@aztec/protocol-contracts 3.0.0-nightly.20260105 → 3.0.0-nightly.20260106

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -356,7 +356,7 @@
356
356
  }
357
357
  },
358
358
  "bytecode": "H4sIAAAAAAAA/+29CZhdV3UuuE/dq1LdqlJdlWaVplOS5UmegYSQBDCeZPCEJ/AAWLYLYWNbsubBk8ACQvBLgMykQ9IJIS9ARjovvE4awiOkCaHDF/pL0oRAIJ2ETGCm5CVN4mbDXaq//vrPvuecu650wbW/T7qnzl77X2uvvfba49k7C98K7c7v7j277prZu/cV93/jvx07Z276xqusE9Xs/C7u/Mb3k2FuMNo8lApZBdq5iSrwyEL/eQyF/vNohP7zaIb+81gU+s9jOPSfx+LQfx4jof88WqH/PEZD/3mMhf7zGA/957Ek9J/HROg/j3boP4+loTqPOnwmw8nhs6w87Texny/eVeG3PPS/jFaE/vNYGfrPY1XoP4/Vof881oT+81gb+s9jKvSfx7rQfx7rQ/95bAj957Ex9J/HptB/HnnoP4/p0H8em0P/eWwJ/edxWug/j62h/zxOD/3ncUboP48zQ/95nBX6z+Ps0H8e20L/eZwT+s/j3NB/HueF/vM4P/SfxwWh/zwuDP3ncVHoP49nhP7zeGboP49nhf7z+K7Qfx7fHfrP49mh/zy+J/Sfx3NC/3l8b+g/j+8L/efx/aH/PJ4b+s/jeaH/PJ4f+s/j4tB/Hi8I/edxSeg/j0tD/3lcFvrP4/LQfx5XhP7z2B76z+PK0H8eLwz95/Gi0H8eV4X+87g69J/HNaH/PK4N/edxXeg/jxeH/vO4PlTnUYfPDeHk8LkxnBw+N4UafG4mhnFDQ9xwEDcExAX7uKAeF7zjgnRcMI4LunHBNS6IxgXLuKAYF/ziglxcLIsLWXFxKS7+xMWZuHgSFzfi4kNcHIiT93FyPU5+x8npOHlsk7vT3/gXJy/j5GKc/IuTc3HyLE5uxcmnODkUJ2/i5Eqc/IiTE3HyIA7u4+A7Do7j4DUOLuPgLw7O4uApDm7i4CMODmLnPXauY+c3dk5j5zF27p7/jX+xcxQ7L7FzERv/2DjHxjM2brHxiY1DdN7RuUbnF51TdB6xcsfKFytHNN5oWLHQbwrFwQq3YP/Nr2z61uuRTvQQJKuwHyQbIXbV0j/2mREGrJQ+fDN9TDNSL/3Nlr5VL/03zTeGH4D0KIvhNjq/PwVpf4p4Gs2ngOZTRGPy1tN3+IEe8zs5Hubm0TACyDZaD3sZ5slCg94hfiv0VPZZRnjGj/NndWMcaIxfRnFNIafFLYI40390fWcDHZftCMWZLDH8FMU1IO5tnV8rE5Srgo5+ukd7eX4f7eXib0d7aVKch70gBtuLYcTwKYobhri/pLjFEPdp4P0seH6o89yjTzrhw2u2Qd/sEjB/xDJ5LTToNwbTk+l+RNBbXAviUPcxjML7hsBaTOmM/pmd34nOL5aNpW8L/sPEX8mtbDMTWA3xzuijfs4FmQ3zEqDN7eGre//sFz/6xG9+6Jf2vfMdPzb5ySU/OXbO6KPHj39x3RfW/9STx3/e0l4KsmShdHkPW/rLFO/n/rfGra/69X/fNXbFa3/14Cf/n2v2L1m/44Ob3vCOW3//zZv+/hWvs7SXq7Sff9PbHm3/6lt+Nt/2sa8NX/FD//SKr1y56Nmf/NhDa//Ha77+90++1dJeodL+ya1f/8v3tt965NAT7zv67DOX73j3W//sS//wBx/9lfZXPvueB//sWZZ2O+S5Tj/rynrpl1r6F0L6KntyLf2L6qU/If9V9dIPWfqr4WVuD8d+4Zf+8uInPnbBX3999I1X73j80DN+8BMv+ecja9659W/ufc/6d09a2mtU2s/tu+TN+1bf/13/PPLHT1z4c+s2fOar73zv3/3L4Zln/9Pfff63pr9iaa8VaddcdMb37P6Jj6/41Jmb/+L5H3j3eT+y9qunfd+nfnv7zz357x/5n2FWZ9dBniuU2Yk8v7he+qalv75e+oalvwFe5uk0J5piS3tjPd4n0t9UnreFRZb2Zp02e+3mvT/eeiK7+oOvOfe946Mf/PuL3/6CSz720cffuKn97rdb2peItGd/X+vJd7zxkePhr975j//lX87+neefO7nx4snz/u+3/em6B/bctvZJS/tSYxQq5Xm9pb8F0pPsyWDpbw3zZS+b9rZ6vE/U79ur8z6R9mXV056oIy83sFBJ5yds5RX10rcs/R310o9a+h310o9Z+jvrpT/hG++ql36Zpb+7XvoVln4G0lfoC+SW/pX4MpQKZ1nanfV4X2DpX1Uv/YWW/h5IX2VsZenvrcf/Ykv/6nrpL7H099VLf6mlv79e+sst/QP10l9n6XfVS3+jpd9dL/0OS/9gvfR3Wfo99dLfben31ks/Y+n31Uv/Sku/v176nZb+QL30r7L0B+ulv8fSH6qX/j5Lf7he+vst/ZF66R+w9Efrpd9l6R+ql363pX+4Xvo9lv6Reun3WvpH66XfZ+kfq5d+v6U/Vi/9AUv/mnrpD1r619ZLf9jSP14v/VFLf7xe+oct/evgZR5KhRN99dertOk5hNdb2jeotOk5hB+JcydxDuiJzsRPXOpa00m6f989992z7/AVM/tu+tbTJbse2DdzaB/O4UX98Fxqi/4epb/H6G+eX7T3ap6yTLA5wyWEF8Ls3OAE8clDqbAhI7wQ9Byv4bdIlor8TszxThA/zh/O8ca4tpClTXExcF+lLfi0BR+FtdcR62FHrH2OWEcdsTzzeNgR66Aj1hFHrP2OWDOOWJ6696xDjwwo1m5HLE+b8NS9p33tccTyrNueNvGgI5anjz7miDWo7aP1t63vgH2NrODX+PA749MKPfWzslS+JgS/FP2SBP3SkvhjgN3pF186c+f+nVft2hkocFf10gIR1xPdjQnRGDejf/x+Pb1rCFoMMXurOs+d7F0+s++uV924Y+fOmbu/kcm9nIKRLil4nzIq64y3SdI8lApDZYwS8U+2UUatLus8d7R61a4dd1+yY/fe/ffN4NYZNFPmkhEqvlNlmoFk+G6U6C6hv7eLdEFg47avSXqfh1JhmVnFMhFpccsBewnFrYC4CYpbCVivBDoOnE/MTxwSv3V0FpfpWFYsq+UUtxTiVgBvLvO24GN5GxL0SwlLDfmsXLrxa4h0PGRNDavL1ETLRwizzdASIXMfPcaKQfcYlr+l9fgtTzVriGnymK4nRZxhWR0dLsCytE2i/3znt010MdxKPCaFvPgOt/38NcmOumU76UWPiGdy4TvEb4We7DJLlZvqxvXqf8voHeVhf826Rb83XIBlaZtE/7XObzvMbxPYTpYJefEd2smTJDvqlu2kph5Lb/k0/FboyS6zVLlh/thOltXj9/wyekd5VNuNusU2cLgAy9I2id66e22ii4HtZLmQF9+hnfwHyY66ZTupqcf1Ze3E8FuhJ7vMUuWm/KoqN0ur9M3TxmX1rbAedsQ66oj1oCPWXkesRwYU66Aj1hFHrP2OWDOOWIccsTztflD19RpHLE9bfdQR64AjlqfuPfO42xFrUG31cUesnY5YtrVBzb9wXwf7AlXHFohncuI7xG+FnvpWWUovamxg+VtRj99kRumRH2LyPNBKEWdYNvc6XIBlaZtE/8KOQttEFwP3iVcKefEd9okv6+BOCHl5fqCqPabmyjAd22PN8rqsrD0afiv0ZP9Zyj6UXix/K+vxu7RM+aI8putVIs6wVnf+Hi7AsrRNor+V7HEVyMT2uErIi+/QHm/K5sqOumU7qanHF5S1E8NvhZ7sMkuVG+aP7WRVPX4Xl9E7ymO6Xi3iDMu2ig0XYFnaJtHvJDtZDTKxnawW8uI7tJM7yW+hvDxfVdYftkV6oxsR6XJ7SH92+As9ludLLP3qeumXW/o19dJfaunX1kt/cSyv3VRe+Ck0r4fZtsJFYbZe4pqppW0S/f8+MptuH/kR3roYwmyZ1vzEfG1ZP2L4Xp+B86eznD+e6xkTsrQpLgbuy44JPmOCj8I67og144j1kCPWXkesI45YexyxDjpieeZxvyPWoNrXbkeshx2xHnXE8rQvT30dcsTytC/POnTUEcvTJjz9qs17j4s47geMw/sK7XLp3Ul4jAe3y3X6AePEr0gv1XYnYW+ItYKo+C4Lc3OPcQ16x7uTLqO/6+xOqrlrY8qsYkpEWtw6wG5R3HqIG6O4DYBVdXeS5afq7iQsq3UUh73s9cCby1zxsbwNCfolhDUu0lm5dOP3dK6lqpwsrdpFxfW07Kigjvdw2hBrIq4huu0FomUCN6N//H4NvWuEtHtKDRDLmEwM3AAh1o3EZ6EBWmiAToSFBigMVgPUEOl4eoinjWLI7SF9ItSyODX12Y7iJoS8ODWEeVvUJX9Nor8epsL+psMv0toUYqcWvmD/fa++fmbfnntmDsyovf/dqs7V9Pc1Ip0KZhL8AXEMI6En51TaGRp+K+hizkOpcMIZqlGKOtCumjNkg0CtICq+y0J9Z3gN/V3HGdb8BLqyMxyhOHSG7Ch7cYaWn6rOEMuKnSFWYnaGWOZjgo/lbUjQjxNWypF147fQZflWWOiyQFjosoTB6rJwukVhfq22tE2iXdYxzB5r85zdyyzjQlv/rbDQ1kNYaOvDYLX1ysvwOnU/p0qQd3KAlT4296s9epSbe/SEN0Xve14nkzbAwzrCddxaraK9Dpa2SfQXD82mu6jzHPO8tRPf8TY377jvnrt37Ju57IEH98/sn7n7ml37ZvZe/MDdlx2YeWBf5eHe5fT3FSKdCqbUmhsfxlRH1IKqZKMUxxtMMA67QTwVyx/5YRxuEmpSHDaHiygON78OUxxuRFwMzxyU4zLdxnTvKeG4RsOsPtDRmiPAj395ftacmG0GYxo2WqO/bGhWxh0dz68cATtQPuQghFmb2kCy56FUKN11MPxWmN/w1Ok6bCB+nD+fIwVQK4iK77A2cNzJ6Dpsovd5KBVyswpFb3HTgM1HCmyGuPUUtwWwqnYdLD9Vuw5YVtMUtxHiNgNvLvMNgo/lTR0psJGwNoh03HUo4tcQ6bhbmNF7nM9cJ3jzfObLwXPcPVWsh3WhWA/2txqIsb4tPoYe7fUlZT2N4bfC/LKv42k2ET/OXz1Pg5aCXG4mVKNBWgw3g2RIz2dIcumNiXQcTGNNkvkgdJpeRZ00zNcykltZO77jTi2mNzrFZ2mPfJYKPtyvieEWiptMxKkPg/nDlhh4XVN9AKA2lvNBA2sSmFMCM5bdqsYsXvx3OtApS7fWycpgK8iDafHvRUQbg90x0CTaN4JdPUR2hbWY7WpjF7lTdrUxFPNZ2iOfpYKPGlyz7WwSeVWtNZfzNMSx7WwW+VKtNWOeJjBj+SxpzKXj8o/BPP4Z8L7KILKsxzf8FslS1+OfQfw4f/yByZn1+N2UUXrkh5gmj+n6LBFnWHa32HABlqVtEv2PdzLVJroY+AOTs4S8+A4/MHnL0FzZUbdZwa/h8juuX5h3Kx/jg/7mRpDnp4fm5gX9VCPM92vW82Rf9TxYGX47+SpMz2Wn6knd/J8u8jgR5uuGP0BU9n1Ggk87kZ9+lScfuIR+FsvzXVSeZ0Kc8tF3dX6bRH8mlOevUHmquqj0zO1SVT0vE3z6rWduX85y5INYfFjjNsJiP2jlZHo+G9Jvo3TnQBzS4ahrG7w/R/BW+IbRzQbfP6TzpmwQeTWJfgnY4Adr2uBZFIdtBbaLKAfqAcvsrqDzNSzoU/n6CIw6d07NxbT0qCssC/a/Rv9HgHnvlJYT84XtAW/hVPawTeRL6fSc0J036nl7Ae/hkLbFJtF/QuiU2wVMr+oRf8R8dhfZuX5jer7TFNP16keUzN3q5Kcq1kn7KJNt918Wz6b7DNXJlI2gzDyOqKrnpYJPv/XMY4RzHPkgFrcL5xEW69nKyfR8LsSdR+nOhzikw3bhPHh/vuCt8Mu2C08O6bwV2aDxahL9X4ANfiUxLk7Z4DkUhzrldqGbP1xL9Cb3cEi3t02i//dEu6DqK/pabheM/j8S7YLxxXyl2gVli+eKfCmdnkdYWwUW6pnbBaVTzP9Wyv8J22nM5j/VLlh6NR9xG8XhfMSZFJdDHPdZpyHuLIrD+QieG9kCcezvToM4tBGej5hI5AfXFXm+D+ftNlEcHo6QUxweSjBNcThvt5ni8DCBLRQ3BXGnQV5t3o4Xs9d23ve4pie3IaXmRbOC3xDKtQe4dsxrzhsc+SDWZcRnoyOfjYn85IKPlRfWl36swRp+K8yvu3XmyaaJH+ev3soIehvWCqLiuyzMzT3GnYw12C30Pg+lwmlqltUCz2Qpj4QePac4nDGougZr+am6BotlxS0MevzTgTeX+bTgk3eehwQ9r+dOi3RWLt34NUQ6Xq/M6H3RGqxhNIn+OdBC3089FMUrB/m4l2CyF+0gyUkGo38uyLBjSmM2C/K1qQDzxY1ZfVzc0JhBYKp8baZ8sQzTJIPRXyZ6P40w3/6UjU3T37i+vblAPlVOLCvWp6L85JQfo39RopxyIYPJFcP2LjIwzeYCGa4VMgiPfsmu3Yc7Hj1Q4O9OeW2aNc9r1bnAKQqmjWiFZpFqZ8UmkW4T/d0SMsWc2xzEic9475vZN1OQd26tRgt4DgUduA9u6WKw1ieH9/3oN+Sd51bQXioPpULGlmv8OH+8f3BayNIWcVi+bEcpPrFMrd/fKdMb9u3aU1SkZTsUmRCL0wfCysS7GJ7OZlCt+8hGkMPfiIrvUprvVtoe3xBxc5KHUmGLWsC3oAbMvE2vTNcyhqrdR8tP1e5jDnGnUdw0xG0F3lzmueCDTpbppwkrF+msXLrxU91L3gbIXqGo+8jdLKPfD83x3VNz88k3pL0e4niLXh7mpo2hx4HoZFlPYvjfngPRpYRqNEiLAe+dQvrUFr0YrhTpOLAnOYve56FUOFstJ1iwOJzeZG+BU5M5xeG06+uAjoPyJJafaO27p2ZxmY5lxVq3jeLQus+hOPTE51IcDvLPozj0sudTHHrZCygOB/AXUhwu615Ecbgc/IzOM3uKH6bpwJrttZwONKyJMF/ffFa36oaprfptkX59gs/qHvmsFnzGRTr2jjX1WLqfxRuYe/1UQm1gVnpRrbClbYfiFtrszuxkZWec9s2tUTQt34cr5r+rrF5P9RXzk0IWddfb/UDHcQ3xbiiBddQR6zFHrCOOWHscsWYcsTzz6FmOnnl80BHLM4+HHbEecsQ65Ii11xHrUUesg45YnjbhWR8965CnTXjqa78j1iOOWJ663+eI5an7hx2xPPXl6Qt3O2J56mtQfaGnvjx9ztOhz+RpE57ttqfuX+OI5Wn3nro/4IjlqXvPPHr6Cc8+gKe+HnfEOt75tTkmnIfg1SQ15p9I8MH0EyWw1PxBKo9FR144nTRtIj6L6LYXiJYJ3Iz+8ftn0buGoEVsPBqozGLGVsLOQ6lwUUZ4IehpJcP3WsxQO4VzeMfTSmcJWdQXWK8GOo5riHepr7mOOmIddsR6yBHrkCPWXkesRx2xDjpiedrEEUesGUcsT5vw1Nd+RyxPfe1zxPLU12OOWJ62uscR6+lQjg87Ynnqy7Md2u2I5amvQW2HPPXl6e897cvT53jWR0+b8Owzeer+NY5YnnbvqfsDjlieuvfMo6efGNT+1+OOWDxNguNqniZRY9itCT6YfmsJrFxgpfLY52kSE/FCotteIFomcDP6x+8vpHfdpkl4V87xDjObFqm5q2jeVA9iTRDP+Mwfl1edqcP0kwk+y3vks1zwGRfpLN896nEM9Ydy4jvEb4X5ea4zvaR2ySm9qN1glpZ3g8XAh4Tlgk8u+CxgLWCdKqzUbk/+NT78LtWUlfEjdfkgFh/+lkN69r858emmN/WJMWPZNwwx3AE0fDghHloRBO9bIB7pf72TIO4C/4vORxLqiyg8fOU3m2lZMS3K2iT634XDV36rg6n0zL5RfSPCZYd8FSa3aRYXQrmyWy5kSGFhea0keiuL4QJ6w+Oy+wCUHR/yYjRF9pOTDFhGgTBiYPsx+g/VsJ8PN9Oysv2sDDr/bwf7+QjZD+o4ZT8rKQ7tJw9zMTGOd8hX7RNh+lTfiw/RVbJnYb6vTXXP26FYRz3uxD+Ll84w8JcwqAf1JcwaisMvYaYoDg8P4rYBDwzaTHHnQxzqg0OD/kYdRTP8NNg+0wXiiWXIh/DgASd8wBweaMPDwjUkK79LtaVrCrDwmAJ1EFeT6N/fuS0k1se/bc7NFx6UbTrp0daekRFeCLqfz199TNXjl/zqA/PH/Xz1LWg7zPex9wEdx5UZ6mPcQUesRxyxHnTEOuqIdcwRa68j1sMDKtceR6wZR6zHHbF2OmIdd8Ty1NcRRyzP+vioI5an3Xv6Qs9y3OeI5VmOnv7LU18POWLtdsTy1JdnHfLsT3jq65Aj1oJfPXV+1VP3r3HE8rR7T90fcMTy1L1nHj39xH5HLE99efZXX+WIdbzza3MPRefuYBzy2ZTgow6LU/N+OOfAY2mjiaHHy5AaGeGZPPgO8VskS0V+ycuQVPmkLidqizg+Xafu1oT4fBphlZ37yCh9tzw6bhkwES8iuusKRBsSuBn94/cX0buiLQOGbdUIp554+QjVmFKtWj4yOsVnZY98Vpbks7xHPstL8lndI5/VJfms75HPesGnj9Oh42Xd2KmaDrX8nVaP31jKpSAmH6C1VcSxCx4uwLK0vOx1dNG3flXTycvpZZvhCHlg0Vw6lDeHNHzGfQy4xPbIorky5BDHywPY1PIS7e8tmk13rPOslqnsazb1oR+fb493dLLt41n/FWyj9AFQht8K831bHdtfRfw4f9i8lT8ejz0pagVR8V0W5uYe4xr0jjdLTFC6OgdtrqH3eSgV1quNIhb4pgLUjVowW0lx6JmqHrRp+al60CaWFVs+tjx8vzWW+SrBx/I2JOhXE9Yqkc7KpRu/hki3nDAyeo9eZZ3g3ST6t3U8iTqnXfHCGsUbP032orO3WQajfzvIwOd/r4I0Kl/LQR7Uv/2N9en2Av7vBc/684s0/yD4c/7QVovOQF9FMhj9O0EHfKb7GpE+FLxj215DcWsStEsoL+pedrRFPv99qkveufyN/lcS5b9SyICfj2/vIgPTLCmQ4TeEDL2d/86enUuJS2KlwCkKpo0o9Hupn4KltlykK6oxmLbX898nC3gOBR34XiJLF4O1ajX7B6X7I4bfCtr75aFUyNhyjR/nj6cUVEvRFnFFtbQbnx7Pfy/qqChnwekDpc3EuxiiJduhB9Z9xSEAD9NTw48YUsN0o1N8VvbIZ2VJPst75LO8JJ/VPfJZXZLP+h75rBd8GEsNm2K4p/PbJPpPgGPnq/Jw2klhXk8yqFlCtavP6NVs3xkij+pjo7NK8EZdckN4dkVZU1e6In91Pey2irJed5JlVdfpqbPAucnhK5LzUCqUbnIMvyXyUKfJ6XYtb70hMO9vR60gKr7LwtzcY1yqZYnhcvq7zhCYL0LNQ6lwHu9TxaD2qfJlkBdAHO8nxW/bqg6BLT9Vh8BYVudTHO7hvQB4c5lvE3wsb0OC/hzCUhcIW7l045eq3Yah0sXwBpFGXRuXFfyGML/WxsAdt3Mcsc4VWGbTfDFvHkqFlWW9keG3Qk916IQ3Sl0sGwPn/XwhS1vE4WQnxiGf8wUfhTXtiLXZEWuLI9ZWJ6wYbl3AWsBawFrAKollcdhmn0tx2H6+vPOrRkRF3+qhfKk9NZh+a4LPVI98pgSf1J4Z/jU+/K5ojxDytPxg2816UxfEn5vgg+n5tqAc0uGi53cNa544ese0d3R++aL3X4PvmL5nuDiPqGfLF8s8Ajwsrsqifux7v2/DLB/sp5iMhltUf5B+R+dXtdlF3yYhRrcyuITKYCvEqTIwefjbzp+EMricyiAHuXA8UVRvcsGPbWRY0CMe28iLOjLh0omS74wCfqgPlPnuAn7XAr976bYutLu889yj3a1Udof1le2ubL+7jJ2iTpSd8ixVLrBQp0VnxQwLesRrEv2toszL2jmXq9G/rGS5OvkTWa6oKy5XNZuo2qGUHWB55Z3ndphf5kWzr4iVw7sy5ZoLfC7XVyXK1dJjuaJcXK5G/+qS5Wq67Ee55kBQplyRnstVtd9qn2g7zG8nVxGW8tGpWWVVrqlNWkZ/IFGuamY/5YeN/vAA+GHUVZlyVasfZcuV/TCW65kUp1YZ6vpotTEv5aON/rgoc+7zs18okk/pzXlBc1uBGCtE+kBpM3q3ogDLcOI7nJhnlVt2h4OeAjU8rhJvEipX1TQH3n08Xb70Qojht8J8k6gz9dit68lTj2cIWcpUpW7NYh9MNYbLC8TIRPpAWJl4h3E5yRHf4ZqomSpve+UW+hHaooomxCMF5flyoCmawSzqXRhek+h/JtEKdRutsbe+QNBjzzgPxfm/gOLUihLzwdYR9cWto9G/o2TraLz70Tqijrh1xNWwhqBnfV8k6C8EGp5VugjiUlX6AuLTzXWw/eeCjxp9q9642p5cxh6VfWFv4HyKU6M5ZQtG14+ZEswP20KqLsXAuknZDuqmHbrbCdbL84lPyi/FkLIFnF2w2bARwEY+iJkIZ1j6oXrp77T0jXrpz7V88lbHGAwby7aCzdyFOrGgugqG3yJZKvI70VVYRPw4f9xVGBaytCkuhnuBjuMa4t1QAmvGEeshR6zdjlgPO2I96oh10BHLU1+HHLE87euII9ZRRyxPm9jrhGXpveR6xBHL0yYedMTytInDjlieftWzbnvZagyD6lc9bcLTf3nWIU+b8NTXfkcsT33tccTytFVPuRba7VOnL8/+qqeP9uwDPOaI5em/BtUmPP3EoLZDnmMYzzy+1hFrwa9+Z/gvr3LMwvw5t0HR16D6nEHtF+5zxPKsj485YnmW4yD2V7Mwfw57UOzL068ecMTy9BODOs/kKZen7gfVT3j2yZ8O41rPdvvYgMrlOa71LEfP+ug5hvGc9/XE8rQJrkNZ529cJ70Fnm+DeKS3W6LUOnaFtdu7xyFNAAzErrkOfXdGeCHM7WsEwh8v4BdDS8Q1S8jyrpUfeNmlW566PaP0Jgu/KzM2UWvapqvFJHseSoU71R4S421xuD6/iOJQLyZD/D2b5BuuKV8Z/SF+W9DzV3Fly2IyzLUFtHe1J4y/ak6dSByfi04WHi6g55v/jP4XOopXX8/g7uPlBfxQvtRJxpj+rAIs3OOGBwbeWSD7L4PsfLaLOlNEHYtk9N1OHTB5UuefTIh06wv4YF6xrO8Ic/Nq9L8u8qrqH9Ydw7G4CnVnTO3hQh3xHi78irMh6Mvsdsd9oXyqNu5vO4viUMfbKA7rFe8jVXv90O54f9cmgRX18OHEjZmTJXgifZl6nQs5uG58sGS9Pr2AH8qXqteYvmq9fkWB7P9nxXp9upBvEOo1lvUdYW5ejf6Pn2b1OvUVS916nZMMuZChbL22tFEPfLvueRBnuHjo7drOc5PoP52w5/PDfFlT+u2275xvKcW9v6l952dTHO6n5f36Fwo9oFx8FpvR/y3o4WNgg5aXQHL1aOsXK1vHvcNs66k95jFwWTxD0OO+c9NJm+i5XPBvxEKd8idCpqNhQY94/A3El0S7YPKhf7uQZD+nouwbhezqoGisU092FGw2iJ9kcTt1ToInp0U/M1xAb3j8tff/J/SV8vmop3HCNPr/TPgD5T+rfuV7rsiX0ul5FIey4+llhs2YPdbPF5zqL9ut/Nthvj/k9gbrxrnER/Uxyto/2tCnhjTuogLcuzq/bF9LOwWj7EvVmzPhXdX2nNsbtK9zKU7179X3K9yPVO0uysXjQ6NfA3pItTdO9rzM+4SQqm0/f9uC7QH7Q2WzqFNub0xHw0H7GcNrEv0WKANub/A7LD7x7ayKstepb++n9uZMoCszLkLcM4ne/EVRe2N4TaI/V+grIx5YD1BP3N4Y/QUJf6DGU6n2ptt4yuRROuXxlLpFS9VPo+uxfi5X9RPzz/Wz7HmqKd+KtsvtDfrD1Bf8ZxOfMwWfsvaPNvQuam9OJ1zEQrtI2SPWm7HOM9vjJQl7TNWzGFjnyn7V/IayRx7zoOwpezS6Hu3xZmWPmH+2x1ReY6haV3ksjraaskdun08XfNSJEnzKDaaNef3pobl0E4CRdX5tTQDH/xV0XvpIAsNvkSwV+Z34znCS+HH+rOyqnc28BJ5ZK4iK77IwN/cYxytqo0R3Gf1d52zmmhc5TKkL2yxYHF43soTicDZpguI2ANYrgY4D5xPzU/VsZiyrdRSHqyXrgTeX+aTgY3kbEvTLCUtdHGbl0o1fQ6RTV8bge2wpxgXvJtHfCy3F3VPFehhP6MHC64WcXBYWH4PZa82LQCbLehrDb4WePNsJT7Oc+HH+fDyNcVlKqEaDtBiWgmRIP0p/c+ldKdJxYE+zgd7noVTYyP0mDGrOmK0ph7hJipsGrNcBHQflaSw/sTbsprWCILC4HUW5lafJKQ499TTF4UlimykO7wvZQnF4XsxpFJc6ORU9++kUh56d17kt76/reBKzDfZUeSgXuIVV5b/Qbxm0fsvV9HedfstGep+HUmETewwMymOwNU1DHPdbNgNW1X6L5aeXfktOcehxp4E3l3nVfssGwup3v0Wli3+3RJpx+tviY+ixJSp9H7rht0JP3u1Erd9A/Dh/Vj/VDIOlbYu4UXjGOOSjRvsKi2+1Wl1S5h4PY+OOymSBGEMifaC0XFV5AK/udkPny5O0JstwSJt5k+jfJSYdU+ljKGP2J7ux69XslZtImf1qIUtbxPFleRMl+TiaagxXF4ihWtFAWJl4h3HKVLE12V7AezjoESGbqtG/L7GeMCLSxxHnZ7O5vPlad0yrZM1JVqYZIVmN/v0g6w6SFU2V++T5rCjzqtQ0yY60iVC6Shm+11Gc08SP81ev/4glzVpBVHyXsuJuNecS+rtO/3ELvc9DqXCaOmvYgppRHaE4nNXOKQ53nlbtP1p+qvYfsax4lLcZ4k4H3lzm04JP3nkeEvSbCWtapLNy6cavIdKNEEZG79UOSMRoEv2fJ+a9kBePKZT3WCnkVOMH9jQ17fWlZT2N4bfC/LKv42m2ED/OXz1Pg5aCXF5CqEaDtBheApIhPXcnc/p7lUjHwTTWJJm/1CnuaH2f6zyrPcptkjsH7JTPbov0Rqf4LO2Rz1LBxyy5BeluobixMD+vFoce60aKw5WGWyluncgXz0cpzA0JzI0iLpbdgdZcummgywp+Y2iId6zTaSGrlR16AO7Cqtq2JcEH0/OcIKbrNT9KZtWvwptyvj4ymyb+UzcS5IBrXXs+fv3A6Gy6p6i+4RndJqPSM9fFqnpuCz791jPXqa2OfBDrRqCP/1L3DGM5pdb3Ld2ZEId02CPANXC1B0PhG0Y3G1za0nkrskHjxbcu3AY2uLw1N/9lbXArxWHvcjrMlTO19o9lwPkq+k6tKF9Tnbyocd+0SK9k52/YtiZkjyH1DRv3XPth88izm/1sIfvBfRXKfmwdpkn0l4L9nE72gz20fuQ/Va+xJ2ejr1S9Vv6D02EdXVFChjOEzG2RHvcOcbpebUPJ3M02nkm2ofZt5YDL37EY/blgG99NtoH+k/f2oszcB6yq56WCT7/1zP27sxz5IBa3b2r/FurZykl9n7aN0p0DcUW3cOP+L7WXUeGXbd+2t3TeimzQePHe9mVggy8iG8T0KRtM7VHlPY5qP6Iqg4zkHi6gL9r3e71o31L1FffgsS83+psAs8y+XzVaTtli1X2/Kd6o5+0FvIeDzn+Rrdye0Kn6NhXzwzo1+lckdKp0lNJpt/3CvD8V88zf5G0WWKkrppROMf+bKf9G/8pEP2yrSK/6DtMki+qHIf0aold1TPVNuI7dV7IPyX0bnFu4jeJwboH3s+B6Bo/FcK8L72fBuYWc4tReF7X6fibFqW8PcG6hSXk93Hnocd1B7peZJtlQv1nBbwjl2lNcoR8lPtOOfKYTfDY78kGsSzq/aszGy9BV5w0wfWpsONYjnzHBh7HMJ8eAfSL+vsXofxDq9cc3zMVUV7SNwbvtibxyfUYsK7NTdUXeafX4Ja/IU7csqlUk/m4A44rKFPmo3ahV5RoLs/NOnVn8S2fu3L/zql07A4Um/X1pgYjriG57gWiZwM3oH79fR+8aghaxT1bVO5V8lvXIZ5ng0++pzmXEJ4d0ONx5Bw13UlPKMdzZ+eUp5QDDnV+i4U7Klebwt/FLbcew9EVbHIpc73vA9e6g7vA45RnzyTIiZlPwjeGWAhl+g7oqNV2j7KoY1gTJE5+tqzFCf1fku0XZrAVuelAGtfg/RnFlFv/j8xTF4fCNP07BYch6isMhxAaKU59CYr2z0KC/UbfRzt5TYrPBRJhfJtMUh/WHt7BPCVwrZ+ye96OpN/wWyVKRX6bankaYn796C+NYE1griIrvsjC/xDOQDN/xoGCM0tXZglNzG26uvL0Fta2FaygOTrmmYa2vugUHPwipsgUHy2qa4nCAydtmsMzXCT6WtyFBz5+xrRPprFy68WuIdOOEUdQKxXebBO8m0X8SWrb7C1q2LOgaxa2ryV7UurIMRv/pROu6DtKofKEdoP7tb6xPtxfw/0qH/zc3kLQ0/yD4c/7QVocL5F1HMhj934pJm0aYX5+VPXKvG217A8VtSNDydkO13QttkQ/x29gl71z+Rv/PifKfEjKkNrGyDEwzUiDDl4QMoqW4ZNfuwwXbknmcxJ6dS4lLYkrgFAXTRrRYs17WDtcO9a7IAmLObdntxLDzvpl9RVuyuRVsFfAcCjqMF8gWwmyrVrN/ULo/YvitoL1fHkqFjC3X+HH+eOpBtRRtEVdUS7vx6XGXfVFHRTkLTh8obSbexRDNeXc2l07NbOXwrmj6AhtCxLir89sk+manY6FWPNTuD2xYyqzs4xCFh1vqBGO16o/Df8MORIcOzuIqmK883Qnzswhw4z+1Q0itbBt9t5XGvPOsTkjiGTmcDuBVghzicFriHRVXaHmXgNGvTNjLOaE4jzFUPX0s7zyfytPH7un88uljG0APJ+H0sYsXTh+bf/rYmVAG/Tx9LBeyq/qGdWp7YgdNmV0IiHsm0asVUqQv2oVwkdAX+7OquxCelfAHp2IXwik6fewFp/r0sbzz3I/Tx3J4l7J/tKFnkv1jez5NPM9I8OS0yKfI/vmUCKO/MmH/akcl6mkVYRr9VQn7V7pM2X+3PkKqj8R1A2XHHQ+GzZg92v9lyv4x/2z/qbzGUPUkuLzzrE50PZ3i0P+yb1V93hzepewfbWhLxR3f/NWB0b+8on2p1dSy9pV3nqvuqttCcarvyuWo2pkY7ur8ctv1ypL9LZOrR3s+5adJ8mn5qn+b8p+pHXfKf6r2kv3ng4n+Fo5JzibZt1aUPReyq/qGdWpp4muIaeK5NcGT02K9LntLh9EfTbQ3askY9cTtjdE/UnG8nmpvuo3X+UsR1Au3RSh7arxudD3WzxWqfmL+uX6m8hoD6yY1vlftDfrD0ygO6wb3ZcrO83Qb338dTsCKoZ5eD30mA1kMW81pNenXaN7SsU9cmrXfMrejffL3v/an733hRffzcn0MVkaRRSz/J0ZnZciA9idhW8WPwcKZyWCBvyRdBHG3hlmMX+5g2JTsMNDloVQ40/KyGHCtbALhWl7UFCdOJfPuNkzPE/7G9x2gm7fD58mIzbLF8ErCM9qfJ90sBrwK9VluzzAsKx+MGwZZ3zlajw5tgXf+sv8wjF9O8GoSBvoUw2PbtbLDs5PYF0ExnbADfMdbmjD9aAFW0S5Me9ck+vdCu8O7MMeEfCk7RZnGKA7n11kPio+aj1Z64K0zmM7K0Gy45hJI6TNBDb8V5ue5zpLLOPEr0ovlr+ZBSkszSo/81HmtpusJEWdYtstzuACLz441+g93jIi/QI+Bb3VUBzKpUw5jnfg9qt9qaa5MOSNuO8zPO9sjrjPhVsOPjs7NyxjENUTaKzu/TaK/dmo23f9Fvgfbai4ftk37tcBjC0tftBDN/sXoPwH+hRfDVV/kSsAcK5ChKfjGcEuBDH9ObVk/ThEdIXlM5jyUC2WWjOvJnX2prP8yfK8l426ni7H/qnfqafZkGX+A8piu2yLOsOzr0aJD+Sxtk+j/lvxXm/KEPCwO5cV36L8+S/5LHeBX13+lfHw//GQMfGoJ6hb9VrdyVXwwvdH1aGMn0rdrpQ+bLP3Sevyf5L5nDNiefJXak0mI474b+lY+VHI1tCf/Su0J+mOzmYlQbENq+3WRTw8h7SPUZwrjBVhFfWA+ndDon0r0gZUPS32JNC74ZQX8lY+1PBdhBfHO6LH/zSdUtYl2iaAdEbzyUCpMGhZ/0aZ8bI91aZnVhWUi0uLw1A8+zX0F0F8LdBx4fgRljrbyCZqvDgKL/TXKxpjK5m4nWsuzKsc20eJpmqyvWwtkMFz82uumzi/f87BpbBZ/Zed5hHhVLNvlXH4YuPxYdxxU+ZlcsfyyjbO4TMc8Uc98ggf6ZJ57UmdPR32ddYr0pebfLJwKffH8TDd9WZzld0ik4098+JSYPJQKr7D0K+ulf9DSr6qX/hDPyX0M6tv5pA+e48P6y+NmXJPk9DHwOMron9HhGW3hKrAFTm/2MELpK9r2czPCC0GPWwy/RbJU5Jexfowf54+3uq4RsrQpLoZdQMdxDfFuKIF1wBFrryPWjCOWZx4POmIdccR61BHLU/ePO2ItlGM1rOOOWJ42sccR66gjlqf/esQRy1P3nrbqqftB9V+etuppX4cdsTzL0dO+POuQp3097Ii12xHLM4+D2pfzzKNnf2JQy3EQ+3LxeZUTVgyD2s/x7GMu9Ce+M+qQp5/wlMvLvuLzSiesGB5zxPLUvWcfYC88o/5sDg7XIHi92Gj/kOaBa86VXcxzUYaB2GtrYmeEF4KehzP8ccHP5GqJuDL7R8+64Hv/6LPtn/zDjNKbLPyO95ipz9fVnF6PxwV9v9objYfHxIDzrmspDvcnmgxxvvVskq/m8QHfX0Z/iN8W9C8Duipl0RZ8Wo5YkzWxJsN8X2j1UO234DUeta4Wy/Hq8bl0aG9cN2uuhV5Ytm4avtccudq7kpojXy1kaVNcDLuAjuMa4t1QAuuAI9ZeR6wZR6wHHbEOOWLtdsQ66Ih12BHL0yb2OGHF5xVOWDE84ijXSiesGB52xHrUEcuzbj/uiOXpCz3r4xFHLM9yPO6I5WkTnrr3qtvBOY+eNnHUEWtQ/YSnXE+HPtNCm3bqdO9ZH/c5YnnlMT6vcsLylCsGr/6Edx6Pw3MWZseHah7Nxvj83dgLO2NttWevwvj2mTxeNQzEXlMTOyO8EPRY3fBT+8taIq7MPNp53/3J8//gEyP3ZpTeZOF3PI+m5lRS82g156kuUPNoPFeG82hrKA7n0UwGNY9Wc070gjL6Q3w1f8zzaL3M3bccsSZrYtk8mmofxzt/4zwa7/1dJvKD82i8//zG8Vmaa8fnYqFNFu3JjoFvc24n4iYFZuR91/jse/RX9o36tRDH+/dXinT2N75DW8c04xCP9LeDbm4h+cbhGfOJ8nF5YbqI+fLxYrplCTosl9Teb76dCedH+Tu+buUyEebbF3+HhHO4DfGO68uYyO+4SMdtB7ZlFfxNu2zbYfitMD/PdeZ5lxO/Ir302O5OZJQe+ak6YrpeLeLYbw0XYFnaJtHv7diN6qsU7aVHeVW/J9rjAx3ckQJ581AqXNbjdwkvVWuNFdJf02M/aIK/a3gMfNVhqrPY/+Crh9CXpPoibZGe1yfwezluL8aFDKo9w+8xn1oylw77TVnBr+WD36XWvMwPxV/rk3eOw75iZt8Nr9qxZ+buG2bu2jOzr0ES8EkZfHnKOpJIBZOSD4sfob/5tO02/T0pcLrxHC/ADqHnVbXpst6WV9VqXiaUXFXD/LG3nazHL88oPfJDTJPHdL1exBmWuioCsSwtXxXxZvK26ylPyGO9kBffobd9E3kSlJd7y0rvbYHbFulZR2zbMfRYXo2y9mj4rdCT/Wcp+1B6UfZhaVW5sv7LlmsKK+UPyuhP8TnJ5Tw96OVs+Vtfj19eprxRHtP1BhFnWOqaFnVlDF+R8h7yO3zNFPLYIOTFd+h3fol6eShvpMtDqTCidF0h/Xep67MqpP9uS4+XvlUpazXiwx7Sb47P4mJ/Q51YEcN1nV++7uhH1s6m+y3y+ThKK+MnejslpPxJYYbv1W9QJ6Sk+g01/cXSMu0lysMjdNZt/Gf9zuECLJ7xNfoPUf1ln4s8Uv2cGLD+vp9sqN8n03yn8RkX6bh+1bS/RWXrF/fLa9bnZL9c6UXZO+92wzjWf1k7/XbE6nf/7CTYX2n/fqrsr8f+59Iy5Y3ymK6nRBy360XjwqJrFP+B/DuvJCEPtbtbXZYa/fvfJMaF3DZVHReqE+K69YO+OK55lu0HGf0V0A/6col+UCqPqROu1JgoZTdjQnal+0mK8/RHrZJ8yuQnxedU5idVF7AMrk/INUVY67pgvZiwMP06ihtLyFz1BGBMnzppeKpHPlMl+Zys/KylOPxKhX2XKrt1CRkwPV8ezpd9ql/jw++Yj5K5m49ctWQ2DaYr8pFXdn6bRP8s8JFrO5hKz5z/VF+i5pdCpfsSfLF4r30JZRepvkTNuZ4TfYlucz2sa3U9sGHZ9btl53qM/oxOWXvP9WymVZ6TVU8mHPkg1o3Ep6g+nk/1cT3ElamPRr8B6uNFJeqj0s1YIj94mjTHpfxyqq5MJeiVrat2nG3dMGKweodXTffDrxh+K+g6kYdS4YRfyYlfUb0RlzFfPLP3wouefek3likP797HOjXcpcgU5Gf6QH9zuihbk2gmBI8Y2H7WER2Xu71n/DIydaPtFq/qzQairdovwfRjBVhFp+1a+fCJ9Zd26rk6bVfVT7Sh7Ym8TlC6iQLZY/xIwfs8lAojJq/V7dESfIt0hqfoF+nsqh50xmOuujrjPIwEPZ5PzTfyF+LoG9n/1duZmf1VWf9n+C2Rhzr+T+2MVb6/t52x2WcySo/8EJN1vU7Esf8aLsCytNx+v5z6VdwXRh5lxyPf3LF4knbPWPn0Nm+WfaZbf+lu6i9NQRz3l1AOXvMYhf7STuovpeoZtzfqN4Ry+sP2iMecalymxrZcZ5oCMwY+idbod3fy3uMuc3mjB57WwOWC/ntPhTGpKlOj//qa2XT7E2XK/QAs09Q4LuWf2gl65V/UmmJq7NPbGLK8Lzf8VtB+KA/lGFre1RhQ+aqqfVnD/QxkCOXv1pfldKovu7SAR1HdY7uaovfd+rJKpiLaqn1ZnOfkuQC0xZR9qraJTwiv2Q/Mue43gp6XYN23QcYy/UbeH8D4PG+Nt3so3dwI8Uj/A9DPvLaz8UOVxbIC+UIoVxbqS49+rw/yzt0xRz6IZbpVe0nivzyUCp9Va5UV0v+sunGmQvqz1M0EFdL/turHV0j/W6ptr5D+mNr/VCH9y9Q8TIX0Z44QfcX0z7D00/XSf97Sb66Xfrul31Iv/fss/Wn10r/Z0m+tl/5rlv70eunfaunPqJf+SUt/Zr30maXHG++rtE2W/px66Rsm7zZ8KWQyfPOrZwF9Fb+KvFqEVVH2LCU7ysd+fBvwwzwWYW2riDUi4uqUydmhOF+IP56QheWMYSfQ9ZLnGPY4YcXn1U5YMTzsKNeEE1YMr3KUq+2ItdQRa5kTVgwPOMq13BFrrSPW1IBirXTE2uCItckRK3fEmnbE2uyEFcNrHeXa4oQVw0OOcp3mhBXDqx3l8mo74vNWR6zTHbHOcMRqDCiW9e8nBDbPWTUEn0aCT2o9pQE4ak7IvtvheYgY8lAmZF33gfwLzYGn9q6izLx39d0wB/5vNAeO6W0+R+l6rPOsvujmkybwi26ex+Zbtk2upxJyIR7rqyHecTkreZqUj1dPzMrS7DyPAE/kn4dS4RxVvoalbjSvMFY5B2Wy0KB3iO91MrGqY0r3lvdFQpY2xcVwP9BxXEO8G0pgHXXEeswR64gj1h5HrBlHrIOOWJ76OuaItdsR65AjlqfuB9W+Djti7XXEemRAsTxtdb8jlqfuPe1rnyPWw45Ynm2aZx3y1P2jTljxeZUTlnceH3fE2umIddwJy9J7yTWofRNPX+jZz/H0E57+a1D7hVaO42Gu7QZ47nGsNoT1AeXEd4jfCvPrkddYDWWoM1aLz7xnSfFRY8KM0neTayzMzmF09n9dOnPn/p1X7doZKPDRZpcWiLiN6LYXiJYJ3Iz+8ftt9E5lDbGjSt+8epZPfG/TEQ/QFERN05NbMA1LTfPwVEvVKbVxwYexcNuUOuDP8syf8eahVLjS0o/WS/8ctW2tQvqre9yadEOPW5Ou6HFr0lVlPh+oefDpNWVdoeF7fT6gDqBNfTq2SsjSFnFso6sEn1WCT1vEHXHEOuaItdsR65Aj1kFHrD2OWDOOWIcdsfY6Yj0yoFietrrfEctL96pdGxRb9ayPjzpiDWp9fMwRy7MODaruDzhiefqJY45Ynj7aU/ee+hpU+/Lsm3iWo6funw5+4nEnrPg85oi13BFrYgCxYrjXUa62I5an7lcMqFwrnbBieMARy9MmVjthxXCfo1xe5egtl6etDqIvjGGXI5aXrcbgVY7ecg2ivrxtdakjlqeP9vRfxx2xPPtf+xyxPOcUPPvknmMFz7lH7t/b3DWua+H6DR8BYvTndjpfI2G+DVeYf78udcRMj8eLXJcRXgh6LYGPHFHH+LREXJkLPy/6wqE3P//7zvp6RulNFn7HS6Hq2J7UsUY1j4u0Ox7n6AePhowBbWSK4nD512RQF37WPBrk6jL6Q/y2oL8d6KqUhcLaXhPLLunEz9Ss7pyq9dZF8IxHyNnaa5Pon9Gp++o4NHWUMtx/Oe8IOZRpktKpKyVi4DXGGPKgw1MUDM90vljwQp+ItM+BfF+/ca6svN5pz82C/CwjORmjSDe83o95P+1P//vif/3lH2r+xp8/uevg185+6x9e8cT/8a7ve8vHzn3uYzf89Y994WrO+1BCdpWvVQX5ahTkq4xuJgQ223zV9m5cyDwu0nE7U/My4omy7Qy3JTXbzOSRd0ovPbajS8r63pNx5N31nTrYJroYbiUeVY68u7o9V/Z+HXln5dNjv2lJt0/DXtqexUXdmq/HtCgHH3n3U/Bp2G0dTPUJFpcvtzvYnsTA7SdfFss03BYZ/R3gk3dMzcVcIvKc8jNrgAfzjeGWAhlmqC9c04/IvVisV9QD98ljeGHnd5xkZFz8DSFtx+qyey9/Veaye+yfXA80XH5Tgv7GBL06LhrrE/dV0J+tL8BC3tsTvDd24c3HxuJn+hsLsJD3dQneeRfefEUFftZvaXs8Xun6Ho9XurnH45Wu5cvsb+9MjkcdHibfaWObojr3os6v6WsYZFpD8g1DuoZ4x20Hph8GOVCuX1s2K/ujFWW/qgDzg+1ZzNeQf8soT3koFW6y9EP10r/afBrvuUXZeItyHkqFNZgnC6oPZ/gtkqWuT1Rb0zF/vO9wWMjSFnFcRlXtDuOOOGGpsh8EuWI46oj1GkcszzzOOGIddsR6xBFrvyOWp74edcR6rSPWQ45Yex2xPHV/0BFrjyOWZx4fd8Ta6Yhla1BlPp/CtqFCW1r68ykez2T1+J1ou4eIH+eP2+5FQhb1+RTP0yo+qo+QUfpucjl+PmWQq4lue4FomcDN6B+/X03vVNYQGz+f4iJAOjO/YcLOQ6mwoaz5GX4r6CLPQ6mQpaql+qrR8r5YyNKmuBh4a89iwWex4KOwHnbEOuqI9aAj1l5HrEcGFOugI9YRR6z9jlgzjlgPOWJ51iHPcjzmiLXbEetRRyzPuu1pX55yeZajp1yefsLTJjzL8bAjlqe/N796sqY0q/ZpUnlUSwqOXV0TcT3R3ZgQjXEz+sfv19O7oq6uBVZ7fObdE6xOVrcq6l5n64YEr3GRzvJlXfHFJHseSoXXZYRncuI7xG+F+Xmu0xVXZqj0og65tLRtEcdfjy8RfJYIPm0Rd8QR65gj1m5HrEOOWAcdsfY4Ys04Yj3kiPWwI5an7gfVVh91xNrriOVpX55yeZajp1yeftXTJjzL8bAjlqfuHxlQLE8/sd8Ry0v38XnUCSsGT1sd1P6EJ9ZCH2ChD9BPv7rQB1joAyz0ARb6AN2wPPU1qLb6mCOWp74G1U8ccMTyrEPHHLEGta0d1L6JZx49+9Ge5eip+6eDn3jcEesBJ6z4nDtiec3fx+dpJ6wY7nXE2uWEFZ+XO2KtGFC5vMrRW67VTlgxeNqEZzmOOWJNOGK1HbG89BWDp19d6oQVg5f/8vbRg1qHPP3ESics7zx6+oncEctT954+x1Ou3BFr2hHLK48x3Ocol6ePvt9RLk9f6Glfnm2HZzl61kdP/+WlL+9y9GwfjztieY5r9zliea6Bec51eM7BeO6NsnkTPjXmvM5myB73F77B9u+14GUW5mKP1sTOCC900uM7xB8X/Eyulogrc1rdV6665n2v/4sv/F1G6U0WfjcE+PHfmKBX+yBNV+gbKujquDqtDi8gjwG/zB+lONwDazKo0+rGaspXRn+I3xb0fFpd2bJQWNtrYtlpddgvsLpzsvYLnyw+KSx1gp3Rmz6GBT3iNYn+2R2fFP/eOTWXn/pUL4h3Q0Qfww2d33ERx74Ky7WCfTfL+ir2RzX97ol91i3ix/mzck35RlU/+OSwXupaP7D62O4sqtrutEJPtpOl9IL547IcE7K0KS4G1r9qk8YEn28XLKz/qW8pypSr4oP+cDHxWezIB31Bi/i0HPkg1o3EZ9SRD2LZSXHcj4ghD6XC9/bYR1pteVwtIvl0OGVTePIc2wGe1Mhlh6ekcV8VT01De+bQoL9RD1GWmzbO4jKdhQnBp0x/NVUHh4T8ljeUGU9ifGBS88RTCdG+sP+K9D8Bp3w9OFmcx6J9uU0hewx8qqHRH6AxE851VLBDeaqhYfXYzx4oGy9rx5bXyO9NNe2Y+8ZLRD4sbkLkQ/l6Hougf15Ccdj2T1Ac+sHbgA4xY1Bjez5xcTiRL5RvqASf1KevQ4JPH/vPS8q0MYh/svvPPfYpx7Mw3xbU+Jfr1ZiIYz82HNJjafZjP9FxQJ59suiD3zo5V/Z+9FmwfHqcuxrv1k79DLVToxCn2imTg28mfx20Uz9H7RSm5/LluoRtYQxFcxjDgKtOXGX5fhHG3XxisMrz4oTMaHMhzLd5bluN/l3UtvJpyXkoF1TbalgTQddhlL/q2BTTc98O6wn7yZr5K32yl+G3wnw/UsdPjhO/Ij8Q39lpqp1jBa7atePuS3bs3rv/vpkhhA7ze2aoFUTFd1mYm3uMa9A7pruC/t4u0gWBHeN77PVV7pmxNWHPjHvaeA79K4GOg+p9WX5irX7r6Cwu07GsWFZrKA57X2uBN5e54mN5GxL0SwhrXKSzcunGryHSsWcYEelye/iTW7/+l+9tv/XIoSfed/TZZy7f8e63/tmX/uEPPvor7a989j0P/tl3scxByFy0cmHx6tdk53c8OzTuiDUhsEw3uFOrQn1YXtaTGX4r9FT/TniyNvHj/HHelwpZ2iKO/dNSwWep4KOwFjlhxXDrAtYC1gLWAtYpwOIZEPS1Foft1HWdX+upp86AVefEL0rIh+mNrswhqDXbm9J3IBm+1yGoE8SvSC89tt9LUu0pYpo8qj3l3WI2ehsuwLK0TaJvdoYcnnYddfYUzWioflCZckbcdpifdyufk233OL7CmY/xZZpn0V1JPPNh9Adh5qO9bK7MauYjFOgAbSgEnacRkCGE6vU15uF9G2b5YL4sD4bLMquZEbtXSc1gNSgObYFnW4vKaIrKqAFxqoz4PiujvwPKaEPnWd1nVebeRcWPbWi4gL5B8hn95o5MuCtEyTdawE/N1sVwVwG/04HfvR1+yu7QjxoO5iUPpcJyZXdYn9nu1Ex+6kDIbnbKtoh2yjuBhgQW6pRnJC39cND13vCaRH+hKPMydh4Dl6vRP7NkuTr5E1muqCsuV7XLCunLrOioHWFq9apJWE2BhTrlcu1Wlw2P69bzEuWK7W5DyMXlavQvKFmu9tyPckVdcbmq9hrpy+zcQ0yTW61YjlAc+kTmo/w36rtMmas7srnMrxFlzn1/9gvd2pcQ5s442478zozzDft27ZnpTDkHCqkp4vi8pECMZSJ9SGBhmpT7xEn0orshhoOermT3afQ3CZWn3G8MypQtPzZUqFllSi9aGH4r6O5BHkqFrKxb46m+VDVLdclPganGcEWBGJlIH7pg2d94RUiZ27dT3k2pynoXRS0H3s6H9DOJlqPsGr7RqxEy9nqMXuV/guIw3WgBH2zRUF/cohn9fSVbNOPdjxYNdcQtWtkZdKNXI24c1fOtfUspHxinZpLKVkNzr+zqMK0aWan8NnrIL9sX6ncpxRXNpIQw1xaMrh+jYMwP24K63V7Nphi9ug0d1+y514pNKNsJlj+vxHTrdaVsAUeOPBOi9gekRkBqbyPaMI/Kjf6NwgcY5pIueSvj77CbY/KofXXs79S3scoeja5He1xyqn0T+x+0M94fqPYA8sgP9Y17jJR+Wdaq3wFietzzirL/L2BnH98wl1+3fblFtvuzJ9F2TZ6U7S7sG58NqIey+8bZHgy3yPcpm0dbeoBm1ftwe/FpGeGZzPgO8Qf59uIYHgA6jmuId0MJrIcdsTxvCX7QEcvz5lXP23g9sTxvcT3iiDWoNw573uy72xHLsz563qrsaV+e+jrkiOVpX4N6+7qnTQzqjdaedduzPnrWoWOOWJ718elgX4cdsTz7AHwtIfaX+VrCqjtHMH2ZVa3UDdwqj32+ltBE3EJ0NyZEY9yM/vH7LfSuIWgxWDHhMINVpVYtlGrVML9oYReH8DjUe3Hnt4+3gb81I7wQ9FDM8Af5NvAszP/kaVBudD3miOV5+/AhRyzP25r3OGLNOGIt3JR96mz16XBTtqfPOeqI9XTQveft1p559Lwp2xPLs27vd8Ty0n18HnXCisHTVge1D+CJNajttqfuPfsAnj7asz8xqLa60G6fujZtoU9eDeuYI9ZCn7wa1kK/8NTZ1yD2C2Pw1Neg2upjjlie+vL0OZ66P+CI5VmHjjliDaqPHtQ2zTOPnn1fz3L01P3TwU887oj1gCPWvU5Y8Tl3wophl6NcnutDnvpa6oi1whFrtSPWZiesGDxtYrkjlpfuY/Cq25710bMOxedpJ6wYvOpjDN/p9hWfxxyxJhyx2o5Yg1ofvfx9DJ7tkGfd9mo7YhjU+rjSCcs7j55+InfE8tS9p8/xlCt3xJp2xPLKYwz3Ocrl6aPvd5TL0xd62pdn2+FZjp710dN/eY6tPMvRs3087ojlOdexzxHLcz3Nc/7Lc17Oc99j0VZ23IeMe5f5+H+jv7RTGXu80uFH+3gt3I9mhBc66fEd4o8Lfr1eR/rH133irr/4tZ/blFF6k4XfDQF+/Kc+4U0dDlrzk+m3DPh1pG8poz/Ebwt6z+tIX1wTq8x1pP3+1sDqsn3KfmWnLkc57EiBky2LfR5/zQDI0vnCPtwwALLYUQQvFbIYv25Hp5itKtlTB9lyvqp+jjQk+PTxu5XRsv7+2+G7lRj4IORe2v0FrAWsIiw+2sLw1a/x4XfMRx2T0e36rsMrZtNguqIDgV/R+eUDLK9cOZvuoQ6mOhoOZVR+IAv62zuu98OAizR8fZfRHwNfztd3DVOeMZ8sI5ZnU+QrBu6/G/3rqP9e8xpAeX0XH4uDNse+vibf0idUnqrrB6tdq8WWiFpBVHyXhbm5x7gGvWO6y+jvOtdq1ezJ52YVit7ipgGbD2faDHGLKW4LYL0S6DhwPjE/EbPKtVpYVtMUhyOTzcCby7wl+FjehgT9KGGp0YSVSzd+jVDcKzEMlS6G14s0nq1JP67Z6sMlf5NlvdGpuuRPXfNmadsiDg8ywzjkkzrIDrE2OGJtcsRqOmJNOmHFcOsC1gLW0xhLjSBSs3ov7/yq2Y0GyVd1ZgbTG12ZQxBr+vWxsu2I4XsdgqhmmVOHIKprPNsUFwPbh2qvxgWfBawFrFOFleonlqmfig/6A6tXJ9tf4RgSZ13+cYXmWXRdD8+6GP1zYNblCyvmyoxy4cyo0gGvOqk89XhI9Vgc61S5wknZFdLf0fllu8K8K1soe73bv1EZNSBOldEdnV++Z2QLlNHXaWYMZ+v5hAMcL6f4sQ0NC3rEYxvKOvLF8kldHTZcwK9opvDKAn6LgN9JuDpsUtkd1udeD21LrRZ3s0W+igh1zGOlIcEH9V3mKiKlX57JnRT2wH1Ato0i+ZTenK8iahWIsVSkDwksTJPKEk48lrmKCKd4WOVGv0aoPFVkMSxcRfRtdxXRZQViZCJ96IJlf3e7iohblZSKlarMWxW1Krx2bvRnCpMu4zFDmO9ZUjNuKE/qKiZ19cFwAZ+iy/W4RTP680u2aMa7Hy0a6ohbNDVDoHroRt/tOgmuanz5M8ahjqtcjhpD2auIuKem7KWRyG9KP8q+sNyWUJwapStbsHf96FVjftgWUmUbA+umLeixvHk0hN8MsZ1g3eMbBMterqlsAXui/1iwno24aAu8vrwYsFRvjq9zMfqrhQ8wzFaXvLHO1b427Obw/iHsYvA1RSg7rhYZNmP2aI+jyh4x/2yPqbzGUKa3zXtVY1A2t5ji1OpcWbtJXeOCeyhsf4Wqm9aGW3dtkvKRh1JhfUZ4JjO+Q/xWmF8H63TX1LVmypdY3pcJWdoUFwN/36euQ1sm+Cishx2xjjpiPeiItdcR65EBxTroiHXEEWu/I9aMI9ZDjliedcizHI85Yu12xHrUEcuzbnval2cd8vSrTwfdH3bE8vTRfM0G9mf4mg3Vd5hM8MH0kyWwUmMalcc+X7NhIq4juhsTojFuRv/4/Tp61xC0GNRtmmWmDlKbC9QnSSfr1s4+drFfmxGeyYnvEH+Qu9hZmD/cGZSm4JgjlmeTfsgRy7MLtMcRa6H7+Z1hqwvdz2pYC93Palie3c+nw9SFZ932nG7w0n18HnXCisHTVge1D+CJtdBuL7Tb3y5tx0K7vdBuL7Tb35m6H1RbfcwRy1Nfnj7HU/cHHLE869AxR6xB9dGD2p/wzKNn39ezHD11/3TwE487Ynlt+YjPuSOW1zx5fJ52worhXkesXU5Y8Xm5I9YKR6zVjlibnbBieDrofswRa8IRq+2I5aWvGDx94VInrBi8fI63X/Wq2zEMan1c6YTlnUdPP5E7Ynnq3tPneMqVO2JNO2J55TGG+xzl8vTR9zvK5ekLPe3Ls+3wLEfP+ujpv7z05V2Onu3jcUcsz7HoPkcsz7Umz/kJz3mTPY5YNtfBxyf/XudbqR6PnTyeOpCux8N/jmeEFzrp8R3ijwt+Jpc6YK7McfW/s/WSN/zcS3/kuozSmyz8bgjw0R8ivdojaLrCcU8FXb1GfTZmvNVx9fz5I+4NNRnUcfUTNeUroz/Ebwt6Pq6+bFkorOtrYtlx9epKhIkwvy6xPajPDVsJmYcEHz6u/sOduqyOZT9Zsthx9R8dAFnsuPqPn0JZ+niNR+lD0dj31fTxJ/Y7l/0cNOWHVV3kQ6t6qdcLWAtYJwPL8yDedihuU/gT5hjwIKwvrZpNg+mKDn66o/PbJPrXr5lN99UOZpkjS9inZGHuEQ/czlp6PCIeafiIeKP/N/DlfET8KOUZ88kyYnmq63ti4CPijf4/qc9c83BkeUQ8H4WiPptP+eHUNT2q/HrMQ1710HI+2G0zxPFB2Vsgjg80Pw3iMorbCnEbKO50iFN10UKD/kYdRVk+vW4Wl+kC8cQynKY4bBs3U1wfroI5p4xPQvxBvwqG56wG5cq8RxyxHnTEOuqIdcwRy/OKwYcHVK49jlie104+7oi10xFrUK/pPOKI5VkfH3XE8rR7T184qNetevocT5s47IjlqfvdAyrXQ45Ynjbh2Tc55ojlWY6D6r887cuzPg6qj/bE8rSv/Y5Ypnsbp6tLqDKKQz7DCT6YfrggXXzG+SgeNxlNDD2O8UufNMyXOC2uxy95iZMqn6qXOPGRsmXHplXlcjyaxkTcRnTbC0TLBG5G//j9NnrXELSIrU6v5CmqqjfjYvrUDbyjPfIZFXz6OO0yXrYKnapplx5vqx8r41JRHnVfDldLq7JFB7XzFLHRv7Gzl6Yd5lfXuveiRJ0dXz2XrujewG53Vjyxeq4MiyGuQWnRzfNptm9ZPZvuh+HZThqPNq6WObmOVl3mbIh8Kz6jPfJRyyCMpXQWwz2dX17eeFtHN1GHRScADxVg8hKGOg5LTb8bfbcTu1mXWDcmSvBGXXK70K4o61JBj1tS+NgwlG9pRVmvO8mytoSs44I3+37MVz+6T4bfEnmo4/tTevmmYJ3fajfy8pngqBVExXdZmJt7jGvQO6a7nP6ucyPvMnqfh1Kh8uIWH3K3GeLaFLcFsKreyGv5iV6syo28WFbTFIeLkZuBN5f5UsHH8jYk6CcJa6lIZ+XSjV+qdhuGShfDG0Sa1GGEZWptDDwImXTEWiawzKZx83EFm15Z1hsZfiv0VIdOeKPlxI/zx3lfIWRpizj2MSsEnxWCj8Ja54i1wRFrkyPWuBNWDLcuYC1gLWAtYJXEUpNxyygO20++wVjdHplRHMqXuuEU048n+Czqkc8iwUfdB5UV/Boffsd8lMyWH267MT9VPyrB9MsoPzj7c2PnN8ryn6s1Txy9Y9o7Or9Noj8EmxOzNcV5RD1bvljmHu/QGY/y8h062Mdhu1H1B+l3dH5Vm80boLCsDaNbGYytmSuPukdtsZCH71HbAWUwQWWAs3N8/nu3SfMdRG/lVHb2z+iXd2SKtHxTKqZfUsAP9YEy313AbzXwS90rZ7x7tLuVyu6wvrLdle13l7FT1ImyU56lUrPBqFOepbL0w4Ie8ZpEv1mUeVk753I1+q0ly9XJn8hyTd0XqGYTVTuUsgMsL9NJO8wv86LZV8RCnZYp18UCn8v1gkS5qllzlIvL1eifUbJcne7+k+WKuipTrmpxMdV+Y7maTtRHx3x7sfLRqVllVa5oK+yjjf65iXJVM/spP2z0Fw+AH07doafKNXWHXrdyZT+M5co3VqtVhro+Wq3KpXy00V8typz7/OwXiuRTenO+sXppgRgrRPqQwMI0qSzhxDyr3LI7HPQUKKvc6G8UKlfVFOVZ2EdSfh9J1WaxD6Yaw+UFYmQifeiClVGcMlVc4Und+Iot9BN0+zWaEI8UlOdTPX+jt+pV1LswvCbRvzLRCnUbrbG3XinosdqbPCr/KykO0y0p4IOtI+qLW0ejv79k62i8+9E6oo64dVwFcQ1Bz/peLehXAQ3PKuHxKqkqzUd4dXMdbP/KTtXoW/XGG4n8dhuVsX2p43MmRLrUTInR9WOmBPPDtpCqSzGwblK2g7pph+52gvWyzLFDZW0BZxd4Nkw1G2gLRUdUqJEP5o8/W/1B4QMMU+3RQD/f614WdbRHas+Qskej+3a/jd3y1CZ61JPaA8VtQTe7Sd1+jaMs/nR8SuCqNt/o1wFWgzDis93a2CT6n0nY43ohQ2p2Y4OgXw80Js8EyYBpJ0Q6OyZJ2aPR9WiPE8oeMT9sjxshriHoWTebBP1GoOEZflxtXkdxayGOP61GvlMg+0vbc+lwZ0ZW8Guy8juWFbH4SIZljnwQ6xbig/UdZ9zfS23+WohTwzgrEz6i6+Mw4/7faMYd03M/1+L+O9Sz/7GxOL3pcoL+Vv4c+xd8dLDKJ9KvKcjnB0DOj0F9CEHv7Omx3rVVvVsLBFzvlF9E+jI+Cf0i9z1wx0ibsFSbgjbJPtl0NBx0GRhek+g/mpilwXZ6Lck+VlH2smNISxvL4l86DeBEmO+LeOfOWsFTlVVbpF9bgKX2BbMvxXJsCN6K3myiGeb7c+TFx339OZTVhzdqzFAgQ7tA5uEC+imSweg/lRhDKz+A9r+eMI3+M4Bpx3WVxZwswPxcoq+h6ile01ymPcXy4r4G6nETxaHs3C5uAP5MO0H8MQ7tnPmGhLzcpnaTl9sbi/s3aK/+ufM8QngVfXUjVVZnCXnLllU7kT/GsnTNMN8eU3UE9fHVNRpzUUXMfxVtuuqr3Ab4/1bQH4mB+yMxsF9Gn4H18L3UJ0H5l5L8ZrdPlZyPMqze2vrsr1Rbj+O6Mm090rNPWCfo0ZZS7Q2PB7H+8Yq6GouWbUsnIK97lnTPL+LeGXR+i/wwl7vRT3QKtOyYL6VzzzGf8p/KHo2uH/aI+Wd7TOU1hqptVN0x33riU3auoNsY8W7q2yEfrgPdyr1IF8MF9OzXjX4z2Cr3bXIhQ+r432lBnwuZJ8L88pimOEy3roAP1kvU15Vhbl6N/ixRL5X9553nHsdek8r+UUds/5shriHoWd9bBD1+jWM6aRM96l756mmKQ9vkuqH8Wdm6YWmjHs4nX122DcgElpqPZF9t9N+T8NWqDqbsv5s/4jlh1CX3QTGdlY2yVaPrh61ifthWc4hrCPq6vqFN9KgnZavGs1tfYFWJvkCqbMv2faz8cL13HcWpsVxKrikhl9pVMpXgM9EjnwnBZ1ykywp+jQ+/Yz5KZtW34fyo8llXMj/rKD/rHPOjZO42p3rb2tk0Rb4N03J7Z/T7186me3nnWc2Jst2UtV3eGrIOdKB89nWQ/xD60ecMi051n5P7ldjHKTNniLaHbafRBJKxH/rC+sz6SvnBGMqMX7BOmA7U/PAkxaG9TREfr/nXL453l38ykd+qczFl+wDocw07hO+sPgDbwjTEcR8gNYel+qTKX3IZo3/FcuE1K6M/nug7KjtI2U0u6DFfJo+yjZziUPZU39HJhwy03fAYSPUdy9pNaq4Q22hrv1P9XHtWZY30jQKcTYTDdjcK7zEd9zctLgC9sjsui+ECesPjsfdPJ+YZprvIwF+Zb+4iwzTJYPQ/K2RI6T8GdTpG1vkdIfyK9aaZEZ7Jg+8QvxW0feShVMhYf8ZP2UEMfIoHpk3NKWQUh3y2CD4Ka8wRC/uWPZTXFtYHBos7DbBzitsK9NdT3OkQdwtgcGjQ35ifaNcf2TiLy3QsK5bXaYDPNjYt0k4L7FNVH6br8UvWB/ZJMVStDzk8L9SH+afxDFp9yCHO5FY6CqG0jkrVFyybCvqfLltfDN+rvijbU/XF8ndaPX55nLMdDfN9Fc7doO6Qz2aSodfy470FiH2yy6/m/oJk+an+t2f55YBRpfzUehDPo+Rhfn5ykR+1F9noUv28MuWk+ORCZjXHiHN/n6O5v80Qp+aIeO7P6L8Mc39/Q3N/OAbKw9w4tC28lovzbHQ9jh0bauyYAwGPHacxcSgua9Yf0qP/4zJDP8FzeTj/lBMfNS82BO9S80+4z+A3x7X8GeBuFGm5biP9ZiGH0VudwyvKkMbSNon+X2EsxVeUKZtFuXg+xej/PTGfYnxDCKXWRrcKevQvJs9EmK/nrRRX1Kc37BDm9xksfxZXpV1QdQLzw3UC+0oNQc+6OUPQ45VhbPdnQNxmwuL6FcOVAisl66YeZOVyxLI6g7CMFu0S88N2afTjHVvstm/AdN6P8sc2u0z5q7FAWZ3ymAb1eBrF5RC3hfgo31u0vsG2gj7kc9R+pU7tUN8cqm9alU83Oit/mytbD+XPe3UnQU7l968swNwkbCqVh9QpCt2+mzR6tb63IpEO56tHBK/cHp5KB8Oz7xUXC16Gy9/0ngF6un6jliVjeboEdZJVRvnEbyur9HkzwgtB9+kNvxXm66JOn159T6rs3vK3qh6/TdinRzvCPj3qDvlYealvl7APfCHVB1XHUt95GP13T82me2YBZgjV+2soz1dH5+J6f1Nv+VR1t8w39RNhfpnw2QKrID8NQc97p4z+eVA3U98y+Xxvn31JtYv4XTS3i6nv52Pgslgj6PGbetNJm+i5XIrsC8ua++HqfIeVAp/Pd3ghlAF/y4Tf0q4i2ccryq6+w+J6zHWD67G6ijp18tISwGoIjDs7v3wKzw2JtrXbvkK2iW7fOZs8E2G+znmtX51spOqL0fVjXRbzw/Wl7Fn6KTtR31OqvWpLKA7tkedKsI+G5wJ8tON7+SyY+Bt1lod0WPc7Mx9/3qf+4VN8RXWAvI72gP8DFzUn/8stV2/vF/7HF//jVz/64Z0/3C/8/3fkusuG/rc3beoX/k989ZpnvXbNli92w492/ATcAID2g+msb8PnEOShVBhF+S2ovpvht8L8Ol+n71b27AW178DS8txmDLcCXZEvU/V7AWsBqwoWfisYw49Dv/uNdDot1iM+6yMTsmQJWTh9DFZH8E44PstgkciDxQ0n4hYn4kYSca1EnDr7xOKwr3MjxY0LzJivt3cmUXgcG0MeSoUvmjw4LjDfFgjXdK/62mo8pcYjqwlrTRes6wgL068hrLVdsK4nLEzP38h3+w7sxYSlvnE1rG7rBXwqPKa3tDweO68TEcvrHSAspuGyjOF1hGe0/7WDYbaEe8EqtHOB23fE4nN7mA5/Q5jfHsfAfgGxXk581N7+HvM3VkZOxG+RLHX7DWq/ovrmgc/bwbS87zoGbiPUHmh1Fs8C1gLWqcJS33r06keK9lGjz40B5y7/kOYb1DfkmPaOzi/73tXgyz9GfSj0G7wvHGXm/pHyF+sT+V8i+PRbz/24tawtsG4E+vhPnTeGvvSOzq/af7+R0hXtXW4EvYbf7ZuRjYTRzQY/PaXzpmwQeTWJ/uvQj/8s2SCmZxtE++R56KKb7IrsE8vsDqJX5/kom+XvNj4v5kwzSq++BYmB1/OM/h8Tc47Kv6XmHFNn3yl9Y5753KUhgYX54TlXpVN17gDr9MuJeeiGSD8OPC1uJcXhPM5qisM5kDUUh3OQaylOfS+r5rFXURyuz3FboNZdov386LrZ993qYQx3dH65Hj6VsC3lO1LnOuWCfpPI90SYb085xaW+T8ohjtuh6c7fqIcc5HpF55e/IVncyVi39SanvWmjp/r8hrzzrPZwcz1XPiOHd1zP1XkhucDn80KWQRlwPUc/MU2yL6ko+yohO7d7XKc+negncVuzIcGT0yKf4VCtDV0v9JURj7LnmBj9JsC8t6Ctx3yl2ppu56byGULq+znVJ8L+omEzZj/OOMb8c/1M5TWGur5S7YXiPXTqe1K2A+RT1v7Rhv5wai5dv/rOLy+QBzFGgq6DeSgVSs+pGH4rzNdNnTmVbmXB/Rc1RuQyj4HHvFXHYgtYC1gnG6vf56FwHxvnbXE8ey31o9V+JUx7R+eX58c/BHMq13ee1Xi2zHkwPc4Zl15rXpgzXsBawDp187z98H0xlJl/VHMDgzT/WOSvD5aY91DjAR47/Vfw10fIX2N6nntQvjw1N1nWN95B9GquTM3N81zZsYpjwtT8o9E/nhgT9nv+EfN8quYffzAxL7FEpB/0+ccGxeH8I/ebcP4R7cfmH9WemNsIg8fKGDcMcXyGHd7/xPs2RyBuKcXhnsFJisM9MXz7Op6DwLeC4x7SFaCHt5MesMybhIFzEYsTeR2lOKxDiygOdTtCcaijMYpDHzdMcVgmLYpTt9PaNxvd/HEMd3R+2R+/O+FjVBuS2mufC3r+rj0Gz3noMucI5yBX0Tz0exfmoU/Enap56PfXnIdeV1H2hpBd1U+sUwcTY8syfQ7EXUX0qn1UfSFuHz+S6HOo8XSqz2H0f3QK+xxqDeAUnX83dqrvNrM8tcN8f8hz1Op+ALYD5FPW/tGGbL6m7ncBP/qhc7d/8cX/vLHOdwG4D9fS2VwNylOhfH8P5beg5moMv0WyVOR3Yq5G3X2I+eNvOkfr8ftARumRH2K2iN9YPX4NXp/gson/rJ85XCCLpeU7V75Mfb1xkYa/OYqB5yowriHeDZ0iLHWHKeoRv4/6PO0FZx3noVS4iPvlhoHYNW3hJWXrluG3Qk+2fqJuqW8RMX88ThwXsqjyuhfoei37RwcUa68j1mFHrIccsTz1ddAR64gj1n5HrBlHLM88Hh1QuR50xPKsj57luMcRy7MOPeKI5VmOnrZ6zBHL074edsR6rSOWp90Pqs/xzOPjjlg7HbGOO2J56suzb+JpX4PaL/S0+0Hty+12xDrkiPV06MsNqt179k0W2rRqWIPalxtUX+jZl/P0hZ7l6KmvQe1/vcoRa1D7X/scsTzrtmcd8tSXZzvkWYcGVfee/stzXm5Q54Y87cuz7zuofcxBbDvic8sJKwZrOyYKsPFZrY22EnwyIXND8ME9CuOdd7hWZDgjYb4uKqxDlb7ryPBbJEtFflmqfNS9x5b3JUIWta+Syyq1Tol8FFbTEYv3XjQFllr3yyg90it9jYXZ/Y/7991z3z37Dl86c+f+nVft2hkoNOnvSwtEvJnori8QrSFwM/rH72+mdw1Bi9gTYX7RDBfIHQAP33ExYfpmgk/WI59M8BkX6bhqo+lUqGpnla3aht8K8/Ncp2orU1V6sby3hCxtiothF9DVcb0Yd8AR66Aj1iOOWDOOWA86Yh11xDriiPWoI9bDjli7HbE8y9FTX562uscRy9NW9zpiDaqf8KyPnrofVFt9zBHL0yY8bdVTXw85Ynn6aM8+wDFHLM+2w7MODap9PR38Vz/aIevL49HU+CnucrquahHENShtBjybRP/4htl0q+hThwx42/MI4WWh0pjmnIzwQtBjKMNvkSwV+Z0YQw0RP84fj6EaQpY2xcVwP9BxXEO8S2EddcR6zBHriCPWHkesGUesY45Yux2xDjliHXTEGtRy9LRVz/roKdeDjlh7HbEeccTytIl9jlieNvGwI5anvjz9l6dcjzpieZajp1yD2nZ4lqOn7j3rtmceH3fE2umIddwR6+nQbnvW7X60tbauhuOxEeKjxj5DCT6YnsdFmC7r/I6QfPach1JhKCM8kxPfIX4rzM9zBX5ZSv9KL7ymiGnbFBcDf9qr+GSCTyawUnI5Lk2biNuIbnuBaJnAzegfv99G75QqEFvdLDYieFlIqbZdkD6G8QQfZfY2DTMadPXj5fOq1Q/TW5zik/XIJxN8WK9qOimGezq/fEPcE50pJDw5pCH4IVYZ11Jzyb70bhxesu/Vtagl+5RrGRaysD3E8DKg47iGeJeyrYYjllNTsMj0sUhEKl2xHtGurqc4PGHjFsDg0KC/MT8R/yMbZ3GZjmVFGzO5VV3mbTFV6zKmHyrAUjcnxnAbxCO9nXzTY5mercqU7WW4JnbZ+p06ZY3rPm9fykM6/K+XvK31/bftOK9qPTL6xYJebe8xXdU8febMceARiLfFqW1gFqdOu4vpzyb5FteUr4z+EF/5R+56lS2LyaDbmRjwxBrEMroAMjUhTvFpEv3vwvLL++nEOW5D7N0fJeiygl8lM8pj71qCviHojfeooLc43E2JekUa1BditSAe6T/ayTvfpI7p24I/1plQIHfRblHGaoh3Rh/z+aENc/NQs++S9XID928+65znLHnp6Y/164bvJb//29d+9n/uPr3OSV5qa2ZZey1q92K4vfPbY5sypPxYKJ8+K9Pe1fThT5Vt7wy/FbRfy0OpcKI/O0L8OH/cRrXq8fvPeJqsnWhaNKZC3SEfbssaIo1q5wwjpj9v09x81BwH/GePNvgfvAwdAy7//x0t/y+GOJ5K4j4g0v8TtD//AL7VcC296QvHvItFvP1t+h4StPis+gtKb0hv5VV0UuYw5dXovwxj0x1TGrPs9gmj/5oY7xqmOnVP1RmjT51chvKor2jGKB3Kjm06v1PlkxEtyhDD7UKmor9bAqdIhhGBo8Y3LZJV9Z+x3qROt8R683dQltZmjQj+/RzPZhSHebsZ6DioMSv2NT9BfcYgsJR+eNzk0Xbb+0Xwnvk2iHaYaPnrH5Sxl/4w9y8WCRns78UJ+TPCSZ0+zvVN/ZaVNxPyqrakVz6I9ZLOb49t3rrUXGssh/UbZ3GL2jzVZ+A2b3rjbLpNnedubZ7Fcb8thpfCO/bp3A9CjBh4ft185DDgI80I5cnoT+/kA9s25UMMK+b9TNLnCMSl2pEm0V8O+txG+kR98adg7McD/D0KsiBtDLcX6OAZIMcFG4t54Ti1KI8R41kbNR3KgHSMUbddU/0rrrtl+ldcVzGd4sH+uKjtNtsY6xKvThgO4t2QoB8pyG8QvFtdcBcLHOXfWxSXiTj2PZhf9Fvc50C/gH5rfaK+ZGFuvkYpXyOJfGUiHddzlH1xQnalP/QfdecQXv+5p/78TUfXfqFfcxTf//aDPzD+rF/99X7hv2fsT17wu28feXmVORArZ/WJLNuWmouN4RaIR/rbOuXR4xxD4Pwov5Ean/FcKMt/fYH8+8B/v4LqhRqfqDpT1P4uKimL0d8N7em90J6GoMcPPd400FQ3DaBf4/6u8rfqEwOj7za2NJ20w3z/yrzV2ibqlPs0pqPhoMf3hsf2sAvKgG8CUb7Z4tRWGNUW8jqrWh+LND9I9apm/3ax6kdY4DVKzKP6rJvXPfnUdIzDsuT5fgxqDGl5jTK/qcS6p/IPXF/VvEqqv6jqneEPWr0z22+H+eXC9lbWhov6c4of6gHbarPhojl5rNM45vohGiMMQ5ya02J/avS/CL79LeTbUcdsD8pPsCwhlNuvoMby4yKdlUuP65mLsHxRTnyH+Gr9uc5cveqbpubqa/YTmtzGIj9VDkuD1qmaz+exoprvSY2TUv5E1T+um2oeQbUhqfGc8cY58zL9JlW3MC23k78MdesDiX5TUd8oBD0OYPqU70NZle5HKU6N/e15LMFHyZU6+UjJhT4Z0zLvbnko21Y59REXqbYKy4TriNJL6kQkdRoTnoLFdUTdTlO1bRulONXGd2vbPlDQRmE+0P/x+FbVMWz76o4Pv3frf1mz7iMPjvdr/Lmoue4n81+946oq40/lV4YIF/XA8+0x3ND5LbPOXbPtLL1vk9vOXte5y7adqr/ObQHOs/C+JDUHo24AO1lYamzCZVmzn1C6H8R7FmraTnLPgmrf1PiKx43Y/rD+e/ncfxCxsP6n+sdlylXxUX36fq/dFd3468FHHdGg9hz3ykftX1brsjh++zK1jWo+DNMWzYdNbZpN97WNc2lM9n+FfugQ7aPBPFeoyy01Jreg5j7YblU/0OKwb8P2gX0b/hZkAmTAvRAc1HyK0UV+z980i8t0FlCXZb6H4X2mGeHx3LHRL6by4rX4PJQLau7YsL6TbKFOeR8sUd6qjFPfDfDYJjU2VXNyylcW+TfEVz7pNsJHfaTWyFSeLS2uvad8F9s+0m8A37Vt01wZ1ZhW+WB7320ePbXGbWl7vNV1jO0Zg7JnrgfqFF32baoetCGOfeJSiOPxDAZVR0wPVXwil6Pq62C7xmM+te6O7aXlr+4e4gwwTSbLO8rF31hgfWrSu5p7ak/oTu0twf4Wz70Z/fM2zcVRe2DUeMPo1d75huCrvrMYq4g1QliLe8DCeQumX1xTLoU1TFjqGwzVb49ld1GnbE7mOvPl1FeoOS48ZevMr4D24IXUtzrZ68zXdvgvrDOfunXmW6EMTuU68wGqV0/XdeYq/eSFdeb55XIq15kPFLRH3daZj1B/ru4685vBtz9Mvn1hnflbYWGdeWGdOYTq68w/CnXrXYl+08I683yfvLDOPEv/7brO/K6CNgrzUWed2dq+/x+pyeBEvtQEAA==",
359
- "debug_symbols": "tb3fju26cW/9Lvs6F6oqklXMqxwcBE7iBAYMO3CcD/gQ5N3PZEnkmGutNFs9Z+8b72F7dw39408SVVP679/+9Y///F///k9/+su//fU/f/vH//Pfv/3z3/705z//6d//6c9//Zc//P1Pf/3L43/979+O8R+i9bd/tH94/LP99o91/NOvf8b1z37+047rn3L9U69/2vXPcv2zXv+86tlVz656dtUrV71y1StXvXLVK1e9ctUrV71y1StXvXLVq1e9etWrV7161atXvXrVq1e9etWrV7161WtXvXbVa1e9dtVrV7121WtXvXbVa1e9dtXzq55f9fyq51c9v+r5Vc+ven7V86ueX/XiqhdXvbjqxVUvrnpx1YurXjzq+fhnXP/s5z/7cf3zUU+OATrBJjxKyjhW+qOm5L/cJviEmNBP0OOYMCrHAJ1gE8qEOqFN8AkxoV8gx4RZWWZlGZX7gDKhThiV6wCfEBMelXWAHhNkgk6wCWVCndAm+ISYMCvbrGyz8hhIOrbPGEknlAl1QpvgE2JCv2AMqBNkwqxcZuUyK5dZuczKZVYus3KZleusXGflOivXWbnOynVWrrNynZXHENOxC8YYSxiD7ASZoBNsQplQJ7QJPmFWbrOyz8o+K/us7LOyz8o+K/us7LOyz8o+K8esHLNyzMoxK8esHLNyzMoxK8esHLNyn5X7rNxn5T4r91m5z8p9Vu6zcp+V+1XZjmOCTNAJNqFMqBPaBJ8QE2ZlmZVlVpZZWWZlmZVlVpZZeYxB0wExoV8wxuAJMkEn2IQyoU5oE2ZlnZV1Vh5j0OoAmaATrtFtVibUCW2CT4gJ1+i2ckyQCTphVi6zcpmVxxi0NsAnxIR+wRiDJ8gEnWATyoQ6YVaus3KdlccYtLELxhg8QSZceWhjNJVH8tsYO2VsujF2TigT6oQ2wSfEhH7BGDsnyIRZOWblmJVjVo5ZOWblmJVjVu6zcp+V+6zcZ+U+K/dZuc/KfVbus3K/KpfjmCATdIJNKBPqhDbBJ8SEWVlmZZmVZVaWWVlmZZmVZVaWWVlmZZmVdVbWWVlnZZ2VdVYeY6fUAW2CT4gJ/YIxdk4YldsAnWATyoQ6oU3wCTGhXzDGzgmzcpmVx9gpPqBMGJVjQJvgE2JCv2CMnRNkwrhYkgE2oUwY10s2oE3wCeMSbCxPXiMOyIvEBJmgE2zCqDyWOa8UE9oEnxAT+gV5uZggE3SCTZiVfVbOi8axgnnVmBAX5HViGTDq9AGPv2pjlcf4avl/+YSY0C8Y4+sEmfCo08aRMMbXCWVCndAm+ISY0E+oY3ydIBN0gk0YlduAOmFU7gN8QkzoF4zxdYJMeFT2Y4BNKBPqhDbBJ8SEfsEYXyfIhFlZZ+UxvlwG1Amjsg7wCTGhXzDGl48VHOPrBJ1gE8qEOmFU9gE+ISb0C8b4OkEm6ASbUCbUCbNymZXH+PIY0C8Y4+uEUbkM0Ak2ISaMvxr7YoyUGKs8RkrYgDKhTmgTfEJM6BeMkXKCTNAJs7LPyj4rjwESY3nGADmhXzBOUifIhFFwrOA4SZ1QJtQJbYJPGJXHmo5BlDAG0QkyQSfYhDKhTmgTfMKs3K/KbQyifgyQCTrhUbnLgDKhTnhU7jbgUbmXAY/KvQ3oF4xBdIJM0Ak2YdQZizGGzAkxoV8whswJcoHlnaYO0kV5rzkWaRzSctRBvigW9UnjsL5IJtX838aSVVmki2xRWVQXtUW+KBb1SW052nK05WjL0ZajLUdeYB2PwdQ8/zYGjb8dt9ltHLUXlUXjb2XssxHxF/miWNQnjaP4oqw3tm7k346tG/m3Y1kiFvVJPf92bMmcDThJF9misqguSsdYt5wTOCkdYy1zVmCQ57TASVmvDxp/q8cgX5R/WwaNv9XHGnne+J8ki3TRqKc6qCyqi9Jhg3xRLFoOXQ5dDl0OtUXl2s6udVFb5Iti0dxHnsf92DNu9doznsf92AtuvigW9Ws7ezkWySJdZIvKonrtDy9tkc+9UGLR2kc5ZnLP5PjI/VHXPsrxkXsmx0dujbq2X1vbr63tl+Mj90Jb+6itfZTjI/dCW/uorX3UlqMthy+HL4evfZRH8bjB8jyKT9JFuQRjG+RRfFJd1Bb5oljUL4o8ik+SRcNhMsgWlUV1UVvki4Zj3KRGHu1JebSfJIt0kS0qi+qitsgXLYcsRx7tZoNkkS5KRxlUFtVF6aiDfFEs6pMsHW1Q1hvbysqiuqgtynp90Kg3bkUjR0AZ2ypHwEmySBcNx7i/iRwBJ9VFbdFwlLEeedyP+43I88e4z4g8f5SxBDkW6viLPH+cVBbVRW2RL4pFwzFuJiLHx0nDMS7fI8fHSbaoLKqL2qJ0xKBY1Cfl+DhJFukiW1QW1UVt0XL4cuR5ZtxFRJ5nTpJFw9HG3spzz0ll0XC0sTXyfDRuJiLPRyfFoj4pR/JJsigd47jKkXxSWVQXtUW+KBb1i3qO5JNkkS6yRWVRXdQW+aJYlI7H3uo5kk+SRbk/yiBbVBbVRW2RL0pHDOqTciSfJIt0kS0qi3KZ+6BY1CflqD1JFukiW1QW1UVt0XLYcthylOUoy1GWoyxHWY6yHGU5ynKU5SjLUZejLkddjrocdTnqctTlqMtRl6MuR1uOthxtOdpytOVoy9GWoy1HW462HL4cvhy+HL4cvhy+HL4cvhy+HL4csRyxHLEcsRyxHLEcsRyxHLEcsRx9Ofpy9OXoy9GXoy9HX46+HH05+nTIcRyggAoaWMAKNtDBALEJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFJthM2yGzbAZNsNm2AybYTNsBVsmwpg+eaCCBtYryB7YQAcD7AvrAQqooIEFxFaxVWwVW8XWsDVsDVvD1rA1bA1bw9awNWyOzbE5Nsfm2BybY3Nsjs2xBbbAFtgCW2ALbIEtsAW2wNaxdWwdW8fWsXVsHVvH1rH1ZZPjAAVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2MgSIUuELBGyRMgSIUuy/UTGRKdkB8pEA4dtTNpKtqJMbGC2UtTEAPvCzJILBVQwbT2xgBVsoIMB9oWZJRcKqCA2x+bYHJtjc2yOLbAFtsAW2AJbYAtsgS2zxHMPZZacmFlyoYAKGpgtKpJYwQZmo4omBtgnno0wF2bjS7ZdHavC1epyYoBZYezYq+HlRAGz6aUlGljACqbNEx0MsC/MJBgz2ZItLjImmiWbXCY6mNv3/LO+MMf8hQIqaGABs1XnSGyggwH2hTnmLxRQQQMLiK1gK9gKtoKtYssx33Nn5ejuuY9zdF/YQAcD7AtzdF8ooIIGYmvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLli02EwVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2Aq2gq1gK9gKtoqtYqvYKjayxMgSI0uMLDGyxMgSI0uMLLEzSyzRwAJWsIEOBtgXnllyooBpa4kGFjBtJbGBDgbYF55ZcqKAChpYQGyB7cySSAywL8zWvPFsUbLBaKKCBhawgg10MMA+MVuOJgqoYNpaYpsLWc58GKfQcubDiaNC9u9me9FEAwtYwQaO5R0PrCRbjSb2hdkue6GAChpYwAo2EJtiywba8ahMsgVpooBps0QDC5i2kthABwNMW27qbOnLjuZsQ1LJTZ1NfBdWsIGjrubmy4ZazbXIllrNxcmmWk1bttVeqKCBw6a5ONlee2EDHUxbLm9212ouTvbXjo5LyQ4ltVyc7LG1VGSX7YUVbKCDAfaF2XFruQzZc3uhrcPzHPMnVpDj1x0McI3Cco75EwVUEFtgC2yBjTGf7U5quc2yGffEHPMX5grlv5tj/kIDC1jBBjoYYJ+YbVATBVRw2MajLcl2qIkVbKCDAQ7beOgl2Ro1UUAFDSxgBRvoYIDYFFvmQ7FEBQ1MW01MW0tsYNo8McC05YbKfLhQQAUNLGAFG+hggNgKtoKtYCvYCraCrWAr2Aq2gq1iq9gqtoqtYqvYKraKrWKr2Bq2hq1ha9gatoatYWvYGraGzbE5Nsfm2BxbNu+PR7QPbKCDAa5zbHZ5TRRQQQMLWMEGrjN69ng9bg4T11k6u7q05ijMfLiwgQ4G2Cdmh9fEbCXXxLV927HWuB0B9oXnmD8x29MtUUEDC7j2ZhNs4mCAa282PUABdS3DOeZPLGAF21qG8wc1JwaIjTHfGPONMd8Y840x3xjzzdax04wtaWxJY0uebf65DIUtWdiSjPnGmG+M+caYb4z5xphvjPlW2W/nmD+RLVnZkpX9lmP+QrYkY74x5htjvjHmG2O+MeYbY74x5ltjvzW2ZGNLNrZkY0vmmB/PsiVb4SbmlqyJBhawgrluuQw55i8MsC/MMX+hgAoamLZcyBzzF+b1w4l9jcIc86O3QbJhbqKCBrKHOnuos4c6x3rnWD+TYKAfB7j2kB8KGljACjbQwQDX8ZB9dTraxCUb6yYWcNQd7RySvXWP+alEBwPsCzMfLhRQQQMLmFdtKT5nD07sC8/ZgxMFVNDAAlawgdgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKjTnHs0vvQmwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WU7exIvFFBBAwtYwQY6GCA2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFRpYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkmyk1NHEKtlJOdHAAlawgQ4G2BfmHcqF2Aq2gq1gK9gKtoKtYCvYKrbMknxonN2VOjpgJdsrJxawgg10MMC0ne+cOEAB05bivEO5sIBpa4kNdDDAfAo+LvPPfssLBVTQwAJWsIEOxsJMjewGyC5Lbef/amABK9hABwMc2yyb5LLbcqKAwzZ+dijZcDmxgMPm+e6PvEO50MEAc5tJvvHjAAVU0MACVrCBDsbCnMFwS1TQwFyLkljBBuZa1MQAc5u1fEvJAQqYtnyfSd6hXFjACjbQwQDTFvkqlAMUUEEDCzh/mKNnK+V4GKJnK6Um5lXFhQIqaGABKzh/jaNnV+WFAfaFeVUhJwqooIEFrGADHYyFjT3f2PONPd/Y840939jzjT3f2PONPe/seWfPO3ve2fPOnnf2vLPnnT3v7Hlnzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz3f2fF97/uyUlBMFVNDAAlawgQ6uPS/nmO+JChpYwLEv4khsoIMBjrUYP8LUsyfyQgEVNLCAFWygL8zRPX5LrNn9OFFBAwtYwVyLmuhggH1hnv0vFFBBAwtYQWwFW579RyOZZvfjhXn2vzBtnqiggWnLPZRn/547IM/+ozlBs/txYoB94fnKoBMFHLaeR8n54qATC1jBBjoYYF94vkboRAGxOTbH5tgcm2NzbOeLhXL7nq8WOlHAtOU2O18wdGIBK9hABx82O3JTj3y4cOTDRAEVNLCAFWygg9j6smX3ox2SKKCCabPEtLXECjbQwQD7QjlAARVMmycWMG2R2EAHAxw2yUXPVxVdKKCCBhawgg0ctgzz7KqcmLbcOvn6ogsFVNDAVJTEBjoYYF9YUpGbpAiooIEFrGDackPlW40uDLAvzHcbXSigggYWsILYKrZ811G+8y0bLC/M9x1dOGx5Cs0Gy4kGDlueC7PB0vJUlw2WprmhRoBMDLAvHAEyUcA8USXVRW2RL4pFfVKO4OulcgcoYD7PSLJFZVFd1Bb5b/PtdFmxJeZm8MRyvh5Ls13xorZobIOSFIv6pByJJ8kiXZSSSCxgbuue2EBfmAPOjsRRYbSz6Pk2sAtHBUsaBcZvnPV8JdiFAfaFObIulLlJTBfZorKoLmqL+tqIOWSul/rlguYy5ZC5MBc0t0UOmQtzSbPYfBWYrneB6XoZmK63gel6HZiu94Hp+fqvC3Mtc0HmC790vfFLsyfwovHXuRfy4D+pLmqLfFEsSkliHvcXDstZfJw4Jxo4ipbcm57HTe7COMBRIZc9dG2YMLCAFcyyuTfDwQD72uA5ki4UEFvH1rF1bB1bx9ax9WXL/r6JAi5b9vdNLGAFG+jXoZ5vGDsP32wFvFAOUEBdmOepkouQg+nCAub1RVJb5ItiUZ+Ul7snySJdZIvKouWw5bDlsOWw5chz1GgJ0nxj2EQFc2UisYBjI5bccjngLnQwwL4wh9yFAg7baMrQbNebWMC05fLmYLzQwWGruR9yiJ6YQ/TCDPYkXWSLyqK6qC3Kinls5MiruTtz5NVcfi9gBRs4lrSe7wcNsC/MUXqhgHmhlZSy3PI5Si+sYAMdDLAvzFF6oYAKYuvYOraOrWPLUdpyk+UoTcyOvIkCKmjgsI0n1JodeRMb6GCAfWEO0wsFVNBAbIItT5VjFlazI29igGkb+zU78iYKmLaWaGABK5i282WwaRuHc/be2ZgP1Oy9m6iggaOu5+bLy9ScvcneO8sZmey9s5x7yd67iX1hRsCFaTvfRKuggQVMWy5vjvucBciGO8vJxWy4s8jFyXGfN7fZcDdRQQMLWMEGpu18S24szME+psw1u+wmKmhgKnLRz5PyiQ10MOaQr2cQJOaJ+UIBFTSwgBUcdfPGPfvpLswguDAvK3JLZhBcaOComzfu2U83caxF3hNnP93EANOWy5BJcKGAChpYwAqmLY+zTIILA+wTs/duooB5qpHEPDO3xHUd0A4HA+wLz2vjEwVUMK8DSmIBK9jAvA7wxADXdV87L5pPFFBBAwtYwbzFydXMq+aemGP+QgEVNLCAFcx9kYoc8xcG2BfmmNcTBVTQwAJWsIEOxsIc6KMzXLPLbqKBuRY9sYIN9PHi3CMxwD4wD5gx5icKqANzz48xP7GAFWyggwGmbQyc7LKbKKCCBhYw93wumbPnnT0f7Plgzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz/e157PDLfJsmh1uE+vAmtjAvv6FMbImCqgL8424R/5ZvhP3wgbmLsxlyDfjXtgX5ttxj54o4NiFOW2UjWYTCzhsORWUjWYTHQywL8w35l4ooIIGFhBbxVaxVWwVW8OWh33OQWXzWMnX8mfzWBnvv9NsHpvYF+YBfmEubyQqaGABKzhsmtvsfH/1iQH2hedbrE8UUEEDC1hBbIEtsAW2883WR6KAChpYwAqmTRMdjIlxvr76xPwXLDHA3NTjkMt+r4kC5uLURAMLmIvjiQ1MWyQGOGx5+5D9XiUjKPu9St7XZL/XxGHLM2/2e02sYAMdDLAvzJdbX5i2XMh8wXVOZWS/V8lJi+z3Knn2z86ukifs7Oya2Bfm4L1QQAUNzGK51XNsXtgX5ti8UEAFDcxiuQNyZOWNcTZYTaxgA/PPcuVzvF3YF+Z4u1BABQ0sYAUbiM2xObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s2WA1UUAFDSxgBRvoYIDYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbAZtoKtYCvYCraCrWAr2Aq2gq1gq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYyJJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0leW2LGyxI6VJXasLLFjZYkdK0vsWFlix8oSO1aW2LGyxI4Dm2ATbIJNsAk2wSbYBNsZFZGooIEFrGADHQywLzyj4kRshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bXzY5DlBABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbGSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImRJ9lqV8XDHsteqjOdUlr1WZXyuxrKrqozHOJYtT+X6TpeCBg7FeAJi2fI0sYEOBtgX5iC7UEAFDcQW2AJbDpHxrMOyYWlinZhNSGVM31g2IU1UMCt44qgwnlRYNiFNbKCDAfaFedhfKKCCBmITbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNsediP3nLLJqSJBaxgAx0MsC/Mw/5CAbEVbAVbngDHEybLvqEynjBZ9g0Vz92dg+FCBwPsC/NUd6GAChpYQGwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVuO4/Fcz7JxaWIFG+hggH1itjRNFFBBAwtYwbR5ooOx8BzdkZgVeuKoMJ4tWnYxTXQwwL4wx/GFAipoYAGxKTbFluN4PN+0bHm6MMfxhQIqaGABK9hAB7EZtoKtYMtxPB63WjZJTSxgBRvoC88vvJXErFATs0LulhzzFzbQwQD7whzzFwqooIHYGraGLcd85AGTY/7CvjDH/IUCKjjq9tybOY57br4cxyfmOL5wVBgPVu38xuKFBhawgg10MMC+MMfxhdg6thzHPXdLjuMLK5i2HGQ5ji9MW65xjuPx0M3O7zBe+LDV8UzNsmlqooFloCZWsA20RB9YEmNgTewDhzi7piYKqKCBBaxgAx0MEJtiU2yKTbEptvxG95GbJD/LPR4KWTZa1fH4x7LTamIBx0JKbpL8SveFDgbYF+YXuiU3X36UW3Lz5Xe582uhJT/NfWGAfWF+o/tCARU0sIBpa4kNdDBtuUny04wn5scZLxQwbbnN8hONFxZwXVpmJ9VEB/NCNrdkDt4Tc/BeKKCCBqYtd1Z+uvHCBjoYYF+YX/++UEAFDcQW2AJbYAtsga1j69g6to6tY+vYOraOrWPry5Z9VxMFVNDAAlawgQ4GiE2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2AybYTNshs2wGTbDZtgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hi0/+zoezVr2aE3sC/PjrxcWMP9MEmNhntHzTJZtVRMrmP+uJvaFOaQvFFBBAwtYwQY6iK0vWzZQTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW14e5Ifq25klJ/aFZ4B4ooIGpqInVrCBQzE6Piy7sSb2ifnOs4kCKmhgASvYQAcDxCbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbAVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvHRpY4WeJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlcWaJJDbQwbRZYl94ZsmJaauJCqYtEgtYwQY6mLae2Cdm+14dP121bN+royHUsn1v4rCNzk7L9r2JFRy28TtLy/a9iQEO2+jLtGzfmyigggYWsIINdDBAbIpNsSk2xabYMiqylSf78Go+ds4+vFpym2UoXFjACo6FzOfS2Yc3McC+MEPhwmGruVEzFGpuvgyFCwtYwbTl8mYo1FyGDIV21u0LMxRGS79lH17Nh8bZhzdx2PL5cfbh1ZbFMhROzNGdD0uzoa7m08lsqJtYwLE4+cwym+Sq5/LmiL1QQQMLWMEGOhhgXxjYAltgC2yBLbAFtsAW2AJbx9axdWwdW8fWsXVsHVvH1qetZJPcRAEVNLCAFWyggwFiE2yCTbAJNsEm2ASbYBNsgk2xKTbFliN2PGMt2UU3sYINdDDAvjDP/uOpZ8kuuokKluv4Ldk6N7GBDgbYF+bovlBABQ3EVrAVbAVbwVawVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx5YBMp6Nl2ydm+jgsMX57/aJ2To3cdjGT3tLts5NHLbxBLpk69zECqbNEx0MsC/MALlQQAUNLGAFsQk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIatYCvYCraCrWAr2Aq2gq1gK9gqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLpscBCqiggQWsYAMdDBAbWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpbYmSWR2CeWM0tOHLbRc1rOXssLDRy20XNazl7LCxvo4LCN3tBy9lqO9/qUs9dyvFOnnL2WFypoYAEr2EAHA+wLFVtmyeg5LWev5YUGFrCCDXQwwL4ws+RCbIbNsGWWjMbYcrZoXthABwPsCzNLLhRQQQOxFWyZJaP3tpztnBcG2BdmllwooIIGFrCC2DJLeh5ymSUX9oWZGhc+KrQjj76RD+3Ig2vkw8QA+8KRD+3Io2/kw0QFDSxgBRvoYIB9YWALbIEtsAW2wBZpyyESDqYtj9/oC/sBpi03alfQwAJWsIEOBtgnZovmRAEVNLCAFVy27MBso4u5ZK9lG13MJXst2/j+dMley4kNdHAs5GhSLtlreeEY6BMFVDAjsyQWsIJpy4VUBwPsC+0ABUxbrtsY6BMLWMEGOhhgX1gOUEBsBVtJW27UUsEGDtvoJizZazlx2DS3wxjoE4dttP2U7LWcOGzj9VAley0nVrCBDgbYF7YDFFBBbA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVuGgubxm6FwoYMBpm0cRtnkOVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgyNcYT6JKNm208ay7ZuDlxVBgvHyrZuDnRwQD7wsyHCwXMupa49mY2Y57bN5sxL8wxf6GAY43HGwBLNmNOLGAF17HTCrYS4Dp2Wj1AARW0tQznmD+xgg30tQw55i/sCxnzjTHfGPONMd8Y840x3xjzra0jtTW2ZGNLOlsyx/y5DM6WdLYkY74x5htjvjHmG2O+MeYbY74x5ts55nMZgi0ZbMlgSwZbMsf8aGQo2Yw5Mbdk1s0xf6GACua65bGeY/7CCjbQwQD7xOzLnDhsoxWiZF/mxHWAZzNmG10RJZsxJzoY4Do0shlzooAKGljACq6d5eJggGtnZTPmRAEVNLCAuRaaGGBfmMO/5HbI4V9yyfLy4EIDC1jBBjoYYF+YoTDe+1WywXJiASuYdXMtMhQuDLAvzFDI67NssJyooIEFrGADfWHOE+S1/dlKeaGCuRYnFnDUrXmc5fC/0MGxFjWPqBz+J+bwv3CsRc09lMP/QgMLWMEGOhhgX5jD/0Js51PPXMjzqeeJDXQwwL7wfOp5ooAKGoitY+vYOraOrS/b2TR5oYAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsZ0dFGMMnU2TFwqY47gmGljAHMeR2EAHcxz3xL7wTI0TBVTQwAJWsIEOYnNsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWx92bJpcqKAChpYwAo20MEAsQk2wSbYBJtgE2yCTbAJNsGm2BSbYlNsik2xKTbFptgUm2EzbIbNsBk2w2bYDJthM2wFW8FWsBVsBVvBVrAVbAVbwVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJX1lST1WltRjZUk9VpbUY2VJPVaW1GNlST1WltRjZUk9VpbU48Am2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2yGzbAZNsNm2AybYTNshs2wFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDZtjc2yOzbE5Nsfm2BybY3NsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWxkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkSXZ2PmaUE/vCzJILh228zKdmZ+fEYRs/7qnZ2TmxgsM2fudTs7NzYtpKYp+YnZ0T0+aJCqatJRawgmnriQ4O23i7Yc3OzgszS0ZXe83OzokKDtv42UbNzs6JFWyggwH2hZklFwqoIDbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbBlanhu9cwHzz2U+TB+yVKzW3OigwGO5R2/GqjZrTlRQAUNHLbIoyTz4cIGOhhgX5j5ELkWmQ8XKmhgASvYQAcD7Asdm2PLfIjcfJkPFxYwbbmhMh96HrSZDxcO2+gLqtmteWHmQ8/jN/PhQgUNLGAFG+hggH1hx9axdWwdW8fWsXVsHVvH1pctuzUnCqiggQWsYAMdDBCbYBNsgk2wCTbBJtgEW+bDaByq2a15YebDhQKmrSUaWMAKNtDBAPvCzIcLBcRm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKLVNjNFDV7MBs42lJzQ7MCzMfxkfJanZgTlTQwAJWsIGPuj76rmp2VV4HQY75cx/nmL+wgg30UUESA+wLx5ifyJHKmDfGvDHmjTFvjHljzBtj3oIjtXOkdo7Uc8yfyLqNMe+jMatmV+XENjDrdgcD7BOzq9LH5+drdlVOVNDAAlawgQ6mzRP7QpG5s7KV0keHVc1WyokFrGCbOyBbKScGuHZWtlJOFFDBtbOKFrCCDXQwwBVixQ5QwFyLnljBBo61kNwOY0i75JKNIX3hGNITBVTQwAJWsIFZdxwa2R45UUAFs26uRS1gBRuYlx25Y3OgX9gX5kC/UEAFDSxgBcdDlppLlk3VJ2ZT9YUCKmhgASvYQAexObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s53stLxRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xZaPUMfLGer5XssL+0LLkdUSBVQwbZZYwArmyPJEBwNMW+L5iokTBVTQwAJWsIEOBoitYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bOcLNS8UUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbGRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZkm2iPn6JVbNNdKKDaeuJfeF5j3OigAoOWz6YOttELxzrls+zzjbRCx0ctnwEdbaJnphzION3XzXbRCcqOOYqNBU5B3JhBRvoYIB9Yc6MXCiggtgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtn3ZKYFWpiVmiJAfaFOQV6YS5vHiWhoIEFrOCwjd8w1Wz9nBjgsFnu2JEPEwVU0MACVrCBDga4bNn6OVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKzbAZNsNm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsJElnSzpZEknSzpZ0smSTpb0M0s00cEA+4XtOLPkRAEVNDBtNbGCDUybJQbYF55Z4okCKjhs4+dXLVs/J1awgQ4G2BdmllwooILYFJtiyywpuW5nauRCnklwYgUb6GCAVMgkKCcKqGAuWSQWsIINdDDAvjCT4EIBFcRWsWUSjF94tWzcnOhggH1hJsGFw1bz2MkkuNDAAlawgQ4G2BdmElyIzbFlEtQ8+jIJLqxg2nIfZxKMD/i2bNycmLbcLZkEF6YtN1QmwYUGFrCCDXQwwL4wk+BCbB1bx9axdWwdW8fWsfVly8bNiQIqaGABK9hABwPEJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2PKqYtxftGzcnNgX5lXFhSt3snFzooEFrGADHQxwpVy2aPpoyWty5kNNHBXG+7ZbNmNODLAvzHy4UEAFR91x59Oksn0ra9xY43PMn6jgWONxc9WywXJiBRvI3mzYGnvT2ZvO3nT2prM3zzGfy3CO+RMbyN7MMX8uQ475E3PMX4iNMS+MeWHMC2NeGPPCmJfg2Am2ZGdLdrZkjvlzGTpbsrMlGfPCmBfGvDDmhTGvjHllzOux9pueY/7EAlZw7bdssJwYIDbGvDLmlTGvjHllzCtjXhnzKmu/qQS4tqTqAQqYW7IkGphbsiZWsIEO5rrlMuSYPzHH/IUCKmhgASuYtlzIHPMX5vVD/gt5pZCjMF+S6eOnnC1fkjmxgBVkDxX2UGEPlXWsaz1AARVkD1X2UGUPVfZQdTBAjofG8dA4HjIfRkduywbLiQ0cdT23Q+aD55JlPpyY+XChgAoaWMAKNjDr5lGSSXChgApm3TxKMgkurGADcwbjxAD7wkyCCwVU0MACVjC3TkvsE7NpcqKAuRaeaGABKzjmxPIa8XzF5YUB9oXn1zZOFFBBA3PrnOhggH1hju4LBczl7YmjwmgQbtny6OMr2S1bHi/MEXvhqBCaqODYDuMd5S1bHidWcCzv6CBu2fI4McC+MK/4LxRQwbTVxAJWsIEOBji2uuYK5Yg9t0OO2AvZOjliI/d8jtgLHQywL8wRG3kQ5Ii9UEEDcy3SluP4wgYOW8/lzXF8YV+Y47jnvshxfKGCacs9n+O4527Jcdxzo+Y47rl18jx/YSzMcdxz3XIcX2hgAbNurluO2PPgyhF7Yo7YCwU0cAwcyYU8P+B7YoBjF45PQrfz7ZEXCqiggQWsYAN9YZ6ER1trO5sbL1TQwFz5nljBBjo41uI4sS88v8l9ooAKGljACjawX19ub9nGGMeJAipoYBkoiRVsoIMB9oXlAOX6OHzL5saJBhawgg10MMC+cJyEJ+ZaaGIBK9jAXAtLDLAvbAc41iJTI5sbJxpYwAo20MFY6Lkv8jhzBQ0sYAUbOOrmKSmbGyf2heMkPFFABcda5IkqmxsnVrCBDsbCnmuRK9RzebNur2ADs0Ienj3APjEbFicKqKCBBaxgAx0MEJtgE2yCTbAJNsljxxMD7Av1AHPrRKKCBhawgg10MMC05eKco/tEARUcttGO3LI1cWIFG+hzZ9VzdJ/YF56j+0QBFTSwgBUcdUfrcssmxAvHOJ446o5+5ZZNiJFpn02IEwtYwVyLkuhggH1hjm7JPdTSlhuqKWhgASvYQAcD7Av9ALHlmNdczRzzFxawgg10MMC+cIz5icOWl7fZhBiaaxwGFrCCDXQwwL6wH6CA2MYZPSwPrsyHCyvYQAcD7BOzCXGigMOWc+bZhDixgBVsoIMB9oWStpYooIIGFrCCDXQw00gS+0I9QAEVNDDremIu7wiFbCycmBVyLUxBAwtYwQY6GGBfmGN+vIivZQthlNwXOeYvrGADHQywL8wkKLmamQQXKmhg2jSxgg10MMC+MJPgwrTlumUS5IxhthBOLGAFG+hgrH3R2EPOHsokuFBBAwtYwQaOfZEDPZsFJwqYa5GHXI75C3MtskKO+QsbmGuROzbH/IV9YY75fGiRzYITFTSwgMNWc+vkmL/QwQD7xGwWnCigglm3Jo4jdbRCtGz1i3wmka1+Ew3MJfPECuaSRaKDAeaSje2QrX4TBVTQwAJWcNhyOjpb/SYG2Bfm6L5QQF1rnGf0nIPOpr6JDgaYdcdRkk19EwVU8LEWj1uaxAJWsIEOBtgX5vX6iWNc9JwmzHa4iQIqaGABK9hABwPEFtgCW2ALbIEtsAW2wBbYAlvH1rH1rJuHXK9gm5itaJHziNmKNjHrjgMxW9EmCqiggQWsYAMdjIV5VJ/iPKovNLCAWbcnNnDUzanVbDrrefrKprMLx1E9UUAFDSxgBRvoIDbDVrAVbAVbwVawFWwFW8FWsBVsFVvFVrFVbBVbxVaz7hiF2UjW88ybjWTnYZSNZBMLmPuiJDbQwQD7wnMUnpi2ExXM5U1FjsILK5jLO+I1G8l63iJmI9nEXN5cixxZ56GRI+vCBnLs5MjKWctsJLswR9aFjIDOCOiMgI6tY+vYOrYeE7PLq+dtX3Z5XZhD78Ihzgmr7PKaaOAQ58xpdnlNHOKcOc0ur4kBDlvOnGaX10QBFTSwgBVMW0l0MMC+MAfkhQKuXdjPoZcLeQ69SHQwwLWzejlAARVcOyv7uSZWsIE+B0M/h96JfeE59E4UUEEDC1jBmCGWnVsXtmMdGm0N6ezcmmhgASvYQAcDXAGSnVsTsTk2x+bYHJtjc2yOzbEFtsAW2AJbYAtsgS2wBbYcpuex09nqfZ1Ye2+ggwHOE6tnN9ZEARU0sIAVbKCDAWITbIJNsAk2wSbYBJtgkxnFnt1YF+oBCqiggbklT6xg7otUnCfhE2PhebptieUa3X6co/vEXF5LnOHohwXYF5YDnKPbjzW6/ThPrCfO0e3HGt1+rNHtR8FWsBVsFds5uhPPg7YnKmhghuP571awgRmOkhhghqMOzDPOhQLOKPZsMppYwAo20MEAZxR7NhlNFFBBAwu4dqEc8/rB5ZhR7CIHKKCCBhawgmtnybpydFlXji7SF+qMYs92ookKGljACjbQwViYdz65L7IZaKKDAfaFeedzoYAKGlhAbAVbwVawFWwVW8VWsVVsOa+RR1+2E01soIMB9oU5r3GhgAoaiK1ha9gatoatYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzYZTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9jIEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEjuzxBLTVhIdDLAvPLPkRAEVNLCAFcR2ZoknBtgXnllSEwVUMG09sYAVHLbRZOTZFDUxwL4ws+RCARU0sIAVxNawNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvH1rF1bH3ZssNqooAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbWeO4nPkQiQ4G2Bee+XCigAoaWMAKYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtY+vYOraOrWPr2Dq2jq1j68tWjwMUUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIbtzAdLFFBBAwtYwQZmGrXEAPvCzJLRbexnl9eFCraZUWcT14UB9oVnVJwoYBbLdTsvJU4s4JhYGs2unk1c/chFz7n4CwPsC3Mu/kIBFTSwgBXElnPxR26SnIu/sC/MufgLBVTQwAJWcJ0kKpcSlUuJbOLqR26SnNa8UEAFDSxgBRvoYIDLlk1cEwVU0MACVrCBDi5b9jH10XXi2cc0McCxOOMnrZ4vSJsooIIGFrCCDXQwQGwVWz5sGi0snr1JfbSweDYkXf9rPmEazSqeDUl9dKh4NiRNLGAFG+hggLk4uaHyqL5QwLT1xHzOcCTmvH1uvrPxQhPbWvQ8qi9khfKgtaybB+2FBaxgAx0MsC/Mg/ZCAdOWi54HbclFz4P2wgo2cNhKrlsetBf2idmFNFFABQ0sYBYbGyobkvpoL/PsQuqjT8yzC6mPX6F6diFNbKAvzJn0C7NCSyxgVvDEFI9Nkq8A66Nzy/MVYBMrmLvwSHQwwL7qnqMl/9dztJyooIFlrXGOlgsb6Asr65aPdM4Vyge2F7LGeYXXTswumVyyvMK7sC/MK7wLBcxultw6eS3XcjvktdyFDgbYF+a1XD53yh6iiQoaWMAKNnDYPA+YDOgL+8K8lrtQQAUNLGAq8ujLC7gLA+wT8z1aEwVU0MACVrCBDqbNEvvCvIC7UEAFDSxzq2fz0sQGrp119iblA9DsQop81JldSBMD7AvzmisfmWUX0kQFDSxgBRvoYNpaYl+Y11wXCqiggQVsa93yQisfxWWT0URZK5SXVBcaWMBc9Nxmec11oYN5zXUk9oV5zXVWaNgatoatYcvbswvZLY3d0tgtjd3i2BzFeRWUC5knFMklyxOK5CGXJ5QLG+hggH1hnlAuFFBBA7HlCUXySM0TyoUOBtgn5nupJgqooIEFrGADHUybJPaF+cj3QgEVNLCAFWygg9gEWz7cHb+08LPfaPR7+tlvdGFfmP1GFwqooIEFrGADU+GJqRjj4mw9ulBABVPREwtYwQY6GGBfmGeyCwVUEFvFVrFVbBVbxZYNSToO+7Mh6cKh0NwBeTU4msD97De60MFRTPOAyavBE/Nq8EIBFTSwgBVsoINTEWenznhDXZydOuPXKXF26lxYwAo2MOu2gXlUj5+ZxNmTc6GCBhYw60ZiAx0MsC/My68LBUxbTzSwgBVsoIMB9oU5GMbvWyK/iDnRwAJWsIEOBtgX5ri4EFvBluNivCYrzqadCyvYQAcD7GurV3ZWZWdVdlYe4OPlWZHvQuqWB0we1RcaWMBcnDyi8li/0MEA+8I81i8UUEFbR+p5rJ9YwQY6GGBfmDfx57qd90N5KJ93Pie2tULnnc+JAfaF551PjoDzzudEBXND5UbNE9WFlQrYOraOrS/b2YV0oYAKGljACp6K//mff/jtz3/9lz/8/U9//cs//f1vf/zjb//43+t/+M/f/vH//Pdv//GHv/3xL3//7R//8l9//vM//Pb//eHP/5X/0n/+xx/+kv/8+x/+9vh/H8fmH//yr49/Pgr+25/+/MdB//MP/PXx8Z/K4xFhXH/+4NBV4rFGPxSRj4uUcZ+SJR6TzauAlx/+Xj/+ext9e/n3j8c1LMBPBbZrYePa41qLx/OWD9eifFxkTNmdFcTW3xe7++eWH7441+IxdcUSqP9Qom1KjKek13ZgEbzf/fsm80hoVtffPx61/lAgNtuxtFlBHnO/H5bou32pazM8Jks+LLHbkpm213Zo5cMtKZtDUlXm7lTtTzXqT0f17rC0uhaDzSlR7q+IsyJhH6/Ipsb4PMJVY3zRYNVoP61H3e3V8ZKFa69W/bDE5sjK97xkhcft3tMIvV8hf8x4VmjycYW7q+Efr8ZuY+ZHsc6N6Uf/qIRuokZLrAPr8YTgwxLy7qbQzZGpR59xp3IQueWnErZZiDZj/3Fr9vFC7PJSdW6JB3JUWDvur4iMU/G1IlU+XJHNgaWE5vFhgf0I620dFE/R//MejfdDb1fj8Uh81ng88f74/GHHNr/XabA+bQ0tP+4S2xydNeYeeTxhoIL1+wdGqevAqE+j7OcDwzaH5+NGr68anSPcuvxYY7Mc6ja3qD4eXbFj7y/FzUN8W+Pu1vBv2Brx7tbYD5S6BkprH0bfpkLxY10pPlLww2O87M7ssQ5Qe9wnP9Xot2vY4bZq9Pi4hr19Vi3l3bPqrsK9U8nt1fj4rHp3a8rTEf61PbKuXU3EP67R3796rcc3XL7u1qVw4Vg361I3J8aQmDUe2D68ft3W0LUuoU8n119qlLeP8lrfPcp3Fe4d5bdX4+OjfL8129oj2l/cI7Wvq67H074Pa7TdOT7fd3iuij/n38/3JbK90Zw17PFw5cMjtOnbR0azd4+MXYV7R8bt1Xgx/6KsM1I8lfhla/r7WzPe3prx9tb033lrPh2bz2PkK2eT/NnYdeMtH+8Rt7dvvP398PS3w9PfDk9/Pzz3G/PdS8d6rPu8+pju+/DSMTbROd7cNO9tfticP8VvbA6tfLB2bovHvPOH6budrCzrrkKsVftwsnK/RZ0tGq/tlHuzIVF3syHHuqkoUj4s0d4eJOHvDpJdhXuD5PZqfDxIthvT1tXBY2O2l0rkK3yv2Sn7cC6jb06INdvUzqPi8Sz0tRJWbpTYH1i3ptn629HZ347O7m/Pb/V4c35ruwz3JgvlON6dLZRDdg8nbK5Ik6d7f+vl1SL1xSLlWFNcRWVTpLw77bhflyhrXeLVddE1qzNetf9qEa+rSH9119i6Lxmvzt4U2d3CP2Z01j38g+XD6bJtmbvzdp8U6XP/PB7e9xeLWD1WkaeHo18rcnMKUXazd3fnEGX3DObmJOJ2OULXFomni59fl+NukXa8WmSdYx7YXivyGBPr0vbBvimz3cV1BVt/vnz44sEWHGzP4/hrRVqnyMcD8P7Z++OHlrunCPnNkCzh/uFJa3+FfOu5jmh7/0ZyW+RxLbee7EgvmyL76fu6Rl7ZrE1//0Hw7hHTzSfBuxI3HwXfXpPNs+D9Fl0Py9SjvFTDZIXq4xThr9Y43q7x1DryPPK/VmNd5D3KfVxj95Dp5s3DJzVu3T3s16WUNY1fWrxf48VjzLSvqcESH+/b7ROatiaeH2Nkc/W9XZD8qOK5II9k/XhB6vs7d1/jG3auC+uyGbhl1+l0+JpFf1zxvLpR1xWixeYo2z5wWjdnj7uSjxejbq68JX+ldq5L9839zG45itDDZ5vNsTvP6TpFFW3Hx+e53ZOamzNKUr+h4am+3/FUv6Hl6Rt6nrZb9N600r7GvXklafL+0N8fHbemheT9p07y/mOnL6zJx9nR2puXyPshaytKS/H+4vWtuq9xv7u+bd/QepoXS+8+vd+vTn5M6Fyd3j5uDhHX71gd+71Xp68zTD2O3erU3/NIq3TT1tI2d1Luu5OUcqCtEvrLNn2/DWq7FKvC86nyl6XYPYmSx1RBWdcfx9N06FeKHPnr3WvqIZ6vhL5SpMfTE62nRuevbBFf+6Vv9kuU37XEYxtoZ3vUjzdq+Y6NWr5ho26L3D1GtsOuHuspdi/xWsCPD26vmWrzV4usebLxldAXixRj6r69ujpm81gbXwv7uEgv3xDwuwdM3xLw42Nia3V8tzq7xo2aL4m41qeX/tHB9kmRNYXw4Kff8vxcpO8e0q+nM+OtyB+uju6eV5W65lRK27S+6bG9ryprguiQD2/e9dB3b+/02FwF/PBTFn9+mCE/FfkkTPh90/F0Y/XzNPUnZSqHyePOJT4ssz1kx3sG5z4uT4/Pft3H/vaMqB7x9p2i7ibM791PbEvc/EXI7TXxzZr42zOi2xo3Z0Q/q3G8XePehJfufrP0wx1rfW2b3pyZ/aTGrZlZlf725N0nNW7dwe/XpRzr+Hh++P5zDdXfezluzRDfr/HimLs5Q6y7OL07Q/zJwX7zAGm/8465N7ur299B3Zzd/WRBbs3uqr1/+t/9fuju7O52OW7O7n5ycedc8T4emH9wcZcNKe9eIW6LFDWmAZ4u7toXLu28yBox5eMD1d5/mqrl7aep2xI3rx3s/aepn1wsr/Pc4/L+4/Pt7tdMt+Njd7XcYs12t+ibq+VdEV8b9YHyWhE51o/dtGyv23dLUo1p4vb6xX80Lv6fzjJfvfhfazRuBNqmjG2fR9T/7XnE17ZLWXPOWp4uEX8t8nYqbg/7x2X9OlLkiJeGjsr6xYPK5oy3e9Z080RT/RtONLW9v0m3u3ZNNj/2sr16yGdz0bwEsJfvd7Vwv6vt5ZGj66JmlNw0ie36qtcUqbMcP72g5LMZRXVywPqL05LlaSahfTQtqbsnV4+7APtf7wLul7h3FfDZLPzN7XF8w/bwb3gesC1yc4vsuxmfVuY4nhsRv9YUeVh7KrPp8tTtZfzt3spdmRbrkqD148O5+G0JZkfHhy5fK+EsRf+wxL7F+uAFP8fLHePrRUePIh/3aW9/x2rrQi2s9o+nV3e/pLrZ6aHx/o9QNd7uB9iWuHkNHu//DnW/Re91euxr3Ov00Hi/C/CTGvfuBfZH2L139XR5++jo77/v5/6afHyZ2d9tqN6P+nUBEtY3o7639++8+/s/ltYe7+/Xt38ufX9NNqN+u0Xv3Xnb8Q0zqvvluPW4zI7y7m2MHfX92+7tcty8jdltjrt3htsa9+4Mbfds6eYmleP9O8PtctzbpPu3Z6xHS1GffjD3yzv9tu8wuvWz6f0b4G5dt9g3vJLP3n8nn73/Uj77hrfybTfozcuW4+2rFlN5+6rlkxr3cvT9C45P7r7u/Yhy/3q/ez9/3Na4+evH7fvTbv5e8HaNzc8F9zXu/Vpw+yzn9g3tdqve/K3gfknuHiPbbXLzt4L7N/29vzZ3j9X9utw8Vv0bjlX/hmPVv+FY9e84Vvdb9d5PUu+/cvXDKynb/Yjq1s3P9vWc9EAWeXr08cvrOXe/fjI6Dx8zKB89Qd2XuDVzasXffn662xhM75Xn11r8ujG+4XV99h3v69u/NfXWJYztX8Mw59R+aEzv9yusS7H29HjglwrbF8OtI+NxRcxq/PLy1+2moIO6qn1co25vBInSBz83X90/wnibRKmmHx5h2xp13ZCWWj9+ZZTVvnsUfKvL0NrdA2xztd/evizclrh5td++Yajst+itLsNtjZtdhp/VON6uca/L0Nrdmc762ja92WX4SY1bXYbm33AP5e/fQ+3X5V6XoXn5vZfjVpfh/RovjrmbXYa2++XU3S7DTw72ewdIi995x9zrMrTtI5ubXYafLMitLkOL92dNd29suT3FF2/Pmm6vgtaLjtoPP637ynXUelD71C71SwX/jmfgn1S5+Qjcdm8y/cJd2K7MvUfg+xK3HoF/UuLOI/D9hNLN28ny+05afOEYsW85Rux7jhF7/xix948Re/sY2V2i+poteDwyeUpl+zGGyvb5z61b5G0JeSTR+hhHq0+dFqMb7ccy7d0pg32JW1MG5YjfeXvUtp5TPm7Vj4+3x+5Z1OMx+ZrpD/mof3xb4u5XUsru41D3PpOyLXFv0mBf4taswX5r3Jw2+GST3ps3KOLvzxt8cpgFV2WPPJLNYba7SRXnpalPbeT605Rh2U5c3nrXwH458kd/Z4kHf7wc2yKVdvZaN0W2G9aPdR/y4KcW1F827O7sezPPtiXu5Zm23zfPftwez8+jf8n3bRlTbque77t/3azbyYzChEh9uvAt7dUi8Q1Fni/iv1bkaW7G+8dFbPtDg/XeRX1M1DxdFf38lZ/dwRbG/dkPjds/F9m+NnXd5Gkc8WKRkL6KPL/U9otFWBKt31DEjk2R7S9bKo/sny/Dfy6y+/FTbeu2tban4+RLu7gQj6V6vHqcPL0p9CgvbpOyDrbHkb7bJrvVaevH9Y8pp/Lahi19TbCWHvW1Ik39qdW4fsfqbHbx7TyJTSjtHljdfJF62T6vsoOJWm0fL8juhX9efRbx+vzCrfipxu6XqYUJsPL0yFx++hJb3b2f6uBEfGj5uMYnPydZV+OPrVo/XpvtZl13wGZPlya/btZtkf40ib45SL5yPi8fn89rfMOxtnvA2qM/dYbq5gqlbduz1gW1Pn8IV3/+NvLu2dPNS+HtJrn3LYWye3Hfrbf27zfqF/bvtkxxylTZ3KbsfgRFSj8mfp4GcfSvLEp1LmRdNhMVu1n59pCusH963favRbZNouvlP4/73vpakUqrxgPlxSUpqw2nPN9kfG1JrK5371krL25YU27yj00R339Gmr7X+moR52rLn3/287UiQZF4tUhbt+f1ue3ja0X6mrR4nEX11YHstLE8OF4tE8IgfL68/1qZONZVtTxmyjabN96f3Ir3J7fi/cmt/faoq4NextcXN9tj19EifHT2sVGPj14KWMLfPgXul6M//Uz0MV32YZHtd01WPHb9ePpkX2KtStf24STsfs+0dcMk4fXlAz54tUH03Sx7t7dnpbYl7s1K7V4HeHNW6gvbY3cy/6xMpYy+Go6PP3XKlM2cYe/v753+7t6pux/Ofsve+WF7VH9975SnMq+ecx5BtpamH91eLaM8cXtk0sdXbXX3lOreOWdb4t45Z1/iG845nb5D6e34eO/U9x90bUs8rkcOebqyL68VYd5xXJnUF4uUQpH62imjt/7UpLI7ZWx7GL/ptlhXFbXDN7fFd4uIvlikrBO6lnK8WIS3yGpt8lqRx3ZYQX38MM1mtx/f9/WOA31+U9HPj+93q8L9n6p93AFQ1bYPiW91p9ftk6qb3em7leHFIHqU3cq8+6GAunvl4iPi13xUtN1ixPubY1uk6npIXH/4DrvZF4pUXy2EftQXi/CWsMftsHxcZPuGwFvXNvsS965t7O1+l0+2xnrGVcP6ZmtsT79rhqGVsE0R3y3JugyQ46Pp5P1icNf44xvCv7Quta7ve/7wc+UvFqEj8ugvF1kvPG/iLx7tsULk8bhuU2T3M6xvKXK3f6duP0R173JzV+Lm5ea2xK3Lzf3WuNm/88kmvde/U+v21H2vf+eTE82aF39cG5XNiWZXpCtFdmerar/36nTnwZTEZkl236F2Jmyet4j8VGLbRria9608N0WVrxTpdbV29KdXa/xaJN4+4W1L3DvhtbfflbbdGo+5+PWE4Hi+6/15a7T3T//t/dN/K7/v1pA15Mrz571/3Rrt/a3R3t8abze7boe98YK08dOs11LM+F2HPd/X/VLE5XdOscefHVy4Hy+ujq9X2T5WrL1YpK+rzHK8enqwvlrUHkU2S+LtG24Qdx9Oun9HtN07PNX2H6Zqf16d3QQpNZ4mAr3fr9D4SNDTTfcva7J7zdntbRr6Ddt092ywrIfZtTwfZT9dDm1/lcXznh9+YiY/X93tfpd1b7dsFyPWI3UL3y3G9gTBue6H35h9qUhh7LYfHk3+XKR/Q55tn1/VYyZr/+E4K/6VIoUXlzw9z/tqkXVt9/zxpi8WWa/07M/3d78U2b0esK/r7v78C6Jm90s8vwn3eG5f/LnIdmW4rerNXt2sbb0evP/QNPilIryq8LFx6maz/t5FfngPnO32zvanBOtFO6r1eLGIra/j6XOz+q+7eBuua0kez0PlwyBox+9d5O5UQnv/yVV7/8lVe//J1X5r3JxK+GST3ptKaPIdV63b/p7VCuNqH57Dm2znq55ahOTj78i17duw773ytH3DCwPb+y8MbO+/MLB9wwsD91v03itP2+7HWTffIvDJctx65WnTtz8R1PQbvnmyL3LzmyfbIndfvrpfkpvfPNkXufnVxLab877/1cTPytz8/sonZe5+fPGzMjc/47LfwDc/47IvcvMzLtsRdO+1E9uBfPNlvfsa917W23aPrm6GgcW2/eTWmzy2y3Fzk+o3fMblk2P17mdcPilz9zMun5W5+RmX/ZXarZecfHKxd+ctJ5/c3azGgu7PPyf86cakFX93wnZf4taEbSv9dy1xc853v0FX58pj29rHd3q76dp7k2itfkPnSqvf0Lmyn5gsvB2tbSZrW92+R321auiPL978abzsvm31OLes35X05y7woveLVFsb9vEwtb5YJHS1FhzPD/S/UqQxHde0bpZk95Osm2N3vxzrPNGe37v7tZWx1RrYfviYzC8rU37flXn+tvzTLdavy9F+3+WohPvz5e+vy/H2U9Z9iXup+v4XqfZbw1fHdIunN7v/sjVcf+cit+eKtnMS9+aKdiVuzhVtS9ybK9pujbtzRftNenOuyL/hicD+LPM0r/l8I/LLWSbe/6ps+4YvWrX3v2jV3v+iVfuGL1rtt+jNiZ7d767uTvTsl+PeRE+8/SGW1o9vmOjZFrk70dOPb5jo2S7J3YmebZG7Ez27X159YaLnkzJ3J3r2ZW5P9HxS5u5ETz++YaJnW+TuRE+8/Qmh7UC+O9ET73+v19//0JUf3/DKVn//Q1ef7NqbEz37Y/X2RM++zO2Jnk/K3J3o2V5m3Zvo2V+p3Zro2c0H3JtScCnvTyn47sHP7SmFbQuqrtkA075putwW8XXB+NifrxbhsqIcrxYput5TXjQ+7qh1PX7nInfvblzffm/AtsS9u5t9iVt3N/utcfPu5pNNeu/uJm9O334Svmsg76tVQlSfm9B/PkD671tDYv00R39oEv5KEdW1WVXbq0Vk/fT5UWSzOvYNM61u3zDT+sk24VcTdmy2ye5nQlJ5ffODy0efQ/+syPqMxIO7flhk96onYxe3H1408/Pq7K4W6/rZRGn1494NL8fbN36+e+35zWu9ou/f5Pj2Rz63b3I+KXP37uSzA8UZPT0+mqP08h1HW3n7ZbD7w+TezI/vv4d1a+bHdz/Bujfzsy1xb+bn/pp8PPPzycC7NfPj9f0vuOxH3s0pl32Rm1Mu2yJ3p1z2S3JzyuWzILk5zfFZkNycn9iv0s35iX2Rm/MT26C/dzO9Pexvzk/sa9ycn9g+x7p3zmr+DfMTrb2/SfX9+YlPjtW78xOflLk7P/FZmZvzE/sbpVvzE5/ca92an9j+BvrWUnzyM+o7S/HJ+0/I+frDC/+/8hKVxutcWrcXi8T67ZE+f4fli29iWU88H/jx6tTdp6jvvs5lW+TeZ2X2JW59VuaTEnc+K7PfL87Luf3l1+z8UKS8WkQpYh/vl3zT5nsdAvsStzoEfDd5/A0lbr6Xbb9BefrrHq/ulXXFqt5fTZDnJXm5SKyP7D3w5SLc+e6K1PdbHev7rY6fvK5y1ejaXnzj5Xp/Qlf/8Ms08fbZ9pM3ot7aFvvX7x7rRcCur75+l5fVPjBeLbIi+XHuffUdvlFYkvbqe41j3RQ96r38NuH1m9IHvrxN1o3Vo8hm72xfXV0b30729g1F4tWXaPPsqbTy6urwW87iu4NtW4S3NJewj4vE7gmW8/ZO7+Xj33LG7idUhffePpa4fnjl/tmStLUkdbckuzc6tXVZVdvThJN9ZTnWtxTjOD7+sW7odtJq/ULdn9/q+GuR3bXqesXV8xyAVv/CMRJP3zzZvJs1dj97uH2MaPmGY+STJbl3jOzeHHjzGNkvx91jJL7jGOm/7zHS+wroY/OVg9h947Jq/O+vMIyfauxbWtc73fzp8v3nr6ZsP09wrEuSevixWZnyDStTf+eVEVuXEz8+W/zSBxvWC3OrSXmxiLIkWr6lSLxaZD1vfewmf7XI6gx41Ht9wzob1l4tIhR5+cuOWniUVp9vnn+cU4zdhNO9m+d9iVt3vvH+T6e2JW7ePG83qPHmYPOPvy4Zu6dOt97ZuV+Mwu136bFZDH0/zLb9VjfDbP/FTuUxjdYPV+aTIk9f2Gsfb5Gy/zH2zW+H7orcmwPcl7g1B/hJiVtzgPL+Pby8fQ+/f0R059NgsfsOVqybu+gfP96J7S+uZN15mzxfXv70eGc3c+drprvE8fE31LeNWnwJoT2XaPffON748k6z/lKJePrqTn1tKTo/czwOeaWEHoTGUeylpeBN4eNd/6+V4CX9IS+tyPjcznq61V9bCr7lJ88fzfpKifLUWvLU4Plzidi9JbAEDzCfjwzp99dkZY6Yv7YxyvqItDxfJ7y6PV8sEfRUxtOnrEV/OrnG298R3I6zysc5nk4CPy/FtkRnnD1PSH2hRKxZgsdQ1c222L5J5177Yew+KfUdnyh4frHY89uWf1mZ3bsVmvPyuOb1oyn2z4qsJ5YP7h91MMb29wyxWjDsh88H/rw6/e2PBW3PjWui4fFIwF85yApveHjMeW72S/+G1v/o39D6/+nO9aedWz/cuf57HyG1ck38VOLXDbu7Oj9We4w+P1z/ZUarb3/7Su/T8/cyfy7Sdx+2ujtRmA843pso/GQ57k0U9t0Pmu5OFPbdT6vuTRRuA0DEOemKP3+j69CflmRzvK6D9emjxvc/pqNiHB7PN28/rcm+BK/feL5h+UoJumL06aHWzyW6bOdM1+Flx4sl+vp1ytPl3FdW5PlE93TW/kqJtiYYfuwQ+kIJFy6Bttui/c5FpHFuaM9tE18q4s4tR9cXi/T1Eyh5/lrhl3Zu46tR/tpYsXWF+zhS5LWloPnLjpdW5JEv6wz3/D31r5SQ9b53kRKvleD3ZBKvLYWtAfvA15aiKlcvT5+f/FKJRjN79NdWhKPT9LUV4SU5j0x/aUV89fN4aa8U6Gue9/mTk7+M0+2Dzbdvh/s6vT9/Q+Ara7GOy+71zc3wWgFTrob1h673fr9E5WewT81Zr5Z4msz8Uok1NEy9vlTi+UMZT0/tvlKirGldq8dr28IaX+l5nmN5tcRrO/Xpex/PefelbUHbb7HXdmrhswXF/LUS64uhj2dDL+7Utl4dV9pLSzG+OcqFRXmpxNOnT8PkwxJ990xJlOh+/li2fGG2iDmrqPW1NeFr273EayUaX5Z+bZAIUyuPKzZ5cUX4Vcmhb5eQV5eCLyfLS6P9cZ3Ktij+9lJsdur2Oc7jdLa+t/BDfLYff6Xed8+Tel2tU732j3+O0ndL8vbc7uNe1bndlY+ejPXdD46UD64c8vGztd0GtXVW7Nblww26LSLHwSX4g18s06vxjZIfHh58pYjyRQ59flPs14qsj7/051dFfq0I70J4bOX24rEaa+D1qLY5Vu8WacerRdaH0x/YXisih9SVy4f4x2U+2bTBpu3Ha5v2caQ+fQHmcH11lQ5rT2U2+2j3ca37W2Zb5l7zwr7EreaFT0p82Lzwfx//5Q//8qe//dOf//ovf/j7n/76l/98/N3/jFJ/+9Mf/vnPf7z+67/911/+5en//fv//x/z//nnv/3pz3/+07//03/87a//8sd//a+//XFUGv/fb8f1H//H2+MW1pvG//2H32T898cA+IfH9Hl//Hd7/PfHvWXV8f+Nf1nHZ+cf/9HG/5D/dtPx1yb/93/G4v4/"
359
+ "debug_symbols": "tb3fju26cW/9Lvs6F6oqklXMqxwcBE7iBAYMO3CcD/gQ5N3PZEnkmGutNFs9Z+8b72F7dw39408SVVP679/+9Y///F///k9/+su//fU/f/vH//Pfv/3z3/705z//6d//6c9//Zc//P1Pf/3L43/979+O8R+i9bd/tH94/LP99o91/NOvf8b1z37+047rn3L9U69/2vXPcv2zXv+86tlVz656dtUrV71y1StXvXLVK1e9ctUrV71y1StXvXLVq1e9etWrV7161atXvXrVq1e9etWrV7161WtXvXbVa1e9dtVrV7121WtXvXbVa1e9dtXzq55f9fyq51c9v+r5Vc+ven7V86ueX/XiqhdXvbjqxVUvrnpx1YurXjzq+fhnXP/s5z/7cf3zUU+OATrBJjxKyjhW+qOm5L/cJviEmNBP0OOYMCrHAJ1gE8qEOqFN8AkxoV8gx4RZWWZlGZX7gDKhThiV6wCfEBMelXWAHhNkgk6wCWVCndAm+ISYMCvbrGyz8hhIOrbPGEknlAl1QpvgE2JCv2AMqBNkwqxcZuUyK5dZuczKZVYus3KZleusXGflOivXWbnOynVWrrNynZXHENOxC8YYSxiD7ASZoBNsQplQJ7QJPmFWbrOyz8o+K/us7LOyz8o+K/us7LOyz8o+K8esHLNyzMoxK8esHLNyzMoxK8esHLNyn5X7rNxn5T4r91m5z8p9Vu6zcp+V+1XZjmOCTNAJNqFMqBPaBJ8QE2ZlmZVlVpZZWWZlmZVlVpZZeYxB0wExoV8wxuAJMkEn2IQyoU5oE2ZlnZV1Vh5j0OoAmaATrtFtVibUCW2CT4gJ1+i2ckyQCTphVi6zcpmVxxi0NsAnxIR+wRiDJ8gEnWATyoQ6YVaus3KdlccYtLELxhg8QSZceWhjNJVH8tsYO2VsujF2TigT6oQ2wSfEhH7BGDsnyIRZOWblmJVjVo5ZOWblmJVjVu6zcp+V+6zcZ+U+K/dZuc/KfVbus3K/KpfjmCATdIJNKBPqhDbBJ8SEWVlmZZmVZVaWWVlmZZmVZVaWWVlmZZmVdVbWWVlnZZ2VdVYeY6fUAW2CT4gJ/YIxdk4YldsAnWATyoQ6oU3wCTGhXzDGzgmzcpmVx9gpPqBMGJVjQJvgE2JCv2CMnRNkwrhYkgE2oUwY10s2oE3wCeMSbCxPXiMOyIvEBJmgE2zCqDyWOa8UE9oEnxAT+gV5uZggE3SCTZiVfVbOi8axgnnVmBAX5HViGTDq9AGPv2pjlcf4avl/+YSY0C8Y4+sEmfCo08aRMMbXCWVCndAm+ISY0E+oY3ydIBN0gk0YlduAOmFU7gN8QkzoF4zxdYJMeFT2Y4BNKBPqhDbBJ8SEfsEYXyfIhFlZZ+UxvlwG1Amjsg7wCTGhXzDGl48VHOPrBJ1gE8qEOmFU9gE+ISb0C8b4OkEm6ASbUCbUCbNymZXH+PIY0C8Y4+uEUbkM0Ak2ISaMvxr7YoyUGKs8RkrYgDKhTmgTfEJM6BeMkXKCTNAJs7LPyj4rjwESY3nGADmhXzBOUifIhFFwrOA4SZ1QJtQJbYJPGJXHmo5BlDAG0QkyQSfYhDKhTmgTfMKs3K/KbQyifgyQCTrhUbnLgDKhTnhU7jbgUbmXAY/KvQ3oF4xBdIJM0Ak2YdQZizGGzAkxoV8whswJcoHlnaYO0kV5rzkWaRzSctRBvigW9UnjsL5IJtX838aSVVmki2xRWVQXtUW+KBb1SW052nK05WjL0ZajLUdeYB2PwdQ8/zYGjb8dt9ltHLUXlUXjb2XssxHxF/miWNQnjaP4oqw3tm7k346tG/m3Y1kiFvVJPf92bMmcDThJF9misqguSsdYt5wTOCkdYy1zVmCQ57TASVmvDxp/q8cgX5R/WwaNv9XHGnne+J8ki3TRqKc6qCyqi9Jhg3xRLFoOXQ5dDl0OtUXl2s6udVFb5Iti0dxHnsf92DNu9doznsf92AtuvigW9Ws7ezkWySJdZIvKonrtDy9tkc+9UGLR2kc5ZnLP5PjI/VHXPsrxkXsmx0dujbq2X1vbr63tl+Mj90Jb+6itfZTjI/dCW/uorX3UlqMthy+HL4evfZRH8bjB8jyKT9JFuQRjG+RRfFJd1Bb5oljUL4o8ik+SRcNhMsgWlUV1UVvki4Zj3KRGHu1JebSfJIt0kS0qi+qitsgXLYcsRx7tZoNkkS5KRxlUFtVF6aiDfFEs6pMsHW1Q1hvbysqiuqgtynp90Kg3bkUjR0AZ2ypHwEmySBcNx7i/iRwBJ9VFbdFwlLEeedyP+43I88e4z4g8f5SxBDkW6viLPH+cVBbVRW2RL4pFwzFuJiLHx0nDMS7fI8fHSbaoLKqL2qJ0xKBY1Cfl+DhJFukiW1QW1UVt0XL4cuR5ZtxFRJ5nTpJFw9HG3spzz0ll0XC0sTXyfDRuJiLPRyfFoj4pR/JJsigd47jKkXxSWVQXtUW+KBb1i3qO5JNkkS6yRWVRXdQW+aJYlI7H3uo5kk+SRbk/yiBbVBbVRW2RL0pHDOqTciSfJIt0kS0qi3KZ+6BY1CflqD1JFukiW1QW1UVt0XLYcthylOUoy1GWoyxHWY6yHGU5ynKU5SjLUZejLkddjrocdTnqctTlqMtRl6MuR1uOthxtOdpytOVoy9GWoy1HW462HL4cvhy+HL4cvhy+HL4cvhy+HL4csRyxHLEcsRyxHLEcsRyxHLEcsRx9Ofpy9OXoy9GXoy9HX46+HH05+nTIcRyggAoaWMAKNtDBALEJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFJthM2yGzbAZNsNm2AybYTNsBVsmwpg+eaCCBtYryB7YQAcD7AvrAQqooIEFxFaxVWwVW8XWsDVsDVvD1rA1bA1bw9awNWyOzbE5Nsfm2BybY3Nsjs2xBbbAFtgCW2ALbIEtsAW2wNaxdWwdW8fWsXVsHVvH1rH1ZZPjAAVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2MgSIUuELBGyRMgSIUuy/UTGRKdkB8pEA4dtTNpKtqJMbGC2UtTEAPvCzJILBVQwbT2xgBVsoIMB9oWZJRcKqCA2x+bYHJtjc2yOLbAFtsAW2AJbYAtsgS2zxHMPZZacmFlyoYAKGpgtKpJYwQZmo4omBtgnno0wF2bjS7ZdHavC1epyYoBZYezYq+HlRAGz6aUlGljACqbNEx0MsC/MJBgz2ZItLjImmiWbXCY6mNv3/LO+MMf8hQIqaGABs1XnSGyggwH2hTnmLxRQQQMLiK1gK9gKtoKtYssx33Nn5ejuuY9zdF/YQAcD7AtzdF8ooIIGYmvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLli02EwVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2Aq2gq1gK9gKtoqtYqvYKjayxMgSI0uMLDGyxMgSI0uMLLEzSyzRwAJWsIEOBtgXnllyooBpa4kGFjBtJbGBDgbYF55ZcqKAChpYQGyB7cySSAywL8zWvPFsUbLBaKKCBhawgg10MMA+MVuOJgqoYNpaYpsLWc58GKfQcubDiaNC9u9me9FEAwtYwQaO5R0PrCRbjSb2hdkue6GAChpYwAo2EJtiywba8ahMsgVpooBps0QDC5i2kthABwNMW27qbOnLjuZsQ1LJTZ1NfBdWsIGjrubmy4ZazbXIllrNxcmmWk1bttVeqKCBw6a5ONlee2EDHUxbLm9212ouTvbXjo5LyQ4ltVyc7LG1VGSX7YUVbKCDAfaF2XFruQzZc3uhrcPzHPMnVpDj1x0McI3Cco75EwVUEFtgC2yBjTGf7U5quc2yGffEHPMX5grlv5tj/kIDC1jBBjoYYJ+YbVATBVRw2MajLcl2qIkVbKCDAQ7beOgl2Ro1UUAFDSxgBRvoYIDYFFvmQ7FEBQ1MW01MW0tsYNo8McC05YbKfLhQQAUNLGAFG+hggNgKtoKtYCvYCraCrWAr2Aq2gq1iq9gqtoqtYqvYKraKrWKr2Bq2hq1ha9gatoatYWvYGraGzbE5Nsfm2BxbNu+PR7QPbKCDAa5zbHZ5TRRQQQMLWMEGrjN69ng9bg4T11k6u7q05ijMfLiwgQ4G2Cdmh9fEbCXXxLV927HWuB0B9oXnmD8x29MtUUEDC7j2ZhNs4mCAa282PUABdS3DOeZPLGAF21qG8wc1JwaIjTHfGPONMd8Y840x3xjzzdax04wtaWxJY0uebf65DIUtWdiSjPnGmG+M+caYb4z5xphvjPlW2W/nmD+RLVnZkpX9lmP+QrYkY74x5htjvjHmG2O+MeYbY74x5ltjvzW2ZGNLNrZkY0vmmB/PsiVb4SbmlqyJBhawgrluuQw55i8MsC/MMX+hgAoamLZcyBzzF+b1w4l9jcIc86O3QbJhbqKCBrKHOnuos4c6x3rnWD+TYKAfB7j2kB8KGljACjbQwQDX8ZB9dTraxCUb6yYWcNQd7RySvXWP+alEBwPsCzMfLhRQQQMLmFdtKT5nD07sC8/ZgxMFVNDAAlawgdgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKjTnHs0vvQmwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WU7exIvFFBBAwtYwQY6GCA2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFRpYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkmyk1NHEKtlJOdHAAlawgQ4G2BfmHcqF2Aq2gq1gK9gKtoKtYCvYKrbMknxonN2VOjpgJdsrJxawgg10MMC0ne+cOEAB05bivEO5sIBpa4kNdDDAfAo+LvPPfssLBVTQwAJWsIEOxsJMjewGyC5Lbef/amABK9hABwMc2yyb5LLbcqKAwzZ+dijZcDmxgMPm+e6PvEO50MEAc5tJvvHjAAVU0MACVrCBDsbCnMFwS1TQwFyLkljBBuZa1MQAc5u1fEvJAQqYtnyfSd6hXFjACjbQwQDTFvkqlAMUUEEDCzh/mKNnK+V4GKJnK6Um5lXFhQIqaGABKzh/jaNnV+WFAfaFeVUhJwqooIEFrGADHYyFjT3f2PONPd/Y840939jzjT3f2PONPe/seWfPO3ve2fPOnnf2vLPnnT3v7Hlnzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz3f2fF97/uyUlBMFVNDAAlawgQ6uPS/nmO+JChpYwLEv4khsoIMBjrUYP8LUsyfyQgEVNLCAFWygL8zRPX5LrNn9OFFBAwtYwVyLmuhggH1hnv0vFFBBAwtYQWwFW579RyOZZvfjhXn2vzBtnqiggWnLPZRn/547IM/+ozlBs/txYoB94fnKoBMFHLaeR8n54qATC1jBBjoYYF94vkboRAGxOTbH5tgcm2NzbOeLhXL7nq8WOlHAtOU2O18wdGIBK9hABx82O3JTj3y4cOTDRAEVNLCAFWygg9j6smX3ox2SKKCCabPEtLXECjbQwQD7QjlAARVMmycWMG2R2EAHAxw2yUXPVxVdKKCCBhawgg0ctgzz7KqcmLbcOvn6ogsFVNDAVJTEBjoYYF9YUpGbpAiooIEFrGDackPlW40uDLAvzHcbXSigggYWsILYKrZ811G+8y0bLC/M9x1dOGx5Cs0Gy4kGDlueC7PB0vJUlw2WprmhRoBMDLAvHAEyUcA8USXVRW2RL4pFfVKO4OulcgcoYD7PSLJFZVFd1Bb5b/PtdFmxJeZm8MRyvh5Ls13xorZobIOSFIv6pByJJ8kiXZSSSCxgbuue2EBfmAPOjsRRYbSz6Pk2sAtHBUsaBcZvnPV8JdiFAfaFObIulLlJTBfZorKoLmqL+tqIOWSul/rlguYy5ZC5MBc0t0UOmQtzSbPYfBWYrneB6XoZmK63gel6HZiu94Hp+fqvC3Mtc0HmC790vfFLsyfwovHXuRfy4D+pLmqLfFEsSkliHvcXDstZfJw4Jxo4ipbcm57HTe7COMBRIZc9dG2YMLCAFcyyuTfDwQD72uA5ki4UEFvH1rF1bB1bx9ax9WXL/r6JAi5b9vdNLGAFG+jXoZ5vGDsP32wFvFAOUEBdmOepkouQg+nCAub1RVJb5ItiUZ+Ul7snySJdZIvKouWw5bDlsOWw5chz1GgJ0nxj2EQFc2UisYBjI5bccjngLnQwwL4wh9yFAg7baMrQbNebWMC05fLmYLzQwWGruR9yiJ6YQ/TCDPYkXWSLyqK6qC3Kinls5MiruTtz5NVcfi9gBRs4lrSe7wcNsC/MUXqhgHmhlZSy3PI5Si+sYAMdDLAvzFF6oYAKYuvYOraOrWPLUdpyk+UoTcyOvIkCKmjgsI0n1JodeRMb6GCAfWEO0wsFVNBAbIItT5VjFlazI29igGkb+zU78iYKmLaWaGABK5i282WwaRuHc/be2ZgP1Oy9m6iggaOu5+bLy9ScvcneO8sZmey9s5x7yd67iX1hRsCFaTvfRKuggQVMWy5vjvucBciGO8vJxWy4s8jFyXGfN7fZcDdRQQMLWMEGpu18S24szME+psw1u+wmKmhgKnLRz5PyiQ10MOaQr2cQJOaJ+UIBFTSwgBUcdfPGPfvpLswguDAvK3JLZhBcaOComzfu2U83caxF3hNnP93EANOWy5BJcKGAChpYwAqmLY+zTIILA+wTs/duooB5qpHEPDO3xHUd0A4HA+wLz2vjEwVUMK8DSmIBK9jAvA7wxADXdV87L5pPFFBBAwtYwbzFydXMq+aemGP+QgEVNLCAFcx9kYoc8xcG2BfmmNcTBVTQwAJWsIEOxsIc6KMzXLPLbqKBuRY9sYIN9PHi3CMxwD4wD5gx5icKqANzz48xP7GAFWyggwGmbQyc7LKbKKCCBhYw93wumbPnnT0f7Plgzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz/e157PDLfJsmh1uE+vAmtjAvv6FMbImCqgL8424R/5ZvhP3wgbmLsxlyDfjXtgX5ttxj54o4NiFOW2UjWYTCzhsORWUjWYTHQywL8w35l4ooIIGFhBbxVaxVWwVW8OWh33OQWXzWMnX8mfzWBnvv9NsHpvYF+YBfmEubyQqaGABKzhsmtvsfH/1iQH2hedbrE8UUEEDC1hBbIEtsAW2883WR6KAChpYwAqmTRMdjIlxvr76xPwXLDHA3NTjkMt+r4kC5uLURAMLmIvjiQ1MWyQGOGx5+5D9XiUjKPu9St7XZL/XxGHLM2/2e02sYAMdDLAvzJdbX5i2XMh8wXVOZWS/V8lJi+z3Knn2z86ukifs7Oya2Bfm4L1QQAUNzGK51XNsXtgX5ti8UEAFDcxiuQNyZOWNcTZYTaxgA/PPcuVzvF3YF+Z4u1BABQ0sYAUbiM2xObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s2WA1UUAFDSxgBRvoYIDYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbAZtoKtYCvYCraCrWAr2Aq2gq1gq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYyJJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0leW2LGyxI6VJXasLLFjZYkdK0vsWFlix8oSO1aW2LGyxI4Dm2ATbIJNsAk2wSbYBNsZFZGooIEFrGADHQywLzyj4kRshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bXzY5DlBABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbGSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImRJ9lqV8XDHsteqjOdUlr1WZXyuxrKrqozHOJYtT+X6TpeCBg7FeAJi2fI0sYEOBtgX5iC7UEAFDcQW2AJbDpHxrMOyYWlinZhNSGVM31g2IU1UMCt44qgwnlRYNiFNbKCDAfaFedhfKKCCBmITbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNsediP3nLLJqSJBaxgAx0MsC/Mw/5CAbEVbAVbngDHEybLvqEynjBZ9g0Vz92dg+FCBwPsC/NUd6GAChpYQGwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVuO4/Fcz7JxaWIFG+hggH1itjRNFFBBAwtYwbR5ooOx8BzdkZgVeuKoMJ4tWnYxTXQwwL4wx/GFAipoYAGxKTbFluN4PN+0bHm6MMfxhQIqaGABK9hAB7EZtoKtYMtxPB63WjZJTSxgBRvoC88vvJXErFATs0LulhzzFzbQwQD7whzzFwqooIHYGraGLcd85AGTY/7CvjDH/IUCKjjq9tybOY57br4cxyfmOL5wVBgPVu38xuKFBhawgg10MMC+MMfxhdg6thzHPXdLjuMLK5i2HGQ5ji9MW65xjuPx0M3O7zBe+LDV8UzNsmlqooFloCZWsA20RB9YEmNgTewDhzi7piYKqKCBBaxgAx0MEJtiU2yKTbEptvxG95GbJD/LPR4KWTZa1fH4x7LTamIBx0JKbpL8SveFDgbYF+YXuiU3X36UW3Lz5Xe582uhJT/NfWGAfWF+o/tCARU0sIBpa4kNdDBtuUny04wn5scZLxQwbbnN8hONFxZwXVpmJ9VEB/NCNrdkDt4Tc/BeKKCCBqYtd1Z+uvHCBjoYYF+YX/++UEAFDcQW2AJbYAtsga1j69g6to6tY+vYOraOrWPry5Z9VxMFVNDAAlawgQ4GiE2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2AybYTNshs2wGTbDZtgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hi0/+zoezVr2aE3sC/PjrxcWMP9MEmNhntHzTJZtVRMrmP+uJvaFOaQvFFBBAwtYwQY6iK0vWzZQTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW14e5Ifq25klJ/aFZ4B4ooIGpqInVrCBQzE6Piy7sSb2ifnOs4kCKmhgASvYQAcDxCbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbAVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvHRpY4WeJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlcWaJJDbQwbRZYl94ZsmJaauJCqYtEgtYwQY6mLae2Cdm+14dP121bN+royHUsn1v4rCNzk7L9r2JFRy28TtLy/a9iQEO2+jLtGzfmyigggYWsIINdDBAbIpNsSk2xabYMiqylSf78Go+ds4+vFpym2UoXFjACo6FzOfS2Yc3McC+MEPhwmGruVEzFGpuvgyFCwtYwbTl8mYo1FyGDIV21u0LMxRGS79lH17Nh8bZhzdx2PL5cfbh1ZbFMhROzNGdD0uzoa7m08lsqJtYwLE4+cwym+Sq5/LmiL1QQQMLWMEGOhhgXxjYAltgC2yBLbAFtsAW2AJbx9axdWwdW8fWsXVsHVvH1qetZJPcRAEVNLCAFWyggwFiE2yCTbAJNsEm2ASbYBNsgk2xKTbFliN2PGMt2UU3sYINdDDAvjDP/uOpZ8kuuokKluv4Ldk6N7GBDgbYF+bovlBABQ3EVrAVbAVbwVawVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx5YBMp6Nl2ydm+jgsMX57/aJ2To3cdjGT3tLts5NHLbxBLpk69zECqbNEx0MsC/MALlQQAUNLGAFsQk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIatYCvYCraCrWAr2Aq2gq1gK9gqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLpscBCqiggQWsYAMdDBAbWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpbYmSWR2CeWM0tOHLbRc1rOXssLDRy20XNazl7LCxvo4LCN3tBy9lqO9/qUs9dyvFOnnL2WFypoYAEr2EAHA+wLFVtmyeg5LWev5YUGFrCCDXQwwL4ws+RCbIbNsGWWjMbYcrZoXthABwPsCzNLLhRQQQOxFWyZJaP3tpztnBcG2BdmllwooIIGFrCC2DJLeh5ymSUX9oWZGhc+KrQjj76RD+3Ig2vkw8QA+8KRD+3Io2/kw0QFDSxgBRvoYIB9YWALbIEtsAW2wBZpyyESDqYtj9/oC/sBpi03alfQwAJWsIEOBtgnZovmRAEVNLCAFVy27MBso4u5ZK9lG13MJXst2/j+dMley4kNdHAs5GhSLtlreeEY6BMFVDAjsyQWsIJpy4VUBwPsC+0ABUxbrtsY6BMLWMEGOhhgX1gOUEBsBVtJW27UUsEGDtvoJizZazlx2DS3wxjoE4dttP2U7LWcOGzj9VAley0nVrCBDgbYF7YDFFBBbA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVuGgubxm6FwoYMBpm0cRtnkOVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgyNcYT6JKNm208ay7ZuDlxVBgvHyrZuDnRwQD7wsyHCwXMupa49mY2Y57bN5sxL8wxf6GAY43HGwBLNmNOLGAF17HTCrYS4Dp2Wj1AARW0tQznmD+xgg30tQw55i/sCxnzjTHfGPONMd8Y840x3xjzra0jtTW2ZGNLOlsyx/y5DM6WdLYkY74x5htjvjHmG2O+MeYbY74x5ts55nMZgi0ZbMlgSwZbMsf8aGQo2Yw5Mbdk1s0xf6GACua65bGeY/7CCjbQwQD7xOzLnDhsoxWiZF/mxHWAZzNmG10RJZsxJzoY4Do0shlzooAKGljACq6d5eJggGtnZTPmRAEVNLCAuRaaGGBfmMO/5HbI4V9yyfLy4EIDC1jBBjoYYF+YoTDe+1WywXJiASuYdXMtMhQuDLAvzFDI67NssJyooIEFrGADfWHOE+S1/dlKeaGCuRYnFnDUrXmc5fC/0MGxFjWPqBz+J+bwv3CsRc09lMP/QgMLWMEGOhhgX5jD/0Js51PPXMjzqeeJDXQwwL7wfOp5ooAKGoitY+vYOraOrS/b2TR5oYAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsZ0dFGMMnU2TFwqY47gmGljAHMeR2EAHcxz3xL7wTI0TBVTQwAJWsIEOYnNsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWx92bJpcqKAChpYwAo20MEAsQk2wSbYBJtgE2yCTbAJNsGm2BSbYlNsik2xKTbFptgUm2EzbIbNsBk2w2bYDJthM2wFW8FWsBVsBVvBVrAVbAVbwVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJX1lST1WltRjZUk9VpbUY2VJPVaW1GNlST1WltRjZUk9VpbU48Am2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2yGzbAZNsNm2AybYTNshs2wFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDZtjc2yOzbE5Nsfm2BybY3NsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWxkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkSXZ2PmaUE/vCzJILh228zKdmZ+fEYRs/7qnZ2TmxgsM2fudTs7NzYtpKYp+YnZ0T0+aJCqatJRawgmnriQ4O23i7Yc3OzgszS0ZXe83OzokKDtv42UbNzs6JFWyggwH2hZklFwqoIDbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbBlanhu9cwHzz2U+TB+yVKzW3OigwGO5R2/GqjZrTlRQAUNHLbIoyTz4cIGOhhgX5j5ELkWmQ8XKmhgASvYQAcD7Asdm2PLfIjcfJkPFxYwbbmhMh96HrSZDxcO2+gLqtmteWHmQ8/jN/PhQgUNLGAFG+hggH1hx9axdWwdW8fWsXVsHVvH1pctuzUnCqiggQWsYAMdDBCbYBNsgk2wCTbBJtgEW+bDaByq2a15YebDhQKmrSUaWMAKNtDBAPvCzIcLBcRm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKLVNjNFDV7MBs42lJzQ7MCzMfxkfJanZgTlTQwAJWsIGPuj76rmp2VV4HQY75cx/nmL+wgg30UUESA+wLx5ifyJHKmDfGvDHmjTFvjHljzBtj3oIjtXOkdo7Uc8yfyLqNMe+jMatmV+XENjDrdgcD7BOzq9LH5+drdlVOVNDAAlawgQ6mzRP7QpG5s7KV0keHVc1WyokFrGCbOyBbKScGuHZWtlJOFFDBtbOKFrCCDXQwwBVixQ5QwFyLnljBBo61kNwOY0i75JKNIX3hGNITBVTQwAJWsIFZdxwa2R45UUAFs26uRS1gBRuYlx25Y3OgX9gX5kC/UEAFDSxgBcdDlppLlk3VJ2ZT9YUCKmhgASvYQAexObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s53stLxRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xZaPUMfLGer5XssL+0LLkdUSBVQwbZZYwArmyPJEBwNMW+L5iokTBVTQwAJWsIEOBoitYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bOcLNS8UUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbGRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZkm2iPn6JVbNNdKKDaeuJfeF5j3OigAoOWz6YOttELxzrls+zzjbRCx0ctnwEdbaJnphzION3XzXbRCcqOOYqNBU5B3JhBRvoYIB9Yc6MXCiggtgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtn3ZKYFWpiVmiJAfaFOQV6YS5vHiWhoIEFrOCwjd8w1Wz9nBjgsFnu2JEPEwVU0MACVrCBDga4bNn6OVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKzbAZNsNm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsJElnSzpZEknSzpZ0smSTpb0M0s00cEA+4XtOLPkRAEVNDBtNbGCDUybJQbYF55Z4okCKjhs4+dXLVs/J1awgQ4G2BdmllwooILYFJtiyywpuW5nauRCnklwYgUb6GCAVMgkKCcKqGAuWSQWsIINdDDAvjCT4EIBFcRWsWUSjF94tWzcnOhggH1hJsGFw1bz2MkkuNDAAlawgQ4G2BdmElyIzbFlEtQ8+jIJLqxg2nIfZxKMD/i2bNycmLbcLZkEF6YtN1QmwYUGFrCCDXQwwL4wk+BCbB1bx9axdWwdW8fWsfVly8bNiQIqaGABK9hABwPEJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2PKqYtxftGzcnNgX5lXFhSt3snFzooEFrGADHQxwpVy2aPpoyWty5kNNHBXG+7ZbNmNODLAvzHy4UEAFR91x59Oksn0ra9xY43PMn6jgWONxc9WywXJiBRvI3mzYGnvT2ZvO3nT2prM3zzGfy3CO+RMbyN7MMX8uQ475E3PMX4iNMS+MeWHMC2NeGPPCmJfg2Am2ZGdLdrZkjvlzGTpbsrMlGfPCmBfGvDDmhTGvjHllzOux9pueY/7EAlZw7bdssJwYIDbGvDLmlTGvjHllzCtjXhnzKmu/qQS4tqTqAQqYW7IkGphbsiZWsIEO5rrlMuSYPzHH/IUCKmhgASuYtlzIHPMX5vVD/gt5pZCjMF+S6eOnnC1fkjmxgBVkDxX2UGEPlXWsaz1AARVkD1X2UGUPVfZQdTBAjofG8dA4HjIfRkduywbLiQ0cdT23Q+aD55JlPpyY+XChgAoaWMAKNjDr5lGSSXChgApm3TxKMgkurGADcwbjxAD7wkyCCwVU0MACVjC3TkvsE7NpcqKAuRaeaGABKzjmxPIa8XzF5YUB9oXn1zZOFFBBA3PrnOhggH1hju4LBczl7YmjwmgQbtny6OMr2S1bHi/MEXvhqBCaqODYDuMd5S1bHidWcCzv6CBu2fI4McC+MK/4LxRQwbTVxAJWsIEOBji2uuYK5Yg9t0OO2AvZOjliI/d8jtgLHQywL8wRG3kQ5Ii9UEEDcy3SluP4wgYOW8/lzXF8YV+Y47jnvshxfKGCacs9n+O4527Jcdxzo+Y47rl18jx/YSzMcdxz3XIcX2hgAbNurluO2PPgyhF7Yo7YCwU0cAwcyYU8P+B7YoBjF45PQrfz7ZEXCqiggQWsYAN9YZ6ER1trO5sbL1TQwFz5nljBBjo41uI4sS88v8l9ooAKGljACjawX19ub9nGGMeJAipoYBkoiRVsoIMB9oXlAOX6OHzL5saJBhawgg10MMC+cJyEJ+ZaaGIBK9jAXAtLDLAvbAc41iJTI5sbJxpYwAo20MFY6Lkv8jhzBQ0sYAUbOOrmKSmbGyf2heMkPFFABcda5IkqmxsnVrCBDsbCnmuRK9RzebNur2ADs0Ienj3APjEbFicKqKCBBaxgAx0MEJtgE2yCTbAJNsljxxMD7Av1AHPrRKKCBhawgg10MMC05eKco/tEARUcttGO3LI1cWIFG+hzZ9VzdJ/YF56j+0QBFTSwgBUcdUfrcssmxAvHOJ446o5+5ZZNiJFpn02IEwtYwVyLkuhggH1hjm7JPdTSlhuqKWhgASvYQAcD7Av9ALHlmNdczRzzFxawgg10MMC+cIz5icOWl7fZhBiaaxwGFrCCDXQwwL6wH6CA2MYZPSwPrsyHCyvYQAcD7BOzCXGigMOWc+bZhDixgBVsoIMB9oWStpYooIIGFrCCDXQw00gS+0I9QAEVNDDremIu7wiFbCycmBVyLUxBAwtYwQY6GGBfmGN+vIivZQthlNwXOeYvrGADHQywL8wkKLmamQQXKmhg2jSxgg10MMC+MJPgwrTlumUS5IxhthBOLGAFG+hgrH3R2EPOHsokuFBBAwtYwQaOfZEDPZsFJwqYa5GHXI75C3MtskKO+QsbmGuROzbH/IV9YY75fGiRzYITFTSwgMNWc+vkmL/QwQD7xGwWnCigglm3Jo4jdbRCtGz1i3wmka1+Ew3MJfPECuaSRaKDAeaSje2QrX4TBVTQwAJWcNhyOjpb/SYG2Bfm6L5QQF1rnGf0nIPOpr6JDgaYdcdRkk19EwVU8LEWj1uaxAJWsIEOBtgX5vX6iWNc9JwmzHa4iQIqaGABK9hABwPEFtgCW2ALbIEtsAW2wBbYAlvH1rH1rJuHXK9gm5itaJHziNmKNjHrjgMxW9EmCqiggQWsYAMdjIV5VJ/iPKovNLCAWbcnNnDUzanVbDrrefrKprMLx1E9UUAFDSxgBRvoIDbDVrAVbAVbwVawFWwFW8FWsBVsFVvFVrFVbBVbxVaz7hiF2UjW88ybjWTnYZSNZBMLmPuiJDbQwQD7wnMUnpi2ExXM5U1FjsILK5jLO+I1G8l63iJmI9nEXN5cixxZ56GRI+vCBnLs5MjKWctsJLswR9aFjIDOCOiMgI6tY+vYOrYeE7PLq+dtX3Z5XZhD78Ihzgmr7PKaaOAQ58xpdnlNHOKcOc0ur4kBDlvOnGaX10QBFTSwgBVMW0l0MMC+MAfkhQKuXdjPoZcLeQ69SHQwwLWzejlAARVcOyv7uSZWsIE+B0M/h96JfeE59E4UUEEDC1jBmCGWnVsXtmMdGm0N6ezcmmhgASvYQAcDXAGSnVsTsTk2x+bYHJtjc2yOzbEFtsAW2AJbYAtsgS2wBbYcpuex09nqfZ1Ye2+ggwHOE6tnN9ZEARU0sIAVbKCDAWITbIJNsAk2wSbYBJtgkxnFnt1YF+oBCqiggbklT6xg7otUnCfhE2PhebptieUa3X6co/vEXF5LnOHohwXYF5YDnKPbjzW6/ThPrCfO0e3HGt1+rNHtR8FWsBVsFds5uhPPg7YnKmhghuP571awgRmOkhhghqMOzDPOhQLOKPZsMppYwAo20MEAZxR7NhlNFFBBAwu4dqEc8/rB5ZhR7CIHKKCCBhawgmtnybpydFlXji7SF+qMYs92ookKGljACjbQwViYdz65L7IZaKKDAfaFeedzoYAKGlhAbAVbwVawFWwVW8VWsVVsOa+RR1+2E01soIMB9oU5r3GhgAoaiK1ha9gatoatYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzYZTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9jIEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEjuzxBLTVhIdDLAvPLPkRAEVNLCAFcR2ZoknBtgXnllSEwVUMG09sYAVHLbRZOTZFDUxwL4ws+RCARU0sIAVxNawNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvH1rF1bH3ZssNqooAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbWeO4nPkQiQ4G2Bee+XCigAoaWMAKYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtY+vYOraOrWPr2Dq2jq1j68tWjwMUUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIbtzAdLFFBBAwtYwQZmGrXEAPvCzJLRbexnl9eFCraZUWcT14UB9oVnVJwoYBbLdTsvJU4s4JhYGs2unk1c/chFz7n4CwPsC3Mu/kIBFTSwgBXElnPxR26SnIu/sC/MufgLBVTQwAJWcJ0kKpcSlUuJbOLqR26SnNa8UEAFDSxgBRvoYIDLlk1cEwVU0MACVrCBDi5b9jH10XXi2cc0McCxOOMnrZ4vSJsooIIGFrCCDXQwQGwVWz5sGi0snr1JfbSweDYkXf9rPmEazSqeDUl9dKh4NiRNLGAFG+hggLk4uaHyqL5QwLT1xHzOcCTmvH1uvrPxQhPbWvQ8qi9khfKgtaybB+2FBaxgAx0MsC/Mg/ZCAdOWi54HbclFz4P2wgo2cNhKrlsetBf2idmFNFFABQ0sYBYbGyobkvpoL/PsQuqjT8yzC6mPX6F6diFNbKAvzJn0C7NCSyxgVvDEFI9Nkq8A66Nzy/MVYBMrmLvwSHQwwL7qnqMl/9dztJyooIFlrXGOlgsb6Asr65aPdM4Vyge2F7LGeYXXTswumVyyvMK7sC/MK7wLBcxultw6eS3XcjvktdyFDgbYF+a1XD53yh6iiQoaWMAKNnDYPA+YDOgL+8K8lrtQQAUNLGAq8ujLC7gLA+wT8z1aEwVU0MACVrCBDqbNEvvCvIC7UEAFDSxzq2fz0sQGrp119iblA9DsQop81JldSBMD7AvzmisfmWUX0kQFDSxgBRvoYNpaYl+Y11wXCqiggQVsa93yQisfxWWT0URZK5SXVBcaWMBc9Nxmec11oYN5zXUk9oV5zXVWaNgatoatYcvbswvZLY3d0tgtjd3i2BzFeRWUC5knFMklyxOK5CGXJ5QLG+hggH1hnlAuFFBBA7HlCUXySM0TyoUOBtgn5nupJgqooIEFrGADHUybJPaF+cj3QgEVNLCAFWygg9gEWz7cHb+08LPfaPR7+tlvdGFfmP1GFwqooIEFrGADU+GJqRjj4mw9ulBABVPREwtYwQY6GGBfmGeyCwVUEFvFVrFVbBVbxZYNSToO+7Mh6cKh0NwBeTU4msD97De60MFRTPOAyavBE/Nq8EIBFTSwgBVsoINTEWenznhDXZydOuPXKXF26lxYwAo2MOu2gXlUj5+ZxNmTc6GCBhYw60ZiAx0MsC/My68LBUxbTzSwgBVsoIMB9oU5GMbvWyK/iDnRwAJWsIEOBtgX5ri4EFvBluNivCYrzqadCyvYQAcD7GurV3ZWZWdVdlYe4OPlWZHvQuqWB0we1RcaWMBcnDyi8li/0MEA+8I81i8UUEFbR+p5rJ9YwQY6GGBfmDfx57qd90N5KJ93Pie2tULnnc+JAfaF551PjoDzzudEBXND5UbNE9WFlQrYOraOrS/b2YV0oYAKGljACp6K//mff/jtz3/9lz/8/U9//cs//f1vf/zjb//43+t/+M/f/vH//Pdv//GHv/3xL3//7R//8l9//vM//Pb//eHP/5X/0n/+xx/+kv/8+x/+9vh/H8fmH//yr49/Pgr+25/+/MdB//MP/PXx8Z/K4xFhXH/+4NBV4rFGPxSRj4uUcZ+SJR6TzauAlx/+Xj/+ext9e/n3j8c1LMBPBbZrYePa41qLx/OWD9eifFxkTNmdFcTW3xe7++eWH7441+IxdcUSqP9Qom1KjKek13ZgEbzf/fsm80hoVtffP566/lAgNtuxtFlBHnO/H5bou32pazM8Jks+LLHbkpm213Zo5cMtKZtDUlXm7lTtTzXqT0f17rC0uhaDzSlR7q+IsyJhH6/Ipsb4PMJVY3zRYNVoP61H3e3V8ZKFa69W/bDE5sjK97xkhcft3tMIvV8hf8x4VmjycYW7q+Efr8ZuY+ZHsc6N6Uf/qIRuokZLrAPr8YTgwxLy7qbQzZGpR59xp3IQueWnErZZiDZj/3Fr9vFC7PJSdW6JB3JUWO33V0TGqfhakSofrsjmwFJC8/iwwH6E9bYOiqfo/3mPxvuht6vxeCQ+azyeeH98/rBjm9/rNFiftoaWHy8IbHN01ph75PGEgQrW7x8Ypa4Doz6Nsp8PDNscno8bvb5qdI5w6z+tyWY51G1uUX08umLH3l+Km4f4tsbdreHfsDXi3a2xHyh1DZTWPoy+TYXix7pSfKTgh8d42Z3ZYx2g9rhPfqrRb9eww23V6PFxDXv7rFrKu2fVXYV7p5Lbq/HxWfXu1pSnI/xre2Rdu5qIf1yjv3/1Wo9vuHzdrUvhwrFu1qVuTowhMWs8sH14/bqtoWtdQp9Orr/UKG8f5bW+e5TvKtw7ym+vxsdH+X5rtrVHtL+4R2pfV12Pp30f1mi7c3y+7/BcFX/Ov5/vS2R7ozlr2OPhyodHaNO3j4xm7x4Zuwr3jozbq/Fi/kVZZ6R4KvHL1vT3t2a8vTXj7a3pv/PWfDo2n8fIV84m+bOx68ZbPt4jbm/fePv74elvh6e/HZ7+fnjuN+a7l471WPd59THd9+GlY2yic7y5ad7b/LA5f4rf2Bxa+WDt3BaPeecP03c7WVnWXYVYq/bhZOV+izpbNF7bKfdmQ6LuZkOOdVNRpHxYor09SMLfHSS7CvcGye3V+HiQbDemrauDx8ZsL5XIV/hes1P24VxG35wQa7apnUfF41noayWs3CixP7BuTbP1t6Ozvx2d3d+e3+rx5vzWdhnuTRbKcbw7WyiH7B5O2FyRJk/3/uNRx4tF6otFyrGmuIrKpkh5d9pxvy5R1rrEq+uia1ZnvGr/1SJeV5H+6q6xdV8yXp29KbK7hX/M6Kx7+AfLh9Nl2zJ35+0+KdLn/nk8vO8vFrF6rCJPD0e/VuTmFKLsZu/uziHK7hnMzUnE7XKEri0STxc/vy7H3SLteLXIOsc8sL1W5DEm1qXtg31TZruL6wq2/nz58MWDLTjYnsfx14q0TpGPB+D9s/fHDy13TxHymyFZwv3Dk9b+CvnWcx3R9v6N5LbI41puPdmRXjZF9tP3dY28slmb/v6D4N0jpptPgnclbj4Kvr0mm2fB+y26HpapR3mphskK1ccpwl+tcbxd46l15Hnkf63Gush7lPu4xu4h082bh09q3Lp72K9LKWsav7R4v8aLx5hpX1ODJT7et9snNG1NPD/GyObqe7sg+VHFc0EeyfrxgtT3d+6+xjfsXBfWZTNwy67T6fA1i/644nl1o64rRIvNUbZ94LRuzh53JR8vRt1ceUv+Su1cl+6b+5ndchShh882m2N3ntN1iirajo/Pc7snNTdnlKR+Q8NTfb/jqX5Dy9M39Dxtt+i9aaV9jXvzStLk/aG/PzpuTQvJ+0+d5P3HTl9Yk4+zo7U3L5H3Q9ZWlJbi/cXrW3Vf4353fdu+ofU0L5befXq/X538mNC5Or193Bwirt+xOvZ7r05fZ5h6HLvVqb/nkVbppq2lbe6k3HcnKeVAWyUeU2A/lXi/DWq7FKvC86nyl6XYPYmSx1RBWdcfx9N06FeKHPnr3WvqIZ6vhL5SpMfTE62nRuevbBFf+6Vv9kuU37XEYxtoZ3vUjzdq+Y6NWr5ho26L3D1GtsOuHuspdi/xWsCPD26vmWrzV4usebLxldAXixRj6r69ujpm81gbXwv7uEgv3xDwuwdM3xLw42Nia3V8tzq7xo2aL4m41qeX/tHB9kmRNYXw4Kff8vxcpO8e0q+nM+OtyB+uju6eV5W65lRK27S+6bG9ryprguiQD2/e9dB3b+/02FwF/PBTlqeGGGvHT0U+CRN+33Q83Vj9PE39SZnKYfK4c4kPy2wP2fGewbmPy9Pjs1/3sb89I6pHvH2nqLsJ83v3E9sSN38RcntNfLMm/vaM6LbGzRnRz2ocb9e4N+Glu98s/XDHWl/bpjdnZj+pcWtmVqW/PXn3SY1bd/D7dSnHOj6eH77/XEP1916OWzPE92u8OOZuzhDrLk7vzhB/crDfPEDa77xj7s3u6vZ3UDdndz9ZkFuzu2rvn/53vx+6O7u7XY6bs7ufXNw5V7yPB+YfXNxlQ8q7V4jbIkWNaYCni7v2hUs7L7JGTPn4QLX3n6Zqeftp6rbEzWsHe/9p6icXy+s897i8//h8u/s10+342F0tt1iz3S365mp5V8TXRn2gvFZEjvVjNy3b6/bdklRjmri9fvEfjYv/p7PMVy/+1xqNG4G2KWPb5xH1f3se8bXtUtacs5anS8Rfi7yditvD/nFZv44UOeKloaOyfvGgsjnj7Z413TzRVP+GE01t72/S7a5dk82PvWyvHvLZXDQvAezl+10t3O9qe3nk6LqoGSU3TWK7vuo1Reosx08vKPlsRlGdHLD+4rRkeZpJaB9NS+ruydXjLsD+17uA+yXuXQV8Ngt/c3sc37A9/BueB2yL3Nwi+27Gp5U5judGxK81RR7Wnspsujx1exl/u7dyV6bFuiRo/fhwLn5bgtnR8aHL10o4S9E/LLFvsT54wc/xcsf4etHRo8jHfdrb37HaulCL0Rf64fTq7pdUNzs9NN7/EarG2/0A2xI3r8Hj/d+h7rfovU6PfY17nR4a73cBflLj3r3A/gi7966eLm8fHf399/3cX5OPLzP7uw3V+1G/LkDC+mbU9/b+nXd//8fS2uP9/fr2z6Xvr8lm1G+36L07bzu+YUZ1vxy3HpfZUd69jbGjvn/bvV2Om7cxu81x985wW+PenaHtni3d3KRyvH9nuF2Oe5t0//aM9Wgp6tMP5n55p9/2HUa3fja9fwPcresW+4ZX8tn77+Sz91/KZ9/wVr7tBr152XK8fdViKm9ftXxS416Ovn/B8cnd170fUe5f73fv54/bGjd//bh9f9rN3wverrH5ueC+xr1fC26f5dy+od1u1Zu/Fdwvyd1jZLtNbv5WcP+mv/fX5u6xul+Xm8eqf8Ox6t9wrPo3HKv+Hcfqfqve+0nq/VeufnglZbsfUd26+dm+npMeyCJPjz5+eT3n7tdPRufhYwbloyeo+xK3Zk6t+NvPT3cbg+m98vxai183xje8rs++4319+7em3rqEsf1rGOac2g+N6f1+hXUp1p4eD/xSYftiuHVkPK6IWY1fXv663RR0UFe1j2vU7Y0gUfrg5+ar+0cYb5Mo1fTDI2xbo64b0lLrx6+Mstp3j4JvdRlau3uAba7229uXhdsSN6/22zcMlf0WvdVluK1xs8vwsxrH2zXudRlauzvTWV/bpje7DD+pcavL0Pwb7qH8/Xuo/brc6zI0L7/3ctzqMrxf48Uxd7PL0Ha/nLrbZfjJwX7vAGnxO++Ye12Gtn1kc7PL8JMFudVlaPH+rOnujS23p/ji7VnT7VXQetFR++GndV+5jloPap/apX6p4N/xDPyTKjcfgdvuTaZfuAvblbn3CHxf4tYj8E9K3HkEvp9Qunk7WX7fSYsvHCP2LceIfc8xYu8fI/b+MWJvHyO7S1RfswWPRyZPqWw/xlDZPv+5dYu8LSGPJFof42j1qdNidKP9WKa9O2WwL3FryqAc8Ttvj9rWc8rHrfrx8fbYPYt6PCZfM/0hH/WPb0vc/UpK2X0c6t5nUrYl7k0a7EvcmjXYb42b0wafbNJ78wZF/P15g08Os+Cq7JFHsjnMdjep4rw09amNXH+aMizbictb7xrYL0f+6O8s8eCPl2NbpNLOXuumyHbD+rHuQx781IL6y4bdnX1v5tm2xL080/b75tmP2+P5efQv+b4tY8pt1fN996+bdXu8soufX4w7eo1fLNK/oUgtrxZZ54rHSDw+LmLbHxqs9y7qY6Lm6aro56/87A62MO7Pfmjc/rnI9rWp6yZP44gXi4T0VeT5pbZfLMKSaP2GInZsimx/2VJ5ZP98Gf5zkd2Pn2pbt621Pb2/6Eu7uBCPpXq8epw8vSn0KC9uk7IOtseRvtsmu9Vp68f1jymn8tqGLX1NsJYe9bUiTf2p1bh+x+psdvH9PNmE0u6B1c0XqZfd8ypVathTk9wvC7J74Z9Xn2vj9fmFW/FTjd0vUwsTYOXpkbn89CW2uns/1cGJ+NDycY1Pfk6yrsYfW7V+vDbbFqL1CZ5H6sdms26LBPsmNgfJV87n5ePzeY1vONZ2D1h79KfOUN1cobTtZlkX1Pr8IVz9+dvIu2dPNy+Ft5vk3rcUyu7Ffbfe2r/fqF/Yv9syxSlTZXObsvsRFCn9mPh5GsTRv7Io1bmQddlMVOxm5dtDusL+6XXbvxbZNomul/887nvra0UqrRoPlBeXpKw2nPJ8k/G1JbG63r1nrby4YU25yT82RXz/GWn6XuurRZyrLX/+2c/XigRF4tUibd2e1+e2j68V6WvS4nEW1VcHstPG8uB4tUwIg/D58v5rZeJYV9XymCnbbN54f3Ir3p/civcnt/bbo64OehlfX9xsj11Hi/DR2cdGPT56KWAJf/sUuF+O/vQz0cd02YdFtt81WfHY9ePpk32JtSpd24eTsPs909bVloTXlw/44NUG0Xez7N3enpXalrg3K7V7HeDNWakvbI/dyfyzMpUy+mo4Pv7UKVM2c4a9v793+rt7p+5+OPste+eH7VH99b1Tnsq8es55BNlamn50e7WM8sTtkUkfX7XV3VOqe+ecbYl755x9iW8453T6DqW34+O9U99/0LUt8bgeOeTpyr68VoR5x3FlUl8sUgpF6munjN76U5PK7pSx7WH8pttiXVXUDt/cFt8tIvpikbJO6FrK8WIR3iKrtclrRR7bYQX1EfZhke3eWe840Oc3Ff38+H63Ktz/qdrHHQBVbfuQ+FZ3et0+qbrZnb5bGV4MokfZrcy7Hwqou1cuPiJ+zUdF2y1GvL85tkWqrofE9YfvsJt9oUj11ULoR32xCG8Je9wOy8dFtm8IvHVtsy9x79rG3u53+WRrrGdcNaxvtsb29LtmGFoJ2xTx3ZKsywA5PppO3i8Gd40/viH8S+tS6/q+5w8/V/5iEToij/5ykfXC8yb+4tEeK0Qej+s2RXY/w/qWInf7d+r2Q1T3Ljd3JW5ebm5L3Lrc3G+Nm/07n2zSe/07tW5P3ff6dz450ax58ce1UdmcaHZFulJkd7aq9nuvTl9z62YSmyXZfYfambB53iLyU4ltG+Fq3rfy3BRVvlKk1/Wriv70FPXXIvH2CW9b4t4Jr739rrTt1njMxa8nBMfzXe/PW6O9f/pv75/+W/l9t4asIVeeP+/969Zo72+N9v7WeLvZdTvsjRekjZ9mvZZixu867Pm+7pciLr9zij3+7ODC/XhxdXy9yvaxYu3FIn1dZZbj1dOD9fUjkUeRzZJ4+4YbxN2Hk+7fEW33Dk+1/Yep2p9XZzdBSo2niUDv9ys0PhL0dNP9y5rsXnN2e5uGfsM23T0bLOthdi3PR9lPl0PbX2XxvOeHn5jJz1d3u99l3dst28WI9UjdwneLsT1BcK774TdmXypSGLvth0eTPxfp35Bn2+dX9ZjJ2n84zsqXihReXPL0PO+rRda13fPHm75YZL3Ssz/f3/1SZPd6wL6uu/vzL4h++h3itsTzm3CP5/bFn4tsV4bbqt7s1c3a1uvB+w9Ng18qwqsKHxunbjbr713kh/fA2W7vbH9KsF60o/r0K4CvFbFGo11simyDINaSPJ6HyodB0I7fu8jdqYT2/pOr9v6Tq/b+k6v91rg5lfDJJr03ldDkO65at/09qxXG1T48hzfZzlc9tQjJx9+Ra9u3Yd975Wn7hhcGtvdfGNjef2Fg+4YXBu636L1Xnrbdj7NuvkXgk+W49crTpm9/IqjpN3zzZF/k5jdPtkXuvnx1vyQ3v3myL3Lzq4ltN+d9/6uJn5W5+f2VT8rc/fjiZ2VufsZlv4FvfsZlX+TmZ1y2I+jeaye2A/nmy3r3Ne69rLftHl3dDAOLbfvJrTd5bJfj5ibVb/iMyyfH6t3PuHxS5u5nXD4rc/MzLvsrtVsvOfnkYu/OW04+ubtZjQXdn39O+NONSSv+7oTtvsStCdtW+u9a4uac736Drs6Vx7a1j+/0dtO19ybRWv2GzpVWv6FzZT8xWXg7WttM1ra6fY/6atXQH1+8+dN42X3b6nFuWb8r6c9d4EXvF6m2NuzjYWp9sUjoai04nh/of6VIYzquad0sye4nWTfH7n451nmiPb9392srY6s1sP3wMZlfVqb8vivz/G35p1usX5ej/b7LUQn358vfX5fj7aes+xL3UvX9L1Ltt4avjukWT292/2VruP7ORW7PFW3nJO7NFe1K3Jwr2pa4N1e03Rp354r2m/TmXJF/wxOB/VnmaV7z+Ubkl7NMvP9V2fYNX7Rq73/Rqr3/Rav2DV+02m/RmxM9u99d3Z3o2S/HvYmeePtDLK0f3zDRsy1yd6KnH98w0bNdkrsTPdsidyd6dr+8+sJEzydl7k707Mvcnuj5pMzdiZ5+fMNEz7bI3YmeePsTQtuBfHeiJ97/Xq+//6ErP77hla3+/oeuPtm1Nyd69sfq7YmefZnbEz2flLk70bO9zLo30bO/Urs10bObD7g3peBS3p9S8N2Dn9tTCtsWVF2zAaZ903S5LeLrgtG6vFqEy4pyvFqk6HpPedH4uKPW9fidi9y9u3F9+70B2xL37m72JW7d3ey3xs27m0826b27m7w5fftJ+K6BvK9WCVF9bkL/+QDpv28NifXTHP2hSfgrRVTXZlVtrxYRXhilbbM69g0zrW7fMNP6yTbhVxN2bLbJ7mdCUnl984PLR59D/6zI+ozEg7t+WGT3qidjF7cfXjTz8+rsrhbr+tlEafXj3g0vx9s3fr577fnNa72i79/k+PZHPrdvcj4pc/fu5LMDxRk9PT6ao/TyHUdbeftlsPvD5N7Mj++/h3Vr5sd3P8G6N/OzLXFv5uf+mnw88/PJwLs18+P1/S+47EfezSmXfZGbUy7bInenXPZLcnPK5bMguTnN8VmQ3Jyf2K/SzfmJfZGb8xPboL93M7097G/OT+xr3Jyf2D7HunfOav4N8xOtvb9J9f35iU+O1bvzE5+UuTs/8VmZm/MT+xulW/MTn9xr3Zqf2P4G+tZSfPIz6jtL8cn7T8j5+sML/7/yEpXG61xatxeLxPrtkT5/h+WLb2JZTzwf+PHq1N2nqO++zmVb5N5nZfYlbn1W5pMSdz4rs98vzsu5/eXX7PxQpLxaRCliH++XfNPmex0C+xK3OgR8N3n8DSVuvpdtv0F5+user+6VdcWq3l9NkOcleblIrI/sPfDlItz57orU91sd6/utjp+8rnLV6NpefOPlen9CV//wyzTx9tn2kzei3toW+9fvHutFwK6vvn6Xl9U+MF4tsiL5ce599R2+UViS9up7jWPdFD3qvfw24fWb0ge+vE3WjdWjyGbvbF9dXRvfTvb2DUXi1Zdo8+yptPLq6vBbzuK7g21bhLc0l7CPi8TuCZbz9k7v5ePfcsbuJ1SF994+lrh+eOX+2ZK0tSR1tyS7Nzq1dVlV29OEk31lOda3FOM4Pv6xbuh20mr9Qt2f3+r4a5Hdtep6xdXzHMBjjuMLx0g8ffNk827W2P3s4fYxouUbjpFPluTeMbJ7c+DNY2S/HHePkfiOY6T/vsdI7yugj81XDmL3jcuq8b+/wjB+qrFvaV3vdPOny/efv5qy/TzBsS5J6uHHZmXKN6xM/Z1XRmxdTvz4bPFLH2xYL8ytJuXFIsqSaPmWIvFqkfW89bGb/NUiqzPgUe/1DetsWHu1iFDk5S87auFRWn2+ef5xTjF2E073bp73JW7d+cb7P53alrh587zdoMabg80//rpk7J463Xpn534xCrffpcdmMfT9MNv2W90Ms/0XO5XHNFo/XJlPijx9Ya99vEXK/sfYN78duitybw5wX+LWHOAnJW7NAcr79/Dy9j38/hHRnU+Dxe47WLFu7qJ//Hgntr+4knXnbfJ8edlvv+u7+JrpLnF8/A31baMWX0JozyXa7deFS+PLO836SyXi6as79bWl6PzM8TjklRJ6EBpHsZeWgjeFj3f9v1aCl/SHvLQi43M76+lWf20pjHf8P3806yslylNryVOD588lYveWwBI8wHw+MqTfX5OVOWL+2sYo6yPS8nyd8Or2fLFE0FMZT5+yFv3p5Bpvf0dwO84qH+d4Ogn8vBTbEp1x9jwh9YUSsWYJHkNVN9ti+yade+2Hsfuk1Hd8ouD5xWLPb1v+ZWV271ZozsvjmtePptg/K7KeWD64f9TBGNvfM8RqwbAfPh/48+r0tz8WtD03romGxyMBf+UgK7zh4THnudkv/Rta/6N/Q+v/pzvXn3Zu/XDn+u99hNTKNfFTiV837O7q/FjtMfr8cP2XGa2+/e0rvU/P38v8uUjffdjq7kRhPuB4b6Lwk+W4N1HYdz9oujtR2Hc/rbo3UbgNABHnpCv+/I2uQ39aks3xug5WJwLuf0xHxTg8nm/eavtCCV6/8XzD8pUSdMXo00Otn0t02c6ZrsPLjhdL9PXrlKfLua+syPOJ7ums/ZUSbU0w/Ngh9IUSLlwCbbdF+52LSOPc0J7bJr5UxJ1bjq4vFunrJ1Dy/LXCL+3cxlej/LWxYusK93GkyGtLQfOXHS+tyCNf1hnu+XvqXykh633vIiVeK8HvySReWwpbA/aBry1FVa5enj4/+aUSjWb26K+tCEen6WsrwktyHpn+0or46ufx0l4p0Nc87/MnJ38Zp9sHm2/fDvd1en/+hsBX1mIdl93rm5vhtQKmXA3rD13v/X6Jys9gn5qzXi3xNJn5pRJraJh6fanE84cynp7afaVEWdO6Vo/XtoU1vtLzPMfyaonXdurT9z6e8+5L24K232Kv7dTCZwuK+Wsl1hdDH8+GXtypbb06rrSXlmJ8c5QLi/JSiadPn4bJhyX67pmSKNH9/LFs+cJsEXNWUetra8LXtnuJ10o0viz92iARplYeV2zy4orwq5JD3y4hry4FX06Wl0b74zqVbVH87aXY7NTtc5zH6Wx9b+GH+Kw/HeO750m9rtapXvvHP0fpuyV5e273ca/q3O7KR0/G+u4HR8oHVw75+NnaboPaOis+nlnKhxt0W0SOg0vwB79YplfjGyXPY/ZLRZQvcujzm2K/VmR9/KU/vyrya0V4F8JjK7cXj9VYA69Htc2xerdIO14tsj6c/sD2WhE5pK5cPsQ/LvPJpg02bT9e27SPI/XpCzCH66urdFh7KrPZR7uPa93fMtsy95oX9iVuNS98UuLD5oX/+/gvf/iXP/3tn/7813/5w9//9Ne//Ofj7/5nlPrbn/7wz3/+4/Vf/+2//vIvT//v3////5j/zz//7U9//vOf/v2f/uNvf/2XP/7rf/3tj6PS+P9+O67/+D/eHrew3jT+7z/8JuO/PwbAPzymz/vjv9vjvz/uLauO/2/8yzo+O//4jzb+h/y3m46/Nvm//zMW9/8B"
360
360
  },
361
361
  {
362
362
  "name": "public_dispatch",
@@ -421,7 +421,7 @@
421
421
  }
422
422
  },
423
423
  "bytecode": "JwACBAEoAAABBIBVJwAABFUnAgIEAScCAwQAHwoAAgADAFQtCFQBJQAAAEElAAAAlycCAQRVJwICBAA7DgACAAEnAEMCAycARAICJwBFAgEnAEYCBCcARwIGJwBIAgUnAEkBACcASgEBJwBLBAEnAEwEAicATQIgJwBOAmUnAE8CbCcAUAJuJwBRAm8nAFICcicAUwJ0JiUAAAUbKQIAAgAY1alOCioBAgMnAgQEACcCBgQDACoEBgUtCAECAAgBBQEnAwIEAQAiAgIFLQ4EBQAiBQIFLQ4EBScCBQQDACoCBQQnAgQEACQCAAMAAAD1IwAAAiktCAEDJwIFBAMACAEFAScDAwQBACIDAgUfMABMAEsABS0IAQUAAAECAS0OAwUtCAEDAAABAgEtDgQDJwIHBAgtCAAILQoFCS0KAwoACAAHACUAAAVBLQIAAC0KCQYAIgZLCC0LCAccCgcIAhwKCAYAHAoGBwInAggECS0IAAktCgUKLQoDCwAIAAgAJQAABUEtAgAALQoKBgAiBksFLQsFAxwKAwYFHAoGBQAeAgADAB4CAAYAHgIACAkkAgAIAAABvCUAAAWyHgIACAYcCggJACcCCgQLLQgACy0KCQwtCgcNLQoFDgAIAAoAJQAABcQtAgAALQoMCCQCAAgAAAH6JQAAB/QtCwIFACIFAgUtDgUCACICAggtCwgILQoIBycCCQQDACoCCQU7DgAHAAUjAAACKSkCAAMAT2MoqAoqAQMFJAIABQAAAkQjAAADeC0IAQMnAgUEAwAIAQUBJwMDBAEAIgMCBR8wAEwASwAFLQgBBQAAAQIBLQ4DBS0IAQMAAAECAS0OBAMnAgcECC0IAAgtCgUJLQoDCgAIAAcAJQAABUEtAgAALQoJBgAiBksILQsIBxwKBwgCHAoIBgAcCgYHAicCCAQJLQgACS0KBQotCgMLAAgACAAlAAAFQS0CAAAtCgoGACIGSwUtCwUDHAoDBgQcCgYFAB4CAAMAHgIABgAeAgAICSQCAAgAAAMLJQAACAYeAgAIBRwKCAkAJwIKBAstCAALLQoJDC0KBw0tCgUOAAgACgAlAAAFxC0CAAAtCgwIJAIACAAAA0klAAAIGC0LAgUAIgUCBS0OBQIAIgICCC0LCAgtCggHJwIJBAMAKgIJBTsOAAcABSMAAAN4JwICAlUnAgMCaycCBAJ3JwIFAnMnAgYCYycCBwJ7JwIIAn0tCAEJJwIKBBwACAEKAScDCQQBACIJAgotCgoLLQ4CCwAiCwILLQxQCwAiCwILLQ4DCwAiCwILLQxQCwAiCwILLQxRCwAiCwILLQ4ECwAiCwILLQxQCwAiCwILLQxNCwAiCwILLQ4FCwAiCwILLQxOCwAiCwILLQxPCwAiCwILLQxOCwAiCwILLQ4GCwAiCwILLQxTCwAiCwILLQxRCwAiCwILLQxSCwAiCwILLQxNCwAiCwILLQ4HCwAiCwILLQ4FCwAiCwILLQxOCwAiCwILLQxPCwAiCwILLQxOCwAiCwILLQ4GCwAiCwILLQxTCwAiCwILLQxRCwAiCwILLQxSCwAiCwILLQ4ICycCAgABCiBJSgMkAgADAAAFGycCBAQeLQgBBScCBgQeAAgBBgEtCgUGKgMABgWto3LG+qaEcwAiBgIGACIJAgcnAggEGy0CBwMtAgYELQIIBSUAAAgqJwIHBBsAKgYHBi0OAgYAIgYCBi0OAQYAIgYCBjwOBAUoAAAEBHhVDAAABAMkAAADAAAFQCoBAAEF2sX11rRKMm08BAIBJiUAAAUbLQsCAy0LAQQMIgNMBSQCAAUAAAVgJQAACFwAIgQCBgAqBgMHLQsHBS0IAQYnAgcEAgAIAQcBJwMGBAEAIgYCBy0KBwgtDgUIACIDSwUOKgMFByQCAAcAAAWlJQAACG4tDgQBLQ4FAi0KBgEmKgEAAQVhALr8hC+iUjwEAgEmJQAABRsKKgEDBQwqAQMGCiICRQEkAgABAAAH5iMAAAXlCiICRAMWCgUHJAIAAwAAB9QjAAAF+woiAkMIJAIACAAAB8IjAAAGDQoiAkYJJAIACQAAB6sjAAAGHwoiAkgJFgoGCiQCAAkAAAeUIwAABjUKIgJHBiQCAAYAAAeCIwAABkcnAgECSScCAgJ2JwIDAmEnAgQCaScCBQJkJwIGAnAtCAEHJwIIBBIACAEIAScDBwQBACIHAggtCggJLQ4BCQAiCQIJLQxQCQAiCQIJLQ4CCQAiCQIJLQ4DCQAiCQIJLQxPCQAiCQIJLQ4ECQAiCQIJLQ4FCQAiCQIJLQxNCQAiCQIJLQxRCQAiCQIJLQ4GCQAiCQIJLQxOCQAiCQIJLQxSCQAiCQIJLQ4DCQAiCQIJLQxTCQAiCQIJLQ4ECQAiCQIJLQxRCQAiCQIJLQxQCScCAQAACiBJSgIkAgACAAAHgicCAwQTLQgBBCcCBQQTAAgBBQEtCgQFKgMABQXQYRKgYVuWqAAiBQIFACIHAgYnAggEES0CBgMtAgUELQIIBSUAAAgqJwIGBBEAKgUGBS0OAQUAIgUCBTwOAwQtCgoCIwAAB4stCgIFIwAAB6IEKgoHAi0KAgUjAAAHoi0KBQgjAAAHuRIqBgUCLQoCCCMAAAe5LQoIAyMAAAfLLQoGAyMAAAfLLQoDASMAAAfdLQoHASMAAAfdLQoBBCMAAAfvLQoFBCMAAAfvLQoEASYqAQABBcGZNfBNpkozPAQCASYqAQABBWS+y8eKk/9yPAQCASYqAQABBS/SUCsOkdCZPAQCASYAAAMFBy0AAwgtAAQJCgAIBwokAAAKAAAIWy0BCAYtBAYJAAAIAggAAAkCCSMAAAg3JioBAAEF5AhQRQK1jB88BAIBJioBAAEF0Afr9MvGZ5A8BAIBJg==",
424
- "debug_symbols": "tZnbbhs5DIbfxde50IEHqa9SFEWauoUBwwncZIFFkXdfUiJpO8AMkun2pvyG6fySqF/SzPj37vv+28vPr4fTj8dfu0+ff+++nQ/H4+Hn1+Pjw/3z4fEk2d+7pP9kpN2nfLfLhDOypItGnLHZdfPrPmMHi/O6JLDYZszVIs9YyowgOqCxz4hg0a7JrsmuWe5HiS1bpBl7sggW+4g1Sbussc2Yi0WasSSLOGO16woW5b4uEapFaT8nASwOniGTJp6Rs0WT5j5jM+lm19262FVIag6pOOhkSJUgZwfNkECRTEkKkilVoGoGFLoB6BywgmaagFa3dIVuQNWBDbTbE9BgzPmAyPjt3W7HlB1oTCzmZBEtyi1VBoUFHJpBLQ5sAJ7BOmyIWluN2hXQCBanLbDbdZ/XlOY16XSjxmkTKtkiWpw2oQoWp00IqsU5l4TZ4pxLomTRr+dcEk+bEE/bUDOXUDOXUPdMn9KcisXpSM7JIlic0lzsuswu8qhaUWADkE7WqkAG2m21C+uyVrsw5WkXJpouYQYHnSH9z1rcqk1odav4hrW8E9qEpr2eQAba7wloUDxTwMFvr36X9rlonDZpmCyaSxqab5o6dYK5pHFx8ExTfRlmU19OsExP1cEz2TPZM8UzhQ1GkQd4BjwDntEiT0ADdccEcOgG7E2wN9pcsLlgd8FOE3JKKQiDulOGoObkYxFiJx+NUChDDgpljNYwlDFao1CmaI1DmaO1FsotWuuh3KO17so5QZArZ58lIVfOpQS5cq45yJUzpKBQhmgNQxmjNQplitY4lDlaa6HcorWxFw0au9Ekz5XETronGZGT7ktGkdOjaJLuRkbNCSOHkaNQplDhUNH9fFKLXLvkoqfR+9JdeRyjk9QbyIN0z2yDmpN6Y5JWzUj33q40Du1JkVNH0FDWdo26ESQIilyOnLp9kjqC8iB2qpFTHxhhUHfSXsEkrRop6RIEHSVqu6DjQG13knoNtPeoKqg9QPULqgrqWpikNUV9KiKd/UnjRJoUuRK5ErkauRo5XatG5ISRw8hR5PR8Moq+6IZv1JxaDYrWevSguzKnHOTK48AygiBvjUsN8tY4xsYxNo6xcYyNMZQxWsNQpmiNQpmjNQ7lFq21UO7RWnflllIQBHlrTfchhEHNqUROHWFETuo6I3TCyI3VM2g4Z9BwzqTItci1UO6h0kNlPPAq9QRBkYve9+h9H/1DpbFq6fX1budvBF+fz/u9vhBcvSLIi8PT/Xl/et59Or0cj3e7f+6PL+M//Xq6P434fH+Wv8p62J++SxTBH4fjXun17nJ3Wr5VnmL9bqg1h4CcK++VkN2DTUKwb5EoJXWTKPKmsShRV3oBsmq8GyA+DxEu7+5GzS5RZMfcNBJmdAnudVGCliXEbabQE4YApPpuAW4h0BYF2rJABnSFLO8pISEnxiYJrlskCpBLFGD+Y4kGixJr7iZ0a8oLJS5OaK5rvmphbzlXLxr5jQasFFQe/KOiLfGivzOuDKYguj2FOS+KrI1GNmQfTS95eTS8tuDlRSFWvOyRl47grUj7P0rS/3JJ5JtEdg3sbbEkJa+UpNeaoq6ynS11pJSVjtRaoifyTQX+dDSU0vIEr2hQ9qLS1VaM+XYkK1aVD1KxDxbpxeK8FFqb3K4PEza5ndOWclwNBdrSUNYE5NHNBBhwSWD1gAXfPiBdz8fb03FNA+VZNywqzztLlVjbTXN1XxR5P9i0Id9ILO/pa+WU12DwVZ9aXypohbVzoWG+HAyES9Woq5upPCFezJV4i7muB5Ov5vYD9pKPCz0kGDYYDKjEQyAhLxtsZR9ld9fVNgz1/RZv4fDLGivw/iEUisfYsigAK1snX3Y9eee5lFHOphuJ1WfQHBsn5Ktz/raMsOLMmlJ1iVRgUWLFl/pZp1w8dWXuN0NZKyfEfFw56gPzgfFagVf7/0cE2NfF9RH0AQGqXkj5eLxFgJP3gOs2AXZPtlS3CDTwITRe7gHWv7UqOXzE20pI0T61TcuaMCYRYfFVZk2gx6JOtEmgXQR4kwD57iyff7YIcOF4fKi3Al/k8v7hcL75YfFVpc6H+2/HvV3+eDk9XP31+d8n/4v/MPl0fnzYf38571Xp8uukfKb4DPJDFtT2Rb5bSO5zkV2yMOll1r+KReR3ry+v2pn/AA=="
424
+ "debug_symbols": "tZnbbhs5DIbfxde50IEHqa9SFEWauoUBwwncZIFFkXdfUiJpO8AMkun2pvzEdH5RFIeaGf/efd9/e/n59XD68fhr9+nz79238+F4PPz8enx8uH8+PJ7E+3uX9J+MtPuU73aZcFoWd1GL0zYbNx/3aTuYneOSwGybNlezPG0p04LogNo+LYJZG5ONycYs16PYls3StD2ZBbN92JpkXlbbps3FLE1bklmcttq4glm5rouFalbmz0kAi4N7yKSJp+Vs1qS5T9tMutm4W4hdhSTnkIqDboZkCXJ2UA8JFPGUpCCeUgWqekChG4DuASuopwlodktX6AZUHdhAw56ABmPPB4THL+92OabsQGNjMSezaFYuqbIoLODQDGpxYANwD9ZRhqi5VauhgFowO8sCu437HFOaY9LtRrWzTKhks2h2lglVMDvLhKCanXtJmM3OvSRKZn0895J4lgnxLBtqViXUrEqou6dPaU7F7KxIzsksmJ3SXGxcZog8slYU2AAkyFoVyEDD1nJhva21XJjyLBcmmlXCDA66Q/qfNblVp9DsVqkb1vROaBOaRj2BDDTuCWhQ3FPAwS+vfpXGXNTOMmmYzFqVNLS6aVqpE6xKGhcH9zTVl2U2rcsJ5umpOrgnuye7p7insMFI8gD3gHvAPZrkCWig1TEBHLoB+xTskzYXbC7YXbDThJxSCsKg7pQhqDn5WoTYyVcjFMqQg0IZYzYMZYzZKJQpZuNQ5pithXKL2Xoo95itu3JOEOTK2XdJyJVzKUGunGsOcuUMKSiUIWbDUMaYjUKZYjYOZY7ZWii3mG30okGjG01yX0nspD3JiJy0LxmFT4+iSdqNjJoThg/DR6FMocKhov18Ugtfu/gi0oi+dFcex+gkrQ3kQdoz26DmpLUxSbNmpL23K41De1L4tCJoKOu8Rt0IEgSFL4dPq32SVgTlQexUw6d1YIRB3UmjgkmaNVLSWxB0lajzgq4Ddd5JWmug0aOqoEaAWi+oKqj3wiTNKepTEenuTxon0qTwlfCV8NXw1fDpvWpEThg+DB+FT88no4hFG75Rc2o1KGbrEUF3ZU45yJXHgWUEQT4blxrks3GsjWNtHGvjWBtjKGPMhqFMMRuFMsdsHMotZmuh3GO27sotpSAI8tma9iGEQc2phE8rwoictOqM0AnDN+6eQaNyBo3KmRS+Fr4Wyj1UeqiMB16lniAofBF9j+j7iA+Vxl1Lr693O38j+Pp83u/1heDqFUFeHJ7uz/vT8+7T6eV4vNv9c398Gf/p19P9adjn+7P8Ve6H/em7WBH8cTjulV7vLlen5UvlKdavhlpzCMi58l4J6R5sEoJ9i0QpqZtEkTeNRYm6EgXIXeNhgNR5iHB5dxg1u0SRjrlpJczoEtzrogQtS0i1mUJPGAKQ6rsFuIVAWxRoywIZ0BWyvKeEhLw5bZLgukWiALlEAeY/lmiwKLFW3YRemvJCiYsbmutaXbUobzlXLxr5jQasJFQe/COjLfFifWdcWUxB9PIU5rwosrYaaci+ml7y8mp47YaXF4W446VHXgLBW5H2f6Sk/+WUyDeJ7BrY22JKSl5JSa81RV6lnS0FUspKILWWiES+qcCfroZSWt7gFQ3KnlS6asWYb1eyUqryQSr6YJEoFvel0Nrmdn2YsM3tnLak42op0JaWsiYgj24mwIBLAqsHLHj7gHS9H29PxzUNlGfdKFF53lnKxFo3zdXrosj7waaGfCOx3NPX0imvweB3fWp9KaEV1s6FhvlyMBAuZaOuNlN5QrwUV+ItxXW9mHy1tx8oL/m40EOCYUOBAZV4CCTk5QJb6aPs1XXVhuH9p2ycBnD1yFLg/UsoFI+xZVEAVlonX7qevPNc0ihn043E6jNojsYJ+eqcv00jrFRmTam6RCqwKLFSl/pZp1xq6qq43yxlLZ0Q+3FVUR/YD4zXCrzq/x8RYL8vro+gDwhQ9UTKx+MtApw8Aq7bBNhrsqW6RaCBL6HxcgRY/9ZdyVFHvC2FFPNT23RbE8YmIiy+yqwJ9LipE20SaBcB3iRA3p3l888WAS4cjw/1VuCLDO8fDuebHxZfVep8uP923Nvwx8vp4eqvz/8++V/8h8mn8+PD/vvLea9Kl18n5TPFZ5AfsqC2L/LdQnyfi3TJwqTDrH+VEpHfvb68ajD/AQ=="
425
425
  },
426
426
  {
427
427
  "name": "sync_private_state",
@@ -579,7 +579,7 @@
579
579
  }
580
580
  },
581
581
  "bytecode": "H4sIAAAAAAAA/+29CZhcV3Uuuk93qdWlbqk0z0PJtmTJluUJg5kMtjzItmzLlmSNttW2hS1LloTUmmzLJBBugGAIEPKSkIThhUsGuJDLkJCXvC8MCV9CeOGGF0ic5JKQlwckQJwwJOFxw+PYtdR///2fXfucWi0VuPf3SV119lr/Wnvttdcez64sPJNmtv4eOXngvnsOHd57bGh4zz1Hhn/wf/40a+XWQsWUtRVzatkzOf0tih7g7P3Bv2ZIE9RPEsvx/9gr+hmwFH94mj8LVeU/U/6cp2L5Q58pAvyoi+FO/sG/Afi8nuRX1P8Vneo/M6Kz1c06oG/ah28d+cJ//fQTH/zkrw6/590/O+PJqT8/sGbKK1796n9e9I3Fv/DUq/93470WcLOQrFef8V+nZF/1W707HvzN7x4cuOFV7z/+5F/eenTq4qGPL3vNu3f8wZuWffWe/2K81yver7z+ba9ovP/N72he+Jlv993wxq/d880bJ1355GceW/CJV37vq0+9xXhvULx/tuN7f/OhxlseOfHERx+9ctWsofe+5Qv/8o+f+vR/a3zz79738i9cYbzrocxV2tKN1finG/9NwF8L5dpCnm6uxn9a/w3V+HuM/xZ42LQPP/4rv/o3Vz/xmUv+/ntTXnfL0E+cuPynPrf164/Mf8+Kf3jofYvfO8N4b1W8Xxpe96bheQ8/9+v9f/rEpe9ctOSL33rPh778nZN7rvzal7/ykeXfNN7bBO/8y85//qGf++zsv151zl+99Pffu/ZnFnzrvBf99W+vf+dT3/2jfw8jNtsIZS5RZ6fLfHs1/prx31GNv9f4N8HDZpzHQsXpsm+uJvs0/5Z02ZYmGe+dmjd71TlH/rf6E9ktH3/lRR8anPLxr1799mvWfebTP/G6ZY33vt14twreC15Uf+rdr3v81eFv3/NPb/jOBb/70otmLL16xtr/+22fX3Tg8M4FTxnvNhMUSpV5sfFvB37SPZqMf0cYq3sq785qsk+3713lZZ/mvas87+k2creBhVI2P+0r91Tjrxv/7mr8U4x/CPhL9IVN47+3Gv8lxn9fNf5Ljf9+eNgMSekFxrsHZJew3UuN/2XAX0L3q43/gWr81xv/g9X4Nxv/3mr8Q8b/UDX++4x/XzX++41/fzX+Pcb/cDX+lxn/gWr8Dxj/wWr8Dxr/oWr8e43/5fCwGZLSad7D1WTvN/4j1fgfNv7havwHjP9oNf6Dxn+sGv8h4z9ejf+w8Z+oxn/E+E9W4x82/keq8R81/ker8R8z/seq8Z80/lPV+B81/ser8Z+aEp6Za09a+MyDfP49v5V5dHjv/r3DJ2/YM7zlmU/rDh4Y3nNieBIAmDz83kPfe+l7jb4b3qQCPuZpl2y+30c6NtPYNw626CeTPojdT3o2Q1JakhFeCKPLGQi/TrqUlJdlhGfyuHxWZ1b2utClIfLYxnUhpy7kNETefkes445YDztiHXXE8izjEUesQ45Yw45YBxyxhhyxPG3v2YZOdCnWXkcsT5/wtL2nf+1zxPJs254+8ZAjlmeMftQRq1v7Rxv72tgBxxpZwV+Tw89MTp2wqo57VLn6hbwY/eQI/ZRE/Hxc3Wh9bo2rr91z79EHNhx8IFDioe61BSouJrrNEdUYN6N//HwxPesVtJjy4s1tfW4V7/o9w/c9uHnogQf23P+DQh5hDkZaV/CcB6RIY4PxKaRpMySlnhSnRPw66VLVKZXTqMaWW9W2p1tW3XBw6P51Q4eOHN2/h6dZOEVgqyAqPlN1moFm+KyX6NbR9/WCLwjsPN9qbpCeN0NSmmpeMVVkWt40wJ5MeQ3Iq1PedMC6H+g4cTmxPE9vZS8cwWU61hXrahrlDUBeA2RznU8RcqxsPYJ+gLCmCD6rl3byegUfT1lj0+qUlmjlyFNDyOB6HIeIMbvbI4aVb6CavFkZ8aM8xDR9zNaDIs+wrI32FWAZb43oP9z62yC6PO0gGYNCX3xm9smXmD5AuqNt2U86sSPimV74DPHroSO/zGL1huVjP6kYf2em2B314XjNtsW411eAZbw1ov94628jjO0T2E+mCn3xGfrJ75HuaFv2k4p2vDrVTwy/HjryyyxWb1g+9pOp1eS9NMXuqI/qu9G22Af2FWAZb43o/7T1t0F0eWI/mSb0xWfoJ3/c+txfoG8zJKXjakzDfoZ2KXOkItXPDL8eOqr3LGZH1d7UuMx4GyKPl50bQk5DyGmIvOOOWEcdsR5yxNrviHWiS7EOOWINO2IdcMQacsQ67Ijl6ffdaK9YP1QWK0+evnrSEeugI5anr3qWca8jVre27VOOWPc6YtkxBR7nGX6e+sPYtld2boJ4pic+Q/w66VJSXhazixozWvmmV5M3IyN+lIeYpo/ZeobIMyxbZewrwDLeGtHPbxm0QXR54jH1DKEvPsMxtU2gpwl9eX2hrD8iP9sI+dgfO6kvxDM98Rni10NH/p/F/EPZxco3o5q86Sn1i/qYrWeKPMOa1freV4BlvDWiX0X+OBN0Yn+cKfTFZ+iP52ajdUfbsp9UtON1qX5i+PXQkV9msXrD8rGfzKwm79oUu6M+ZutZIs+wZre+9xVgGW+N6K8gP5kFOrGfzBL64jP0k0tauP0F+jZDWuI2YhiIjXZJr4fsX1L9zPDroaN6z2J2VO3Nyje7krzsKfYNlIeYpo/Zeo7IMyzb2+wrwDLeGtGvIz9DGewblof64jP0s6soHqFt2U+q2TFck+onhl8PnfjliJ+oelPtzco3p5q8q1PsjvqYreeKPMOa1/reV4BlvDWi30h+Mhd04ng0V+iLz9BPbm7hThP68vp7rL0gbkPwG53yuRJx7x5VpyX4X278c6vxn7A6ngcPuT3Nh+cl/O3S1PZk+HXSpWp7mk/yuHy8BrtA6NKgvDw9CHSc1yue9USwDjpi7XfEGnLEesgR67Aj1l5HrEOOWEccsTx9Yp8TloqTneh1wlGvOU5YeTruiHXSEWvIEeuUI5ZnLPRsj8OOWJ71+LgjlqdPeNreq20H5zJ6+sRRR6xujROeej0bxkwTfdrZs71ne3zYEcurjPnnuU5YnnrlyWs84V1G3r/DuWXW+tsvdCgxb7WlrdN4pic+Q/w66VJSXhazC5aP58kLhS4NyssTz5MXCjkLhRyFddARa78j1pAjlmcZDzliDTtinXTE8rT9KUesiXosh/W4I5anT+xzxDrqiOUZv044Ynna3tNXPW3frfHL01c9/euII5ZnPXr6l2cb8vSv445Yex2xPMvYrWM5zzJ6jie6tR49be81lss/z3XCylO3jnM8x5gT44kfjTbkGSc89fLyr/zzHCesPD3iiOVpe88xgPW1fG7M8PPU4RrY8ozwTE98hvj1MLYuvdbA1Bk0K9/CavKaKfWA+pitF4k8w7I7S/oKsIy3RvQ3tArVEDL4jJ7lob74DM9eXdP6Mk3o2+leBPKzjZCP/bFiffWm+qPh10NH/p/F/EPZRfmH8ap6Zfun1msMi9eFLT9P/YKvhD0aqfY3/HroqL6zmF1UnLTyLa4mbxq3YZSHmKaP2XqJyDOspa3vfQVYxlsj+t0UD5aATjtIxhKhLz7DeLCz9aW/QN9mSEo3KluX4H9BfxhruxL8txj/0mr81xn/smr8m/qJviT/Dca/vBr/NuM/pxr/rcZ/bjX+a43/vGr8G6ztrICHHKdWwvMS7fjW1Dhl+HXSpWqcWknyuHzcT5wvdGmIPG6j5ws55ws5DZE37Ij1qCPWXkesw45Yhxyx9jliDTliHXHE2u+IdaJLsTx99YAjlpftVb/eLb7q2R5POmJ1a3t8xBHLsw11q+0POmJ5xgnPvtYzRnva3tNe3epfnmMTz3r0tP2zIU6ccsLKPy9xxFrqiLWsC7Hy9DJHvZqOWJ62n92lei13xOpzwsqTp0+c44h1riOWZz166uXpq90YC/P0oCOWp6961aOnXnnqVnt5+up5jliebdsrfuXpcUesIUeshx2xPNcUPMfknnMFz7VHG9/bOjaue2etv/1hrF+W3YtDPNMTnyF+nXQpKS+L2QXLx3uNq6rJm5oRP8pDTNPHbL1a5BnWBa3vfQVYxlsj+rktwzaILk+817ha6IvPcK9xRgu3v0DfZkhKawbDWFuxn6FdStTDmlQ/M/x66Kjes5gdsXy8V3SB0KVBeXl6AOg4r1c864lgHXXEesQRa9gRa58j1pAj1iFHLE97PeqItdcR67Ajlqftu9W/jjhi7XfEOtGlWJ6+esARy9P2nv71sCPWcUcszz7Nsw152v6kE1b+ea4TlncZTzli3euI9bgTVv75fCesPHna3rN/9IyFnuMczzjhGb+6dVxo9WjnzDFu8Dnn1LtD1TlzoxsUfFnrb4drD8l3pfPaw9xq8qJrD8ouHc55T9+VHpvLoz5qDsqx6cLW974CLOOtEf0rae0BZfB7D6n+ma89nGrhThP6cp9Wdi0M+Y3uR03OoODj9lXR/yalti9ec6nYnqNrLsouZdZclP27Ybw1Xljmf6sjclLXCJX/rf4RlTMo+Lg9ob1L+Hfy7+oZfj101H6zmD8pu1jZLxS6NEQenwu4UMi5UMhpiLzjjlhHHbEecsTa74h1okuxDjliDTtiHXDEGnLEOuaI5dmGPOvxUUesvY5YJx2xPNu2p395tiHPuPpssP0RRyzPGM1rADie6Sc5ZceiyG90atyU/2uGpHRHfxg79ijBf6fxr6nGf5uNiy6Ch1nrr2GvheclxmivyggvBD0mNPw66VJS3ukx4VqSx+XjMeHFQpeGyON3IC8Wci4Wchoib9gR61FHrL2OWIcdsQ45Yu1zxBpyxDrmiHXcEcvT9t3qqycdsfY7Ynn6l2fMOeqI9Wyw/RFHLM8ynuhSLM+2fcARy8v2+efFTlh58vTVbh0DeGJ52mui357otyf67Yl+ux3WRL/9w99v58nTXt3qq484YnnayzPmeNr+oCOWZxvy7Le7NUZ363jCs4yeY1/PevS0/bMhTpxywso/9zliXeCI5bVOnn++0AkrTy9zxHrQCSv/vNQRa7Yj1jmOWGucsPL0bLD9EkesZY5YTUcsT3t5xsLznLDy5BVzvOOqV9vOU7e2x+VOWN5l9PR7z37b0/aeMcdTL097eY1NvMt4riOWl6/m6QFHvTxjoaftvfoO73r0bI+e8cvTXp716Nk/Pu6INeSI9bAjludek+f6hOe6iee5Ib6/CM+sZa2//WGsX+ZymiEpDWSEZ3riM8Svky4l5WUxu2D5zC5W9kuELg3KyxPfA3SJkHOJkDOBNYF1trD4jKnh56k/jPX/Eu3tvNT2bfj10FE8yWJ2UXHPyn6p0KUh8ngOf6mQc6mQ0xB5xx2xjjpiPeSItd8R60SXYh1yxBp2xDrgiDXkiHXMEWuvI5ZnezzpiOXpX572OuyI5elfnm3IM656+oRnXO3Wtu3ZHj3b0KOOWJ7t8dngX0ccsTzHAPxOH46X+Z2+smN25De6QcGXtf72k35ZKDWGfktGeKYnPkP8ehhb5ipjdmV/ZRcr+2VCl4bI43XYy4Scy4SchsgbdsR61BFrryPWYUesQ45Y+xyxhhyxjjliHXfE8rR9t/rqSUes/Y5Ynv7lGXOOOmI9G2x/xBHLs4wnuhTLs20fcMTysn3+ebETVp48fbVbxwCeWJ728uy3PW3vOQbwjNGe44lu9VVP/5rot3802vbEmHzCvzhvYlx49vyrG8eFefK0V7f66iOOWJ728ow5nrY/6Ijl2YY8+45ujdHd2qd5lvGwI5ZnPXra/tkQJ045YeWf+5yw8vQyR70ucMLK04OOennuD3na6zxHrNmOWOc4Yq1xwsqTp08sdcTytL1X2/Zsj55tKP98oRNWnrzaY56eDf61xBFrmSNW0xGrW9ujV7zPk2c/5Nm2vfqOPHVre1zuhOVdRk+/9+w7PG3vGXM89fK0l1f/6F3Gcx2xvHw1Tw846uUZCz1t7zlX8KxHz/boGb887eVZj5794+OOWEOOWA87Ynnup3mufx12xPI898jv9K6BvKz1t8Pzw1MywjM98Rni10mXkvKi54exfGaXMueH88TvXHZi/wmsCawiLHt3ANsd/8Zi2XcUkN/oBgUft31sGyXa4prUtm/49dBRrMli9ld2sbJfLnRpiDweC10u5Fwu5DRE3iFHrBOOWA85Yh11xHrUEWu/I9bxLtVrnyPWkCPWKUesex2xHnfE8rTXsCOWZ3s86Yjl6feesdCzHh92xPKMOZ4+ccQRy9P2e7tUr2OOWJ4+4Tk28ey3PeuxW+OXp395tsdujdGeWJ7+dcARy2zPaxWGn6d+4stCqbnTkozwTE98hvh10qWkvCxmFzVXtrI/R+jSEHm8F/scIec5Qk5D5B13xDrqiPWQI9Z+R6wTXYp1yBFr2BHrgCPWkCPWMUcszzbkWY+POmLtdcQ66Yjl2bY9/ctTL8969NTLM054+oRnPR5xxPKM93wPD46N+B6esuMz5De6QcGXtf72h7FjlBLjpf+SEZ7pic8Qvx7GlrnK+EzZX9nFyn6F0KUh8vjsxBVCzhVCTkPkDTtiPeqItdcR67Aj1iFHrH2OWEOOWMccsY47Ynnavlt99aQj1n5HLE//8tTLsx499fKMq54+4VmPRxyxPG1/okuxPOPEAUcsL9vnnxc7YeXJ01e7dTzhieVpr4kxwMQYYGIMMDEGaIc1MQaYGAOMp7261VcfccTytFe3xomDjliebahb+w5P23fr2MSzjJ7jaM969LT9syFOnHLCyj/3OWJd4IjltX6ff77QCStPL3PEetAJK/+81BFrdpfq5VWP3nqd44SVJ0+f8KzHJY5Yyxyxmo5YnvbyjKvnOWHlySt+ecfobm1DnnFiuROWdxk9/d5zDOBpe8+Y46mXp726tX881xHLy1fz9ICjXp6x0NP2Xn2Hdz16tkfP+OVpr24dYz7uiDXkiPWwI5bnHpjnWofnGozn2Si+q2M25GWtv3bGEGNdLqcZklItIzzTE58hfj2Mbd8l5J0+Y7iI5HH5zC5W9sVClwbl5YnvZVgs5CwWcs4Ulqqv/F8zJKUt/WGsPUrw7zN7LoGH7EvYD5So2/mpvmT4ddKlqi8tI3lcPvalptClIfJiddQrnvUUYOVp2AmrXd2fLb3ydNQJK/886ISVJ88yDjliHXHEOuGIdcARy9NeJx2xHnPEOuaItd8Ry9P2hxyx9jlieZbxlCPWvY5YNjew/gvHTlnrrxoXpPel2d9mhGd64jPEr4exfWSVvluNqbB8ZpfOxibZFzPiR3mIafqosQL3uzYv7SvAMt4a0b++9SKR6vdmkAzLQ33xmdln0g/+/WT/aN3RtuwnFcd4U1P9hMd41fwyPsZTY28rX7OavMEUu6M+ZuvzRJ5h2XpiXwGW8daI/ufJT84DnXhucp7QF5+hn/xMC3ea0Hct4cbaC+I2BD/bCPnYH5vwvGx9IZ7pic8Qvx468v8s5h/KLla+86rJG0ipX9THbH2ByDMsW5PuK8Ay3hrR/xr54wWgE/vjBUJffIb++Cvkj03AWki4TYHbFLgNwW90yucYJ5L+TtVpCf53GP8F1fhXG/+F1fh/W72XWoL/I8Z/RTX+Hzf+51bjv8v4n1eNf5XxX1mN/3Ljf341/q8Y/wuq8a83/hdW4/+o8b+oGv+bjP/F1fjXGf9V1fi/bfwvqcb/FuN/aTX+p4z/6mr8mfGvA/4SfULT+K+rxt9r+l6LD4VOhm99yjVAnxX8NSzOM1l1wiqpexbTHfXjfuBakIdlLMK6tiRWv8irUifrQnG5EH8wogvrmSeej1Ytc572OWHln89xwsrTcUe9mk5YebrPUa/zHLEucMS60BGrzxFrqSPWcxyxruhSrOWOWM91xHqeI9aVjljPd8R6gRNWnh5z1OuFTlh5Ouao14scsV7siNV0xLrKEesljlgvdcSa0aVYV7c+27oE9ksrSU6fkNMXkYP8Rtcv+Jr24VtHvvBfP/3EBz/5q8PveffPznhy6s8PrJnyile/+p8XfWPxLzz16l8xXuzvSow/t3a4DjfL+JdX459p/OdU45/R4TrbtbwmE5D3qt/q3fHgb3734MANr3r/8Sf/8tajUxcPfXzZa9694w/etOyr9/ykWo8pIfvqzu4JywKvx4RQ3m7PrSQ7LFNrMSV0f0qtxfQk84d+tRZTgv+5ai2mBP/zeC0mAO95n/+dyf/262+s/fe/eOrg8W9f8JY/vuGJ//M3XvTmz1x01Y9t+vuf/cYtah2mzF6MWkepso7wkmr803gd5WnQkJReqNZQSsju72wNJftih/P1QV6DCcj7lde/7RWN97/5Hc0LP/Ptvhve+LV7vnnjpCuf/MxjCz7xyu999amfMd7rFe+f7fje33yo8ZZHTjzx0UevXDVr6L1v+cK//OOnPv3fGt/8u/e9/Aun/fWGanoPGP/6avyzjf/GIHSPpuzptf4L6s98sz41O50bwmT4bO0wT5PCyJrSZqLJU43o108f4VvbkjdIPAE+9xN/SZsswDJYUmtghl8PY8teZQ2sh+Rx+fjcW03o0qC8PPE5iJqQUxNyFNbjjlhDjljHHLH2O2INO2Ltc8Q65IjlWcYDjljd6l97HbGOO2KddMTy9C9Pex12xPL0L882dNQRy9MnPOMqv0uBeTwOmATPS/TLPanjAMOvh7H9cpVxwCSSV2SXgR/8m9n6fHR47/69wyc3HBy6f93QoSNH9+/B0QSOEFhKRqj4LAujS495vfSsl+iuo+/rBV8Q2Hm+1dxket4MSelG84obRabl3QTYPLK6GfJqlLcBsO4HOk5cTixP/ndg4Qgu07GuWFc3UR6uYt0MsrnOJwk5VrYeQd9HWJMEn9VLO3nP5laq6sl4GyKP22nqrKBK9Gi0Preix7V77j36wIaDDwRKNfp+bYGK84lufYFqmcDN6B8/n0/PlCkQOzZBTHGZPHEHhHmbSc5EBzTRAZ1OEx1Q6K4OqFfw8fIQLxvlqWkffvxXfvVvrn7iM5f8/femvO6WoZ84cflPfW7r1x+Z/54V//DQ+xa/d2Yu6220FIb6sj9b2Sa1KV+N6L/YGOF7e0te3grntfJbrfCao/v33bFn+PDePcf2/CCeHwmU2jWdW+j7rYJPJXMJ1ZTNvBWDU3IwNPx60NXcDEnpdDBUsxQsX7VgyA6BVgnBPxjeSt+rBMM+et4MSal0MOQuHIMhB8pOgqGVp2wwxLriYIiNmIOh8lKUY2XrEfSTCCsWyNrJmxiyPJMmhiyQJoYsobuGLMw3KYxt1cZbI9o/aQ0NOmzNo07fsI4Tff0zaaKvhzTR14fu6utVlMkIYzyXSlB2dIL1peF1bxqe9/Bzv97/p09c+s5FS774rfd86MvfObnnyq99+SsfWf6tDiPKnR1Gwi0531dogsfn2vGz9VpFZx2Mt0b036iP8H0NJngrWvmtaHPn0P699w8N77nuwMuP7jm65/5bDw7vOXL1gfuvO7bnwHDp6d719P0GwafSlDBSYL5ACguZJ14LnNP6bi+tMg0byOj/tWWU3GArWg1ZOZ3pM0j8IYztpuaS7s2QlJK7KcOvky5Vu6m5JI/LV62bYndGqyAqPuOwgXlnopuaT8+bISmV7qb6KA+7qTmU10k3ZeUp201hXXE3NQ/yuJvCOp8r5FjZegT9PMKaK/i4myqS1yv4eAiS0XNcO5stZPPa2cCUZ/7mtl21sNgOeG0dY9p3Nehne1t+njr0162pkcbw62Fs3VeJNPNJHpevWqRBT0EpdxKq0SAtpjtBM6Tn71x7NcHHyXBqpPN5LS/KvW9O6/O0MLZc00hv5e34jAdQyG90Ss5Ah3IGhBzz5MnAt53y+iN5dcCcRnlTgY/30BqQt4PypgPmAOXNiGDOFJh53X1iyghe/q8JdMrTrXeyOsAXM5AXv08i2jztav2tEe3zwK9Wk19hK2a/mtdG75hfzQvFcgY6lDMg5HBvlSf2nfmirJa3APi4nhdCHvvOIlEudakSYy4RmHn9/M6U0XRNoOOIfx48LzNhSY34hl8nXapG/PNIHpePJ3MrqsnbkhE/ykNM08dsvVLkGdb5re99BVjGWyP6a1v1yS9z5Ykvwlkp9MVneMj9JeQnaNus4K/h8jNuX1j2ZhgtB+PNZtDnxoKYhyMpjGs2WeZY9SewC7mBYhXyc901R9TquPzNMLaM08JY20yBz0X+fV5EzpRIecarPqeQHIyzWJ/bqD5XQB7H6Pzz8tbnGtF/GOpzJ9WnaovKztwvlbXzNCFnvO3M/ctKRzmIxS+5rCIstrPVk9n5fMhbRXyrIQ/pcNa1Cp6vFrIVvmG088H9U3TZinzQZNWI/hfABw9W9MGVlId9RTOM1tP0QDsg/fKgy9VXQF9UrmMw67xw4WhM40dbYV1w/DX6k4C5dqHWE8uF/QEvBCt/WCXKpWy6OrSXjXZeXyC7L8R9sUb0PyZsyv0C8qt2NIt0Ob+N7ty+kd/oBgVfp3FE6dyuTb62ZJu0F53Zd18FbfL11CZjPoI68zyirJ0HhJzxtjPPEVY7ykEs7hcuIiy2s9WT2XkN5F1EfBdDHtJhv3ARPL9YyFb4qf3CL03RZSvyQZNVI/oHwQffEZkXx3xwNeWhTZthtJ7t4iFfjGR694V4f1sj+vdE+gXVXjHWcr9g9L8e6RdMLpYr1i8oX1wjyqVsehFhLRVYaGfuF5RNsfxLqfxG/5uJ/YLxq/WInZSH6xErKG8B5PGYFS8qXUl5uB7BayN4sTLHO/xhDfQRXo+YHClPP2Dweh+u282nvKmQt4DyGpC3kPJw3W4R5eHxEr6oeybkLYGy2rodb5z+Yet5h3t68shLbF00K/gbQlp/wMe1UM5cRzmIdR3Jmecoh3ccUM4CIcfqayHxNUNSSt6DNfx6GNt2q6yTLSR5XL5qOyMYbdgqiIrPsjC69Jh3JvZgK14FX3oPliMS7sFyRNoAWGX3YK08Zfdgsa54DxYjPu/BYp0vFHKsbD2CfhFhLRR8Vi/t5PUKPt6vzOh50R6sYdSI/svQQ19KIxQlC1sUjxJM96ITJKyD0f8T6LBiocasFZRrfgHmf8LuzTemaMwgMFW5FlG5WIeFpIPR/6sY/fSGsf6nfGwhfcfR4KIC/VQ9sa7YnorKw/Vk9P8eqacFQgf8mZH1bXRgmkUFOnxP6CAi+rqDh062InqgxIfsOSKz5XmveoHAKUqGn3uheaQ6WTFf8PH7lT1Cp7zkVnOnXxndv2d4T0HZe4RuSmZP0InH4MaXJ+t9KvbjyeMGw68HHaWaISll7Lkmj8vHh15VRFc/hoD1y34Uk5PXqa0rtep00/DBw0VVmjqgyIRaIRQPLLIwuiqQ59nsBuWGj+wEaBVExWcxy7erbY/3VSr+4lTp4SMf08PhIw8tOxk+WnnKDh+xrnj4iA2dh49Y5wuEHAyyTL+QsGJDv3by1PCSjwFyVCgaPvIwy+jPaa3M4hE+lmXfL4DPfERvHCaiM1IjyQ/3RHQ6oRoN0mKaDpohfeyIXp5uFHycOJKspOfNkJTO2ET05UDHSUUSK0/u7c8pEUmw1aVEEjVJ3UB5OMm/hfJwWfJWysPjILdRXhPyNlIebuveTnm4HXxH6zNHihe3IkWHB2/lcqBhTQtj7Y1LqOzXveIZL58h/5yInOkdypku5AwGHUnz1KEdk8dZfIC501cl1AFmZRfVCxtvQ+SZz5vf2bL6x1t+9/TRqIHR2Pg6DNu14lu7z021q+HXSZeqdp1M8rh8bNd+oUuD8vL0ANBxXq941hPBOuqI9Ygj1rAj1j5HrCFHLM8yetajZxkfcsTyLOMRR6xjjliHHbH2O2KddMQ65Ijl6ROe7XHIEcvTJzztdcAR64QjlqftH3bE8rT9cUcsT3t5xsK9jlie9urWWOhpL8+Y4+lf3Tpm8vQJz37by/b550EnrDx5+r2n7Q86Ynn6vWcZPeOE5xjA016nHLHs9zxsjQnXIXg3Sc35J0fkIP/kBCy1fhArY9GVF063GpuKVxDd+gLVMoGb0T9+fgU96xW0iI3X0KRsZlT8+bjLMsILQS8rGb7XZoY6Kaw2M9TboMbbEHn8c5Cpb3E2RN5RR6wjjljHHLEOO2Ltd8Q66Yh1yBHL0yeGHbGGHLE8fcLTXgccsTzt9bAjlqe9HnHE8vTVfY5Yz4Z6PO6I5Wkvz35oryOWp726tR/ytJdnvPf0L8+Y49kePX3Cc8zkZfv886ATVp48/d7T9gcdsTz93rOMnnGiW8dfpxyxeJkE59W8TKLmsEsjcpB/aQKWmg/HyjjOyySm4qVEt75AtUzgZvSPn19Kz9otk/CpnMtaccuWRSqeKpKnwfiUFi4HNcPocpRdqUP+/oiceody6oly1nYoZ62QMyj4soK/JoefxVb215KcOY5yEIsvocKlsCZ85iYca9bKDxYUYOFN07uBhi9Jw5fng5C9HfKRfn2rDeXLom9vHRVVb2bgJRA3DcZ1RV7UtUb0N8ElELe0MJWdrd6VH/DLM3OEXIXJbats3dWFDjEsrK+pRG910VdAz6/SGf1WqDu+bMJoivyHdcY6CoSRJ/Yfo99ZwX/uGozryv4zNejyrwH/2U3+gzaO+c9UylPvQaiYySd1y8bM6UI/JYcv85wjdM/C2LgVGyY0BL/RWV96pq7gnk55eOp+BuVtgLyZlHcL5HEfhG+v8WUVt0Ee2oNTL31HG+W+/y7wfaYLJDN2kl9d6211j+MUHp7OIF35WWx4OqMAC1+XVhcC1Yh+Q+vmvbw9nhocXS68sNds0qGvXZ7SvyN+nXQpKS96+hzLx9tZS4UuDZF3Lnzm+Jsy5cC8Q45YJxyxHnLEOuqI9agj1n5HrONdqtc+R6whR6xTjlj3OmI97ojlaa9hRyzP9njSEcvT7z1joWc9PuyI5VmPnvHL017HHLH2OmJ52suzDXmOJzztddgRy9O/JuLq2bF9/nnQCStPnn7vafuDjliefu9ZRs84ccARy9NenuPV+xyxHm/9tbWHovs/MA/lzI/IUZdWqXU/XHPgubTR5MnWESr+KEtvRnimDz5D/HoYG3OqrCOoH1NQ9RP7kRS1nc+3fHRyNGAJYaWufWTE366MjluXpuJlRLexQLUegZvRP35+GT0r2ro0bGtGuPTUJEw0Y8y0avtoZkTO1A7lTE2UU+9QTj1RzvQO5UxPlDOnQzlzEuUs61DOMiGnV8jBbSm+qzlPuEUzMHW0TupmUFw2tlDNN4PeOnWEb9rU0TbAbQ57K0O9sML3NONvzXEX0IDnJUJy8kUmhl8PY9tGlS6gQfK4fBge06954paIVkFUfJaFsdErA83wGW/qTya+9YIvCOzeMFJzM+h5MySl0htOdcrDDaeplNfJhXFWnrIXxmFd8eYQRi6+MA7rvCHkWNl6BP10wmoIPquXdvJ6BV+dMDJ6XnRhHG/8Gv2qVoa6b1jJwhbFB5hMd9t8ZxrWwejXgA58j20DeFS56qAP2t++Y3vaVSD/aoisl0zV8oOQz+VDX+0r0LdBOhj9c8AGfDfxDMEfCp6xb8+gvBkR2j4qC35Xvsj3GFtULSo717/RvzBS/1OFDqZXnta30YFp+gp0eInQobN7jDmycy1xTUwVOEXJrJF7rHkvW4dbh3pW5AGd3mPcXyCzJ+jEv69hfCGM9GoVxwfJ4xHDrwcd/ZohKWXsuSaPy8dTUtVTNEReUSttJ6fDe4yLBioqWDB/IN5MPMsTvrx7pk4JKjlTO5QzNVHOeJycU3KmdyhneqKcOR3KUSfGGEtNm/JkDswnI3dDYF9bcEl+TwHmHaSDWgVUp8KMPrYqpWyJK0TnJciO/fhD6kF3oz9f0OPq1VLSFfU7v6SuG8+wrguEroNCNnc5/HOhzZCUkrscw6+LMlTpcmJ2eVqx1t9yU2D0WLYKouKzLIwuPebFepY8XU/fq0yBV9PzZkhKpafASykPp8ArKa+TKbCVp+wUGOuKp8CrII+nwFjn5ws5VrYeQb+KsM4XfFYv7eTFWrdhKL78+3WCJ7b3kdJq88QDt1WOWOqHNM2n18DzEj49JzUaGX49dNSGTkejNSSPy8dlv0jo0hB5uNiJeSjnIiFHYS10xFrkiLXYEWuJE1aedkxgTWBNYE1gJWKpM0WrKQ/7z7tbf9WMaCrpp/bDl0T0Q/4lETnLOpSzTMgZFHxVxwqNiM5WHuy72W7qB5xXR+Qg/2oqT9F7aZ+YqmWq99LytLv1l3/I/sXwHswfTi0uI9rZysU694MMyysxrhnMx96nlozIwXGK6Wi4Re0Hx3A3tD6rPnsm5WFdG0a7Ovgs1QH+SDDXAepTI/qVUAefozpAfpxPFLUbJY99pK+Ann9Rwuj/QmydKP2WFshDe6Cd1xfI+2uxoqT8zmR36HdzlN9he2W/Sx13p/qp2UT5Ka9SqTNN6Ae8SmX8fUHXAf/OldF/WdR5qp9zvRr9PybWq1M8kfWKtuJ6VauJqh+K+QHWF78/h3We8h421nVKvc4X+Fyv347Uqzo4g3pyvRr9vyfWq9lyPOoVbZVSr+rMZ6z/Vu+4N8LYfrJBWCpGx1aVVb3GfvXH6HtbfYiqV7WyH4vDRt8HmGcrDqOtUuo1djVNu3rlOIz1uoLy1C5D1RhtWKkx2uhnijrnMT/HhSL9in6vz3FD8/wCNWYL/kC8GT2bXYBlOPkzXJhnk5928aCXQNnkRr9AmFw1U9RHhSgrjy09YnWPx0aI4Xv9eGxs6Pm0Yq2/6rVybmaxplTmR2qdXDVP1xeokQn+QFiZeIZ5ylVxT9RclY+9cg89QDMFdCGeKajIp0b+Rm8j0KLRheHViP7CSC8UGwXniaP1xYIeR8b8G4hYhospD/mWFsjB3hEjP/eORn9ZYu9ossejd0Qbce94CeT1Cnq296WC/hKg4VWlSyEv1qQvJjntQgf7v/JTNftWo/Gpobi87WZl7F/oExdRnprNKV8wuvFYKcHysC/E2lKe2DYx30HbNEJ7P8F2eRHJicWlPMV8AVcXbDWsH7BRTjMkpfONv6ca/73G31uN/yIrJx91zJNhY92W8Jn70CaW1FDB8OukS9WhwiSSx+XjoUKf0KVBeXl6GdBxXq941hPBGnLEOuaItdcR67gj1klHrEOOWJ72OuyI5elfw45YRx2xPH1ivxOW8XvpdcIRy9MnHnLE8vSJI45YnnHVs217+WqeujWuevqEZ/wacsTy9AlPex1wxPK01z5HLE9f9dTL017Phn7b016e41XPGO05BnjEEcszfnWrT3jGiW7thzznMJ5lfMwRayKu/mjEL696zMLYNbdusVe3xpxuHRc+7Ijl2R49+1rPeuzG8WoWxq5hd4t/ecbVg45YnnGiW9eZPPXytH23xgnPMfmzYV7r2W8/2qV6ec5rPevRsz16zmE81309sTx9gttQ1vqO+6Tb4fNOyEd6+5UhtY9dYu/2/kHgCYCB2BX3oe/PCC+E0WONQPiDBfLyVBd5tQRdfmPO79917bnf35URv+nCz1LmJmpP22w1mXRvhqR0rzpDYrItD/fnJ1Ee2sV0yP++aclo/foq6pdiP8RvCHp+Ky61LmaE0b6A/p7yI5nt7g4pupm2r4CefznO6C9ttUn19sxK4K8XyEP9Vgo7NAT/ygKsojc2zinQ/XmgO9/tom4RUNciGf0qQY9Hgvm8FZZhFeUhX3+BHCwr1vXuMLqsRn+VKKtqfya7wzNcA+oMF9qIz3Cps1JIn/J2Cp5h41uZ8QzbSspDG6+ivLI/Hpt6vst48Vf4Uu5Eit2Nk9quFwg9uG3cltiumwXyUL9Yu0b+Mu06T/cU6L6lZLtuCv26oV1jXe8Oo8tq9LueZe3abOLZrqu+rabaNb6NxL/OehHkGS7+yuCFrc987nxfxJ8vFrrG7Nvu7Cv/yiWeab2E8pDvfMpTZ2ZNh0uFHVAvvovN6I+AHX4RfNDKEkivDn39auXreI6cfR2vou8V9FwXlwv6y4DGbNIgeq4X/I5YaFN+Rchs1CfoEY/fC3hc9AumH8a3S0n31SV1nyd0V7/MiW3ql6Y889l8EN8TaZLM1RGZzItxpq+Ant8ZMfrXCHvFYj7aaRJhGv1PReKBip/qVx5itl8jyqVsyu8JoO54T55hM2aH7fMazxsV8lT2HR2r/0YYGw+5v8G2sYbkqDFGqv+jD712isYt6m+Wtz6zf/1SxL9Uu1kBz8r259zfoH+toTw1vlfvqPA4UvW7SM/zQ6N/d2J/4+TPM8/2ey98axr2BxwPlc9iXXN/o27nWCPw+baMD0T6G3y7+SLSfWVJ3au0t/3U36wAuibJXBmRybwYL4r6G8OrEf3vRPqbFaA7z81Uf2P0v1dyPhXrb9rNp0wfZVOeT6Hu5guqfRpdh+1zlmqfWH5un7Gy5oltE5srqf4m9gZ/7H7dFUJOqv+jD22j/qZJuIiFfhHzxybQWD2xP3424o+xdpYntnm720Kbrc/KH3nO04S8mD8aXYf+eKfyRyw/+2Pq/b6pbZXn4uirMX/k/rkp5GAMYX9EP2pCWW+cMppuMmBkrb+2J4BrAyVsnnwlgeHXSZeS8k6/Z9hP8rh8Vnfl7mbGnRG2CqLisyyMLj3m8Y5aL9FdR9+r3M08lZ43Q1IqfTdzH+Xh3cyTKW8DYN0PdJy4nFiesnczY13x3cy4W8J3M2Od9ws5VrYeQV8nrH7BZ/XSTl6v4OOduoyeY0+hdv9qRP9v0FOsWlhsB9yBY0z7foHQk+vC8kMY8deKPwQyIzXSGH49dBTZTkeaOsnj8vlEGpMynVCNBmkx4Q9kIT1/5x9Cu1HwceJIM5eeN0NSco00/ZSHkeblQMdJRRorT26b55SINNhCUyKN5WGk3kB5Dci7hfLw90JupTy8L+Y2ysOfWNxIeXil0u2Uh3sB9psdNSr7rJZSHZ4pGKV/CLr+J8Yt3TZuuYW+Vxm3zKPnzZCUunbcYuXxHLdgxPUct8wlrPEetyi+LIyeYXE99RFtCB33RMm/p2349dBRdDvd6ueSPC6f2UGtMBhvI+h2Y58xD+Wo2b7C4l+1mp6oc4eXsfH3/gI1egR/IF5uqikH+TD48iKt6dIX4m5eI/orW0qrewMVf55S3P5Md3adur0KEzG3ny50aYg8tCHX4Rly1TzdUqCG6kUDYWXiGeYpV8VZ2foC2X1BzwjZVY3+euGqjTBaR+TPMd9WHy37NqDrDWPLx7puJF0VDepq9BtA1xWkK9qex8EbQRduUreT7s2QlJKblOHXSZeqTep2ksflqzZ+ZO9DqyBqELRB5LVrOevoe5Xx4yZ63gxJabN5xWaRaXlbADujvDshj2dVWwGr7PjRylN2/Ih1tYXy8BcX7wTZXOe3CzlWth5Bfwdh3S74rF7ayesVfBlhZPQc171uE7L5TYk9EDl43Qtl3RZGJxU9eK6VJ7Z3CGMjTUV/3ZYaaQy/HsbWfZVIs4nkcfmqRRr0FJSylVCNBmkxbQXNkJ6/c+0tFXycDKdGOj/e8qLc+w62Pk8LY713CumNOsRidkPwG52SM9ChnAEhxzwZ62E75dVEWfm9nTxtprybIG8H5d0syqVm5Yx5SwTzVpH3dOSYMZoOo1FW8DdPveIZ2/R2oavVHUYAfv9DtbZNETnIb3SDgq/T8iid1bgKfynntdNHeDLKU9G+2fpcI/pvLBjhez21t83AbzoqO3NbLGvnKULOeNuZ29QWRzmIhTbM/20lLLZzs/XZ7Iwjoa3Etw3ykA5HBFvh+TYhW+EbRjsf/KXpumxFPmiyakT/OfDBd1T0wS2Uh6NL7g9ND7QD0jeDLldfAX1Rud4TmffdLviV7rxitCWie57YF5GfR67j4fMos53/fID8507IU/7D7wMa/e+C/3yQ/AdHaONR/li7xpGczb5i7VrFD+bDNjorQYetQueG4Dc6Ncvq1DeUzu1842PkG9sgT/kGv8di9O8G3/gk+QbGT9NR2ZnHgGXtPCDkjLedeXy33VEOYnH/tpOw2M5WT2ZnfFd5J/Htgjykw/5tJzzfJWQr/NT+7c+n67IV+aDJqhH968AH/yIyp4n54HbKQ5vySsp2YQdVBxnp3VdAv53KZfRfFP1brL1uB0yO5Ub/JcDkc5YmF8ulZssxX9whyqVsujO0l412Xl8guy/o8hf5ylcjNjX+SQXlYZsa/dciNlU2itlUtbGdolzTRJl3EdYdAgvtnGJTLD+fozD6b0bGYVsEvxo78BhSjcOQnn9lUrUxNTbhNvYfiWNIHtvg2sJOysO1BZ7r434Gz8Vwx/9OysO1BV7n2AB53P/h/s42yrsV8kb5fmttoUZl7Ws973DfQZ6X4fM7RWto+DeEtP6U75RBOeOxbqLk3OEoB7HWtf6qORv/ynPZdQPkj80Nax3KqQk5jGUxOU84JuL3W4x+fsvJ8nb99iWjMTcL/fAunPWRsnJ7RiyrM2sfGPvGY1/O8OukS0l5WSzmYvl4q/tOoUtD5BXVKcqJ/e5Vql4DYeQMYmsV/9o99x59YMPBBwKlGn2/tkDFRUS3vkC1TOBm9I+fL6JnatsZsc9U0zubcqZ1KGeakDPeS53TSE7RdOeyGSM8WWi/pHxO6zMvKZ+A6c4VLUw13SlqduhrseMYJq/oiMOkAv1eAKF3BQ2HJ4kynxPReTPIYLl52l6gw0toqFIxFMuhCi+F4pCOr/PCUMabwzjE6RXP2Oc2CjmMVdRNml15SHd9yW4SfXt9pKy8bYS6sB2UHBXelR1ichodymkIObFuv2osUTrzVCKE0fFiE8WSLZCnhjR20LhG9C+DWHJnJJbwMhQPNTi+FvWTRbFkU4F+OyOxRA0Nb4zojFNAlpun7QU67KZYwltBzZCWVCzhrQmMfzNJ/7J9IfKfqb5wJskZ720/tdzP8UVtR90ZkaO21Nq1xwMztEzVHrlfQ/q10B5fTu3RY6uuqE2EkLbdtVnIKYpBIcT7IKM/GemD2g39Y1O1Iv3wYBXSz4AyF2EF8czosf/j5Ys7iXZLhJb1Rt++ovXZYhFvKTdDUtpm/rxNZPKWBupkebiMeBvQceIjSqhzXt/voitYgsBS083tBZiqze8iWitzj8Dl7SJsx2yvHQU6cB2HMNb3DPfnZozgv4H6GVwuL1G329WWlCWuP7YdJ1V/pldef5+tWH98zEldG83zKa6Pd50le/GcH9PZsBcvP7ezl+VZeXsEHx9CNXmfAn99N+HVQBb7P1+ZjNszzB9C8ZbYr0Ffsah1DnJaGNu/8pWpiK3Gx9zPzS/QS5UT4+RW0ttoP0m+ytutzZCUrrY63kk6IfauitgZ4YWglx0Nf1DIM73qIi/lmvPVl7zwT/6u8fN/nBG/6cLPeB58l6CfL+jNVncDfwlbvVhdAWOyLQ/9cRfl4ZqB6aCuOb+ron4p9kP8hqBH2WXqoiHkbHTE2lIRy65fV9upHHPzxP2Q6vvzevwHGqdjvc8jXcvGIeQvE4d4vGG0X6I4VHH8+Bw1DuQ4tLMidmoc4n5P1Wtd5KXEobXPe/LiT32u/6EsjI23veJZyja+eom1w3Z+iYpDHGvQH3dSHsYh00HFoYp9yiUp9kP8hqDnOJRaFw0hZ6Mj1paKWBaH1BhcxSH2822iPBiHeI7xNRizfZleG0gZd4cwNk5uieRtFZi57P+vYPxpLyPhPJLnaOpYkX3HZ+jryMNrD0b/LbDNv5B+OP8PhMdHKdR2Z475nRnFdNsidKnje96SVcemU+tFHdPi9SJ1xB2fxdaLjI77pMkzR3SxBUTVly4kXcr2pchvdCmvCm0SOqh2iuuBn505mg5tlBX8tXLwMy6Hqp9869suWWhtfd+wZ3jTg0OH99y/ac99h/cM95IGvIPBrWoHaaSSackjk1vpO7/AxqvCWwVOO5lql2IOfGa5ageLLTtH6Hw25SzoUM4CIUdF9049UuncbsV8wcwRHvSJoh0sXpEw+t+YP8K3mKKH2nVUdsarWKrYee6EnHGVc36Hcs4Xcsa7HZxPcorawaVO7eBuaAfPSWgHLC+EtB0W5OcR8NY2WFzHyB87nL8xQU7sBZHUlwBSyhOTczbLY1jq5QSsgzsiem0nrB1tsG4nLHUAX/kg61z2ZAbyx06AbO9QzvZEOWeqPNsoD2ckHItV3e2I6ID8PKNTqzxVY6TSuV2M3EYxUr0oFDvtYvQbIEbujMRI9t0fNTvvdJSDWHxKqqg+H6D63AV5KfVp9M+B+nwooT6VbTZHyoOniVLiYcoLUtsj9GrVUPUDZl/c7bA66nBnI/mKYsOvky4l5Z0+fH4PyePy4SHv2a3PrZnu1XuOXHrZldf+YJp78tAw29Rwp6NQ0J/pA31nvlw3Pg29Q8jIE/vPTqLjerfnjJ+iUzvadvmq3fDKa9l+DfmLThAWnRay+uGTvY+12rk6LaTGUehDPJZVfTi3O6brFWWYUsB3ddD6YZnXR8ps9K+KlHl7mzLzmFuN9zg2MV2vKEN/GOsDiJEyfsGVrEVhdLnKrjQuEnLGe/VtEckp6u9+mvo79aIptvl1rc+8Wr0c+ru3RPq7M1X+dm0ay8I+heVSJyNDGHsKxL7/YqvsHZ6mkCdyi07acPv9ZapTVfZYnRr9LKjTdybUaax9xMYiKk5sidCrsY5aYxm/EynZ36b4KOKr3d4qYxF1ikTt5JUdixjuF6FAqH+7sQjzqbHItgIZRW2Pxwc8lmk3FlE6FdGWHYvgOgdfGFB2DVDtApt/Vnxxsmm6bAE91CmbokuqesLYtqjoN5J+jF+0/lAL2jZ8+ty+fxjGGUvpdB3qsLBAvxDS6gL5z9R6LO/cjccbPCGMXb/Ber0GPmOeySmKyQ3BHzvlv7NDObFTDu18/arW53Zjok9R/6kuN6sJPXhs/Il5I3x/HNk9ju0v8LpF7HIH9VZs7Fpd3A1WevEbj2V3tZU+/Jbf38MO+5+TLtjnrCJdyr6hiPw8PkA+a0v9Yaw9SsTf5BflDb8expa5yvhA1ZGyi7r0w3gbIg8vACmSs0rIyQirnV6OL8pb/oVEt75AtUzgZvSPn19Iz9QQA7FzWXvnjshBM/y/NHXgrrUZ0pKaOnCIwerhZl62aSF/0cu/2N2rgykq9K0grLJdOfJvLMCqCd3zxNM7o++d9czfDodnG2MvIXZ4AHZjaugpuo8O9aqLvJRDqpd948SbXvqi1d/jLtR04WfsN2oKuULQm61weaiErW5Rh1RxiSJPapqtDqmaDuqQasUXgG5JsR/iNwQ9371VdksX89ZXxLKDpWoqcbZiUtHyLt/pavT1VttXS50qNqmXzmOXL3BM4zJyzMlTM+j0fUqGZ/afLGTx1Mtop0O5ly8dretmoavFiN6IjCCeZaHYNiyjR/C+MIzWbUuCbuqlYcToKdAzx1DTG/bbstOb1JelV3YoZ6WQM54vxqPMdtOvc2aN8GA8KZp+vaj1madfvwnTrxUtTDXN4WmkuowGxyxlL5DgeGL0F0C74gsk1FGrFwEm+xnK4HLlicczRn8xjWcqjjnkmJOXfnCazLE1TzcVlAnjNN6byDZQW1ibI/Rq2Rl9kmO2uheVsYq2z1j2zjayebxedJctfkfZscuW7mojm49hqZfy2Je/PmdEhxdR+70ZeFS930yY9v0vZ49gvqQk5oYCzI2zRjCvoZiAsX5JGC2v7PgD+SeWG8ovN/CYQMlZIuRkhNVOr3FYbphHdJ7LDfPoWZnlBnNzvK71MsK/GTB6xTN2c+Q3OiWnv0M5/UJODOsygWX0GwR90Q+OO7mGqbiY6DZHVGPcdq6xmJ4VuYalXpKZf+YVJ64a1nGawKhFytQrnnFV14QsJefyDuVcLuTwZv4xGh2h/BLR8jUW/fDXlDjyV1zte01q5C/azEK91K8opqz2fHPDrR/9yb/6xpcz4jdd+Bk3SXV463JB3+GVia9Wqz24wZIntTGjVntwJs2rPRVXBV+dYj/Ebwh6Xu0pu2qqrlEsi2WrPXjDd6wtn6mYMR5yYlixawfNNn2CXsUko/8xmDXyjx8rewfxrCeMjUd8bRtizS7QXck2/Dw1BL/RjWNMnFQ2JtbD2DJXGQ2r9qHswhv9yKs27vmKorKHXbsdC31zMIz136zgr8nhZywH2+pskjNehzpS/LyqHMTiAwLjdXjExkQd9sF3qtfTLamdKPYLdcUEX5Om7K9erFDXs7wUPnPqpe88Djhv6Qgu01lSq7ncL5VdzVWrfmq1AVdZ3zdLy8QVR7Ujwys/H4NVmg/MKi4jz3Wqrlh++AysWP4o+XgVP95Z0Y957KUOHanD/lYOFa/51xvUFYIcFxFfxTJeQVXjGbXir8aUt1Ae6lBLkBMbN9US5SzuUM5iIWc8+y2U2S5O/RnFKTy8puKUrb3wyY33Q5z688huEOrI31PG9SYv9Tpxo38yshukynxtRGeUEQgjTxxbjf6LPqdbZGyNnfThdlJ2zlo0Z+e6Mn06LF/yarvh10mXkvJOzy/U+Fpds17uN+P5bBT3HGq/IgujS495vfRsEtHdQN/XC74gsPP8Di+638q9L6ayvS9fXI+vpdwPdJxU72vlyVv/wMIRXKZjXWOvVmHPzK/TtTuTYWXrEfRbCKtoj7U3QZ5a+eBZv+LLv18veDxndZ7nIdSIkKNRxZHsrNRoZPj10FEbOh2N1Nkv9eMFql3x6AzzcJUV81BO7HVLxLrZCStPOyawJrAmsCawzgJWyuwX+ymebWMc5NF22c145I9t+q/sUM5KIWdQ8FXtkxsRndUKBtut7I/3ID9fgFo0+71itpaZOvs1+nfA7PfK2aN1VrPfEPRKA9aDYTBvP+hgeSXGF9PyMfAp+DEKtiuPD2LjkPyznZtUV1rxGST0hdQ6Wkd1VIM8VUd8XtXoXwt1dH3rszqbxudVY2ewUB63w74Cen5Vz+hvbumEO4+x8+wsr+j87vICebeBvLU0J0K/w9MBIVT2u1nK7zDOsN+pVTYVz2LxQq0WNsJYH+bdZnUeUZ1dzYi/L+g6wPe0kH6HqPNUP+d6Nfq7EuvVbDke9Yq24npVO/nqNdeYH2B9xVZB+czzTQIL65rrtV1bNjxuWw9G6pXfj2E9uV6Nfl9ivZotx6Ne0VZcr2r8oc6ExvwA+wezidq1uJXy1Ds9sfiNfpBS51g/RfH7uKhz9Z5GLUG/orO0rQVkW3XcNHzw8J7WsmOgFFsmzL8XHQGeKfgD8Wb0jH+vUoXP2KK+yS46rMPh0+gfFyaPhd88pRwTx+oej4Vrw/c6Jt4urPFSUayZxaYyZ8FV83RDgRqZ4A+ElYlnIeij27G3lmLRTZlKnT9Den4rw+jfEOk52u2jcuRTI3fsHY1elZ8vMUa+okuMsUdDN1pOZTX6tyb2aE4zH9mjoY1SVkZjb1WrN57Uaqm6ZJhHp7GLnts1QwuvHOqQV82slL/ERmYx+yj/Uj+Bos4rxGbBeIYkBN9ZMJaHfSFWt3li26hL1LC+edSKq1q88oRtiS+DU7OeVF/A1Q5eCdmYiGv06hI89GGelRv9B0UMMEx1Tivmj8oWGMd51U69la7O3eCZDcMORNehP071XJXJU9W2GrvsUc2wilZx0N54zuRMrfzxObo/BD8r+qnp1BUlo/+jiO+qMsR8t90qG8dS9YMDZ3r3ns/VYXzjHWOMb3wGCs+L8dnRop9/5MRjQLRD6tnRWNxJjanoS+8jn8dpxcUkUw3h8Rn7PPIbnZLT36GcfiEnhnWxwDJ6NYYe51cDTcVziW5zRDXGzegfPz+XnvUKWkyqmmoFeoeQVk3IX1RNGN5wNs6/5YHDjUsIq+wmE/IXvVmqdM8TH6Mz+u+3wm6Hrw2+NeUVmYpH2N6aEV4IIXqETR044tcG+YKUZoinP934ufv+6gPvXJYRv+nCz7i5qjB4iaDv8JdM3xwbVqnXBvmVwtRfMq143PzNKfZDfHUkml8b7OS1oNsrYqW8NjjeMYmXAGqtiy1wWHamdbE4U+8CXWwoNK0LdLHh0yyhS6w/wL6T+xbUPXa44UwdoljToZw1Qs54H6JYQ3KKNs6bc0Z4sK2raU6e7PdSeJPySbh85tzWZ7VkWNS/ZyE+7mD98Gg/0mwq0G8V+Ccf7ecyYzmVzreAjEAYeeIxidFf1NKhn3Qt2dfIo/18EDo2XqkoN3nnwvC9XundRPK4fNWO3PN2Pv+es9r7ycLo0mNeuw2K6+h7lSP3FUcnd5lX3CUyLQ9/EYon7dgaeGK+G7DuBzpOavKNL7yVOXKPdXU35eFo6x6QzXW+ScixsvUI+s2EtUnwWb20k6c2WniGovjy7xcIHs8XttmOHlixK3YrLkQl/xKZ4ddDR23odDSKLSDnicu+VeiijsHxon3VK2Lzzzscsbyurs0/3+SItdEJK09e9prAmsD6YcRKeekb+wPrc8/UbFPJWduhnLVCzqDgq9r3NSI6n+kXcItmf4/N0TJTZ39G/2mY/b1izmid1ewvT2qmjfVgGMzb4SbqgNpERbvyJqpa4UT63a2/sWN8yhdS6+h1VEexI7+oD5+D+xDU0RM0Q8dV3ZRrP5U8boepR9uN/s0wQ48dbd9QIC/114GN/mdB3hk42j5D+R3GmZSjsiqexeKFWi1Th4f4qCzamMdsZY+9q6OysWPvRv8u4Q/cF7FvFOmn7OZ8VLbo1xKmC/5AvBk9m16AZTj5M1wASTkqq870cYj4NWHyWJXlaeKo7A/dUdnrCtTIBH8grEw8C6H9UVnuVWImVqaq+pLFR4VLxyJs7IpUNRLA6o0dleUfklDX+bIc9fJHnrhHM/rfT+zRnEZSskdDG3GPlrpyYvTtjjtxU4u9VKhmNqnNMPWoLI/UvI8msn+pF5HV0a/YqNrpaOJANx9N5Gs9sTu6k+SkHmltd5TxsYJ9tSJc3ue6BbDUajIfNzT6/yligGGqMwAxf1T+q64LVcf/Od6h7rGj20bXoT9OUf6I5U+Z5cXOvaS2VfUiKV+1h31B7Dr6sv6I+5pNmvFh7FhNMsuuPCB/7HdU+zuU0y/kxLBWC6xYWxjnY4am4iKi2xxRjXEz+sfPF9GzXkGLSVXTzQV6h5BWTcgfc4fxWPBSci7qUM5FQg4ff5ndGvp2eGv2q2Obb53evJ8RXgh6NlX0W2Sol9pMSzlu+Lsr1r3mndt+ZmMs7MaGhOp3ky4S9GYr3NQuYatXqq7JZKvjhnwUEbsX00EdN6x4HPKVKfZDfHU/DW/slb3xGPPuqIhlxw3VLexnKmbwccMFrbasjtWdKV3sCNHSLtDFjhueexZ1UXLWdihnrZCjNgSygr8mh5+xHKVzu0X/tXNHeLKg35yLLfob/S/PG+G7NLI8UzScwjEEHkTh9m7y8Fie+p1A1u+54FN8LG8TlRnLqXTG305luXnaXqDDC6nvrti/ymN5PA3CVWJuJ+qAkLpZVrUTozvTB8X4OCseFOPDSbshjw+RDUHeJMq7F/J2UN59kMfLmJh4SRNtlPveuxaN4DJdIJllD5+pJb9L4TPmma78jOse+WNHlzd1KGeTkKOWPnG8GjuMZv5Z8Uho8o4AvxZT8fWf0zsCsfuFnlas9VeNmXm6j3lFx6FRzqVCTlm9xuGH9C4kuqIfV8oEbkb/+PmF9KxoGmvfz+bbAWeqieGQpN3wYQ8NH2Kn+rnrRPpfmzvC9yB85p0exOK3OdCOd5D+6pxNvyj7eIQIw6+TLlVDROp+fblT6kWnAjJCxWexlsJ7g8zPrb/KKfWKwX2jGnxbsjxcJ+eBAg44+UQXDqTuBzpOaqBg5Sl7Sh3r6nbKww7pDpDNdX6zkGNl6xH0GwhLbU1bvbST1yv4JhFGRs8xwtwmZNeI/lUwAbiUJgBKVplL2ZimaI/4JyOTEHz/WJWLj4HwoAfb064C+b8IkfWn5mr5Qcjn8qGv9hXoW3Sl1BvBBrGfNFT+yO+woW/ze0i3RGg5fuF35Yu3Ef2tbcrO9W/0Pxup/5uEDqZXnta30UHRKB1+Qeggeop1Bw+dLDj1weMrjuxcS1wTNwmcomTWyD3WvJetw61DPSvygLzks1ufTw9X9+8ZLjrxwmUt6kV7gk6DQeuWp7N1iGlSNXnRQ0xYvqqHmIpaaTs5HR5iKhqoqGDB/IF4M/EstNS+oP7M57P5W2KbOpRT9Goafi9aSbSK4A7iv0OAWltw52BPAWbK7oBa6TL6dpvtbEt1MCYmO3aWcmtJXdUdcHhQhVcEUb/tJXVNeQXKU9dbhK6DQjaHTizXeITO05cziDJUCZ0xuzytWOtvuakcHztDqyAqPsvC6NJjHkdI7myvp+9VpnIV9yfv5rViTGqtmPecd0PeVsobAqyyUzm8+qXMVA7r6h7Kw5vJdoNsrvPtQo6VrUfQ7ySs7YLP6qWdvFjrNgzFl3+/TvDEXuxNabV54gHITkesuwRWh2cC5qRGI8Ovh47a0OlodDfJ4/Jx2e8RujREHi8t3SPk3CPkKKxtjlg7HLF2OWJtdMIKjmWcwJrAmsD60cdSe4d8tgv7T35B+2ycz1nWoZxlQs54n89ZRuXBvpvtps4i3hWRg/x3UXlw2Rg38ubM0zLVawF52t36WyP6N8I5oPnzisuIdrZysc4dHs0fVEfzcYyTMi7BMdwNrc+qz+bb9LGu+exGUR2cQ3WgXpLfIPThl+RPQB2soDpAfpxPFLUbJY99pK+Ans/3Gf0FLZ3UC9ix16eUT6Kd1xfIWwvyYq+rOb0SMkf5HbZX9rvUcXeqn/JrSOinvEqlXvtAP+BVKuPvC7oODI/PrT9f1Hmqn3O9Gv2LEuvVKZ7MKXuhg1pNjL32qfxA/S5cI4yt86LVV8TCuk6pV7W9xvV6Q6Re1WEQ1JPr1ehvSqxXs+V41CvaKqVe1VmoWP8de00L+0m+FEHF6NiqsqpX9es5XK9bIvWqVvZjcdjot3VBHEZbpdSr2v1IrVeOw1ivfBGG2mWoGqMNKzVGG/39os55zM9xoUi/omszHS/C2F6gxmzBH4g3o2ezC7AMJ3+GC/MppyFwCZRNbvT7hMlVM0V9Uo69VnwtLHkjxPC9jr3Ghp5PK9b6q469cjOLNaUyx1gdL8K4vkCNTPAHwsrEM8zzenF3Dx21RBfimYKKfGrkb/Q2Ai0aXRhejehPRXqh2Cg4hLHReregV28RqPLvpjy1o8RysHfEyM+9o9H/RGLvaLLHo3fcDQTcOw5BXq+gZ3vfK+iHgIZXlfDti1iT3k1y2oUO9n/lp2r2rUbjsUsM2s3K2L/QJ/gNDjWbU75gdOOxUoLlYV/YDXm9gp5tE/MdtE0jtPcTbJf3kJxYXMpTzBdwdYFXw9RL/CnnTjAG4Bs7Rb/h9S4RAwzT+ze8TJ/Yb3ip36aL+aPRdfslL+12rHlFFYeafF1p7AxQO7+J9c2xtzTb/TYmD0+3AZYq70tan2tE/+GIPyobxs4AtfsNSvY53OndQXmqPpQ/Gt14/D4nlof9EXdIegU922aXoMcxF18yhbvN2ygP2zG/xYjlx9/JPWfWaDq8BCkr+Gu68rOiC5KC0IdPgKi/qXIQK3ZmDNvVpynO74A81U6uan2uEf2XYcX9/6IVd+TnN4Mt739AO3vz0mJ+/p1adfmUaiN884sqJ9K/pKCcXwA9fxHaQwij68j06rDdNcq2O9X/x9pdbOUdbaJWXPl3kFVMRp8sisl9IR4POSZ/KbJKg30R7+huLqm76k/axZFPtQ4pTiMdOJ4V9QeqrtQK1I4CrB6hP7ZbrvdeIVvR4/xUje1rkI/0/wx19dalGjMU6LC1QOe+AnqeQxv9NyNzaBUH0P/5RSKj/w5g8o9wtcNcV4D5H5Gxhmqn2MeWnYuZPspPeS6GunO/eDfIZ9obST7moZ+z3BDRl/vUdvpyf2N50+c/8zevo1rrcz/hlYzVvbG6ukbom1pXWyPlYyzjq4Wx/hhrI2iPgfkac1JJzGktHOzT1VhlJ+BPJ9kqRqplaB7ncDv8NI1JsJ/ZRvpbPzEX9I+tR/mMsbO/LXuRorJN7CLF2JgcY7jqb2ZQnvo98kzoULYvxbHpL88cjbs9gpt/Pof0aDfGe17rM8fhFaLeYzaM2bzdvMb0UXF4F+Upnz3T/ojlZ3+MlTVPKbuHOK9jf1T9h/JHHmfF/CZPMX/cDmX9aRrb7YrITC0bx9i+AvqiGPt88NWU/YGYr+4W9PcIndUa7W7Ki50yN1o1PsoTX7pt9C9NjMdO+wMzunl/gN82QBvvpjz0TT6lr9psatsw3twOD1Cs3pmImwksFSc5Vhv9xkisVm0w5v/t5sKnfww4jLUlnwJWsWocT2bN8DzpmaeqsaFB9Ggn5at8MhTLj+PCbQljgVjdtlt75dimxpGqH+Y56vaIHNRLXaS/PSJnbody5go547kGiTLV2IbLU3YtBPl5TXWHY3mUznwEI084bj1Mcxj0417By/2d0b8e5mRHW5/VXhX7Tarv8hmF2BpSCPF9L6d9hklne8zJ40qM43zOQb0zjr6HfafRBNJxPOyF7TllzqjiRsy+2CZ4LxBtuZXy0N9S3r9PHYfgXvOlM9vrr94vT/UPfk8fxyi8prZLlFf5gtGNxxjgTJ66Z1/A8cFOysP6v4vkqLGjipdcx0VjR96zMvpfLDl2jPmN59hRrfOPYwzpar+JjR3L+g3HEHUDAPbfsTWyLIzuJ1Wfa/XQbm+jB8pgz6fAc+S7ksrMYyTGfj7RWzn7CugNj8ciH4ysM+xso8MLSIddbXTYSToY/W8JHWL2z1NsTNgfxrbFEu2mlhGe6YPPEL8etH80Q1LK2H4mT/lBnrgtq/aEeTyXKfvWJWJtdsTCsWUH9VX6xm2eV2Ac4+tVd0Me3zaDqZe+Y3lyv/65pSO4TMe6Yn3hfi772E7Bq24AOVvtYWc1edH2oOYAZdsDr1s+29vDTsrrtvag1pWUjfLUDGkppb1UvHVmeWp7MXyv9qJ8T7WXDm/xaU4Pz4xjOFY9Bz6j7VDOLtKh0/qL3Zl2puuv0zvTUucmnvWHbatM/am1vznwGfOwPLG1P+Q/U2t/c0hO0drff9Dan5qbxtb+TveNC0b4vhdZ++P1PfSt2Hqd0XU4d+zt5nPBsXPq3Ld7rT8tKFh/ygD3KsHLbRvpdwk9jJ73jZmGz6+dXmto+Ze6iFn5LOpVtJ4yAzDP9Pk1tHPsXaLYeorTu0TLz/a7ROz3Q5DXbv83TzcKrJiuWzvQlesR62qIsNTtJ1ge9kujP1f45TieG1hedj1tN+SlrKe1synPadCOsXMDvJ6mYm/qehrGkP+g/kud2c8oD2Xis9iNUnyOz95Fuhzqn8/q3gl6qrh/YwHmcyOxTpUhduvJ9kiZUZ/YPcaKD9//6heymvbh+/FkeOYrk4UsPmdrtFeBnZYv1bpkrE+bFHtHpz+M9esyY96M8ELQY3rDr4extqgypldjYOX3Vr6Kc8BlOKZHP8IxfdE7C6nvFK1fMMJT1MZwnPrc1mduY7fCGPjmAswQyo/XUJ8DM0bjxtpinjp9pw9tHtub30R5as/VdFDnC5Cez04Z/Z3QNmPvMjmdJ/2Xbt7b5/dWlX+pvX32m6J3UwyvRvRDUAf8LhP+tgDvn24pqXvqmXlsG9yOU+dIsXaPep/T+szt/qFI36re04r1raovTv2NAH7XEPks3o3j3Fruy2J5uL14xy6eWyt/Vu/W4dl0jr04V95EsVe9N5Byy1PRHQPLW5/5joHHIv51Nu8YQD5r+8q/jK5D/5qp/AvLw/4Va0t5Kjuu5TtOYncMYCzkXynAOQCOQy4j/1L9JPLaT2FyP/lExF92RcqYp7J9FL/DnHq+KPaOGJ+1ulvYAfXa0/rLa0ZvTRwvOJ1nuvpsn2nm8/e7IY/f91DrmmjTovPufSFEzwvxGts7IuMFtR+s2laK7iruqvaGberPpz/zWc3zi36RRclkXux7im70K5p//rqwF8ezovfDziNMo39fJB6oPvUOeFb2nTw+26vec4qdSx+/8Xy45myv/XP/EbsTpOh8FtKinFT/Rx/6GPk/9ue3k8zYOJZ5UU6R/xfdlfCxiP+3m5cvJUyj/2TJta+Y/7cbI8TGSLFz77E7cZzG59ed7fE5+39sfI7xl2Nru1uaY/6PPvSB6aNx8V4M5bPN1me+C+bzJf0r9t5P6hg0dleNir28PqPGrlyPRf3M8jDaDkb/PxPHW053zcw62/Gc75pR49tY/ByPu2a+mrg+w2tLW0rqntresE39EvU3OPfl/mZLRCbzYrsu6m8Mj/uGb0b6G5ybqfUg7m+M/jsl5+ux/qbdfJ3Xg9SdQWouH5uvG12H7XP2eN8J2G6tjPsbdQeEahspdwKm+j/60Gtb/t+ZXU+8IgNdDLtXUNbor9FMaflkHeTb31qCHk/+wbc//6GbLnt4BvHnyeoo37PJ63/SwhEdMqCdsXBE92mwx206WOI9HLynGfupc1oYtt/UB3TNkJSeb2WZDLhWN4FwrSz9AGC+oe6LnCb40Q9Q7hKwzbyFI1iIzbrl6X7CM9pFZJvJgFeiPQeub8Sy+sG8PtB12cJqdOgLfJ6X44dhnBORVSMMjCmGl/tu1bax6Hf3fPYlf/2Pf92ubVTFf+1ltRlv2H7L+vHC/+zkf/rWp//wgZ8eL/z/p3/jdT0ffv2y8cL/uW/desWr5p/7z2Vik/nCVKA1Pmsz0+B5iTYzBfW31EvPEL9OupSUd3p/fhrJ4/LxOwYNoUuD8vLEaxENIach5ExgTWCVweLxwk7oE29tfZ4Wxsb3qaRLJnTJIrowf56qjkssry+SNzmS1x/Jq0fypkAZplLeAPBtprxBgZmX675Fz3y2WDgH6JohKT1o+swFXIttgXDN9vMAIGVshfzzCGt+GyxeV0H++YS1oA3WHYSF/AsIa2EbrNsJC/kXEtaiNlj83jbyG6+1O6unf4V2t5fGosajxqIvJzyjfZjGoosBr9OxqGENCn2ygr8hjO2P88RxAbH4DqBFQk6H5RtI0RPx66RL1XHDYpLH5eNxwxKhS4Py8sR9xBIhZ4mQM4E1gXW2sMzHsU10GkcwHiwiOXOBD9eN3kBriBh3ewXv7tZfjr1/BbH8TTSGwrhhOk4TOvP4SMWLxZHyTxVyxtvOPAaa6igHsXhNeilhoZ3ztLv11+yMsXQp8S2DPKTrBZql8HyZkK3wDaOdD75roS6b8kGUVSP63wcffDf5IPKzD6J/TqU8niujnso/sc52E73p3SfoEa9G9O9tlUXtIxg/2gr14nc2jP79gMn7CCq+4ViP18qVL6q+W9l0KWH1CCwsD+9lKZti++yh8hv9R4RNeTyG/Gq9j9+DxXWceZSHayDzKW865C2gPByLLqS8mZDH9/HNgjzuC2a3vrP/bF808rxdO8zT7tZfboefiPiWih1qDGj0TUGP8YrvVUR/alIe8rFPNiGP+6Hlre9ohyboZefkakT/abBDbM/a9OpwT2yK2hNbDgS8pn0O5PUKeq6LcwX9OUDTbH1uEL1q5ypmNOEZt3OzUZ+gR7wa0X8+0s4xTiwn3aeW1H2u0J37PW5T74qMk7ivWRKRybwopy+U60P/NtLXqLEh6sV9jdH/fSQeKFvG+hoVP5aKcimbLqM81Uep9ml04/E7dlh+bp+xsuapaqxshLHtZxHlYdtg/1drQan+jz70hoQ9Ev5rMvlZbOx8d4E+iNEfdBtshqSUvKZi+PUw1jZV1lTa1QWPX9Qckes8TzznLTsXm8CawDrTWLE106pxBOMBj7Fx3Rbns7NoHI37Er2Cd3frL6+Pv2bRCN/c1mc1n+Xx/TisGSfvNU+sGU9gTWCdvXXe8Yh9eUpZf1RrA920/lgUr1+YsO6h5gM8d3oY4vVVFK+Rn9ceVCyPrU2mxsbdRK/WytTaPK+VXdciSp0TxtYfjX49YJ7p9Ucs89laf7xN2FStPfywrD/2Uh6uP/K4Cdcf0X9s/bHq+Uw+E4M24TMxaBM+E4M24TMxaBN1JmYm5Q1A3izKG4S82WCH+8gOWOd8xhTXIiZHyjqF8tTZVGXbfspDGw1QHsa4PsrDOqlTHtrWbGL38rSLx3na3frL8fhQJMaoPkTNm42+Keix3zJ9PNeheU1veet72XXoE2CHiXXo0Vhnah36VZF4H1uHXlRS916hu2qf2KZeGJlbpow5EJd/y0r1j2osxP3jE5Exh5pPx8YcRv/TZ3HMofYA1BkIHM8bNmOOxzo0lp/bZ6yseSq7Rm9laoSx8ZDXqNH/l5CcuUJOqv+jD9l6TdX3At76yYvW//PtX19a5b0APIdrfLZWg/qUqN+Pof6W1FqN4ddJl5LyTq/V1Ekel4/v7ZtSTd7vZ8SP8hCzTvIGqsnr5f0Jrpv8n40z+wp0Md4a0X+ExnqDgqdBeXnitQrM6xXPes4S1lSBhXa0Osnb4XvpLDjbuBmS0mU8LjcMxK7oC1tT25bh10NHvn66bQ2QPC4fzxMHhS6qvl4GdJ3W/ckuxdrviHXEEeuYI5anvQ45Yg07Yh1wxBpyxPIs49Eu1eshRyzP9uhZj/scsTzb0AlHLM969PTVRx2xPP3ruCPWY45Ynn7frTHHs4ynHLHudcR63BHL016eYxNP/+rWcaGn33frWG6vI9ZhRyxPv+/WsVy3+r3n2MSzHp8NfVq3juW6NRZ6juU8Y6FnPXray9NXPcdf9zlidev462FHLM+27dmGPO3l2Q95tqFutb1n/PJcl9vviNWt/uU59u3WMaan7b36jvxz3QkrT9Z3TCvAxs9qb7QekZMJnXuFHDyjMNh6hntFhtMfxtqixD5U8u/ZG36ddCkpL4vVD5aP972mCl3UuUquq9g+JcpRWDVHLD57URNYat8vI36kV/YaCCPnH48O792/d/jktXvuPfrAhoMPBEo1+n5tgYp3Et0dBar1CtyM/vHzO+lZr6BF7GlhbNX0FegdAE/9vFFD8NcicrIO5WRCzqDg46aNrlOiqa1ObdqGXw9jy1ylaStXVXaxsteFLg3Ky9ODQFcl9GLeQUesQ45YJxyxhhyxHnLEOuqINeyIddIR67gj1l5HLM969LSXp6/uc8Ty9NX9jljdGic826On7bvVVx9xxPL0CU9f9bTXMUcszxjtOQZ41BFrryOWZxvqVv96NsSv8eiHbCyPV1Pjq7hfWDxa5iTI6yXeDGTWiH79khG+JxePlp2BbPvcT3hZKDWnWZMRXgh6DmX4ddKlpLzTc6geksfl4zlUr9ClQXl5egDoOK9XPIthHXXEesQRa9gRa58j1pAj1qOOWHsdsQ47Yh1yxOrWevT0Vc/26KnXQ45Y+x2xTjhiefrEw45Ynj5x3BHL016e8ctTr5OOWJ716KlXt/YdnvXoaXvPtu1ZxlOOWPc6Yj3uiOVpr27ttz3b9nj0tbavhvOxfpKj5j49ETnIz/Mi5Mtaf/tJP/vcDEmpJyM80xOfIX49jC1zCXlZzP7KLryniLwNyssTv9qr5GRCTiawYno5bk2bihcS3foC1TKBm9E/fn4hPVOmQGz1y2L9QpalmGkbBfx5GozIUW5vyzBTgm5+vH1etvkhv+UpOVmHcjIhh+2qlpPytKf1l38h7vbWchLeHNIr5CFWSmipuGWffBqHt+w7DS1qyz4WWvqELuwPeboL6DivVzyL+VavI5ZTVzDJ7DFJZCpbsR3Rr+6gPLxhA3/FnVMvfcfy5Pg/t3QEl+lYV/Qx01u1ZT4WU7YtI39PAZb65cQ87YR8pLebbzqs0wtUnbK/9FXETm3fsVvWuO3z8aVmiKd3rXtb/cU7h9aWbUdGP1nQq+M9ZquKt8+sGgQZgWRbnjoGZnnqtruc/03kJxV/2XpViv0QX8VHHnql1sWMoPuZPOGNNYhldAF0qkGeklMj+h+H7ZdX0Y1z3IfYs5+O0GUFf5XOqI89qwv6XkFvsqcIesvD05RoV6RBeyFWHfKR/o2tsludYEw3/oaQj20mFOhddFqUsXrFM6PPy/maJaPLUHHsktnNjnniGIF/UYbZqV/Q44ljS1z/U+B5r8CaTHxG/zaqF/R9428I+diuQ4He6masmL+qrdbcPj+zZETnOuGkxvoPXrHmBVO3rfyx8frl9Kl/8Nu3/d2/H1pZ5YY0deQ1NQ4UjSfytKv1t8O+ukf1DyGdP0sZR1TsG7+fOo4w/HrQ/UUzJKXT8wT2dy4f9/31avL+M7+l1+JJ0VwVbYdyeIzQK3jU+MEwcv7/tXR0OSrOr/6zQx/8X7y9nyc8VvGRJSO4WPaiG86xX0f6/wP69Y9CbDRc48c4Oi2MbR/cps3ePYIWP6txmLIb0lt9Fd1A2kdlNfqPwZx/xUKNmXosxeg/KdYRDFPdZqjajNHHboRDfdTbSQPEh7pjP8PPVP1kRIs65GmX0Knoe13gFOnQL3DUvLFOuqp5Cbab2K2h2G4+AnU5iX55vOKrEaXXCTLKw7LdCXSceuk76pxjvIvG4kFgKfvwfNSj77bnk+A5y+0l2j6ijd0W38k8g8cXk4QO9n1yRP+McGK3unN7U39T9c2Evqov6VQOYm1t/e2wz1sUW8PO6+GfEvo8NWbgPu8p6PO+kdjnWR6P2/K0DZ5xTOdxEGLkifctLEb2AT7S9FOZjP7bom9TMcSw8rL/G9mzH/Ji/UiN6OcsHeH7LtkT7cWv2HEcD/B9CuiCtHnaVWCDHtDj+0uKZeE8s6iMOUZtqaZDHZCOMar2a2p8xW03ZXzFbRX5lAyOx0V9t/nGQJt8dXNzEM96BH1/QXmDkF1vgztZ4Kj4Xqe8TORx7MHyYtziMQfGBYxb/xRpL1kYXa7Tfi5o+yO6TyFMNZebHNFd2Q/jR9U1hJ/80vf/4vWPLvjGeK1RvPjtx187eMX7f3O88N838GfX/N7b++8uswZi9axePWbfUmvcedoO+Uh/Ac1dK64xBC6Pihux+RmvMbP+dxTovw7i99qlo+Wp+YlqM0X976REXYz+8pZ8nNfF9iU6/AWHmvoFB4xrPN5V8VatJxp9u7ml2aQRxsZXlq32jNGmPKYxG/UFPb83PPaHq6AO+BdWVGy2PHXESPWFvH+t9h1zmh3UriqObyercYQl3vvFMqrX5Xk/mW+jxzysS15Hx6TmkFbWXOedCfvJKj5we1XrKrHxomp3ht9t7c58vxHG1gv7W6oPF43nlDy0A/bV5sNFa/LYpnHOdffSETy0O8ZT5OV4avRHIbYPUWxHG7M/qDjBuoSQdg5EzeUHBZ/VS4f7xJOwflFPfIb4al+/ylq9GpvG1uorjhNq3MeiPFUP04O2qVrP57miWu+JzZNi8US1P26bah1B9SGx+ZzJxjXzlHGTalvIy/3kSWhbb4yMm4rGRiHoeQDTx2If6qpsP4Xy1NzfPg9E5Ci9YjdKKb0wJiMvy25XhtS+ymmMOEn1VVgn3EaUXWI3TalbrvB2MW4j6ld/yvZtUyhP9fHt+rY3FvRRWA6Mfzy/VW0M+76q88MXrnjD/EV/9PLB8Zp/Tqot+vnm+3dvKDP/VHGlh3DRDrzenqdNrb8p+9wV+87k87Dcd3a6z53ad6rxOvcFuM7C573UGow6P3KmsNTchOuy4jgheRzEZxYq+k70zILq39T8iueN2P+w/Tu5RqEbsbD9x8bHKfWq5Kgx/Xjv3RX9krKHHHX1hTrL3akcdS5c7cvi/O1j1Deq9TDkLVoP+yqMMT+5dDSN6f6HQPM/aM0Ey1yiLdfVnNySWvtgv1XjQMvDsQ37B45t+B2baaADnoXgpNZTjC6X11g2gst0ltCWKe8Z8fndjPB47djoP0/1xXvxzZCW1Noxno/8UfGFKvV9fUJ9qzqOvY/Bc5vY3FStyalYWRTfEF/FpJ2Ej/aI7ZGpMhsv7r3HYhf7PtJ/DfenKR6qOa2Kwfa83Tp6bI/beDv8tdwB9mdMyp+5HajbiTm2qXbQgDyOidMhj+czmFQbMTuUiYnfLejXTAbWRZ54zqf23bG/tPJVPUOcAabpZGVHvfjdFWxPNXpW8UztadupsyU43uK1t9PrHctG46gzMLGz7+qdhF4hV53JHyiJ1U9YkzvAwnULpp9cUS+Fxe8WlHlXIGvVzZncZ56zbKRM3Cf+MOwzr23pn9tvwbLR8s70PvPSlvyJfeazt8+8GurgbO4zX0ft6tm6z1xmnDyxzzy2Xs7mPvN1Bf1Ru33mG2GMgXYvu8+8G2L7BortE/vMz6SJfeaJfeYQyu8z3w9t65HIuGlin3lsTJ7YZx6h/2HdZ36koI/CclTZZ7a+7/8HjzKT6eCnBAA=",
582
- "debug_symbols": "tb3druy6cWj9Lvs6F80ii0XmVQ6CwEmcwIBhB47zAR+CvPtpllQ1es11mkuzu/eN5/Dac9bQX5UkqiT+z2//9sd/+e//+Oc//eXf//pfv/3j//mf3/7lb3/685//9B///Oe//usf/v6nv/7l/q//89tt/Y/V3/6x/sNv1n77R73/0ONHP37Y8WMcP6b/GLfjRzl+yPGjHj+OKOOIMo4o44gyjijjiDKPKPOIMo8o84gyjyjziDKPKPOIMo8o84hSbrfzZzl/yvmznj/b+VPPn/38aefPcf4845UzXjnjlTNeOeOVM14545UzXjnjlTNeOePJGU/OeHLGkzOenPHkjCdnPDnjyRlPznj1jFfPePWMV8949YxXz3j1Hs/WTzt/jvPnPH62e7xyW1ACJOAestQF95jFf1kDeoAFjIB5gq7IY0EJkIAa0AI0oAdYwAiYJ/SI3CNyX5HnghrQAlbktSV6D7CAe2RxmCfYLaAESEANaAEa0AMsICJbRB4ReaWNrO2zEueAGtACNKAHWMAImCesRDogIs+IPCPyjMgzIs+IPCPyjMjzjCy3W0AJkIAa0AI0oAesyHPBCJgnrCw7oARIQA1oARrQAyJyicglIktElogsEVkiskRkicgSkSUiS0SWiFwjco3INSLXiFwjco3INSLXiFwjco3ILSK3iNwicovILSK3iNwicovILSK3iKwRWSOyRmSNyBqRNSJrRNaIrBFZI3KPyD0i94jcI3KPyD0i94i8crDKghEwT1g5eEAJkIAa0AI0oAdEZIvIFpFXDlZdUAIk4B653Ra0AA3oARYwAuYJKwcPKAESEJFnRJ4ReZ51Q6YFjICzbtTbLaAESEANaAEa0AMsYASsZb5X9bpy8IASIAE1oAVoQA+wgBEQkSUiS0SWiLxysLUFLUADeoAFjIB5wsrBA0qABETkGpFrRF452GyBBYyAdVotd1g5eEAJkIAa0AI0oAdYwAiIyBqRNSJrRNaIrBFZI7JGZI3IGpE1IveI3CNyj8g9IveI3CNyj8g9IveI3COyRWSLyBaRLSJbRLaIbBHZIrJFZIvIIyKPiDwi8ojIIyKPiDwi8ojIIyKPiDwj8ozIMyLPiDwj8ozIMyLPiDwj8jwjt9stoARIQA1oARrQAyxgBETkEpFLRC4RuUTkEpFLRC4RuUTkEpFLRJaILBFZIrJEZInIEpElIktElogsEblG5BqRa0SuEblG5BqRa0SuEblG5MjBFjnYIgdb5GDzHKwLWoAG9AALGAHzBM9BhxIgARFZI7JGZI3IGpE1ImtE7hG5R+QekXtE7hG5R+QekXtE7hG5R2SLyBaRLSJbRLaIbBHZIrJFZIvIFpFHRB4ReUTkEZFHRB4ReUTkEZFHRB4ReUbkGZFnRJ4ReUbkGZFnRJ4ReUbkeUbW2y2gBEhADWgBGtADLGAEROQSkUtELhG5ROQSkUtELhG5ROQSkUtElogsEVkiskRkicgSkSUiS0SWiCwRuUbkGpFrRK4RuUbkGpFrRK4RuUbkGpFbRG4RuUXkyEGNHNTIQY0c1MhBjRzUyEGNHNTIQY0c1MhBjRzUyEGNHNTIQY0c1MhBjRzUyEGNHNTIQY0c1MhBjRzUyEGNHNTIQfUcHAtKgATUgBagAT3AAkbAPGFE5BGRR0QeEXlE5BGRR0QeEXlE5BGRZ0SeEXlG5BmRZ0ReOdhvC3qABYyAeUBfOXhACZCAGtACNKAHWMCKXBfME1YOHlACJKAGtAAN6AEWEJFLRJaILBFZIrJEZInIEpElIktElogsEblG5BqRa0SuEblG5BqRa0SuEblG5BqRW0RuEblF5BaRW0RuEblF5BaRW0RuEVkjskZkjcgakTUia0TWiKwRWSOyRuQekXtE7hG5R+QekXtE7hG5R+QekXtEtohsEdkiskVki8gWkS0iW0S2iGwReUTkEZFHRB4ReUTkEZFHRB4ReUTkEZFnRJ4ReUbkGZFnRJ4ReUbkGZFnRJ5nZLvdAkqABNSAFqABPcACRkBEjhy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixw0z8G+YATMEzwHHUqABNSAFqABPSAij4g8IrLnYFlQAiSgBrQADegBFjAC5gHjdgsoARJQA1qABvQACxgBEblE5BKRS0QuEblE5BKRS0QuEblE5BKRJSJLRJaILBFZIrJEZInIEpElIktErhG5RuQakWtErhG5RuQakWtErhG5RuQWkVtEbhG5ReQWkVtEbhG5ReQWkVtE1oisEVkjskZkjcgakTUia0TWiKwRuUfkHpF7RO4RuUfkHpF7RO4RuUfkHpEtIltEtohsEdkiskVki8gWkS0iW0QeEXlEZM9BW1ADWsCKPBf0AAsYAfMEz0GHEiABNaAFROQZkWdEnhF5npHn7RZQAiSgBrQADegBFjACInKJyCUil4hcInKJyCUil4hcInKJyCUirxy024ISIAH3yFYWtAANWE/w6gILGAHrIV5bj01vASVAAmpAC9CAHmABIyAit4jcInKLyC0it4jcInKLyC0it4jcIrJGZI3IGpE1ImtE1oisEVkjskZkjcg9IveI3CNyj8g9IveI3CNyj8g9IveIbBHZIrJFZIvIFpEtIltEtohsEdki8ojIIyKPiDwi8ojIIyKPiDwi8spB6wvmCSsHD1iR13G4cvCAGtACNKAHWMAImAfcn73fkkqSJNWklqRJPcmSRlI6SjpKOko6SjpKOko6SjpKOko6SjokHZIOSYekQ9Ih6ZB0SDokHZKOmo6ajpqOmo6ajpqOmo6ajpqOmo6WjpaOlo6WjpaOlo6WjpaOlo6WDk2HpkPToenQdGg6NB2aDk2HpqOno6ejp6Ono6ejp6Ono6ejp6Onw9Jh6bB0WDosHZYOS4elw9Jh6RjpGOkY6RjpGOkY6RjpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjpyDwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPPdeoSGLVp6fVJIkqSa1JE3qSZY0ktJh6bB0WDosHZYOS4elw9Jh6bB0jHSMdIx0jHSsPB/VSZN6kiWNpBm08vykkiRJNSkdMx0zHTMdMx0zHN5UdFJJkqSa1JI0qSdZ0khKR0lHSUdJR0lHSUdJR0lHSUdJR0mHpEPSIemQdEg6JB2SDkmHpEPSUdNR01HTUdNR01HTUdNR01HTUdPR0tHS0dLR0tHS0dLR0tHS0dLR0qHp0HRoOjQdmg5Nh6ZD06Hp8Dw/eo1vSSVpOYZTTWpJmtSTLGkkzSDP84NKUjosHZYOS4elw9Jh6bB0jHSMdIx0jHSMdIx0jHSMdIx0jHTMdMx0zHTMdMx0zHTMdMx0zHTMcHjj0kklSZJqUkvSpJ5kSSMpHSUdJR0lHSUdJR0lHSUdJR0lHSUdkg5Jh6RD0iHpkHRIOiQdkg5JR01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS4emQ9Oh6dB0aDo0HZoOTYemQ9PR09HTkXneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88187xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85557r1bsyxaeX5SSZKkmtSSNKknWdJISoelw9Jh6bB0WDosHZYOS4elw9Ix0jHSsfJ8Nqea1JKWozv1JEsaSTNo5flJJUmSalJLSsdMx0zHTMcMhzd5nVSSJKkmtSRN6kmWNJLSUdJR0lHSUdJR0lHSUdJR0lHSUdIh6ZB0SDokHZIOSYekQ9Ih6ZB01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS0dGg6NB2aDk2HpkPToenQdGg6NB09HT0dPR09HT0dPR09HT0dPR09HZYOS4elw9Jh6bB0eJ6bkyWNpBnkeX5QSZKkmtSSNCkdIx0jHSMdMx0zHTMdMx0zHTMdMx0zHTMdMxzeSHZSSZKkmtSSNKknWdJISkdJR0lHSUdJR0lHSUdJR0lHSUdJh6RD0iHpkHRIOiQdkg5Jh6RD0lHTUdNR01HTUdNR01HT4Xk+nUbSDDpehhfHAgpYwQYq2EEDBzgTFZtiU2yKTbEpNsWm2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbWKbafNGt8ACCljBBirYQQMHiK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKjZqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasnMWiK3rCVyy1oit6wlcstaIresJXLLWiK3rCVyy1oit6wlcrthK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYFJtiU2yKTbEpNsWm2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbWKjlhRqSaGWFGpJoZYUakmhlhRqSaGWFGpJoZYUakk5aok6CljBBirYQQMHOBOPWnIgtqOW3Bwr2EAFO2jgAGfiUUsOLCC2iq1iq9gqtoqtYqvYGraGrWFr2Bq2hq1ha9gatoZNsSk2xabYFJtiU2yKTbEpto6tY+vYOraOrWPr2Dq2jq1jM2yGzbAZNsN21BJz7KCBA5yJRy05sIACVrCB2Aa2gc1rSfEl81pyoNeSEwsoYAUbqGAHDcQ20+Z9h4FuU0cBK7hsUh0V7KCBA5yJXktOLKCAFcRWsBVsXkukOw5wJnot8e+heTNioIAVbKCCHTRwgDOxYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYOraOrWMzbIbNsBk2w2bYDJthM2yGbWAb2Aa2gW1gG9gGtoFtYBvYJraJbWKb2Ca2iW1im9gmtpk2720MLKCAFWyggh00cIDYCraCrWAr2LyW1OqoYE/0ZFCn5a1toR/1tTsWUMAKNlDBDho4wJnYsXVsHVvH1rF1bB1bx9axdWyGzbAZNsNm2AybYTNshs2wDWwD28A2sA1sA9vANrANbAPbxDaxTWwT28Q2sU1sE9vENtPmnX6BBRTQbdOxgQp20MABLpt/t9B7/gILKGAFG6hgBw0cIDbB5mfQVhwFdJs4NlDBDho4wJnoZ9CmjgUU0G3m2EAFPY19ef0MeuIAZ6KfQU8s4LKpr5ufQU9soIIdNHCAM9FryYkFxKbYvJaobxKvJSd20LfZWOhVY30wSbz573757ugRjl9QsIMGDnAmen1QP/q8PpwoYAUbqGAHDRzgTBzYBjavD913i9eHE5et+xp7fTixgwYOcCZ6fejNsYACVrCBCnbQwAHOQO8QDCyg29Sxgm7rjgp20MBlW2+wi7cKnuj14cQCCljBZVsvuos3DAZ20MABzkSvDycWUMAKYhNsXh9MHA0coG/JdUx6/2BgATvoEdY+9j7AYr6hPKXNHCvYQAU7uIINX0hP6RNn4vGV7QMLKOCyDV+L42vbByrYQQMHOBOPL28fWEABsXVsnv7DN4mn/4kGus2PSU//Az39T3Sbb0lP/+Fbx9N/TMcGKthBA0eiJ/r0hfREP7GCDVSwJ3oWTk8cz8ITl2I1NYi36t3vex0FrGADFeyJnhfrCbV4h12ggQOciZ4XJxZQwAo2EJtgE2yCTbBVbP45bB/s8E66+z29oy2sjgOcif4Z7FtzLKCAFWyggh537QBvlruPCjh6BF8y/+j1iQ30CL6p/dPXJxo4wJnon8A+cdl8AMP75gKXrfjK+6ewT1RwxS3rMPKmOCm+HfyT8yf68pqjR/DV9A/Pn9hBAz2ubwf/AP2B/gn6E93mW8c/Q39iBbENbAPbwOafpD9x5r6Y7M3J3pzszcnenOxN/xS270Lvgjt2obfBHTvL++ACK9hiX3grXGAHDRxg7k3vhzv2mzfEBUrsLG+JC2ygxS70brdjv3m7W6DELvSGt2NDecdboIIdtNhZ3vUWmHvT+96OneWNb4ECYqvYKraKrebe9K4yKb5JPBlONHAtjvjW8WQ40JPhxAIKWMEGKtjBZRNfHE+RE2eiz9NwYgEFdJtvKE+cExXsoIEDnImeOCcWUEBsA5snjg8CetNZoIFu80PDE+dAT5wT3eZb3RPnxAo20G2eDP4V+epb0r8j7+jNZoEFXHHPr+OvuD4S4Q1n4uMP3nEW2EED3eYf0fd0Or+wfwML6DZzdMV0XIrjg/o+xYPfiHnLmbTjzwY4Ez3fTiyggBVcttYdFVw2v+Xy5rPAAc5Ez7cTC7hsfsPkLWiBDVSwgwYOcCb6ufDEAmJr2Pxc6Pdk3okW2EG3+Y71M+SJM9GnifCbNu9Eu18hOQpYwQYq2EG3DccBzkQvFScWUMAKNlDBDmLr2Do2w2bYDJth81LhN3jeiRbYQT8mfTW9VJw4E71UnFhAAZet+37zUnGigh00cIAz0YtC933sReHEBirYQQMHOAO95yywgAJWsIEKdtDAAWIr2Aq2gq1gK9gKtoKtYCvYCjbBJtgEm2ATbIJNsAk2wSbYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gUm2JTbIpNsSk2xabYFJti69g6to6tY+vYOraOrWPr2Do2w2bYDJthM2yGzbAZNsNm2Aa2gW1gG9gGtoFtYBvYBraBbWKb2Kglk1oyqSWTWjKpJZNaMqklM2tJvWUtqbesJfWWtaTespbUW9aSestaUm9HLWmOBo7Eo4AUxwIKWMEGKthBAwc4EwWbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hq1ha9gatoatYVNsik2xKTbFptgUm2JTbIqtY+vYOraOrWPr2Dq2jq1j69gMm2EzbIbNsBk2w2bYDJthG9gGtoFtYBvYBraBbWAb2Aa2iW1im9gmtoltYpvYJraJbaat3G5gAQWsYAMV7KCBA8RGLSnUkkItKdSSQi0p1JJy1BJzNHCAbpsLj1pyYAHdNhwr2EAFO2jgsq2h6+qNZid6LTlx2cyX12vJiRVsoIIdXLb1ydHqjWaBM9FrialjAQWsoMftjh7BN5TXhxML6BF8Q3l9OLGBa3nHzbGDBg5w2YavkNeHEwsooMf1zec5v4au6zF35IGe8yf68rrCc/7ECjZQwQ4a6DbfqJ7zB3rOn1hAASvYQAU7aCC2gW1im9gmtonNc374jvXsHr5jPbtPnIHHHJMnFlDACjZQwQ4aOEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEW8VWsVVsFVvFVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA2bYlNsik2xKTbFptgUm2JTbB1bx9axdWwdW8fWsXVsHVvHZtgMm2EzbIbNsBk2w2bYDNvANrANbAPbwDawDWwD28A2sE1sE9vENrFNbBPbxEYtEWqJUEsqtaRSSyq1pFJLKrXkmDVzPVCsx7yZJxo4wJl41JIDCyhgBRu4bPPm2EED3TYcZ+JRSw4soIAVbKCCHTQQm2A75roVxwIKuGzraV+tx5y3Byp4t9Wbr9Axz63/2TGvbXGsYFu/2xwV7KCBA5yJqz7U9dSoepNcoIAVbKCCHTRwgDOxY+vYutv8iOoVbKDb/CDoHTTQbb4DfDbcA30+3BML6Dbf1D4rbvEt6bPgFt/UPg/uiQOciT4bbvHN5/PhFl8LnxG3+OIMj+u2VQkCFeyg23xxxgBn4ryByya+vCv97wex41KsnurqPXDVJ6v1HrgqrljpHzjAGeg9cIEFFNBt07GBPQ7PdsxYfeAA8/ht5QYWUMAKNlBBbAVbwVawCbaV8/dUdBSwgmuF6vG7CnbQwAHOxJXzgQUUsILYKjbP+fWgp3rjW+AAZ2K7gQV0W3esYAMV7KCBA5yJXh9OLCA2xeb1YT2jqt74FthBt/mx4/VhPbmq3g53oteH5rvF68OJy9Z8Q3l9OLGBCnbQwAHORK8PJxYQm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJbWKb2Ca2iW1im2nzJrnAAgpYwQYq2EED3VYdZ2K5gQWUOIVqqWADFeyggQOciUctOdDXojnmWdob3+p6WFq98S1wJnp9OLGAAlbQt0N3ZPs21rixxp7zJ1bQt685KthBAwcKbMreVPamsjeVvansTc/5Yxk85080kL155Lwvw5HzBxYQGzmv5LyS80rOKzmv5Lx2jh1jSxpb0tiSR877Mhhb0tiS5LyS80rOKzmv5LyS80rO62C/HTl/IFtysCUH++3I+QPZkuS8kvNKzis5r+S8kvNKzis5r5P9NnNL9tsNLKCAbhuODXTbdOyggQNctvUkvvrH9QILKGAFG6hgB5dNfSFXzgd6zjv6lYJnobf63bPDsYEKdjD3UJcB5h7q9QYWUMAK5h7y7+sFdtDAAebR19sNLKCAvhbq2EEDfev4dvD6oL5kXh9OLKCAFWyggh20xGP0wMXH6MGBAlawgQp20MABzkTDZtgMm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJjTHHPrFNbBPbxDbTdrQbnlhAASvYQAU7aOAAsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIpNsSk2xabYFJtiU2yKTbFRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMaom3XdbVE1m97TKwgwYOcCb6HcqJBRSwgtgMm2EzbIbNsA1sA9vANrAdtUQc3TYdO2jgAGei36GcWMBl8xYAb8YMbOCyeUuTN2MGGrhsq9G0ejPmgd6MGVhA32/VsYINVLCDBg4wn2EfzZgnFtCfVndHX4vjXzto4ABnotzAAvo2U8cKNtBtLvY7lBMNdFtznIl+h3JiAf1JvDlWsIEKdtDAAWafwtF2eWIBfS0OVLCDvhbDcYAz0e9QvCXEGywD1zbzxgBvsAxs4LJ5k4Y3WAYaOMCZ6CMYJxbQbeJYwQYq2EED/fUV391+VeFPS45WynJgBRuoYAcNHKC/FuPHw/GS04EFFNBfGjqwgQp20MABzsTjJacDC8ien+z5yZ6f7PnJnp+x59vtFnu+3W4FjD3fvGkysIGx55s3TQYaOMCZWG5gAWPPN++fDGyggh00MPZ8Ozol155vR6dkObCCDVSwgwYOMPZ8u+ULUe2WL0S1W74Q1Y5OyduBDVSwgwYOcCa2G1hA3zq+xp7zJ3bQQN8XzXEmes6fWEB/icx3y/EK44ENVLCDBg5wJh6vMB7o+9iPviO7D1SwgwYO0NfCj1Q/+59YQAEr2EAFO2jgALENbH72H54MfvY/sYLLNnyN/ex/YgeXbfge8rP/8B3gZ//h+9jP/icWUMAKNtBt5thBAwc4A737MbCAAlawgQp20MABYivYCjavBOt96ebdj4ENXLY15ti8+zHQwAHORL8mOHHZ1pQMzbsfAyvYQAU7aOAAZ6JfE5yIrWLzUcv1+nbz7sdABd3mm2TVh7YenDTvfgycias+BBZQwAo2UMG+sDga6DZxnIl6AwvoNl90rWADFeyggQOcid1t3bGAbvOt0yvYQAU76IrhOBPtBhZQwKUovklWAQlUsIMGDnDZim+oVUACCyhgBRuoYAcNHCC2iW26zTNgClhBt/nhORXsoNt8B0y3+UadblsbyhssAwsoYAUb6Be9TiNpBvldwkElSYLEg0/HCjZwna3UqSdZ0kiaQcfbl04r4npNuHm/YluNJM37Fevx30fSDDoeITiVJEmqSS1Jk1wijgaubb26VZq3KZ7oaXiiL6ZH8NQ6Ft5T60RvVHDyAGsXeudhYAEFrGCLTdJzc/bcnD03Z8/N2XNzeiIdG9FT5tiInjLHLvSUOdFX1Q8KT5kDPWXE96anjK+pZ8xBNaklaVJPWhGrL4gnQPUF8QRwuR//B2nS+mvfBH7wHzSS5kneDnhSSXKJOFZwWXxneDNgYAd9MdcSe4Nf88PKG/wCV4SDNDaM9/cFGjhAD+sLts6FgQWU2ODe3xfYQGyCTbAJNsFWsVVsFVvFVrFVbBVbxVax+bnwwKPXxykPam8FDKxgAzXRz1PVF8GT6UQDvefBaQb5te1BJUmSalJL0qSeZEnp6OmwdFg6LB1+jlotQc2/XheooOeBH4KecCeujViPCDPRE+7EAgpYwQa6zY/MI+sONHDZmu8dT8YD/Rx1oqe37wdP0RMr6L10TprUkyxpJM2TvDuveVr7t+jaerrevCWvrYfnzVvyAgc4E9epqK0X4Zu35AUKWMEGejOm05KpL41n6YkDXLL1aLx5R15gAV3WHSvoMl81z9ITO+jXWU4jaQZ5ih5UkiTJI/rG8pxT3xaec91/wa8/TyyggGtJu6+gJ92JCnbQQD84nWaQn/YO8vx2kqSa1JI0qSe55AgzwJnop8ETfTF94/ul5Il+LeQ0kmaQX1J23zV+SXmigL5FfJt6up7oKt+8nq4nLpUPunifXLNDsWQ+9uF9cm293NS8Ty5QwAo2UMEOGug2X15PV/NDydPV78K9T675zbB3xDW/7fWOuMAOGjjAGegdcYEerDgq2EEDBzgTPVNP9GDi6H9WHQc4Ez3nTryvmx4kSTWpJWlST7KkkTSDVradlI6ajpqOmo6ajpqOmo6ajpqOlo6WjpaOlo6WjpaOlo6WjpVsXsy8qe2kmtSSNKknWdJImkHr1HlSOno6ejp6Ono6ejp6Ono6ejosHZYOS4elw9Jh6bB0WDo8MaYfqp4YPurizWRt+i/4GWt1Uzfv6fIzTT+OaidNukfyGumdWwetY/ek9Xs+aOG9WIEG+oKo41pbj7kO4pNKkiTVpJakST3JkkZSOmo6/OptfX2ueadV8zEL77Ty6uWNVifNoHV0nlSSJKkmtSRN6knpaOlo6dB0aDo0HZoOTYefFKavlN8bTf9XPyp9lMT7qgIr2EAFO2jgAGeiH54nYjNshs0PUR+e8b6qwA4aOMCZOG5gAQWsILaBbWAb2FZS+Gizt1UdtFLipJIkSTXJI3q+TF/S9a/H1KTNqSRJ0v2v5/F7LUmTepIljaDiK66OvordUcEO+iqa4wBnoufbiQUUsIINVLCD2ASbJ956A6d5w1NgAb2aFccKej0TRy9ovvJ+DvFHGt7wFDhAL5wu9vPIiV46h6PbXOynEr+7t2MGj+N3FeyggQOciX5u8fEBb2JSH//wJib14Q1vYgoc4FpeH2zwJqbAAgpYQY/r+9iT0YcgvDFJ/RbUG5MCBaxgAxXsoIEDdJtvPk/GEwvoZ2rfqJ6MJzZQQT9b+zbzZDxxgGv7Hqt5fB3/wALKQt8kx9fxD2yggh00cO3NY/Pl1/HbyK/jN29MUr8L88akwAo20BKLX8VUxwL64xonSxpBKwVXD0TzNqGTalJL0qSeZEkjaQatzDvJF6Y7ClhB3z/DsYMG+v6ZjjPxuGo7cK2Gr66fGA+qSS1Jk3qSJY2kGeQnxoPSoenQdGg6NB2aDk2HpkPT0dPR09HT0dPR09HT0dPhJ06/B/XGn8CZ6Lnqd3Te+BMo4NolPvrnjT+Ba+/4QIA3/gQaOMCZ6Lnql23e+BPoNt9nnqvqS+a56heL3vgT2MFl83t+b/wJnIkrV/1e0ft+TpKkmtSSNMkjrm3obTzqQwfexqOrS715G09gAxX0JTVHAwc4Ez1LT1xneZetQRG/M/QvqqkeuFyeQt7aE7hcvse9tUe7L4Gfa09cru4CP9f65Zq39gTe4/pd24x5fdvMma7azJmu2syZrpq35agd2EAFO2jgAGeiZ65fy3hbTqCALRbMp+s+qCfZMS1w8+6ck2aQevDuWEABfVWGYwN9VTy+n0JPNNBPwuI4E3OSvMaEm40JNxsTbjYm3GxMuNmYcLMx4WZjws3GhJuNCTcbE242JtxsTLjZmHCzMeFmY8LNxoSbjQk3GxNuNibcbEy42bxjR4+D1VP4xAb6/ZHvaE/hEw30WyQ/mj2FD5w3sIB+K+bi6fdifnwck+T54X5MkndgB93mueXpfeI8Ub2PJ7CAAlawgQp20MABYjsmyTuwgAJWsIEKdtDAAc5EwSbYjptadaxgAxXsoIEDnInHze2BBXRbd6xgAy3Ry8H6vIF6x46u1gX1b5sFVrCBa3nXuIJ6H0+ggQOciV4fTiyggBVsIDbFptgUm2Lr2PwSe414qH/bLNBt4thABdeeL0cEAwc4E70+nFhAj1sdfXn9ePDT9vSd5aftA/20fWIBfXnNsYINVLCDfqT6ah4TYx44E/20ffOF9PP2iQJWsIEKruufM5iBA5yB3rETWEABK9hABTtooNvEcSYeA1MHuq05uk0dK+i27qig28zRwAHORLmBBRSwgg1UEJtgE2yCrWKr2Cq2iq1iq9gqtoqtYqvYGraGrWFr2Bq2hq1ha9gatoZNsSk2xabYFJtiU2yKza/8V4uMesfOiX7tf2IB15lh3b/pMTHmiQ1UsIMGDnAmHtN6HehrMR39lu7maKDf1PkBbjNx3MACCljBBnpcT4bJ9p2s8ZHzB1awgX4H6ovuOX+igQPMvSm3G1hAASvYQAV7LIMcOX/gAHNvevfNsQzefhMoILaCrWAj54WcF3JeyHmRPHZECihgBVsugyjYQWzkvJDzQs4LOS/kvJDzQs7LkfO+DJUtWdmSlS1Z2ZKe86uRSr0zKNC3pDpWsIEK+rodwQwc4Ez0nD+xgAJW0G3TUcE8wL1/qK9BPvUGohM90U8sIIeG3+efyM7q7KzOzuoGDpCdZewsY2cZO8vYWcbOMg5E40A0Dg1P/zXmqN5cFCjgiiu+HTz9xZdsXR4EdtDAAc5ELxUnFlBAj+uHhheFEw0coMddh4b3HwUWUMAal0negRSoYAcNHOBM9Dv+E/NS2PuSAhX0tTBHA30tpuNM9PQ/0ceNbo4CVtCHjoqjgh00cIAz0dP/xAIKWEFsK9HXPZt6B9JJM2hlud8veP/RSZLkEX3DHUN4Byroy3/8roEDXKaVtf4dspNKkiTVpJakST3JkkZSOno6ejp6Ono6ejp6Ono6ejp6Ono6LB2WDkuHpcPS4Tld/ejynD7RQN9ex+/ORM/06keXZ/qJAq6903wne6afuGzNjznP9BMNXLbme98z/UDP9DUKqd7VFCig23yn+kXBiW7zHPH8P9Ftvhae/yfOQP8emd99+efITpKkmtSSNMkjri3gXU19jWCqdzV19V/wU/yJDVRwLekab1Rvawoc4Ez0HD/Rbd1RwAo2UMEOus0cBzgTPcdPLKCAFWyggh3EVrH5KV59L/gp/sQC+qitb1TP/+7bzPP/RB+4FccOLlv3DeX5f+JM9FP8iQUUsIINVLCD2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBjavDKsdTL2BKtDAAfqQxkrxYzbOEwsoYAUbqGAHLdAbqHo/0Je3OzbQl9ccO2jgAGei3wKcWECPOxxz+3pb1bHG3lZ1ouf8iQX07TsdK9hABXNvenNV4ABzb3p/VWABBaxgy8WpCnbQQNbNc36N/Kt3WgUu2+rOU++1CqxgA5fNPJjn/IkGDnAmes6fWEAB3eYHgef8iT13lie6+fHgiX7iTPREP7HkDujsrM7O6uyszs46Ev1AA9lZJLqS6EqiK4muJLqS6EqiK4nu3xHr5oenp/SJBfQN5dvBU9p8yTylT1SwgwYOcCb6yf7EAq64ww8NP62f2EEDV9zhh4af1h39i2GBBfTT182xgg1UsIMGDnAmeqKfWI8HeeqfBjtJk+5B/QjxXrSTRpIvv/+iJ/6JBVzPBtWpJrUk31QHdtDAcTxaVO9HO2jl/EklSZJqUkvSpJ5kSemo6WjpaOlo6WjpaOlo6WjpaOlo6Wjp0HRoOjy7/WbqaFs7sYH+3Pb43Q76FjPHAc5EH8j3xDma3E5cA+N+BXI0uZ3YQD2fxurR5Hai24bjAGeiX+Z7AL/MP0iSalJL0iSP6GvlyexPH7xlrfslrLesBTZQQe8a9BX0ZD5xgDPRk/lEt/lB61fuJ1ZwXU/7TlgZflJPsqSRNE862tsOKkmSVJNakib1JEsaSeko6SjpKOnwC3t/HuJtcIEKdtDAAc5Ez/UTfbMNRwEr6DZfBk/3Ezvotuk4wJnoCe8PTLzhLf51NQR5AH8176CVXP6owrvZAgsoYAUbuNLYH2t4N1uggQOciZ7LJxZQwAo2EJtiU7f5CukAZ2J3mzkWUEC3+ebvDVSwg27zTbqy2XzI2/vhzEcEvR8usIINXHF9iNP74cwvUb0fzoovjnlct63T9onrtB1YQLf54owKNlDBZfORO2+CMx+58yY48xE2b4IzHxTzJjgTV3hX6okVbKCCHTTQbb4McwZ659txcHrnW2AFG6hgB5fCh578k1yBM7F4k604FlDACjZQwQ4aOMCZKNgEm5/SfYTKm+0CG6hgBw10W3eciZ7mJxZQwAo2UMEOGoitYvP6sNoI1fvvAgV0m+8Wrw8+AOQ9eIHL5uNG3oUXuGw+6uN9eCd6fTixgAJWsIEKdtBAbIqtY+vYOraOrWPr2Dq2jq1j69gMm2EzbIbNsBk2w2bYDJthG9gGtoFtYBvYBraBbWAb2Aa2iW1im9gmNi8gPiDo7XmBHTTQu2gPnIHz6KI9sIACVrCBCnbQ12JV5aNBz0+g87jYV8cGKthBAwc4E70SrJc11T+odWwH/6DWsZreohc4wJnoOe/jnt65FyhgBXNveudeYAcNHGDuTe/cCyy5DJ7zJ1awgZrLcOT8gQZiI+cnOT/J+UnOT3J+kvNT89iZypZUtqSyJY+c92XobMnOliTnJzk/yflJzk9yfpLzk5yfnf125PyBbEljSxr77cj5A9mS5Pwk5yc5P8n5Sc5Pcn6S85Ocn4P9NtiSgy052JKDLXnk/Dq5zyPnD3TbdBSwgg1cNvVl8Jw/0cABzhO7t/IFFlBAv2+ujg30EUJzHGcWdm/as9UB3L1pL7CAAsYe6rfSQAU7aOAAZ6LEHuretBcoYAUbqGAHDRyJXh9Wx3L39rzACvrW8e3g9UF9ybw+nGjgAGei14cTCyhgBT3ucDRwgDPRK8G6U+/etBcoYAXbedPbvWkvsIMGDnAm+qDeiQUUcG2dfmAHDRzgWov16KJ7e15gAQX07m8/uLxp70QFO2jgAGeit/KduLZO94PAs/tEBTto4Ej0PO6eOJ6x3eN6xnY/djxjTzTQI/gR5Rnr6I14tkZCujfiBQroyzscG6hgBw0c4Ez0PF6jqt0b8QIFrGADFfS3UqrjjO3gLXeBBVxx1wh395a7wAYq2MG1Fmuwu3vLXeBM9PP8ictmbvM8PrGCblNHBTvoNt8XnscnzkTP4/W+fPeWOzPfLZ7H5hvV89h86/h5/kQFV9zh6+Z5fKDn8YkFXHGHr5ufu/3g8ja6QANHop+wT1yJI77oPvh2ooL+mpmvhb8oc+IAZ+LxUtuBBRSwgg1cCzl8m/lJ+MSZ6CfhE33lfWf5SfjECjbQ1+L4sw4aOMCZ6P30JxZQwAquuDc/NDx5h29UT94TZ6B31AX6WqijgBVsoIIdNHCtxRqd6d5Rd6I3z5xYQAEr2EAFO2iJnrzjwAIKWEFfC3NUsIMG+lpUx5l4vIZ6YAEFrGADFfR9MRxnoqfpiQUUsII+jOWkST3JkkbSDPK0LU4lSZJqUkvSJF/yVRO88c38DOqNb4EVbOeb5N0b3wI7aOAAZ6J/S+TEAgpYQWyGzbAZNsNm2Aa2gc1zd/rK+yn2xA4a6I81xHEm+gX0iQUUsIINVNBtfuh4Rp84wBno7XC2Rui7t8MFCljBFjvL2+ECO2jgAGein45PLKCAHlcdO2igx+2OHndlnrfDBRZQQF+L4dhABTu4mrBWd3/3drjhSejtcCeujA4soIAVbKCCHTQQm7fJebU6+uROLKCAFWyggh000G3TcdmKr7H3yp1YQAEr2EAFO2jgALF511zxg8vb5k4UsIINVLCDBg7QbX4Q+IO1EwsoYAUbqGAHl038oF31IXAmjhtYQAEr2EB/ru7UkyxpJM2g45G6k0f0LbtqwPATvLfEBY7zuyPdW+IO9Ja4wAIKWMEGKthB3wLrIPaPgI3VgNu9XS5QwAo2UMEO+lqo4wBnotxAt3VHASvYQAU7aKDbfN28BqxnGN3b5QILKGAFG6ixL7xdLtDAAc5ErwEnFlDACvbzg1z9/ELYgQP0Ftx1sHljXOCKWz2CZ/uJFVxr4TdC3hgX2EFv9/Ud4Nl+4kz0bD+xgG7zrePZfmIDFeyggQOciZ7X6wlEP78W5oeR52rzNfZcPdBz9cS1ZOthRPe2tsC1ZD6S4m1tgQquJWu+HVa2Bg5wJs4bWEAB3ebLOxuoYAcNHOCMNfaZMscace7e7BbYQAU9bnc0cIAz8fjE33QsoIAVbKCCHbREz2MfF/MWuEABK+hrMRwV7KCBKwNOnIn+Qb8TCyhgBRuooG8dX3TP2AM9Y0/09vabo4AVXGux+oO7N7sFrrXwQUxvdgsc4LL5eKY3uwUWUMAKNlBBt/kB43l84gBnoufxiQVc28xT2jvc/Pux3Tvc/EOm3TvcAgc4E/36/cQCCrj2hRdS73ALVLCDbvMteXy688CZeHy688ACCljBBiq44vpZ2zvchg+keodbYAEFrGADFfR94Wvs2X3iAGeg9735h4K7970FCljBBirYQQNHop+7fdjW58QMrKCvxXBUsIO+FtNxgGstfJzUu98CC7hsPjjq7W+BDVSwgwYO0G0rcbwFLrCAAlawgb7N1DH3vHe9HfuttxtYQAEr2EAFc8/3ZuAA2fPKnlf2vLLnlT2v7Hllzyt7Xtnzyp736+F5YAPX8vrdo39NLXDmL/jZ9MQCSuDRdeVXV0fb1YkFFLCCDVSwgwYOEJtgE2yCTbAJNsEm2ASbYBNsFVvFVj3ucFSwJ/qePzaU7/kTPe5KHG+XCiyggBVsoIIdNHAk9txv3hgVWMEGrrhe7b0xKnDFrccvrLh+EemfDztxVfvAAgpYwQYq2EEDsRm2gW1gG9gGtoFtYBvYBraBbWCb2Ca2iW1im9gmNm+D9Otqb4ya66W37o1Rx2HkjVGBDfR9rI4dNHCAM/HIwgPddqCAvryu8Cw8UUFf3nU68Gan6dfg3uwU6Mvra+GZ5YeGNzsFdtBAjzsdZ6Jn1omZAd7sFFhBbBVbxVax1ZHonxfyWwLvRDrRU+/EJfa7A+9ECqzgEvvdgXciBS6xX+Z7J1LgAN3mG6rfwAIKWMEGKug234WekCcOcCZ6Qp5YQHbhkXq+kEfq+fY9Uu9AdpaxswY760i9AwVkZ40GKthBy2Q4Uu/AmXik3oEkzhSwgg1UcEQR8+6iA7276Dg05i1T2ruLAivYQAU7aOAAs4D4l8ICsRVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2T1M/dmbNrT5rnlhn7aCBA8wTq3ciBRZQwAo2EFvD1rA1bA2bYlNsik2xKTbFptgUm2Yp9k6kE/sNLKCAFfQteaCCvi9ccZyEDxyJx+nWHFtk9zyy+0BfXt9DlsVx2gBn4iAvyO5Jds/jxHpgZvckuyfZPQe2gW1gm9iO7L6jedOMV2XzppnACnpxPH5XwQ56cRTHAXpxrAv9jHNiAaMUm7fSBDZQwQ4aOMAoxeatNIEFFLCCDYxdaN5K4/lm3krjO8C8lSawgAJWsIEKxs6yW1452i2vHO2mM7FHKTZvpQkUsIINVLCDBo5EvxfpB3bQwAHORL9DObGAAlawgdgGtoFtYBvYJraJbWKb2HxEoPt+8xGBEzto4ABnoDfYBBZQwAo2UMEOGjhAbAVbwVawFWwFW8FWsBVsBVvBJtgEm2ATbIJNsAk2wSbYBFvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2JTbIpNsSk2xabYFJtiU2wdW8fWsXVsHVvH1rF1bB1bx2bYDJthM2yGzbAZNsNm2AzbwDawDWwD28A2sA1sA9vANrBNbBPbxDaxUUsKtaRQSwq1pFBLCrVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiRy1RB3d1h0NHOBMPGrJgQUUsIINVBDbUUum4wBn4lFLzLGAAi7b6uQy7zQKVHDZ1pvu5p1GgQOcgd5pFFhAASvYQAU7aOAAsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIpNsSk2xabYFJtiU2yKTbF1bB1bx9axdWwdW8fWsXVsHZthM2yGzbAZNsNm2AybYTNsA9vIPPamorEaO827igIHOBO9PpxYQAEr2EAFsU1sE9tMW7vdwAIKWMEGKthBAweIrWAr2Aq2gq1gK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hU2yKTbEpNsWm2BSbYlNsiq1j69g6to6tY+vYOraOrWPr2AybYTNshs2wGTbDZtgMm2E76oM6FlDACjZQwQ66bTgOcCYetaQ7FlDAHjXqaGk6cYAzUI9ScWABV7D1UokdjU4nNnAt+noHw45Gp/XugR2NTicOcCZ6qTixgAJWsIEKYvNSsZryzb8AFjgTvVScWEABK9hABfMkoVxKKJcS3v40pm8SLxUnFlDACjZQwQ4aOEBsDVvD1rA1bA1bw9awNWwNm48gH6vpI8gnzkQfQfZDzttzAgWsYAMV7KCBA5yB3p4TWECPYI7+u2u/eZ/N+a/+oGe9S2XeZzP9+PU+m0AFO2jgAGeiP+hZL1uZ99kECug2cXRbdXRbc3SbOlouuo+Zn8gK+ZB497g+JH6igh00cIAz0YfETyyggG7zRfchcb8R8+aawA4a6DZfNx8oP9AHyk8soIAVbKCCHsw3lI94+z2Zfx1q+s2Vfx1qdt9QPsx9ooEj0Z/YnOgR/NDwJzYn+hHl+9ifzXhF9C88TfNN4s9bTuyg70LfDke2HDgTj2zxuEe2HP8qYAUbqLnGxzeeDjRwBJ6fdBqOEit0ftTpwFzjo8Gn+Z/5Ab66QO1o8DnQD/ATCyigPzhx2/H4x+Mej38OHOBMPB7/HLjirsZN87kEAyvYQAU7aOCyrX5P868vnejH+okFFLCCDVTQFeI4wJnoB/iJBRSwgg1UsIPYFJtnwOouNf/kUmABBaxgAzW3emdndXZWZ2d5XqxOVDuagVZDnR3NQCfORH9meaIvjh8a/szyxAo2UMEOGjhAt/mR6jl0YgEFrGADFbRcN0+c1VVpR1/QiRIrdPQFndhABX3Rp6OBA/TKtQ7Poy/oxJIRCraCrWAr2PzsdKKBA8zd4h9MCsQmKI6LkebolwfHv/rlgTl20MABzsTjYuTAAgpYwQZiOy5GfAccFyMHDnAm+n3LiQUUsIINVBCbYlNsft+yXo0zbxwKLKCAFWyggh00cIDYDNvRMeqHkafezY8dT70DPfVOLKCAFWyggh000BWr7hwdQOs1Ojs6gE4UsIKu8CPK8+3EDho4wBl49AWdWEABK9hABTto4ACxeUKul7Xt6As60RXd0YOZo4ED9GDrgDnafk4soIAVbKCCHTRwJFYUfm5Z7xva0TCzZpqxo2HmRAU7aOCKu14ctKM1Zn0/z47WmBMr2EAFPW51NHCAM9Hb4U4soIBu893iJ58TFeyggQOciZ4XJ7rCd6wnw4kNVLCDBg5wJnpenFhAbBOb50XxI8rz4sQOGjjAeeK4Hd/ZF8cCClhB/zNb6OeW9S3D4Z/YCWyggt6LcnM0cIAz8ej8PrCAAlbQbdNRwQ4aOMCZ6If9iZLrdjSlFscOWq6QXw2eOBP9avBEX3TfZke324EV9A6r6qhgJwK2hq1hU2x+YXgiu0XZLcpuUXaLYjsydvzv//7Db3/+67/+4e9/+utf/vnvf/vjH3/7x//Jf/iv3/7x//zPb//5h7/98S9//+0f//Lff/7zP/z2//3hz//tv/Rf//mHv/jPv//hb/f/et89f/zLv91/3gP++5/+/MdF//sP/PXt+Z+W+wNfO//8zr1kiHKTH4KU50Ha6rPyEPeBvQxg7Ye/l+d/X9e9of/9fRidBfgSYLsWdZ24zrW4D7U/XYv2PMjMCKXm37d69c/vDy96rMX90p8lEPshRN+EqJrb4WEVRrsawOcp8wD38YQMcH+u9UOAsdmQrUeEch+Jexpi7nam5HboVp+G2G1Kby4+N0RvTzdl2RyTIiX2p9wf0xJDvxzW8u7+2K6IsSKjPl+RTQztuTHWZ8UzRv+yHrrbq+va89yrKk9DbI4s/wiSR7jfYzyk6PUI/iLxEeGxytiLq2HPV2O3MW19weLYmHabz0LIptZIG3lg3cdrn4Yo724K2RyZclvfNDkWotyoue1LiLpZiDW4dCzEtOcLsSuYIrEl7shRcX9+fH1FSrVcES1PV2RzYMmIXVpvTwPsM2z2PCgeav/XPTreL3q7GPdnlRHj/ijy+Qmk3rb1WzJFHraGtB93Sd0cnTpij/QbVe9+Vr1+YDTNA0MfsuzrgVE3h+f0qbPPGJMj/P7M/ccYm+UQ/yzzcXDdB+bYsdf3SW2RJfd1kuf7ZHN8FsuCcT91PJxH6o/H10qEpzG6z3V/BFmvUD5E+fFsVMcHjo757tGxXxd/+Hmuy6zl6bq03fm9GBVwzId1+XLBJ+8eH9uj9GIJ3Ma4mC1N38+W1t/eGrs9u3q3Ys+uVpvne3ZXSwsXTcUe9+yXC8i5O0nXuKW4/1l52B4/Hqe6qaWtW83bmocj7GuM7XKolrxYmJvl2Byl6wNteVX/kHNfY3xnz7Sne0bb21cduruGu98a9VyQ+y3T8wXZ3ueMmZvk4Yz9U4zNJmklb3xbEX1tg1y7etH55tXL9vTiQ73HMtyGPT299F0x9Y8ZHTHuw93PY2wO0zVlcFxFyXzcr/V6DO8TPmLcR4eex2jvn+S6vnuS2x1da7L7WJNSymtHeZW8nW+35ynbx/buMa9t74/kX4vhX5w+r491vhhjEGM8j7GtHWvsLa+kSnkexeTdfbvPFotaKvfB6dcybgoxNhlnu+0xa6bcnXt9csreL0eW41ofBnx+Wo7NsT7yfD3lcWv8eOlhu1N+7TnS0h4vCNv1GE1ucU5o8niC+xJjfOD2aZTf8/iqNS9eah3lpeOr1jxV19ZuT2OM9vseX7Vlyta+yZWxuzC9WV7MlfpwZpEft+nY1eOaA5trdt6Ho0Mux1jftolde3/o/jzGfP8Im7e3z07bSqolb8HuT8jH00o6N5W0lJFLcq/GD2eoL4PF9d2bjl318Zfd4/nFeFp+5nZz5BW2lB+SpVw/0BmmvY8A3V5L2s7FoIk8jTHH288QdkthtfI4pj9dinLb3TzlBbq2x6y/fQmxW46RF+h12GOQeT1Ia7PlTdwPVwxfg2zHovLZ0P0RO5eltX0Zxr/tBsXyouF+yn24ya/Xs3YKI0n32vz8nqXc+rvlY79VRyZdm1o2W/UDo1Hl9vZw1PbsUnvew7XHkfAvZ5eye9pU/NMY503YwxHy9dHE9mlTnrHb7fmAfCn14kMvexyOKl+C7E77913Po9Dbw0n762jSrqbe/XmBW2/Pa2rZPTMqOvMpRVnTJT05P/ikRc93sEQtkv7D7cvXJdldXWpe5Lb+eMR/fZxY5vtHye7x08WjRMoHjhKRTxwl+5LmX8s7S9rcDMOU3QMHqTmi/MPTf/ny+L6Ivnspsl+Olnf98njV/dNy7E6dDBma1Oenzt1jizUFJuMom6NVPnC01veP1vqJo7V+5GjdPyhUBlP600e/mwjNZ+M9Nsh4vNL82hBQdwcql933ylqfn7F2Qeotr3nr7fEG4Kcg9n5jwe6h1MXOgl2Ii60Fl9dk01twdZOWhwc539wvhacfZXM50ur20upSG09p7f1n2vvVadyP6HZ1dq0jZUSQO/bn5WwbRHJ1huzO4G28f8DvngldPOB3IS4e8JfXZNdMs92kOWw3fhjy/9Z+0ZmNKGabRq3dg5j7f8zrRHssiV/ue/fH6shBkfsTsk1d3Q3aXz1Cdg8PLh4huxBXu63671wSfUaCuIeX55t0NyBxuX1N3t6kuxAXN+nlNXl5kz4cpY/58q2zjL/wfY7xlN1+se2zpUudif0DBbW/X1D7+wW1f6Cg7rfouxeYesshRC1103FqmyDrS/4MdG9K8u7plL8ycWyO27w9r8j77WFsj/HiNr3W8ll2z5buQ1J5a9gebh5+ijHfP9J3z6cuHum7EBeP9MtrsjnSt1u05ln/vkX7azFUaK6p9fkW3T3p93cozzvlPl+Mkc/rtjH2R9ilruIy3r+TGu/fSe2eTl3siSlz+4T9SkvvdimutSqV+XaHdJm7SlpyoLw/Plmqs70aRF8M0vJpypoJbhPE3t4v23UZLddlvLoukiN1a9LVV4PkAPWaXfTFIPQHr2kQnwaR225w6j6Ik7frd37YOV876XdhLrfj74Pk87L7g9X5YhD6Bmbt/cUgF9ti/f2150/urvXFyu5B1cU28u1yjGzlmkPrZjmuBum3V4PkieaO/bUg9xHUvFC9s+3C7HaxZmGbjxcS3zzYBgfbYx5/L0ifBHmegN84hz+9H5LdwyrLBkiz52et/TXztbdZdg+qrt4eboPcL+vyfZYyn9+oyvZZleX44X3w//nabB9VXbvylt3bUteurbYhrr71dXVNbLMm2y2aj93FRnspRi1ZVu8nCXs1xu3tGJULksfc/16MvMyrj68sfI2xfWXq2l3EL2JcuovYr0trOWTf+ng/xovH2P2Jew77tfF832772nvnjQXZvKG4XRCj/dD68/Kxe7p0eeeO33nnWmFdNom7e2uq3Hj1qhR9daPmNWIdm6Ns94Tq2oNhadv21GxLv9eP53c02+VohU8X1OfLsT3PSZ6imvTb8/Ncs7dHmOQDD6fk/YdT8v7DKfnAw6n9Fr02wrSPcW2ESXaPpq6m/v7ouPbOub79Bv82xNU9e3lNnteO3StTl66R9ylbs5S2ZvPF61uxfIFMdte3+ydC157US6/vP6nfr864Zafs7GOzOvqJ1em/9+rMPMPo7bZbnfF7HmlKP7a2vrmTsl0zdREOtAwhXzeHlbfHMLZLkREeT5U/L0XdnipZk4ex4W+EKLeR/bp3Hu21IHM8PJ166Bj8TpDVR5YXU7eH0d3vbNR8i/1+wG426vhdQ9w3ZDYM3lmfr8r4xJ4Zn9gz4wN7Zpu5mu/V6mzjtXNE5zXQ+yi+vRokB9vuT9zri0FaZfy/v7o6NfO3a91c6o4PfGNKxvydzxFd88NlXW2zOrtnVUV9DshzfWabzw62XwS51Oguu+dVvecjnjX732Z1dh2qFxvdZftC1bXWYf/gzZt3iNvHVRdbh2X+ophcax3+RRjlMLnfno3nYXaH7JoNJ/Zxe3gG93Uf19v7g6r19v6gar29Pai6DXHtluT6mthmTd4fVN3GuDio+qsYt7djXBszq+V28aZXX9umFwd3fxHj0uBu3b1UdXH87xcxLg0C7Nel5Qvu9fEJ/k/L0X/v5bg0yHw9xos5d3GQue7epro6yPyLg/3iAXL7nXfMtQHiunuD6eoA8S8W5NIAcZW3T/9V7P0B4u1yXBwg/sXFnXHFe3/q/uTirm6/7HfxCnEb5OL99/bSzlq+sGft+YFa6/vXDrtv+128dtiFuHjtcHlNNgPV+4vl8fAK5PPz7SeeL22vlnt+okd++N7ZT1fLuyCWG/WO5bUg5ZZvyd0Hk9uLS6KVkeb++sX/6Fz8P5xlvnvxn2u0bgQ2/TJz/0hD/1+PNL63XZr9P993/znIB6ri7i3G28wjpdzGS6kjJd+FkLI54+nbr6hWLR840Ww/N3hxk253bY5X3/dyffWQ91ec4xKgvny/6w8JzzDSX84cyYuaFXKTObuPPOQQqbEcX97J/tWIovCpm1udLw5LtoeRhP5sWNI/VfTu2OY2yCfG4S9vkfqJLdI+sUXa21tk3xT5sDK322M/4/d6K2+1P4TZNIuW7SOOyy2auzB95EVBn7eno/HbEIyP9tnLayGMpZjPQvyiU/vG3Ai3lxvP58OnWJ+3e+9feOXzbqM+fo/kywhr3b1ddbFfpNr7r6pWe/tV1W2Ii5fhl9dkM5yw3aLX+kX2Ma71i9Qh748m7GNcG03YH2GXek7q7s2oi0fHLsTVo+PymjwfjhjvdgL8Iu3zImTUuUn73WtNV+++5/uvU9f59uvU2xAXd+zlNdmk/XaLXrz7nh8YVd0vx6VHZnX77b9rtzJzvn/rvV2Oa7cy9Rfv7125O9zHuHZ32G5v96m22wf6VLfLcW2T/uJDG/l8aejDq3c/f61jc6RfeyF7P3/OpSuXdnv/XepW3n6XehviWgm7vib22ga92Oh6e/u6pZX336T+RYxrw5jl3d26fwRy+XXM7eRIF1+k3M5Id+09yu3sIhffPLwcY/Pi4T7GtfcO62fuaXdb9eJbh/sluXqMbLfJxbcO9/Mkvb82V4/V/bpcO1a3s9hcPFYvx9gcq/sY147VXYzrx+p+q159ufXt259W330tdTuRFo2Q7cdvuNuXpdg1/dF+eB9DefYYdR+i5UShPzZR/Bhi9w7VxaHC3cZghK89fiLjp43xiW/8tU9842/7jc9Lm3T36mPPDxf0H/rb5/UIjZlS+vMI2+frzCCrD82TP82Ntp0+gi5qffh269cYTbc3gtdmXdil67VDdD9JW8s7n9L19nyeJv9Mw5sZuw1xLWN3Xxm+uDl2r/aPfAp1x6e9F/PtY3y+fYyPDxzj4wPH+Patp4vH+HYCQP9mx7FL7vywIHI9htKtoPo8xn5qtVtjRrOb2fNM2b05dTFTtiGuZUr/fQvHj5tjPP+i934OwEYv7MO0VT/NAXg5xng/xuNbT9+Zi7DmdzDkPk79cB34ZR7B3ZPSOpgTaPzwFPxrkO18qHmdL+M2XgwySn5Ofzx+ZuibQVgS0Q8EqbenQXaTK2pnbrNu87Wd0ygjTW28uocfvrlye75dr09Z2V7aIm3mMGGbY7Nrrk7hOTZpM96fbbKNbVW90UP+MJfNzwuyax5Ryy/y6+OLvuNLDNvVZnpz2+M8NF+u+HfPoNbH3iPG7XGmta8x5r7jQmiWeJx5bnxnsyqzxj2c8X7erNsg86G///lBsp9O9PK8pvueViOKbqZrbHM7ww/vUD7u4nF92sjWcvSiPZ7CvzOxqVbNN59rf3XayHxYqY/3hd+KMR8moWjy4p4x7nLvPF6MMgrXJEOebxOTd6/gtxEuXcHvp1ybD71Osz5ryNHtTFRSmLDx6XXiL0LkCMaU/ux+aD8FXc/zXRmmL2buGPTnjrm5TdXbePfiex/i0sW3lre78r6xOXazK/8iihJFXkzd+18aUdrz+yLdPXG8uGu2IS7umv777pofNofay7umPUR5sR7ery9zWeZtPq/v24nkrhXEfYhLFXG/LsoFzey3zRbZfZzv2gDPNsT9/HSjOcdKey0It1frVKUvBmmNIPpSfb4/f31oW9jU5+2MWJ+a4EsyitTb4wVnfTFIkReD8M0A0V5eC3JfhSxqtx/uj34Msvs+nvBERaQ+n0Faa3v/IYJuJ5O4+hBhO8cv9/K3tlubd59S7ab4uLom2znsNWcrVrs9rkm9HoO3qNR+mF/zy2yhrbx95mzl7TNne/uTP/uNkaNWOurcbAzdnWhynKe3UTdBdn1+ObrSy+3ZjfN+MZh3+ccPqHxrXVTzG+o/NHJ9M0iuTL/Nl4Pk92AeJ8b96VjftZSNzFqduxj67pXINsKlC5HtaygXH65sY1x8uKLbeZsuPlyxbSep5rj3fJxkqH2d2/P9uyp9/67q/Xedth/YujG8e3ucdfnrxtieWq5tjG2Iixuj/a4bo+SAW/thrvSfNkZ/f2P09zfGePvUtDs/TmYXf/wy0LcmfZ/5iOke4/l062of+Iyk2geufnat353vnT1ck/68GJ+4JrUPXJPuZ6Dno4k/fFDj6zTnunu96eErNg832vad2daF+vNDF/p35rC/elbYBpl6i4yZP+yaZt8J0uhYfPgU5XeD5Bjm46fbfg6y7fR9eGGzP/Zf1m8sCRcfs9dXV6fnS/nzh28vfCsILwfdb9j1aRDdPaj6SJAf3rx43CZfNuw+iGRnq4jeXgxS85uU8vgBqJ938e5EMXJJ2vzhduxrAr7dALQPcekidbsqV69S90GuXqbOD1ym7ucov/Y+nM73P5uu8+3Ppm9DXHuZ5PqabCbm28/6ful9uH57/2tn+2nfL36NZh/k4tdotkGuvhK3X5KLX6P51Sz2F79G84swVz9F+aswFz9qs98yFz9qsw9y8aM2pb79BZZt9lx8bXEf49pri728/fW0Xj7w9bTtclzcpPtde+2jNr84Vq9+1OYXYa5+1OZXYS5+1GZ/OfAwgldfvaLIT3M8FCX5zo3F/djIl4fssR/wywVjl7cHBPYhLg0IdBm/a4hrYwq/2KD5pZL5OIHb1w062ru34X17kF68De/1AzNT7C7h7/U859mY8+H57pcHO7sYOiTH3W+Po93fiNG5De/ywzDgl6q6e0R17UDfL0bW1P74st63VqXm8+H+wydovq5Ku/2uq/L4TfqHK++fF0N+18VQquDjtdnPi/F2n8o+xLXy097uU9k1iHbLNpU+HieQ/7Ixdh9euHaru41w6U532+h68UZ3G+PifW7f9VNfvs8t5e373K7t7fvcrm9/0Gcb4tp97vU12dznbrfoxfvc3URUV+9zd582u3yfuw1y9T53/8W4i/e52yW5ep9b2kfuc/dhLt/n/iLM1fvc7Za5ep+7DXL1PrfI2zdlu+y5ep+7jXHxPnf7yOrafe72G5RX73PtA5u0fuA+d3+sXr7P3Ye5fJ/7izAX73O31wKXbnP3VxNX7nJ3jxMv3k+NT9xPjQ/cT217OyQb1KrM5+0M2xiW1zT3XfliDM6e9wffz2OMbXNHzonRZDzvUxlvf31gvP31gfGBrw+MD3x9oM8PXK3uvso982lZEXnsxy6XQ4jkusgPc+p+J0bJJvd7jOfL0bdPqa5m7e673JebEXZDqVfnGSvykaH/7SAXLfdN9XFCuh9HqOwDk1DZByahsvcnobL3J6GyD0xCZR+YhMo+MAmVfWASKvvAJFT2gUmo7AOTUNkHJqGyD0xCZR+YhMo+MAmVfWASKvvAJFT2gUmo7AOTUNknJqGyD0xCZR+YhMo+MAmVfWISKvvAJFT2/iRU9olJqOz9Sah+dflwaRIq+8QkVPb+JFSlvN/2Yx+YhMren4TK3p+Eyj4wCdV+i14bDrUPTEJV5BNtP/KJth/5RNuPfKLtRz7T9iOf6deRT/TryCf6deT9fp3ygX6d8n6/jr0/CZV9YhIqe38Sql/s2ovjmPKZfh35TL+OfKRfZztKdGkccz/OdGUcc/ua26Vl2L8od6ljaP8KNTVeH2r8997D7rzM3Wd9McgYOcz0OLvRN1/mzifmd3y+OrptlLn4Rvg2yLXJmvYhLk3W9IsQlyZr2u4XyyuJdS5/cef+EKS9GkQIUp/vF7O3W1T2IS71hpi13zXExUv3/QblhQyz8epeyatVsflqBXlckpeDjLztvuPLQZj7ZRtk+ymVi92g/d3a/osPQ2WMKf3Fb0vlcMgUe/r2sry7KfZf6rp0pt3dDFlOc3K/J3t8v/4bX1Djs2V3HC/GyGp8P+2++CW30ViOV78oN/JO6B7u1S/K5euHd3x1e+S91D3G8/2y/Uqf5ihIU+vvxxivfemv8Vi69fbiuvDmYbPNMbaNwUf62qjPY9j2FSq+j3UfuXv+4uG4bT+Amh+Va33q0+v0Xy1JzyXR3ZJsPyybF1LaH4aX6neWI6cHua903yzHdojqlpv18StOPwfZvU2dn/l4vOMXteuHyHj4quzm42djNzXq9UNkvH+I/GpJrh0i2+H2S4fIL5bj4iFS5AOHyO7h0gcOkTmzMt/K8zPE2M4gJTlhisp8KM3jS4zdZZBJftXGHi7Xv37oZ/e+wS0vQfRmt826jA+sy/x916XUvIL44Ysf3/ombX4aT2tpr8UQlkPaJ2KMF2PkZ6Due8hejJGP6u/hXt6mxjatL8YoxKib7x5vJ2LIryiI6OMt8pcXUuTtqX32IS7d345aftcQ126Rt9uz8oXBas8npRi7x0qXPlW2XYrGLXabY7MU/f0Ktntj6mIF20/zITyFEX26LvsYyhSJ/fn2aH3/8chL841sg1wb5duHuDTK94sQV0b56tuvr9a3316tb4/J17fH5PczxT1+hub2OIfft+abY1KxFWUze179yLR12zAXj9FtiGvH6D7ElWN0PwPnxfn3tjHen+Xx+jHyq1krLx4j8pljRN4/RuT9Y0TePkZ2PTGD1u3xMA9VkS8nub59gSt3jNjDN7GuL8VUvoI9y9Ol2IaYeZa8PY4EfSPEyBt0uT1O+fDTtth1TF1suR67Yb6rLde7eTMfvz/1OFHK15WxbW+fkbjd9Nlw9q+CGJPxPT6r+BpEdg8ZJl25pWxWZ1dBpHK0r04Qwtzk6oZtljf6bTz2O14/0BofnbiPOO72zQd6+4d9oLf/lzvYHnawPt3B8/c+SlS5Qn0I8dOGHdu3A7MVRR4fZv80oDS2/Sz0GRXZDLHt3pe6PE432tvjdPvluDhOt52H6uo43XYiqkvjdPsisOb1iwOt2OMkFF+KwNi9XZ8H68MEUl8eeO6q87XZwXz2gWcxRj6CGfN519XYvS91H8zK9C+PB9iXrqvdmhRehCmPN4Vf9sk+RHYplMfbkO+EoJ9GHp6L/XRkzO39fiZKvb0YIvvp+0Pn93dW5PG0/XAN8p0QPa/6f+wt+kYIK1zQbbbF3L/Q84EgpXOW648NF98KYjmeVGzKi0FmvjtSHmcV+tbO7Ux6Ya/lClcw9yOlvLYUtI3V20sr0gadlo8TtJR5+Vrbv2V3FuE2XlmIUjpzAY6Xsq3UzNc7vrYUKlyGPUwT9a0QnQ74MV9bEQ7OKq+tCF9Vupf0l1bEshHIWn8lwMyx48fJob6zErccbv1hesifMn331On9o3vmpc6U1zZEHtrT9M0tuQmwvTiYLYcXp97m05GfuR0+0nxyPnVuPqGwG+V4e3zhfoVhXKSUZ5dbc/cqlPAq5a08v2CT94fStkHWKNiNUbD6Ypiplc+YPw7IfSuI8PFwefx44veC5Jtu8/GLcN8Lwnv/963cXzxWR5byObRujtWrQfrt1SAjN+z9puq1INcHOn+xaa8NIv9iWa6OAP8qzMUh4Ll71ev6ltmGuTYEvA9xaQj4FyHeHAK+9sx3e/3CrI799lhLLt8Pl84Ut73Ol0KMfMRZHs/a3wkxjWncbuWVEHLjYe2t1ZeWgong1hyKr4Vg9sNRXlqR+yU1oyTztaVgiuzSHueE/0aI9vDG7sMd9dcQczel1AfuVmpeCt2vJF7bGI1Rp8fmjFe352shqjDeKz+8Qzmvh1A+wPTQ7v9qiF5fC5HXUlVMXwpRc9jpTreXQrSsvfWHS+TvLEV/mIxe3g/x2k7lFc76eCP8rW3Bi2StvrZTGzMWtWqvhSh84UNf3Kk9r/Rbf2kp1hS2DDi1l0I8zKQ7Hq/yv4SYuw+/FeGe/nGi8/KNZ6I8mR2qr60JU6XPNl4L0ZkY/LUkKTxAvI/klRdXhHeUb/J2iPLqUjD7dXkp2+/nc7ZFs7eX4utO/af7//3Dv/7pb//857/+6x/+/qe//uW/7n/5vyvY3/70h3/58x/P//vv//2Xf334r3////8z/su//O1Pf/7zn/7jn//zb3/91z/+23//7Y8r0vpvv93O//k/tj57fR8MGP/0D7+V9f9nrf9wf0p2u///6v+9r/9uc/339Qe939P6/j99/YP/hd5vbO7/I//0v2uR/y8="
582
+ "debug_symbols": "tb3druy6cWj9Lvs6F80ii0XmVQ6CwEmcwIBhB47zAR+CvPtpllQ1es11mkuzu/eN5/Dac9bQX5UkqiT+z2//9sd/+e//+Oc//eXf//pfv/3j//mf3/7lb3/685//9B///Oe//usf/v6nv/7l/q//89tt/Y/V3/6x/sNv1n77R73/0ONHP37Y8WMcP6b/GLfjRzl+yPGjHj+OKOOIMo4o44gyjijjiDKPKPOIMo8o84gyjyjziDKPKPOIMo8o84hSbrfzZzl/yvmznj/b+VPPn/38aefPcf4845UzXjnjlTNeOeOVM14545UzXjnjlTNeOePJGU/OeHLGkzOenPHkjCdnPDnjyRlPznj1jFfPePWMV8949YxXz3j1Hs/WTzt/jvPnPH62e7xyW1ACJOAestQF95jFf1kDeoAFjIB5gq7IY0EJkIAa0AI0oAdYwAiYJ/SI3CNyX5HnghrQAlbktSV6D7CAe2RxmCfYLaAESEANaAEa0AMsICJbRB4ReaWNrO2zEueAGtACNKAHWMAImCesRDogIs+IPCPyjMgzIs+IPCPyjMjzjCy3W0AJkIAa0AI0oAesyHPBCJgnrCw7oARIQA1oARrQAyJyicglIktElogsEVkiskRkicgSkSUiS0SWiFwjco3INSLXiFwjco3INSLXiFwjco3ILSK3iNwicovILSK3iNwicovILSK3iKwRWSOyRmSNyBqRNSJrRNaIrBFZI3KPyD0i94jcI3KPyD0i94i8crDKghEwT1g5eEAJkIAa0AI0oAdEZIvIFpFXDlZdUAIk4B653Ra0AA3oARYwAuYJKwcPKAESEJFnRJ4ReZ51Q6YFjICzbtTbLaAESEANaAEa0AMsYASsZb5X9bpy8IASIAE1oAVoQA+wgBEQkSUiS0SWiLxysLUFLUADeoAFjIB5wsrBA0qABETkGpFrRF452GyBBYyAdVotd1g5eEAJkIAa0AI0oAdYwAiIyBqRNSJrRNaIrBFZI7JGZI3IGpE1IveI3CNyj8g9IveI3CNyj8g9IveI3COyRWSLyBaRLSJbRLaIbBHZIrJFZIvIIyKPiDwi8ojIIyKPiDwi8ojIIyKPiDwj8ozIMyLPiDwj8ozIMyLPiDwj8jwjt9stoARIQA1oARrQAyxgBETkEpFLRC4RuUTkEpFLRC4RuUTkEpFLRJaILBFZIrJEZInIEpElIktElogsEblG5BqRa0SuEblG5BqRa0SuEblG5MjBFjnYIgdb5GDzHKwLWoAG9AALGAHzBM9BhxIgARFZI7JGZI3IGpE1ImtE7hG5R+QekXtE7hG5R+QekXtE7hG5R2SLyBaRLSJbRLaIbBHZIrJFZIvIFpFHRB4ReUTkEZFHRB4ReUTkEZFHRB4ReUbkGZFnRJ4ReUbkGZFnRJ4ReUbkeUbW2y2gBEhADWgBGtADLGAEROQSkUtELhG5ROQSkUtELhG5ROQSkUtElogsEVkiskRkicgSkSUiS0SWiCwRuUbkGpFrRK4RuUbkGpFrRK4RuUbkGpFbRG4RuUXkyEGNHNTIQY0c1MhBjRzUyEGNHNTIQY0c1MhBjRzUyEGNHNTIQY0c1MhBjRzUyEGNHNTIQY0c1MhBjRzUyEGNHNTIQfUcHAtKgATUgBagAT3AAkbAPGFE5BGRR0QeEXlE5BGRR0QeEXlE5BGRZ0SeEXlG5BmRZ0ReOdhvC3qABYyAeUBfOXhACZCAGtACNKAHWMCKXBfME1YOHlACJKAGtAAN6AEWEJFLRJaILBFZIrJEZInIEpElIktElogsEblG5BqRa0SuEblG5BqRa0SuEblG5BqRW0RuEblF5BaRW0RuEblF5BaRW0RuEVkjskZkjcgakTUia0TWiKwRWSOyRuQekXtE7hG5R+QekXtE7hG5R+QekXtEtohsEdkiskVki8gWkS0iW0S2iGwReUTkEZFHRB4ReUTkEZFHRB4ReUTkEZFnRJ4ReUbkGZFnRJ4ReUbkGZFnRJ5nZLvdAkqABNSAFqABPcACRkBEjhy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixw0z8G+YATMEzwHHUqABNSAFqABPSAij4g8IrLnYFlQAiSgBrQADegBFjAC5gHjdgsoARJQA1qABvQACxgBEblE5BKRS0QuEblE5BKRS0QuEblE5BKRJSJLRJaILBFZIrJEZInIEpElIktErhG5RuQakWtErhG5RuQakWtErhG5RuQWkVtEbhG5ReQWkVtEbhG5ReQWkVtE1oisEVkjskZkjcgakTUia0TWiKwRuUfkHpF7RO4RuUfkHpF7RO4RuUfkHpEtIltEtohsEdkiskVki8gWkS0iW0QeEXlEZM9BW1ADWsCKPBf0AAsYAfMEz0GHEiABNaAFROQZkWdEnhF5npHn7RZQAiSgBrQADegBFjACInKJyCUil4hcInKJyCUil4hcInKJyCUirxy024ISIAH3yFYWtAANWE/w6gILGAHrIV5bj01vASVAAmpAC9CAHmABIyAit4jcInKLyC0it4jcInKLyC0it4jcIrJGZI3IGpE1ImtE1oisEVkjskZkjcg9IveI3CNyj8g9IveI3CNyj8g9IveIbBHZIrJFZIvIFpEtIltEtohsEdki8ojIIyKPiDwi8ojIIyKPiDwi8spB6wvmCSsHD1iR13G4cvCAGtACNKAHWMAImAfcn73fkkqSJNWklqRJPcmSRlI6SjpKOko6SjpKOko6SjpKOko6SjokHZIOSYekQ9Ih6ZB0SDokHZKOmo6ajpqOmo6ajpqOmo6ajpqOmo6WjpaOlo6WjpaOlo6WjpaOlo6WDk2HpkPToenQdGg6NB2aDk2HpqOno6ejp6Ono6ejp6Ono6ejp6Onw9Jh6bB0WDosHZYOS4elw9Jh6RjpGOkY6RjpGOkY6RjpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjpyDwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPPdeoSGLVp6fVJIkqSa1JE3qSZY0ktJh6bB0WDosHZYOS4elw9Jh6bB0jHSMdIx0jHSsPB/VSZN6kiWNpBm08vykkiRJNSkdMx0zHTMdMx0zHN5UdFJJkqSa1JI0qSdZ0khKR0lHSUdJR0lHSUdJR0lHSUdJR0mHpEPSIemQdEg6JB2SDkmHpEPSUdNR01HTUdNR01HTUdNR01HTUdPR0tHS0dLR0tHS0dLR0tHS0dLR0qHp0HRoOjQdmg5Nh6ZD06Hp8Dw/eo1vSSVpOYZTTWpJmtSTLGkkzSDP84NKUjosHZYOS4elw9Jh6bB0jHSMdIx0jHSMdIx0jHSMdIx0jHTMdMx0zHTMdMx0zHTMdMx0zHTMcHjj0kklSZJqUkvSpJ5kSSMpHSUdJR0lHSUdJR0lHSUdJR0lHSUdkg5Jh6RD0iHpkHRIOiQdkg5JR01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS4emQ9Oh6dB0aDo0HZoOTYemQ9PR09HTkXneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88187xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85557r1bsyxaeX5SSZKkmtSSNKknWdJISoelw9Jh6bB0WDosHZYOS4elw9Ix0jHSsfJ8Nqea1JKWozv1JEsaSTNo5flJJUmSalJLSsdMx0zHTMcMhzd5nVSSJKkmtSRN6kmWNJLSUdJR0lHSUdJR0lHSUdJR0lHSUdIh6ZB0SDokHZIOSYekQ9Ih6ZB01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS0dGg6NB2aDk2HpkPToenQdGg6NB09HT0dPR09HT0dPR09HT0dPR09HZYOS4elw9Jh6bB0eJ6bkyWNpBnkeX5QSZKkmtSSNCkdIx0jHSMdMx0zHTMdMx0zHTMdMx0zHTMdMxzeSHZSSZKkmtSSNKknWdJISkdJR0lHSUdJR0lHSUdJR0lHSUdJh6RD0iHpkHRIOiQdkg5Jh6RD0lHTUdNR01HTUdNR01HT4Xk+nUbSDDpehhfHAgpYwQYq2EEDBzgTFZtiU2yKTbEpNsWm2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbWKbafNGt8ACCljBBirYQQMHiK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKjZqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasnMWiK3rCVyy1oit6wlcstaIresJXLLWiK3rCVyy1oit6wlcrthK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYFJtiU2yKTbEpNsWm2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbWKjlhRqSaGWFGpJoZYUakmhlhRqSaGWFGpJoZYUakk5aok6CljBBirYQQMHOBOPWnIgtqOW3Bwr2EAFO2jgAGfiUUsOLCC2iq1iq9gqtoqtYqvYGraGrWFr2Bq2hq1ha9gatoZNsSk2xabYFJtiU2yKTbEpto6tY+vYOraOrWPr2Dq2jq1jM2yGzbAZNsN21BJz7KCBA5yJRy05sIACVrCB2Aa2gc1rSfEl81pyoNeSEwsoYAUbqGAHDcQ20+Z9h4FuU0cBK7hsUh0V7KCBA5yJXktOLKCAFcRWsBVsXkukOw5wJnot8e+heTNioIAVbKCCHTRwgDOxYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYOraOrWMzbIbNsBk2w2bYDJthM2yGbWAb2Aa2gW1gG9gGtoFtYBvYJraJbWKb2Ca2iW1im9gmtpk2720MLKCAFWyggh00cIDYCraCrWAr2LyW1OqoYE/0ZFCn5a1toR/1tTsWUMAKNlDBDho4wJnYsXVsHVvH1rF1bB1bx9axdWyGzbAZNsNm2AybYTNshs2wDWwD28A2sA1sA9vANrANbAPbxDaxTWwT28Q2sU1sE9vENtPmnX6BBRTQbdOxgQp20MABLpt/t9B7/gILKGAFG6hgBw0cIDbB5mfQVhwFdJs4NlDBDho4wJnoZ9CmjgUU0G3m2EAFPY19ef0MeuIAZ6KfQU8s4LKpr5ufQU9soIIdNHCAM9FryYkFxKbYvJaobxKvJSd20LfZWOhVY30wSbz573757ugRjl9QsIMGDnAmen1QP/q8PpwoYAUbqGAHDRzgTBzYBjavD913i9eHE5et+xp7fTixgwYOcCZ6fejNsYACVrCBCnbQwAHOQO8QDCyg29Sxgm7rjgp20MBlW2+wi7cKnuj14cQCCljBZVsvuos3DAZ20MABzkSvDycWUMAKYhNsXh9MHA0coG/JdUx6/2BgATvoEdY+9j7AYr6hPKXNHCvYQAU7uIINX0hP6RNn4vGV7QMLKOCyDV+L42vbByrYQQMHOBOPL28fWEABsXVsnv7DN4mn/4kGus2PSU//Az39T3Sbb0lP/+Fbx9N/TMcGKthBA0eiJ/r0hfREP7GCDVSwJ3oWTk8cz8ITl2I1NYi36t3vex0FrGADFeyJnhfrCbV4h12ggQOciZ4XJxZQwAo2EJtgE2yCTbBVbP45bB/s8E66+z29oy2sjgOcif4Z7FtzLKCAFWyggh537QBvlruPCjh6BF8y/+j1iQ30CL6p/dPXJxo4wJnon8A+cdl8AMP75gKXrfjK+6ewT1RwxS3rMPKmOCm+HfyT8yf68pqjR/DV9A/Pn9hBAz2ubwf/AP2B/gn6E93mW8c/Q39iBbENbAPbwOafpD9x5r6Y7M3J3pzszcnenOxN/xS270Lvgjt2obfBHTvL++ACK9hiX3grXGAHDRxg7k3vhzv2mzfEBUrsLG+JC2ygxS70brdjv3m7W6DELvSGt2NDecdboIIdtNhZ3vUWmHvT+96OneWNb4ECYqvYKraKrebe9K4yKb5JPBlONHAtjvjW8WQ40JPhxAIKWMEGKtjBZRNfHE+RE2eiz9NwYgEFdJtvKE+cExXsoIEDnImeOCcWUEBsA5snjg8CetNZoIFu80PDE+dAT5wT3eZb3RPnxAo20G2eDP4V+epb0r8j7+jNZoEFXHHPr+OvuD4S4Q1n4uMP3nEW2EED3eYf0fd0Or+wfwML6DZzdMV0XIrjg/o+xYPfiHnLmbTjzwY4Ez3fTiyggBVcttYdFVw2v+Xy5rPAAc5Ez7cTC7hsfsPkLWiBDVSwgwYOcCb6ufDEAmJr2Pxc6Pdk3okW2EG3+Y71M+SJM9GnifCbNu9Eu18hOQpYwQYq2EG3DccBzkQvFScWUMAKNlDBDmLr2Do2w2bYDJth81LhN3jeiRbYQT8mfTW9VJw4E71UnFhAAZet+37zUnGigh00cIAz0YtC933sReHEBirYQQMHOAO95yywgAJWsIEKdtDAAWIr2Aq2gq1gK9gKtoKtYCvYCjbBJtgEm2ATbIJNsAk2wSbYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gUm2JTbIpNsSk2xabYFJti69g6to6tY+vYOraOrWPr2Do2w2bYDJthM2yGzbAZNsNm2Aa2gW1gG9gGtoFtYBvYBraBbWKb2Kglk1oyqSWTWjKpJZNaMqklM2tJvWUtqbesJfWWtaTespbUW9aSestaUm9HLWmOBo7Eo4AUxwIKWMEGKthBAwc4EwWbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hq1ha9gatoatYVNsik2xKTbFptgUm2JTbIqtY+vYOraOrWPr2Dq2jq1j69gMm2EzbIbNsBk2w2bYDJthG9gGtoFtYBvYBraBbWAb2Aa2iW1im9gmtoltYpvYJraJbaat3G5gAQWsYAMV7KCBA8RGLSnUkkItKdSSQi0p1JJy1BJzNHCAbpsLj1pyYAHdNhwr2EAFO2jgsq2h6+qNZid6LTlx2cyX12vJiRVsoIIdXLb1ydHqjWaBM9FrialjAQWsoMftjh7BN5TXhxML6BF8Q3l9OLGBa3nHzbGDBg5w2YavkNeHEwsooMf1zec5v4au6zF35IGe8yf68rrCc/7ECjZQwQ4a6DbfqJ7zB3rOn1hAASvYQAU7aCC2gW1im9gmtonNc374jvXsHr5jPbtPnIHHHJMnFlDACjZQwQ4aOEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEW8VWsVVsFVvFVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA2bYlNsik2xKTbFptgUm2JTbB1bx9axdWwdW8fWsXVsHVvHZtgMm2EzbIbNsBk2w2bYDNvANrANbAPbwDawDWwD28A2sE1sE9vENrFNbBPbxEYtEWqJUEsqtaRSSyq1pFJLKrXkmDVzPVCsx7yZJxo4wJl41JIDCyhgBRu4bPPm2EED3TYcZ+JRSw4soIAVbKCCHTQQm2A75roVxwIKuGzraV+tx5y3Byp4t9Wbr9Axz63/2TGvbXGsYFu/2xwV7KCBA5yJqz7U9dSoepNcoIAVbKCCHTRwgDOxY+vYutv8iOoVbKDb/CDoHTTQbb4DfDbcA30+3BML6Dbf1D4rbvEt6bPgFt/UPg/uiQOciT4bbvHN5/PhFl8LnxG3+OIMj+u2VQkCFeyg23xxxgBn4ryByya+vCv97wex41KsnurqPXDVJ6v1HrgqrljpHzjAGeg9cIEFFNBt07GBPQ7PdsxYfeAA8/ht5QYWUMAKNlBBbAVbwVawCbaV8/dUdBSwgmuF6vG7CnbQwAHOxJXzgQUUsILYKjbP+fWgp3rjW+AAZ2K7gQV0W3esYAMV7KCBA5yJXh9OLCA2xeb1YT2jqt74FthBt/mx4/VhPbmq3g53oteH5rvF68OJy9Z8Q3l9OLGBCnbQwAHORK8PJxYQm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJbWKb2Ca2iW1im2nzJrnAAgpYwQYq2EED3VYdZ2K5gQWUOIVqqWADFeyggQOciUctOdDXojnmWdob3+p6WFq98S1wJnp9OLGAAlbQt0N3ZPs21rixxp7zJ1bQt685KthBAwcKbMreVPamsjeVvansTc/5Yxk85080kL155Lwvw5HzBxYQGzmv5LyS80rOKzmv5Lx2jh1jSxpb0tiSR877Mhhb0tiS5LyS80rOKzmv5LyS80rO62C/HTl/IFtysCUH++3I+QPZkuS8kvNKzis5r+S8kvNKzis5r5P9NnNL9tsNLKCAbhuODXTbdOyggQNctvUkvvrH9QILKGAFG6hgB5dNfSFXzgd6zjv6lYJnobf63bPDsYEKdjD3UJcB5h7q9QYWUMAK5h7y7+sFdtDAAebR19sNLKCAvhbq2EEDfev4dvD6oL5kXh9OLKCAFWyggh20xGP0wMXH6MGBAlawgQp20MABzkTDZtgMm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJjTHHPrFNbBPbxDbTdrQbnlhAASvYQAU7aOAAsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIpNsSk2xabYFJtiU2yKTbFRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMaom3XdbVE1m97TKwgwYOcCb6HcqJBRSwgtgMm2EzbIbNsA1sA9vANrAdtUQc3TYdO2jgAGei36GcWMBl8xYAb8YMbOCyeUuTN2MGGrhsq9G0ejPmgd6MGVhA32/VsYINVLCDBg4wn2EfzZgnFtCfVndHX4vjXzto4ABnotzAAvo2U8cKNtBtLvY7lBMNdFtznIl+h3JiAf1JvDlWsIEKdtDAAWafwtF2eWIBfS0OVLCDvhbDcYAz0e9QvCXEGywD1zbzxgBvsAxs4LJ5k4Y3WAYaOMCZ6CMYJxbQbeJYwQYq2EED/fUV391+VeFPS45WynJgBRuoYAcNHKC/FuPHw/GS04EFFNBfGjqwgQp20MABzsTjJacDC8ien+z5yZ6f7PnJnp+x59vtFnu+3W4FjD3fvGkysIGx55s3TQYaOMCZWG5gAWPPN++fDGyggh00MPZ8Ozol155vR6dkObCCDVSwgwYOMPZ8u+ULUe2WL0S1W74Q1Y5OyduBDVSwgwYOcCa2G1hA3zq+xp7zJ3bQQN8XzXEmes6fWEB/icx3y/EK44ENVLCDBg5wJh6vMB7o+9iPviO7D1SwgwYO0NfCj1Q/+59YQAEr2EAFO2jgALENbH72H54MfvY/sYLLNnyN/ex/YgeXbfge8rP/8B3gZ//h+9jP/icWUMAKNtBt5thBAwc4A737MbCAAlawgQp20MABYivYCjavBOt96ebdj4ENXLY15ti8+zHQwAHORL8mOHHZ1pQMzbsfAyvYQAU7aOAAZ6JfE5yIrWLzUcv1+nbz7sdABd3mm2TVh7YenDTvfgycias+BBZQwAo2UMG+sDga6DZxnIl6AwvoNl90rWADFeyggQOcid1t3bGAbvOt0yvYQAU76IrhOBPtBhZQwKUovklWAQlUsIMGDnDZim+oVUACCyhgBRuoYAcNHCC2iW26zTNgClhBt/nhORXsoNt8B0y3+UadblsbyhssAwsoYAUb6Be9TiNpBvldwkElSYLEg0/HCjZwna3UqSdZ0kiaQcfbl04r4npNuHm/YluNJM37Fevx30fSDDoeITiVJEmqSS1Jk1wijgaubb26VZq3KZ7oaXiiL6ZH8NQ6Ft5T60RvVHDyAGsXeudhYAEFrGCLTdJzc/bcnD03Z8/N2XNzeiIdG9FT5tiInjLHLvSUOdFX1Q8KT5kDPWXE96anjK+pZ8xBNaklaVJPWhGrL4gnQPUF8QRwuR//B2nS+mvfBH7wHzSS5kneDnhSSXKJOFZwWXxneDNgYAd9MdcSe4Nf88PKG/wCV4SDNDaM9/cFGjhAD+sLts6FgQWU2ODe3xfYQGyCTbAJNsFWsVVsFVvFVrFVbBVbxVax+bnwwKPXxykPam8FDKxgAzXRz1PVF8GT6UQDvefBaQb5te1BJUmSalJL0qSeZEnp6OmwdFg6LB1+jlotQc2/XheooOeBH4KecCeujViPCDPRE+7EAgpYwQa6zY/MI+sONHDZmu8dT8YD/Rx1oqe37wdP0RMr6L10TprUkyxpJM2TvDuveVr7t+jaerrevCWvrYfnzVvyAgc4E9epqK0X4Zu35AUKWMEGejOm05KpL41n6YkDXLL1aLx5R15gAV3WHSvoMl81z9ITO+jXWU4jaQZ5ih5UkiTJI/rG8pxT3xaec91/wa8/TyyggGtJu6+gJ92JCnbQQD84nWaQn/YO8vx2kqSa1JI0qSe55AgzwJnop8ETfTF94/ul5Il+LeQ0kmaQX1J23zV+SXmigL5FfJt6up7oKt+8nq4nLpUPunifXLNDsWQ+9uF9cm293NS8Ty5QwAo2UMEOGug2X15PV/NDydPV78K9T675zbB3xDW/7fWOuMAOGjjAGegdcYEerDgq2EEDBzgTPVNP9GDi6H9WHQc4Ez3nTryvmx4kSTWpJWlST7KkkTSDVradlI6ajpqOmo6ajpqOmo6ajpqOlo6WjpaOlo6WjpaOlo6WjpVsXsy8qe2kmtSSNKknWdJImkHr1HlSOno6ejp6Ono6ejp6Ono6ejosHZYOS4elw9Jh6bB0WDo8MaYfqp4YPurizWRt+i/4GWt1Uzfv6fIzTT+OaidNukfyGumdWwetY/ek9Xs+aOG9WIEG+oKo41pbj7kO4pNKkiTVpJakST3JkkZSOmo6/OptfX2ueadV8zEL77Ty6uWNVifNoHV0nlSSJKkmtSRN6knpaOlo6dB0aDo0HZoOTYefFKavlN8bTf9XPyp9lMT7qgIr2EAFO2jgAGeiH54nYjNshs0PUR+e8b6qwA4aOMCZOG5gAQWsILaBbWAb2FZS+Gizt1UdtFLipJIkSTXJI3q+TF/S9a/H1KTNqSRJ0v2v5/F7LUmTepIljaDiK66OvordUcEO+iqa4wBnoufbiQUUsIINVLCD2ASbJ956A6d5w1NgAb2aFccKej0TRy9ovvJ+DvFHGt7wFDhAL5wu9vPIiV46h6PbXOynEr+7t2MGj+N3FeyggQOciX5u8fEBb2JSH//wJib14Q1vYgoc4FpeH2zwJqbAAgpYQY/r+9iT0YcgvDFJ/RbUG5MCBaxgAxXsoIEDdJtvPk/GEwvoZ2rfqJ6MJzZQQT9b+zbzZDxxgGv7Hqt5fB3/wALKQt8kx9fxD2yggh00cO3NY/Pl1/HbyK/jN29MUr8L88akwAo20BKLX8VUxwL64xonSxpBKwVXD0TzNqGTalJL0qSeZEkjaQatzDvJF6Y7ClhB3z/DsYMG+v6ZjjPxuGo7cK2Gr66fGA+qSS1Jk3qSJY2kGeQnxoPSoenQdGg6NB2aDk2HpkPT0dPR09HT0dPR09HT0dPhJ06/B/XGn8CZ6Lnqd3Te+BMo4NolPvrnjT+Ba+/4QIA3/gQaOMCZ6Lnql23e+BPoNt9nnqvqS+a56heL3vgT2MFl83t+b/wJnIkrV/1e0ft+TpKkmtSSNMkjrm3obTzqQwfexqOrS715G09gAxX0JTVHAwc4Ez1LT1xneZetQRG/M/QvqqkeuFyeQt7aE7hcvse9tUe7L4Gfa09cru4CP9f65Zq39gTe4/pd24x5fdvMma7azJmu2syZrpq35agd2EAFO2jgAGeiZ65fy3hbTqCALRbMp+s+qCfZMS1w8+6ck2aQevDuWEABfVWGYwN9VTy+n0JPNNBPwuI4E3OSvMaEm40JNxsTbjYm3GxMuNmYcLMx4WZjws3GhJuNCTcbE242JtxsTLjZmHCzMeFmY8LNxoSbjQk3GxNuNibcbEy42bxjR4+D1VP4xAb6/ZHvaE/hEw30WyQ/mj2FD5w3sIB+K+bi6fdifnwck+T54X5MkndgB93mueXpfeI8Ub2PJ7CAAlawgQp20MABYjsmyTuwgAJWsIEKdtDAAc5EwSbYjptadaxgAxXsoIEDnInHze2BBXRbd6xgAy3Ry8H6vIF6x46u1gX1b5sFVrCBa3nXuIJ6H0+ggQOciV4fTiyggBVsIDbFptgUm2Lr2PwSe414qH/bLNBt4thABdeeL0cEAwc4E70+nFhAj1sdfXn9ePDT9vSd5aftA/20fWIBfXnNsYINVLCDfqT6ah4TYx44E/20ffOF9PP2iQJWsIEKruufM5iBA5yB3rETWEABK9hABTtooNvEcSYeA1MHuq05uk0dK+i27qig28zRwAHORLmBBRSwgg1UEJtgE2yCrWKr2Cq2iq1iq9gqtoqtYqvYGraGrWFr2Bq2hq1ha9gatoZNsSk2xabYFJtiU2yKza/8V4uMesfOiX7tf2IB15lh3b/pMTHmiQ1UsIMGDnAmHtN6HehrMR39lu7maKDf1PkBbjNx3MACCljBBnpcT4bJ9p2s8ZHzB1awgX4H6ovuOX+igQPMvSm3G1hAASvYQAV7LIMcOX/gAHNvevfNsQzefhMoILaCrWAj54WcF3JeyHmRPHZECihgBVsugyjYQWzkvJDzQs4LOS/kvJDzQs7LkfO+DJUtWdmSlS1Z2ZKe86uRSr0zKNC3pDpWsIEK+rodwQwc4Ez0nD+xgAJW0G3TUcE8wL1/qK9BPvUGohM90U8sIIeG3+efyM7q7KzOzuoGDpCdZewsY2cZO8vYWcbOMg5E40A0Dg1P/zXmqN5cFCjgiiu+HTz9xZdsXR4EdtDAAc5ELxUnFlBAj+uHhheFEw0coMddh4b3HwUWUMAal0negRSoYAcNHOBM9Dv+E/NS2PuSAhX0tTBHA30tpuNM9PQ/0ceNbo4CVtCHjoqjgh00cIAz0dP/xAIKWEFsK9HXPZt6B9JJM2hlud8veP/RSZLkEX3DHUN4Byroy3/8roEDXKaVtf4dspNKkiTVpJakST3JkkZSOno6ejp6Ono6ejp6Ono6ejp6Ono6LB2WDkuHpcPS4Tld/ejynD7RQN9ex+/ORM/06keXZ/qJAq6903wne6afuGzNjznP9BMNXLbme98z/UDP9DUKqd7VFCig23yn+kXBiW7zHPH8P9Ftvhae/yfOQP8emd99+efITpKkmtSSNMkjri3gXU19jWCqdzV19V/wU/yJDVRwLekab1Rvawoc4Ez0HD/Rbd1RwAo2UMEOus0cBzgTPcdPLKCAFWyggh3EVrH5KV59L/gp/sQC+qitb1TP/+7bzPP/RB+4FccOLlv3DeX5f+JM9FP8iQUUsIINVLCD2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBjavDKsdTL2BKtDAAfqQxkrxYzbOEwsoYAUbqGAHLdAbqHo/0Je3OzbQl9ccO2jgAGei3wKcWECPOxxz+3pb1bHG3lZ1ouf8iQX07TsdK9hABXNvenNV4ABzb3p/VWABBaxgy8WpCnbQQNbNc36N/Kt3WgUu2+rOU++1CqxgA5fNPJjn/IkGDnAmes6fWEAB3eYHgef8iT13lie6+fHgiX7iTPREP7HkDujsrM7O6uyszs46Ev1AA9lZJLqS6EqiK4muJLqS6EqiK4nu3xHr5oenp/SJBfQN5dvBU9p8yTylT1SwgwYOcCb6yf7EAq64ww8NP62f2EEDV9zhh4af1h39i2GBBfTT182xgg1UsIMGDnAmeqKfWI8HeeqfBjtJk+5B/QjxXrSTRpIvv/+iJ/6JBVzPBtWpJrUk31QHdtDAcTxaVO9HO2jl/EklSZJqUkvSpJ5kSemo6WjpaOlo6WjpaOlo6WjpaOlo6Wjp0HRoOjy7/WbqaFs7sYH+3Pb43Q76FjPHAc5EH8j3xDma3E5cA+N+BXI0uZ3YQD2fxurR5Hai24bjAGeiX+Z7AL/MP0iSalJL0iSP6GvlyexPH7xlrfslrLesBTZQQe8a9BX0ZD5xgDPRk/lEt/lB61fuJ1ZwXU/7TlgZflJPsqSRNE862tsOKkmSVJNakib1JEsaSeko6SjpKOnwC3t/HuJtcIEKdtDAAc5Ez/UTfbMNRwEr6DZfBk/3Ezvotuk4wJnoCe8PTLzhLf51NQR5AH8176CVXP6owrvZAgsoYAUbuNLYH2t4N1uggQOciZ7LJxZQwAo2EJtiU7f5CukAZ2J3mzkWUEC3+ebvDVSwg27zTbqy2XzI2/vhzEcEvR8usIINXHF9iNP74cwvUb0fzoovjnlct63T9onrtB1YQLf54owKNlDBZfORO2+CMx+58yY48xE2b4IzHxTzJjgTV3hX6okVbKCCHTTQbb4McwZ659txcHrnW2AFG6hgB5fCh578k1yBM7F4k604FlDACjZQwQ4aOMCZKNgEm5/SfYTKm+0CG6hgBw10W3eciZ7mJxZQwAo2UMEOGoitYvP6sNoI1fvvAgV0m+8Wrw8+AOQ9eIHL5uNG3oUXuGw+6uN9eCd6fTixgAJWsIEKdtBAbIqtY+vYOraOrWPr2Dq2jq1j69gMm2EzbIbNsBk2w2bYDJthG9gGtoFtYBvYBraBbWAb2Aa2iW1im9gmNi8gPiDo7XmBHTTQu2gPnIHz6KI9sIACVrCBCnbQ12JV5aNBz0+g87jYV8cGKthBAwc4E70SrJc11T+odWwH/6DWsZreohc4wJnoOe/jnt65FyhgBXNveudeYAcNHGDuTe/cCyy5DJ7zJ1awgZrLcOT8gQZiI+cnOT/J+UnOT3J+kvNT89iZypZUtqSyJY+c92XobMnOliTnJzk/yflJzk9yfpLzk5yfnf125PyBbEljSxr77cj5A9mS5Pwk5yc5P8n5Sc5Pcn6S85Ocn4P9NtiSgy052JKDLXnk/Dq5zyPnD3TbdBSwgg1cNvVl8Jw/0cABzhO7t/IFFlBAv2+ujg30EUJzHGcWdm/as9UB3L1pL7CAAsYe6rfSQAU7aOAAZ6LEHuretBcoYAUbqGAHDRyJXh9Wx3L39rzACvrW8e3g9UF9ybw+nGjgAGei14cTCyhgBT3ucDRwgDPRK8G6U+/etBcoYAXbedPbvWkvsIMGDnAm+qDeiQUUcG2dfmAHDRzgWov16KJ7e15gAQX07m8/uLxp70QFO2jgAGeit/KduLZO94PAs/tEBTto4Ej0PO6eOJ6x3eN6xnY/djxjTzTQI/gR5Rnr6I14tkZCujfiBQroyzscG6hgBw0c4Ez0PF6jqt0b8QIFrGADFfS3UqrjjO3gLXeBBVxx1wh395a7wAYq2MG1Fmuwu3vLXeBM9PP8ictmbvM8PrGCblNHBTvoNt8XnscnzkTP4/W+fPeWOzPfLZ7H5hvV89h86/h5/kQFV9zh6+Z5fKDn8YkFXHGHr5ufu/3g8ja6QANHop+wT1yJI77oPvh2ooL+mpmvhb8oc+IAZ+LxUtuBBRSwgg1cCzl8m/lJ+MSZ6CfhE33lfWf5SfjECjbQ1+L4sw4aOMCZ6P30JxZQwAquuDc/NDx5h29UT94TZ6B31AX6WqijgBVsoIIdNHCtxRqd6d5Rd6I3z5xYQAEr2EAFO2iJnrzjwAIKWEFfC3NUsIMG+lpUx5l4vIZ6YAEFrGADFfR9MRxnoqfpiQUUsII+jOWkST3JkkbSDPK0LU4lSZJqUkvSJF/yVRO88c38DOqNb4EVbOeb5N0b3wI7aOAAZ6J/S+TEAgpYQWyGzbAZNsNm2Aa2gc1zd/rK+yn2xA4a6I81xHEm+gX0iQUUsIINVNBtfuh4Rp84wBno7XC2Rui7t8MFCljBFjvL2+ECO2jgAGein45PLKCAHlcdO2igx+2OHndlnrfDBRZQQF+L4dhABTu4mrBWd3/3drjhSejtcCeujA4soIAVbKCCHTQQm7fJebU6+uROLKCAFWyggh000G3TcdmKr7H3yp1YQAEr2EAFO2jgALF511zxg8vb5k4UsIINVLCDBg7QbX4Q+IO1EwsoYAUbqGAHl038oF31IXAmjhtYQAEr2EB/ru7UkyxpJM2g45G6k0f0LbtqwPATvLfEBY7zuyPdW+IO9Ja4wAIKWMEGKthB3wLrIPaPgI3VgNu9XS5QwAo2UMEO+lqo4wBnotxAt3VHASvYQAU7aKDbfN28BqxnGN3b5QILKGAFG6ixL7xdLtDAAc5ErwEnFlDACvbzg1z9/ELYgQP0Ftx1sHljXOCKWz2CZ/uJFVxr4TdC3hgX2EFv9/Ud4Nl+4kz0bD+xgG7zrePZfmIDFeyggQOciZ7X6wlEP78W5oeR52rzNfZcPdBz9cS1ZOthRPe2tsC1ZD6S4m1tgQquJWu+HVa2Bg5wJs4bWEAB3ebLOxuoYAcNHOCMNfaZMscace7e7BbYQAU9bnc0cIAz8fjE33QsoIAVbKCCHbREz2MfF/MWuEABK+hrMRwV7KCBKwNOnIn+Qb8TCyhgBRuooG8dX3TP2AM9Y0/09vabo4AVXGux+oO7N7sFrrXwQUxvdgsc4LL5eKY3uwUWUMAKNlBBt/kB43l84gBnoufxiQVc28xT2jvc/Pux3Tvc/EOm3TvcAgc4E/36/cQCCrj2hRdS73ALVLCDbvMteXy688CZeHy688ACCljBBiq44vpZ2zvchg+keodbYAEFrGADFfR94Wvs2X3iAGeg9735h4K7970FCljBBirYQQNHop+7fdjW58QMrKCvxXBUsIO+FtNxgGstfJzUu98CC7hsPjjq7W+BDVSwgwYO0G0rcbwFLrCAAlawgb7N1DH3vHe9HfuttxtYQAEr2EAFc8/3ZuAA2fPKnlf2vLLnlT2v7Hllzyt7Xtnzyp736+F5YAPX8vrdo39NLXDmL/jZ9MQCSuDRdeVXV0fb1YkFFLCCDVSwgwYOEJtgE2yCTbAJNsEm2ASbYBNsFVvFVj3ucFSwJ/qePzaU7/kTPe5KHG+XCiyggBVsoIIdNHAk9txv3hgVWMEGrrhe7b0xKnDFrccvrLh+EemfDztxVfvAAgpYwQYq2EEDsRm2gW1gG9gGtoFtYBvYBraBbWCb2Ca2iW1im9gmNm+D9Otqb4ya66W37o1Rx2HkjVGBDfR9rI4dNHCAM/HIwgPddqCAvryu8Cw8UUFf3nU68Gan6dfg3uwU6Mvra+GZ5YeGNzsFdtBAjzsdZ6Jn1omZAd7sFFhBbBVbxVax1ZHonxfyWwLvRDrRU+/EJfa7A+9ECqzgEvvdgXciBS6xX+Z7J1LgAN3mG6rfwAIKWMEGKug234WekCcOcCZ6Qp5YQHbhkXq+kEfq+fY9Uu9AdpaxswY760i9AwVkZ40GKthBy2Q4Uu/AmXik3oEkzhSwgg1UcEQR8+6iA7276Dg05i1T2ruLAivYQAU7aOAAs4D4l8ICsRVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2T1M/dmbNrT5rnlhn7aCBA8wTq3ciBRZQwAo2EFvD1rA1bA2bYlNsik2xKTbFptgUm2Yp9k6kE/sNLKCAFfQteaCCvi9ccZyEDxyJx+nWHFtk9zyy+0BfXt9DlsVx2gBn4iAvyO5Jds/jxHpgZvckuyfZPQe2gW1gm9iO7L6jedOMV2XzppnACnpxPH5XwQ56cRTHAXpxrAv9jHNiAaMUm7fSBDZQwQ4aOMAoxeatNIEFFLCCDYxdaN5K4/lm3krjO8C8lSawgAJWsIEKxs6yW1452i2vHO2mM7FHKTZvpQkUsIINVLCDBo5EvxfpB3bQwAHORL9DObGAAlawgdgGtoFtYBvYJraJbWKb2HxEoPt+8xGBEzto4ABnoDfYBBZQwAo2UMEOGjhAbAVbwVawFWwFW8FWsBVsBVvBJtgEm2ATbIJNsAk2wSbYBFvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2JTbIpNsSk2xabYFJtiU2wdW8fWsXVsHVvH1rF1bB1bx2bYDJthM2yGzbAZNsNm2AzbwDawDWwD28A2sA1sA9vANrBNbBPbxDaxUUsKtaRQSwq1pFBLCrVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiRy1RB3d1h0NHOBMPGrJgQUUsIINVBDbUUum4wBn4lFLzLGAAi7b6uQy7zQKVHDZ1pvu5p1GgQOcgd5pFFhAASvYQAU7aOAAsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIpNsSk2xabYFJtiU2yKTbF1bB1bx9axdWwdW8fWsXVsHZthM2yGzbAZNsNm2AybYTNsA9vIPPamorEaO827igIHOBO9PpxYQAEr2EAFsU1sE9tMW7vdwAIKWMEGKthBAweIrWAr2Aq2gq1gK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hU2yKTbEpNsWm2BSbYlNsiq1j69g6to6tY+vYOraOrWPr2AybYTNshs2wGTbDZtgMm2E76oM6FlDACjZQwQ66bTgOcCYetaQ7FlDAHjXqaGk6cYAzUI9ScWABV7D1UokdjU4nNnAt+noHw45Gp/XugR2NTicOcCZ6qTixgAJWsIEKYvNSsZryzb8AFjgTvVScWEABK9hABfMkoVxKKJcS3v40pm8SLxUnFlDACjZQwQ4aOEBsDVvD1rA1bA1bw9awNWwNm48gH6vpI8gnzkQfQfZDzttzAgWsYAMV7KCBA5yB3p4TWECPYI7+u2u/eZ/N+a/+oGe9S2XeZzP9+PU+m0AFO2jgAGeiP+hZL1uZ99kECug2cXRbdXRbc3SbOlouuo+Zn8gK+ZB497g+JH6igh00cIAz0YfETyyggG7zRfchcb8R8+aawA4a6DZfNx8oP9AHyk8soIAVbKCCHsw3lI94+z2Zfx1q+s2Vfx1qdt9QPsx9ooEj0Z/YnOgR/NDwJzYn+hHl+9ifzXhF9C88TfNN4s9bTuyg70LfDke2HDgTj2zxuEe2HP8qYAUbqLnGxzeeDjRwBJ6fdBqOEit0ftTpwFzjo8Gn+Z/5Ab66QO1o8DnQD/ATCyigPzhx2/H4x+Mej38OHOBMPB7/HLjirsZN87kEAyvYQAU7aOCyrX5P868vnejH+okFFLCCDVTQFeI4wJnoB/iJBRSwgg1UsIPYFJtnwOouNf/kUmABBaxgAzW3emdndXZWZ2d5XqxOVDuagVZDnR3NQCfORH9meaIvjh8a/szyxAo2UMEOGjhAt/mR6jl0YgEFrGADFbRcN0+c1VVpR1/QiRIrdPQFndhABX3Rp6OBA/TKtQ7Poy/oxJIRCraCrWAr2PzsdKKBA8zd4h9MCsQmKI6LkebolwfHv/rlgTl20MABzsTjYuTAAgpYwQZiOy5GfAccFyMHDnAm+n3LiQUUsIINVBCbYlNsft+yXo0zbxwKLKCAFWyggh00cIDYDNvRMeqHkafezY8dT70DPfVOLKCAFWyggh000BWr7hwdQOs1Ojs6gE4UsIKu8CPK8+3EDho4wBl49AWdWEABK9hABTto4ACxeUKul7Xt6As60RXd0YOZo4ED9GDrgDnafk4soIAVbKCCHTRwJFYUfm5Z7xva0TCzZpqxo2HmRAU7aOCKu14ctKM1Zn0/z47WmBMr2EAFPW51NHCAM9Hb4U4soIBu893iJ58TFeyggQOciZ4XJ7rCd6wnw4kNVLCDBg5wJnpenFhAbBOb50XxI8rz4sQOGjjAeeK4Hd/ZF8cCClhB/zNb6OeW9S3D4Z/YCWyggt6LcnM0cIAz8ej8PrCAAlbQbdNRwQ4aOMCZ6If9iZLrdjSlFscOWq6QXw2eOBP9avBEX3TfZke324EV9A6r6qhgJwK2hq1hU2x+YXgiu0XZLcpuUXaLYjsydvzv//7Db3/+67/+4e9/+utf/vnvf/vjH3/7x//Jf/iv3/7x//zPb//5h7/98S9//+0f//Lff/7zP/z2//3hz//tv/Rf//mHv/jPv//hb/f/et89f/zLv91/3gP++5/+/MdF//sP/PXt+Z+W+wNfO//8zr1kiHKTH4KU50Ha6rPyEPeBvQxg7Ye/l+d/X9e9of/9fRidBfgSYLsWdZ24zrW4D7U/XYv2PMjMCKXm37d69c/vDy96rMX90p8lEPshRN+EqJrb4WEVRrsawOcp8wD38YQMcA/7Q4Cx2ZCtR4RyH4l7GmLudqbkduhWn4bYbUpvLj43RG9PN2XZHJMiJfan3B/TEkO/HNby7v7YroixIqM+X5FNDO25MdZnxTNG/7Ieutur69rz3KsqT0Nsjiz/CJJHuN9jPKTo9Qj+IvER4bHK2IurYc9XY7cxbX3B4tiYdpvPQsim1kgbeWDdx2ufhijvbgrZHJlyW980ORai3Ki57UuIulmINbh0LMS05wuxK5gisSXuyFFxf5R8fUVKtVwRLU9XZHNgyYhdWm9PA+wzbPY8KB5q/9c9Ot4versY92eVEeP+KPL5CaTetvVbMkUetoa0H68I6ubo1BF7pN+oevez6vUDo2keGPqQZV8PjLo5PKdPnX3GmBzh98fvP8bYLIf4Z5mPg+s+MMeOvb5Paossua+TPN8nm+OzWBaM+6nj4TxSfzy+ViI8jdF9rvsjyHqF8iHKj2ejOj5wdMx3j479uvjDz3NdZi1P16Xtzu/FqIBjPqzLlws+eff42B6lF0vgNsbFbGn6fra0/vbW2O3Z1bsVe3a12jzfs2O3Z/NQv+/k28Oe/XFJ2tydpGvcUtz/rDxsjx+3qW5qaetW87bm4Qj7GmO7HKq5LvcHq8+XY3OUrg+05VX9Q859jfGdPdOe7hltb1916O4a7n5r1HNB7rdMzxdke58zZm6ShzP2TzE2m6SVvPFtRfS1DXLt6kXnm1cv29OLD/Uey3Ab9vT00nfF1D9mdMS4D3c/j7E5TNeUwXEVJfNxv9brMbxP+IhxHx16HqO9f5Lr+u5Jbnd0rcnuY01KKa8d5VXydr7dnqdsH9u7x7y2vT+Sfy2Gf3H6vD7W+WKMQYzxPMa2dqyxt7ySKuV5FJN39+0+WyxqqdwHp1/LuCnE2GSc7bbHrJlyd+71ySl7vxxZjmt9GPD5aTk2x/rIQY4pj1uj/Bhhd/tUe460tMcLwnY9RpNbnBOaPJ7gvsQYH7h9GuX3PL5qzYuXWkd56fiqNU/VtbXb0xij/b7HV22ZsrVvcmXsLkxvlhdzpT6cWeTHbTp29bjmwOaanffh6JDLMda3bWLX3h+6P48x3z/C5u3ts9O2kmrJW7D7E/LxtJLOTSUtZeSS3Kvxwxnqx+Nj1ndvOnbVx192j+cX42n5mdvNkVfYUn5IlnL9QGeY9j4CdHstaTsXgybyNMYcbz9D2C2F1crjmP50Kcptd/OUF+jaHrP+9iXEbjlGXqDXYY9B5vUgrc2WN3E/XDF8DbIdi8pnQ/dH7FyW1i93pOW2GxTLi4b7KZcQ/Rv3TlMYSbrX5uf3LOXW3y0f+606Muna1LLZqh8YjSq3t4ejtmeX2vMerj2OhH85u5Td06bin8Y4b8IejpCvjya2T5vyjN1uzwfkS6kXH3o9pMz95PclyO60f9/1PAq9PZy0v44m7Wrq3Z8XuPX2vKaW3TOjojOfUpQ1XdKT84NPWvR8B0vUIuk/3L58XZLd1aXmRW7rj0f818eJZb5/lOweP108SqR84CgR+cRRsi9p/rW8s6TNzTBM2T1wkJojyj88/Zcvj++L6LuXIvvlaHnXL49X3T8tx+7UyZChSX1+6tw9tlhTYDKOsjla5QNHa33/aK2fOFrrR47W/YNCZTClP330u4nQfDbeY4OMxyvNrw0BdXegctl9r6z1+RlrF6Te8pq33h5vAH4KYu83FuweSl3sLNiFuNhacHlNNr0FVzdpeXiQ8839kiWklrK5HGl1e2l1qY2ntPb+M+396jTuR3S7OrvWkTIiyB3783K2DSK5OkN2Z/A23j/gd8+ELh7wuxAXD/jLa7Jrptlu0hy2Gz8M+X9rv+jMRhSzTaPW7kHM/T/mdaI9lsQv9737Y3XkoMj9Cdmmru4G7a8eIbuHBxePkF2Iq91W/XcuiT4jQdzDy/NNuhuQuNy+Jm9v0l2Ii5v08pq8vEkfjtLHfPnWWcZf+D7HeMpuv9j22dKlzsT+gYLa3y+o/f2C2j9QUPdb9N0LTL3lEKKWuuk4tU2Q9SV/Bro3JXn3dMpfmTg2x23enlfk/fYwtsd4cZtea/ksu2dL9yGpvDVsDzcPP8WY7x/pu+dTF4/0XYiLR/rlNdkc6dstWvOsf9+i/bUYKjTX1Pp8i+6e9Ps7lOedcp8vxsjnddsY+yPsUldxGe/fSY3376R2T6cu9sSUuX3CfqWld7sU11qVyny7Q7rMXSUtOVDeH58s1VlfDaIvBmn5NGXNBLcJYm/vl+26jJbrMl5dF8mRujXp6qtBcoB6zS76YhD6g9c0iE+DyG03OHUfxMnb9Ts/7JyvnfS7MJfb8fdB8nnZ/cHqfDEIfQOzPrwR9r0gF9ti/f2150/urvXFyu5B1cU28u1yjGzlmkPrZjmuBum3V4PkieaO/bUg9xHUvFC9s+3C7HaxZmGbjxcS3zzYBgfbYx5/L0ifBHmegN84hz+9H5LdwyrLBkiz52et/TXztbdZdg+qrt4eboPcL+vyfZYyn9+oyvZZleX44X3w//nabB9VXbvylt3bUteurbYhrr71dXVNbLMm2y2aj93FRnspRi1ZVu8nCXs1xu3tGJULksfc/16MvMyrj68sfI2xfWXq2l3EL2JcuovYr0trOWTf+ng/xovH2P2Jew77tfF832772nvnjQXZvKG4XRCj/dD68/Kxe7p0eeeO33nnWmFdNom7e2uq3Hj1qhR9daPmNWIdm6Ns94Tq2oNhadv21GxLv9eP53c02+VohU8X1OfLsT3PSZ6imvTb8/Ncs7dHmOQDD6fk/YdT8v7DKfnAw6n9Fr02wrSPcW2ESXaPpq6m/v7ouPbOub79Bv82xNU9e3lNnteO3StTl66R9ylbs5S2ZvPF61uxfIFMdte3+ydC157US6/vP6nfr864Zafs7GOzOvqJ1em/9+rMPMPo7bZbnfF7HmlKP7a2vrmTsl0zdREOtAxxv3r6EqK8PYaxXYqM8Hiq/Hkp6vZUyZo8jA1/I0S5jezXvfNorwWZ4+Hp1EPH4HeCrD6yvJi6PYzufmej5lvs9wN2s1HH7xriviGzYfDO+nxVxif2zPjEnhkf2DPbzNV8r1ZnG6+dIzqvgd5H8e3VIDnYdn/iXl8M0irj//3V1amZv13r5lJ3fOAbUzLm73yO6JofLutqm9XZPasq6nNAnusz23x2sP0iyKVGd9k9r+o9H/Gs2f82q7PrUL3Y6C7bF6qutQ77B2/evEPcPq662Dos8xfF5Frr8C/CKIfJ/fZsPA+zO2TXbDixj9vDM7iv+7je3h9Urbf3B1Xr7e1B1W2Ia7ck19fENmvy/qDqNsbFQdVfxbi9HePamFktt4s3vfraNr04uPuLGJcGd+vupaqL43+/iHFpEGC/Li1fcK+PT/B/Wo7+ey/HpUHm6zFezLmLg8x19zbV1UHmXxzsFw+Q2++8Y64NENfdG0xXB4h/sSCXBoirvH36r2LvDxBvl+PiAPEvLu6MK977U/cnF3d1+2W/i1eI2yAX77+3l3bW8oU9a88P1Frfv3bYfdvv4rXDLsTFa4fLa7IZqN5fLI+HVyCfn28/8Xxpe7Xc8xM98sP3zn66Wt4FsdyodyyvBSm3fEvuPpjcXlwSrYw099cv/kfn4v/hLPPdi/9co3UjsOmXmftHGvr/eqTxve3S7P/5vvvPQT5QFXdvMd5mHinlNl5KHSn5LoSUzRlP335FtWr5wIlm+7nBi5t0u2tzvPq+l+urh7y/4hyXAPXl+11/SHiGkf5y5khe1KyQm8zZfeQhh0iN5fjyTvavRhSFT93c6nxxWLI9jCT0Z8OS/qmid8c2t0E+MQ5/eYvUT2yR9okt0t7eIvumyIeVud0e+xm/11t5q/0hzKZZtGwfcVxu0dyF6SMvCvq8PR2N34ZgfLTPXl4LYSzFfBbiF53aN+ZGuL3ceD4fPsX6vN17/8Irn3cb9fF7JF9GWOvu7aqL/SLV3n9Vtdrbr6puQ1y8DL+8JpvhhO0WvdYvso9xrV+kDnl/NGEf49powv4Iu9RzUndvRl08OnYhrh4dl9fk+XDEeLcT4Bdpnxcho85N2u9ea7p69z3ff526zrdfp96GuLhjL6/JJu23W/Ti3ff8wKjqfjkuPTKr22//XbuVmfP9W+/tcly7lam/eH/vyt3hPsa1u8N2e7tPtd0+0Ke6XY5rm/QXH9rI50tDH169+/lrHZsj/doL2fv5cy5dubTb++9St/L2u9TbENdK2PU1sdc26MVG19vb1y2tvP8m9S9iXBvGLO/u1v0jkMuvY24nR7r4IuV2Rrpr71FuZxe5+Obh5RibFw/3Ma69d1g/c0+726oX3zrcL8nVY2S7TS6+dbifJ+n9tbl6rO7X5dqxup3F5uKxejnG5ljdx7h2rO5iXD9W91v16sutb9/+tPrua6nbibRohGw/fsPdvizFrumP9sP7GMqzx6j7EC0nCv2xieLHELt3qC4OFe42BiN87fETGT9tjE9846994ht/2298Xtqku1cfe364oP/Q3z6vR2jMlNKfR9g+X2cGWX1onvxpbrTt9BF0UevDt1u/xmi6vRG8NuvCLl2vHaL7Sdpa3vmUrrfn8zT5ZxrezNhtiGsZu/vK8MXNsXu1f+RTqDs+7b2Ybx/j8+1jfHzgGB8fOMa3bz1dPMa3EwD6NzuOXXLnhwWR6zGUbgXV5zH2U6vdGjOa3cyeZ8ruzamLmbINcS1T+u9bOH7cHOP5F733cwCyYx4/efTTHICXY8z3YzxMn/WtuQhrfgdD7uPUD9eBX66Md09K62BOoPHDU/CvQbbzoeZ1vozbeDHIKPk5/fH4maFvBmFJRD8QpN6eBtlNrqiduc26zdd2TqOMNLXx6h5++ObK7fl2vT5lZXtpi7SZw4Rtjs2uuTyF5yZtxvuzTbaxnYWCGPVhVP3nBdk1j6jlF/n18UXf8SWG7WozvbntcR6aL1f8u2dQ62PvEeP2ONPa1xhz33EhNEs8zjw3vrFZa37W917dxmazboMM9s14fpDspxO9PK/pvqfViKKb6Rrb3M7wwzuUj7t4XJ82srUcvWiPp/DvTGyqVfPN59pfnTYyH1bq433ht2LMh0komry4Z4y73DuPF6OMwjXJkOfbxOTdK/hthEtX8Psp1+ZDr9OszxpydDsTlRQmbHx6nfiLEDmCMaU/ux/aT0HXM/3LMH0xc8egP3fMzW2q3sa7F9/7EJcuvrW83ZX3jc2xm135F1GUKPJi6t7/0ojSnt8X6e6J48Vdsw1xcdf033fX/LA51F7eNe0hyov18H59mcsyb/N5fd9OJHetIO5DXKqI+3VRLmhmv222yO7jfNcGeLYh7uenG805VtprQbi9WqcqfTFIawTRl+rz/fnrQ9vCpj5vZ8T61ARfklGk3h6v4+uLQYq8GIRvBoj28lqQ+ypkUbuN+jTI7vt4whMVkfp8Bmmt7f2HCLqdTOLqQ4TtHL/cy9/abm3efUq1m+Lj6pps57DXnK1Y7fa4JvV6DN6iUvthfs0fY2grb585W3n7zNne/uTPfmPkqJWOOjcbQ3cnmhzn6W3UTZBdn1+OrvRye3bjvF8M5l3+8QMq31oX1fyG+g+NXN8MkivTb/PlIPk9mMeJcX861nctZSOzVucuhr57JbKNcOlCZPsaysWHK9sYFx+u6HbeposPV2zbSar5rYH5OMlQK18W5P27Kn3/rur9d522H9i6Mbx7e5x1+evG2J5arm2MbYiLG6P9rhuj5IBb+2Gu9J82Rn9/Y/T3N8Z4+9S0Oz9OZhd//DLQtyZ9n/me5D3G8+nW1T7wGUm1D1z97Fq/O987e7gm/XkxPnFNah+4Jt3PQM9HE3/4oMbXac5193rTw1dsHm607TuzrQv154cu9O/MYX/1rLANMvUWGTN/2DXtW0EaHYsPn6L8bpAcw3z8dNvPQbadvg8vbPbHjxXIN5aEi4/Z66ur0/Ol/PnDtxe+FYSXg+437Po0iO4eVH0kyA9vXjxuky8bdh9EsrNV5KE543tBaudJ1bhtdvHuRDFySdr84XbsawK+3QC0D3HpInW7KlevUvdBrl6mzg9cpu7nKL/2PpzO9z+brvPtz6ZvQ1x7meT6mmwm5tvP+n7pfbh+e/9rZ/tp3y9+jWYf5OLXaLZBrr4St1+Si1+j+dUs9he/RvOLMFc/RfmrMBc/arPfMhc/arMPcvGjNqW+/QWWbfZcfG1xH+Paa4u9vP31tF4+8PW07XJc3KT7XXvtoza/OFavftTmF2GuftTmV2EuftRmfznwMIJXX72iyE9zPBQl+c6Nxf3YyJeH7LEfsH0d4n17QGAf4tKAQJfxu4a4Nqbwiw2aXyqZjxO4fd2go717G963B+nF2/BePzAzxe4S/l7Pc56NOR+e7355sLOLoUNy3P32ONr9jRid2/AuPwwDfqmqu0dU1w70/WJkTe2PL+t9a1VqPh/uP3yC5uuqtNvvuiqP36R/uPL+eTHkd10MpQo+Xpv9vBhv96nsQ1wrP+3tPpVdg2i3bFPp43EC+S8bY/fhhWu3utsIl+50t42uF290tzEu3uf2XT/15fvcUt6+z+3a3r7P7fr2B322Ia7d515fk8197naLXrzP3U1EdfU+d/dps8v3udsgV+9z91+Mu3ifu12Sq/e5pX3kPncf5vJ97i/CXL3P3W6Zq/e52yBX73OLvH1Ttsueq/e52xgX73O3j6yu3eduv0F59T7XPrBJ6wfuc/fH6uX73H2Yy/e5vwhz8T53ey1w6TZ3fzVx5S539zjx4v3U+MT91PjA/dS2t0OyQa3KfN7OsI1heU1TZ3kxBmfP+4Pv5zHGtrkj58RoMp73qYy3vz4w3v76wPjA1wfGB74+0OcHrlZ3X+We+bSsiDz2Y5fLIURyXeSHOXW/E6Pwkpr058vRt0+prmbt7rvcl5sRdkOpV+cZK/KRof/tIBct9031cUK6H99EtA9MQmUfmITK3p+Eyt6fhMo+MAmVfWASKvvAJFT2gUmo7AOTUNkHJqGyD0xCZR+YhMo+MAmVfWASKvvAJFT2gUmo7AOTUNkHJqGyD0xCZZ+YhMo+MAmVfWASKvvAJFT2iUmo7AOTUNn7k1DZJyahsvcnofrV5cOlSajsE5NQ2fuTUJXyftuPfWASKnt/Eip7fxIq+8AkVPstem041D4wCVWRT7T9yCfafuQTbT/yibYf+Uzbj3ymX0c+0a8jn+jXkff7dcoH+nXK+/069v4kVPaJSajs/UmofrFrL45jymf6deQz/TrykX6d7SjRpXHM/TjTlXHM7Wtul5Zh/6LcpY6h/SvU1Hgdjx9m+8572J2XufusLwYZI4eZHmc3+ubL3PnE/I7PV0e3jTIX3wjfBrk2WdM+xKXJmn4R4tJkTdv9Ynklsc7lL+7cH4K0V4MIQerz/WL2dovKPsSl3hCz9ruGuHjpvt+gvJBhNl7dK3m1KjZfrSCPS/JykJG33Xd8OQhzv2yDbD+lcrEbtL9b23/xYaiMMaW/+G2pHA6ZYk/fXpZ3N8X+S12XzrS7myHLaU7u92SP79d/4wtqfLbsjuPFGFmN76fdF7/kNhrL8eoX5UbeCd3DvfpFuXz98I6vbo+8l7rHeL5ftl/p0xwFaWr9/RjjtS/9NR5Lt95eXBfePGy2Oca2MfhIXxv1eQzbvkLF97HuI3fPXzwct+0HUPOjcq1PfXqd/qsl6bkkuluS7Ydl80JK+8PwUv3OcuT0IPeV7pvl2A5R3XKzPn7F6ecgu7ep8zMfj3f89xGN64fIePiq7ObjZ2M3Ner1Q2S8f4j8akmuHSLb4fZLh8gvluPiIVLkA4fI7uHSBw6RObMy38rzM8TYziAlOWGKynwozeNLjN1lkEl+1cYeLte/fuhn977BLS9B9Ga3zbqMD6zL/H3XpdS8gvjhix/f+iZtfhpPa2mvxRCWQ9onYowXY+RnoO57yF6MkY/q7+Fe3qbGNq0vxijEqJvvHm8nYsivKIjo4y3ylxdS5O2pffYhLt3fjlp+1xDXbpG327PyhcFqzyelGLvHSpc+VbZdisYtdptjsxT9/Qq2e2PqYgXbT/MhPIURfbou+xjKFIn9+fZoff/xyEvzjWyDXBvl24e4NMr3ixBXRvnq26+v1rffXq1vj8nXt8fk9zPFPX6G5vY4h9+35ptjUrEVZTN7Xv3ItHXbMBeP0W2Ia8foPsSVY3Q/A+fF+fe2Md6f5fH6MfKrWSsvHiPymWNE3j9G5P1jRN4+RnY9MYPW7fEwD1WRLye5vn2BK3eM2MM3sa4vxVS+gj3L06XYhph5lrw9jgR9I8TIG3S5PU758NO22HVMXWy5Hrthvqst17t5Mx+/P/U4UcrXlbFtb5+RuN302XD2r4IYk/E9Pqv4GkR2DxkmXbmlbFZnV0GkcrSvThDC3OTqhm2WN/ptPPY7Xj/QGh+duI847vbNB3r7h32gt/+XO9gedrA+3cHz9z5KVLlCfQjx04Yd27cDsxVFHh9m/zSgNLb9LPQZFdkMse3el7o8Tjfa2+N0++W4OE63nYfq6jjddiKqS+N0+yKw5vWLA63Y4yQUX4rA2L1dnwfrw5SJXx547qrztdnBfPaBZzFGPoIZ83nX1di9L3UfzMr0L48H2Ly+JoUXYcrjTaH2b4TILoXyeBvynRD008jDc7Gfjoy5vd/PRKm3F0NkP31/6Pz+zoo8nrYfrkG+E6LnVf+PvUXfCGGFC7rNtpj7F3o+EKR0znL9seHiW0Esx5OKTXkxyMx3R8rjrELf2rmdSS/stVzhCuZ+pJTXloK2sXp7aUXaoNPycYKWMi9fa/u37M4i3MYrC1FKZy7A8VK2lZr5esfXlkKFy7CHaaK+FaLTAT/mayvCwVnltRXhq0r3kv7Silg2AlnrrwSYOXb8ODnUd1bilsOtP0wP+VOm7546vX90z7zUuV/BvbQh8tCepm9uyU2A7cXBbDm8OPXhnPp15Gduh480n5xPnZtPKOxGOd4eX7hfYRgXKeXZ5dbcvQolvEp5K88v2OT9obRtkDUKdmMUrL4YZmrlM+aPA3LfCiJ8PFweP574vSD5ptt8/CLc94Lw3v99K/cXj9WRpXwOrZtj9WqQfns1yMgNe7+pei3I9YHOX2zaa4PIv1iWqyPAvwpzcQh47l71ur5ltmGuDQHvQ1waAv5FiDeHgK89891evzCrY3+4oPz6lfrtEBJT3PY6Xwox8hFneTxrfyfENKZxu5VXQsiNh7W3Vl9aCiaCW3MovhaC2Q9HeWlF7pfUjJLM15aiMnlie5wT/hsh2sMbuw931F9DzN2UUh+4W6l5KXS/knhtYzRGnR6bM17dnq+FqMJ4r/zwDuW8HkL5ANNDu/+rIXp9LUReS1UxfSlEzWGnO91eCtGy9tYfLpG/sxQ998gPh9arIV7bqbzCWR9vhL+1LXiRrNXXdmpjxqJW7bUQhS986Is7teeVfusvLcWawpYBp/ZSiIeZdMfjVf6XEHP34bci3NM/TnRevvFMlCezQ/W1NWGq9NnGayE6E4O/liSFB4j3kbzy4orwjvJN3g5RXl0KZr8uL2X7/XzOtmj29lJ83an/dP+/f/jXP/3tn//813/9w9//9Ne//Nf9L/93Bfvbn/7wL3/+4/l///2///KvD//17///f8Z/+Ze//enPf/7Tf/zzf/7tr//6x3/777/9cUVa/+232/k//8fWZ6/vgwHjn/7ht7L+/6z1H+5PyW73/1/9v/f1322u/77+oPd7Wt//p69/8L/Q+43N/X/kn/53LfL/BQ=="
583
583
  }
584
584
  ],
585
585
  "outputs": {
@@ -885,9 +885,9 @@
885
885
  },
886
886
  "246": {
887
887
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/point.nr",
888
- "source": "use protocol_types::{point::Point, utils::field::sqrt};\n\n// I am storing the modulus minus 1 divided by 2 here because full modulus would throw \"String literal too large\" error\n// Full modulus is 21888242871839275222246405745257275088548364400416034343698204186575808495617\nglobal BN254_FR_MODULUS_DIV_2: Field =\n 10944121435919637611123202872628637544274182200208017171849102093287904247808;\n\n/// Converts a point to a byte array.\n///\n/// We don't serialize the point at infinity flag because this function is used in situations where we do not want\n/// to waste the extra byte (encrypted log).\npub fn point_to_bytes(p: Point) -> [u8; 32] {\n // Note that there is 1 more free bit in the 32 bytes (254 bits currently occupied by the x coordinate, 1 bit for\n // the \"sign\") so it's possible to use that last bit as an \"is_infinite\" flag if desired in the future.\n assert(!p.is_infinite, \"Cannot serialize point at infinity as bytes.\");\n\n let mut result: [u8; 32] = p.x.to_be_bytes();\n\n if get_sign_of_point(p) {\n // y is <= (modulus - 1) / 2 so we set the sign bit to 1\n // Here we leverage that field fits into 254 bits (log2(Fr.MODULUS) < 254) and given that we serialize Fr to 32\n // bytes and we use big-endian the 2 most significant bits are never populated. Hence we can use one of\n // the bits as a sign bit.\n result[0] += 128;\n }\n\n result\n}\n\n/**\n * Returns: true if p.y <= MOD_DIV_2, else false.\n */\npub fn get_sign_of_point(p: Point) -> bool {\n // We store only a \"sign\" of the y coordinate because the rest can be derived from the x coordinate. To get\n // the sign we check if the y coordinate is less or equal than the curve's order minus 1 divided by 2.\n // Ideally we'd do `y <= MOD_DIV_2`, but there's no `lte` function, so instead we do `!(y > MOD_DIV_2)`, which is\n // equivalent, and then rewrite that as `!(MOD_DIV_2 < y)`, since we also have no `gt` function.\n !BN254_FR_MODULUS_DIV_2.lt(p.y)\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\npub fn point_from_x_coord(x: Field) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n sqrt(rhs).map(|y| Point { x, y, is_infinite: false })\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate and sign for the y coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\n///\n/// @param x - The x coordinate of the point\n/// @param sign - The \"sign\" of the y coordinate - determines whether y <= (Fr.MODULUS - 1) / 2\npub fn point_from_x_coord_and_sign(x: Field, sign: bool) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n\n sqrt(rhs).map(|y| {\n // If there is a square root, we need to ensure it has the correct \"sign\"\n let y_is_positive = !BN254_FR_MODULUS_DIV_2.lt(y);\n let final_y = if y_is_positive == sign { y } else { -y };\n Point { x, y: final_y, is_infinite: false }\n })\n}\n\nmod test {\n use crate::utils::point::{point_from_x_coord, point_from_x_coord_and_sign, point_to_bytes};\n use dep::protocol_types::point::Point;\n use dep::protocol_types::utils::field::pow;\n\n #[test]\n unconstrained fn test_point_to_bytes_positive_sign() {\n let p = Point {\n x: 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73,\n y: 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_positive_sign = [\n 154, 244, 31, 93, 233, 100, 70, 220, 55, 118, 161, 235, 45, 152, 187, 149, 107, 122,\n 205, 153, 121, 166, 120, 84, 190, 198, 250, 124, 41, 115, 189, 115,\n ];\n assert_eq(expected_compressed_point_positive_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_to_bytes_negative_sign() {\n let p = Point {\n x: 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5,\n y: 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_negative_sign = [\n 36, 115, 113, 101, 46, 85, 221, 116, 201, 175, 141, 190, 159, 180, 73, 49, 186, 41, 169,\n 34, 153, 148, 56, 75, 215, 7, 119, 150, 193, 78, 226, 181,\n ];\n\n assert_eq(expected_compressed_point_negative_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign() {\n // Test positive y coordinate\n let x = 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73;\n let sign = true;\n let p = point_from_x_coord_and_sign(x, sign).unwrap();\n\n assert_eq(p.x, x);\n assert_eq(p.y, 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a);\n assert_eq(p.is_infinite, false);\n\n // Test negative y coordinate\n let x2 = 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5;\n let sign2 = false;\n let p2 = point_from_x_coord_and_sign(x2, sign2).unwrap();\n\n assert_eq(p2.x, x2);\n assert_eq(p2.y, 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0);\n assert_eq(p2.is_infinite, false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_valid() {\n // x = 8 is a known quadratic residue - should give a valid point\n let result = point_from_x_coord(Field::from(8));\n assert(result.is_some());\n\n let point = result.unwrap();\n assert_eq(point.x, Field::from(8));\n // Check curve equation y^2 = x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_invalid() {\n // x = 3 is a non-residue for this curve - should give None\n let x = Field::from(3);\n let maybe_point = point_from_x_coord(x);\n assert(maybe_point.is_none());\n }\n\n}\n"
888
+ "source": "use protocol_types::{point::Point, utils::field::sqrt};\n\n// I am storing the modulus minus 1 divided by 2 here because full modulus would throw \"String literal too large\" error\n// Full modulus is 21888242871839275222246405745257275088548364400416034343698204186575808495617\nglobal BN254_FR_MODULUS_DIV_2: Field =\n 10944121435919637611123202872628637544274182200208017171849102093287904247808;\n\n/**\n * Returns: true if p.y <= MOD_DIV_2, else false.\n */\npub fn get_sign_of_point(p: Point) -> bool {\n // We store only a \"sign\" of the y coordinate because the rest can be derived from the x coordinate. To get\n // the sign we check if the y coordinate is less or equal than the field's modulus minus 1 divided by 2.\n // Ideally we'd do `y <= MOD_DIV_2`, but there's no `lte` function, so instead we do `!(y > MOD_DIV_2)`, which is\n // equivalent, and then rewrite that as `!(MOD_DIV_2 < y)`, since we also have no `gt` function.\n !BN254_FR_MODULUS_DIV_2.lt(p.y)\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\npub fn point_from_x_coord(x: Field) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n sqrt(rhs).map(|y| Point { x, y, is_infinite: false })\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate and sign for the y coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\n///\n/// @param x - The x coordinate of the point\n/// @param sign - The \"sign\" of the y coordinate - determines whether y <= (Fr.MODULUS - 1) / 2\npub fn point_from_x_coord_and_sign(x: Field, sign: bool) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n\n sqrt(rhs).map(|y| {\n // If there is a square root, we need to ensure it has the correct \"sign\"\n let y_is_positive = !BN254_FR_MODULUS_DIV_2.lt(y);\n let final_y = if y_is_positive == sign { y } else { -y };\n Point { x, y: final_y, is_infinite: false }\n })\n}\n\nmod test {\n use crate::utils::point::{\n BN254_FR_MODULUS_DIV_2, get_sign_of_point, point_from_x_coord, point_from_x_coord_and_sign,\n };\n use dep::protocol_types::point::Point;\n use dep::protocol_types::utils::field::pow;\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign() {\n // Test positive y coordinate\n let x = 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73;\n let sign = true;\n let p = point_from_x_coord_and_sign(x, sign).unwrap();\n\n assert_eq(p.x, x);\n assert_eq(p.y, 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a);\n assert_eq(p.is_infinite, false);\n\n // Test negative y coordinate\n let x2 = 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5;\n let sign2 = false;\n let p2 = point_from_x_coord_and_sign(x2, sign2).unwrap();\n\n assert_eq(p2.x, x2);\n assert_eq(p2.y, 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0);\n assert_eq(p2.is_infinite, false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_valid() {\n // x = 8 is a known quadratic residue - should give a valid point\n let result = point_from_x_coord(Field::from(8));\n assert(result.is_some());\n\n let point = result.unwrap();\n assert_eq(point.x, Field::from(8));\n // Check curve equation y^2 = x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_invalid() {\n // x = 3 is a non-residue for this curve - should give None\n let x = Field::from(3);\n let maybe_point = point_from_x_coord(x);\n assert(maybe_point.is_none());\n }\n\n #[test]\n unconstrained fn test_both_roots_satisfy_curve() {\n // Derive a point from x = 8 (known to be valid from test_point_from_x_coord_valid)\n let x: Field = 8;\n let point = point_from_x_coord(x).unwrap();\n\n // Check y satisfies curve equation\n assert_eq(point.y * point.y, x * x * x - 17);\n\n // Check -y also satisfies curve equation\n let neg_y = 0 - point.y;\n assert_eq(neg_y * neg_y, x * x * x - 17);\n\n // Verify they are different (unless y = 0)\n assert(point.y != neg_y);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign_invalid() {\n // x = 3 has no valid point on the curve (from test_point_from_x_coord_invalid)\n let x = Field::from(3);\n let result_positive = point_from_x_coord_and_sign(x, true);\n let result_negative = point_from_x_coord_and_sign(x, false);\n\n assert(result_positive.is_none());\n assert(result_negative.is_none());\n }\n\n #[test]\n unconstrained fn test_get_sign_of_point() {\n // Derive a point from x = 8, then test both possible y values\n let point = point_from_x_coord(8).unwrap();\n let neg_point = Point { x: point.x, y: 0 - point.y, is_infinite: false };\n\n // One should be \"positive\" (y <= MOD_DIV_2) and one \"negative\"\n let sign1 = get_sign_of_point(point);\n let sign2 = get_sign_of_point(neg_point);\n assert(sign1 != sign2);\n\n // y = 0 should return true (0 <= MOD_DIV_2)\n let zero_y_point = Point { x: 0, y: 0, is_infinite: false };\n assert(get_sign_of_point(zero_y_point) == true);\n\n // y = MOD_DIV_2 should return true (exactly at boundary)\n let boundary_point = Point { x: 0, y: BN254_FR_MODULUS_DIV_2, is_infinite: false };\n assert(get_sign_of_point(boundary_point) == true);\n\n // y = MOD_DIV_2 + 1 should return false (just over boundary)\n let over_boundary_point = Point { x: 0, y: BN254_FR_MODULUS_DIV_2 + 1, is_infinite: false };\n assert(get_sign_of_point(over_boundary_point) == false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_zero() {\n // x = 0: y^2 = 0^3 - 17 = -17, which is not a quadratic residue in BN254 scalar field\n let result = point_from_x_coord(0);\n assert(result.is_none());\n }\n\n #[test]\n unconstrained fn test_bn254_fr_modulus_div_2() {\n // Verify that BN254_FR_MODULUS_DIV_2 == (p - 1) / 2\n // This means: 2 * BN254_FR_MODULUS_DIV_2 + 1 == p == 0 (in the field)\n assert_eq(2 * BN254_FR_MODULUS_DIV_2 + 1, 0);\n }\n\n}\n"
889
889
  },
890
- "257": {
890
+ "256": {
891
891
  "path": "/home/aztec-dev/nargo/github.com/noir-lang/poseidon/v0.1.1/src/poseidon2.nr",
892
892
  "source": "use std::default::Default;\nuse std::hash::Hasher;\n\ncomptime global RATE: u32 = 3;\n\npub struct Poseidon2 {\n cache: [Field; 3],\n state: [Field; 4],\n cache_size: u32,\n squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2 {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2 {\n let mut result =\n Poseidon2 { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = crate::poseidon2_permutation(self.state, 4);\n }\n\n fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let two_pow_64 = 18446744073709551616;\n let iv: Field = (in_len as Field) * two_pow_64;\n let mut sponge = Poseidon2::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n\npub struct Poseidon2Hasher {\n _state: [Field],\n}\n\nimpl Hasher for Poseidon2Hasher {\n fn finish(self) -> Field {\n let iv: Field = (self._state.len() as Field) * 18446744073709551616; // iv = (self._state.len() << 64)\n let mut sponge = Poseidon2::new(iv);\n for i in 0..self._state.len() {\n sponge.absorb(self._state[i]);\n }\n sponge.squeeze()\n }\n\n fn write(&mut self, input: Field) {\n self._state = self._state.push_back(input);\n }\n}\n\nimpl Default for Poseidon2Hasher {\n fn default() -> Self {\n Poseidon2Hasher { _state: &[] }\n }\n}\n"
893
893
  },
@@ -895,31 +895,31 @@
895
895
  "path": "std/array/mod.nr",
896
896
  "source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a slice.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let slice = array.as_slice();\n /// assert_eq(slice, &[1, 2]);\n /// ```\n #[builtin(as_slice)]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
897
897
  },
898
- "336": {
898
+ "335": {
899
899
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
900
900
  "source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
901
901
  },
902
- "347": {
902
+ "346": {
903
903
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
904
904
  "source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, DOM_SEP__NOTE_HASH_NONCE, DOM_SEP__OUTER_NULLIFIER,\n DOM_SEP__SILOED_NOTE_HASH, DOM_SEP__UNIQUE_NOTE_HASH, FUNCTION_TREE_HEIGHT,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n DOM_SEP__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, DOM_SEP__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator([app.to_field(), note_hash], DOM_SEP__SILOED_NOTE_HASH)\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(contract_address: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [contract_address.to_field(), nullifier],\n DOM_SEP__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
905
905
  },
906
- "360": {
906
+ "359": {
907
907
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
908
908
  "source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
909
909
  },
910
- "361": {
910
+ "360": {
911
911
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
912
912
  "source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
913
913
  },
914
- "363": {
914
+ "362": {
915
915
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
916
916
  "source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
917
917
  },
918
- "391": {
918
+ "390": {
919
919
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
920
920
  "source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
921
921
  },
922
- "394": {
922
+ "393": {
923
923
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
924
924
  "source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
925
925
  },