJZ86fWEB/icwPi18TXNhABTto4ABn4vkK44l+jL33ndl9ooIdNHCAay+G91Q/+19YwAoK2EAFO2jgALENbH72H54Mfva/UEC3+R772f/CDrrNj5Cf/YcfAD/7Dz/Gfva/sIAVFLCBbhuOHTRwgDPQqx8DC1hBARuoYAcNHCC2gq1g85FgvS/dvPoxsIHLtuYcm1c/Bho4wJno1wQXLttUxwoK2EAFO2jgAGeiXxNciE2w+azlen27efVjoIJu8yZZ40NbD06aVz8GzsQ1PgQWsIICNlDBvrA6Gug2cZyJeoAFdJtvugrYQAU7aOAAZ2J3mzkW0G3eOl3ABirYQVdMx5loB1jACi5F8SZZA0iggh00cIDLVryh1gASWMAKCthABTto4ACxTWzTbZ4Bs4ICus2751Swg27zAzDd5o063bYaygssAwtYQQEb6Be9TiNpBvldwkklqQatDG6r1qN5hWNgA9fZSp16kiWNpBl0vn3p5BGL42qGVUjSvF5Rzv8+kmbQ+QjBqSTVJElqSZrkEnE0cLV1PX9hJnoaXuib6XZPrVXO0rz0MNALFZw8gLecZ9aFBayggC2apGdz9mzOns3Zszl7Nqcn0tmInjJnI3rKrDePm9cRBvqueqfwlDnRU0b8aHrK+E57xpwkSS1Jk3rSiii+IZ4A4hviCeA76f3/JE1af+1t6J3/pJE0L/JywItKkkvEUcBl8cPtxYCBHfTNXE3nBX5NPFgRcEU4/7tGw3h9X6CBA/Swa6e8vi+wgDUaXM5MOrGB2Cq2iq1iq9gEm2ATbIJNsAk2wSbYBJufC088a32cslN7KWCggA3URD9PiW+CJ9OFBnr9lNMM8mvbk0pSTZKklqRJPcmS0tHTYemwdFg6/By1SoKar14XqKDngbeMJ9yFqxGbt5wn3ImecBcWsIICNtBt3kfPrDvRQLd5L/dkPNHPURe6zY+Dp+iFAnrlnpMm9SRLGknzIq/Oa+tJcfO16Np6ut68JK+th+fNS/ICBzgT16moqQdb56LACgrYQC+jcXKZOBo4QJet5PaKvMACuswcBXSZ75pn6YUd9Ossp5E0gzxFTypJNckjemN5zvXzX33sW13L6+sCC1jBtaXdd9CT7kIFO2igZ7jTDPLT3kme3041SZJakib1JJc0xwHORD8NXuib6Y3vl5IX+rWQ00iaQX5J2f3Q+CXlhRX0FvE29XS90M873ryerhculZ1xl8unTLxOrvnch9fJtfVyU/M6ucAKCthABTtooNt8ez1dzbuSp6vfhXudXPObYa+Ia37b6xVxgR00cIAz0CviAj1YdVSwgwYOcCZ6pl7owcTR/6w5DnAmes5d+Ng3z0lf3e0iSWpJmtSTLGkkzaCVbRelQ9Ih6ZB0SDokHZIOSYeko6WjpaOlo6WjpaOlo6WjpWMlm/qxWcl2kSS1JE3qSZY0kmbQOnVelI6ejp6Ono6ejp6Ono6ejp4OS4elw9Jh6bB0WDosHZYOT4x5oneelSNeTNam9zk/Y61q6uY1XX7S6WevdtKkRyQfT71y66TVdy9av+eTFl6LFWigb0h3XHvrMVcnvqgk1SRJakma1JMsaSSlQ9LhV29r9bnmlVZtnv/6+Gsf07zQ6qIZtHrnRSWpJklSS9KknpSOlo6WDk2HpkPToenQdPhJYTp6pzz8GHiv9FkSr6sKFLCBCnbQwAHORO+eF2IzbIbNu6hPz3hdVWAHDRzgTBwHWMAKCohtYBvYBraVFH4+8rKqk1ZKXFSSapIkecQTfUtX7z4/TXpSSapJj7/2FDs/TXqSJvUkSxpBxXe8O/oumqOCHfRdHI4DnImebxcWsIICNlDBDmKr2Dzx1hs4zQueAgvoo1l1FNDHM99jP4X4PI8XPKk/0vCCp8ABus3Ffh650G3Tcdl8esULntTv7u38goe32fkFjxM7aOAAZ6KfW3x+wIuY1Oc/vIhJfS7Bi5gCB7i212c6vIgpsIAVFNDjutiT0acgvDBJ/Z7KC5MCKyhgAxXsoIED9NO0N58n44UF9DO1N6on44UNVNDP1t5mnowXDnC177mb5+r4JxawLvQmOVfHP7GBCnbQwHU0z+bL1fHbyNXxmxcmqd+We2FSoIANtMTirdMcC+gPh5wsaQStFPS7Di8TukiSWpIm9SRLGkkzaGXeRb4xrjsv3E4U0I/PdOyggev4+O2VlwRd6Nl24doNbwQ/MZ4kSS1Jk3qSJY2kGeQnxpPSoenQdGg6NB2aDk2HpkPT0dPR09HT0dPR09HT0dPhJ06/ofLCn8CZ6Lnqd4Ne+BNYwXVIfK7MC38C19Hx6y8v/Ak0cIAz0XPVJw288Cdw2Xx6wAt/1K8QvfBH/e7fC38CO7hsfm3thT+BM3Hl6qpLaV73c1FNkqSWpEkecSWLl/GoTx14GY+uKvXmZTyBDVTQt3Q4GjjAmehZeuE6y7t3TYr4TaKvqKZ+PeulPboKlJqX9gQuVz//arl8H7y0J3C5ugv8XOu3xV7aE/iI63d4M77r22Z+6arN/NJVm/mlq+ZlOeq31V6WE6hgBw0c4Ez0zD333M+TF1awxYb557pP6kl2fha4eXXORTNIPbj/ot+HXVhB35Xzdxvou+LN5qfQCw30k7Afg/xIXuODm40PbjY+uNn44Gbjg5uND242PrjZ+OBm44ObjQ9uNj642fjgZuODm40PbjY+uNn44Gbjg5uND242PrjZ+OBm44ObjQ9uNq/YUZ/G8IqdwAb6/dH5ux30OyTvdp7CF87E8yN5nnvnR/JOrKCADVTQ4z46kHptjq4CAfXaHF3Fk+q1OYENVNC3dzgaOMCZ6Il8oW9vcayggMs2T1SwgwYOcCZ6Kl9YwAoKiK1iq9gqtoqtYhNsgk2wCTbBJtgEm2ATbIKtYWvYGraGrWHzOZi1KoJ6HU+ggQOciT4+XOg2cayggG7zHuXjw4UdNND3zbucX2Kf6JfYFxbQ43qX89P2GtfUK3YCZ6Kftqf3Mz9tX1hB317fIT9tX6hgB9eFyBrR1St2+tk9PeeLb47n/IUFXKfSlf7qFTuBDVSwgwYOcCb6afvCAmKb2Ca282N23pLnx+xONHCAM/D8MOaFBayggA1UsIO+b+I4wJl4TkydWMAKCthABTvotuY4wJnol+8XeoTu6BHM0cABzkS/YF830OpVOIEVFLCBCnbQwAHOxIatYWvYGraGrWHzK/hVcqJehRPotyLVcSb6VfyFBayggH7T463ul/IXdtDAAc5Ev56/sIAVFBBbx+ZX9cWPZjdwgG7zY2xu80NoBXSbN5QJ6DZvKFOwgwYOcCaOAyxgBQXENrANbAPbwDawTWwT28Q2sU1sE9vENrFNbDNtXpATWMAKCthABTto4ACxFWwFW8FWsBVsBVvBVrD5+LCmm9RXPLtwXT8EFnCNfWueQM+PXV7YQAU7aOAAZ6LfTly49mJNealXBfU1YaVeFRTo2yuOM9HHhwsLWEEBG+hxXay0r7LHnvMXCtjA1b5rpky9PCjQwAFyNDu2ztHsHM3O0ewczc7R9Jw/t8Fz/kKOZudoes6f2+A5f2EFsZHzlZyv5Hwl5ys5X8l5ryi6xIOWHLTkoCU9589tGLTkoCXJ+UrOV3K+kvOVnK/kfCXnKznvVUjXNkxactKSk5ac2ZJeitTXvJx6LVKg75s5CthABX0G5gxm4ABnouf8hQWsoIA+21McFcwO7uVKfc1aqpcrXeiJfmEBs2t4uVJgAxXsoIEDzIMlcoAFrKCADVSwg9k1vDCpr2lNlXNu78QKekN5O5zTe75l5/zeiR00cIAz8ZzkO7GAFfTLDrf5oHChgR7X+8M5r+d4Tuz5Dp0zeydWcO1F88Ptg8KFCi5b8yPvg8KFA5yJPihcWMAKCthABbH5TJ7foXh9U6DH9R7l6X+hgA1UsIMG+l5483n6n+jpf6Hb/AB4+l8ooNu8P3j6X9jBvLnyGqfAvLnylckCC1hBARuoYAd9L1ZDee1TYAEr6Hvhf+aJfqGCHbSYzPDip8CZeD7DPrGAFRSwgXZOBKqXOV00g1Zqn7+3MvuimrS2f03kqi85Fqjg2v41vau+5FjgAJdpXZV6RdRFJakmSVJL0qSeZEkjKR2aDk2HpkPToenQdGg6NB2aDk1HT0dPR09HT0dPh2f6muJWr5YKNNDbqznORM909ePgmX5hBf3oeOfxTL/Qbd79PNMvNNBt03Em+ulffXs9/y+soE+v+0H1/L/QJ9i9K3n+X7hs3ffC8//Cmbjy3+d3vF7qopokSS1JkzziagFfJqyvCXH1ZcL6KiRTXyYssIEK+pZORwMHOBM9xy9ctlVppr5MWKCADVSwg8u2Hu+rF1sFzkQ/r19YwAoK2EAFO4itYvPz+pqAV6+6Ciyg27xRPf/N28zz/0K3DccOus0byvP/wpnoZ/sLC1hBARuoYAexNWwNm2JTbIpNsSk2xabYFJtiU2wdW8fWsXVsHVvH1rF1bB1bx2bYDJthM2yGzUeGNXuvXsEVaOAAfULNO+05WXhiASsoYAMV7KAl+jXAKm5Urw3r4/zXBvr2eqf1s/2FBg5wBvqSYoEF9LjNMdv3rDXzPT6LzU70nL+wgKt9/bzoy4QFNlDBPJq9YCsDzKPZ6wEWsIICttycqmAHDWTfPOf94YdXqQX6vpljBQVsoBebeTDP+QsNHOBMPKvaTixgBb3orDg2sOfBOivaquMAZ+JZ1HZiyQOgHCzlYCkHSzlYnugXGsjBItE7id5J9E6idxK9k+idRO8kute7dX8G4fVugQX0hvJ28JT25wpe7xaoYAcNHOBM9JP9hQX0uN41/LR+YQcN9LjeNfy0fqKn9IUF9FOz/9n5jP7EBirYQQMHOAO9Fi5Qzofs6oVvF2nSI6idv2dJI2mV5vnTEl8VLLCA67m9OklSS1oaf8LiFXKBBo7zsb96gdxJK+cvKkk1SZJakib1JEtKR02HpEPSIemQdEg6JB2SDkmHpEPS0dLR0rGy2/wRjlfCBTbQ6xy8af2R3oXeYuI4wJnoj/T88tGX/gpc9z/9/AUBG+i24dhBt50RBjgT/TLfN9cv80+qSZLUkjTJI3rvMO9G3s/M28UcBWyggt6TvDnNwAHOxHGAy1a8Odf5OVDAdT3tW7My/KKeZEkjaQb5NftJJakmSVI6ZjpmOmY6ZjpmOLw+7qKSVJN8R4pjAxXsoIEDnIme6xd6szXHCgrotuqoYAfdpo4DnIme8P4oxyvv4l9Xsd75jyNp/ZFPW3p1XWABKyhgA9cm+mS8V9oFGjjAmei5fGEBKyhgA7E1bJ7NPvXvBXeBM1HdJo4FrKDbvPm1gQp20G3epJ7NPmfrdXa2ii3VC+0CBWzgiutTsl5sZz4P69V25lORXm1nPhXp1XYX2gEW0Mu5fXM80y9soIJu8+319BbfHE9vnz30Ejvz6TovsTOfNfMSu0ABG6hgBw1cNp9h8xK7C70m/eycXpR+IV12NlDBDrrCd2gOcAb6glq2ygfVK/ECKyhgAxXsoIEDnIkFW8F2ntKLo4ANVLCDBi6bT994Ld6FnuYXFrCCAjZQwQ4aiK1i8/FhlUaq1/MFVtBt6ui27qig2/yw+Phwodu8oXx8ONHHhwsLWEEBG6hgBw3E1rApNsWm2BSbYlNsik2xKTbF1rF1bB1bx9axdWwdW8fWsXVshs2wGTbDZtgMm2EzbIbNsA1sA9vANrD5AOITgl7gF9hBA73CvTnOxLOe/sQCVlDABirYwbUX6/Kwe4Gfn0C7F/jZmn7sXuAXqGAHDRzgTPSRYBXd9qNE+/ajxB73oxg4wJnoOb+uNbsX7QVWUMCWioqtdtDAAc5EOcCS23Dm/IkCNlBzGzznLzQQm2Br2DLn+5E534/M+X409q1pihst2WjJRkt6zp/boLSk0pKKTbEpNqUllZZUWlLZN+W4nTl/Ii3ZacnOcfOcv5CW7Ng6to6t05JGSxotaeybsW/GcTNa0mhJoyWNlvScX3dF3Qv8Ar0l1bGCAjbQ9823wXP+QgMHOBP9lbYLC1hBt/lG+vXDhT5DeP7CyCz0nF817N1L+QILWME8QuVooIIdNHCA2fu8lO88AF7KF1hBARuoYAcNzP7gy2zZqo7vXsoXKOCKu54VdC/wM/Mt8/HhQgMHOBN9fLiwgBUU0OM2RwMHOBN9JFgzHt1L+QIrKKDf03ZHBTto4ABnoo8EFxawgt46J3bQwAH6XthCz/kLC1hBfwvE98LLdy9UsIMGDnAmelHvhd463gk8uy9UsIMGjkTP4zXD0r3kzoZngGfs8L7jGXuhgSvC8B7lGXuiZ+zwTuAZe2EF1/YOP/KesRcq2EEDBzgDveTO1qxq95K7wAoK2EAF/Y2xM9iMdvDiusACetzuKGADFeyg74U5DnAm+nn+Qt8Lt3keXyigz6kVRwU76NNq1XGAM9HzeD0/7vWcvhNHn7/zdjgn8Lx1zhm8ExX0uL5v54Sd4zljd2IBPa7vm2esdy5feyvQwJHoaXrhSpzqEXzy7UIF1yGsvkPnK6snDnAmnq+snljACgrYQG/UEwc4E/0kfKHvvB8sPwlfKGADfS/8AJwvsp5o4ABnopfUXFjACgq44vrQ5rVz4/BGXckbOBNX8gauucnDe9RK3kABG6hgBw1ce3H4wTrfOF/otXOBBayggA1UsIOWWHwvqmMBKyig74U4KthBA30vmuNMPF9IP7GAFRSwgQr6sThxJnr9zIUFrKCAflp00qSeZEkjaQZ52hanklSTJKklaZJv+RoTvPBteDfzwrdAAX3fXem5e2EHDRzgTMx1Irqc60ScWEEBsXVsHVvH1rF1bIbNsJn3F+9mpmAHDfTWGY4zcRxgASsoYAMVdNt0NHCAM9Ezuvime0ZfWEEBWx6sM6NP7KCBA5yBXg4XWMAKrrhrarx74VuggSvumvnuXg431vsM3cvhAgtYQd+L5thABTvoNnN023ScifUAC1hBARuoYAcNxOZ5Xn03Pc8vLGAFBWyggh00cNnWzHU/S+X8XHnWyl1YwAoK2EAFO2jgALF51dya++5n2dyFFRSwgQp20MABesGhdwJ/sHZhASsoYAMV7KDbvNP2Ac5EO8ACVlDABvrzeqeeZEkjaQb5I/WTPOKJvqXD0cBxrQnUzzXETjyXSjqxgBUUsIEKdtBbYHViX0NsrDrj7uVygRUUsIEKdnDtxXoY0b1cLnAm+hhwoduqYwUFbKCCHTTQbeLotjVIeLlcYAErKGADNY6Fl8sFGjjAmehjwIUFrKCA/Vosr3thXOAAfS9WZ/PCuEDfC4/g2X6hgL4XfmA92y/s4NoL9QPg2X7hTPRsv7CAXvPrW+bZfmEDFeyggQOciZ7XfgusuWhg97K2ob7Hnqsneq5e6FtmjhX0LfN28Fy9UEHfMm8HP8NfOMCZ6Gf4CwtYwWXzyWcvawtUsIMGDnDmHvu53GecvdgtsIEKelzv9n4uv3CAM7Cfi+wejgWsoIANVLCDluh57PNiXgIXWEEBfS+ao4IdNHBlgPdUL4G70NcYvLCAFRSwgQp666jjTPSMvdD3ojtWUEDfC3NU0PdiOBo4QLf5NngeX1jACgrYQAWXzS/4ve4tcIAz0fP4wgKuNvNzWD9X7S2O6xj7Kelc0e3CAc5EXwP7wgJWcB2L6tvrq8tfqGAH3eY91dcEvXAm+qqgFxawggI2UMEVt/puenb7PY9XuAUWsIICNlBBPxau8Oy+cIAz0c/d9cQCVlDABirYQQNHoC/3Nnza1td7CxTQ96I5KthB3wt1HKDvxeowXv0WWEC3maOADVSwgwYO0G0rcbwELrCAFRSwgd5mvmU1j7xXvZ3HzcveAgtYQQEbqGAeea9+CxxgHnkvgLuOUCtgBQVsoIIdNJAjv/Jt+r2qF5sFrtoqv3v0RdsCZ/7CyqzAAtZEr7ryq6uz7OrCAlZQwAYq2EEDB4itYCvYCraCrWAr2Aq2gq1gK9gqtoqtetzmqGBPXEf+bCgvlwr0uCtxvFwqsIAVFLCBCnbQwJGoedy8MCpQwAZ63O7YQY97/oLHHY4zsR9gASsoYAMV7KCB2Do2w2bYDJthM2yGzbAZNsNm2Aa2gW1gG9gGtoHNyyD9AsMLo+Z66a17YdTVjSY9ddJTve7Rb4K8MCrQwAHOwHlm4YluO7GCy7ZKf7oXRgUquOKu0p/uxU7Tr8G92CnQt/dwbNE15plZJ3bQQI+rjjPRM+vCzAAvdgoUEFvFVrFVbHUkeur5LYFXIl3oqXeh76b/rqfehQJ6Qw1HBZfYL/PPdcYuHKCXpHpD6QEWsIICNlBBr371Q+gJeeEAZ6In5IUF5BCeqecb6al3HgBPvQs5WJ2DZRwsT70LK8jBsgYq2EGLZPCao8CZ6Kl3YQErKGADFRwxiHl10YVeg3x2jZkpPWcFBWyggh00cIAxgNhxHGABKyhgAxXsoIEDxFawFWwFW8FWsBVsBVvBVrCdaTodo9XtqHFitaN20MABzkQ5wAJWUMAGYhNsgk2wCbaGrWFr2Bq2hq1ha9gathZDsXkl0oV6gAWsoIDekicq6LnpCs/5C0eiZ/caq82rizy7zauLAn17/Qj1GBzt6AOciXaAkd12ZHabVxcFRnbbkdltR2a3HYbNsBm2ge08sS4s5xmnO1ZQQN/N83cV7KA31HAcoA8rq9OW84xzYgFjKDYvpQlsoIIdNHCAMRSbl9IEFrCCAjYwD2GRuH6wIjEUW2kHWMAKCthABfNglbxytJJXjlbaTNQYis1LaQIrKGADFeyggSPR5+bHiR00cIAz0ef7LixgBQVsIDbDZtgMm2Eb2Aa2gW1gO2cE/LidMwIndtDAAc5Ef6J3YQErKCC2iW1im9gmtpk2L7AJLGAFBWyggh00cIDYCraCrWAr2Aq2gq1gK9gKtoKtYqvYKraKrWKr2Cq2iq1iq9gEm2ATbIJNsAk2wSbYBJtga9gatoatYWvYGraGrWFr2Bo2xabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2AY2xpLKWFIZSypjSWUsqYwllbGkMpZUxpLKWFIZSypjSWUsqYwllbGkMpYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJMJYIY4kwlghjiTCWCGOJnNclxdGvFKqjgQOcied1yYkFrKCADVQQ23ldoo4DnInndYk4FrCCbjPHBiq4bGs5BTsrjS4c4Ez0seTCAlZQwAYqiG1im9hm2s5KowsLWEEBG6hgBw0cILaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKrWKr2Cq2iq1iq9gqNsEm2ASbYBNsgk2wCTbBJtgatoatYWvYGraGrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYOraOrWMzbJZ53M7xoTsaOMCZeI4PJxawggI2UEFsA9vANrBNbBPbxDaxTWwT28Q2sU1sM21nbdKFBayggA1UsIMGDhBbwVawFWwFW8FWsBVsBVvBVrBVbBVbxVaxVWwVW8VWsVVsFZtgE2yCTbAJNsEm2ASbYBNsDVvD1rA1bA1bw9awNWwNW8Om2BSbYlNsik2xKTbFptgUW8fWsXVsHVvH1rF1bB1bx9axneNDcSxgBQVsoIId9NGoOQ5wJvpYst4vsbPm6cIK9hijzpKmCwc4E8+h4sQCejDft/NS4sQG+qYPR39w7Zvuc/EXDnAGeqFTYAErKGADFeyg25rjAGeiz8VfWMAKCthABfMk0bmU6FxKePnTXPXW5uVPgQWsoIANVLCDBg4Qm2ATbIJNsAk2wSbYBJtg8xnkczd9BvnCmegzyN7lvDwnsIICNlDBDho4wJk4sU1s3vvWa1Xmi0pNT5Hzs4r+r+d3Fde7VHZ+WNH77/llxQsV7KCBA5yJ3rnWy1bmdTaBFXTbcHTbdFT/TtPh3J2Ls+XG+6z5heyS9x7zyN57LlSwgwYOcCZ677mwgBV0m2+89x6/FfPymsAOGrhsPvvq5TUX+lT5hQWsoIANVNCDeUP5nLfflfn6UNNvr3x9qDm8oXyi+0IDR6I/s7nQI3jn8Gc2F3oEP8r+dMbHRF/jaQ5vEn/icmEH3ebt4Ply4Uz0fDnjer5c/1pBARuouceeLxcaOBIn++bPU88d8uepF+YenyU+qwDVzhKfVQdqZ4nPid7FLyxgBf3RSXP0RzIe17vyhQOciT5SXuhxu2MFBWyggh000G3mOBPPB0AnFrCCAjZQQVcMxwHORO/gFxawggI2UMEOYmvYzlKG1R/GWcpwYgErKGADNVtdOVjKwVIOlufFqkW1sxxoldTZWQ504Uz0p5YX+ljiXcOfWl4oYAMV7KCBA3Sb91TPoQsLWEEBG6ig5b554pj3X0+cC2vukCfOhQ1U0Dfd28wvfi4coG/66p5nZdCFJSKclUEXCthABTto4ADzsPiSSYHYCgpPsvU2mp11PeX812VbL3rZWddzoYEDnImeZBcWsIICNhCbn1DWW2PmixgFDnAmer5dWMAKCthABbE1bA2b59t6Oc7O0qELC1hBARuoYAcNHCC2js2r9tZ6XHaWAxXvO556J3rqXVjACgrYQAU7aKAr1rhz1gCtF+nsrAG6sIICLkX1HuX5dmEHDRzgTPRrvAsLWEEBsU1sE9vENrHNsI2zMmiVHo+zMuhCV1RHDyaOBg7Qg7WFnm8XFrCCAjZQwQ4aOBIrCu/r643DcZbMrFrqcZbMXKhgBw30uLbQe/V6+X6cxTEXCthABT3udDRwgDPRe/WFBazgsokfFj/5XKhgBw0c4Ez0vLhwKcQPrCfDhQ1UsIMGDnAmel5cWEBsA5vnhXiP8ry4sIMGDnAmnnnhrT45WJODNTlY3sHXi5XDF9mZa8GNUc6Pyp/YQAV9c7qjgQOcid7XLyxgBQV0mzoq2EEDBzgTvdtfWHPf/PS13mUZZznQhZY75CeqC2ein6gu9E0fjhUU0Dd9OirYiYBNsAm2hs1PVBdyWBqHpXFYGoelYWun4r//+59+++vf//VP//GXv//tX/7jH3/+82///F/5D//+2z//j//67d/+9I8//+0/fvvnv/3nX//6T7/9P3/663/6L/37v/3pb/7zP/70j8d/feTHn//2vx8/HwH/z1/++udF//1P/PXx+k8fB2IVrPufP7iXDFGO8kOQ8jpIW6VNHuIxGZ8BTH74+/r672XdefjfPx59sQE/BdjuhazVJq69eDwee7kX7XWQGTvx6N75903u/rn4cnjnXjzuV9mC2n8I0TchRLMdnnZhyN0AvURXeMwPZYDHg+0fAoxNQ/r7hmcrPCbSX4aYu4NZsx364xC+CrFrSh/yr4bo7WVTlk2frLVEj6h1PsXQn7p1/fR4bHfE2JEhr3dkE0N7NsZa1j9j9J/2Q3dHdU1ZXUdV68sQm57la3d5hMet9VOK3o/gr6yfEZ5HGXtzN+z1buwa0xeBPxvzMQf4KkTdjDW1jexYj8ctL0OUT5uibnpmPdak6bkRjxM+w1X9MYRsNmJNR5wbMe31RuwGzFqjJR5Ir5DH6Hd7R4pY7oiWlzuy6Vh1xCGV42WAfYbNnp2iyMsjOj4f9HYxWs3NaCKvTyBybMfvminy1BqPc+KPMTa9U0cckcfjmqcI437HaJodQ5+y7OeOIbI7G9vMGJMeLuPH7ZDNdlT/2unZuXp7GjDuHxNpkSWPfaqvj8mmfxbLAaM8ZgqJIT/2r5UIL2N07dHLy3qp9inKjz1Mxjf0jvlp79jvi787fO3L487q5b603fm9GCPgoI/V9tMFX/20f2x76c0hcBvjZrY0/TxbWv+4NXZHdtVmxpFdpXSvj+zYHdns6o+DfDwdWf0xxtydpPNSoWp9ao/5Y3voZixtvvj/mfuPJ1QvY2y3o+dNQX2k8Ovt2PTStQJdXtU/tcfPMb5yZNrLI6Pt46sO3V3DrQqJ3JDHLdPrDdne54yZTfJ0xv5djE2TtJI3vq1Ufa9B7l296Pzw6mV7eplHXE3Wx/zTy9NL3w2mQ/LAjv76FNU33XR9/Duuoup8Pq71fgxfwuaMMYu9jtE+P8l1/fQkt+tdWvJW/IHlvV4uNW/n2/E6ZfvY3j3mtW3XN2P4ctnX9bHON2MMYozXMbZjx5rgziupx8TiyyhWPz22+2yxGEvr4yHTexk3KzE2GWe79njEyEH98TBgvDhl77cjh2ORpwmf323Hpq+PnOSY9bk1fpyEtN3tk/ScaWnPF4TtfoxWjzgntPp8gvspxviG26dR/sj+9bhpzPlQGeWt/iWSp2pp7XgZY7Q/tn9Jy5SVvsmVsbswPazlWVaeziz1xzYdu/FYcmJzfTH7qXeU2zG6f8jqPLRD5HWM+XkPm8fHZ6ftSKolb8GGzvFyJJ2bkfTxwCc72eOJz/N02o8x5NObjt3o44/m4vnFeDn8zG1zWE7plR+S5bjf0ZmmfcwAHe8lbedi0Gp9GWOOj58h7LbCP7EWj2P6y60ox66P5lxWf7oufjy/+ynEdjvywlasP18MjvtBWsv+1doP/fznIPJ50paj/aFZ+3gunDNJj+eor+9ZytE/3ZDtgCw9b3va8+Rx/blRd5NRvuLHdd/ydK3/82z+sXvWlONPO17PYful+K3nRPY8g/PTvuweNj0MGWVxezkBs00a0n+UTdKU3Xh65D3D4xadEdl+fnK2fRA6c0KqPx2Zx4XET0F2M1J5jfy4wiREvz8qPw5HXiLL8XpULmU38aGM7UWfn3T83CC7GSmpk1mcudmSTV9tmpfJ7Ycx8XcPJI/Pk2b39Olm0myf2txNmt0DqPtJsx8U/W2ba1Ccm4mcUnedTXJO+of6gfrzc6T68QzqfjtazhvU5+v2323HbhwZXNwd5Xg9kNTtPL/WnIqRzfNz+YbuKp93V/mO7irf0l33zxqV+Zj+8ulx201LH1ltM54vVn+uKZDtM9O8CHgMrfL6DL4LIkcOrXI8X1v9Lsj4vDZh90zqZnHCLsTN6oTbe7IpT7jbpM+n7y8elxxDpJTN5VnbT6PeqgQqu8dSdx+L73encUuj293ZzVHVnOF+oLwezvZB8uiM+tzhfxdkft7hd4+mbnb4XYibHf72nuzqcXZNKqWyK+8el54FiGPUzaXV9kJC81H/46mjvLx13vdVTr2Ph2ybcXX37OB2Dxmf95DxcQ+5vSfvDomj5alqWH3dpLsHS7cr4OTjJt2FuNmkt/fk7SZ96qXW3jzL+Io61zRR2R2X/eOpW8WN/RsGVPt8QLXPB9T+DQPqvkU/vcDUI6chtMimaHX3bGp9uyHnysdmSLZNF/NXpq77mHm8HpH37WG0x3izTe9VjRbbVqQcWQnSnm4efo6xfzx1r6fvHk/d7Onj4/LV+3uy6enbFpU5aNH+XgytWWukIq9bdDefOvMp2WPWe74ZIx/5bWPse9itwuQyPr+TGp/fSc1tbd+tspqyezh1ryp4uxX3qp3KbLsr0ztF1mU3DdpLPuDqzw+nHifdd4Pom0FaVkytjzxugoyPj8t2X0bLfRnv7kvNuphen4bSLwbJGer1GeA3g1BivL6J+jJI3T6hekzi5O36g58Ozs/F+Mc3lLP+IsiM4/N4NjvfDCJZTTbl6aWyrwW5WVlbd8+p7pbW1mN+OjO8346RT3bmUNlsx90g/Xg3SJ5oHtjfC/KYQc0L1QfbLsz2NYEc2ObzhcQXO9ugsz3n8deC9EmQ1wn4hXP4y/uhuntaZVlDafb6rLW/Zr73QszuSdXd28NtkMdlXb4SU2bbBNldCVjOHz4m/zd7Ix9fedfdWzH3rq22Ie6+OHZ3T2yzJ9sWzXqIaqO9FUNKDquPk4S9G+P4OIZwQfKc+1+LkZd58vzWw88xds+obt5F/CLGrbuI/b60llP2rY/PY7zZxx6P3HPar43Xx3b/plHnpYe6eclxuyFGBeNjaH29IfMbDu78gw+uFfZlk7i7l6bKwdtbz2/Kf7FR8xpRxqaXtfbpg+HatsUDWdn+GD9e39Fst6MVVj+QTXPsznM1T1Gt9uP1eW773tS9Gab6DQ+n6ucPp+rnD6fqNzyc2rfovRmmfYx7M0x192jqburve8e919Z3j3PuHln7/Mje3pPXY0c/PrxG3qes5FDams03r2+r5TtodXd9u38idO9Jfd29NXX7Bfbt7owj+mmbfWx2p3/H7tgfvTszzzB6HLvdmX9kT1NKurX1zZ2U7eqg8zH7o6NliMdp56cQH78tvd+KnHR7PlX+fiu2Z9t8dtmK2MutaNsrmHx3fF3NzPeC+MLR+XTqeC+IL7gXQZ4mZr/SqLkzjw67adT5h4Z4NGSepB6sr3dlfseRmd9xZOY3HJlt5mq+waCzjffOEZ03SXsRezdITrY9nrjLm0GaMP/f390dyUKsrrK51P3FW1T3zhG716i+5RzRNUuPutpmd7YvUulomTs6nl7T7V8KcqvSve6eV/Wej3jWhzw3u7O5XL1b6e7r3by+NbtVOuyzBB/eIW4fV90sHa5z111vlw7/IoxKjkmP27PxOsyuy64PZsUxbkd5eYzl+HxSVY7PJ1Xl+HhSdRvi3i3J/T2xzZ58Pqm6jXFzUvVXMY6PY9ybM5PdO1U/3PTqe216c3L3FzFuTe7Ktur/3vzfL2LcmgTY70vLd+Tl+Qn+77bD/ujtuDXJfD/Gmzl3c5JZdq9T3Z1k/kVnv9lByh98YO5NEMvuFaa7E8S/2JBbE8RSPz79Sx2fTxBvt+PmBPGvLu706eJOXlzcye5NqrtXiNsgN++/t5d21vKNPWuvO6q0z68dRD++dtiFuHntcHtPNhPV+4vl8fQO5Ovz7Xc8X9peLfdc5eeBc3O1vAti2agPLO8FKUe+JVfb9rp9O3cvzDT39y/+R+fi/+ks89WL/+NpgWrZ1MvM/SMN/f97pPG1dmn2//v+/++DfMOouF0YZj697D7eSp3KeFbL5oynH7+iKrtF/m6faLR83qTbQ5vz1Y+jLO92+VIblwDy9v2uP+G7wtT+dubUvKhZITeZs1v9J9cgenrY89Pq8L+aUZT6NKPY3pyW5C2143nhsJ/Xoy2fz21ug3zLPPzdFmnf0SL6HS2iH7fIvijyaHmFdhzP9Yxfq608pD+F2RSLlm3T3i7R3IXplqnT7akwsn8hxKi8TdTsvRD5kYk+7OUyIPtK7YPPKxxvF57n4iqPIK/LvX/x1iwrxbSnID/PsMru7aqb9SJin7+qKvbxq6rbEDcvw+3zV1X3LXqvXmQf4169iAz5fDZhH+PebMK+h92qOZHx8YcntiHu9o7be/J6OmJ8WgmwT/uWZ6nHA6NN2u9ea7p79z0/f51a5sevU29D3Dywt/dkk/bbFr159z2/YVZ1vx23HpnJ/HhFtbZbfejurfd2O+7dysgv3t+7c3e4j3Hv7rAd7fMm/YY61e123GvSXyy0kY/MR3/+HMbvVuvY9PR7L2TvP8Fz68qllc/fpW7l43eptyHuDWH398Tea9Cbha7Hx9ctrXz+JvUvYtybxvz4sNa2vwG7+Trm9vtKN1+k3MW4+R7l9gMlN988vB1j8+LhPsa99w63q7jdv6fdrpB5761D+ZZXduUb3joU+WP35m5flW9453f7IZybffV2jE1f3ce411e3b6fc7qvyLS+3fnz70+TT11K33+KiELL9uAz8j3M4re2K/ipLH1V5NeP4ixD58RmRw16GqB9PFe4agxm+Vn5YYfvnzfiGNf7ad6zxJx836e6xdM+FC/oP9e3jfoTGx1b66wi7CzHlI7T6VDz5u8+rbS/mKhdzVV7GaLq9Ebz34QaxT7vo/u3LxucBuh6vP/XUdt9Yupmx+xC3Mnb3LZ6bzbF9Np61Rg98eUjmx318ftzHxzf08fENfXz71tPNPr79hqA/RTkPyYPZkJ+/IbiLoVQrqL6Osf8629H4KNph9jpTdm9O3cyUfYhbmdLHHzpw/Ngc4/WS3vvPCHJgnpc8+t1nBG/HmJ/HeCrt/9rnDPMK/YdVwX/3KcLdk9LH5HQe21nKJshuffKhuRT+eD7bfy1IruD0wPluEGNL5vEdQfRlkF3pxuOWKT9aZ629d3AeV2LMzjV58whPlkp9nvt4+6uXbb7XIke+zqKHbg7N7a+AbtJm6HYK+M4Sbm37sZNKDHmaVf/9huyKR9Rib0yfX/T9uUF2X/Zp1Oa254/f/XR3vHsGtRZ7jxjH88fafoqxe2/qcRvW+OzT8fzxuvGFZpXsq1Wezt6/b9ZtkMGxGa87yf6LpLc/jbqN0ijQNd188bHN7VdTKEN5PsTj/pcnHzeeeZv8XOP/lW+jqvDxB+nvfnkyX+XU5/vCL8WYeaX4yJr65pEx7nIfPN6MMgrXJKO+bpPdK9T3ruC3EW5dwe+/2jaodSrPX5DoP50kdv30yBXCZnl5nbgPUfJ18lnaq8v3/VfseqZ/GaZvZu4Y1Oc+LiQ2XyTeforq1sX3L0LcufjW8nFV3heaY/eB5l9EUaLUN1P38ZdGlPb6vkh3n6K6eWj2Ie4dGvtjD80PzaH29qFpT1HeHA/nkefvB8/X4/v2W3T3BsR9iFsj4n5flAua2Y9Ni+weCt2b4NmGeMzxH5xlepnvBTGqr83keDMItddm+lZ/fdyDPJUtbMbn7SexvusLXzWj1OcU/v0Xvu4GeVrV8mtBWDOg6tNT/y8FeexCrq95DHkZRPbvPuTURJXXH6HW3StQdx8i6PZjEncfImzfBik5q3C03d58+pRqNy95d092MVSzYlrteN6T+9uhvEWl9vyA6KcY2urHZ859iFtnzvbxkj/7xsin0zpkbhpje6LJIqzehmyC7O6s8g3M/vxlvvGFzeDTzT8uoPKlfVHNangd+naQ3Jl+zLeD5Howzx8b/V1f335aN7NW5y6Gfnol0vXTC5Hdftx9uLKNcfPhim6/23Tz4cquJl+mMt38/JGhdvy0IZ/fVennd1Wfv+tk28f12Tna8fzh5p8bY/f1qJuNsQ9xrzH0D22MkhNu7YfPrf+uMezzxrDPG2N+fGravjuap6b2vDLQl74bP/Na/RHj9Rfb1b5hGUk/g3169bN7BbWz3tnTNenvN+M7rkntG65J9x+x7zkcP4K8/oi9bodSVrF5utG2cX8zWsk32duP39L+ShDJ+8omP1xF/bQvu49H3cvbsltt6TGtnRX17fkznL/bmfb5zEP79IS/3ZW7Z/x9kLun/PENp/zt1+cfM7KZd/OpTX76+rxu1/a7Oz+9e0Z1b3J5vy9TmRR6ejT8875s59qfX+d9utOXfnwlyL2VNX8V5NbKmr8Icm9lzV8Eufeuddm9RFKP+vRuz3x1cLYxph7ZR344STye4X8hSKN2WvvbQbJE93kRyd8H0c/72n5LGBZnl3d3p+fyIPOHVWC+FITXFOdzn/85SN8+Y/qOID+8A/bcJj817D5IpYKnPpdEfCmIdJ6Zj9dByrbC9N77n/0bXp7qn7881T9/eap/w8tT+xa99/5nL58v8V9ku0D3vdWX9kFurr60DXL3FdD9ltxcfals37K5vfrSL8LcXXr1V2FuLuK0b5mbizjtg9xcxKnIxysObbPn5mu6+xj3XtPtdTtfdec1Xb+d21wy3npNt+9fc7nXpNtDe28Rp1/01buLOP0izN1FnH4V5uYiTr+4qshnRNOeP3D58wWBfFxn/YsQd6ae+u5J1TeEuDd79YsGzTVx5vOnAn9u0F/dEtxaCOpXQW4tBNWbfH5zsg1ys1m3UwtPT1bk3dmJmSHayxCjfToR19v4fCKu76rf707E7aY3Hme4/NLOfJ4z+uk1jV0MHTWfvB3Pz7u+EKNXJo3qDw8CfjpF6McPAvabkWeZ/vy67pd2RbLK+9E/5mZX+h+6K89fpXi6F/n9Zow/dDOUfHu+Wv3dZvSP3079RYhbp4X+8dupuzm8blmo1sfTYhA/N8ZuCu/eBO02wq352e1c5M3p2f23Su7NzvY+vmF2drss4M07f/uGO3/7/M7fPr/zt2+489+26M07f/uGO//dLMbtO/9tkLt3/uUbFn/ab8ndO//d5NAX7vz3YW7f+f8izN07/3J8w53/NsjdO//j4wW6ttlz985/G+Pmnf/4/M5/fMed//j8zn9/aG/e+e/76u07/32Y23f+vwhz885/ey1w64ZqfzVx535qN9LfvJ+a33E/Nb/hfmpbklCzRFXqfF3QtI1hud7PI0/ejMHZsx2bGGP7Fdb8Kk6r43Wl2vh4/ZHx8foj4xvWHxnfsP6IHd9wtbp9EzKflz0e5T/XeBy3Q9Sa+1J/+Kr2V2IUXlOt/fV2WPmG0ior31BaVXYvId390mCp3/IwZDvPzUs3TfX5k5Q/VRLu9ufmZ+isjI9vaazMT29ptiHu3dLc3xPb7Mm2RW99hm4b4+Zn6H4V4/g4xr3P0Fm9u56kvtemNz9D94sYtz5DZ3X7iZ9b62v+Isat29X9vtz7DJ3tnnF9z3bc+gzd/Rhv5tzNz9DZ7onS3c/Q/aKz3+wg/Q8+MPc+Q2dtOxNx7zN0v9iQW5+hs+0bULduL63J57eXtl908N7t5f7y4dZn6Gz3xs/dz9Btg9x8xlY/L4SyNj+/dtituHPz2mEX4ua1w+092UyH1s8LoUw//8yp1/d+PB1av6MQqn5HIVT9jkKo+j2FUPV7Kpjqd1Qw1e+oYKqfVzDVb6hgqp9XMNl28b57J5pu33Ci6f3zJv2OCqb6PRVM9XsqmOq3VDBtZ4luzWPu55nuzGNuX3S9tQ37V2XvbMMvFlFgjNfxvDTjV1Zi6Czn0Ke8GWTkE/c6D30viBz5xPyBr3dHd5+SvbsmxDbIvc+17UPc+lzbL0Lc+lzb9rjw2sw6l795cH8I0t4NUgkir4+LjY9LVH4R4k5tiM3jDw1x99J926C8CGE23j0qebVabb47gjxvydtBRt52r/VV3w3C15+2QbaLKd2sO+yfju2/WBouZ3VnaW+uLpdTfw989bbbdqW9W02xX6vv1pl2t/6h5XJQj3uy5zduv7CGIgsXPnC8GSPnUh6n3TfXchyN7Xh3TcmRd0KPcO+uKZmv/T3w3fbIe6lHjNfHZbtOp+aEblPrn8cY76312Xgs3Xp7c19446/Zpo9tY7BMZxvyOsbYvUZlrJBnz9XbP5ejj90npBrLSrb+vCj0767T91vSc0t0tyW7pRCO7O/9eL5j+Mp25AeCxnG8fqNz1O0U1ZHN+ryO2++D7N78z/epn+/4VxH07S7Cat1tt/zh2N2H3e4itX1DF/nFltzrIrvp9ptdZL8dd7vI+I4uMv/QLjJzYVo9yuszxNi91aY1P5mkdT4NzT8d3N3zqW65AkG3pxUIyv2VnB8XOHm2O+zY7Ev7hn3RP3ZfSi4rrz+s+fOlVamPuKZTKe29GJXtqO07Yow3Y+QzkMcRsjdj5KP6R7i329RoU3kzRiGGbFY+336KJVcvqFWfb5F/eiGlfbzQ7y9C3Lm/Hc3+0BD3bpG37SmsMSr2+rM0Y/dY6dZihdutaNxiP6/U8/utqJ+PYLs3pm6OYPsP/VSewlR9uS/7GMpHUvvr9mh9v3zsrS8ObYPcm+Xbh7g1y/eLEHdm+bZftLp1l77/Jtadu3T5eE5ePp6T338r8nn5l+P5K55f+uIknxVcUTbfz9zWotz+cOU2zM0+ug1xr4/uQ9zpo/tv8N78Auc2xuffeb3fR3713dqbfaR+Tx+pn/eR+nkfqR/3kV3lxKB0ezx9ia7UHw+v3wC/fpqVJ7nan76Wcn8rfljyrLzcim2ImWfJ43km6AshRt6g1+P5oy8/t8XYrol3r+R67F6Av1tyvXuu/7zu0/Onkn63M/vaPpY26F1f1dP/KkhO0pVux8vL490TpMoCcFJK2ezOrtSoCr19VYIQ5ih3G7ZZ3ui38VzveL+jNRYDecw4bo7N/Iba/jG/obb/VweYz+E8DvCr1fnG7n2H7+klqlyhPj0U+33D7grRjyxFqc8Ps383oTS39SzUGZW6mWLbvS91d55uHsfH83T77bg3T+cPOD6dp5u7FUfvzdPtB4FiB/W59vwZmuPnRQJ209stj0wGaPdH53vfB5zHpouNfATzXMr6c7XT3L0v9ZjMyvQvzx1s3h4OK49Ma3m+KfzpmOxDZJVCeb4N+UoI6mnq03Oxn0PMsr3fz2++yfFmiKyn70+V31/ZkefT9tM1yFdC9Lzq/7G26AshLB/dVtu2hf3BQUrnLNefCy6+FMSo+36MqW8GmfnuSHn+rtiXDm7nszf2Xq5wBfPoKeW9raBsTI63dqQNKi3H89I38/a1ti+rdw3CbbyzEaV0vgY63sq2IpmvReZ7W6GVy7Cnm7gvhehUwI/53o7QOaW+tyOsqlRE39oRy0Iga/2dADPnjp8/D/eVnTgq67n1131i7p46fd67Z17qPK7g3mqI7NrT9MOW3ATYXhw8QuSSzHrMlzM/c/cy1ONpeU4f6dwsobCdvf50fuFxhWFcpJSXl1u7V6Eqr1IeryNsG/TmVNo2yJoFYyn0Q94MM1VYPvx5Qu5LQSqLdtfnRS2/FiTfdJvPK8J9LYgoM529v9lXRw7lc6hs+urdIE/v/n8xyMiGfdx6vxfk/kTnL5r23iTyL7bl7gzwr8LcnAKeu1e9vtAy+nHB+j7ErSngX4T4cAr43jPf7fUL33XtTxeUP68OvwvR+ch1f/rCy1dCjHzEWZ7P2l8JMY0POR7lnRD14GHt8VQo+pWt4FOQ64Pf74Xg+6ejvLUjj07BLMl8byuEz6e2pwm9r4RoOcnxOG/ryxBzVw79DXcrkpdCjwx5rzEas07PSw+8257vhRA+IyvPlzHr5uduCClUmTyf9N8NMd4LkXNGDzreCzFZDOLQt0JontUep8P32qLlhdgD7eMQ7b2D2pSFIJ5qCb4UIqc05bnk5kvNmXV2D6zvbUWei+SHAeMrW8EzEZW3tqIMXtx8fiXmSyGeP5beX4aYc7eEXeWe/nETxch3fzNm4Wvr9a08K5OVrJ4rY78UgkW55ntJUubTymC9vxlCCGEfh7B3t4Jn5aO8F2IoR6R+uBW/P6j/8/F///Svf/nHv/z17//6p//4y9//9u+Pv/zvFewff/nT//rrn6//+3/+82//+vRf/+P//bf4L//rH3/561//8n//5d/+8fd//fP//s9//HlFWv/tt+P6n//xuEia/2SPR9L/859+K4//P9aF1zja8fj/4v9d13/vc/339Qd9rcn0+J++/qH4b9jx+A2r//O/1yb/fw=="
|
|
4343
4343
|
}
|
|
4344
4344
|
],
|
|
4345
4345
|
"outputs": {
|
|
@@ -4709,7 +4709,7 @@
|
|
|
4709
4709
|
"file_map": {
|
|
4710
4710
|
"101": {
|
|
4711
4711
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/aztec.nr",
|
|
4712
|
-
"source": "use crate::macros::{\n calls_generation::{\n external_functions::{\n generate_external_function_calls, generate_external_function_self_calls_structs,\n },\n internal_functions::generate_call_internal_struct,\n },\n dispatch::generate_public_dispatch,\n internals_functions_generation::{create_fn_abi_exports, process_functions},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{\n get_trait_impl_method, is_fn_contract_library_method, is_fn_external, is_fn_internal,\n is_fn_test, module_has_storage,\n },\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate new functions prefixed with `__aztec_nr_internals__` and we replace the original functions' bodies\n // with `static_assert(false, ...)` to prevent them from being called directly from within the contract.\n let functions = process_functions(m);\n\n // We generate structs and their implementations necessary for convenient functions calls.\n let interface = generate_contract_interface(m);\n let self_call_structs = generate_external_function_self_calls_structs(m);\n let call_internal_struct = generate_call_internal_struct(m);\n\n // We generate ABI exports for all the external functions in the contract.\n let fn_abi_exports = create_fn_abi_exports(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { sync_private_state }\n }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n\n let process_message_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { process_message }\n }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $self_call_structs\n $call_internal_struct\n $functions\n $fn_abi_exports\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state_fn_and_abi_export\n $process_message_fn_and_abi_export\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let calls = generate_external_function_calls(m);\n\n let module_name = m.name();\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $calls\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = &[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, owner, storage_slot, randomness);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note,\n contract_address,\n owner,\n randomness,\n storage_slot,\n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, owner, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n owner: aztec::protocol_types::address::AztecAddress,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n _owner: aztec::protocol_types::address::AztecAddress,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _randomness: Field,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n quote {\n pub struct sync_private_state_parameters {}\n\n #[abi(functions)]\n pub struct sync_private_state_abi {\n parameters: sync_private_state_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn sync_private_state() {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n \n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier);\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n quote {\n pub struct process_message_parameters {\n pub message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n pub message_context: aztec::messages::processing::message_context::MessageContext,\n }\n\n #[abi(functions)]\n pub struct process_message_abi {\n parameters: process_message_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n\n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier); \n aztec::messages::discovery::process_message::process_message_ciphertext(\n address,\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\ncomptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_internal(f)\n & !is_fn_test(f) {\n // We don't suggest that #[contract_library_method] is allowed because we don't want to introduce another\n // concept\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[internal(...)], or #[test]\",\n );\n }\n }\n}\n"
|
|
4712
|
+
"source": "use crate::macros::{\n calls_generation::{\n external_functions::{\n generate_external_function_calls, generate_external_function_self_calls_structs,\n },\n internal_functions::generate_call_internal_struct,\n },\n dispatch::generate_public_dispatch,\n internals_functions_generation::{create_fn_abi_exports, process_functions},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{\n get_trait_impl_method, is_fn_contract_library_method, is_fn_external, is_fn_internal,\n is_fn_test, module_has_storage,\n },\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate new functions prefixed with `__aztec_nr_internals__` and we replace the original functions' bodies\n // with `static_assert(false, ...)` to prevent them from being called directly from within the contract.\n let functions = process_functions(m);\n\n // We generate structs and their implementations necessary for convenient functions calls.\n let interface = generate_contract_interface(m);\n let self_call_structs = generate_external_function_self_calls_structs(m);\n let call_internal_struct = generate_call_internal_struct(m);\n\n // We generate ABI exports for all the external functions in the contract.\n let fn_abi_exports = create_fn_abi_exports(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { sync_private_state }\n }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n\n let process_message_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { process_message }\n }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $self_call_structs\n $call_internal_struct\n $functions\n $fn_abi_exports\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state_fn_and_abi_export\n $process_message_fn_and_abi_export\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let calls = generate_external_function_calls(m);\n\n let module_name = m.name();\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $calls\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = @[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, owner, storage_slot, randomness);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note,\n contract_address,\n owner,\n randomness,\n storage_slot,\n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, owner, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n owner: aztec::protocol_types::address::AztecAddress,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n _owner: aztec::protocol_types::address::AztecAddress,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _randomness: Field,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n quote {\n pub struct sync_private_state_parameters {}\n\n #[abi(functions)]\n pub struct sync_private_state_abi {\n parameters: sync_private_state_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn sync_private_state() {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n \n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier);\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n quote {\n pub struct process_message_parameters {\n pub message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n pub message_context: aztec::messages::processing::message_context::MessageContext,\n }\n\n #[abi(functions)]\n pub struct process_message_abi {\n parameters: process_message_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n\n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier); \n aztec::messages::discovery::process_message::process_message_ciphertext(\n address,\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\ncomptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_internal(f)\n & !is_fn_test(f) {\n // We don't suggest that #[contract_library_method] is allowed because we don't want to introduce another\n // concept\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[internal(...)], or #[test]\",\n );\n }\n }\n}\n"
|
|
4713
4713
|
},
|
|
4714
4714
|
"103": {
|
|
4715
4715
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/calls_generation/external_functions_stubs.nr",
|
|
@@ -4721,7 +4721,7 @@
|
|
|
4721
4721
|
},
|
|
4722
4722
|
"106": {
|
|
4723
4723
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/dispatch.nr",
|
|
4724
|
-
"source": "use crate::macros::internals_functions_generation::external_functions_registry::get_public_functions;\nuse super::utils::compute_fn_selector;\nuse poseidon::poseidon2::Poseidon2Hasher;\nuse protocol_types::meta::utils::get_params_len_quote;\nuse std::{collections::umap::UHashMap, hash::BuildHasherDefault, panic};\n\n/// Returns an `fn public_dispatch(...)` function for the given module that's assumed to be an Aztec contract.\npub comptime fn generate_public_dispatch(m: Module) -> Quoted {\n let functions = get_public_functions(m);\n\n let unit = get_type::<()>();\n\n let seen_selectors =\n &mut UHashMap::<Field, Quoted, BuildHasherDefault<Poseidon2Hasher>>::default();\n\n let ifs = functions.map(|function: FunctionDefinition| {\n let parameters = function.parameters();\n let return_type = function.return_type();\n\n let selector: Field = compute_fn_selector(function);\n let fn_name = function.name();\n\n // Since function selectors are computed as the first 4 bytes of the hash of the function signature,\n // it's possible to have collisions. With the following check, we ensure it doesn't happen within\n // the same contract.\n if seen_selectors.contains_key(selector) {\n let existing_fn = seen_selectors.get(selector).unwrap();\n panic(\n f\"Public function selector collision detected between functions '{fn_name}' and '{existing_fn}'\",\n );\n }\n seen_selectors.insert(selector, fn_name);\n\n let params_len_quote = get_params_len_quote(parameters);\n\n let initial_read = if parameters.len() == 0 {\n quote {}\n } else {\n // The initial calldata_copy offset is 1 to skip the Field selector\n // The expected calldata is the serialization of\n // - FunctionSelector: the selector of the function intended to dispatch\n // - Parameters: the parameters of the function intended to dispatch\n // That is, exactly what is expected for a call to the target function,\n // but with a selector added at the beginning.\n quote {\n let input_calldata: [Field; $params_len_quote] = dep::aztec::context::public_context::calldata_copy(1, $params_len_quote);\n let mut reader = dep::aztec::protocol_types::utils::reader::Reader::new(input_calldata);\n }\n };\n\n let parameter_index: &mut u32 = &mut 0;\n let reads = parameters.map(|param: (Quoted, Type)| {\n let parameter_index_value = *parameter_index;\n let param_name = f\"arg{parameter_index_value}\".quoted_contents();\n let param_type = param.1;\n let read = quote {\n let $param_name: $param_type = reader.read_struct(dep::aztec::protocol_types::traits::Deserialize::deserialize);\n };\n *parameter_index += 1;\n quote { $read }\n });\n let read = reads.join(quote { });\n\n let mut args =
|
|
4724
|
+
"source": "use crate::macros::internals_functions_generation::external_functions_registry::get_public_functions;\nuse super::utils::compute_fn_selector;\nuse poseidon::poseidon2::Poseidon2Hasher;\nuse protocol_types::meta::utils::get_params_len_quote;\nuse std::{collections::umap::UHashMap, hash::BuildHasherDefault, panic};\n\n/// Returns an `fn public_dispatch(...)` function for the given module that's assumed to be an Aztec contract.\npub comptime fn generate_public_dispatch(m: Module) -> Quoted {\n let functions = get_public_functions(m);\n\n let unit = get_type::<()>();\n\n let seen_selectors =\n &mut UHashMap::<Field, Quoted, BuildHasherDefault<Poseidon2Hasher>>::default();\n\n let ifs = functions.map(|function: FunctionDefinition| {\n let parameters = function.parameters();\n let return_type = function.return_type();\n\n let selector: Field = compute_fn_selector(function);\n let fn_name = function.name();\n\n // Since function selectors are computed as the first 4 bytes of the hash of the function signature,\n // it's possible to have collisions. With the following check, we ensure it doesn't happen within\n // the same contract.\n if seen_selectors.contains_key(selector) {\n let existing_fn = seen_selectors.get(selector).unwrap();\n panic(\n f\"Public function selector collision detected between functions '{fn_name}' and '{existing_fn}'\",\n );\n }\n seen_selectors.insert(selector, fn_name);\n\n let params_len_quote = get_params_len_quote(parameters);\n\n let initial_read = if parameters.len() == 0 {\n quote {}\n } else {\n // The initial calldata_copy offset is 1 to skip the Field selector\n // The expected calldata is the serialization of\n // - FunctionSelector: the selector of the function intended to dispatch\n // - Parameters: the parameters of the function intended to dispatch\n // That is, exactly what is expected for a call to the target function,\n // but with a selector added at the beginning.\n quote {\n let input_calldata: [Field; $params_len_quote] = dep::aztec::context::public_context::calldata_copy(1, $params_len_quote);\n let mut reader = dep::aztec::protocol_types::utils::reader::Reader::new(input_calldata);\n }\n };\n\n let parameter_index: &mut u32 = &mut 0;\n let reads = parameters.map(|param: (Quoted, Type)| {\n let parameter_index_value = *parameter_index;\n let param_name = f\"arg{parameter_index_value}\".quoted_contents();\n let param_type = param.1;\n let read = quote {\n let $param_name: $param_type = reader.read_struct(dep::aztec::protocol_types::traits::Deserialize::deserialize);\n };\n *parameter_index += 1;\n quote { $read }\n });\n let read = reads.join(quote { });\n\n let mut args = @[];\n for parameter_index in 0..parameters.len() {\n let param_name = f\"arg{parameter_index}\".quoted_contents();\n args = args.push_back(quote { $param_name });\n }\n\n // We call a function whose name is prefixed with `__aztec_nr_internals__`. This is necessary because the\n // original function is intentionally made uncallable, preventing direct invocation within the contract.\n // Instead, a new function with the same name, but prefixed by `__aztec_nr_internals__`, has been generated to\n // be called here. For more details see the `process_functions` function.\n let name = f\"__aztec_nr_internals__{fn_name}\".quoted_contents();\n let args = args.join(quote { , });\n let call = quote { $name($args) };\n\n let return_code = if return_type == unit {\n quote {\n $call;\n // Force early return.\n dep::aztec::context::public_context::avm_return([]);\n }\n } else {\n quote {\n let return_value = dep::aztec::protocol_types::traits::Serialize::serialize($call);\n dep::aztec::context::public_context::avm_return(return_value.as_vector());\n }\n };\n\n let if_ = quote {\n if selector == $selector {\n $initial_read\n $read\n $return_code\n }\n };\n if_\n });\n\n if ifs.len() == 0 {\n // No dispatch function if there are no public functions\n quote {}\n } else {\n let ifs = ifs.push_back(quote { panic(f\"Unknown selector {selector}\") });\n let dispatch = ifs.join(quote { });\n\n let body = quote {\n // We mark this as public because our whole system depends on public functions having this attribute.\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_public]\n pub unconstrained fn public_dispatch(selector: Field) {\n $dispatch\n }\n };\n\n body\n }\n}\n\ncomptime fn get_type<T>() -> Type {\n let t: T = std::mem::zeroed();\n std::meta::type_of(t)\n}\n"
|
|
4725
4725
|
},
|
|
4726
4726
|
"115": {
|
|
4727
4727
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/internals_functions_generation/external/private.nr",
|
|
@@ -4749,7 +4749,7 @@
|
|
|
4749
4749
|
},
|
|
4750
4750
|
"129": {
|
|
4751
4751
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/private_events.nr",
|
|
4752
|
-
"source": "use crate::{\n event::event_interface::compute_private_serialized_event_commitment,\n messages::{\n encoding::MAX_MESSAGE_CONTENT_LEN, logs::event::decode_private_event_message,\n processing::enqueue_event_for_validation,\n },\n};\nuse protocol_types::{address::AztecAddress, traits::ToField};\n\npub unconstrained fn process_private_event_msg(\n contract_address: AztecAddress,\n recipient: AztecAddress,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n tx_hash: Field,\n) {\n let (event_type_id, randomness, serialized_event) =\n decode_private_event_message(msg_metadata, msg_content);\n\n let event_commitment = compute_private_serialized_event_commitment(\n serialized_event,\n randomness,\n event_type_id.to_field(),\n );\n\n enqueue_event_for_validation(\n contract_address,\n event_type_id,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n );\n}\n"
|
|
4752
|
+
"source": "use crate::{\n event::event_interface::compute_private_serialized_event_commitment,\n messages::{\n encoding::MAX_MESSAGE_CONTENT_LEN, logs::event::decode_private_event_message,\n processing::enqueue_event_for_validation,\n },\n};\nuse protocol_types::{address::AztecAddress, traits::ToField};\n\npub unconstrained fn process_private_event_msg(\n contract_address: AztecAddress,\n recipient: AztecAddress,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n tx_hash: Field,\n) {\n let (event_type_id, randomness, serialized_event) =\n decode_private_event_message(msg_metadata, msg_content);\n\n let event_commitment = compute_private_serialized_event_commitment(\n serialized_event,\n randomness,\n event_type_id.to_field(),\n );\n\n enqueue_event_for_validation(\n contract_address,\n event_type_id,\n randomness,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n );\n}\n"
|
|
4753
4753
|
},
|
|
4754
4754
|
"130": {
|
|
4755
4755
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/private_notes.nr",
|
|
@@ -4781,7 +4781,7 @@
|
|
|
4781
4781
|
},
|
|
4782
4782
|
"151": {
|
|
4783
4783
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/processing/mod.nr",
|
|
4784
|
-
"source": "pub(crate) mod event_validation_request;\npub mod message_context;\npub(crate) mod note_validation_request;\npub(crate) mod log_retrieval_request;\npub(crate) mod log_retrieval_response;\npub(crate) mod pending_tagged_log;\n\nuse crate::{\n capsules::CapsuleArray,\n event::event_selector::EventSelector,\n messages::{\n discovery::partial_notes::DeliveredPendingPartialNote,\n logs::{event::MAX_EVENT_SERIALIZED_LEN, note::MAX_NOTE_PACKED_LEN},\n processing::{\n log_retrieval_request::LogRetrievalRequest,\n log_retrieval_response::LogRetrievalResponse,\n note_validation_request::NoteValidationRequest, pending_tagged_log::PendingTaggedLog,\n },\n },\n oracle,\n};\nuse event_validation_request::EventValidationRequest;\nuse protocol_types::{address::AztecAddress, hash::sha256_to_field};\n\n// Base slot for the pending tagged log array to which the fetch_tagged_logs oracle inserts found private logs.\nglobal PENDING_TAGGED_LOG_ARRAY_BASE_SLOT: Field =\n sha256_to_field(\"AZTEC_NR::PENDING_TAGGED_LOG_ARRAY_BASE_SLOT\".as_bytes());\n\nglobal NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\n/// Searches for private logs emitted by `contract_address` that might contain messages for one of the local accounts,\n/// and stores them in a `CapsuleArray` which is then returned.\npub(crate) unconstrained fn get_private_logs(\n contract_address: AztecAddress,\n) -> CapsuleArray<PendingTaggedLog> {\n // We will eventually perform log discovery via tagging here, but for now we simply call the `fetchTaggedLogs`\n // oracle. This makes PXE synchronize tags, download logs and store the pending tagged logs in a capsule array.\n oracle::message_processing::fetch_tagged_logs(PENDING_TAGGED_LOG_ARRAY_BASE_SLOT);\n\n CapsuleArray::at(contract_address, PENDING_TAGGED_LOG_ARRAY_BASE_SLOT)\n}\n\n/// Enqueues a note for validation by PXE, so that it becomes aware of a note's existence allowing for later retrieval\n/// via `get_notes` oracle. The note will be scoped to `contract_address`, meaning other contracts will not be able to\n/// access it unless authorized.\n///\n/// In order for the note validation and insertion to occur, `validate_enqueued_notes_and_events` must be later called.\n/// For optimal performance, accumulate as many note validation requests as possible and then validate them all at the\n/// end (which results in PXE minimizing the number of network round-trips).\n///\n/// The `packed_note` is what `getNotes` will later return. PXE indexes notes by `storage_slot`, so this value\n/// is typically used to filter notes that correspond to different state variables. `note_hash` and `nullifier` are\n/// the inner hashes, i.e. the raw hashes returned by `NoteHash::compute_note_hash` and\n/// `NoteHash::compute_nullifier`. PXE will verify that the siloed unique note hash was inserted into the tree\n/// at `tx_hash`, and will store the nullifier to later check for nullification.\n///\n/// `owner` is the address used in note hash and nullifier computation, often requiring knowledge of their\n/// nullifier secret key.\n///\n/// `recipient` is the account to which the note message was delivered (i.e. the address the message was encrypted to).\n/// This determines which PXE account can see the note - other accounts will not be able to access it (e.g. other\n/// accounts will not be able to see one another's token balance notes, even in the same PXE) unless authorized. In most\n/// cases `recipient` equals `owner`, but they can differ in scenarios like delegated discovery.\npub(crate) unconstrained fn enqueue_note_for_validation(\n contract_address: AztecAddress,\n owner: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_nonce: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n note_hash: Field,\n nullifier: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `NoteValidationRequest`\n CapsuleArray::at(contract_address, NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n NoteValidationRequest {\n contract_address,\n owner,\n storage_slot,\n randomness,\n note_nonce,\n packed_note,\n note_hash,\n nullifier,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Enqueues an event for validation by PXE, so that it can be efficiently validated and then inserted into the event\n/// store.\n///\n/// In order for the event validation and insertion to occur, `validate_enqueued_notes_and_events` must be later\n/// called. For optimal performance, accumulate as many event validation requests as possible and then validate them\n/// all at the end (which results in PXE minimizing the number of network round-trips).\npub(crate) unconstrained fn enqueue_event_for_validation(\n contract_address: AztecAddress,\n event_type_id: EventSelector,\n serialized_event: BoundedVec<Field, MAX_EVENT_SERIALIZED_LEN>,\n event_commitment: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `EventValidationRequest`\n CapsuleArray::at(contract_address, EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n EventValidationRequest {\n contract_address,\n event_type_id,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Validates all note and event validation requests enqueued via `enqueue_note_for_validation` and\n/// `enqueue_event_for_validation`, inserting them into the note database and event store respectively, making them\n/// queryable via `get_notes` oracle and our TS API (PXE::getPrivateEvents).\n///\n/// This automatically clears both validation request queues, so no further work needs to be done by the caller.\npub(crate) unconstrained fn validate_enqueued_notes_and_events(contract_address: AztecAddress) {\n oracle::message_processing::validate_enqueued_notes_and_events(\n contract_address,\n NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n );\n}\n\n/// Efficiently queries the node for logs that result in the completion of all `DeliveredPendingPartialNote`s stored in\n/// a `CapsuleArray` by performing all node communication concurrently. Returns a second `CapsuleArray` with Options for\n/// the responses that correspond to the pending partial notes at the same index.\n///\n/// For example, given an array with pending partial notes `[ p1, p2, p3 ]`, where `p1` and `p3` have corresponding\n/// completion logs but `p2` does not, the returned `CapsuleArray` will have contents\n/// `[some(p1_log), none(), some(p3_log)]`.\npub(crate) unconstrained fn get_pending_partial_notes_completion_logs(\n contract_address: AztecAddress,\n pending_partial_notes: CapsuleArray<DeliveredPendingPartialNote>,\n) -> CapsuleArray<Option<LogRetrievalResponse>> {\n let log_retrieval_requests =\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT);\n\n // We create a LogRetrievalRequest for each PendingPartialNote in the CapsuleArray. Because we need the indices in\n // the request array to match the indices in the partial note array, we can't use CapsuleArray::for_each, as that\n // function has arbitrary iteration order. Instead, we manually iterate the array from the beginning and push into\n // the requests array, which we expect to be empty.\n let mut i = 0;\n let pending_partial_notes_count = pending_partial_notes.len();\n while i < pending_partial_notes_count {\n let pending_partial_note = pending_partial_notes.get(i);\n log_retrieval_requests.push(\n LogRetrievalRequest {\n contract_address,\n unsiloed_tag: pending_partial_note.note_completion_log_tag,\n },\n );\n i += 1;\n }\n\n oracle::message_processing::bulk_retrieve_logs(\n contract_address,\n LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT,\n LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT,\n );\n\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT)\n}\n"
|
|
4784
|
+
"source": "pub(crate) mod event_validation_request;\npub mod message_context;\npub(crate) mod note_validation_request;\npub(crate) mod log_retrieval_request;\npub(crate) mod log_retrieval_response;\npub(crate) mod pending_tagged_log;\n\nuse crate::{\n capsules::CapsuleArray,\n event::event_selector::EventSelector,\n messages::{\n discovery::partial_notes::DeliveredPendingPartialNote,\n logs::{event::MAX_EVENT_SERIALIZED_LEN, note::MAX_NOTE_PACKED_LEN},\n processing::{\n log_retrieval_request::LogRetrievalRequest,\n log_retrieval_response::LogRetrievalResponse,\n note_validation_request::NoteValidationRequest, pending_tagged_log::PendingTaggedLog,\n },\n },\n oracle,\n};\nuse event_validation_request::EventValidationRequest;\nuse protocol_types::{address::AztecAddress, hash::sha256_to_field};\n\n// Base slot for the pending tagged log array to which the fetch_tagged_logs oracle inserts found private logs.\nglobal PENDING_TAGGED_LOG_ARRAY_BASE_SLOT: Field =\n sha256_to_field(\"AZTEC_NR::PENDING_TAGGED_LOG_ARRAY_BASE_SLOT\".as_bytes());\n\nglobal NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\n/// Searches for private logs emitted by `contract_address` that might contain messages for one of the local accounts,\n/// and stores them in a `CapsuleArray` which is then returned.\npub(crate) unconstrained fn get_private_logs(\n contract_address: AztecAddress,\n) -> CapsuleArray<PendingTaggedLog> {\n // We will eventually perform log discovery via tagging here, but for now we simply call the `fetchTaggedLogs`\n // oracle. This makes PXE synchronize tags, download logs and store the pending tagged logs in a capsule array.\n oracle::message_processing::fetch_tagged_logs(PENDING_TAGGED_LOG_ARRAY_BASE_SLOT);\n\n CapsuleArray::at(contract_address, PENDING_TAGGED_LOG_ARRAY_BASE_SLOT)\n}\n\n/// Enqueues a note for validation by PXE, so that it becomes aware of a note's existence allowing for later retrieval\n/// via `get_notes` oracle. The note will be scoped to `contract_address`, meaning other contracts will not be able to\n/// access it unless authorized.\n///\n/// In order for the note validation and insertion to occur, `validate_enqueued_notes_and_events` must be later called.\n/// For optimal performance, accumulate as many note validation requests as possible and then validate them all at the\n/// end (which results in PXE minimizing the number of network round-trips).\n///\n/// The `packed_note` is what `getNotes` will later return. PXE indexes notes by `storage_slot`, so this value\n/// is typically used to filter notes that correspond to different state variables. `note_hash` and `nullifier` are\n/// the inner hashes, i.e. the raw hashes returned by `NoteHash::compute_note_hash` and\n/// `NoteHash::compute_nullifier`. PXE will verify that the siloed unique note hash was inserted into the tree\n/// at `tx_hash`, and will store the nullifier to later check for nullification.\n///\n/// `owner` is the address used in note hash and nullifier computation, often requiring knowledge of their\n/// nullifier secret key.\n///\n/// `recipient` is the account to which the note message was delivered (i.e. the address the message was encrypted to).\n/// This determines which PXE account can see the note - other accounts will not be able to access it (e.g. other\n/// accounts will not be able to see one another's token balance notes, even in the same PXE) unless authorized. In most\n/// cases `recipient` equals `owner`, but they can differ in scenarios like delegated discovery.\npub(crate) unconstrained fn enqueue_note_for_validation(\n contract_address: AztecAddress,\n owner: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_nonce: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n note_hash: Field,\n nullifier: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `NoteValidationRequest`\n CapsuleArray::at(contract_address, NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n NoteValidationRequest {\n contract_address,\n owner,\n storage_slot,\n randomness,\n note_nonce,\n packed_note,\n note_hash,\n nullifier,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Enqueues an event for validation by PXE, so that it can be efficiently validated and then inserted into the event\n/// store.\n///\n/// In order for the event validation and insertion to occur, `validate_enqueued_notes_and_events` must be later\n/// called. For optimal performance, accumulate as many event validation requests as possible and then validate them\n/// all at the end (which results in PXE minimizing the number of network round-trips).\npub(crate) unconstrained fn enqueue_event_for_validation(\n contract_address: AztecAddress,\n event_type_id: EventSelector,\n randomness: Field,\n serialized_event: BoundedVec<Field, MAX_EVENT_SERIALIZED_LEN>,\n event_commitment: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `EventValidationRequest`\n CapsuleArray::at(contract_address, EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n EventValidationRequest {\n contract_address,\n event_type_id,\n randomness,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Validates all note and event validation requests enqueued via `enqueue_note_for_validation` and\n/// `enqueue_event_for_validation`, inserting them into the note database and event store respectively, making them\n/// queryable via `get_notes` oracle and our TS API (PXE::getPrivateEvents).\n///\n/// This automatically clears both validation request queues, so no further work needs to be done by the caller.\npub(crate) unconstrained fn validate_enqueued_notes_and_events(contract_address: AztecAddress) {\n oracle::message_processing::validate_enqueued_notes_and_events(\n contract_address,\n NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n );\n}\n\n/// Efficiently queries the node for logs that result in the completion of all `DeliveredPendingPartialNote`s stored in\n/// a `CapsuleArray` by performing all node communication concurrently. Returns a second `CapsuleArray` with Options for\n/// the responses that correspond to the pending partial notes at the same index.\n///\n/// For example, given an array with pending partial notes `[ p1, p2, p3 ]`, where `p1` and `p3` have corresponding\n/// completion logs but `p2` does not, the returned `CapsuleArray` will have contents\n/// `[some(p1_log), none(), some(p3_log)]`.\npub(crate) unconstrained fn get_pending_partial_notes_completion_logs(\n contract_address: AztecAddress,\n pending_partial_notes: CapsuleArray<DeliveredPendingPartialNote>,\n) -> CapsuleArray<Option<LogRetrievalResponse>> {\n let log_retrieval_requests =\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT);\n\n // We create a LogRetrievalRequest for each PendingPartialNote in the CapsuleArray. Because we need the indices in\n // the request array to match the indices in the partial note array, we can't use CapsuleArray::for_each, as that\n // function has arbitrary iteration order. Instead, we manually iterate the array from the beginning and push into\n // the requests array, which we expect to be empty.\n let mut i = 0;\n let pending_partial_notes_count = pending_partial_notes.len();\n while i < pending_partial_notes_count {\n let pending_partial_note = pending_partial_notes.get(i);\n log_retrieval_requests.push(\n LogRetrievalRequest {\n contract_address,\n unsiloed_tag: pending_partial_note.note_completion_log_tag,\n },\n );\n i += 1;\n }\n\n oracle::message_processing::bulk_retrieve_logs(\n contract_address,\n LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT,\n LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT,\n );\n\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT)\n}\n"
|
|
4785
4785
|
},
|
|
4786
4786
|
"154": {
|
|
4787
4787
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messaging.nr",
|
|
@@ -4873,37 +4873,37 @@
|
|
|
4873
4873
|
},
|
|
4874
4874
|
"3": {
|
|
4875
4875
|
"path": "std/array/mod.nr",
|
|
4876
|
-
"source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a vector.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let vector = array.as_vector();\n /// assert_eq(vector, &[1, 2]);\n /// ```\n #[builtin(as_vector)]\n pub fn as_vector(self) -> [T] {}\n\n /// Returns this array as a vector.\n /// This method is deprecated in favor of `as_vector`.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let vector = array.as_slice();\n /// assert_eq(vector, &[1, 2]);\n /// ```\n #[builtin(as_vector)]\n #[deprecated(\"This method has been renamed to `as_vector`\")]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
|
|
4876
|
+
"source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a vector.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let vector = array.as_vector();\n /// assert_eq(vector, [1, 2].as_vector());\n /// ```\n #[builtin(as_vector)]\n pub fn as_vector(self) -> [T] {}\n\n /// Returns this array as a vector.\n /// This method is deprecated in favor of `as_vector`.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let vector = array.as_slice();\n /// assert_eq(vector, [1, 2].as_vector());\n /// ```\n #[builtin(as_vector)]\n #[deprecated(\"This method has been renamed to `as_vector`\")]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
|
|
4877
4877
|
},
|
|
4878
|
-
"
|
|
4878
|
+
"333": {
|
|
4879
4879
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
|
|
4880
4880
|
"source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
|
|
4881
4881
|
},
|
|
4882
|
-
"
|
|
4882
|
+
"344": {
|
|
4883
4883
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
|
|
4884
4884
|
"source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, DOM_SEP__NOTE_HASH_NONCE, DOM_SEP__OUTER_NULLIFIER,\n DOM_SEP__SILOED_NOTE_HASH, DOM_SEP__UNIQUE_NOTE_HASH, FUNCTION_TREE_HEIGHT,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n DOM_SEP__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, DOM_SEP__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator([app.to_field(), note_hash], DOM_SEP__SILOED_NOTE_HASH)\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(contract_address: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [contract_address.to_field(), nullifier],\n DOM_SEP__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
|
|
4885
4885
|
},
|
|
4886
|
-
"
|
|
4886
|
+
"353": {
|
|
4887
4887
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/merkle_tree/root.nr",
|
|
4888
4888
|
"source": "use crate::{hash::merkle_hash, merkle_tree::merkle_tree::MerkleTree};\n\n// Calculate the Merkle tree root from the sibling path and leaf.\n//\n// The leaf is hashed with its sibling, and then the result is hashed\n// with the next sibling etc in the path. The last hash is the root.\n//\n// TODO(David/Someone): The cpp code is using a uint256, whereas its\n// TODO a bit simpler in Noir to just have a bit array.\n// TODO: I'd generally like to avoid u256 for algorithms like\n// this because it means we never even need to consider cases where\n// the index is greater than p.\npub fn root_from_sibling_path<let N: u32>(\n leaf: Field,\n leaf_index: Field,\n sibling_path: [Field; N],\n) -> Field {\n let mut node = leaf;\n let indices: [u1; N] = leaf_index.to_le_bits();\n\n for i in 0..N {\n let (hash_left, hash_right) = if indices[i] == 1 {\n (sibling_path[i], node)\n } else {\n (node, sibling_path[i])\n };\n node = merkle_hash(hash_left, hash_right);\n }\n node\n}\n\npub fn calculate_tree_root<let N: u32>(leaves: [Field; N]) -> Field {\n MerkleTree::new(leaves).get_root()\n}\n\n/// These values are precomputed and we run tests to ensure that they are correct.\npub fn calculate_empty_tree_root(depth: u32) -> Field {\n if depth == 0 {\n 0\n } else if depth == 1 {\n 0x0b63a53787021a4a962a452c2921b3663aff1ffd8d5510540f8e659e782956f1\n } else if depth == 2 {\n 0x0e34ac2c09f45a503d2908bcb12f1cbae5fa4065759c88d501c097506a8b2290\n } else if depth == 3 {\n 0x21f9172d72fdcdafc312eee05cf5092980dda821da5b760a9fb8dbdf607c8a20\n } else if depth == 4 {\n 0x2373ea368857ec7af97e7b470d705848e2bf93ed7bef142a490f2119bcf82d8e\n } else if depth == 5 {\n 0x120157cfaaa49ce3da30f8b47879114977c24b266d58b0ac18b325d878aafddf\n } else if depth == 6 {\n 0x01c28fe1059ae0237b72334700697bdf465e03df03986fe05200cadeda66bd76\n } else if depth == 7 {\n 0x2d78ed82f93b61ba718b17c2dfe5b52375b4d37cbbed6f1fc98b47614b0cf21b\n } else if depth == 8 {\n 0x067243231eddf4222f3911defbba7705aff06ed45960b27f6f91319196ef97e1\n } else if depth == 9 {\n 0x1849b85f3c693693e732dfc4577217acc18295193bede09ce8b97ad910310972\n } else if depth == 10 {\n 0x2a775ea761d20435b31fa2c33ff07663e24542ffb9e7b293dfce3042eb104686\n } else {\n panic(f\"depth should be between 0 and 10\")\n }\n}\n\n#[test]\nfn test_merkle_root_interop_test() {\n // This is a test to ensure that we match the cpp implementation.\n // You can grep for `TEST_F(root_rollup_tests, noir_interop_test)`\n // to find the test that matches this.\n let root = calculate_tree_root([1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]);\n assert(0x1a09d935ae110b4c861fcec8f9099ec30b4485022aeb3d3cf9d7168e38fdc231 == root);\n\n let empty_root = calculate_tree_root([0; 16]);\n assert(0x2373ea368857ec7af97e7b470d705848e2bf93ed7bef142a490f2119bcf82d8e == empty_root);\n}\n\n#[test]\nfn test_empty_subroot() {\n assert(calculate_empty_tree_root(0) == 0);\n\n let expected_empty_root_2 = calculate_tree_root([0; 2]);\n assert(calculate_empty_tree_root(1) == expected_empty_root_2);\n\n let expected_empty_root_4 = calculate_tree_root([0; 4]);\n assert(calculate_empty_tree_root(2) == expected_empty_root_4);\n\n let expected_empty_root_8 = calculate_tree_root([0; 8]);\n assert(calculate_empty_tree_root(3) == expected_empty_root_8);\n\n let expected_empty_root_16 = calculate_tree_root([0; 16]);\n assert(calculate_empty_tree_root(4) == expected_empty_root_16);\n\n let expected_empty_root_32 = calculate_tree_root([0; 32]);\n assert(calculate_empty_tree_root(5) == expected_empty_root_32);\n\n let expected_empty_root_64 = calculate_tree_root([0; 64]);\n assert(calculate_empty_tree_root(6) == expected_empty_root_64);\n\n let expected_empty_root_128 = calculate_tree_root([0; 128]);\n assert(calculate_empty_tree_root(7) == expected_empty_root_128);\n\n let expected_empty_root_256 = calculate_tree_root([0; 256]);\n assert(calculate_empty_tree_root(8) == expected_empty_root_256);\n\n let expected_empty_root_512 = calculate_tree_root([0; 512]);\n assert(calculate_empty_tree_root(9) == expected_empty_root_512);\n\n let expected_empty_root_1024 = calculate_tree_root([0; 1024]);\n assert(calculate_empty_tree_root(10) == expected_empty_root_1024);\n}\n"
|
|
4889
4889
|
},
|
|
4890
|
-
"
|
|
4890
|
+
"357": {
|
|
4891
4891
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
|
|
4892
4892
|
"source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
|
|
4893
4893
|
},
|
|
4894
|
-
"
|
|
4894
|
+
"358": {
|
|
4895
4895
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
|
|
4896
4896
|
"source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
|
|
4897
4897
|
},
|
|
4898
|
-
"
|
|
4898
|
+
"360": {
|
|
4899
4899
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
|
|
4900
4900
|
"source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
|
|
4901
4901
|
},
|
|
4902
|
-
"
|
|
4902
|
+
"372": {
|
|
4903
4903
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/storage/map.nr",
|
|
4904
4904
|
"source": "use crate::{hash::poseidon2_hash, traits::ToField};\n\n// TODO: Move this to abis/public_data/storage/map.nr\npub fn derive_storage_slot_in_map<K>(storage_slot: Field, key: K) -> Field\nwhere\n K: ToField,\n{\n poseidon2_hash([storage_slot, key.to_field()])\n}\n\nmod test {\n use crate::{address::AztecAddress, storage::map::derive_storage_slot_in_map, traits::FromField};\n\n #[test]\n fn test_derive_storage_slot_in_map_matches_typescript() {\n let map_slot = 0x132258fb6962c4387ba659d9556521102d227549a386d39f0b22d1890d59c2b5;\n let key = AztecAddress::from_field(\n 0x302dbc2f9b50a73283d5fb2f35bc01eae8935615817a0b4219a057b2ba8a5a3f,\n );\n\n let slot = derive_storage_slot_in_map(map_slot, key);\n\n // The following value was generated by `map_slot.test.ts`\n let slot_from_typescript =\n 0x15b9fe39449affd8b377461263e9d2b610b9ad40580553500b4e41d9cbd887ac;\n\n assert_eq(slot, slot_from_typescript);\n }\n}\n"
|
|
4905
4905
|
},
|
|
4906
|
-
"
|
|
4906
|
+
"388": {
|
|
4907
4907
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
|
|
4908
4908
|
"source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
|
|
4909
4909
|
},
|
|
@@ -4911,17 +4911,17 @@
|
|
|
4911
4911
|
"path": "std/ops/arith.nr",
|
|
4912
4912
|
"source": "use crate::convert::AsPrimitive;\n\n// docs:start:add-trait\npub trait Add {\n fn add(self, other: Self) -> Self;\n}\n// docs:end:add-trait\n\nimpl Add for Field {\n fn add(self, other: Field) -> Field {\n self + other\n }\n}\n\nimpl Add for u128 {\n fn add(self, other: u128) -> u128 {\n self + other\n }\n}\nimpl Add for u64 {\n fn add(self, other: u64) -> u64 {\n self + other\n }\n}\nimpl Add for u32 {\n fn add(self, other: u32) -> u32 {\n self + other\n }\n}\nimpl Add for u16 {\n fn add(self, other: u16) -> u16 {\n self + other\n }\n}\nimpl Add for u8 {\n fn add(self, other: u8) -> u8 {\n self + other\n }\n}\nimpl Add for u1 {\n fn add(self, other: u1) -> u1 {\n self + other\n }\n}\n\nimpl Add for i8 {\n fn add(self, other: i8) -> i8 {\n self + other\n }\n}\nimpl Add for i16 {\n fn add(self, other: i16) -> i16 {\n self + other\n }\n}\nimpl Add for i32 {\n fn add(self, other: i32) -> i32 {\n self + other\n }\n}\nimpl Add for i64 {\n fn add(self, other: i64) -> i64 {\n self + other\n }\n}\n\n// docs:start:sub-trait\npub trait Sub {\n fn sub(self, other: Self) -> Self;\n}\n// docs:end:sub-trait\n\nimpl Sub for Field {\n fn sub(self, other: Field) -> Field {\n self - other\n }\n}\n\nimpl Sub for u128 {\n fn sub(self, other: u128) -> u128 {\n self - other\n }\n}\nimpl Sub for u64 {\n fn sub(self, other: u64) -> u64 {\n self - other\n }\n}\nimpl Sub for u32 {\n fn sub(self, other: u32) -> u32 {\n self - other\n }\n}\nimpl Sub for u16 {\n fn sub(self, other: u16) -> u16 {\n self - other\n }\n}\nimpl Sub for u8 {\n fn sub(self, other: u8) -> u8 {\n self - other\n }\n}\nimpl Sub for u1 {\n fn sub(self, other: u1) -> u1 {\n self - other\n }\n}\n\nimpl Sub for i8 {\n fn sub(self, other: i8) -> i8 {\n self - other\n }\n}\nimpl Sub for i16 {\n fn sub(self, other: i16) -> i16 {\n self - other\n }\n}\nimpl Sub for i32 {\n fn sub(self, other: i32) -> i32 {\n self - other\n }\n}\nimpl Sub for i64 {\n fn sub(self, other: i64) -> i64 {\n self - other\n }\n}\n\n// docs:start:mul-trait\npub trait Mul {\n fn mul(self, other: Self) -> Self;\n}\n// docs:end:mul-trait\n\nimpl Mul for Field {\n fn mul(self, other: Field) -> Field {\n self * other\n }\n}\n\nimpl Mul for u128 {\n fn mul(self, other: u128) -> u128 {\n self * other\n }\n}\nimpl Mul for u64 {\n fn mul(self, other: u64) -> u64 {\n self * other\n }\n}\nimpl Mul for u32 {\n fn mul(self, other: u32) -> u32 {\n self * other\n }\n}\nimpl Mul for u16 {\n fn mul(self, other: u16) -> u16 {\n self * other\n }\n}\nimpl Mul for u8 {\n fn mul(self, other: u8) -> u8 {\n self * other\n }\n}\nimpl Mul for u1 {\n fn mul(self, other: u1) -> u1 {\n self * other\n }\n}\n\nimpl Mul for i8 {\n fn mul(self, other: i8) -> i8 {\n self * other\n }\n}\nimpl Mul for i16 {\n fn mul(self, other: i16) -> i16 {\n self * other\n }\n}\nimpl Mul for i32 {\n fn mul(self, other: i32) -> i32 {\n self * other\n }\n}\nimpl Mul for i64 {\n fn mul(self, other: i64) -> i64 {\n self * other\n }\n}\n\n// docs:start:div-trait\npub trait Div {\n fn div(self, other: Self) -> Self;\n}\n// docs:end:div-trait\n\nimpl Div for Field {\n fn div(self, other: Field) -> Field {\n self / other\n }\n}\n\nimpl Div for u128 {\n fn div(self, other: u128) -> u128 {\n self / other\n }\n}\nimpl Div for u64 {\n fn div(self, other: u64) -> u64 {\n self / other\n }\n}\nimpl Div for u32 {\n fn div(self, other: u32) -> u32 {\n self / other\n }\n}\nimpl Div for u16 {\n fn div(self, other: u16) -> u16 {\n self / other\n }\n}\nimpl Div for u8 {\n fn div(self, other: u8) -> u8 {\n self / other\n }\n}\nimpl Div for u1 {\n fn div(self, other: u1) -> u1 {\n self / other\n }\n}\n\nimpl Div for i8 {\n fn div(self, other: i8) -> i8 {\n self / other\n }\n}\nimpl Div for i16 {\n fn div(self, other: i16) -> i16 {\n self / other\n }\n}\nimpl Div for i32 {\n fn div(self, other: i32) -> i32 {\n self / other\n }\n}\nimpl Div for i64 {\n fn div(self, other: i64) -> i64 {\n self / other\n }\n}\n\n// docs:start:rem-trait\npub trait Rem {\n fn rem(self, other: Self) -> Self;\n}\n// docs:end:rem-trait\n\nimpl Rem for u128 {\n fn rem(self, other: u128) -> u128 {\n self % other\n }\n}\nimpl Rem for u64 {\n fn rem(self, other: u64) -> u64 {\n self % other\n }\n}\nimpl Rem for u32 {\n fn rem(self, other: u32) -> u32 {\n self % other\n }\n}\nimpl Rem for u16 {\n fn rem(self, other: u16) -> u16 {\n self % other\n }\n}\nimpl Rem for u8 {\n fn rem(self, other: u8) -> u8 {\n self % other\n }\n}\nimpl Rem for u1 {\n fn rem(self, other: u1) -> u1 {\n self % other\n }\n}\n\nimpl Rem for i8 {\n fn rem(self, other: i8) -> i8 {\n self % other\n }\n}\nimpl Rem for i16 {\n fn rem(self, other: i16) -> i16 {\n self % other\n }\n}\nimpl Rem for i32 {\n fn rem(self, other: i32) -> i32 {\n self % other\n }\n}\nimpl Rem for i64 {\n fn rem(self, other: i64) -> i64 {\n self % other\n }\n}\n\n// docs:start:neg-trait\npub trait Neg {\n fn neg(self) -> Self;\n}\n// docs:end:neg-trait\n\n// docs:start:neg-trait-impls\nimpl Neg for Field {\n fn neg(self) -> Field {\n -self\n }\n}\n\nimpl Neg for i8 {\n fn neg(self) -> i8 {\n -self\n }\n}\nimpl Neg for i16 {\n fn neg(self) -> i16 {\n -self\n }\n}\nimpl Neg for i32 {\n fn neg(self) -> i32 {\n -self\n }\n}\nimpl Neg for i64 {\n fn neg(self) -> i64 {\n -self\n }\n}\n// docs:end:neg-trait-impls\n\n// docs:start:wrapping-add-trait\npub trait WrappingAdd {\n fn wrapping_add(self, y: Self) -> Self;\n}\n// docs:end:wrapping-add-trait\n\nimpl WrappingAdd for u1 {\n fn wrapping_add(self: u1, y: u1) -> u1 {\n self ^ y\n }\n}\n\nimpl WrappingAdd for u8 {\n fn wrapping_add(self: u8, y: u8) -> u8 {\n wrapping_add_hlp(self, y)\n }\n}\n\nimpl WrappingAdd for u16 {\n fn wrapping_add(self: u16, y: u16) -> u16 {\n wrapping_add_hlp(self, y)\n }\n}\n\nimpl WrappingAdd for u32 {\n fn wrapping_add(self: u32, y: u32) -> u32 {\n wrapping_add_hlp(self, y)\n }\n}\n\nimpl WrappingAdd for u64 {\n fn wrapping_add(self: u64, y: u64) -> u64 {\n wrapping_add_hlp(self, y)\n }\n}\n\nimpl WrappingAdd for u128 {\n fn wrapping_add(self: u128, y: u128) -> u128 {\n wrapping_add_hlp(self, y)\n }\n}\n\nimpl WrappingAdd for i8 {\n fn wrapping_add(self: i8, y: i8) -> i8 {\n let x = self as u8;\n x.wrapping_add(y as u8) as i8\n }\n}\n\nimpl WrappingAdd for i16 {\n fn wrapping_add(self: i16, y: i16) -> i16 {\n let x = self as u16;\n x.wrapping_add(y as u16) as i16\n }\n}\n\nimpl WrappingAdd for i32 {\n fn wrapping_add(self: i32, y: i32) -> i32 {\n let x = self as u32;\n x.wrapping_add(y as u32) as i32\n }\n}\n\nimpl WrappingAdd for i64 {\n fn wrapping_add(self: i64, y: i64) -> i64 {\n let x = self as u64;\n x.wrapping_add(y as u64) as i64\n }\n}\nimpl WrappingAdd for Field {\n fn wrapping_add(self: Field, y: Field) -> Field {\n self + y\n }\n}\n\n// docs:start:wrapping-sub-trait\npub trait WrappingSub {\n fn wrapping_sub(self, y: Self) -> Self;\n}\n// docs:start:wrapping-sub-trait\n\nimpl WrappingSub for u1 {\n fn wrapping_sub(self: u1, y: u1) -> u1 {\n self ^ y\n }\n}\n\nimpl WrappingSub for u8 {\n fn wrapping_sub(self: u8, y: u8) -> u8 {\n wrapping_sub_hlp(self, y) as u8\n }\n}\n\nimpl WrappingSub for u16 {\n fn wrapping_sub(self: u16, y: u16) -> u16 {\n wrapping_sub_hlp(self, y) as u16\n }\n}\n\nimpl WrappingSub for u32 {\n fn wrapping_sub(self: u32, y: u32) -> u32 {\n wrapping_sub_hlp(self, y) as u32\n }\n}\nimpl WrappingSub for u64 {\n fn wrapping_sub(self: u64, y: u64) -> u64 {\n wrapping_sub_hlp(self, y) as u64\n }\n}\nimpl WrappingSub for u128 {\n fn wrapping_sub(self: u128, y: u128) -> u128 {\n wrapping_sub_hlp(self, y) as u128\n }\n}\n\nimpl WrappingSub for i8 {\n fn wrapping_sub(self: i8, y: i8) -> i8 {\n let x = self as u8;\n x.wrapping_sub(y as u8) as i8\n }\n}\n\nimpl WrappingSub for i16 {\n fn wrapping_sub(self: i16, y: i16) -> i16 {\n let x = self as u16;\n x.wrapping_sub(y as u16) as i16\n }\n}\n\nimpl WrappingSub for i32 {\n fn wrapping_sub(self: i32, y: i32) -> i32 {\n let x = self as u32;\n x.wrapping_sub(y as u32) as i32\n }\n}\nimpl WrappingSub for i64 {\n fn wrapping_sub(self: i64, y: i64) -> i64 {\n let x = self as u64;\n x.wrapping_sub(y as u64) as i64\n }\n}\nimpl WrappingSub for Field {\n fn wrapping_sub(self: Field, y: Field) -> Field {\n self - y\n }\n}\n\n// docs:start:wrapping-mul-trait\npub trait WrappingMul {\n fn wrapping_mul(self, y: Self) -> Self;\n}\n// docs:start:wrapping-mul-trait\n\nimpl WrappingMul for u1 {\n fn wrapping_mul(self: u1, y: u1) -> u1 {\n self & y\n }\n}\n\nimpl WrappingMul for u8 {\n fn wrapping_mul(self: u8, y: u8) -> u8 {\n wrapping_mul_hlp(self, y)\n }\n}\n\nimpl WrappingMul for u16 {\n fn wrapping_mul(self: u16, y: u16) -> u16 {\n wrapping_mul_hlp(self, y)\n }\n}\n\nimpl WrappingMul for u32 {\n fn wrapping_mul(self: u32, y: u32) -> u32 {\n wrapping_mul_hlp(self, y)\n }\n}\nimpl WrappingMul for u64 {\n fn wrapping_mul(self: u64, y: u64) -> u64 {\n wrapping_mul_hlp(self, y)\n }\n}\n\nimpl WrappingMul for i8 {\n fn wrapping_mul(self: i8, y: i8) -> i8 {\n let x = self as u8;\n x.wrapping_mul(y as u8) as i8\n }\n}\n\nimpl WrappingMul for i16 {\n fn wrapping_mul(self: i16, y: i16) -> i16 {\n let x = self as u16;\n x.wrapping_mul(y as u16) as i16\n }\n}\n\nimpl WrappingMul for i32 {\n fn wrapping_mul(self: i32, y: i32) -> i32 {\n let x = self as u32;\n x.wrapping_mul(y as u32) as i32\n }\n}\n\nimpl WrappingMul for i64 {\n fn wrapping_mul(self: i64, y: i64) -> i64 {\n let x = self as u64;\n x.wrapping_mul(y as u64) as i64\n }\n}\n\nimpl WrappingMul for u128 {\n fn wrapping_mul(self: u128, y: u128) -> u128 {\n wrapping_mul128_hlp(self, y)\n }\n}\nimpl WrappingMul for Field {\n fn wrapping_mul(self: Field, y: Field) -> Field {\n self * y\n }\n}\n\nfn wrapping_add_hlp<T>(x: T, y: T) -> T\nwhere\n T: AsPrimitive<Field>,\n Field: AsPrimitive<T>,\n{\n AsPrimitive::as_(x.as_() + y.as_())\n}\n\nfn wrapping_sub_hlp<T>(x: T, y: T) -> Field\nwhere\n T: AsPrimitive<Field>,\n{\n //340282366920938463463374607431768211456 is 2^128, it is used to avoid underflow\n x.as_() + 340282366920938463463374607431768211456 - y.as_()\n}\n\nfn wrapping_mul_hlp<T>(x: T, y: T) -> T\nwhere\n T: AsPrimitive<Field>,\n Field: AsPrimitive<T>,\n{\n AsPrimitive::as_(x.as_() * y.as_())\n}\n\nglobal two_pow_64: u128 = 0x10000000000000000;\n/// Splits a 128 bits number into two 64 bits limbs\nunconstrained fn split64(x: u128) -> (u64, u64) {\n let lo = x as u64;\n let hi = (x / two_pow_64) as u64;\n (lo, hi)\n}\n\n/// Split a 128 bits number into two 64 bits limbs\n/// It will fail if the number is more than 128 bits\nfn split_into_64_bit_limbs(x: u128) -> (u64, u64) {\n // Safety: the limbs are constrained below\n let (x_lo, x_hi) = unsafe { split64(x) };\n assert(x as Field == x_lo as Field + x_hi as Field * two_pow_64 as Field);\n (x_lo, x_hi)\n}\n\n#[field(bn254)]\nfn wrapping_mul128_hlp(x: u128, y: u128) -> u128 {\n let (x_lo, x_hi) = split_into_64_bit_limbs(x);\n let (y_lo, y_hi) = split_into_64_bit_limbs(y);\n // Multiplication using the limbs:(x_lo + 2**64*x_hi)*(y_lo + 2**64*y_hi)=x_lo*y_lo+...\n // and skipping the terms over 2**128\n // Working with u64 limbs ensures that we cannot overflow the field modulus.\n let low = x_lo as Field * y_lo as Field;\n let lo = low as u64 as Field;\n let carry = (low - lo) / two_pow_64 as Field;\n let high = x_lo as Field * y_hi as Field + x_hi as Field * y_lo as Field + carry;\n let hi = high as u64 as Field;\n (lo + two_pow_64 as Field * hi) as u128\n}\n\nmod tests {\n #[test(should_fail_with = \"custom message\")]\n fn test_static_assert_custom_message() {\n crate::static_assert(1 == 2, \"custom message\");\n }\n\n mod arithmetic {\n use crate::ops::arith::{Add, Div, Mul, Neg, Rem, Sub};\n #[test]\n fn test_basic_arithmetic_traits() {\n // add\n assert_eq(5.add(3), 8);\n assert_eq(0u8.add(255u8), 255u8);\n assert_eq(42.add(58), 100);\n\n // sub\n assert_eq(10.sub(3), 7);\n assert_eq(100.sub(42), 58);\n\n // mul\n assert_eq(6.mul(7), 42);\n\n // div\n assert_eq(15.div(3), 5);\n assert_eq(10u8.div(3u8), 3u8);\n assert_eq(15.div(3), 5);\n\n // rem\n assert_eq(17.rem(5), 2);\n assert_eq(10u8.rem(3u8), 1u8);\n\n // neg\n assert_eq(42.neg(), -42);\n assert_eq((-10).neg(), 10);\n assert_eq(42.neg(), -42);\n }\n\n #[test]\n fn test_division() {\n // test division by one\n assert_eq(42.div(1), 42);\n assert_eq(0.div(1), 0);\n assert_eq(255u8.div(1u8), 255u8);\n\n // test division by self\n assert_eq(42.div(42), 1);\n assert_eq(1.div(1), 1);\n\n // test remainder\n assert_eq(42.rem(42), 0);\n assert_eq(0.rem(42), 0);\n assert_eq(1.rem(42), 1);\n }\n\n #[test(should_fail)]\n fn test_u8_sub_overflow_failure() {\n let _ = 0u8.sub(1u8);\n }\n\n #[test(should_fail)]\n fn test_u8_add_overflow_failure() {\n let _ = 255u8.add(1u8);\n }\n\n #[test(should_fail)]\n fn test_u8_mul_overflow_failure() {\n let _ = 255u8.mul(2u8);\n }\n\n #[test(should_fail)]\n fn test_u16_sub_overflow_failure() {\n let _ = 0u16.sub(1u16);\n }\n\n #[test(should_fail)]\n fn test_u16_add_overflow_failure() {\n let _ = 65535u16.add(1u16);\n }\n\n #[test(should_fail)]\n fn test_u16_mul_overflow_failure() {\n let _ = 65535u16.mul(2u16);\n }\n\n #[test(should_fail)]\n fn test_signed_sub_overflow_failure() {\n let val: i8 = -128;\n let _ = val.sub(1i8);\n }\n\n #[test(should_fail)]\n fn test_signed_overflow_failure() {\n let _ = 127i8.add(1i8);\n }\n\n #[test]\n fn test_field() {\n let zero: Field = 0;\n let one: Field = 1;\n\n // test Field basic operations\n assert_eq(zero.add(one), one);\n assert_eq(one.add(zero), one);\n assert_eq(one.sub(one), zero);\n assert_eq(one.mul(one), one);\n assert_eq(one.div(one), one);\n assert_eq(zero.neg(), zero);\n assert_eq(one.neg(), -one);\n }\n\n }\n\n mod wrapping_arithmetic {\n use crate::ops::arith::{Add, Div, Mul, Neg, Sub, WrappingAdd, WrappingMul, WrappingSub};\n #[test]\n fn test_wrapping_add() {\n assert_eq(255u8.wrapping_add(1u8), 0u8);\n assert_eq(255u8.wrapping_add(255u8), 254u8);\n assert_eq(0u8.wrapping_add(0u8), 0u8);\n assert_eq(128u8.wrapping_add(128u8), 0u8);\n\n // test u16 wrapping add\n assert_eq(65535u16.wrapping_add(1u16), 0u16);\n assert_eq(65535u16.wrapping_add(65535u16), 65534u16);\n\n // test u32 wrapping add\n assert_eq(0xffffffffu32.wrapping_add(1u32), 0u32);\n assert_eq(0xffffffffu32.wrapping_add(0xffffffffu32), 0xfffffffeu32);\n\n // test u64 wrapping add\n assert_eq(0xffffffffffffffffu64.wrapping_add(1u64), 0u64);\n assert_eq(\n 0xffffffffffffffffu64.wrapping_add(0xffffffffffffffffu64),\n 0xfffffffffffffffeu64,\n );\n\n // test u128 wrapping add\n assert_eq(0xffffffffffffffffffffffffffffffffu128.wrapping_add(1u128), 0u128);\n\n // test signed types\n assert_eq(127i8.wrapping_add(1i8), -128i8);\n let val: i8 = -128;\n assert_eq(val.wrapping_add(-1i8), 127i8);\n\n // test Field wrapping add\n let forty_two: Field = 42;\n let fifty_eight: Field = 58;\n let hundred: Field = 100;\n let neg_two: Field = -2;\n let two: Field = 2;\n let zero: Field = 0;\n let neg_two_hundred: Field = -200;\n let neg_one_ninety_eight: Field = -198;\n assert_eq(forty_two.wrapping_add(fifty_eight), hundred);\n assert_eq(neg_two.wrapping_add(two), zero);\n assert_eq(neg_two_hundred.wrapping_add(two), neg_one_ninety_eight);\n }\n\n #[test]\n fn test_wrapping_sub() {\n assert_eq(0u8.wrapping_sub(1u8), 255u8);\n assert_eq(255u8.wrapping_sub(255u8), 0u8);\n assert_eq(0u8.wrapping_sub(0u8), 0u8);\n assert_eq(1u8.wrapping_sub(2u8), 255u8);\n\n // test u16 wrapping sub\n assert_eq(0u16.wrapping_sub(1u16), 65535u16);\n assert_eq(65535u16.wrapping_sub(65535u16), 0u16);\n\n // test u32 wrapping sub\n assert_eq(0u32.wrapping_sub(1u32), 0xffffffffu32);\n assert_eq(0xffffffffu32.wrapping_sub(0xffffffffu32), 0u32);\n\n // test u64 wrapping sub\n assert_eq(0u64.wrapping_sub(1u64), 0xffffffffffffffffu64);\n assert_eq(0xffffffffffffffffu64.wrapping_sub(0xffffffffffffffffu64), 0u64);\n\n // test u128 wrapping sub\n assert_eq(0u128.wrapping_sub(1u128), 0xffffffffffffffffffffffffffffffffu128);\n\n // test signed types\n let val: i8 = -128;\n assert_eq(val.wrapping_sub(1i8), 127i8);\n assert_eq(127i8.wrapping_sub(-1i8), -128i8);\n\n // test Field wrapping sub\n let forty_two: Field = 42;\n let fifty_eight: Field = 58;\n let neg_sixteen: Field = -16;\n assert_eq(forty_two.wrapping_sub(fifty_eight), neg_sixteen);\n }\n\n #[test]\n fn test_wrapping_mul() {\n let zero: u128 = 0;\n let one: u128 = 1;\n let two_pow_64: u128 = 0x10000000000000000;\n let u128_max: u128 = 0xffffffffffffffffffffffffffffffff;\n\n assert_eq(zero, zero.wrapping_mul(one));\n assert_eq(zero, one.wrapping_mul(zero));\n assert_eq(one, one.wrapping_mul(one));\n assert_eq(zero, zero.wrapping_mul(two_pow_64));\n assert_eq(zero, two_pow_64.wrapping_mul(zero));\n assert_eq(two_pow_64, two_pow_64.wrapping_mul(one));\n assert_eq(two_pow_64, one.wrapping_mul(two_pow_64));\n assert_eq(zero, two_pow_64.wrapping_mul(two_pow_64));\n assert_eq(one, u128_max.wrapping_mul(u128_max));\n\n // test u8 wrapping mul\n assert_eq(255u8.wrapping_mul(2u8), 254u8);\n assert_eq(255u8.wrapping_mul(255u8), 1u8);\n assert_eq(128u8.wrapping_mul(2u8), 0u8);\n\n // test u16 wrapping mul\n assert_eq(65535u16.wrapping_mul(2u16), 65534u16);\n assert_eq(65535u16.wrapping_mul(65535u16), 1u16);\n\n // test u32 wrapping mul\n assert_eq(0xffffffffu32.wrapping_mul(2u32), 0xfffffffeu32);\n assert_eq(0xffffffffu32.wrapping_mul(0xffffffffu32), 1u32);\n\n // test u64 wrapping mul\n // 0xffffffffffffffffu64 is 2^64 - 1\n assert_eq(0xffffffffffffffffu64.wrapping_mul(2u64), 0xfffffffffffffffeu64);\n assert_eq(0xffffffffffffffffu64.wrapping_mul(0xffffffffffffffffu64), 1u64);\n\n // test signed types\n assert_eq(127i8.wrapping_mul(2i8), -2i8);\n let val: i8 = -128;\n assert_eq(val.wrapping_mul(-1i8), -128i8);\n\n // test Field wrapping mul\n let six: Field = 6;\n let seven: Field = 7;\n let forty_two: Field = 42;\n let neg_two: Field = -2;\n let two: Field = 2;\n let neg_four: Field = -4;\n assert_eq(six.wrapping_mul(seven), forty_two);\n assert_eq(neg_two.wrapping_mul(two), neg_four);\n }\n\n #[test]\n fn test_u1_behavior() {\n // u1 wrapping add is XOR\n assert_eq(0u1.wrapping_add(0u1), 0u1);\n assert_eq(0u1.wrapping_add(1u1), 1u1);\n assert_eq(1u1.wrapping_add(0u1), 1u1);\n assert_eq(1u1.wrapping_add(1u1), 0u1);\n\n // u1 wrapping sub is XOR\n assert_eq(0u1.wrapping_sub(0u1), 0u1);\n assert_eq(0u1.wrapping_sub(1u1), 1u1);\n assert_eq(1u1.wrapping_sub(0u1), 1u1);\n assert_eq(1u1.wrapping_sub(1u1), 0u1);\n\n // u1 wrapping mul is AND\n assert_eq(0u1.wrapping_mul(0u1), 0u1);\n assert_eq(0u1.wrapping_mul(1u1), 0u1);\n assert_eq(1u1.wrapping_mul(0u1), 0u1);\n assert_eq(1u1.wrapping_mul(1u1), 1u1);\n }\n\n // test wrapping operations is the same as the regular operations\n #[test]\n fn test_wrapping_vs_regular() {\n let u64_large = 0x123456789abcdef0u64;\n let u128_large = 0x123456789abcdef0123456789abcdef0u128;\n\n assert_eq(u64_large.wrapping_add(1u64), u64_large + 1u64);\n assert_eq(u64_large.wrapping_sub(1u64), u64_large - 1u64);\n assert_eq(u64_large.wrapping_mul(2u64), u64_large * 2u64);\n\n assert_eq(u128_large.wrapping_add(1u128), u128_large + 1u128);\n assert_eq(u128_large.wrapping_sub(1u128), u128_large - 1u128);\n assert_eq(u128_large.wrapping_mul(2u128), u128_large * 2u128);\n }\n\n #[test]\n fn test_field_wrapping_operations() {\n let zero: Field = 0;\n let one: Field = 1;\n let large_val = 0xffffffffffffffff;\n\n // test Field wrapping operations\n assert_eq(zero.wrapping_add(one), one);\n assert_eq(one.wrapping_add(large_val), one + large_val);\n assert_eq(zero.wrapping_sub(one), -one);\n assert_eq(one.wrapping_sub(large_val), one - large_val);\n assert_eq(zero.wrapping_mul(one), zero);\n assert_eq(one.wrapping_mul(large_val), large_val);\n\n // test Field basic operations\n assert_eq(zero.add(one), one);\n assert_eq(one.add(zero), one);\n assert_eq(one.sub(one), zero);\n assert_eq(one.mul(one), one);\n assert_eq(one.div(one), one);\n assert_eq(zero.neg(), zero);\n assert_eq(one.neg(), -one);\n }\n\n }\n\n mod split_functions {\n\n use crate::ops::arith::{split64, split_into_64_bit_limbs};\n\n // test split64 and split_into_64_bit_limbs functions\n #[test]\n fn test_split_functions() {\n let small_val = 0x123456789abcdefu128;\n let large_val = 0x123456789abcdef0123456789abcdef0u128;\n let max_val = 0xffffffffffffffffffffffffffffffffu128;\n\n // test split64 (unconstrained)\n // Safety: testing\n unsafe {\n let (lo, hi) = split64(small_val);\n assert_eq(lo, 0x123456789abcdefu64);\n assert_eq(hi, 0u64);\n\n let (lo2, hi2) = split64(large_val);\n assert_eq(lo2, 0x123456789abcdef0u64);\n assert_eq(hi2, 0x123456789abcdef0u64);\n }\n\n // test split_into_64_bit_limbs (constrained)\n let (lo3, hi3) = split_into_64_bit_limbs(small_val);\n assert_eq(lo3, 0x123456789abcdefu64);\n assert_eq(hi3, 0u64);\n\n let (lo4, hi4) = split_into_64_bit_limbs(large_val);\n assert_eq(lo4, 0x123456789abcdef0u64);\n assert_eq(hi4, 0x123456789abcdef0u64);\n\n let (lo5, hi5) = split_into_64_bit_limbs(max_val);\n assert_eq(lo5, 0xffffffffffffffffu64);\n assert_eq(hi5, 0xffffffffffffffffu64);\n }\n }\n}\n"
|
|
4913
4913
|
},
|
|
4914
|
-
"
|
|
4914
|
+
"390": {
|
|
4915
4915
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_packing.nr",
|
|
4916
4916
|
"source": "use crate::traits::Packable;\n\nglobal BOOL_PACKED_LEN: u32 = 1;\nglobal U8_PACKED_LEN: u32 = 1;\nglobal U16_PACKED_LEN: u32 = 1;\nglobal U32_PACKED_LEN: u32 = 1;\nglobal U64_PACKED_LEN: u32 = 1;\nglobal U128_PACKED_LEN: u32 = 1;\nglobal FIELD_PACKED_LEN: u32 = 1;\nglobal I8_PACKED_LEN: u32 = 1;\nglobal I16_PACKED_LEN: u32 = 1;\nglobal I32_PACKED_LEN: u32 = 1;\nglobal I64_PACKED_LEN: u32 = 1;\n\nimpl Packable for bool {\n let N: u32 = BOOL_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> bool {\n (fields[0] as u1) != 0\n }\n}\n\nimpl Packable for u8 {\n let N: u32 = U8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Packable for u16 {\n let N: u32 = U16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Packable for u32 {\n let N: u32 = U32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Packable for u64 {\n let N: u32 = U64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Packable for u128 {\n let N: u32 = U128_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Packable for Field {\n let N: u32 = FIELD_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Packable for i8 {\n let N: u32 = I8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Packable for i16 {\n let N: u32 = I16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Packable for i32 {\n let N: u32 = I32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Packable for i64 {\n let N: u32 = I64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Packable for [T; M]\nwhere\n T: Packable,\n{\n let N: u32 = M * <T as Packable>::N;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n for i in 0..M {\n let serialized = self[i].pack();\n for j in 0..<T as Packable>::N {\n result[i * <T as Packable>::N + j] = serialized[j];\n }\n }\n result\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Packable>::N, M>(Packable::unpack, result)\n }\n}\n\n#[test]\nfn test_u16_packing() {\n let a: u16 = 10;\n assert_eq(a, u16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i8_packing() {\n let a: i8 = -10;\n assert_eq(a, i8::unpack(a.pack()));\n}\n\n#[test]\nfn test_i16_packing() {\n let a: i16 = -10;\n assert_eq(a, i16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i32_packing() {\n let a: i32 = -10;\n assert_eq(a, i32::unpack(a.pack()));\n}\n\n#[test]\nfn test_i64_packing() {\n let a: i64 = -10;\n assert_eq(a, i64::unpack(a.pack()));\n}\n"
|
|
4917
4917
|
},
|
|
4918
|
-
"
|
|
4918
|
+
"391": {
|
|
4919
4919
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
|
|
4920
4920
|
"source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
|
|
4921
4921
|
},
|
|
4922
4922
|
"398": {
|
|
4923
4923
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
|
|
4924
|
-
"source": "// TODO: consider a dedicated sqrt.nr file, since a lot of this file relates to sqrt.\n\nglobal KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field2.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n\n#[test]\nunconstrained fn sqrt_zero_test() {\n let result = sqrt(0);\n assert(result.is_some());\n assert_eq(result.unwrap(), 0);\n}\n\n#[test]\nunconstrained fn sqrt_one_test() {\n let result = sqrt(1);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), 1);\n}\n\n#[test]\nunconstrained fn field_from_bytes_empty_test() {\n let empty: [u8; 0] = [];\n let result = field_from_bytes(empty, true);\n assert_eq(result, 0);\n\n let result_le = field_from_bytes(empty, false);\n assert_eq(result_le, 0);\n}\n\n#[test]\nunconstrained fn field_from_bytes_little_endian_test() {\n // Test little-endian conversion: [0x01, 0x02] should be 0x0201 = 513\n let bytes = [0x01, 0x02];\n let result_le = field_from_bytes(bytes, false);\n assert_eq(result_le, 0x0201);\n\n // Compare with big-endian: [0x01, 0x02] should be 0x0102 = 258\n let result_be = field_from_bytes(bytes, true);\n assert_eq(result_be, 0x0102);\n}\n\n#[test]\nunconstrained fn pow_test() {\n assert_eq(pow(2, 0), 1);\n assert_eq(pow(2, 1), 2);\n assert_eq(pow(2, 10), 1024);\n assert_eq(pow(3, 5), 243);\n assert_eq(pow(0, 5), 0);\n assert_eq(pow(1, 100), 1);\n}\n\n#[test]\nunconstrained fn min_test() {\n assert_eq(min(5, 10), 5);\n assert_eq(min(10, 5), 5);\n assert_eq(min(7, 7), 7);\n assert_eq(min(0, 1), 0);\n}\n\n#[test]\nunconstrained fn full_field_comparison_test() {\n assert(full_field_less_than(5, 10));\n assert(!full_field_less_than(10, 5));\n assert(!full_field_less_than(5, 5));\n\n assert(full_field_greater_than(10, 5));\n assert(!full_field_greater_than(5, 10));\n assert(!full_field_greater_than(5, 5));\n}\n\n#[test]\nunconstrained fn sqrt_has_two_roots_test() {\n // Every square has two roots: r and -r (i.e., p - r)\n // sqrt(16) can return 4 or -4\n let x = 16;\n let result = sqrt(x).unwrap();\n assert(result * result == x);\n // The other root is -result\n let other_root = 0 - result;\n assert(other_root * other_root == x);\n // Verify they are different (unless x = 0)\n assert(result != other_root);\n\n // Same for 9: roots are 3 and -3\n let y = 9;\n let result_y = sqrt(y).unwrap();\n assert(result_y * result_y == y);\n let other_root_y = 0 - result_y;\n assert(other_root_y * other_root_y == y);\n assert(result_y != other_root_y);\n}\n\n#[test]\nunconstrained fn sqrt_negative_one_test() {\n let x = 0 - 1;\n let result = sqrt(x);\n assert(result.unwrap() == 0x30644e72e131a029048b6e193fd841045cea24f6fd736bec231204708f703636);\n}\n\n#[test]\nunconstrained fn validate_sqrt_hint_valid_test() {\n // 4 is a valid sqrt of 16\n validate_sqrt_hint(16, 4);\n // -4 is also a valid sqrt of 16\n validate_sqrt_hint(16, 0 - 4);\n // 0 is a valid sqrt of 0\n validate_sqrt_hint(0, 0);\n // 1 is a valid sqrt of 1\n validate_sqrt_hint(1, 1);\n // -1 is also a valid sqrt of 1\n validate_sqrt_hint(1, 0 - 1);\n}\n\n#[test(should_fail_with = \"is not the sqrt of x\")]\nunconstrained fn validate_sqrt_hint_invalid_test() {\n // 5 is not a valid sqrt of 16\n validate_sqrt_hint(16, 5);\n}\n\n#[test]\nunconstrained fn validate_not_sqrt_hint_valid_test() {\n // 5 (KNOWN_NON_RESIDUE) is not a square.\n let x = KNOWN_NON_RESIDUE;\n let hint = tonelli_shanks_sqrt(x * KNOWN_NON_RESIDUE);\n validate_not_sqrt_hint(x, hint);\n}\n\n#[test(should_fail_with = \"0 has a square root\")]\nunconstrained fn validate_not_sqrt_hint_zero_test() {\n // 0 has a square root, so we cannot claim it is not square\n validate_not_sqrt_hint(0, 0);\n}\n\n#[test(should_fail_with = \"does not demonstrate that\")]\nunconstrained fn validate_not_sqrt_hint_wrong_hint_test() {\n // Provide a wrong hint for a non-square\n let x = KNOWN_NON_RESIDUE;\n validate_not_sqrt_hint(x, 123);\n}\n"
|
|
4924
|
+
"source": "pub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\n// TODO: write doc-comments and tests for these magic constants.\n\nglobal KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field2.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n\n#[test]\nunconstrained fn sqrt_zero_test() {\n let result = sqrt(0);\n assert(result.is_some());\n assert_eq(result.unwrap(), 0);\n}\n\n#[test]\nunconstrained fn sqrt_one_test() {\n let result = sqrt(1);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), 1);\n}\n\n#[test]\nunconstrained fn field_from_bytes_empty_test() {\n let empty: [u8; 0] = [];\n let result = field_from_bytes(empty, true);\n assert_eq(result, 0);\n\n let result_le = field_from_bytes(empty, false);\n assert_eq(result_le, 0);\n}\n\n#[test]\nunconstrained fn field_from_bytes_little_endian_test() {\n // Test little-endian conversion: [0x01, 0x02] should be 0x0201 = 513\n let bytes = [0x01, 0x02];\n let result_le = field_from_bytes(bytes, false);\n assert_eq(result_le, 0x0201);\n\n // Compare with big-endian: [0x01, 0x02] should be 0x0102 = 258\n let result_be = field_from_bytes(bytes, true);\n assert_eq(result_be, 0x0102);\n}\n\n#[test]\nunconstrained fn pow_test() {\n assert_eq(pow(2, 0), 1);\n assert_eq(pow(2, 1), 2);\n assert_eq(pow(2, 10), 1024);\n assert_eq(pow(3, 5), 243);\n assert_eq(pow(0, 5), 0);\n assert_eq(pow(1, 100), 1);\n}\n\n#[test]\nunconstrained fn min_test() {\n assert_eq(min(5, 10), 5);\n assert_eq(min(10, 5), 5);\n assert_eq(min(7, 7), 7);\n assert_eq(min(0, 1), 0);\n}\n\n#[test]\nunconstrained fn full_field_comparison_test() {\n assert(full_field_less_than(5, 10));\n assert(!full_field_less_than(10, 5));\n assert(!full_field_less_than(5, 5));\n\n assert(full_field_greater_than(10, 5));\n assert(!full_field_greater_than(5, 10));\n assert(!full_field_greater_than(5, 5));\n}\n\n#[test]\nunconstrained fn sqrt_has_two_roots_test() {\n // Every square has two roots: r and -r (i.e., p - r)\n // sqrt(16) can return 4 or -4\n let x = 16;\n let result = sqrt(x).unwrap();\n assert(result * result == x);\n // The other root is -result\n let other_root = 0 - result;\n assert(other_root * other_root == x);\n // Verify they are different (unless x = 0)\n assert(result != other_root);\n\n // Same for 9: roots are 3 and -3\n let y = 9;\n let result_y = sqrt(y).unwrap();\n assert(result_y * result_y == y);\n let other_root_y = 0 - result_y;\n assert(other_root_y * other_root_y == y);\n assert(result_y != other_root_y);\n}\n\n#[test]\nunconstrained fn sqrt_negative_one_test() {\n let x = 0 - 1;\n let result = sqrt(x);\n assert(result.unwrap() == 0x30644e72e131a029048b6e193fd841045cea24f6fd736bec231204708f703636);\n}\n\n#[test]\nunconstrained fn validate_sqrt_hint_valid_test() {\n // 4 is a valid sqrt of 16\n validate_sqrt_hint(16, 4);\n // -4 is also a valid sqrt of 16\n validate_sqrt_hint(16, 0 - 4);\n // 0 is a valid sqrt of 0\n validate_sqrt_hint(0, 0);\n // 1 is a valid sqrt of 1\n validate_sqrt_hint(1, 1);\n // -1 is also a valid sqrt of 1\n validate_sqrt_hint(1, 0 - 1);\n}\n\n#[test(should_fail_with = \"is not the sqrt of x\")]\nunconstrained fn validate_sqrt_hint_invalid_test() {\n // 5 is not a valid sqrt of 16\n validate_sqrt_hint(16, 5);\n}\n\n#[test]\nunconstrained fn validate_not_sqrt_hint_valid_test() {\n // 5 (KNOWN_NON_RESIDUE) is not a square.\n let x = KNOWN_NON_RESIDUE;\n let hint = tonelli_shanks_sqrt(x * KNOWN_NON_RESIDUE);\n validate_not_sqrt_hint(x, hint);\n}\n\n#[test(should_fail_with = \"0 has a square root\")]\nunconstrained fn validate_not_sqrt_hint_zero_test() {\n // 0 has a square root, so we cannot claim it is not square\n validate_not_sqrt_hint(0, 0);\n}\n\n#[test(should_fail_with = \"does not demonstrate that\")]\nunconstrained fn validate_not_sqrt_hint_wrong_hint_test() {\n // Provide a wrong hint for a non-square\n let x = KNOWN_NON_RESIDUE;\n validate_not_sqrt_hint(x, 123);\n}\n"
|
|
4925
4925
|
},
|
|
4926
4926
|
"402": {
|
|
4927
4927
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
|
|
@@ -4941,7 +4941,7 @@
|
|
|
4941
4941
|
},
|
|
4942
4942
|
"5": {
|
|
4943
4943
|
"path": "std/cmp.nr",
|
|
4944
|
-
"source": "use crate::meta::derive_via;\n\n#[derive_via(derive_eq)]\n// docs:start:eq-trait\npub trait Eq {\n fn eq(self, other: Self) -> bool;\n}\n// docs:end:eq-trait\n\n// docs:start:derive_eq\ncomptime fn derive_eq(s: TypeDefinition) -> Quoted {\n let signature = quote { fn eq(_self: Self, _other: Self) -> bool };\n let for_each_field = |name| quote { (_self.$name == _other.$name) };\n let body = |fields| {\n if s.fields_as_written().len() == 0 {\n quote { true }\n } else {\n fields\n }\n };\n crate::meta::make_trait_impl(\n s,\n quote { $crate::cmp::Eq },\n signature,\n for_each_field,\n quote { & },\n body,\n )\n}\n// docs:end:derive_eq\n\nimpl Eq for Field {\n fn eq(self, other: Field) -> bool {\n self == other\n }\n}\n\nimpl Eq for u128 {\n fn eq(self, other: u128) -> bool {\n self == other\n }\n}\nimpl Eq for u64 {\n fn eq(self, other: u64) -> bool {\n self == other\n }\n}\nimpl Eq for u32 {\n fn eq(self, other: u32) -> bool {\n self == other\n }\n}\nimpl Eq for u16 {\n fn eq(self, other: u16) -> bool {\n self == other\n }\n}\nimpl Eq for u8 {\n fn eq(self, other: u8) -> bool {\n self == other\n }\n}\nimpl Eq for u1 {\n fn eq(self, other: u1) -> bool {\n self == other\n }\n}\n\nimpl Eq for i8 {\n fn eq(self, other: i8) -> bool {\n self == other\n }\n}\nimpl Eq for i16 {\n fn eq(self, other: i16) -> bool {\n self == other\n }\n}\nimpl Eq for i32 {\n fn eq(self, other: i32) -> bool {\n self == other\n }\n}\nimpl Eq for i64 {\n fn eq(self, other: i64) -> bool {\n self == other\n }\n}\n\nimpl Eq for () {\n fn eq(_self: Self, _other: ()) -> bool {\n true\n }\n}\nimpl Eq for bool {\n fn eq(self, other: bool) -> bool {\n self == other\n }\n}\n\nimpl<T, let N: u32> Eq for [T; N]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T; N]) -> bool {\n let mut result = true;\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n result\n }\n}\n\nimpl<T> Eq for [T]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T]) -> bool {\n let mut result = self.len() == other.len();\n if result {\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n }\n result\n }\n}\n\nimpl<let N: u32> Eq for str<N> {\n fn eq(self, other: str<N>) -> bool {\n let self_bytes = self.as_bytes();\n let other_bytes = other.as_bytes();\n self_bytes == other_bytes\n }\n}\n\nimpl<A, B> Eq for (A, B)\nwhere\n A: Eq,\n B: Eq,\n{\n fn eq(self, other: (A, B)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1)\n }\n}\n\nimpl<A, B, C> Eq for (A, B, C)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n{\n fn eq(self, other: (A, B, C)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2)\n }\n}\n\nimpl<A, B, C, D> Eq for (A, B, C, D)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n{\n fn eq(self, other: (A, B, C, D)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2) & self.3.eq(other.3)\n }\n}\n\nimpl<A, B, C, D, E> Eq for (A, B, C, D, E)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n E: Eq,\n{\n fn eq(self, other: (A, B, C, D, E)) -> bool {\n self.0.eq(other.0)\n & self.1.eq(other.1)\n & self.2.eq(other.2)\n & self.3.eq(other.3)\n & self.4.eq(other.4)\n }\n}\n\nimpl Eq for Ordering {\n fn eq(self, other: Ordering) -> bool {\n self.result == other.result\n }\n}\n\n// Noir doesn't have enums yet so we emulate (Lt | Eq | Gt) with a struct\n// that has 3 public functions for constructing the struct.\npub struct Ordering {\n result: Field,\n}\n\nimpl Ordering {\n // Implementation note: 0, 1, and 2 for Lt, Eq, and Gt are built\n // into the compiler, do not change these without also updating\n // the compiler itself!\n pub fn less() -> Ordering {\n Ordering { result: 0 }\n }\n\n pub fn equal() -> Ordering {\n Ordering { result: 1 }\n }\n\n pub fn greater() -> Ordering {\n Ordering { result: 2 }\n }\n}\n\n#[derive_via(derive_ord)]\n// docs:start:ord-trait\npub trait Ord {\n fn cmp(self, other: Self) -> Ordering;\n}\n// docs:end:ord-trait\n\n// docs:start:derive_ord\ncomptime fn derive_ord(s: TypeDefinition) -> Quoted {\n let name = quote { $crate::cmp::Ord };\n let signature = quote { fn cmp(_self: Self, _other: Self) -> $crate::cmp::Ordering };\n let for_each_field = |name| quote {\n if result == $crate::cmp::Ordering::equal() {\n result = _self.$name.cmp(_other.$name);\n }\n };\n let body = |fields| quote {\n let mut result = $crate::cmp::Ordering::equal();\n $fields\n result\n };\n crate::meta::make_trait_impl(s, name, signature, for_each_field, quote {}, body)\n}\n// docs:end:derive_ord\n\n// Note: Field deliberately does not implement Ord\n\nimpl Ord for u128 {\n fn cmp(self, other: u128) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\nimpl Ord for u64 {\n fn cmp(self, other: u64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u32 {\n fn cmp(self, other: u32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u16 {\n fn cmp(self, other: u16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u8 {\n fn cmp(self, other: u8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i8 {\n fn cmp(self, other: i8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i16 {\n fn cmp(self, other: i16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i32 {\n fn cmp(self, other: i32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i64 {\n fn cmp(self, other: i64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for () {\n fn cmp(_self: Self, _other: ()) -> Ordering {\n Ordering::equal()\n }\n}\n\nimpl Ord for bool {\n fn cmp(self, other: bool) -> Ordering {\n if self {\n if other {\n Ordering::equal()\n } else {\n Ordering::greater()\n }\n } else if other {\n Ordering::less()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl<T, let N: u32> Ord for [T; N]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T; N]) -> Ordering {\n let mut result = Ordering::equal();\n for i in 0..self.len() {\n if result == Ordering::equal() {\n result = self[i].cmp(other[i]);\n }\n }\n result\n }\n}\n\nimpl<T> Ord for [T]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T]) -> Ordering {\n let self_len = self.len();\n let other_len = other.len();\n let min_len = if self_len < other_len {\n self_len\n } else {\n other_len\n };\n\n let mut result = Ordering::equal();\n for i in 0..min_len {\n if result == Ordering::equal() {\n result = self[i].cmp(other[i]);\n }\n }\n\n if result != Ordering::equal() {\n result\n } else {\n self_len.cmp(other_len)\n }\n }\n}\n\nimpl<A, B> Ord for (A, B)\nwhere\n A: Ord,\n B: Ord,\n{\n fn cmp(self, other: (A, B)) -> Ordering {\n let result = self.0.cmp(other.0);\n\n if result != Ordering::equal() {\n result\n } else {\n self.1.cmp(other.1)\n }\n }\n}\n\nimpl<A, B, C> Ord for (A, B, C)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n{\n fn cmp(self, other: (A, B, C)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D> Ord for (A, B, C, D)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n{\n fn cmp(self, other: (A, B, C, D)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D, E> Ord for (A, B, C, D, E)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n E: Ord,\n{\n fn cmp(self, other: (A, B, C, D, E)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n if result == Ordering::equal() {\n result = self.4.cmp(other.4);\n }\n\n result\n }\n}\n\n// Compares and returns the maximum of two values.\n//\n// Returns the second argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::max(1, 2), 2);\n// assert_eq(cmp::max(2, 2), 2);\n// ```\npub fn max<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v1\n } else {\n v2\n }\n}\n\n// Compares and returns the minimum of two values.\n//\n// Returns the first argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::min(1, 2), 1);\n// assert_eq(cmp::min(2, 2), 2);\n// ```\npub fn min<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v2\n } else {\n v1\n }\n}\n\nmod cmp_tests {\n use super::{Eq, max, min, Ord};\n\n #[test]\n fn sanity_check_min() {\n assert_eq(min(0_u64, 1), 0);\n assert_eq(min(0_u64, 0), 0);\n assert_eq(min(1_u64, 1), 1);\n assert_eq(min(255_u8, 0), 0);\n }\n\n #[test]\n fn sanity_check_max() {\n assert_eq(max(0_u64, 1), 1);\n assert_eq(max(0_u64, 0), 0);\n assert_eq(max(1_u64, 1), 1);\n assert_eq(max(255_u8, 0), 255);\n }\n\n #[test]\n fn correctly_handles_unequal_length_vectors() {\n let vector_1 = &[0, 1, 2, 3];\n let vector_2 = &[0, 1, 2];\n assert(!vector_1.eq(vector_2));\n }\n\n #[test]\n fn lexicographic_ordering_for_vectors() {\n assert(&[2_u32].cmp(&[1_u32, 1_u32, 1_u32]) == super::Ordering::greater());\n assert(&[1_u32, 2_u32].cmp(&[1_u32, 2_u32, 3_u32]) == super::Ordering::less());\n }\n}\n"
|
|
4944
|
+
"source": "use crate::meta::derive_via;\n\n#[derive_via(derive_eq)]\n// docs:start:eq-trait\npub trait Eq {\n fn eq(self, other: Self) -> bool;\n}\n// docs:end:eq-trait\n\n// docs:start:derive_eq\ncomptime fn derive_eq(s: TypeDefinition) -> Quoted {\n let signature = quote { fn eq(_self: Self, _other: Self) -> bool };\n let for_each_field = |name| quote { (_self.$name == _other.$name) };\n let body = |fields| {\n if s.fields_as_written().len() == 0 {\n quote { true }\n } else {\n fields\n }\n };\n crate::meta::make_trait_impl(\n s,\n quote { $crate::cmp::Eq },\n signature,\n for_each_field,\n quote { & },\n body,\n )\n}\n// docs:end:derive_eq\n\nimpl Eq for Field {\n fn eq(self, other: Field) -> bool {\n self == other\n }\n}\n\nimpl Eq for u128 {\n fn eq(self, other: u128) -> bool {\n self == other\n }\n}\nimpl Eq for u64 {\n fn eq(self, other: u64) -> bool {\n self == other\n }\n}\nimpl Eq for u32 {\n fn eq(self, other: u32) -> bool {\n self == other\n }\n}\nimpl Eq for u16 {\n fn eq(self, other: u16) -> bool {\n self == other\n }\n}\nimpl Eq for u8 {\n fn eq(self, other: u8) -> bool {\n self == other\n }\n}\nimpl Eq for u1 {\n fn eq(self, other: u1) -> bool {\n self == other\n }\n}\n\nimpl Eq for i8 {\n fn eq(self, other: i8) -> bool {\n self == other\n }\n}\nimpl Eq for i16 {\n fn eq(self, other: i16) -> bool {\n self == other\n }\n}\nimpl Eq for i32 {\n fn eq(self, other: i32) -> bool {\n self == other\n }\n}\nimpl Eq for i64 {\n fn eq(self, other: i64) -> bool {\n self == other\n }\n}\n\nimpl Eq for () {\n fn eq(_self: Self, _other: ()) -> bool {\n true\n }\n}\nimpl Eq for bool {\n fn eq(self, other: bool) -> bool {\n self == other\n }\n}\n\nimpl<T, let N: u32> Eq for [T; N]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T; N]) -> bool {\n let mut result = true;\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n result\n }\n}\n\nimpl<T> Eq for [T]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T]) -> bool {\n let mut result = self.len() == other.len();\n if result {\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n }\n result\n }\n}\n\nimpl<let N: u32> Eq for str<N> {\n fn eq(self, other: str<N>) -> bool {\n let self_bytes = self.as_bytes();\n let other_bytes = other.as_bytes();\n self_bytes == other_bytes\n }\n}\n\nimpl<A, B> Eq for (A, B)\nwhere\n A: Eq,\n B: Eq,\n{\n fn eq(self, other: (A, B)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1)\n }\n}\n\nimpl<A, B, C> Eq for (A, B, C)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n{\n fn eq(self, other: (A, B, C)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2)\n }\n}\n\nimpl<A, B, C, D> Eq for (A, B, C, D)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n{\n fn eq(self, other: (A, B, C, D)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2) & self.3.eq(other.3)\n }\n}\n\nimpl<A, B, C, D, E> Eq for (A, B, C, D, E)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n E: Eq,\n{\n fn eq(self, other: (A, B, C, D, E)) -> bool {\n self.0.eq(other.0)\n & self.1.eq(other.1)\n & self.2.eq(other.2)\n & self.3.eq(other.3)\n & self.4.eq(other.4)\n }\n}\n\nimpl Eq for Ordering {\n fn eq(self, other: Ordering) -> bool {\n self.result == other.result\n }\n}\n\n// Noir doesn't have enums yet so we emulate (Lt | Eq | Gt) with a struct\n// that has 3 public functions for constructing the struct.\npub struct Ordering {\n result: Field,\n}\n\nimpl Ordering {\n // Implementation note: 0, 1, and 2 for Lt, Eq, and Gt are built\n // into the compiler, do not change these without also updating\n // the compiler itself!\n pub fn less() -> Ordering {\n Ordering { result: 0 }\n }\n\n pub fn equal() -> Ordering {\n Ordering { result: 1 }\n }\n\n pub fn greater() -> Ordering {\n Ordering { result: 2 }\n }\n}\n\n#[derive_via(derive_ord)]\n// docs:start:ord-trait\npub trait Ord {\n fn cmp(self, other: Self) -> Ordering;\n}\n// docs:end:ord-trait\n\n// docs:start:derive_ord\ncomptime fn derive_ord(s: TypeDefinition) -> Quoted {\n let name = quote { $crate::cmp::Ord };\n let signature = quote { fn cmp(_self: Self, _other: Self) -> $crate::cmp::Ordering };\n let for_each_field = |name| quote {\n if result == $crate::cmp::Ordering::equal() {\n result = _self.$name.cmp(_other.$name);\n }\n };\n let body = |fields| quote {\n let mut result = $crate::cmp::Ordering::equal();\n $fields\n result\n };\n crate::meta::make_trait_impl(s, name, signature, for_each_field, quote {}, body)\n}\n// docs:end:derive_ord\n\n// Note: Field deliberately does not implement Ord\n\nimpl Ord for u128 {\n fn cmp(self, other: u128) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\nimpl Ord for u64 {\n fn cmp(self, other: u64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u32 {\n fn cmp(self, other: u32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u16 {\n fn cmp(self, other: u16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u8 {\n fn cmp(self, other: u8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i8 {\n fn cmp(self, other: i8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i16 {\n fn cmp(self, other: i16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i32 {\n fn cmp(self, other: i32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i64 {\n fn cmp(self, other: i64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for () {\n fn cmp(_self: Self, _other: ()) -> Ordering {\n Ordering::equal()\n }\n}\n\nimpl Ord for bool {\n fn cmp(self, other: bool) -> Ordering {\n if self {\n if other {\n Ordering::equal()\n } else {\n Ordering::greater()\n }\n } else if other {\n Ordering::less()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl<T, let N: u32> Ord for [T; N]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T; N]) -> Ordering {\n let mut result = Ordering::equal();\n for i in 0..self.len() {\n if result == Ordering::equal() {\n result = self[i].cmp(other[i]);\n }\n }\n result\n }\n}\n\nimpl<T> Ord for [T]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T]) -> Ordering {\n let self_len = self.len();\n let other_len = other.len();\n let min_len = if self_len < other_len {\n self_len\n } else {\n other_len\n };\n\n let mut result = Ordering::equal();\n for i in 0..min_len {\n if result == Ordering::equal() {\n result = self[i].cmp(other[i]);\n }\n }\n\n if result != Ordering::equal() {\n result\n } else {\n self_len.cmp(other_len)\n }\n }\n}\n\nimpl<A, B> Ord for (A, B)\nwhere\n A: Ord,\n B: Ord,\n{\n fn cmp(self, other: (A, B)) -> Ordering {\n let result = self.0.cmp(other.0);\n\n if result != Ordering::equal() {\n result\n } else {\n self.1.cmp(other.1)\n }\n }\n}\n\nimpl<A, B, C> Ord for (A, B, C)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n{\n fn cmp(self, other: (A, B, C)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D> Ord for (A, B, C, D)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n{\n fn cmp(self, other: (A, B, C, D)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D, E> Ord for (A, B, C, D, E)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n E: Ord,\n{\n fn cmp(self, other: (A, B, C, D, E)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n if result == Ordering::equal() {\n result = self.4.cmp(other.4);\n }\n\n result\n }\n}\n\n// Compares and returns the maximum of two values.\n//\n// Returns the second argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::max(1, 2), 2);\n// assert_eq(cmp::max(2, 2), 2);\n// ```\npub fn max<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v1\n } else {\n v2\n }\n}\n\n// Compares and returns the minimum of two values.\n//\n// Returns the first argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::min(1, 2), 1);\n// assert_eq(cmp::min(2, 2), 2);\n// ```\npub fn min<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v2\n } else {\n v1\n }\n}\n\nmod cmp_tests {\n use super::{Eq, max, min, Ord};\n\n #[test]\n fn sanity_check_min() {\n assert_eq(min(0_u64, 1), 0);\n assert_eq(min(0_u64, 0), 0);\n assert_eq(min(1_u64, 1), 1);\n assert_eq(min(255_u8, 0), 0);\n }\n\n #[test]\n fn sanity_check_max() {\n assert_eq(max(0_u64, 1), 1);\n assert_eq(max(0_u64, 0), 0);\n assert_eq(max(1_u64, 1), 1);\n assert_eq(max(255_u8, 0), 255);\n }\n\n #[test]\n fn correctly_handles_unequal_length_vectors() {\n let vector_1 = [0, 1, 2, 3].as_vector();\n let vector_2 = [0, 1, 2].as_vector();\n assert(!vector_1.eq(vector_2));\n }\n\n #[test]\n fn lexicographic_ordering_for_vectors() {\n assert(\n [2_u32].as_vector().cmp([1_u32, 1_u32, 1_u32].as_vector())\n == super::Ordering::greater(),\n );\n assert(\n [1_u32, 2_u32].as_vector().cmp([1_u32, 2_u32, 3_u32].as_vector())\n == super::Ordering::less(),\n );\n }\n}\n"
|
|
4945
4945
|
},
|
|
4946
4946
|
"51": {
|
|
4947
4947
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-contracts/contracts/protocol/fee_juice_contract/src/lib.nr",
|
|
@@ -4953,7 +4953,7 @@
|
|
|
4953
4953
|
},
|
|
4954
4954
|
"6": {
|
|
4955
4955
|
"path": "std/collections/bounded_vec.nr",
|
|
4956
|
-
"source": "use crate::{cmp::Eq, convert::From, runtime::is_unconstrained, static_assert};\n\n/// A `BoundedVec<T, MaxLen>` is a growable storage similar to a built-in vector except that it\n/// is bounded with a maximum possible length. `BoundedVec` is also not\n/// subject to the same restrictions vectors are (notably, nested vectors are disallowed).\n///\n/// Since a BoundedVec is backed by a normal array under the hood, growing the BoundedVec by\n/// pushing an additional element is also more efficient - the length only needs to be increased\n/// by one.\n///\n/// For these reasons `BoundedVec<T, N>` should generally be preferred over vectors when there\n/// is a reasonable maximum bound that can be placed on the vector.\n///\n/// Example:\n///\n/// ```noir\n/// let mut vector: BoundedVec<Field, 10> = BoundedVec::new();\n/// for i in 0..5 {\n/// vector.push(i);\n/// }\n/// assert(vector.len() == 5);\n/// assert(vector.max_len() == 10);\n/// ```\npub struct BoundedVec<T, let MaxLen: u32> {\n storage: [T; MaxLen],\n len: u32,\n}\n\nimpl<T, let MaxLen: u32> BoundedVec<T, MaxLen> {\n /// Creates a new, empty vector of length zero.\n ///\n /// Since this container is backed by an array internally, it still needs an initial value\n /// to give each element. To resolve this, each element is zeroed internally. This value\n /// is guaranteed to be inaccessible unless `get_unchecked` is used.\n ///\n /// Example:\n ///\n /// ```noir\n /// let empty_vector: BoundedVec<Field, 10> = BoundedVec::new();\n /// assert(empty_vector.len() == 0);\n /// ```\n ///\n /// Note that whenever calling `new` the maximum length of the vector should always be specified\n /// via a type signature:\n ///\n /// ```noir\n /// fn good() -> BoundedVec<Field, 10> {\n /// // Ok! MaxLen is specified with a type annotation\n /// let v1: BoundedVec<Field, 3> = BoundedVec::new();\n /// let v2 = BoundedVec::new();\n ///\n /// // Ok! MaxLen is known from the type of `good`'s return value\n /// v2\n /// }\n ///\n /// fn bad() {\n /// // Error: Type annotation needed\n /// // The compiler can't infer `MaxLen` from the following code:\n /// let mut v3 = BoundedVec::new();\n /// v3.push(5);\n /// }\n /// ```\n ///\n /// This defaulting of `MaxLen` (and numeric generics in general) to zero may change in future noir versions\n /// but for now make sure to use type annotations when using bounded vectors. Otherwise, you will receive a\n /// constraint failure at runtime when the vec is pushed to.\n pub fn new() -> Self {\n let zeroed = crate::mem::zeroed();\n BoundedVec { storage: [zeroed; MaxLen], len: 0 }\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this\n /// will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// let last = v.get(v.len() - 1);\n /// assert(first != last);\n /// }\n /// ```\n pub fn get(self, index: u32) -> T {\n assert(index < self.len, \"Attempted to read past end of BoundedVec\");\n self.get_unchecked(index)\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero, without\n /// performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element,\n /// it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn sum_of_first_three<let N: u32>(v: BoundedVec<u32, N>) -> u32 {\n /// // Always ensure the length is larger than the largest\n /// // index passed to get_unchecked\n /// assert(v.len() > 2);\n /// let first = v.get_unchecked(0);\n /// let second = v.get_unchecked(1);\n /// let third = v.get_unchecked(2);\n /// first + second + third\n /// }\n /// ```\n pub fn get_unchecked(self, index: u32) -> T {\n self.storage[index]\n }\n\n /// Writes an element to the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// assert(first != 42);\n /// v.set(0, 42);\n /// let new_first = v.get(0);\n /// assert(new_first == 42);\n /// }\n /// ```\n pub fn set(&mut self, index: u32, value: T) {\n assert(index < self.len, \"Attempted to write past end of BoundedVec\");\n self.set_unchecked(index, value)\n }\n\n /// Writes an element to the vector at the given index, starting from zero, without performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element, it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn set_unchecked_example() {\n /// let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n /// vec.extend_from_array([1, 2]);\n ///\n /// // Here we're safely writing within the valid range of `vec`\n /// // `vec` now has the value [42, 2]\n /// vec.set_unchecked(0, 42);\n ///\n /// // We can then safely read this value back out of `vec`.\n /// // Notice that we use the checked version of `get` which would prevent reading unsafe values.\n /// assert_eq(vec.get(0), 42);\n ///\n /// // We've now written past the end of `vec`.\n /// // As this index is still within the maximum potential length of `v`,\n /// // it won't cause a constraint failure.\n /// vec.set_unchecked(2, 42);\n /// println(vec);\n ///\n /// // This will write past the end of the maximum potential length of `vec`,\n /// // it will then trigger a constraint failure.\n /// vec.set_unchecked(5, 42);\n /// println(vec);\n /// }\n /// ```\n pub fn set_unchecked(&mut self, index: u32, value: T) {\n self.storage[index] = value;\n }\n\n /// Pushes an element to the end of the vector. This increases the length\n /// of the vector by one.\n ///\n /// Panics if the new length of the vector will be greater than the max length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n ///\n /// v.push(1);\n /// v.push(2);\n ///\n /// // Panics with failed assertion \"push out of bounds\"\n /// v.push(3);\n /// ```\n pub fn push(&mut self, elem: T) {\n assert(self.len < MaxLen, \"push out of bounds\");\n\n self.storage[self.len] = elem;\n self.len += 1;\n }\n\n /// Returns the current length of this vector\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 4> = BoundedVec::new();\n /// assert(v.len() == 0);\n ///\n /// v.push(100);\n /// assert(v.len() == 1);\n ///\n /// v.push(200);\n /// v.push(300);\n /// v.push(400);\n /// assert(v.len() == 4);\n ///\n /// let _ = v.pop();\n /// let _ = v.pop();\n /// assert(v.len() == 2);\n /// ```\n pub fn len(self) -> u32 {\n self.len\n }\n\n /// Returns the maximum length of this vector. This is always\n /// equal to the `MaxLen` parameter this vector was initialized with.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.max_len() == 5);\n /// v.push(10);\n /// assert(v.max_len() == 5);\n /// ```\n pub fn max_len(_self: BoundedVec<T, MaxLen>) -> u32 {\n MaxLen\n }\n\n /// Returns the internal array within this vector.\n ///\n /// Since arrays in Noir are immutable, mutating the returned storage array will not mutate\n /// the storage held internally by this vector.\n ///\n /// Note that uninitialized elements may be zeroed out!\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.storage() == [0, 0, 0, 0, 0]);\n ///\n /// v.push(57);\n /// assert(v.storage() == [57, 0, 0, 0, 0]);\n /// ```\n pub fn storage(self) -> [T; MaxLen] {\n self.storage\n }\n\n /// Pushes each element from the given array to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_array([2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_array<let Len: u32>(&mut self, array: [T; Len]) {\n let new_len = self.len + array.len();\n assert(new_len <= MaxLen, \"extend_from_array out of bounds\");\n for i in 0..array.len() {\n self.storage[self.len + i] = array[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the given vector to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_vector(&[2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_vector(&mut self, vector: [T]) {\n let new_len = self.len + vector.len();\n assert(new_len <= MaxLen, \"extend_from_vector out of bounds\");\n for i in 0..vector.len() {\n self.storage[self.len + i] = vector[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the other vector to this vector. The length of\n /// the other vector is left unchanged.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// ```noir\n /// let mut v1: BoundedVec<Field, 5> = BoundedVec::new();\n /// let mut v2: BoundedVec<Field, 7> = BoundedVec::new();\n ///\n /// v2.extend_from_array([1, 2, 3]);\n /// v1.extend_from_bounded_vec(v2);\n ///\n /// assert(v1.storage() == [1, 2, 3, 0, 0]);\n /// assert(v2.storage() == [1, 2, 3, 0, 0, 0, 0]);\n /// ```\n pub fn extend_from_bounded_vec<let Len: u32>(&mut self, vec: BoundedVec<T, Len>) {\n let append_len = vec.len();\n let new_len = self.len + append_len;\n assert(new_len <= MaxLen, \"extend_from_bounded_vec out of bounds\");\n\n if is_unconstrained() {\n for i in 0..append_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n } else {\n let mut exceeded_len = false;\n for i in 0..Len {\n exceeded_len |= i == append_len;\n if !exceeded_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n }\n }\n self.len = new_len;\n }\n\n /// Creates a new vector, populating it with values derived from an array input.\n /// The maximum length of the vector is determined based on the type signature.\n ///\n /// Example:\n ///\n /// ```noir\n /// let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array([1, 2, 3])\n /// ```\n pub fn from_array<let Len: u32>(array: [T; Len]) -> Self {\n static_assert(Len <= MaxLen, \"from array out of bounds\");\n let mut vec: BoundedVec<T, MaxLen> = BoundedVec::new();\n vec.extend_from_array(array);\n vec\n }\n\n /// Pops the element at the end of the vector. This will decrease the length\n /// of the vector by one.\n ///\n /// Panics if the vector is empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n /// v.push(1);\n /// v.push(2);\n ///\n /// let two = v.pop();\n /// let one = v.pop();\n ///\n /// assert(two == 2);\n /// assert(one == 1);\n ///\n /// // error: cannot pop from an empty vector\n /// let _ = v.pop();\n /// ```\n pub fn pop(&mut self) -> T {\n assert(self.len > 0, \"cannot pop from an empty vector\");\n self.len -= 1;\n\n let elem = self.storage[self.len];\n self.storage[self.len] = crate::mem::zeroed();\n elem\n }\n\n /// Returns true if the given predicate returns true for any element\n /// in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<u32, 3> = BoundedVec::new();\n /// v.extend_from_array([2, 4, 6]);\n ///\n /// let all_even = !v.any(|elem: u32| elem % 2 != 0);\n /// assert(all_even);\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n if is_unconstrained() {\n for i in 0..self.len {\n ret |= predicate(self.storage[i]);\n }\n } else {\n let mut exceeded_len = false;\n for i in 0..MaxLen {\n exceeded_len |= i == self.len;\n if !exceeded_len {\n ret |= predicate(self.storage[i]);\n }\n }\n }\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.map(|value| value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n\n if is_unconstrained() {\n for i in 0..self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n }\n }\n\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element\n /// in this vector, along with its index.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.mapi(|i, value| i + value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 5, 8, 11]);\n /// assert_eq(result, expected);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n\n if is_unconstrained() {\n for i in 0..self.len() {\n ret.storage[i] = f(i, self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(i, self.get_unchecked(i));\n }\n }\n }\n\n ret\n }\n\n /// Calls a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let mut result = BoundedVec::<u32, 4>::new();\n /// vec.for_each(|value| result.push(value * 2));\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n if is_unconstrained() {\n for i in 0..self.len() {\n f(self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n f(self.get_unchecked(i));\n }\n }\n }\n }\n\n /// Calls a closure on each element in this vector, along with its index.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let mut result = BoundedVec::<u32, 4>::new();\n /// vec.for_eachi(|i, value| result.push(i + value * 2));\n ///\n /// let expected = BoundedVec::from_array([2, 5, 8, 11]);\n /// assert_eq(result, expected);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n if is_unconstrained() {\n for i in 0..self.len() {\n f(i, self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n f(i, self.get_unchecked(i));\n }\n }\n }\n }\n\n /// Creates a new BoundedVec from the given array and length.\n /// The given length must be less than or equal to the length of the array.\n ///\n /// This function will zero out any elements at or past index `len` of `array`.\n /// This incurs an extra runtime cost of O(MaxLen). If you are sure your array is\n /// zeroed after that index, you can use [`from_parts_unchecked`][Self::from_parts_unchecked] to remove the extra loop.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 0], 3);\n /// assert_eq(vec.len(), 3);\n /// ```\n pub fn from_parts(mut array: [T; MaxLen], len: u32) -> Self {\n assert(len <= MaxLen);\n let zeroed = crate::mem::zeroed();\n\n if is_unconstrained() {\n for i in len..MaxLen {\n array[i] = zeroed;\n }\n } else {\n for i in 0..MaxLen {\n if i >= len {\n array[i] = zeroed;\n }\n }\n }\n\n BoundedVec { storage: array, len }\n }\n\n /// Creates a new BoundedVec from the given array and length.\n /// The given length must be less than or equal to the length of the array.\n ///\n /// This function is unsafe because it expects all elements past the `len` index\n /// of `array` to be zeroed, but does not check for this internally. Use `from_parts`\n /// for a safe version of this function which does zero out any indices past the\n /// given length. Invalidating this assumption can notably cause `BoundedVec::eq`\n /// to give incorrect results since it will check even elements past `len`.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 0], 3);\n /// assert_eq(vec.len(), 3);\n ///\n /// // invalid use!\n /// let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 1], 3);\n /// let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 2], 3);\n ///\n /// // both vecs have length 3 so we'd expect them to be equal, but this\n /// // fails because elements past the length are still checked in eq\n /// assert_eq(vec1, vec2); // fails\n /// ```\n pub fn from_parts_unchecked(array: [T; MaxLen], len: u32) -> Self {\n assert(len <= MaxLen);\n BoundedVec { storage: array, len }\n }\n}\n\nimpl<T, let MaxLen: u32> Eq for BoundedVec<T, MaxLen>\nwhere\n T: Eq,\n{\n fn eq(self, other: BoundedVec<T, MaxLen>) -> bool {\n // TODO: https://github.com/noir-lang/noir/issues/4837\n //\n // We make the assumption that the user has used the proper interface for working with `BoundedVec`s\n // rather than directly manipulating the internal fields as this can result in an inconsistent internal state.\n if self.len == other.len {\n self.storage == other.storage\n } else {\n false\n }\n }\n}\n\nimpl<T, let MaxLen: u32, let Len: u32> From<[T; Len]> for BoundedVec<T, MaxLen> {\n fn from(array: [T; Len]) -> BoundedVec<T, MaxLen> {\n BoundedVec::from_array(array)\n }\n}\n\nmod bounded_vec_tests {\n\n mod get {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn panics_when_reading_elements_past_end_of_vec() {\n let vec: BoundedVec<Field, 5> = BoundedVec::new();\n\n let _ = vec.get(0);\n }\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn panics_when_reading_beyond_length() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n let _ = vec.get(3);\n }\n\n #[test]\n fn get_works_within_bounds() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(2), 3);\n assert_eq(vec.get(4), 5);\n }\n\n #[test]\n fn get_unchecked_works() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n assert_eq(vec.get_unchecked(0), 1);\n assert_eq(vec.get_unchecked(2), 3);\n }\n\n #[test]\n fn get_unchecked_works_past_len() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n assert_eq(vec.get_unchecked(4), 0);\n }\n }\n\n mod set {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn set_updates_values_properly() {\n let mut vec = BoundedVec::from_array([0, 0, 0, 0, 0]);\n\n vec.set(0, 42);\n assert_eq(vec.storage, [42, 0, 0, 0, 0]);\n\n vec.set(1, 43);\n assert_eq(vec.storage, [42, 43, 0, 0, 0]);\n\n vec.set(2, 44);\n assert_eq(vec.storage, [42, 43, 44, 0, 0]);\n\n vec.set(1, 10);\n assert_eq(vec.storage, [42, 10, 44, 0, 0]);\n\n vec.set(0, 0);\n assert_eq(vec.storage, [0, 10, 44, 0, 0]);\n }\n\n #[test(should_fail_with = \"Attempted to write past end of BoundedVec\")]\n fn panics_when_writing_elements_past_end_of_vec() {\n let mut vec: BoundedVec<Field, 5> = BoundedVec::new();\n vec.set(0, 42);\n }\n\n #[test(should_fail_with = \"Attempted to write past end of BoundedVec\")]\n fn panics_when_setting_beyond_length() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n vec.set(3, 4);\n }\n\n #[test]\n fn set_unchecked_operations() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n vec.set_unchecked(0, 10);\n assert_eq(vec.get(0), 10);\n }\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn set_unchecked_operations_past_len() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n vec.set_unchecked(3, 40);\n assert_eq(vec.get(3), 40);\n }\n\n #[test]\n fn set_preserves_other_elements() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n\n vec.set(2, 30);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 30);\n assert_eq(vec.get(3), 4);\n assert_eq(vec.get(4), 5);\n }\n }\n\n mod any {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn returns_false_if_predicate_not_satisfied() {\n let vec: BoundedVec<bool, 4> = BoundedVec::from_array([false, false, false, false]);\n let result = vec.any(|value| value);\n\n assert(!result);\n }\n\n #[test]\n fn returns_true_if_predicate_satisfied() {\n let vec: BoundedVec<bool, 4> = BoundedVec::from_array([false, false, true, true]);\n let result = vec.any(|value| value);\n\n assert(result);\n }\n\n #[test]\n fn returns_false_on_empty_boundedvec() {\n let vec: BoundedVec<bool, 0> = BoundedVec::new();\n let result = vec.any(|value| value);\n\n assert(!result);\n }\n\n #[test]\n fn any_with_complex_predicates() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n\n assert(vec.any(|x| x > 3));\n assert(!vec.any(|x| x > 10));\n assert(vec.any(|x| x % 2 == 0)); // has a even number\n assert(vec.any(|x| x == 3)); // has a specific value\n }\n\n #[test]\n fn any_with_partial_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n assert(vec.any(|x| x == 1));\n assert(vec.any(|x| x == 2));\n assert(!vec.any(|x| x == 3));\n }\n }\n\n mod map {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-map-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| value * 2);\n // docs:end:bounded-vec-map-example\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.map(|value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn map_with_conditional_logic() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n\n let result = vec.map(|x| if x % 2 == 0 { x * 2 } else { x });\n let expected = BoundedVec::from_array([1, 4, 3, 8]);\n assert_eq(result, expected);\n }\n\n #[test]\n fn map_preserves_length() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|x| x * 2);\n\n assert_eq(result.len(), vec.len());\n assert_eq(result.max_len(), vec.max_len());\n }\n\n #[test]\n fn map_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let result = vec.map(|x| x * 2);\n assert_eq(result, vec);\n assert_eq(result.len(), 0);\n assert_eq(result.max_len(), 5);\n }\n }\n\n mod mapi {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-mapi-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.mapi(|i, value| i + value * 2);\n // docs:end:bounded-vec-mapi-example\n let expected = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.mapi(|i, value| (i + value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.mapi(|_, value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn mapi_with_index_branching_logic() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n\n let result = vec.mapi(|i, x| if i % 2 == 0 { x * 2 } else { x });\n let expected = BoundedVec::from_array([2, 2, 6, 4]);\n assert_eq(result, expected);\n }\n }\n\n mod for_each {\n use crate::collections::bounded_vec::BoundedVec;\n\n // map in terms of for_each\n fn for_each_map<T, U, Env, let MaxLen: u32>(\n input: BoundedVec<T, MaxLen>,\n f: fn[Env](T) -> U,\n ) -> BoundedVec<U, MaxLen> {\n let mut output = BoundedVec::<U, MaxLen>::new();\n let output_ref = &mut output;\n input.for_each(|x| output_ref.push(f(x)));\n output\n }\n\n #[test]\n fn smoke_test() {\n let mut acc = 0;\n let acc_ref = &mut acc;\n // docs:start:bounded-vec-for-each-example\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n vec.for_each(|value| { *acc_ref += value; });\n // docs:end:bounded-vec-for-each-example\n assert_eq(acc, 6);\n }\n\n #[test]\n fn applies_function_correctly() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_each_map(vec, |value| value * 2);\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_each_map(vec, |value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = for_each_map(vec, |value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn for_each_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let mut count = 0;\n let count_ref = &mut count;\n vec.for_each(|_| { *count_ref += 1; });\n assert_eq(count, 0);\n }\n\n #[test]\n fn for_each_with_side_effects() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n let mut seen = BoundedVec::<u32, 3>::new();\n let seen_ref = &mut seen;\n vec.for_each(|x| seen_ref.push(x));\n assert_eq(seen, vec);\n }\n }\n\n mod for_eachi {\n use crate::collections::bounded_vec::BoundedVec;\n\n // mapi in terms of for_eachi\n fn for_eachi_mapi<T, U, Env, let MaxLen: u32>(\n input: BoundedVec<T, MaxLen>,\n f: fn[Env](u32, T) -> U,\n ) -> BoundedVec<U, MaxLen> {\n let mut output = BoundedVec::<U, MaxLen>::new();\n let output_ref = &mut output;\n input.for_eachi(|i, x| output_ref.push(f(i, x)));\n output\n }\n\n #[test]\n fn smoke_test() {\n let mut acc = 0;\n let acc_ref = &mut acc;\n // docs:start:bounded-vec-for-eachi-example\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n vec.for_eachi(|i, value| { *acc_ref += i * value; });\n // docs:end:bounded-vec-for-eachi-example\n\n // 0 * 1 + 1 * 2 + 2 * 3\n assert_eq(acc, 8);\n }\n\n #[test]\n fn applies_function_correctly() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_eachi_mapi(vec, |i, value| i + value * 2);\n let expected = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_eachi_mapi(vec, |i, value| (i + value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = for_eachi_mapi(vec, |_, value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn for_eachi_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let mut count = 0;\n let count_ref = &mut count;\n vec.for_eachi(|_, _| { *count_ref += 1; });\n assert_eq(count, 0);\n }\n\n #[test]\n fn for_eachi_with_index_tracking() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([10, 20, 30]);\n let mut indices = BoundedVec::<u32, 3>::new();\n let indices_ref = &mut indices;\n vec.for_eachi(|i, _| indices_ref.push(i));\n\n let expected = BoundedVec::from_array([0, 1, 2]);\n assert_eq(indices, expected);\n }\n\n }\n\n mod from_array {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty() {\n let empty_array: [Field; 0] = [];\n let bounded_vec = BoundedVec::from_array([]);\n\n assert_eq(bounded_vec.max_len(), 0);\n assert_eq(bounded_vec.len(), 0);\n assert_eq(bounded_vec.storage(), empty_array);\n }\n\n #[test]\n fn equal_len() {\n let array = [1, 2, 3];\n let bounded_vec = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 3);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.storage(), array);\n }\n\n #[test]\n fn max_len_greater_then_array_len() {\n let array = [1, 2, 3];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.get(0), 1);\n assert_eq(bounded_vec.get(1), 2);\n assert_eq(bounded_vec.get(2), 3);\n }\n\n #[test(should_fail_with = \"from array out of bounds\")]\n fn max_len_lower_then_array_len() {\n let _: BoundedVec<Field, 2> = BoundedVec::from_array([0; 3]);\n }\n\n #[test]\n fn from_array_preserves_order() {\n let array = [5, 3, 1, 4, 2];\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array(array);\n for i in 0..array.len() {\n assert_eq(vec.get(i), array[i]);\n }\n }\n\n #[test]\n fn from_array_with_different_types() {\n let bool_array = [true, false, true];\n let bool_vec: BoundedVec<bool, 3> = BoundedVec::from_array(bool_array);\n assert_eq(bool_vec.len(), 3);\n assert_eq(bool_vec.get(0), true);\n assert_eq(bool_vec.get(1), false);\n }\n }\n\n mod trait_from {\n use crate::collections::bounded_vec::BoundedVec;\n use crate::convert::From;\n\n #[test]\n fn simple() {\n let array = [1, 2];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 2);\n assert_eq(bounded_vec.get(0), 1);\n assert_eq(bounded_vec.get(1), 2);\n }\n }\n\n mod trait_eq {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty_equality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n\n assert_eq(bounded_vec1, bounded_vec2);\n }\n\n #[test]\n fn inequality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n bounded_vec1.push(1);\n bounded_vec2.push(2);\n\n assert(bounded_vec1 != bounded_vec2);\n }\n }\n\n mod from_parts {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn from_parts() {\n // docs:start:from-parts\n let vec: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 0], 3);\n assert_eq(vec.len(), 3);\n\n // Any elements past the given length are zeroed out, so these\n // two BoundedVecs will be completely equal\n let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 1], 3);\n let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 2], 3);\n assert_eq(vec1, vec2);\n // docs:end:from-parts\n }\n\n #[test]\n fn from_parts_unchecked() {\n // docs:start:from-parts-unchecked\n let vec: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 0], 3);\n assert_eq(vec.len(), 3);\n\n // invalid use!\n let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 1], 3);\n let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 2], 3);\n\n // both vecs have length 3 so we'd expect them to be equal, but this\n // fails because elements past the length are still checked in eq\n assert(vec1 != vec2);\n // docs:end:from-parts-unchecked\n }\n }\n\n mod push_pop {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn push_and_pop_operations() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n\n assert_eq(vec.len(), 0);\n\n vec.push(1);\n assert_eq(vec.len(), 1);\n assert_eq(vec.get(0), 1);\n\n vec.push(2);\n assert_eq(vec.len(), 2);\n assert_eq(vec.get(1), 2);\n\n let popped = vec.pop();\n assert_eq(popped, 2);\n assert_eq(vec.len(), 1);\n\n let popped2 = vec.pop();\n assert_eq(popped2, 1);\n assert_eq(vec.len(), 0);\n }\n\n #[test(should_fail_with = \"push out of bounds\")]\n fn push_to_full_vector() {\n let mut vec: BoundedVec<u32, 2> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n vec.push(3); // should panic\n }\n\n #[test(should_fail_with = \"cannot pop from an empty vector\")]\n fn pop_from_empty_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n let _ = vec.pop(); // should panic\n }\n\n #[test]\n fn push_pop_cycle() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n\n // push to full\n vec.push(1);\n vec.push(2);\n vec.push(3);\n assert_eq(vec.len(), 3);\n\n // pop all\n assert_eq(vec.pop(), 3);\n assert_eq(vec.pop(), 2);\n assert_eq(vec.pop(), 1);\n assert_eq(vec.len(), 0);\n\n // push again\n vec.push(4);\n assert_eq(vec.len(), 1);\n assert_eq(vec.get(0), 4);\n }\n }\n\n mod extend {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn extend_from_array() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_array([2, 3]);\n\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n\n #[test]\n fn extend_from_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_vector(&[2, 3]);\n\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n\n #[test]\n fn extend_from_bounded_vec() {\n let mut vec1: BoundedVec<u32, 5> = BoundedVec::new();\n let mut vec2: BoundedVec<u32, 3> = BoundedVec::new();\n\n vec1.push(1);\n vec2.push(2);\n vec2.push(3);\n\n vec1.extend_from_bounded_vec(vec2);\n\n assert_eq(vec1.len(), 3);\n assert_eq(vec1.get(0), 1);\n assert_eq(vec1.get(1), 2);\n assert_eq(vec1.get(2), 3);\n }\n\n #[test(should_fail_with = \"extend_from_array out of bounds\")]\n fn extend_array_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_array([2, 3, 4]); // should panic\n }\n\n #[test(should_fail_with = \"extend_from_vector out of bounds\")]\n fn extend_vector_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_vector(&[2, 3, 4]); // S]should panic\n }\n\n #[test(should_fail_with = \"extend_from_bounded_vec out of bounds\")]\n fn extend_bounded_vec_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n let other: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n vec.extend_from_bounded_vec(other); // should panic\n }\n\n #[test]\n fn extend_with_empty_collections() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n let original_len = vec.len();\n\n vec.extend_from_array([]);\n assert_eq(vec.len(), original_len);\n\n vec.extend_from_vector(&[]);\n assert_eq(vec.len(), original_len);\n\n let empty: BoundedVec<u32, 3> = BoundedVec::new();\n vec.extend_from_bounded_vec(empty);\n assert_eq(vec.len(), original_len);\n }\n }\n\n mod storage {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn storage_consistency() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n\n // test initial storage state\n assert_eq(vec.storage(), [0, 0, 0, 0, 0]);\n\n vec.push(1);\n vec.push(2);\n\n // test storage after modifications\n assert_eq(vec.storage(), [1, 2, 0, 0, 0]);\n\n // storage doesn't change length\n assert_eq(vec.len(), 2);\n assert_eq(vec.max_len(), 5);\n }\n\n #[test]\n fn storage_after_pop() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n\n let _ = vec.pop();\n // after pop, the last element should be zeroed\n assert_eq(vec.storage(), [1, 2, 0]);\n assert_eq(vec.len(), 2);\n }\n\n #[test]\n fn vector_immutable() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n let storage = vec.storage();\n\n assert_eq(storage, [1, 2, 3]);\n\n // Verify that the original vector is unchanged\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n }\n}\n"
|
|
4956
|
+
"source": "use crate::{cmp::Eq, convert::From, runtime::is_unconstrained, static_assert};\n\n/// A `BoundedVec<T, MaxLen>` is a growable storage similar to a built-in vector except that it\n/// is bounded with a maximum possible length. `BoundedVec` is also not\n/// subject to the same restrictions vectors are (notably, nested vectors are disallowed).\n///\n/// Since a BoundedVec is backed by a normal array under the hood, growing the BoundedVec by\n/// pushing an additional element is also more efficient - the length only needs to be increased\n/// by one.\n///\n/// For these reasons `BoundedVec<T, N>` should generally be preferred over vectors when there\n/// is a reasonable maximum bound that can be placed on the vector.\n///\n/// Example:\n///\n/// ```noir\n/// let mut vector: BoundedVec<Field, 10> = BoundedVec::new();\n/// for i in 0..5 {\n/// vector.push(i);\n/// }\n/// assert(vector.len() == 5);\n/// assert(vector.max_len() == 10);\n/// ```\npub struct BoundedVec<T, let MaxLen: u32> {\n storage: [T; MaxLen],\n len: u32,\n}\n\nimpl<T, let MaxLen: u32> BoundedVec<T, MaxLen> {\n /// Creates a new, empty vector of length zero.\n ///\n /// Since this container is backed by an array internally, it still needs an initial value\n /// to give each element. To resolve this, each element is zeroed internally. This value\n /// is guaranteed to be inaccessible unless `get_unchecked` is used.\n ///\n /// Example:\n ///\n /// ```noir\n /// let empty_vector: BoundedVec<Field, 10> = BoundedVec::new();\n /// assert(empty_vector.len() == 0);\n /// ```\n ///\n /// Note that whenever calling `new` the maximum length of the vector should always be specified\n /// via a type signature:\n ///\n /// ```noir\n /// fn good() -> BoundedVec<Field, 10> {\n /// // Ok! MaxLen is specified with a type annotation\n /// let v1: BoundedVec<Field, 3> = BoundedVec::new();\n /// let v2 = BoundedVec::new();\n ///\n /// // Ok! MaxLen is known from the type of `good`'s return value\n /// v2\n /// }\n ///\n /// fn bad() {\n /// // Error: Type annotation needed\n /// // The compiler can't infer `MaxLen` from the following code:\n /// let mut v3 = BoundedVec::new();\n /// v3.push(5);\n /// }\n /// ```\n ///\n /// This defaulting of `MaxLen` (and numeric generics in general) to zero may change in future noir versions\n /// but for now make sure to use type annotations when using bounded vectors. Otherwise, you will receive a\n /// constraint failure at runtime when the vec is pushed to.\n pub fn new() -> Self {\n let zeroed = crate::mem::zeroed();\n BoundedVec { storage: [zeroed; MaxLen], len: 0 }\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this\n /// will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// let last = v.get(v.len() - 1);\n /// assert(first != last);\n /// }\n /// ```\n pub fn get(self, index: u32) -> T {\n assert(index < self.len, \"Attempted to read past end of BoundedVec\");\n self.get_unchecked(index)\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero, without\n /// performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element,\n /// it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn sum_of_first_three<let N: u32>(v: BoundedVec<u32, N>) -> u32 {\n /// // Always ensure the length is larger than the largest\n /// // index passed to get_unchecked\n /// assert(v.len() > 2);\n /// let first = v.get_unchecked(0);\n /// let second = v.get_unchecked(1);\n /// let third = v.get_unchecked(2);\n /// first + second + third\n /// }\n /// ```\n pub fn get_unchecked(self, index: u32) -> T {\n self.storage[index]\n }\n\n /// Writes an element to the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// assert(first != 42);\n /// v.set(0, 42);\n /// let new_first = v.get(0);\n /// assert(new_first == 42);\n /// }\n /// ```\n pub fn set(&mut self, index: u32, value: T) {\n assert(index < self.len, \"Attempted to write past end of BoundedVec\");\n self.set_unchecked(index, value)\n }\n\n /// Writes an element to the vector at the given index, starting from zero, without performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element, it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn set_unchecked_example() {\n /// let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n /// vec.extend_from_array([1, 2]);\n ///\n /// // Here we're safely writing within the valid range of `vec`\n /// // `vec` now has the value [42, 2]\n /// vec.set_unchecked(0, 42);\n ///\n /// // We can then safely read this value back out of `vec`.\n /// // Notice that we use the checked version of `get` which would prevent reading unsafe values.\n /// assert_eq(vec.get(0), 42);\n ///\n /// // We've now written past the end of `vec`.\n /// // As this index is still within the maximum potential length of `v`,\n /// // it won't cause a constraint failure.\n /// vec.set_unchecked(2, 42);\n /// println(vec);\n ///\n /// // This will write past the end of the maximum potential length of `vec`,\n /// // it will then trigger a constraint failure.\n /// vec.set_unchecked(5, 42);\n /// println(vec);\n /// }\n /// ```\n pub fn set_unchecked(&mut self, index: u32, value: T) {\n self.storage[index] = value;\n }\n\n /// Pushes an element to the end of the vector. This increases the length\n /// of the vector by one.\n ///\n /// Panics if the new length of the vector will be greater than the max length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n ///\n /// v.push(1);\n /// v.push(2);\n ///\n /// // Panics with failed assertion \"push out of bounds\"\n /// v.push(3);\n /// ```\n pub fn push(&mut self, elem: T) {\n assert(self.len < MaxLen, \"push out of bounds\");\n\n self.storage[self.len] = elem;\n self.len += 1;\n }\n\n /// Returns the current length of this vector\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 4> = BoundedVec::new();\n /// assert(v.len() == 0);\n ///\n /// v.push(100);\n /// assert(v.len() == 1);\n ///\n /// v.push(200);\n /// v.push(300);\n /// v.push(400);\n /// assert(v.len() == 4);\n ///\n /// let _ = v.pop();\n /// let _ = v.pop();\n /// assert(v.len() == 2);\n /// ```\n pub fn len(self) -> u32 {\n self.len\n }\n\n /// Returns the maximum length of this vector. This is always\n /// equal to the `MaxLen` parameter this vector was initialized with.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.max_len() == 5);\n /// v.push(10);\n /// assert(v.max_len() == 5);\n /// ```\n pub fn max_len(_self: BoundedVec<T, MaxLen>) -> u32 {\n MaxLen\n }\n\n /// Returns the internal array within this vector.\n ///\n /// Since arrays in Noir are immutable, mutating the returned storage array will not mutate\n /// the storage held internally by this vector.\n ///\n /// Note that uninitialized elements may be zeroed out!\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.storage() == [0, 0, 0, 0, 0]);\n ///\n /// v.push(57);\n /// assert(v.storage() == [57, 0, 0, 0, 0]);\n /// ```\n pub fn storage(self) -> [T; MaxLen] {\n self.storage\n }\n\n /// Pushes each element from the given array to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_array([2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_array<let Len: u32>(&mut self, array: [T; Len]) {\n let new_len = self.len + array.len();\n assert(new_len <= MaxLen, \"extend_from_array out of bounds\");\n for i in 0..array.len() {\n self.storage[self.len + i] = array[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the given vector to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_vector([2, 4].as_vector());\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_vector(&mut self, vector: [T]) {\n let new_len = self.len + vector.len();\n assert(new_len <= MaxLen, \"extend_from_vector out of bounds\");\n for i in 0..vector.len() {\n self.storage[self.len + i] = vector[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the other vector to this vector. The length of\n /// the other vector is left unchanged.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// ```noir\n /// let mut v1: BoundedVec<Field, 5> = BoundedVec::new();\n /// let mut v2: BoundedVec<Field, 7> = BoundedVec::new();\n ///\n /// v2.extend_from_array([1, 2, 3]);\n /// v1.extend_from_bounded_vec(v2);\n ///\n /// assert(v1.storage() == [1, 2, 3, 0, 0]);\n /// assert(v2.storage() == [1, 2, 3, 0, 0, 0, 0]);\n /// ```\n pub fn extend_from_bounded_vec<let Len: u32>(&mut self, vec: BoundedVec<T, Len>) {\n let append_len = vec.len();\n let new_len = self.len + append_len;\n assert(new_len <= MaxLen, \"extend_from_bounded_vec out of bounds\");\n\n if is_unconstrained() {\n for i in 0..append_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n } else {\n let mut exceeded_len = false;\n for i in 0..Len {\n exceeded_len |= i == append_len;\n if !exceeded_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n }\n }\n self.len = new_len;\n }\n\n /// Creates a new vector, populating it with values derived from an array input.\n /// The maximum length of the vector is determined based on the type signature.\n ///\n /// Example:\n ///\n /// ```noir\n /// let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array([1, 2, 3])\n /// ```\n pub fn from_array<let Len: u32>(array: [T; Len]) -> Self {\n static_assert(Len <= MaxLen, \"from array out of bounds\");\n let mut vec: BoundedVec<T, MaxLen> = BoundedVec::new();\n vec.extend_from_array(array);\n vec\n }\n\n /// Pops the element at the end of the vector. This will decrease the length\n /// of the vector by one.\n ///\n /// Panics if the vector is empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n /// v.push(1);\n /// v.push(2);\n ///\n /// let two = v.pop();\n /// let one = v.pop();\n ///\n /// assert(two == 2);\n /// assert(one == 1);\n ///\n /// // error: cannot pop from an empty vector\n /// let _ = v.pop();\n /// ```\n pub fn pop(&mut self) -> T {\n assert(self.len > 0, \"cannot pop from an empty vector\");\n self.len -= 1;\n\n let elem = self.storage[self.len];\n self.storage[self.len] = crate::mem::zeroed();\n elem\n }\n\n /// Returns true if the given predicate returns true for any element\n /// in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<u32, 3> = BoundedVec::new();\n /// v.extend_from_array([2, 4, 6]);\n ///\n /// let all_even = !v.any(|elem: u32| elem % 2 != 0);\n /// assert(all_even);\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n if is_unconstrained() {\n for i in 0..self.len {\n ret |= predicate(self.storage[i]);\n }\n } else {\n let mut exceeded_len = false;\n for i in 0..MaxLen {\n exceeded_len |= i == self.len;\n if !exceeded_len {\n ret |= predicate(self.storage[i]);\n }\n }\n }\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.map(|value| value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n\n if is_unconstrained() {\n for i in 0..self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n }\n }\n\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element\n /// in this vector, along with its index.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.mapi(|i, value| i + value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 5, 8, 11]);\n /// assert_eq(result, expected);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n\n if is_unconstrained() {\n for i in 0..self.len() {\n ret.storage[i] = f(i, self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(i, self.get_unchecked(i));\n }\n }\n }\n\n ret\n }\n\n /// Calls a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let mut result = BoundedVec::<u32, 4>::new();\n /// vec.for_each(|value| result.push(value * 2));\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n if is_unconstrained() {\n for i in 0..self.len() {\n f(self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n f(self.get_unchecked(i));\n }\n }\n }\n }\n\n /// Calls a closure on each element in this vector, along with its index.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let mut result = BoundedVec::<u32, 4>::new();\n /// vec.for_eachi(|i, value| result.push(i + value * 2));\n ///\n /// let expected = BoundedVec::from_array([2, 5, 8, 11]);\n /// assert_eq(result, expected);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n if is_unconstrained() {\n for i in 0..self.len() {\n f(i, self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n f(i, self.get_unchecked(i));\n }\n }\n }\n }\n\n /// Creates a new BoundedVec from the given array and length.\n /// The given length must be less than or equal to the length of the array.\n ///\n /// This function will zero out any elements at or past index `len` of `array`.\n /// This incurs an extra runtime cost of O(MaxLen). If you are sure your array is\n /// zeroed after that index, you can use [`from_parts_unchecked`][Self::from_parts_unchecked] to remove the extra loop.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 0], 3);\n /// assert_eq(vec.len(), 3);\n /// ```\n pub fn from_parts(mut array: [T; MaxLen], len: u32) -> Self {\n assert(len <= MaxLen);\n let zeroed = crate::mem::zeroed();\n\n if is_unconstrained() {\n for i in len..MaxLen {\n array[i] = zeroed;\n }\n } else {\n for i in 0..MaxLen {\n if i >= len {\n array[i] = zeroed;\n }\n }\n }\n\n BoundedVec { storage: array, len }\n }\n\n /// Creates a new BoundedVec from the given array and length.\n /// The given length must be less than or equal to the length of the array.\n ///\n /// This function is unsafe because it expects all elements past the `len` index\n /// of `array` to be zeroed, but does not check for this internally. Use `from_parts`\n /// for a safe version of this function which does zero out any indices past the\n /// given length. Invalidating this assumption can notably cause `BoundedVec::eq`\n /// to give incorrect results since it will check even elements past `len`.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 0], 3);\n /// assert_eq(vec.len(), 3);\n ///\n /// // invalid use!\n /// let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 1], 3);\n /// let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 2], 3);\n ///\n /// // both vecs have length 3 so we'd expect them to be equal, but this\n /// // fails because elements past the length are still checked in eq\n /// assert_eq(vec1, vec2); // fails\n /// ```\n pub fn from_parts_unchecked(array: [T; MaxLen], len: u32) -> Self {\n assert(len <= MaxLen);\n BoundedVec { storage: array, len }\n }\n}\n\nimpl<T, let MaxLen: u32> Eq for BoundedVec<T, MaxLen>\nwhere\n T: Eq,\n{\n fn eq(self, other: BoundedVec<T, MaxLen>) -> bool {\n // TODO: https://github.com/noir-lang/noir/issues/4837\n //\n // We make the assumption that the user has used the proper interface for working with `BoundedVec`s\n // rather than directly manipulating the internal fields as this can result in an inconsistent internal state.\n if self.len == other.len {\n self.storage == other.storage\n } else {\n false\n }\n }\n}\n\nimpl<T, let MaxLen: u32, let Len: u32> From<[T; Len]> for BoundedVec<T, MaxLen> {\n fn from(array: [T; Len]) -> BoundedVec<T, MaxLen> {\n BoundedVec::from_array(array)\n }\n}\n\nmod bounded_vec_tests {\n\n mod get {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn panics_when_reading_elements_past_end_of_vec() {\n let vec: BoundedVec<Field, 5> = BoundedVec::new();\n\n let _ = vec.get(0);\n }\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn panics_when_reading_beyond_length() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n let _ = vec.get(3);\n }\n\n #[test]\n fn get_works_within_bounds() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(2), 3);\n assert_eq(vec.get(4), 5);\n }\n\n #[test]\n fn get_unchecked_works() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n assert_eq(vec.get_unchecked(0), 1);\n assert_eq(vec.get_unchecked(2), 3);\n }\n\n #[test]\n fn get_unchecked_works_past_len() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n assert_eq(vec.get_unchecked(4), 0);\n }\n }\n\n mod set {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn set_updates_values_properly() {\n let mut vec = BoundedVec::from_array([0, 0, 0, 0, 0]);\n\n vec.set(0, 42);\n assert_eq(vec.storage, [42, 0, 0, 0, 0]);\n\n vec.set(1, 43);\n assert_eq(vec.storage, [42, 43, 0, 0, 0]);\n\n vec.set(2, 44);\n assert_eq(vec.storage, [42, 43, 44, 0, 0]);\n\n vec.set(1, 10);\n assert_eq(vec.storage, [42, 10, 44, 0, 0]);\n\n vec.set(0, 0);\n assert_eq(vec.storage, [0, 10, 44, 0, 0]);\n }\n\n #[test(should_fail_with = \"Attempted to write past end of BoundedVec\")]\n fn panics_when_writing_elements_past_end_of_vec() {\n let mut vec: BoundedVec<Field, 5> = BoundedVec::new();\n vec.set(0, 42);\n }\n\n #[test(should_fail_with = \"Attempted to write past end of BoundedVec\")]\n fn panics_when_setting_beyond_length() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n vec.set(3, 4);\n }\n\n #[test]\n fn set_unchecked_operations() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n vec.set_unchecked(0, 10);\n assert_eq(vec.get(0), 10);\n }\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn set_unchecked_operations_past_len() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n vec.set_unchecked(3, 40);\n assert_eq(vec.get(3), 40);\n }\n\n #[test]\n fn set_preserves_other_elements() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n\n vec.set(2, 30);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 30);\n assert_eq(vec.get(3), 4);\n assert_eq(vec.get(4), 5);\n }\n }\n\n mod any {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn returns_false_if_predicate_not_satisfied() {\n let vec: BoundedVec<bool, 4> = BoundedVec::from_array([false, false, false, false]);\n let result = vec.any(|value| value);\n\n assert(!result);\n }\n\n #[test]\n fn returns_true_if_predicate_satisfied() {\n let vec: BoundedVec<bool, 4> = BoundedVec::from_array([false, false, true, true]);\n let result = vec.any(|value| value);\n\n assert(result);\n }\n\n #[test]\n fn returns_false_on_empty_boundedvec() {\n let vec: BoundedVec<bool, 0> = BoundedVec::new();\n let result = vec.any(|value| value);\n\n assert(!result);\n }\n\n #[test]\n fn any_with_complex_predicates() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n\n assert(vec.any(|x| x > 3));\n assert(!vec.any(|x| x > 10));\n assert(vec.any(|x| x % 2 == 0)); // has a even number\n assert(vec.any(|x| x == 3)); // has a specific value\n }\n\n #[test]\n fn any_with_partial_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n assert(vec.any(|x| x == 1));\n assert(vec.any(|x| x == 2));\n assert(!vec.any(|x| x == 3));\n }\n }\n\n mod map {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-map-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| value * 2);\n // docs:end:bounded-vec-map-example\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.map(|value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn map_with_conditional_logic() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n\n let result = vec.map(|x| if x % 2 == 0 { x * 2 } else { x });\n let expected = BoundedVec::from_array([1, 4, 3, 8]);\n assert_eq(result, expected);\n }\n\n #[test]\n fn map_preserves_length() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|x| x * 2);\n\n assert_eq(result.len(), vec.len());\n assert_eq(result.max_len(), vec.max_len());\n }\n\n #[test]\n fn map_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let result = vec.map(|x| x * 2);\n assert_eq(result, vec);\n assert_eq(result.len(), 0);\n assert_eq(result.max_len(), 5);\n }\n }\n\n mod mapi {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-mapi-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.mapi(|i, value| i + value * 2);\n // docs:end:bounded-vec-mapi-example\n let expected = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.mapi(|i, value| (i + value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.mapi(|_, value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn mapi_with_index_branching_logic() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n\n let result = vec.mapi(|i, x| if i % 2 == 0 { x * 2 } else { x });\n let expected = BoundedVec::from_array([2, 2, 6, 4]);\n assert_eq(result, expected);\n }\n }\n\n mod for_each {\n use crate::collections::bounded_vec::BoundedVec;\n\n // map in terms of for_each\n fn for_each_map<T, U, Env, let MaxLen: u32>(\n input: BoundedVec<T, MaxLen>,\n f: fn[Env](T) -> U,\n ) -> BoundedVec<U, MaxLen> {\n let mut output = BoundedVec::<U, MaxLen>::new();\n let output_ref = &mut output;\n input.for_each(|x| output_ref.push(f(x)));\n output\n }\n\n #[test]\n fn smoke_test() {\n let mut acc = 0;\n let acc_ref = &mut acc;\n // docs:start:bounded-vec-for-each-example\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n vec.for_each(|value| { *acc_ref += value; });\n // docs:end:bounded-vec-for-each-example\n assert_eq(acc, 6);\n }\n\n #[test]\n fn applies_function_correctly() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_each_map(vec, |value| value * 2);\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_each_map(vec, |value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = for_each_map(vec, |value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn for_each_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let mut count = 0;\n let count_ref = &mut count;\n vec.for_each(|_| { *count_ref += 1; });\n assert_eq(count, 0);\n }\n\n #[test]\n fn for_each_with_side_effects() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n let mut seen = BoundedVec::<u32, 3>::new();\n let seen_ref = &mut seen;\n vec.for_each(|x| seen_ref.push(x));\n assert_eq(seen, vec);\n }\n }\n\n mod for_eachi {\n use crate::collections::bounded_vec::BoundedVec;\n\n // mapi in terms of for_eachi\n fn for_eachi_mapi<T, U, Env, let MaxLen: u32>(\n input: BoundedVec<T, MaxLen>,\n f: fn[Env](u32, T) -> U,\n ) -> BoundedVec<U, MaxLen> {\n let mut output = BoundedVec::<U, MaxLen>::new();\n let output_ref = &mut output;\n input.for_eachi(|i, x| output_ref.push(f(i, x)));\n output\n }\n\n #[test]\n fn smoke_test() {\n let mut acc = 0;\n let acc_ref = &mut acc;\n // docs:start:bounded-vec-for-eachi-example\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n vec.for_eachi(|i, value| { *acc_ref += i * value; });\n // docs:end:bounded-vec-for-eachi-example\n\n // 0 * 1 + 1 * 2 + 2 * 3\n assert_eq(acc, 8);\n }\n\n #[test]\n fn applies_function_correctly() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_eachi_mapi(vec, |i, value| i + value * 2);\n let expected = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_eachi_mapi(vec, |i, value| (i + value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = for_eachi_mapi(vec, |_, value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn for_eachi_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let mut count = 0;\n let count_ref = &mut count;\n vec.for_eachi(|_, _| { *count_ref += 1; });\n assert_eq(count, 0);\n }\n\n #[test]\n fn for_eachi_with_index_tracking() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([10, 20, 30]);\n let mut indices = BoundedVec::<u32, 3>::new();\n let indices_ref = &mut indices;\n vec.for_eachi(|i, _| indices_ref.push(i));\n\n let expected = BoundedVec::from_array([0, 1, 2]);\n assert_eq(indices, expected);\n }\n\n }\n\n mod from_array {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty() {\n let empty_array: [Field; 0] = [];\n let bounded_vec = BoundedVec::from_array([]);\n\n assert_eq(bounded_vec.max_len(), 0);\n assert_eq(bounded_vec.len(), 0);\n assert_eq(bounded_vec.storage(), empty_array);\n }\n\n #[test]\n fn equal_len() {\n let array = [1, 2, 3];\n let bounded_vec = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 3);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.storage(), array);\n }\n\n #[test]\n fn max_len_greater_then_array_len() {\n let array = [1, 2, 3];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.get(0), 1);\n assert_eq(bounded_vec.get(1), 2);\n assert_eq(bounded_vec.get(2), 3);\n }\n\n #[test(should_fail_with = \"from array out of bounds\")]\n fn max_len_lower_then_array_len() {\n let _: BoundedVec<Field, 2> = BoundedVec::from_array([0; 3]);\n }\n\n #[test]\n fn from_array_preserves_order() {\n let array = [5, 3, 1, 4, 2];\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array(array);\n for i in 0..array.len() {\n assert_eq(vec.get(i), array[i]);\n }\n }\n\n #[test]\n fn from_array_with_different_types() {\n let bool_array = [true, false, true];\n let bool_vec: BoundedVec<bool, 3> = BoundedVec::from_array(bool_array);\n assert_eq(bool_vec.len(), 3);\n assert_eq(bool_vec.get(0), true);\n assert_eq(bool_vec.get(1), false);\n }\n }\n\n mod trait_from {\n use crate::collections::bounded_vec::BoundedVec;\n use crate::convert::From;\n\n #[test]\n fn simple() {\n let array = [1, 2];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 2);\n assert_eq(bounded_vec.get(0), 1);\n assert_eq(bounded_vec.get(1), 2);\n }\n }\n\n mod trait_eq {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty_equality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n\n assert_eq(bounded_vec1, bounded_vec2);\n }\n\n #[test]\n fn inequality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n bounded_vec1.push(1);\n bounded_vec2.push(2);\n\n assert(bounded_vec1 != bounded_vec2);\n }\n }\n\n mod from_parts {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn from_parts() {\n // docs:start:from-parts\n let vec: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 0], 3);\n assert_eq(vec.len(), 3);\n\n // Any elements past the given length are zeroed out, so these\n // two BoundedVecs will be completely equal\n let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 1], 3);\n let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 2], 3);\n assert_eq(vec1, vec2);\n // docs:end:from-parts\n }\n\n #[test]\n fn from_parts_unchecked() {\n // docs:start:from-parts-unchecked\n let vec: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 0], 3);\n assert_eq(vec.len(), 3);\n\n // invalid use!\n let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 1], 3);\n let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 2], 3);\n\n // both vecs have length 3 so we'd expect them to be equal, but this\n // fails because elements past the length are still checked in eq\n assert(vec1 != vec2);\n // docs:end:from-parts-unchecked\n }\n }\n\n mod push_pop {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn push_and_pop_operations() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n\n assert_eq(vec.len(), 0);\n\n vec.push(1);\n assert_eq(vec.len(), 1);\n assert_eq(vec.get(0), 1);\n\n vec.push(2);\n assert_eq(vec.len(), 2);\n assert_eq(vec.get(1), 2);\n\n let popped = vec.pop();\n assert_eq(popped, 2);\n assert_eq(vec.len(), 1);\n\n let popped2 = vec.pop();\n assert_eq(popped2, 1);\n assert_eq(vec.len(), 0);\n }\n\n #[test(should_fail_with = \"push out of bounds\")]\n fn push_to_full_vector() {\n let mut vec: BoundedVec<u32, 2> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n vec.push(3); // should panic\n }\n\n #[test(should_fail_with = \"cannot pop from an empty vector\")]\n fn pop_from_empty_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n let _ = vec.pop(); // should panic\n }\n\n #[test]\n fn push_pop_cycle() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n\n // push to full\n vec.push(1);\n vec.push(2);\n vec.push(3);\n assert_eq(vec.len(), 3);\n\n // pop all\n assert_eq(vec.pop(), 3);\n assert_eq(vec.pop(), 2);\n assert_eq(vec.pop(), 1);\n assert_eq(vec.len(), 0);\n\n // push again\n vec.push(4);\n assert_eq(vec.len(), 1);\n assert_eq(vec.get(0), 4);\n }\n }\n\n mod extend {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn extend_from_array() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_array([2, 3]);\n\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n\n #[test]\n fn extend_from_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_vector([2, 3].as_vector());\n\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n\n #[test]\n fn extend_from_bounded_vec() {\n let mut vec1: BoundedVec<u32, 5> = BoundedVec::new();\n let mut vec2: BoundedVec<u32, 3> = BoundedVec::new();\n\n vec1.push(1);\n vec2.push(2);\n vec2.push(3);\n\n vec1.extend_from_bounded_vec(vec2);\n\n assert_eq(vec1.len(), 3);\n assert_eq(vec1.get(0), 1);\n assert_eq(vec1.get(1), 2);\n assert_eq(vec1.get(2), 3);\n }\n\n #[test(should_fail_with = \"extend_from_array out of bounds\")]\n fn extend_array_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_array([2, 3, 4]); // should panic\n }\n\n #[test(should_fail_with = \"extend_from_vector out of bounds\")]\n fn extend_vector_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_vector([2, 3, 4].as_vector()); // S]should panic\n }\n\n #[test(should_fail_with = \"extend_from_bounded_vec out of bounds\")]\n fn extend_bounded_vec_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n let other: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n vec.extend_from_bounded_vec(other); // should panic\n }\n\n #[test]\n fn extend_with_empty_collections() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n let original_len = vec.len();\n\n vec.extend_from_array([]);\n assert_eq(vec.len(), original_len);\n\n vec.extend_from_vector([].as_vector());\n assert_eq(vec.len(), original_len);\n\n let empty: BoundedVec<u32, 3> = BoundedVec::new();\n vec.extend_from_bounded_vec(empty);\n assert_eq(vec.len(), original_len);\n }\n }\n\n mod storage {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn storage_consistency() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n\n // test initial storage state\n assert_eq(vec.storage(), [0, 0, 0, 0, 0]);\n\n vec.push(1);\n vec.push(2);\n\n // test storage after modifications\n assert_eq(vec.storage(), [1, 2, 0, 0, 0]);\n\n // storage doesn't change length\n assert_eq(vec.len(), 2);\n assert_eq(vec.max_len(), 5);\n }\n\n #[test]\n fn storage_after_pop() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n\n let _ = vec.pop();\n // after pop, the last element should be zeroed\n assert_eq(vec.storage(), [1, 2, 0]);\n assert_eq(vec.len(), 2);\n }\n\n #[test]\n fn vector_immutable() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n let storage = vec.storage();\n\n assert_eq(storage, [1, 2, 3]);\n\n // Verify that the original vector is unchanged\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n }\n}\n"
|
|
4957
4957
|
},
|
|
4958
4958
|
"61": {
|
|
4959
4959
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/capsules/mod.nr",
|