@aztec/protocol-contracts 3.0.0-nightly.20251223 → 3.0.0-nightly.20251224
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/artifacts/AuthRegistry.json +874 -874
- package/artifacts/ContractClassRegistry.json +2321 -2321
- package/artifacts/ContractInstanceRegistry.json +876 -876
- package/artifacts/FeeJuice.json +1717 -1717
- package/artifacts/MultiCallEntrypoint.json +864 -864
- package/artifacts/Router.json +14 -14
- package/dest/protocol_contract_data.js +11 -11
- package/package.json +4 -4
- package/src/protocol_contract_data.ts +11 -11
package/artifacts/Router.json
CHANGED
|
@@ -356,7 +356,7 @@
|
|
|
356
356
|
}
|
|
357
357
|
},
|
|
358
358
|
"bytecode": "H4sIAAAAAAAA/+29CZhdV3UuuE/dq1LdqlJdlWaVplOS5UmegYSQBDCeZPCEJ/AAWLYLYWNbsubBk8ACQvBLgMykQ9IJIS9ARjovvE4awiOkCaHDF/pL0oRAIJ2ETGCm5CVN4mbDXaq//vrPvuecu650wbW/T7qnzl77X2uvvfba49k7C98K7c7v7j277prZu/cV93/jvx07Z276xqusE9Xs/C7u/Mb3k2FuMNo8lApZBdq5iSrwyEL/eQyF/vNohP7zaIb+81gU+s9jOPSfx+LQfx4jof88WqH/PEZD/3mMhf7zGA/957Ek9J/HROg/j3boP4+loTqPOnwmw8nhs6w87Texny/eVeG3PPS/jFaE/vNYGfrPY1XoP4/Vof881oT+81gb+s9jKvSfx7rQfx7rQ/95bAj957Ex9J/HptB/HnnoP4/p0H8em0P/eWwJ/edxWug/j62h/zxOD/3ncUboP48zQ/95nBX6z+Ps0H8e20L/eZwT+s/j3NB/HueF/vM4P/SfxwWh/zwuDP3ncVHoP49nhP7zeGboP49nhf7z+K7Qfx7fHfrP49mh/zy+J/Sfx3NC/3l8b+g/j+8L/efx/aH/PJ4b+s/jeaH/PJ4f+s/j4tB/Hi8I/edxSeg/j0tD/3lcFvrP4/LQfx5XhP7z2B76z+PK0H8eLwz95/Gi0H8eV4X+87g69J/HNaH/PK4N/edxXeg/jxeH/vO4PlTnUYfPDeHk8LkxnBw+N4UafG4mhnFDQ9xwEDcExAX7uKAeF7zjgnRcMI4LunHBNS6IxgXLuKAYF/ziglxcLIsLWXFxKS7+xMWZuHgSFzfi4kNcHIiT93FyPU5+x8npOHlsk7vT3/gXJy/j5GKc/IuTc3HyLE5uxcmnODkUJ2/i5Eqc/IiTE3HyIA7u4+A7Do7j4DUOLuPgLw7O4uApDm7i4CMODmLnPXauY+c3dk5j5zF27p7/jX+xcxQ7L7FzERv/2DjHxjM2brHxiY1DdN7RuUbnF51TdB6xcsfKFytHNN5oWLHQbwrFwQq3YP/Nr2z61uuRTvQQJKuwHyQbIXbV0j/2mREGrJQ+fDN9TDNSL/3Nlr5VL/03zTeGH4D0KIvhNjq/PwVpf4p4Gs2ngOZTRGPy1tN3+IEe8zs5Hubm0TACyDZaD3sZ5slCg94hfiv0VPZZRnjGj/NndWMcaIxfRnFNIafFLYI40390fWcDHZftCMWZLDH8FMU1IO5tnV8rE5Srgo5+ukd7eX4f7eXib0d7aVKch70gBtuLYcTwKYobhri/pLjFEPdp4P0seH6o89yjTzrhw2u2Qd/sEjB/xDJ5LTToNwbTk+l+RNBbXAviUPcxjML7hsBaTOmM/pmd34nOL5aNpW8L/sPEX8mtbDMTWA3xzuijfs4FmQ3zEqDN7eGre//sFz/6xG9+6Jf2vfMdPzb5ySU/OXbO6KPHj39x3RfW/9STx3/e0l4KsmShdHkPW/rLFO/n/rfGra/69X/fNXbFa3/14Cf/n2v2L1m/44Ob3vCOW3//zZv+/hWvs7SXq7Sff9PbHm3/6lt+Nt/2sa8NX/FD//SKr1y56Nmf/NhDa//Ha77+90++1dJeodL+ya1f/8v3tt965NAT7zv67DOX73j3W//sS//wBx/9lfZXPvueB//sWZZ2O+S5Tj/rynrpl1r6F0L6KntyLf2L6qU/If9V9dIPWfqr4WVuD8d+4Zf+8uInPnbBX3999I1X73j80DN+8BMv+ecja9659W/ufc/6d09a2mtU2s/tu+TN+1bf/13/PPLHT1z4c+s2fOar73zv3/3L4Zln/9Pfff63pr9iaa8VaddcdMb37P6Jj6/41Jmb/+L5H3j3eT+y9qunfd+nfnv7zz357x/5n2FWZ9dBniuU2Yk8v7he+qalv75e+oalvwFe5uk0J5piS3tjPd4n0t9UnreFRZb2Zp02e+3mvT/eeiK7+oOvOfe946Mf/PuL3/6CSz720cffuKn97rdb2peItGd/X+vJd7zxkePhr975j//lX87+neefO7nx4snz/u+3/em6B/bctvZJS/tSYxQq5Xm9pb8F0pPsyWDpbw3zZS+b9rZ6vE/U79ur8z6R9mXV056oIy83sFBJ5yds5RX10rcs/R310o9a+h310o9Z+jvrpT/hG++ql36Zpb+7XvoVln4G0lfoC+SW/pX4MpQKZ1nanfV4X2DpX1Uv/YWW/h5IX2VsZenvrcf/Ykv/6nrpL7H099VLf6mlv79e+sst/QP10l9n6XfVS3+jpd9dL/0OS/9gvfR3Wfo99dLfben31ks/Y+n31Uv/Sku/v176nZb+QL30r7L0B+ulv8fSH6qX/j5Lf7he+vst/ZF66R+w9Efrpd9l6R+ql363pX+4Xvo9lv6Reun3WvpH66XfZ+kfq5d+v6U/Vi/9AUv/mnrpD1r619ZLf9jSP14v/VFLf7xe+oct/evgZR5KhRN99dertOk5hNdb2jeotOk5hB+JcydxDuiJzsRPXOpa00m6f989992z7/AVM/tu+tbTJbse2DdzaB/O4UX98Fxqi/4epb/H6G+eX7T3ap6yTLA5wyWEF8Ls3OAE8clDqbAhI7wQ9Byv4bdIlor8TszxThA/zh/O8ca4tpClTXExcF+lLfi0BR+FtdcR62FHrH2OWEcdsTzzeNgR66Aj1hFHrP2OWDOOWJ6696xDjwwo1m5HLE+b8NS9p33tccTyrNueNvGgI5anjz7miDWo7aP1t63vgH2NrODX+PA749MKPfWzslS+JgS/FP2SBP3SkvhjgN3pF186c+f+nVft2hkocFf10gIR1xPdjQnRGDejf/x+Pb1rCFoMMXurOs+d7F0+s++uV924Y+fOmbu/kcm9nIKRLil4nzIq64y3SdI8lApDZYwS8U+2UUatLus8d7R61a4dd1+yY/fe/ffN4NYZNFPmkhEqvlNlmoFk+G6U6C6hv7eLdEFg47avSXqfh1JhmVnFMhFpccsBewnFrYC4CYpbCVivBDoOnE/MTxwSv3V0FpfpWFYsq+UUtxTiVgBvLvO24GN5GxL0SwlLDfmsXLrxa4h0PGRNDavL1ETLRwizzdASIXMfPcaKQfcYlr+l9fgtTzVriGnymK4nRZxhWR0dLsCytE2i/3znt010MdxKPCaFvPgOt/38NcmOumU76UWPiGdy4TvEb4We7DJLlZvqxvXqf8voHeVhf826Rb83XIBlaZtE/7XObzvMbxPYTpYJefEd2smTJDvqlu2kph5Lb/k0/FboyS6zVLlh/thOltXj9/wyekd5VNuNusU2cLgAy9I2id66e22ii4HtZLmQF9+hnfwHyY66ZTupqcf1Ze3E8FuhJ7vMUuWm/KoqN0ur9M3TxmX1rbAedsQ66oj1oCPWXkesRwYU66Aj1hFHrP2OWDOOWIccsTztflD19RpHLE9bfdQR64AjlqfuPfO42xFrUG31cUesnY5YtrVBzb9wXwf7AlXHFohncuI7xG+FnvpWWUovamxg+VtRj99kRumRH2LyPNBKEWdYNvc6XIBlaZtE/8KOQttEFwP3iVcKefEd9okv6+BOCHl5fqCqPabmyjAd22PN8rqsrD0afiv0ZP9Zyj6UXix/K+vxu7RM+aI8putVIs6wVnf+Hi7AsrRNor+V7HEVyMT2uErIi+/QHm/K5sqOumU7qanHF5S1E8NvhZ7sMkuVG+aP7WRVPX4Xl9E7ymO6Xi3iDMu2ig0XYFnaJtHvJDtZDTKxnawW8uI7tJM7yW+hvDxfVdYftkV6oxsR6XJ7SH92+As9ludLLP3qeumXW/o19dJfaunX1kt/cSyv3VRe+Ck0r4fZtsJFYbZe4pqppW0S/f8+MptuH/kR3roYwmyZ1vzEfG1ZP2L4Xp+B86eznD+e6xkTsrQpLgbuy44JPmOCj8I67og144j1kCPWXkesI45YexyxDjpieeZxvyPWoNrXbkeshx2xHnXE8rQvT30dcsTytC/POnTUEcvTJjz9qs17j4s47geMw/sK7XLp3Ul4jAe3y3X6AePEr0gv1XYnYW+ItYKo+C4Lc3OPcQ16x7uTLqO/6+xOqrlrY8qsYkpEWtw6wG5R3HqIG6O4DYBVdXeS5afq7iQsq3UUh73s9cCby1zxsbwNCfolhDUu0lm5dOP3dK6lqpwsrdpFxfW07Kigjvdw2hBrIq4huu0FomUCN6N//H4NvWuEtHtKDRDLmEwM3AAh1o3EZ6EBWmiAToSFBigMVgPUEOl4eoinjWLI7SF9ItSyODX12Y7iJoS8ODWEeVvUJX9Nor8epsL+psMv0toUYqcWvmD/fa++fmbfnntmDsyovf/dqs7V9Pc1Ip0KZhL8AXEMI6En51TaGRp+K+hizkOpcMIZqlGKOtCumjNkg0CtICq+y0J9Z3gN/V3HGdb8BLqyMxyhOHSG7Ch7cYaWn6rOEMuKnSFWYnaGWOZjgo/lbUjQjxNWypF147fQZflWWOiyQFjosoTB6rJwukVhfq22tE2iXdYxzB5r85zdyyzjQlv/rbDQ1kNYaOvDYLX1ysvwOnU/p0qQd3KAlT4296s9epSbe/SEN0Xve14nkzbAwzrCddxaraK9Dpa2SfQXD82mu6jzHPO8tRPf8TY377jvnrt37Ju57IEH98/sn7n7ml37ZvZe/MDdlx2YeWBf5eHe5fT3FSKdCqbUmhsfxlRH1IKqZKMUxxtMMA67QTwVyx/5YRxuEmpSHDaHiygON78OUxxuRFwMzxyU4zLdxnTvKeG4RsOsPtDRmiPAj395ftacmG0GYxo2WqO/bGhWxh0dz68cATtQPuQghFmb2kCy56FUKN11MPxWmN/w1Ok6bCB+nD+fIwVQK4iK77A2cNzJ6Dpsovd5KBVyswpFb3HTgM1HCmyGuPUUtwWwqnYdLD9Vuw5YVtMUtxHiNgNvLvMNgo/lTR0psJGwNoh03HUo4tcQ6bhbmNF7nM9cJ3jzfObLwXPcPVWsh3WhWA/2txqIsb4tPoYe7fUlZT2N4bfC/LKv42k2ET/OXz1Pg5aCXG4mVKNBWgw3g2RIz2dIcumNiXQcTGNNkvkgdJpeRZ00zNcykltZO77jTi2mNzrFZ2mPfJYKPtyvieEWiptMxKkPg/nDlhh4XVN9AKA2lvNBA2sSmFMCM5bdqsYsXvx3OtApS7fWycpgK8iDafHvRUQbg90x0CTaN4JdPUR2hbWY7WpjF7lTdrUxFPNZ2iOfpYKPGlyz7WwSeVWtNZfzNMSx7WwW+VKtNWOeJjBj+SxpzKXj8o/BPP4Z8L7KILKsxzf8FslS1+OfQfw4f/yByZn1+N2UUXrkh5gmj+n6LBFnWHa32HABlqVtEv2PdzLVJroY+AOTs4S8+A4/MHnL0FzZUbdZwa/h8juuX5h3Kx/jg/7mRpDnp4fm5gX9VCPM92vW82Rf9TxYGX47+SpMz2Wn6knd/J8u8jgR5uuGP0BU9n1Ggk87kZ9+lScfuIR+FsvzXVSeZ0Kc8tF3dX6bRH8mlOevUHmquqj0zO1SVT0vE3z6rWduX85y5INYfFjjNsJiP2jlZHo+G9Jvo3TnQBzS4ahrG7w/R/BW+IbRzQbfP6TzpmwQeTWJfgnY4Adr2uBZFIdtBbaLKAfqAcvsrqDzNSzoU/n6CIw6d07NxbT0qCssC/a/Rv9HgHnvlJYT84XtAW/hVPawTeRL6fSc0J036nl7Ae/hkLbFJtF/QuiU2wVMr+oRf8R8dhfZuX5jer7TFNP16keUzN3q5Kcq1kn7KJNt918Wz6b7DNXJlI2gzDyOqKrnpYJPv/XMY4RzHPkgFrcL5xEW69nKyfR8LsSdR+nOhzikw3bhPHh/vuCt8Mu2C08O6bwV2aDxahL9X4ANfiUxLk7Z4DkUhzrldqGbP1xL9Cb3cEi3t02i//dEu6DqK/pabheM/j8S7YLxxXyl2gVli+eKfCmdnkdYWwUW6pnbBaVTzP9Wyv8J22nM5j/VLlh6NR9xG8XhfMSZFJdDHPdZpyHuLIrD+QieG9kCcezvToM4tBGej5hI5AfXFXm+D+ftNlEcHo6QUxweSjBNcThvt5ni8DCBLRQ3BXGnQV5t3o4Xs9d23ve4pie3IaXmRbOC3xDKtQe4dsxrzhsc+SDWZcRnoyOfjYn85IKPlRfWl36swRp+K8yvu3XmyaaJH+ev3soIehvWCqLiuyzMzT3GnYw12C30Pg+lwmlqltUCz2Qpj4QePac4nDGougZr+am6BotlxS0MevzTgTeX+bTgk3eehwQ9r+dOi3RWLt34NUQ6Xq/M6H3RGqxhNIn+OdBC3089FMUrB/m4l2CyF+0gyUkGo38uyLBjSmM2C/K1qQDzxY1ZfVzc0JhBYKp8baZ8sQzTJIPRXyZ6P40w3/6UjU3T37i+vblAPlVOLCvWp6L85JQfo39RopxyIYPJFcP2LjIwzeYCGa4VMgiPfsmu3Yc7Hj1Q4O9OeW2aNc9r1bnAKQqmjWiFZpFqZ8UmkW4T/d0SMsWc2xzEic9475vZN1OQd26tRgt4DgUduA9u6WKw1ieH9/3oN+Sd51bQXioPpULGlmv8OH+8f3BayNIWcVi+bEcpPrFMrd/fKdMb9u3aU1SkZTsUmRCL0wfCysS7GJ7OZlCt+8hGkMPfiIrvUprvVtoe3xBxc5KHUmGLWsC3oAbMvE2vTNcyhqrdR8tP1e5jDnGnUdw0xG0F3lzmueCDTpbppwkrF+msXLrxU91L3gbIXqGo+8jdLKPfD83x3VNz88k3pL0e4niLXh7mpo2hx4HoZFlPYvjfngPRpYRqNEiLAe+dQvrUFr0YrhTpOLAnOYve56FUOFstJ1iwOJzeZG+BU5M5xeG06+uAjoPyJJafaO27p2ZxmY5lxVq3jeLQus+hOPTE51IcDvLPozj0sudTHHrZCygOB/AXUhwu615Ecbgc/IzOM3uKH6bpwJrttZwONKyJMF/ffFa36oaprfptkX59gs/qHvmsFnzGRTr2jjX1WLqfxRuYe/1UQm1gVnpRrbClbYfiFtrszuxkZWec9s2tUTQt34cr5r+rrF5P9RXzk0IWddfb/UDHcQ3xbiiBddQR6zFHrCOOWHscsWYcsTzz6FmOnnl80BHLM4+HHbEecsQ65Ii11xHrUUesg45YnjbhWR8965CnTXjqa78j1iOOWJ663+eI5an7hx2xPPXl6Qt3O2J56mtQfaGnvjx9ztOhz+RpE57ttqfuX+OI5Wn3nro/4IjlqXvPPHr6Cc8+gKe+HnfEOt75tTkmnIfg1SQ15p9I8MH0EyWw1PxBKo9FR144nTRtIj6L6LYXiJYJ3Iz+8ftn0buGoEVsPBqozGLGVsLOQ6lwUUZ4IehpJcP3WsxQO4VzeMfTSmcJWdQXWK8GOo5riHepr7mOOmIddsR6yBHrkCPWXkesRx2xDjpiedrEEUesGUcsT5vw1Nd+RyxPfe1zxPLU12OOWJ62uscR6+lQjg87Ynnqy7Md2u2I5amvQW2HPPXl6e897cvT53jWR0+b8Owzeer+NY5YnnbvqfsDjlieuvfMo6efGNT+1+OOWDxNguNqniZRY9itCT6YfmsJrFxgpfLY52kSE/FCotteIFomcDP6x+8vpHfdpkl4V87xDjObFqm5q2jeVA9iTRDP+Mwfl1edqcP0kwk+y3vks1zwGRfpLN896nEM9Ydy4jvEb4X5ea4zvaR2ySm9qN1glpZ3g8XAh4Tlgk8u+CxgLWCdKqzUbk/+NT78LtWUlfEjdfkgFh/+lkN69r858emmN/WJMWPZNwwx3AE0fDghHloRBO9bIB7pf72TIO4C/4vORxLqiyg8fOU3m2lZMS3K2iT634XDV36rg6n0zL5RfSPCZYd8FSa3aRYXQrmyWy5kSGFhea0keiuL4QJ6w+Oy+wCUHR/yYjRF9pOTDFhGgTBiYPsx+g/VsJ8PN9Oysv2sDDr/bwf7+QjZD+o4ZT8rKQ7tJw9zMTGOd8hX7RNh+lTfiw/RVbJnYb6vTXXP26FYRz3uxD+Ll84w8JcwqAf1JcwaisMvYaYoDg8P4rYBDwzaTHHnQxzqg0OD/kYdRTP8NNg+0wXiiWXIh/DgASd8wBweaMPDwjUkK79LtaVrCrDwmAJ1EFeT6N/fuS0k1se/bc7NFx6UbTrp0daekRFeCLqfz199TNXjl/zqA/PH/Xz1LWg7zPex9wEdx5UZ6mPcQUesRxyxHnTEOuqIdcwRa68j1sMDKtceR6wZR6zHHbF2OmIdd8Ty1NcRRyzP+vioI5an3Xv6Qs9y3OeI5VmOnv7LU18POWLtdsTy1JdnHfLsT3jq65Aj1oJfPXV+1VP3r3HE8rR7T90fcMTy1L1nHj39xH5HLE99efZXX+WIdbzza3MPRefuYBzy2ZTgow6LU/N+OOfAY2mjiaHHy5AaGeGZPPgO8VskS0V+ycuQVPmkLidqizg+Xafu1oT4fBphlZ37yCh9tzw6bhkwES8iuusKRBsSuBn94/cX0buiLQOGbdUIp554+QjVmFKtWj4yOsVnZY98Vpbks7xHPstL8lndI5/VJfms75HPesGnj9Oh42Xd2KmaDrX8nVaP31jKpSAmH6C1VcSxCx4uwLK0vOx1dNG3flXTycvpZZvhCHlg0Vw6lDeHNHzGfQy4xPbIorky5BDHywPY1PIS7e8tmk13rPOslqnsazb1oR+fb493dLLt41n/FWyj9AFQht8K831bHdtfRfw4f9i8lT8ejz0pagVR8V0W5uYe4xr0jjdLTFC6OgdtrqH3eSgV1quNIhb4pgLUjVowW0lx6JmqHrRp+al60CaWFVs+tjx8vzWW+SrBx/I2JOhXE9Yqkc7KpRu/hki3nDAyeo9eZZ3g3ST6t3U8iTqnXfHCGsUbP032orO3WQajfzvIwOd/r4I0Kl/LQR7Uv/2N9en2Av7vBc/684s0/yD4c/7QVovOQF9FMhj9O0EHfKb7GpE+FLxj215DcWsStEsoL+pedrRFPv99qkveufyN/lcS5b9SyICfj2/vIgPTLCmQ4TeEDL2d/86enUuJS2KlwCkKpo0o9Hupn4KltlykK6oxmLbX898nC3gOBR34XiJLF4O1ajX7B6X7I4bfCtr75aFUyNhyjR/nj6cUVEvRFnFFtbQbnx7Pfy/qqChnwekDpc3EuxiiJduhB9Z9xSEAD9NTw48YUsN0o1N8VvbIZ2VJPst75LO8JJ/VPfJZXZLP+h75rBd8GEsNm2K4p/PbJPpPgGPnq/Jw2klhXk8yqFlCtavP6NVs3xkij+pjo7NK8EZdckN4dkVZU1e6In91Pey2irJed5JlVdfpqbPAucnhK5LzUCqUbnIMvyXyUKfJ6XYtb70hMO9vR60gKr7LwtzcY1yqZYnhcvq7zhCYL0LNQ6lwHu9TxaD2qfJlkBdAHO8nxW/bqg6BLT9Vh8BYVudTHO7hvQB4c5lvE3wsb0OC/hzCUhcIW7l045eq3Yah0sXwBpFGXRuXFfyGML/WxsAdt3Mcsc4VWGbTfDFvHkqFlWW9keG3Qk916IQ3Sl0sGwPn/XwhS1vE4WQnxiGf8wUfhTXtiLXZEWuLI9ZWJ6wYbl3AWsBawFrAKollcdhmn0tx2H6+vPOrRkRF3+qhfKk9NZh+a4LPVI98pgSf1J4Z/jU+/K5ojxDytPxg2816UxfEn5vgg+n5tqAc0uGi53cNa544ese0d3R++aL3X4PvmL5nuDiPqGfLF8s8Ajwsrsqifux7v2/DLB/sp5iMhltUf5B+R+dXtdlF3yYhRrcyuITKYCvEqTIwefjbzp+EMricyiAHuXA8UVRvcsGPbWRY0CMe28iLOjLh0omS74wCfqgPlPnuAn7XAr976bYutLu889yj3a1Udof1le2ubL+7jJ2iTpSd8ixVLrBQp0VnxQwLesRrEv2toszL2jmXq9G/rGS5OvkTWa6oKy5XNZuo2qGUHWB55Z3ndphf5kWzr4iVw7sy5ZoLfC7XVyXK1dJjuaJcXK5G/+qS5Wq67Ee55kBQplyRnstVtd9qn2g7zG8nVxGW8tGpWWVVrqlNWkZ/IFGuamY/5YeN/vAA+GHUVZlyVasfZcuV/TCW65kUp1YZ6vpotTEv5aON/rgoc+7zs18okk/pzXlBc1uBGCtE+kBpM3q3ogDLcOI7nJhnlVt2h4OeAjU8rhJvEipX1TQH3n08Xb70Qojht8J8k6gz9dit68lTj2cIWcpUpW7NYh9MNYbLC8TIRPpAWJl4h3E5yRHf4ZqomSpve+UW+hHaooomxCMF5flyoCmawSzqXRhek+h/JtEKdRutsbe+QNBjzzgPxfm/gOLUihLzwdYR9cWto9G/o2TraLz70Tqijrh1xNWwhqBnfV8k6C8EGp5VugjiUlX6AuLTzXWw/eeCjxp9q9642p5cxh6VfWFv4HyKU6M5ZQtG14+ZEswP20KqLsXAuknZDuqmHbrbCdbL84lPyi/FkLIFnF2w2bARwEY+iJkIZ1j6oXrp77T0jXrpz7V88lbHGAwby7aCzdyFOrGgugqG3yJZKvI70VVYRPw4f9xVGBaytCkuhnuBjuMa4t1QAmvGEeshR6zdjlgPO2I96oh10BHLU1+HHLE87euII9ZRRyxPm9jrhGXpveR6xBHL0yYedMTytInDjlieftWzbnvZagyD6lc9bcLTf3nWIU+b8NTXfkcsT33tccTytFVPuRba7VOnL8/+qqeP9uwDPOaI5em/BtUmPP3EoLZDnmMYzzy+1hFrwa9+Z/gvr3LMwvw5t0HR16D6nEHtF+5zxPKsj485YnmW4yD2V7Mwfw57UOzL068ecMTy9BODOs/kKZen7gfVT3j2yZ8O41rPdvvYgMrlOa71LEfP+ug5hvGc9/XE8rQJrkNZ529cJ70Fnm+DeKS3W6LUOnaFtdu7xyFNAAzErrkOfXdGeCHM7WsEwh8v4BdDS8Q1S8jyrpUfeNmlW566PaP0Jgu/KzM2UWvapqvFJHseSoU71R4S421xuD6/iOJQLyZD/D2b5BuuKV8Z/SF+W9DzV3Fly2IyzLUFtHe1J4y/ak6dSByfi04WHi6g55v/jP4XOopXX8/g7uPlBfxQvtRJxpj+rAIs3OOGBwbeWSD7L4PsfLaLOlNEHYtk9N1OHTB5UuefTIh06wv4YF6xrO8Ic/Nq9L8u8qrqH9Ydw7G4CnVnTO3hQh3xHi78irMh6Mvsdsd9oXyqNu5vO4viUMfbKA7rFe8jVXv90O54f9cmgRX18OHEjZmTJXgifZl6nQs5uG58sGS9Pr2AH8qXqteYvmq9fkWB7P9nxXp9upBvEOo1lvUdYW5ejf6Pn2b1OvUVS916nZMMuZChbL22tFEPfLvueRBnuHjo7drOc5PoP52w5/PDfFlT+u2275xvKcW9v6l952dTHO6n5f36Fwo9oFx8FpvR/y3o4WNgg5aXQHL1aOsXK1vHvcNs66k95jFwWTxD0OO+c9NJm+i5XPBvxEKd8idCpqNhQY94/A3El0S7YPKhf7uQZD+nouwbhezqoGisU092FGw2iJ9kcTt1ToInp0U/M1xAb3j8tff/J/SV8vmop3HCNPr/TPgD5T+rfuV7rsiX0ul5FIey4+llhs2YPdbPF5zqL9ut/Nthvj/k9gbrxrnER/Uxyto/2tCnhjTuogLcuzq/bF9LOwWj7EvVmzPhXdX2nNsbtK9zKU7179X3K9yPVO0uysXjQ6NfA3pItTdO9rzM+4SQqm0/f9uC7QH7Q2WzqFNub0xHw0H7GcNrEv0WKANub/A7LD7x7ayKstepb++n9uZMoCszLkLcM4ne/EVRe2N4TaI/V+grIx5YD1BP3N4Y/QUJf6DGU6n2ptt4yuRROuXxlLpFS9VPo+uxfi5X9RPzz/Wz7HmqKd+KtsvtDfrD1Bf8ZxOfMwWfsvaPNvQuam9OJ1zEQrtI2SPWm7HOM9vjJQl7TNWzGFjnyn7V/IayRx7zoOwpezS6Hu3xZmWPmH+2x1ReY6haV3ksjraaskdun08XfNSJEnzKDaaNef3pobl0E4CRdX5tTQDH/xV0XvpIAsNvkSwV+Z34znCS+HH+rOyqnc28BJ5ZK4iK77IwN/cYxytqo0R3Gf1d52zmmhc5TKkL2yxYHF43soTicDZpguI2ANYrgY4D5xPzU/VsZiyrdRSHqyXrgTeX+aTgY3kbEvTLCUtdHGbl0o1fQ6RTV8bge2wpxgXvJtHfCy3F3VPFehhP6MHC64WcXBYWH4PZa82LQCbLehrDb4WePNsJT7Oc+HH+fDyNcVlKqEaDtBiWgmRIP0p/c+ldKdJxYE+zgd7noVTYyP0mDGrOmK0ph7hJipsGrNcBHQflaSw/sTbsprWCILC4HUW5lafJKQ499TTF4UlimykO7wvZQnF4XsxpFJc6ORU9++kUh56d17kt76/reBKzDfZUeSgXuIVV5b/Qbxm0fsvV9HedfstGep+HUmETewwMymOwNU1DHPdbNgNW1X6L5aeXfktOcehxp4E3l3nVfssGwup3v0Wli3+3RJpx+tviY+ixJSp9H7rht0JP3u1Erd9A/Dh/Vj/VDIOlbYu4UXjGOOSjRvsKi2+1Wl1S5h4PY+OOymSBGEMifaC0XFV5AK/udkPny5O0JstwSJt5k+jfJSYdU+ljKGP2J7ux69XslZtImf1qIUtbxPFleRMl+TiaagxXF4ihWtFAWJl4h3HKVLE12V7AezjoESGbqtG/L7GeMCLSxxHnZ7O5vPlad0yrZM1JVqYZIVmN/v0g6w6SFU2V++T5rCjzqtQ0yY60iVC6Shm+11Gc08SP81ev/4glzVpBVHyXsuJuNecS+rtO/3ELvc9DqXCaOmvYgppRHaE4nNXOKQ53nlbtP1p+qvYfsax4lLcZ4k4H3lzm04JP3nkeEvSbCWtapLNy6cavIdKNEEZG79UOSMRoEv2fJ+a9kBePKZT3WCnkVOMH9jQ17fWlZT2N4bfC/LKv42m2ED/OXz1Pg5aCXF5CqEaDtBheApIhPXcnc/p7lUjHwTTWJJm/1CnuaH2f6zyrPcptkjsH7JTPbov0Rqf4LO2Rz1LBxyy5BeluobixMD+vFoce60aKw5WGWyluncgXz0cpzA0JzI0iLpbdgdZcummgywp+Y2iId6zTaSGrlR16AO7Cqtq2JcEH0/OcIKbrNT9KZtWvwptyvj4ymyb+UzcS5IBrXXs+fv3A6Gy6p6i+4RndJqPSM9fFqnpuCz791jPXqa2OfBDrRqCP/1L3DGM5pdb3Ld2ZEId02CPANXC1B0PhG0Y3G1za0nkrskHjxbcu3AY2uLw1N/9lbXArxWHvcjrMlTO19o9lwPkq+k6tKF9Tnbyocd+0SK9k52/YtiZkjyH1DRv3XPth88izm/1sIfvBfRXKfmwdpkn0l4L9nE72gz20fuQ/Va+xJ2ejr1S9Vv6D02EdXVFChjOEzG2RHvcOcbpebUPJ3M02nkm2ofZt5YDL37EY/blgG99NtoH+k/f2oszcB6yq56WCT7/1zP27sxz5IBa3b2r/FurZykl9n7aN0p0DcUW3cOP+L7WXUeGXbd+2t3TeimzQePHe9mVggy8iG8T0KRtM7VHlPY5qP6Iqg4zkHi6gL9r3e71o31L1FffgsS83+psAs8y+XzVaTtli1X2/Kd6o5+0FvIeDzn+Rrdye0Kn6NhXzwzo1+lckdKp0lNJpt/3CvD8V88zf5G0WWKkrppROMf+bKf9G/8pEP2yrSK/6DtMki+qHIf0aold1TPVNuI7dV7IPyX0bnFu4jeJwboH3s+B6Bo/FcK8L72fBuYWc4tReF7X6fibFqW8PcG6hSXk93Hnocd1B7peZJtlQv1nBbwjl2lNcoR8lPtOOfKYTfDY78kGsSzq/aszGy9BV5w0wfWpsONYjnzHBh7HMJ8eAfSL+vsXofxDq9cc3zMVUV7SNwbvtibxyfUYsK7NTdUXeafX4Ja/IU7csqlUk/m4A44rKFPmo3ahV5RoLs/NOnVn8S2fu3L/zql07A4Um/X1pgYjriG57gWiZwM3oH79fR+8aghaxT1bVO5V8lvXIZ5ng0++pzmXEJ4d0ONx5Bw13UlPKMdzZ+eUp5QDDnV+i4U7Klebwt/FLbcew9EVbHIpc73vA9e6g7vA45RnzyTIiZlPwjeGWAhl+g7oqNV2j7KoY1gTJE5+tqzFCf1fku0XZrAVuelAGtfg/RnFlFv/j8xTF4fCNP07BYch6isMhxAaKU59CYr2z0KC/UbfRzt5TYrPBRJhfJtMUh/WHt7BPCVwrZ+ye96OpN/wWyVKRX6bankaYn796C+NYE1griIrvsjC/xDOQDN/xoGCM0tXZglNzG26uvL0Fta2FaygOTrmmYa2vugUHPwipsgUHy2qa4nCAydtmsMzXCT6WtyFBz5+xrRPprFy68WuIdOOEUdQKxXebBO8m0X8SWrb7C1q2LOgaxa2ryV7UurIMRv/pROu6DtKofKEdoP7tb6xPtxfw/0qH/zc3kLQ0/yD4c/7QVocL5F1HMhj934pJm0aYX5+VPXKvG217A8VtSNDydkO13QttkQ/x29gl71z+Rv/PifKfEjKkNrGyDEwzUiDDl4QMoqW4ZNfuwwXbknmcxJ6dS4lLYkrgFAXTRrRYs17WDtcO9a7IAmLObdntxLDzvpl9RVuyuRVsFfAcCjqMF8gWwmyrVrN/ULo/YvitoL1fHkqFjC3X+HH+eOpBtRRtEVdUS7vx6XGXfVFHRTkLTh8obSbexRDNeXc2l07NbOXwrmj6AhtCxLir89sk+manY6FWPNTuD2xYyqzs4xCFh1vqBGO16o/Df8MORIcOzuIqmK883Qnzswhw4z+1Q0itbBt9t5XGvPOsTkjiGTmcDuBVghzicFriHRVXaHmXgNGvTNjLOaE4jzFUPX0s7zyfytPH7un88uljG0APJ+H0sYsXTh+bf/rYmVAG/Tx9LBeyq/qGdWp7YgdNmV0IiHsm0asVUqQv2oVwkdAX+7OquxCelfAHp2IXwik6fewFp/r0sbzz3I/Tx3J4l7J/tKFnkv1jez5NPM9I8OS0yKfI/vmUCKO/MmH/akcl6mkVYRr9VQn7V7pM2X+3PkKqj8R1A2XHHQ+GzZg92v9lyv4x/2z/qbzGUPUkuLzzrE50PZ3i0P+yb1V93hzepewfbWhLxR3f/NWB0b+8on2p1dSy9pV3nqvuqttCcarvyuWo2pkY7ur8ctv1ypL9LZOrR3s+5adJ8mn5qn+b8p+pHXfKf6r2kv3ng4n+Fo5JzibZt1aUPReyq/qGdWpp4muIaeK5NcGT02K9LntLh9EfTbQ3askY9cTtjdE/UnG8nmpvuo3X+UsR1Au3RSh7arxudD3WzxWqfmL+uX6m8hoD6yY1vlftDfrD0ygO6wb3ZcrO83Qb338dTsCKoZ5eD30mA1kMW81pNenXaN7SsU9cmrXfMrejffL3v/an733hRffzcn0MVkaRRSz/J0ZnZciA9idhW8WPwcKZyWCBvyRdBHG3hlmMX+5g2JTsMNDloVQ40/KyGHCtbALhWl7UFCdOJfPuNkzPE/7G9x2gm7fD58mIzbLF8ErCM9qfJ90sBrwK9VluzzAsKx+MGwZZ3zlajw5tgXf+sv8wjF9O8GoSBvoUw2PbtbLDs5PYF0ExnbADfMdbmjD9aAFW0S5Me9ck+vdCu8O7MMeEfCk7RZnGKA7n11kPio+aj1Z64K0zmM7K0Gy45hJI6TNBDb8V5ue5zpLLOPEr0ovlr+ZBSkszSo/81HmtpusJEWdYtstzuACLz441+g93jIi/QI+Bb3VUBzKpUw5jnfg9qt9qaa5MOSNuO8zPO9sjrjPhVsOPjs7NyxjENUTaKzu/TaK/dmo23f9Fvgfbai4ftk37tcBjC0tftBDN/sXoPwH+hRfDVV/kSsAcK5ChKfjGcEuBDH9ObVk/ThEdIXlM5jyUC2WWjOvJnX2prP8yfK8l426ni7H/qnfqafZkGX+A8piu2yLOsOzr0aJD+Sxtk+j/lvxXm/KEPCwO5cV36L8+S/5LHeBX13+lfHw//GQMfGoJ6hb9VrdyVXwwvdH1aGMn0rdrpQ+bLP3Sevyf5L5nDNiefJXak0mI474b+lY+VHI1tCf/Su0J+mOzmYlQbENq+3WRTw8h7SPUZwrjBVhFfWA+ndDon0r0gZUPS32JNC74ZQX8lY+1PBdhBfHO6LH/zSdUtYl2iaAdEbzyUCpMGhZ/0aZ8bI91aZnVhWUi0uLw1A8+zX0F0F8LdBx4fgRljrbyCZqvDgKL/TXKxpjK5m4nWsuzKsc20eJpmqyvWwtkMFz82uumzi/f87BpbBZ/Zed5hHhVLNvlXH4YuPxYdxxU+ZlcsfyyjbO4TMc8Uc98ggf6ZJ57UmdPR32ddYr0pebfLJwKffH8TDd9WZzld0ik4098+JSYPJQKr7D0K+ulf9DSr6qX/hDPyX0M6tv5pA+e48P6y+NmXJPk9DHwOMron9HhGW3hKrAFTm/2MELpK9r2czPCC0GPWwy/RbJU5Jexfowf54+3uq4RsrQpLoZdQMdxDfFuKIF1wBFrryPWjCOWZx4POmIdccR61BHLU/ePO2ItlGM1rOOOWJ42sccR66gjlqf/esQRy1P3nrbqqftB9V+etuppX4cdsTzL0dO+POuQp3097Ii12xHLM4+D2pfzzKNnf2JQy3EQ+3LxeZUTVgyD2s/x7GMu9Ce+M+qQp5/wlMvLvuLzSiesGB5zxPLUvWcfYC88o/5sDg7XIHi92Gj/kOaBa86VXcxzUYaB2GtrYmeEF4KehzP8ccHP5GqJuDL7R8+64Hv/6LPtn/zDjNKbLPyO95ipz9fVnF6PxwV9v9objYfHxIDzrmspDvcnmgxxvvVskq/m8QHfX0Z/iN8W9C8Duipl0RZ8Wo5YkzWxJsN8X2j1UO234DUeta4Wy/Hq8bl0aG9cN2uuhV5Ytm4avtccudq7kpojXy1kaVNcDLuAjuMa4t1QAuuAI9ZeR6wZR6wHHbEOOWLtdsQ66Ih12BHL0yb2OGHF5xVOWDE84ijXSiesGB52xHrUEcuzbj/uiOXpCz3r4xFHLM9yPO6I5WkTnrr3qtvBOY+eNnHUEWtQ/YSnXE+HPtNCm3bqdO9ZH/c5YnnlMT6vcsLylCsGr/6Edx6Pw3MWZseHah7Nxvj83dgLO2NttWevwvj2mTxeNQzEXlMTOyO8EPRY3fBT+8taIq7MPNp53/3J8//gEyP3ZpTeZOF3PI+m5lRS82g156kuUPNoPFeG82hrKA7n0UwGNY9Wc070gjL6Q3w1f8zzaL3M3bccsSZrYtk8mmofxzt/4zwa7/1dJvKD82i8//zG8Vmaa8fnYqFNFu3JjoFvc24n4iYFZuR91/jse/RX9o36tRDH+/dXinT2N75DW8c04xCP9LeDbm4h+cbhGfOJ8nF5YbqI+fLxYrplCTosl9Teb76dCedH+Tu+buUyEebbF3+HhHO4DfGO68uYyO+4SMdtB7ZlFfxNu2zbYfitMD/PdeZ5lxO/Ir302O5OZJQe+ak6YrpeLeLYbw0XYFnaJtHv7diN6qsU7aVHeVW/J9rjAx3ckQJ581AqXNbjdwkvVWuNFdJf02M/aIK/a3gMfNVhqrPY/+Crh9CXpPoibZGe1yfwezluL8aFDKo9w+8xn1oylw77TVnBr+WD36XWvMwPxV/rk3eOw75iZt8Nr9qxZ+buG2bu2jOzr0ES8EkZfHnKOpJIBZOSD4sfob/5tO02/T0pcLrxHC/ADqHnVbXpst6WV9VqXiaUXFXD/LG3nazHL88oPfJDTJPHdL1exBmWuioCsSwtXxXxZvK26ylPyGO9kBffobd9E3kSlJd7y0rvbYHbFulZR2zbMfRYXo2y9mj4rdCT/Wcp+1B6UfZhaVW5sv7LlmsKK+UPyuhP8TnJ5Tw96OVs+Vtfj19eprxRHtP1BhFnWOqaFnVlDF+R8h7yO3zNFPLYIOTFd+h3fol6eShvpMtDqTCidF0h/Xep67MqpP9uS4+XvlUpazXiwx7Sb47P4mJ/Q51YEcN1nV++7uhH1s6m+y3y+ThKK+MnejslpPxJYYbv1W9QJ6Sk+g01/cXSMu0lysMjdNZt/Gf9zuECLJ7xNfoPUf1ln4s8Uv2cGLD+vp9sqN8n03yn8RkX6bh+1bS/RWXrF/fLa9bnZL9c6UXZO+92wzjWf1k7/XbE6nf/7CTYX2n/fqrsr8f+59Iy5Y3ymK6nRBy360XjwqJrFP+B/DuvJCEPtbtbXZYa/fvfJMaF3DZVHReqE+K69YO+OK55lu0HGf0V0A/6col+UCqPqROu1JgoZTdjQnal+0mK8/RHrZJ8yuQnxedU5idVF7AMrk/INUVY67pgvZiwMP06ihtLyFz1BGBMnzppeKpHPlMl+Zys/KylOPxKhX2XKrt1CRkwPV8ezpd9ql/jw++Yj5K5m49ctWQ2DaYr8pFXdn6bRP8s8JFrO5hKz5z/VF+i5pdCpfsSfLF4r30JZRepvkTNuZ4TfYlucz2sa3U9sGHZ9btl53qM/oxOWXvP9WymVZ6TVU8mHPkg1o3Ep6g+nk/1cT3ElamPRr8B6uNFJeqj0s1YIj94mjTHpfxyqq5MJeiVrat2nG3dMGKweodXTffDrxh+K+g6kYdS4YRfyYlfUb0RlzFfPLP3wouefek3likP797HOjXcpcgU5Gf6QH9zuihbk2gmBI8Y2H7WER2Xu71n/DIydaPtFq/qzQairdovwfRjBVhFp+1a+fCJ9Zd26rk6bVfVT7Sh7Ym8TlC6iQLZY/xIwfs8lAojJq/V7dESfIt0hqfoF+nsqh50xmOuujrjPIwEPZ5PzTfyF+LoG9n/1duZmf1VWf9n+C2Rhzr+T+2MVb6/t52x2WcySo/8EJN1vU7Esf8aLsCytNx+v5z6VdwXRh5lxyPf3LF4knbPWPn0Nm+WfaZbf+lu6i9NQRz3l1AOXvMYhf7STuovpeoZtzfqN4Ry+sP2iMecalymxrZcZ5oCMwY+idbod3fy3uMuc3mjB57WwOWC/ntPhTGpKlOj//qa2XT7E2XK/QAs09Q4LuWf2gl65V/UmmJq7NPbGLK8Lzf8VtB+KA/lGFre1RhQ+aqqfVnD/QxkCOXv1pfldKovu7SAR1HdY7uaovfd+rJKpiLaqn1ZnOfkuQC0xZR9qraJTwiv2Q/Mue43gp6XYN23QcYy/UbeH8D4PG+Nt3so3dwI8Uj/A9DPvLaz8UOVxbIC+UIoVxbqS49+rw/yzt0xRz6IZbpVe0nivzyUCp9Va5UV0v+sunGmQvqz1M0EFdL/turHV0j/W6ptr5D+mNr/VCH9y9Q8TIX0Z44QfcX0z7D00/XSf97Sb66Xfrul31Iv/fss/Wn10r/Z0m+tl/5rlv70eunfaunPqJf+SUt/Zr30maXHG++rtE2W/px66Rsm7zZ8KWQyfPOrZwF9Fb+KvFqEVVH2LCU7ysd+fBvwwzwWYW2riDUi4uqUydmhOF+IP56QheWMYSfQ9ZLnGPY4YcXn1U5YMTzsKNeEE1YMr3KUq+2ItdQRa5kTVgwPOMq13BFrrSPW1IBirXTE2uCItckRK3fEmnbE2uyEFcNrHeXa4oQVw0OOcp3mhBXDqx3l8mo74vNWR6zTHbHOcMRqDCiW9e8nBDbPWTUEn0aCT2o9pQE4ak7IvtvheYgY8lAmZF33gfwLzYGn9q6izLx39d0wB/5vNAeO6W0+R+l6rPOsvujmkybwi26ex+Zbtk2upxJyIR7rqyHecTkreZqUj1dPzMrS7DyPAE/kn4dS4RxVvoalbjSvMFY5B2Wy0KB3iO91MrGqY0r3lvdFQpY2xcVwP9BxXEO8G0pgHXXEeswR64gj1h5HrBlHrIOOWJ76OuaItdsR65AjlqfuB9W+Djti7XXEemRAsTxtdb8jlqfuPe1rnyPWw45Ynm2aZx3y1P2jTljxeZUTlnceH3fE2umIddwJy9J7yTWofRNPX+jZz/H0E57+a1D7hVaO42Gu7QZ47nGsNoT1AeXEd4jfCvPrkddYDWWoM1aLz7xnSfFRY8KM0neTayzMzmF09n9dOnPn/p1X7doZKPDRZpcWiLiN6LYXiJYJ3Iz+8ftt9E5lDbGjSt+8epZPfG/TEQ/QFERN05NbMA1LTfPwVEvVKbVxwYexcNuUOuDP8syf8eahVLjS0o/WS/8ctW2tQvqre9yadEOPW5Ou6HFr0lVlPh+oefDpNWVdoeF7fT6gDqBNfTq2SsjSFnFso6sEn1WCT1vEHXHEOuaItdsR65Aj1kFHrD2OWDOOWIcdsfY6Yj0yoFietrrfEctL96pdGxRb9ayPjzpiDWp9fMwRy7MODaruDzhiefqJY45Ynj7aU/ee+hpU+/Lsm3iWo6funw5+4nEnrPg85oi13BFrYgCxYrjXUa62I5an7lcMqFwrnbBieMARy9MmVjthxXCfo1xe5egtl6etDqIvjGGXI5aXrcbgVY7ecg2ivrxtdakjlqeP9vRfxx2xPPtf+xyxPOcUPPvknmMFz7lH7t/b3DWua+H6DR8BYvTndjpfI2G+DVeYf78udcRMj8eLXJcRXgh6LYGPHFHH+LREXJkLPy/6wqE3P//7zvp6RulNFn7HS6Hq2J7UsUY1j4u0Ox7n6AePhowBbWSK4nD512RQF37WPBrk6jL6Q/y2oL8d6KqUhcLaXhPLLunEz9Ss7pyq9dZF8IxHyNnaa5Pon9Gp++o4NHWUMtx/Oe8IOZRpktKpKyVi4DXGGPKgw1MUDM90vljwQp+ItM+BfF+/ca6svN5pz82C/CwjORmjSDe83o95P+1P//vif/3lH2r+xp8/uevg185+6x9e8cT/8a7ve8vHzn3uYzf89Y994WrO+1BCdpWvVQX5ahTkq4xuJgQ223zV9m5cyDwu0nE7U/My4omy7Qy3JTXbzOSRd0ovPbajS8r63pNx5N31nTrYJroYbiUeVY68u7o9V/Z+HXln5dNjv2lJt0/DXtqexUXdmq/HtCgHH3n3U/Bp2G0dTPUJFpcvtzvYnsTA7SdfFss03BYZ/R3gk3dMzcVcIvKc8jNrgAfzjeGWAhlmqC9c04/IvVisV9QD98ljeGHnd5xkZFz8DSFtx+qyey9/Veaye+yfXA80XH5Tgv7GBL06LhrrE/dV0J+tL8BC3tsTvDd24c3HxuJn+hsLsJD3dQneeRfefEUFftZvaXs8Xun6Ho9XurnH45Wu5cvsb+9MjkcdHibfaWObojr3os6v6WsYZFpD8g1DuoZ4x20Hph8GOVCuX1s2K/ujFWW/qgDzg+1ZzNeQf8soT3koFW6y9EP10r/afBrvuUXZeItyHkqFNZgnC6oPZ/gtkqWuT1Rb0zF/vO9wWMjSFnFcRlXtDuOOOGGpsh8EuWI46oj1GkcszzzOOGIddsR6xBFrvyOWp74edcR6rSPWQ45Yex2xPHV/0BFrjyOWZx4fd8Ta6Yhla1BlPp/CtqFCW1r68ykez2T1+J1ou4eIH+eP2+5FQhb1+RTP0yo+qo+QUfpucjl+PmWQq4lue4FomcDN6B+/X03vVNYQGz+f4iJAOjO/YcLOQ6mwoaz5GX4r6CLPQ6mQpaql+qrR8r5YyNKmuBh4a89iwWex4KOwHnbEOuqI9aAj1l5HrEcGFOugI9YRR6z9jlgzjlgPOWJ51iHPcjzmiLXbEetRRyzPuu1pX55yeZajp1yefsLTJjzL8bAjlqe/N796sqY0q/ZpUnlUSwqOXV0TcT3R3ZgQjXEz+sfv19O7oq6uBVZ7fObdE6xOVrcq6l5n64YEr3GRzvJlXfHFJHseSoXXZYRncuI7xG+F+Xmu0xVXZqj0og65tLRtEcdfjy8RfJYIPm0Rd8QR65gj1m5HrEOOWAcdsfY4Ys04Yj3kiPWwI5an7gfVVh91xNrriOVpX55yeZajp1yeftXTJjzL8bAjlqfuHxlQLE8/sd8Ry0v38XnUCSsGT1sd1P6EJ9ZCH2ChD9BPv7rQB1joAyz0ARb6AN2wPPU1qLb6mCOWp74G1U8ccMTyrEPHHLEGta0d1L6JZx49+9Ge5eip+6eDn3jcEesBJ6z4nDtiec3fx+dpJ6wY7nXE2uWEFZ+XO2KtGFC5vMrRW67VTlgxeNqEZzmOOWJNOGK1HbG89BWDp19d6oQVg5f/8vbRg1qHPP3ESics7zx6+oncEctT954+x1Ou3BFr2hHLK48x3Ocol6ePvt9RLk9f6Glfnm2HZzl61kdP/+WlL+9y9GwfjztieY5r9zliea6Bec51eM7BeO6NsnkTPjXmvM5myB73F77B9u+14GUW5mKP1sTOCC900uM7xB8X/Eyulogrc1rdV6665n2v/4sv/F1G6U0WfjcE+PHfmKBX+yBNV+gbKujquDqtDi8gjwG/zB+lONwDazKo0+rGaspXRn+I3xb0fFpd2bJQWNtrYtlpddgvsLpzsvYLnyw+KSx1gp3Rmz6GBT3iNYn+2R2fFP/eOTWXn/pUL4h3Q0Qfww2d33ERx74Ky7WCfTfL+ir2RzX97ol91i3ix/mzck35RlU/+OSwXupaP7D62O4sqtrutEJPtpOl9IL547IcE7K0KS4G1r9qk8YEn28XLKz/qW8pypSr4oP+cDHxWezIB31Bi/i0HPkg1o3EZ9SRD2LZSXHcj4ghD6XC9/bYR1pteVwtIvl0OGVTePIc2wGe1Mhlh6ekcV8VT01De+bQoL9RD1GWmzbO4jKdhQnBp0x/NVUHh4T8ljeUGU9ifGBS88RTCdG+sP+K9D8Bp3w9OFmcx6J9uU0hewx8qqHRH6AxE851VLBDeaqhYfXYzx4oGy9rx5bXyO9NNe2Y+8ZLRD4sbkLkQ/l6Hougf15Ccdj2T1Ac+sHbgA4xY1Bjez5xcTiRL5RvqASf1KevQ4JPH/vPS8q0MYh/svvPPfYpx7Mw3xbU+Jfr1ZiIYz82HNJjafZjP9FxQJ59suiD3zo5V/Z+9FmwfHqcuxrv1k79DLVToxCn2imTg28mfx20Uz9H7RSm5/LluoRtYQxFcxjDgKtOXGX5fhHG3XxisMrz4oTMaHMhzLd5bluN/l3UtvJpyXkoF1TbalgTQddhlL/q2BTTc98O6wn7yZr5K32yl+G3wnw/UsdPjhO/Ij8Q39lpqp1jBa7atePuS3bs3rv/vpkhhA7ze2aoFUTFd1mYm3uMa9A7pruC/t4u0gWBHeN77PVV7pmxNWHPjHvaeA79K4GOg+p9WX5irX7r6Cwu07GsWFZrKA57X2uBN5e54mN5GxL0SwhrXKSzcunGryHSsWcYEelye/iTW7/+l+9tv/XIoSfed/TZZy7f8e63/tmX/uEPPvor7a989j0P/tl3scxByFy0cmHx6tdk53c8OzTuiDUhsEw3uFOrQn1YXtaTGX4r9FT/TniyNvHj/HHelwpZ2iKO/dNSwWep4KOwFjlhxXDrAtYC1gLWAtYpwOIZEPS1Foft1HWdX+upp86AVefEL0rIh+mNrswhqDXbm9J3IBm+1yGoE8SvSC89tt9LUu0pYpo8qj3l3WI2ehsuwLK0TaJvdoYcnnYddfYUzWioflCZckbcdpifdyufk233OL7CmY/xZZpn0V1JPPNh9Adh5qO9bK7MauYjFOgAbSgEnacRkCGE6vU15uF9G2b5YL4sD4bLMquZEbtXSc1gNSgObYFnW4vKaIrKqAFxqoz4PiujvwPKaEPnWd1nVebeRcWPbWi4gL5B8hn95o5MuCtEyTdawE/N1sVwVwG/04HfvR1+yu7QjxoO5iUPpcJyZXdYn9nu1Ex+6kDIbnbKtoh2yjuBhgQW6pRnJC39cND13vCaRH+hKPMydh4Dl6vRP7NkuTr5E1muqCsuV7XLCunLrOioHWFq9apJWE2BhTrlcu1Wlw2P69bzEuWK7W5DyMXlavQvKFmu9tyPckVdcbmq9hrpy+zcQ0yTW61YjlAc+kTmo/w36rtMmas7srnMrxFlzn1/9gvd2pcQ5s442478zozzDft27ZnpTDkHCqkp4vi8pECMZSJ9SGBhmpT7xEn0orshhoOermT3afQ3CZWn3G8MypQtPzZUqFllSi9aGH4r6O5BHkqFrKxb46m+VDVLdclPganGcEWBGJlIH7pg2d94RUiZ27dT3k2pynoXRS0H3s6H9DOJlqPsGr7RqxEy9nqMXuV/guIw3WgBH2zRUF/cohn9fSVbNOPdjxYNdcQtWtkZdKNXI24c1fOtfUspHxinZpLKVkNzr+zqMK0aWan8NnrIL9sX6ncpxRXNpIQw1xaMrh+jYMwP24K63V7Nphi9ug0d1+y514pNKNsJlj+vxHTrdaVsAUeOPBOi9gekRkBqbyPaMI/Kjf6NwgcY5pIueSvj77CbY/KofXXs79S3scoeja5He1xyqn0T+x+0M94fqPYA8sgP9Y17jJR+Wdaq3wFietzzirL/L2BnH98wl1+3fblFtvuzJ9F2TZ6U7S7sG58NqIey+8bZHgy3yPcpm0dbeoBm1ftwe/FpGeGZzPgO8Qf59uIYHgA6jmuId0MJrIcdsTxvCX7QEcvz5lXP23g9sTxvcT3iiDWoNw573uy72xHLsz563qrsaV+e+jrkiOVpX4N6+7qnTQzqjdaedduzPnrWoWOOWJ718elgX4cdsTz7AHwtIfaX+VrCqjtHMH2ZVa3UDdwqj32+ltBE3EJ0NyZEY9yM/vH7LfSuIWgxWDHhMINVpVYtlGrVML9oYReH8DjUe3Hnt4+3gb81I7wQ9FDM8Af5NvAszP/kaVBudD3miOV5+/AhRyzP25r3OGLNOGIt3JR96mz16XBTtqfPOeqI9XTQveft1p559Lwp2xPLs27vd8Ty0n18HnXCisHTVge1D+CJNajttqfuPfsAnj7asz8xqLa60G6fujZtoU9eDeuYI9ZCn7wa1kK/8NTZ1yD2C2Pw1Neg2upjjlie+vL0OZ66P+CI5VmHjjliDaqPHtQ2zTOPnn1fz3L01P3TwU887oj1gCPWvU5Y8Tl3wophl6NcnutDnvpa6oi1whFrtSPWZiesGDxtYrkjlpfuY/Cq25710bMOxedpJ6wYvOpjDN/p9hWfxxyxJhyx2o5Yg1ofvfx9DJ7tkGfd9mo7YhjU+rjSCcs7j55+InfE8tS9p8/xlCt3xJp2xPLKYwz3Ocrl6aPvd5TL0xd62pdn2+FZjp710dN/eY6tPMvRs3087ojlOdexzxHLcz3Nc/7Lc17Oc99j0VZ23IeMe5f5+H+jv7RTGXu80uFH+3gt3I9mhBc66fEd4o8Lfr1eR/rH133irr/4tZ/blFF6k4XfDQF+/Kc+4U0dDlrzk+m3DPh1pG8poz/Ebwt6z+tIX1wTq8x1pP3+1sDqsn3KfmWnLkc57EiBky2LfR5/zQDI0vnCPtwwALLYUQQvFbIYv25Hp5itKtlTB9lyvqp+jjQk+PTxu5XRsv7+2+G7lRj4IORe2v0FrAWsIiw+2sLw1a/x4XfMRx2T0e36rsMrZtNguqIDgV/R+eUDLK9cOZvuoQ6mOhoOZVR+IAv62zuu98OAizR8fZfRHwNfztd3DVOeMZ8sI5ZnU+QrBu6/G/3rqP9e8xpAeX0XH4uDNse+vibf0idUnqrrB6tdq8WWiFpBVHyXhbm5x7gGvWO6y+jvOtdq1ezJ52YVit7ipgGbD2faDHGLKW4LYL0S6DhwPjE/EbPKtVpYVtMUhyOTzcCby7wl+FjehgT9KGGp0YSVSzd+jVDcKzEMlS6G14s0nq1JP67Z6sMlf5NlvdGpuuRPXfNmadsiDg8ywzjkkzrIDrE2OGJtcsRqOmJNOmHFcOsC1gLW0xhLjSBSs3ov7/yq2Y0GyVd1ZgbTG12ZQxBr+vWxsu2I4XsdgqhmmVOHIKprPNsUFwPbh2qvxgWfBawFrFOFleonlqmfig/6A6tXJ9tf4RgSZ13+cYXmWXRdD8+6GP1zYNblCyvmyoxy4cyo0gGvOqk89XhI9Vgc61S5wknZFdLf0fllu8K8K1soe73bv1EZNSBOldEdnV++Z2QLlNHXaWYMZ+v5hAMcL6f4sQ0NC3rEYxvKOvLF8kldHTZcwK9opvDKAn6LgN9JuDpsUtkd1udeD21LrRZ3s0W+igh1zGOlIcEH9V3mKiKlX57JnRT2wH1Ato0i+ZTenK8iahWIsVSkDwksTJPKEk48lrmKCKd4WOVGv0aoPFVkMSxcRfRtdxXRZQViZCJ96IJlf3e7iohblZSKlarMWxW1Krx2bvRnCpMu4zFDmO9ZUjNuKE/qKiZ19cFwAZ+iy/W4RTP680u2aMa7Hy0a6ohbNDVDoHroRt/tOgmuanz5M8ahjqtcjhpD2auIuKem7KWRyG9KP8q+sNyWUJwapStbsHf96FVjftgWUmUbA+umLeixvHk0hN8MsZ1g3eMbBMterqlsAXui/1iwno24aAu8vrwYsFRvjq9zMfqrhQ8wzFaXvLHO1b427Obw/iHsYvA1RSg7rhYZNmP2aI+jyh4x/2yPqbzGUKa3zXtVY1A2t5ji1OpcWbtJXeOCeyhsf4Wqm9aGW3dtkvKRh1JhfUZ4JjO+Q/xWmF8H63TX1LVmypdY3pcJWdoUFwN/36euQ1sm+Cishx2xjjpiPeiItdcR65EBxTroiHXEEWu/I9aMI9ZDjliedcizHI85Yu12xHrUEcuzbnval2cd8vSrTwfdH3bE8vTRfM0G9mf4mg3Vd5hM8MH0kyWwUmMalcc+X7NhIq4juhsTojFuRv/4/Tp61xC0GNRtmmWmDlKbC9QnSSfr1s4+drFfmxGeyYnvEH+Qu9hZmD/cGZSm4JgjlmeTfsgRy7MLtMcRa6H7+Z1hqwvdz2pYC93Palie3c+nw9SFZ932nG7w0n18HnXCisHTVge1D+CJtdBuL7Tb3y5tx0K7vdBuL7Tb35m6H1RbfcwRy1Nfnj7HU/cHHLE869AxR6xB9dGD2p/wzKNn39ezHD11/3TwE487Ynlt+YjPuSOW1zx5fJ52worhXkesXU5Y8Xm5I9YKR6zVjlibnbBieDrofswRa8IRq+2I5aWvGDx94VInrBi8fI63X/Wq2zEMan1c6YTlnUdPP5E7Ynnq3tPneMqVO2JNO2J55TGG+xzl8vTR9zvK5ekLPe3Ls+3wLEfP+ujpv7z05V2Onu3jcUcsz7HoPkcsz7Umz/kJz3mTPY5YNtfBxyf/XudbqR6PnTyeOpCux8N/jmeEFzrp8R3ijwt+Jpc6YK7McfW/s/WSN/zcS3/kuozSmyz8bgjw0R8ivdojaLrCcU8FXb1GfTZmvNVx9fz5I+4NNRnUcfUTNeUroz/Ebwt6Pq6+bFkorOtrYtlx9epKhIkwvy6xPajPDVsJmYcEHz6u/sOduqyOZT9Zsthx9R8dAFnsuPqPn0JZ+niNR+lD0dj31fTxJ/Y7l/0cNOWHVV3kQ6t6qdcLWAtYJwPL8yDedihuU/gT5hjwIKwvrZpNg+mKDn66o/PbJPrXr5lN99UOZpkjS9inZGHuEQ/czlp6PCIeafiIeKP/N/DlfET8KOUZ88kyYnmq63ti4CPijf4/qc9c83BkeUQ8H4WiPptP+eHUNT2q/HrMQ1710HI+2G0zxPFB2Vsgjg80Pw3iMorbCnEbKO50iFN10UKD/kYdRVk+vW4Wl+kC8cQynKY4bBs3U1wfroI5p4xPQvxBvwqG56wG5cq8RxyxHnTEOuqIdcwRy/OKwYcHVK49jlie104+7oi10xFrUK/pPOKI5VkfH3XE8rR7T184qNetevocT5s47IjlqfvdAyrXQ45Ynjbh2Tc55ojlWY6D6r887cuzPg6qj/bE8rSv/Y5Ypnsbp6tLqDKKQz7DCT6YfrggXXzG+SgeNxlNDD2O8UufNMyXOC2uxy95iZMqn6qXOPGRsmXHplXlcjyaxkTcRnTbC0TLBG5G//j9NnrXELSIrU6v5CmqqjfjYvrUDbyjPfIZFXz6OO0yXrYKnapplx5vqx8r41JRHnVfDldLq7JFB7XzFLHRv7Gzl6Yd5lfXuveiRJ0dXz2XrujewG53Vjyxeq4MiyGuQWnRzfNptm9ZPZvuh+HZThqPNq6WObmOVl3mbIh8Kz6jPfJRyyCMpXQWwz2dX17eeFtHN1GHRScADxVg8hKGOg5LTb8bfbcTu1mXWDcmSvBGXXK70K4o61JBj1tS+NgwlG9pRVmvO8mytoSs44I3+37MVz+6T4bfEnmo4/tTevmmYJ3fajfy8pngqBVExXdZmJt7jGvQO6a7nP6ucyPvMnqfh1Kh8uIWH3K3GeLaFLcFsKreyGv5iV6syo28WFbTFIeLkZuBN5f5UsHH8jYk6CcJa6lIZ+XSjV+qdhuGShfDG0Sa1GGEZWptDDwImXTEWiawzKZx83EFm15Z1hsZfiv0VIdOeKPlxI/zx3lfIWRpizj2MSsEnxWCj8Ja54i1wRFrkyPWuBNWDLcuYC1gLWAtYJXEUpNxyygO20++wVjdHplRHMqXuuEU048n+Czqkc8iwUfdB5UV/Boffsd8lMyWH267MT9VPyrB9MsoPzj7c2PnN8ryn6s1Txy9Y9o7Or9Noj8EmxOzNcV5RD1bvljmHu/QGY/y8h062Mdhu1H1B+l3dH5Vm80boLCsDaNbGYytmSuPukdtsZCH71HbAWUwQWWAs3N8/nu3SfMdRG/lVHb2z+iXd2SKtHxTKqZfUsAP9YEy313AbzXwS90rZ7x7tLuVyu6wvrLdle13l7FT1ImyU56lUrPBqFOepbL0w4Ie8ZpEv1mUeVk753I1+q0ly9XJn8hyTd0XqGYTVTuUsgMsL9NJO8wv86LZV8RCnZYp18UCn8v1gkS5qllzlIvL1eifUbJcne7+k+WKuipTrmpxMdV+Y7maTtRHx3x7sfLRqVllVa5oK+yjjf65iXJVM/spP2z0Fw+AH07doafKNXWHXrdyZT+M5co3VqtVhro+Wq3KpXy00V8typz7/OwXiuRTenO+sXppgRgrRPqQwMI0qSzhxDyr3LI7HPQUKKvc6G8UKlfVFOVZ2EdSfh9J1WaxD6Yaw+UFYmQifeiClVGcMlVc4Und+Iot9BN0+zWaEI8UlOdTPX+jt+pV1LswvCbRvzLRCnUbrbG3XinosdqbPCr/KykO0y0p4IOtI+qLW0ejv79k62i8+9E6oo64dVwFcQ1Bz/peLehXAQ3PKuHxKqkqzUd4dXMdbP/KTtXoW/XGG4n8dhuVsX2p43MmRLrUTInR9WOmBPPDtpCqSzGwblK2g7pph+52gvWyzLFDZW0BZxd4Nkw1G2gLRUdUqJEP5o8/W/1B4QMMU+3RQD/f614WdbRHas+Qskej+3a/jd3y1CZ61JPaA8VtQTe7Sd1+jaMs/nR8SuCqNt/o1wFWgzDis93a2CT6n0nY43ohQ2p2Y4OgXw80Js8EyYBpJ0Q6OyZJ2aPR9WiPE8oeMT9sjxshriHoWTebBP1GoOEZflxtXkdxayGOP61GvlMg+0vbc+lwZ0ZW8Guy8juWFbH4SIZljnwQ6xbig/UdZ9zfS23+WohTwzgrEz6i6+Mw4/7faMYd03M/1+L+O9Sz/7GxOL3pcoL+Vv4c+xd8dLDKJ9KvKcjnB0DOj0F9CEHv7Omx3rVVvVsLBFzvlF9E+jI+Cf0i9z1wx0ibsFSbgjbJPtl0NBx0GRhek+g/mpilwXZ6Lck+VlH2smNISxvL4l86DeBEmO+LeOfOWsFTlVVbpF9bgKX2BbMvxXJsCN6K3myiGeb7c+TFx339OZTVhzdqzFAgQ7tA5uEC+imSweg/lRhDKz+A9r+eMI3+M4Bpx3WVxZwswPxcoq+h6ile01ymPcXy4r4G6nETxaHs3C5uAP5MO0H8MQ7tnPmGhLzcpnaTl9sbi/s3aK/+ufM8QngVfXUjVVZnCXnLllU7kT/GsnTNMN8eU3UE9fHVNRpzUUXMfxVtuuqr3Ab4/1bQH4mB+yMxsF9Gn4H18L3UJ0H5l5L8ZrdPlZyPMqze2vrsr1Rbj+O6Mm090rNPWCfo0ZZS7Q2PB7H+8Yq6GouWbUsnIK97lnTPL+LeGXR+i/wwl7vRT3QKtOyYL6VzzzGf8p/KHo2uH/aI+Wd7TOU1hqptVN0x33riU3auoNsY8W7q2yEfrgPdyr1IF8MF9OzXjX4z2Cr3bXIhQ+r432lBnwuZJ8L88pimOEy3roAP1kvU15Vhbl6N/ixRL5X9553nHsdek8r+UUds/5shriHoWd9bBD1+jWM6aRM96l756mmKQ9vkuqH8Wdm6YWmjHs4nX122DcgElpqPZF9t9N+T8NWqDqbsv5s/4jlh1CX3QTGdlY2yVaPrh61ifthWc4hrCPq6vqFN9KgnZavGs1tfYFWJvkCqbMv2faz8cL13HcWpsVxKrikhl9pVMpXgM9EjnwnBZ1ykywp+jQ+/Yz5KZtW34fyo8llXMj/rKD/rHPOjZO42p3rb2tk0Rb4N03J7Z/T7186me3nnWc2Jst2UtV3eGrIOdKB89nWQ/xD60ecMi051n5P7ldjHKTNniLaHbafRBJKxH/rC+sz6SvnBGMqMX7BOmA7U/PAkxaG9TREfr/nXL453l38ykd+qczFl+wDocw07hO+sPgDbwjTEcR8gNYel+qTKX3IZo3/FcuE1K6M/nug7KjtI2U0u6DFfJo+yjZziUPZU39HJhwy03fAYSPUdy9pNaq4Q22hrv1P9XHtWZY30jQKcTYTDdjcK7zEd9zctLgC9sjsui+ECesPjsfdPJ+YZprvIwF+Zb+4iwzTJYPQ/K2RI6T8GdTpG1vkdIfyK9aaZEZ7Jg+8QvxW0feShVMhYf8ZP2UEMfIoHpk3NKWQUh3y2CD4Ka8wRC/uWPZTXFtYHBos7DbBzitsK9NdT3OkQdwtgcGjQ35ifaNcf2TiLy3QsK5bXaYDPNjYt0k4L7FNVH6br8UvWB/ZJMVStDzk8L9SH+afxDFp9yCHO5FY6CqG0jkrVFyybCvqfLltfDN+rvijbU/XF8ndaPX55nLMdDfN9Fc7doO6Qz2aSodfy470FiH2yy6/m/oJk+an+t2f55YBRpfzUehDPo+Rhfn5ykR+1F9noUv28MuWk+ORCZjXHiHN/n6O5v80Qp+aIeO7P6L8Mc39/Q3N/OAbKw9w4tC28lovzbHQ9jh0bauyYAwGPHacxcSgua9Yf0qP/4zJDP8FzeTj/lBMfNS82BO9S80+4z+A3x7X8GeBuFGm5biP9ZiGH0VudwyvKkMbSNon+X2EsxVeUKZtFuXg+xej/PTGfYnxDCKXWRrcKevQvJs9EmK/nrRRX1Kc37BDm9xksfxZXpV1QdQLzw3UC+0oNQc+6OUPQ45VhbPdnQNxmwuL6FcOVAisl66YeZOVyxLI6g7CMFu0S88N2afTjHVvstm/AdN6P8sc2u0z5q7FAWZ3ymAb1eBrF5RC3hfgo31u0vsG2gj7kc9R+pU7tUN8cqm9alU83Oit/mytbD+XPe3UnQU7l968swNwkbCqVh9QpCt2+mzR6tb63IpEO56tHBK/cHp5KB8Oz7xUXC16Gy9/0ngF6un6jliVjeboEdZJVRvnEbyur9HkzwgtB9+kNvxXm66JOn159T6rs3vK3qh6/TdinRzvCPj3qDvlYealvl7APfCHVB1XHUt95GP13T82me2YBZgjV+2soz1dH5+J6f1Nv+VR1t8w39RNhfpnw2QKrID8NQc97p4z+eVA3U98y+Xxvn31JtYv4XTS3i6nv52Pgslgj6PGbetNJm+i5XIrsC8ua++HqfIeVAp/Pd3ghlAF/y4Tf0q4i2ccryq6+w+J6zHWD67G6ijp18tISwGoIjDs7v3wKzw2JtrXbvkK2iW7fOZs8E2G+znmtX51spOqL0fVjXRbzw/Wl7Fn6KTtR31OqvWpLKA7tkedKsI+G5wJ8tON7+SyY+Bt1lod0WPc7Mx9/3qf+4VN8RXWAvI72gP8DFzUn/8stV2/vF/7HF//jVz/64Z0/3C/8/3fkusuG/rc3beoX/k989ZpnvXbNli92w492/ATcAID2g+msb8PnEOShVBhF+S2ovpvht8L8Ol+n71b27AW178DS8txmDLcCXZEvU/V7AWsBqwoWfisYw49Dv/uNdDot1iM+6yMTsmQJWTh9DFZH8E44PstgkciDxQ0n4hYn4kYSca1EnDr7xOKwr3MjxY0LzJivt3cmUXgcG0MeSoUvmjw4LjDfFgjXdK/62mo8pcYjqwlrTRes6wgL068hrLVdsK4nLEzP38h3+w7sxYSlvnE1rG7rBXwqPKa3tDweO68TEcvrHSAspuGyjOF1hGe0/7WDYbaEe8EqtHOB23fE4nN7mA5/Q5jfHsfAfgGxXk581N7+HvM3VkZOxG+RLHX7DWq/ovrmgc/bwbS87zoGbiPUHmh1Fs8C1gLWqcJS33r06keK9lGjz40B5y7/kOYb1DfkmPaOzi/73tXgyz9GfSj0G7wvHGXm/pHyF+sT+V8i+PRbz/24tawtsG4E+vhPnTeGvvSOzq/af7+R0hXtXW4EvYbf7ZuRjYTRzQY/PaXzpmwQeTWJ/uvQj/8s2SCmZxtE++R56KKb7IrsE8vsDqJX5/kom+XvNj4v5kwzSq++BYmB1/OM/h8Tc47Kv6XmHFNn3yl9Y5753KUhgYX54TlXpVN17gDr9MuJeeiGSD8OPC1uJcXhPM5qisM5kDUUh3OQaylOfS+r5rFXURyuz3FboNZdov386LrZ993qYQx3dH65Hj6VsC3lO1LnOuWCfpPI90SYb085xaW+T8ohjtuh6c7fqIcc5HpF55e/IVncyVi39SanvWmjp/r8hrzzrPZwcz1XPiOHd1zP1XkhucDn80KWQRlwPUc/MU2yL6ko+yohO7d7XKc+negncVuzIcGT0yKf4VCtDV0v9JURj7LnmBj9JsC8t6Ctx3yl2ppu56byGULq+znVJ8L+omEzZj/OOMb8c/1M5TWGur5S7YXiPXTqe1K2A+RT1v7Rhv5wai5dv/rOLy+QBzFGgq6DeSgVSs+pGH4rzNdNnTmVbmXB/Rc1RuQyj4HHvFXHYgtYC1gnG6vf56FwHxvnbXE8ey31o9V+JUx7R+eX58c/BHMq13ee1Xi2zHkwPc4Zl15rXpgzXsBawDp187z98H0xlJl/VHMDgzT/WOSvD5aY91DjAR47/Vfw10fIX2N6nntQvjw1N1nWN95B9GquTM3N81zZsYpjwtT8o9E/nhgT9nv+EfN8quYffzAxL7FEpB/0+ccGxeH8I/ebcP4R7cfmH9WemNsIg8fKGDcMcXyGHd7/xPs2RyBuKcXhnsFJisM9MXz7Op6DwLeC4x7SFaCHt5MesMybhIFzEYsTeR2lOKxDiygOdTtCcaijMYpDHzdMcVgmLYpTt9PaNxvd/HEMd3R+2R+/O+FjVBuS2mufC3r+rj0Gz3noMucI5yBX0Tz0exfmoU/Enap56PfXnIdeV1H2hpBd1U+sUwcTY8syfQ7EXUX0qn1UfSFuHz+S6HOo8XSqz2H0f3QK+xxqDeAUnX83dqrvNrM8tcN8f8hz1Op+ALYD5FPW/tGGbL6m7ncBP/qhc7d/8cX/vLHOdwG4D9fS2VwNylOhfH8P5beg5moMv0WyVOR3Yq5G3X2I+eNvOkfr8ftARumRH2K2iN9YPX4NXp/gson/rJ85XCCLpeU7V75Mfb1xkYa/OYqB5yowriHeDZ0iLHWHKeoRv4/6PO0FZx3noVS4iPvlhoHYNW3hJWXrluG3Qk+2fqJuqW8RMX88ThwXsqjyuhfoei37RwcUa68j1mFHrIccsTz1ddAR64gj1n5HrBlHLM88Hh1QuR50xPKsj57luMcRy7MOPeKI5VmOnrZ6zBHL074edsR6rSOWp90Pqs/xzOPjjlg7HbGOO2J56suzb+JpX4PaL/S0+0Hty+12xDrkiPV06MsNqt179k0W2rRqWIPalxtUX+jZl/P0hZ7l6KmvQe1/vcoRa1D7X/scsTzrtmcd8tSXZzvkWYcGVfee/stzXm5Q54Y87cuz7zuofcxBbDvic8sJKwZrOyYKsPFZrY22EnwyIXND8ME9CuOdd7hWZDgjYb4uKqxDlb7ryPBbJEtFflmqfNS9x5b3JUIWta+Syyq1Tol8FFbTEYv3XjQFllr3yyg90it9jYXZ/Y/7991z3z37Dl86c+f+nVft2hkoNOnvSwtEvJnori8QrSFwM/rH72+mdw1Bi9gTYX7RDBfIHQAP33ExYfpmgk/WI59M8BkX6bhqo+lUqGpnla3aht8K8/Ncp2orU1V6sby3hCxtiothF9DVcb0Yd8AR66Aj1iOOWDOOWA86Yh11xDriiPWoI9bDjli7HbE8y9FTX562uscRy9NW9zpiDaqf8KyPnrofVFt9zBHL0yY8bdVTXw85Ynn6aM8+wDFHLM+2w7MODap9PR38Vz/aIevL49HU+CnucrquahHENShtBjybRP/4htl0q+hThwx42/MI4WWh0pjmnIzwQtBjKMNvkSwV+Z0YQw0RP84fj6EaQpY2xcVwP9BxXEO8S2EddcR6zBHriCPWHkesGUesY45Yux2xDjliHXTEGtRy9LRVz/roKdeDjlh7HbEeccTytIl9jlieNvGwI5anvjz9l6dcjzpieZajp1yD2nZ4lqOn7j3rtmceH3fE2umIddwR6+nQbnvW7X60tbauhuOxEeKjxj5DCT6YnsdFmC7r/I6QfPach1JhKCM8kxPfIX4rzM9zBX5ZSv9KL7ymiGnbFBcDf9qr+GSCTyawUnI5Lk2biNuIbnuBaJnAzegfv99G75QqEFvdLDYieFlIqbZdkD6G8QQfZfY2DTMadPXj5fOq1Q/TW5zik/XIJxN8WK9qOimGezq/fEPcE50pJDw5pCH4IVYZ11Jzyb70bhxesu/Vtagl+5RrGRaysD3E8DKg47iGeJeyrYYjllNTsMj0sUhEKl2xHtGurqc4PGHjFsDg0KC/MT8R/yMbZ3GZjmVFGzO5VV3mbTFV6zKmHyrAUjcnxnAbxCO9nXzTY5mercqU7WW4JnbZ+p06ZY3rPm9fykM6/K+XvK31/bftOK9qPTL6xYJebe8xXdU8febMceARiLfFqW1gFqdOu4vpzyb5FteUr4z+EF/5R+56lS2LyaDbmRjwxBrEMroAMjUhTvFpEv3vwvLL++nEOW5D7N0fJeiygl8lM8pj71qCviHojfeooLc43E2JekUa1BditSAe6T/ayTvfpI7p24I/1plQIHfRblHGaoh3Rh/z+aENc/NQs++S9XID928+65znLHnp6Y/164bvJb//29d+9n/uPr3OSV5qa2ZZey1q92K4vfPbY5sypPxYKJ8+K9Pe1fThT5Vt7wy/FbRfy0OpcKI/O0L8OH/cRrXq8fvPeJqsnWhaNKZC3SEfbssaIo1q5wwjpj9v09x81BwH/GePNvgfvAwdAy7//x0t/y+GOJ5K4j4g0v8TtD//AL7VcC296QvHvItFvP1t+h4StPis+gtKb0hv5VV0UuYw5dXovwxj0x1TGrPs9gmj/5oY7xqmOnVP1RmjT51chvKor2jGKB3Kjm06v1PlkxEtyhDD7UKmor9bAqdIhhGBo8Y3LZJV9Z+x3qROt8R683dQltZmjQj+/RzPZhSHebsZ6DioMSv2NT9BfcYgsJR+eNzk0Xbb+0Xwnvk2iHaYaPnrH5Sxl/4w9y8WCRns78UJ+TPCSZ0+zvVN/ZaVNxPyqrakVz6I9ZLOb49t3rrUXGssh/UbZ3GL2jzVZ+A2b3rjbLpNnedubZ7Fcb8thpfCO/bp3A9CjBh4ft185DDgI80I5cnoT+/kA9s25UMMK+b9TNLnCMSl2pEm0V8O+txG+kR98adg7McD/D0KsiBtDLcX6OAZIMcFG4t54Ti1KI8R41kbNR3KgHSMUbddU/0rrrtl+ldcVzGd4sH+uKjtNtsY6xKvThgO4t2QoB8pyG8QvFtdcBcLHOXfWxSXiTj2PZhf9Fvc50C/gH5rfaK+ZGFuvkYpXyOJfGUiHddzlH1xQnalP/QfdecQXv+5p/78TUfXfqFfcxTf//aDPzD+rF/99X7hv2fsT17wu28feXmVORArZ/WJLNuWmouN4RaIR/rbOuXR4xxD4Pwov5Ean/FcKMt/fYH8+8B/v4LqhRqfqDpT1P4uKimL0d8N7em90J6GoMcPPd400FQ3DaBf4/6u8rfqEwOj7za2NJ20w3z/yrzV2ibqlPs0pqPhoMf3hsf2sAvKgG8CUb7Z4tRWGNUW8jqrWh+LND9I9apm/3ax6kdY4DVKzKP6rJvXPfnUdIzDsuT5fgxqDGl5jTK/qcS6p/IPXF/VvEqqv6jqneEPWr0z22+H+eXC9lbWhov6c4of6gHbarPhojl5rNM45vohGiMMQ5ya02J/avS/CL79LeTbUcdsD8pPsCwhlNuvoMby4yKdlUuP65mLsHxRTnyH+Gr9uc5cveqbpubqa/YTmtzGIj9VDkuD1qmaz+exoprvSY2TUv5E1T+um2oeQbUhqfGc8cY58zL9JlW3MC23k78MdesDiX5TUd8oBD0OYPqU70NZle5HKU6N/e15LMFHyZU6+UjJhT4Z0zLvbnko21Y59REXqbYKy4TriNJL6kQkdRoTnoLFdUTdTlO1bRulONXGd2vbPlDQRmE+0P/x+FbVMWz76o4Pv3frf1mz7iMPjvdr/Lmoue4n81+946oq40/lV4YIF/XA8+0x3ND5LbPOXbPtLL1vk9vOXte5y7adqr/ObQHOs/C+JDUHo24AO1lYamzCZVmzn1C6H8R7FmraTnLPgmrf1PiKx43Y/rD+e/ncfxCxsP6n+sdlylXxUX36fq/dFd3468FHHdGg9hz3ykftX1brsjh++zK1jWo+DNMWzYdNbZpN97WNc2lM9n+FfugQ7aPBPFeoyy01Jreg5j7YblU/0OKwb8P2gX0b/hZkAmTAvRAc1HyK0UV+z980i8t0FlCXZb6H4X2mGeHx3LHRL6by4rX4PJQLau7YsL6TbKFOeR8sUd6qjFPfDfDYJjU2VXNyylcW+TfEVz7pNsJHfaTWyFSeLS2uvad8F9s+0m8A37Vt01wZ1ZhW+WB7320ePbXGbWl7vNV1jO0Zg7JnrgfqFF32baoetCGOfeJSiOPxDAZVR0wPVXwil6Pq62C7xmM+te6O7aXlr+4e4gwwTSbLO8rF31hgfWrSu5p7ak/oTu0twf4Wz70Z/fM2zcVRe2DUeMPo1d75huCrvrMYq4g1QliLe8DCeQumX1xTLoU1TFjqGwzVb49ld1GnbE7mOvPl1FeoOS48ZevMr4D24IXUtzrZ68zXdvgvrDOfunXmW6EMTuU68wGqV0/XdeYq/eSFdeb55XIq15kPFLRH3daZj1B/ru4685vBtz9Mvn1hnflbYWGdeWGdOYTq68w/CnXrXYl+08I683yfvLDOPEv/7brO/K6CNgrzUWed2dq+/x+pyeBEvtQEAA==",
|
|
359
|
-
"debug_symbols": "tb3fruTIcW/9LnPtC2ZEZkSkX+XgwJBt2RAgSIYsf8AHw+9+KoPMXNXd3rm5q/bcqJdmpmPxX/5IJqPI//7tX//4z//17//0p7/821//87d//D///ds//+1Pf/7zn/79n/7813/5w9//9Ne/PP7pf/92jP8p0n77R/2Hx5/22z+28adff8b1Zz//1OP6s1x/yvWnXn/W6892/XnV06ueXvX0qlevevWqV6969apXr3r1qlevevWqV6969arXrnrtqteueu2q16567arXrnrtqteueu2qZ1c9u+rZVc+uenbVs6ueXfXsqmdXPbvq+VXPr3p+1fOrnl/1/KrnVz2/6vlVz696cdWLq15c9eKqF1e9uOrFVS8e9Xz8Gdef/fyzH9efj3rlGCATdMKjZBnHSn/ULPkf2wSfEBP6CXIcE0blGCATdEKd0CbYBJ8QE/oF5ZgwK5dZuYzKfUCd0CaMym2AT4gJj8oyQI4JZYJM0Al1QptgE3xCTJiVdVbWWXkMJBnbZ4ykE+qENsEm+ISY0C8YA+qEMmFWrrNynZXrrFxn5Tor11m5zsptVm6zcpuV26zcZuU2K7dZuc3KY4jJ2AVjjCWMQXZCmSATdEKd0CbYBJ8wK9us7LOyz8o+K/us7LOyz8o+K/us7LOyz8oxK8esHLNyzMoxK8esHLNyzMoxK8es3GflPiv3WbnPyn1W7rNyn5X7rNxn5X5V1uOYUCbIBJ1QJ7QJNsEnxIRZuczKZVYus3KZlcusXGblMiuPMagyICb0C8YYPKFMkAk6oU5oE2zCrCyzsszKYwxqG1AmyIRrdKvWCW2CTfAJMeEa3VqPCWWCTJiV66xcZ+UxBtUG+ISY0C8YY/CEMkEm6IQ6oU2Yldus3GblMQZ17IIxBk8oE6481DGa6iP5dYydOjbdGDsn1Altgk3wCTGhXzDGzgllwqwcs3LMyjErx6wcs3LMyjEr91m5z8p9Vu6zcp+V+6zcZ+U+K/dZuV+V63FMKBNkgk6oE9oEm+ATYsKsXGblMiuXWbnMymVWLrNymZXLrFxm5TIry6wss7LMyjIry6w8xk5tA2yCT4gJ/YIxdk4YlW2ATNAJdUKbYBN8QkzoF4yxc8KsXGflMXaqD6gTRuUYYBN8QkzoF4yxc0KZMC6WygCdUCeM6yUdYBN8wrgEG8uT14gD8iIxoUyQCTphVB7LnFeKCTbBJ8SEfkFeLiaUCTJBJ8zKPivnReNYwbxqTIgL8jqxDhh1+oDH37KxymN8Wf4rnxAT+gVjfJ1QJjzq2DgSxvg6oU5oE2yCT4gJ/YQ2xtcJZYJM0Amjsg1oE0blPsAnxIR+wRhfJ5QJj8p+DNAJdUKbYBN8QkzoF4zxdUKZMCvLrDzGl5cBbcKoLAN8QkzoF4zx5WMFx/g6QSbohDqhTRiVfYBPiAn9gjG+TigTZIJOqBPahFm5zspjfHkM6BeM8XXCqFwHyASdEBPG3xr7YoyUGKs8RkrogDqhTbAJPiEm9AvGSDmhTJAJs7LPyj4rjwESY3nGADmhXzBOUieUCaPgWMFxkjqhTmgTbIJPGJXHmo5BlDAG0QllgkzQCXVCm2ATfMKs3K/KNgZRPwaUCTLhUbmXAXVCm/Co3HXAo3KvAx6Vuw3oF4xBdEKZIBN0wqgzFmMMmRNiQr9gDJkTygWad5oySBblveZYpHFIl6MN8kWxqE8ah/VFZVLLfzaWrJVFskgX1UVtkS3yRbGoT7LlsOWw5bDlsOWw5cgLrOMxmMzz78ag8XfHbbaNo/aiumj83TL22Yj4i3xRLOqTxlF8UdYbWzfy746tG/l3x7JELOqTev7dsSVzNuAkWaSL6qK2KB1j3XJO4KR0jLXMWYFBntMCJ2W9Pmj8XTkG+aL8u3XQ+LvyWCPPG/+TyiJZNOqJDKqL2qJ06CBfFIuWQ5ZDlkOWQ3RRvbazS1tki3xRLJr7yPO4H3vGtV17xvO4H3vB1RfFon5tZ6/HorJIFumiuqhd+8OrLfK5F2osWvsox0zumRwfuT/a2kc5PnLP5PjIrdHW9rO1/WxtvxwfuRds7SNb+yjHR+4FW/vI1j6y5bDl8OXw5fC1j/IoHjdYnkfxSbIol2BsgzyKT2qLbJEvikX9osij+KSyaDi0DNJFdVFbZIt80XCMm9TIoz0pj/aTyiJZpIvqorbIFvmi5SjLkUe76qCySBalow6qi9qidLRBvigW9UmaDhuU9ca20rqoLbJFWa8PGvXGrWjkCKhjW+UIOKkskkXDMe5vIkfASW2RLRqOOtYjj/txvxF5/hj3GZHnjzqWIMdCG38jzx8n1UVtkS3yRbFoOMbNROT4OGk4xuV75Pg4SRfVRW2RLUpHDIpFfVKOj5PKIlmki+qitsgWLYcvR55nxl1E5HnmpLJoOGzsrTz3nFQXDYeNrZHno3EzEXk+OikW9Uk5kk8qi9IxjqscySfVRW2RLfJFsahf1HMkn1QWySJdVBe1RbbIF8WidDz2Vs+RfFJZlPujDtJFdVFbZIt8UTpiUJ+UI/mkskgW6aK6KJe5D4pFfVKO2pPKIlmki+qitsgWLYcuhy5HXY66HHU56nLU5ajLUZejLkddjrocbTnacrTlaMvRlqMtR1uOthxtOdpy2HLYcthy2HLYcthy2HLYcthy2HL4cvhy+HL4cvhy+HL4cvhy+HL4csRyxHLEcsRyxHLEcsRyxHLEcsRy9OXoy9GXoy9HX46+HH05+nL05ejTUY7jAAsooIIVbKCBDgaIrWAr2Aq2gq1gK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIqtYstEGNMnDxRQwXYF2QMNdDDAvrAdYAEFVLCC2Bq2hq1ha9gMm2EzbIbNsBk2w2bYDJthc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS9bOQ6wgAIqWMEGGuhggNgKtoKtYCvYCraCrWAr2Aq2gk2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2Cq2iq1iq9gqNrKkkCWFLClkSSFLClmS7SdlTHSW7ECZqOCwjUnbkq0oEw3MVoqWGGBfmFlyYQEFTFtPrGADDXQwwL4ws+TCAgqIzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2DLLPHcQ5klJ2aWXFhAARXMFpWS2EADs1FFEgPsE89GmAuz8SXbro5V4Wp1OTHArDB27NXwcmIBs+nFEhWsYAPT5okOBtgXZhKMmeySLS5lTDSXbHKZ6GBu3/Ov9YU55i8soIAKVjBbdY5EAx0MsC/MMX9hAQVUsILYKraKrWKr2Bq2HPM9d1aO7p77OEf3hQY6GGBfmKP7wgIKqCA2w2bYDJthM2yOzbE5Nsfm2BybY3Nsjs2xBbbAFtgCW2ALbIEtsAW2wNaxdWwdW8fWsXVsHVvH1rH1ZcsWm4kFFFDBCjbQQAcDxFawFWwFW8FWsBVsBVvBVrAVbIJNsAk2wSbYBJtgE2yCTbApNsWm2BSbYlNsik2xKTbFVrFVbBVbxVaxVWwVW8VWsVVsDVvD1rA1bGSJkiVKlihZomSJkiVKlihZomeWaKKCFWyggQ4G2BeeWXJiAdNmiQpWMG010UAHA+wLzyw5sYACKlhBbIHtzJJIDLAvzNa88WyxZIPRRAEVrGADDXQwwD4xW44mFlDAtFmizYWsZz6MU2g98+HEUSH7d7O9aKKCFWyggWN5xwOrkq1GE/vCbJe9sIACKljBBhqITbBlA+14VFayBWliAdOmiQpWMG010UAHA0xbbups6cuO5mxDkpKbOpv4LmyggaOu5ObLhlrJtciWWsnFyaZaSVu21V4ooILDJrk42V57oYEOpi2XN7trJRcn+2tHx2XJDiXRXJzssdVUZJfthQ000MEA+8LsuNVchuy5vVDX4XmO+RMbyPHrDga4RmE9x/yJBRQQW2ALbIGNMZ/tTqK5zbIZ98Qc8xfmCuV/m2P+QgUr2EADHQywT8w2qIkFFHDYxqOtku1QExtooIMBDtt46FWyNWpiAQVUsIINNNDBALEJtsyHqokCKpi2lpg2SzQwbZ4YYNpyQ2U+XFhAARWsYAMNdDBAbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVshs2wGTbDZtgMm2EzbIbNsDk2x+bYHJtjy+b98Yj2gQY6GOA6x2aX18QCCqhgBRto4DqjZ4/X4+YwcZ2ls6tLWo7CzIcLDXQwwD4xO7wmZiu5JK7ta8daYzsC7AvPMX9itqdrooAKVnDtTSvYioMBrr1pcoAFlLUM55g/sYINtLUM5w9qTgwQG2PeGPPGmDfGvDHmjTFvuo4dU7aksiWVLXm2+ecyVLZkZUsy5o0xb4x5Y8wbY94Y88aYt8Z+O8f8iWzJxpZs7Lcc8xeyJRnzxpg3xrwx5o0xb4x5Y8wbY96M/WZsSWNLGlvS2JI55sez7JKtcBNzS7ZEBSvYwFy3XIYc8xcG2BfmmL+wgAIqmLZcyBzzF+b1w4l9jcIc86O3oWTD3EQBFWQPdfZQZw91jvXOsX4mwUA/DnDtIT8EVLCCDTTQwQDX8ZB9dTLaxEs21k2s4Kg72jlK9tY95qcSHQywL8x8uLCAAipYwbxqS/E5e3BiX3jOHpxYQAEVrGADDcSm2BRbxVaxVWwVW8VWsVVsFVvFVrE1bMw5nl16F2Jr2Bq2hq1ha9gaNsNm2AybYTNshs2wGTbDZtgcm2NzbI7NsTk2x+bYHJtjC2yBLbAFtsAW2AJbYAtsga1j69g6to6tY+vYOraOrWPry3b2JF5YQAEVrGADDXQwQGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgE2yCTbAJNrIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbIkyJIgS4IsCbKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlmQjpYwm1pKdlBMVrGADDXQwwL4w71AuxFaxVWwVW8VWsVVsFVvF1rBlluRD4+yulNEBW7K9cmIFG2iggwGm7XznxAEWMG0pzjuUCyuYNks00MEA8yn4uMw/+y0vLKCAClawgQY6GAszNbIbILssxc5/qmAFG2iggwGObZZNctltObGAwzZ+dliy4XJiBYfN890feYdyoYMB5jYr+caPAyyggApWsIEGOhgLcwbDNVFABXMtamIDDcy1aIkB5jazfEvJARYwbfk+k7xDubCCDTTQwQDTFvkqlAMsoIAKVnD+MEfOVsrxMETOVkpJzKuKCwsooIIVbOD8NY6cXZUXBtgX5lVFObGAAipYwQYa6GAsNPa8seeNPW/seWPPG3ve2PPGnjf2vLPnnT3v7Hlnzzt73tnzzp539ryz5509H+z5YM8Hez7Y88GeD/Z8sOeDPd/Z850939nznT3f2fOdPd/Z850939nzfe35s1OynFhAARWsYAMNdHDt+XKO+Z4ooIIVHPsijkQDHQxwrMX4EaacPZEXFlBABSvYQAN9YY7u8Vtiye7HiQIqWMEG5lq0RAcD7Avz7H9hAQVUsIINxFax5dl/NJJJdj9emGf/C9PmiQIqmLbcQ3n277kD8uw/mhMkux8nBtgXnq8MOrGAw9bzKDlfHHRiBRtooIMB9oXna4ROLCA2x+bYHJtjc2yO7XyxUG7f89VCJxYwbbnNzhcMnVjBBhro4MOmR27qkQ8XjnyYWEABFaxgAw10EFtftux+1KMkFlDAtGli2iyxgQY6GGBfWA6wgAKmzRMrmLZINNDBAIet5KLnq4ouLKCAClawgQYOW4Z5dlVOTFtunXx90YUFFFDBVNREAx0MsC+sqchNUgsooIIVbGDackPlW40uDLAvzHcbXVhAARWsYAOxNWz5rqN851s2WF6Y7zu6cNjyFJoNlhMVHLY8F2aDpeapLhssVXJDjQCZGGBfOAJkYgHzRJXUFtkiXxSL+qQcwddL5Q6wgPk8I0kX1UVtkS3y3+bb6bKiJeZm8MR6vh5Lsl3xIls0tkFNikV9Uo7Ek8oiWZSSSKxgbuueaKAvzAGnR+KoMNpZ5Hwb2IWjgiaNAuM3znK+EuzCAPvCHFkXlrlJVBbporqoLbJFfW3EHDLXS/1yQXOZcshcmAua2yKHzIW5pFlsvgpM1rvAZL0MTNbbwGS9DkzW+8DkfP3XhbmWuSDzhV+y3vgl2RN40fjbuRfy4D+pLbJFvigWpSQxj/sLh+UsPk6cExUcRWvuTc/jJndhHOCokMsesjZMKFjBBmbZ3JvhYIB9bfAcSRcWEFvH1rF1bB1bx9ax9WXL/r6JBVy27O+bWMEGGujXoZ5vGDsP32wFvLAcYAFlYZ6nai5CDqYLK5jXF0m2yBfFoj4pL3dPKotkkS6qi5ZDl0OXQ5dDlyPPUaMlSPKNYRMFzJWJxAqOjVhzy+WAu9DBAPvCHHIXFnDYRlOGZLvexAqmLZc3B+OFDg5by/2QQ/TEHKIXZrAnySJdVBe1RbYoK+axkSOv5e7Mkddy+b2CDTRwLGk73w8aYF+Yo/TCAuaFVlLKcsvnKL2wgQY6GGBfmKP0wgIKiK1j69g6to4tR6nlJstRmpgdeRMLKKCCwzaeUEt25E000MEA+8IcphcWUEAFsRVseaocs7CSHXkTA0zb2K/ZkTexgGmzRAUr2MC0nS+DTds4nLP3Tsd8oGTv3UQBFRx1PTdfXqbm7E323mnOyGTvnebcS/beTewLMwIuTNv5JloBFaxg2nJ5c9znLEA23GlOLmbDnUYuTo77vLnNhruJAipYwQYamLbzLbmxMAf7mDKX7LKbKKCCqchFP0/KJxroYMwh384gSMwT84UFFFDBCjZw1M0b9+ynuzCD4MK8rMgtmUFwoYKjbt64Zz/dxLEWeU+c/XQTA0xbLkMmwYUFFFDBCjYwbXmcZRJcGGCfmL13EwuYp5qSmGdmS1zXAXY4GGBfeF4bn1hAAfM6oCZWsIEG5nWAJwa4rvvsvGg+sYACKljBBuYtTq5mXjX3xBzzFxZQQAUr2MDcF6nIMX9hgH1hjnk5sYACKljBBhroYCzMgT46wyW77CYqmGvRExtooI8X5x6JAfaBecCMMT+xgDIw9/wY8xMr2EADHQwwbWPgZJfdxAIKqGAFc8/nkjl73tnzwZ4P9nyw54M9H+z5YM8Hez7Y88GeD/Z8Z8939nxnz3f2fGfPd/Z8Z8939nxfez473CLPptnhNrENbIkG9vUfjJE1sYCyMN+Ie+Rfy3fiXmhg7sJchnwz7oV9Yb4d9+iJBRy7MKeNstFsYgWHLaeCstFsooMB9oX5xtwLCyigghXE1rA1bA1bw2bY8rDPOahsHqv5Wv5sHqvj/XeSzWMT+8I8wC/M5Y1EARWsYAOHTXKbne+vPjHAvvB8i/WJBRRQwQo2EFtgC2yB7Xyz9ZFYQAEVrGAD0yaJDsbEOF9ffWL+B5oYYG7qcchlv9fEAubitEQFK5iL44kGpi0SAxy2vH3Ifq+aEZT9XjXva7Lfa+Kw5Zk3+70mNtBABwPsC/Pl1hemLRcyX3CdUxnZ71Vz0iL7vWqe/bOzq+YJOzu7JvaFOXgvLKCACmax3Oo5Ni/sC3NsXlhAARXMYrkDcmTljXE2WE1soIH513Llc7xd2BfmeLuwgAIqWMEGGojNsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bNlgNbGAAipYwQYa6GCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gMm2EzbIbNsBk2w0aWdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZK+skSPlSV6rCzRY2WJHitL9FhZosfKEj1WluixskSPlSV6HNgKtoKtYCvYCraCrWAr2M6oiEQBFaxgAw10MMC+8IyKE7EpNsWm2BSbYlNsik2xVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+2chxgAQVUsIINNNDBALEVbAVbwVawFWwFW8FWsBVsBZtgI0sKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUuy16qOhzuavVZ1PKfS7LWq43M1ml1VdTzG0Wx5qtd3ugRUcCjGExDNlqeJBjoYYF+Yg+zCAgqoILbAFthyiIxnHZoNSxPbxGxCqmP6RrMJaaKAWcETR4XxpEKzCWmigQ4G2BfmYX9hAQVUEFvBVrAVbAVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsediP3nLNJqSJFWyggQ4G2BfmYX9hAbFVbBVbngDHEybNvqE6njBp9g1Vz92dg+FCBwPsC/NUd2EBBVSwgtgMm2EzbIbNsTk2x+bYHJtjc2yOzbE5tsAW2AJbYAtsgS2wBbbAFtg6to6tY8txPJ7raTYuTWyggQ4G2CdmS9PEAgqoYAUbmDZPdDAWnqM7ErNCTxwVxrNFzS6miQ4G2BfmOL6wgAIqWEFsgk2w5Tgezzc1W54uzHF8YQEFVLCCDTTQQWyKrWKr2HIcj8etmk1SEyvYQAN94fmFt5qYFVpiVsjdkmP+QgMdDLAvzDF/YQEFVBCbYTNsOeYjD5gc8xf2hTnmLyyggKNuz72Z47jn5stxfGKO4wtHhfFgVc9vLF6oYAUbaKCDAfaFOY4vxNax5TjuuVtyHF/YwLTlIMtxfGHaco1zHI+Hbnp+h/HCh62NZ2qaTVMTFawDJbGBNlATfWBNjIEtsQ8c4uyamlhAARWsYAMNdDBAbIJNsAk2wSbY8hvdR26S/Cz3eCik2WjVxuMfzU6riRUcC1lyk+RXui90MMC+ML/QXXLz5Ue5S26+/C53fi205qe5LwywL8xvdF9YQAEVrGDaLNFAB9OWmyQ/zXhifpzxwgKmLbdZfqLxwgquS8vspJroYF7I5pbMwXtiDt4LCyiggmnLnZWfbrzQQAcD7Avz698XFlBABbEFtsAW2AJbYOvYOraOrWPr2Dq2jq1j69j6smXf1cQCCqhgBRtooIMBYivYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWEzbIbNsBk2w2bYDFt+9nU8mtXs0ZrYF+bHXy+sYP61khgL84yeZ7Jsq5rYwPxvJbEvzCF9YQEFVLCCDTTQQWx92bKBamIBBVSwgg000MEAsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2PLyID9Ub2eWnNgXngHiiQIqmIqe2EADh2J0fGh2Y03sE/OdZxMLKKCCFWyggQ4GiK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWKr2Cq2iq1iq9gqtoqtYqvYGraGrWFr2Bq2hq1ha9gatobNsBk2w2bYDJthM2yGzbAZNsfm2BybY3Nsjs2xOTbH5tgCW2ALbIEtsAW2wBbYAltg69g6to6tY+vYOraOjSxxssTJkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBL4sySkmigg2nTxL7wzJIT09YSBUxbJFawgQY6mLae2Cdm+14bP13VbN9royFUs31v4rCNzk7N9r2JDRy28TtLzfa9iQEO2+jL1Gzfm1hAARWsYAMNdDBAbIJNsAk2wSbYMiqylSf78Fo+ds4+vFZzm2UoXFjBBo6FzOfS2Yc3McC+MEPhwmFruVEzFFpuvgyFCyvYwLTl8mYotFyGDAU76/aFGQqjpV+zD6/lQ+Psw5s4bPn8OPvwmmWxDIUTc3Tnw9JsqGv5dDIb6iZWcCxOPrPMJrnmubw5Yi8UUMEKNtBABwPsCwNbYAtsgS2wBbbAFtgCW2Dr2Dq2jq1j69g6to6tY+vY+rTVbJKbWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYMsRO56x1uyim9hAAx0MsC/Ms/946lmzi26igPU6fmu2zk000MEA+8Ic3RcWUEAFsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsDVvDZtgMm2EzbIbNsBk2w2bYDJtjc2yOzbE5Nsfm2BybY3NsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bBkg49l4zda5iQ4OW5z/bZ+YrXMTh238tLdm69zEYRtPoGu2zk1sYNo80cEA+8IMkAsLKKCCFWwgtoKtYCvYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIqtYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hs2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wBbbAFtgCW2Dr2Dq2jq1j69g6to6tY+vY+rLJcYAFFFDBCjbQQAcDxEaWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJXpmSST2ifXMkhOHbfSc1rPX8kIFh230nNaz1/JCAx0cttEbWs9ey/Fen3r2Wo536tSz1/JCARWsYAMNdDDAvlCwZZaMntN69lpeqGAFG2iggwH2hZklF2JTbIots2Q0xtazRfNCAx0MsC/MLLmwgAIqiK1iyywZvbf1bOe8MMC+MLPkwgIKqGAFG4gts6TnIZdZcmFfmKlx4aOCHXn0jXywIw+ukQ8TA+wLRz7YkUffyIeJAipYwQYa6GCAfWFgC2yBLbAFtsAWacshEg6mLY/f6Av7AaYtN2oXUMEKNtBABwPsE7NFc2IBBVSwgg1ctuzAtNHFXLPX0kYXc81eSxvfn67ZaznRQAfHQo4m5Zq9lheOgT6xgAJmZNbECjYwbbmQ4mCAfaEeYAHTlus2BvrECjbQQAcD7AvrARYQW8VW05YbtTbQwGEb3YQ1ey0nDpvkdhgDfeKwjbafmr2WE4dtvB6qZq/lxAYa6GCAfaEdYAEFxGbYDJthM2yGzbA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx5ahIHn8Zihc6GCAaRuHUTZ5TiyggApWsIEGOhggtoKtYCvYCraCrWAr2Aq2TI3xBLpm46aNZ801Gzcnjgrj5UM1GzcnOhhgX5j5cGEBs64mrr2ZzZjn9s1mzAtzzF9YwLHG4w2ANZsxJ1awgevYsYqtBriOHWsHWEABdS3DOeZPbKCBvpYhx/yFfSFj3hjzxpg3xrwx5o0xb4x5s3WkmrEljS3pbMkc8+cyOFvS2ZKMeWPMG2PeGPPGmDfGvDHmjTFv55jPZQi2ZLAlgy0ZbMkc86ORoWYz5sTcklk3x/yFBRQw1y2P9RzzFzbQQAcD7BOzL3PisI1WiJp9mRPXAZ7NmDa6Imo2Y050MMB1aGQz5sQCCqhgBRu4dpYXBwNcOyubMScWUEAFK5hrIYkB9oU5/Gtuhxz+NZcsLw8uVLCCDTTQwQD7wgyF8d6vmg2WEyvYwKyba5GhcGGAfWGGQl6fZYPlRAEVrGADDfSFOU+Q1/ZnK+WFAuZanFjBUbflcZbD/0IHx1q0PKJy+J+Yw//CsRYt91AO/wsVrGADDXQwwL4wh/+F2M6nnrmQ51PPEw10MMC+8HzqeWIBBVQQW8fWsXVsHVtftrNp8sICCqhgBRtooIMBYivYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraG7eygGGPobJq8sIA5jluighXMcRyJBjqY47gn9oVnapxYQAEVrGADDXQQm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLlk2TEwsooIIVbKCBDgaIrWAr2Aq2gq1gK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIqtYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hs2wGTbDZtgMm2EzbIaNLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypK8sacfKknasLGnHypJ2rCxpx8qSdqwsacfKknasLGnHypJ2HNgKtoKtYCvYCraCrWAr2Aq2gk2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jo0sKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSzJzs7HjHJiX5hZcuGwjZf5tOzsnDhs48c9LTs7JzZw2MbvfFp2dk5MW03sE7Ozc2LaPFHAtFliBRuYtp7o4LCNtxu27Oy8MLNkdLW37OycKOCwjZ9ttOzsnNhAAx0MsC/MLLmwgAJiE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUW6aG51bPfPDcQ5kP45csLbs1JzoY4Fje8auBlt2aEwsooILDFnmUZD5caKCDAfaFmQ+Ra5H5cKGAClawgQY6GGBf6NgcW+ZD5ObLfLiwgmnLDZX50POgzXy4cNhGX1DLbs0LMx96Hr+ZDxcKqGAFG2iggwH2hR1bx9axdWwdW8fWsXVsHVtftuzWnFhAARWsYAMNdDBAbAVbwVawFWwFW8FWsBVsmQ+jcahlt+aFmQ8XFjBtlqhgBRtooIMB9oWZDxcWEJtiU2yKTbEpNsWm2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2TI3RQNWyA9PG05KWHZgXZj6Mj5K17MCcKKCCFWyggY+6PvquWnZVXgdBjvlzH+eYv7CBBvqoUBID7AvHmJ/IkcqYV8a8MuaVMa+MeWXMK2NegyO1c6R2jtRzzJ/Iuo0x76Mxq2VX5UQbmHW7gwH2idlV6ePz8y27KicKqGAFG2igg2nzxL6wlLmzspXSR4dVy1bKiRVsoM0dkK2UEwNcOytbKScWUMC1s6pUsIEGOhjgCrGqB1jAXIue2EADx1qU3A5jSHvJJRtD+sIxpCcWUEAFK9hAA7PuODSyPXJiAQXMurkWrYINNDAvO3LH5kC/sC/MgX5hAQVUsIINHA9ZWi5ZNlWfmE3VFxZQQAUr2EADHcTm2AJbYAtsgS2wBbbAFtgCW2Dr2Dq2jq1j69g6to6tY+vY+rKd77W8sIACKljBBhroYIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2z5CHW8nKGd77W8sC/UHFmWWEAB06aJFWxgjixPdDDAtCWer5g4sYACKljBBhroYIDYGraGrWFr2Bq2hq1ha9gatobNsBk2w2bYDJthM2yGzbAZNsfm2BybY3Nsjs2xOTbH5tgCW2ALbIEtsAW2wBbYAltg69g6to6tY+vYOraOrWPr2PqynS/UvLCAAipYwQYa6GCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFmSbaI+fonVsk10ooNp64l94XmPc2IBBRy2fDB1toleONYtn2edbaIXOjhs+QjqbBM9MedAxu++WraJThRwzFVIKnIO5MIGGuhggH1hzoxcWEABsTVsDVvD1rA1bA2bYTNshs2wGTbDZtgMm2EzbI7Ns25NzAotMStYYoB9YU6BXpjLm0dJCKhgBRs4bOM3TC1bPycGOGyaO3bkw8QCCqhgBRtooIMBLlu2fk4soIAKVrCBBjoYILaCrWAr2Aq2gq1gK9gKtoKtYBNsgk2wCTbBJtgEm2ATbIJNsSk2xabYFJtiU2yKTbEptoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYWvYGraGrWFr2Bo2w2bYDJthM2yGzbAZNsNm2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2xkSSdLOlnSyZJOlnSypJMl/cwSSXQwwH6hHWeWnFhAARVMW0tsoIFp08QA+8IzSzyxgAIO2/j5lWXr58QGGuhggH1hZsmFBRQQm2ATbJklNdftTI1cyDMJTmyggQ4GSIVMgnpiAQXMJYvECjbQQAcD7AszCS4soIDYGrZMgvELL8vGzYkOBtgXZhJcOGwtj51MggsVrGADDXQwwL4wk+BCbI4tk6Dl0ZdJcGED05b7OJNgfMDXsnFzYtpyt2QSXJi23FCZBBcqWMEGGuhggH1hJsGF2Dq2jq1j69g6to6tY+vLlo2bEwsooIIVbKCBDgaIrWAr2Aq2gq1gK9gKtoKtYCvYBJtgE2yCTbAJNsGWVxXj/sKycXNiX5hXFReu3MnGzYkKVrCBBjoY4Eq5bNH00ZJn5cyHljgqjPdtWzZjTgywL8x8uLCAAo66487HSmP7NtbYWONzzJ8o4FjjcXNl2WA5sYEGsjcNm7E3nb3p7E1nbzp78xzzuQznmD/RQPZmjvlzGXLMn5hj/kJsjPnCmC+M+cKYL4z5wpgvwbETbMnOluxsyRzz5zJ0tmRnSzLmC2O+MOYLY74w5oUxL4x5OdZ+k3PMn1jBBq79lg2WEwPExpgXxrww5oUxL4x5YcwLY17K2m9SAlxbUuQAC5hbsiYqmFuyJTbQQAdz3XIZcsyfmGP+wgIKqGAFG5i2XMgc8xfm9UP+B3mlkKMwX5Lp46ecli/JnFjBBrKHKnuosofqOtalHWABBWQPNfZQYw819lBzMECOB+N4MI6HzIfRkWvZYDnRwFHXcztkPnguWebDiZkPFxZQQAUr2EADs24eJZkEFxZQwKybR0kmwYUNNDBnME4MsC/MJLiwgAIqWMEG5taxxD4xmyYnFjDXwhMVrGADx5xYXiOer7i8MMC+8PzaxokFFFDB3DonOhhgX5ij+8IC5vL2xFFhNAhbtjz6+Eq2ZcvjhTliLxwVQhIFHNthvKPcsuVxYgPH8o4OYsuWx4kB9oV5xX9hAQVMW0usYAMNdDDAsdUlVyhH7LkdcsReyNbJERu553PEXuhggH1hjtjIgyBH7IUCKphrkbYcxxcaOGw9lzfH8YV9YY7jnvsix/GFAqYt93yO4567Jcdxz42a47jn1snz/IWxMMdxz3XLcXyhghXMurluOWLPgytH7Ik5Yi8soIJj4JRcyPMDvicGOHbh+CS0nW+PvLCAAipYwQYa6AvzJDzaWu1sbrxQQAVz5XtiAw10cKzFcWJfeH6T+8QCCqhgBRtoYL++3G7ZxhjHiQUUUME6sCQ20EAHA+wL6wGW6+Pwls2NExWsYAMNdDDAvnCchCfmWkhiBRtoYK6FJgbYF9oBjrXI1MjmxokKVrCBBjoYCz33RR5nLqCCFWyggaNunpKyuXFiXzhOwhMLKOBYizxRZXPjxAYa6GAs7LkWuUI9lzfr9gYamBXy8OwB9onZsDixgAIqWMEGGuhggNgKtoKtYCvYCraSx44nBtgXygHm1olEARWsYAMNdDDAtOXinKP7xAIKOGyjHdmyNXFiAw30ubPaObpP7AvP0X1iAQVUsIINHHVH67JlE+KFYxxPHHVHv7JlE2Jk2mcT4sQKNjDXoiY6GGBfmKO75B6ytOWGMgEVrGADDXQwwL7QDxBbjnnJ1cwxf2EFG2iggwH2hWPMTxy2vLzNJsSQXONQsIINNNDBAPvCfoAFxDbO6KF5cGU+XNhAAx0MsE/MJsSJBRy2nDPPJsSJFWyggQ4G2BeWtFliAQVUsIINNNDBTKOS2BfKARZQQAWzrifm8o5QyMbCiVkh10IFVLCCDTTQwQD7whzz40V8li2EUXNf5Ji/sIEGOhhgX5hJUHM1MwkuFFDBtEliAw10MMC+MJPgwrTlumUS5IxhthBOrGADDXQw1r4w9pCzhzIJLhRQwQo20MCxL3KgZ7PgxALmWuQhl2P+wlyLrJBj/kIDcy1yx+aYv7AvzDGfDy2yWXCigApWcNhabp0c8xc6GGCfmM2CEwsoYNZtieNIHa0Qlq1+kc8kstVvooK5ZJ7YwFyySHQwwFyysR2y1W9iAQVUsIINHLacjs5Wv4kB9oU5ui8soKw1zjN6zkFnU99EBwPMuuMoyaa+iQUU8LEWj1uaxAo20EAHA+wL83r9xDEuek4TZjvcxAIKqGAFG2iggwFiC2yBLbAFtsAW2AJbYAtsga1j69h61s1DrjfQJmYrWuQ8YraiTcy640DMVrSJBRRQwQo20EAHY2Ee1ac4j+oLFaxg1u2JBo66ObWaTWc9T1/ZdHbhOKonFlBABSvYQAMdxKbYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2FrWHaMwG8l6nnmzkew8jLKRbGIFc1/URAMdDLAvPEfhiWk7UcBc3lTkKLywgbm8I16zkaznLWI2kk3M5c21yJF1Hho5si40kGMnR1bOWmYj2YU5si5kBHRGQGcEdGwdW8fWsfWYmF1ePW/7ssvrwhx6Fw5xTlhll9dEBYc4Z06zy2viEOfMaXZ5TQxw2HLmNLu8JhZQQAUr2MC01UQHA+wLc0BeWMC1C/s59HIhz6EXiQ4GuHZWrwdYQAHXzsp+rokNNNDnYOjn0DuxLzyH3okFFFDBCjYwZohl59aFdqxDw9aQzs6tiQpWsIEGOhjgCpDs3JqIzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsOUwPY+dzlbv68Tau4EOBjhPrJ7dWBMLKKCCFWyggQ4GiK1gK9gKtoKtYCvYCraCrcwo9uzGulAOsIACKphb8sQG5r5IxXkSPjEWnqdbS6zX6PbjHN0n5vJq4gxHPzTAvrAe4BzdfqzR7cd5Yj1xjm4/1uj2Y41uPyq2iq1ia9jO0Z14HrQ9UUAFMxzP/7aBBmY4lsQAMxxlYJ5xLizgjGLPJqOJFWyggQ4GOKPYs8loYgEFVLCCaxeWY14/eDlmFHspB1hAARWsYAPXzirrytHLunL0UvpCmVHs2U40UUAFK9hAAx2MhXnnk/sim4EmOhhgX5h3PhcWUEAFK4itYqvYKraKrWFr2Bq2hi3nNfLoy3aiiQY6GGBfmPMaFxZQQAWxGTbDZtgMm2FzbI7NsTk2x+bYHJtjc2yOLbAFtsAW2AJbYAtsgS2wBbaOrWPr2Dq2jq1j69g6to6tL1s2GU0soIAKVrCBBjoYILaCrWAr2Aq2gq1gK9gKtoKtYBNsgk2wCTbBJtgEm2ATbIJNsSk2xabYFJtiU2yKTbEptoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYSNLhCwRskTIEiFLhCwRskTIEiFLhCwRskTIEiFLhCwRskTIEiFLhCwRskTIEiFLhCwRskTIEiFLhCwRskTIEiFLhCwRskTIEiFLhCwRskTIEiFLhCwRskTIEiFLhCwRskTIEiFLhCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVL9MwSTUxbTXQwwL7wzJITCyigghVsILYzSzwxwL7wzJKWWEAB09YTK9jAYRtNRp5NURMD7AszSy4soIAKVrCB2AybYTNsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WXLDquJBRRQwQo20EAHA8RWsBVsBVvBVrAVbAVbwVawFWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbIpNsSk2xVax1TWO65kPkehggH3hmQ8nFlBABSvYQGwNW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bX7Z2HGABBVSwgg000MEAsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xnfmgiQUUUMEKNtDATCNLDLAvzCwZ3cZ+dnldKKDNjDqbuC4MsC88o+LEAmaxXLfzUuLECo6JpdHs6tnE1Y9c9JyLvzDAvjDn4i8soIAKVrCB2HIu/shNknPxF/aFORd/YQEFVLCCDVwnicalRONSIpu4+pGbJKc1LyyggApWsIEGOhjgsmUT18QCCqhgBRtooIPLln1MfXSdePYxTQxwLM74SavnC9ImFlBABSvYQAMdDBBbw5YPm0YLi2dvUh8tLJ4NSdc/zSdMo1nFsyGpjw4Vz4akiRVsoIEOBpiLkxsqj+oLC5i2npjPGY7EnLfPzXc2XkiirUXPo/pCVigPWs26edBeWMEGGuhggH1hHrQXFjBtueh50NZc9DxoL2yggcNWc93yoL2wT8wupIkFFFDBCmaxsaGyIamP9jLPLqQ++sQ8u5D6+BWqZxfSRAN9Yc6kX5gVLLGCWcETUzw2Sb4CrI/OLc9XgE1sYO7CI9HBAPuqe46W/KfnaDlRQAXrWuMcLRca6Asb65aPdM4Vyge2F7LGeYVnJ2aXTC5ZXuFd2BfmFd6FBcxultw6eS1nuR3yWu5CBwPsC/NaLp87ZQ/RRAEVrGADDRw2zwMmA/rCvjCv5S4soIAKVjAVefTlBdyFAfaJ+R6tiQUUUMEKNtBAB9OmiX1hXsBdWEABFaxzq2fz0kQD1846e5PyAWh2IUU+6swupIkB9oV5zZWPzLILaaKAClawgQY6mDZL7AvzmuvCAgqoYAVtrVteaOWjuGwymljWCuUl1YUKVjAXPbdZXnNd6GBecx2JfWFec50VDJthM2yGLW/PLmS3GLvF2C3GbnFsjuK8CsqFzBNKySXLE0rJQy5PKBca6GCAfWGeUC4soIAKYssTSskjNU8oFzoYYJ+Y76WaWEABFaxgAw10MG0lsS/MR74XFlBABSvYQAMdxFaw5cPd8UsLP/uNRr+nn/1GF/aF2W90YQEFVLCCDTQwFZ6YijEuztajCwsoYCp6YgUbaKCDAfaFeSa7sIACYmvYGraGrWFr2LIhScZhfzYkXTgUkjsgrwZHE7if/UYXOjiKSR4weTV4Yl4NXlhAARWsYAMNdHAq4uzUGW+oi7NTZ/w6Jc5OnQsr2EADs64NzKN6/Mwkzp6cCwVUsIJZNxINdDDAvjAvvy4sYNp6ooIVbKCBDgbYF+ZgGL9vifwi5kQFK9hAAx0MsC/McXEhtootx8V4TVacTTsXNtBABwPsa6s3dlZjZzV2Vh7g4+VZke9C6poHTB7VFypYwVycPKLyWL/QwQD7wjzWLyyggLqO1PNYP7GBBjoYYF+YN/Hnup33Q3kon3c+J9paofPO58QA+8LzzidHwHnnc6KAuaFyo+aJ6sJGBWwdW8fWl+3sQrqwgAIqWMEGnor/+Z9/+O3Pf/2XP/z9T3/9yz/9/W9//ONv//jf6x/852//+H/++7f/+MPf/viXv//2j3/5rz//+R9++//+8Of/yv/oP//jD3/JP//+h789/u3j2PzjX/718eej4L/96c9/HPQ//8DfPj7+q+XxiDCuv/7gkFXisUY/FCkfF6njPiVLPCabVwGvP/x9+fjv6+jby7//eFzDAvxUYLsWOq49rrV4PG/5cC3qx0XGlN1Zoej6+1Xv/nXND1+ca/GYumIJxH8oYZsS4ynptR1YBO93/76VeSSYtvX3H49afygQm+1YbVYoj7nfD0v03b6UtRkekyUflthtyUzbaztY/XBLls0hKVLm7hTpTzXaT0f17rDUthaDzVmi3l8RZ0VCP16RTY3xeYSrxviiwaphP61H2+3V8ZKFa682+bDE5sjK97xkhcft3tMIvV8hf8x4VrDycYW7q+Efr8ZuY+ZHsc6N6Uf/qIRsokZqrAPr8YTgwxLl3U0hmyNTjj7jTspB5NafSuhmIWzG/uPW7OOF2OWlyNwSD+So0Nbvr0gZp+JrRVr5cEU2B5YQmseHBfYjrNs6KJ6i/+c9Gu+H3q7G45H4rPF44v3x+UOPbX6v02B72hpSf7wg0M3R2WLukccTBipov39g1LYOjPY0yn4+MHRzeD5u9Pqq0TnCtf+0JpvlENe5ReXx6Iode38pbh7i2xp3t4Z/w9aId7fGfqC0NVDMPoy+TYXqx7pSfKTgh8d43Z3ZYx2g+rhPfqrRb9fQw3XV6PFxDX37rFrru2fVXYV7p5Lbq/HxWfXu1ixPR/jX9si6dtVS/OMa/f2r13Z8w+Xrbl0qF45tsy5tc2KMErPGA+3D69dtDVnrEvJ0cv2lRn37KG/t3aN8V+HeUX57NT4+yvdb09Yekf7iHml9XXU9nvZ9WMN25/h83+G5Kv6cfz/fl5TtjeasoY+HKx8eoSZvHxmm7x4Zuwr3jozbq/Fi/kVdZ6R4KvHL1vT3t2a8vTXj7a3pv/PWfDo2n8fIV84m+bOx68a7fLxHXN++8fb3w9PfDk9/Ozz9/fDcb8x3Lx3bse7z2mO678NLx9hE53hz07y3+WFz/hS/sTm08sHauS0e884fpu92srKuu4qi1vTDycr9FnW2aLy2U+7NhkTbzYYc66ailvphCXt7kIS/O0h2Fe4Nktur8fEg2W5MXVcHj41pL5XIV/hes1P64VxG35wQW7apnUfF41noayW03iixP7BuTbP1t6Ozvx2d3d+e3+rx5vzWdhnuTRaW43h3trAcZfdwQueKWHm69x+POl4s0l4sUo81xVWlbIrUd6cd9+sSda1LvLousmZ1xqv2Xy3ibRXpr+4aXfcl49XZmyK7W/jHjM66h39w+XC6bFvm7rzdJ0X63D+Ph/f9xSLajlXk6eHo14rcnEIsu9m7u3OIZfcM5uYk4nY5QtYWiaeLn1+X424RO14tss4xD7TXijzGxLq0fbBvymx3cVvB1p8vH754sAUH2/M4/loR6xT5eADeP3t//NBy9xQhvxmSJdw/PGntr5BvPdcpYu/fSG6LPK7l1pOd0uumyH76vq2RVzdr099/ELx7xHTzSfCuxM1HwbfXZPMseL9F18My8agv1dCyQvVxivBXaxxv13hqHXke+V+rsS7yHuU+rrF7yHTz5uGTGrfuHvbrUuuaxq8W79d48RhT6WtqsMbH+3b7hMbWxPNjjGyuvrcLkh9VPBfkkawfL0h7f+fua3zDzvXCumwGbt11Oh2+ZtEfVzyvbtR1haixOcq2D5zWzdnjruTjxWibK++Sv1I716X75n5mtxy10MOnm82xO8/JOkVVsePj89zuSc3NGaXSvqHhqb3f8dS+oeXpG3qetlv03rTSvsa9eaVi5f2hvz86bk0LlfefOpX3Hzt9YU0+zg6zNy+R90NWV5TW6v3F61txX+N+d31r39B6mhdL7z69369OfkzoXJ1uHzeHFJfvWB39vVenrzNMO47d6rTf80hrdNO2aps7KffdSUo40FYJ+WWbvt8GtV2KVeH5VPnLUuyeRJXHVEFd1x/H03ToV4oc+evda+ohnq+EvlKkx9MTradG569sEV/7pW/2S9TftcRjG0hne7SPN2r9jo1av2GjbovcPUa2w64d6yl2r/FawI8Pbq+ZavVXi6x5svGV0BeLVGXq3l5dHdV5rI2vhX1cpNdvCPjdA6ZvCfjxMbG1Or5bnV3jRsuXRFzr02v/6GD7pMiaQnjw0295fi7Sdw/p19OZ8VbkD1dHds+raltzKtU2rW9ybO+r6pogOsqHN+9yyLu3d3JsrgJ++CnLU0OM2vFTkU/ChN83HU83Vj9PU39SpnGYPO5c4sMy20N2vGdw7uP69Pjs133sb8+IyhFv3ynKbsL83v3EtsTNX4TcXhPfrIm/PSO6rXFzRvSzGsfbNe5NeMnuN0s/3LG217bpzZnZT2rcmpmV0t+evPukxq07+P261GMdH88P33+uIfJ7L8etGeL7NV4cczdniGUXp3dniD852G8eIPY775h7s7uy/R3UzdndTxbk1uyu6Pun/93vh+7O7m6X4+bs7icXd84V7+OB+QcXd9mQ8u4V4rZIFWUa4Onizr5waee1rBFTPz5Q9f2nqVLffpq6LXHz2kHff5r6ycXyOs89Lu8/Pt/ufs10Oz52V8sWa7bbom+ulndFfG3UB5bXipRj/dhN6va6fbckTZkmttcv/sO4+H86y3z14n+t0bgRsE0Z3T6PaP/b84ivbZe65pylPl0i/lrk7VTcHvaPy/p1pJQjXho6UtYvHqRszni7Z003TzTNv+FE0+z9TbrdtWuy+bGX9dVDPpuL5iWAvny/K5X7XbGXR46si5pRctMktuurXlOkznL89IKSz2YUxckB7S9OS9anmQT7aFpSdk+uHncB+r/eBdwvce8q4LNZ+Jvb4/iG7eHf8DxgW+TmFtl3Mz6tzHE8NyJ+rSnyUHsqs+nylO1l/O3eyl0Zi3VJYP34cC5+W4LZ0fGhy9dKOEvRPyyxb7E+eMHP8XLH+HrR0aPIx33a29+x6rpQi9EX+uH06u6XVDc7PSTe/xGqxNv9ANsSN6/B4/3foe636L1Oj32Ne50eEu93AX5S4969wP4Iu/eunl7ePjr6++/7ub8mH19m9ncbqvejfl2AhPbNqO/2/p13f//H0tLj/f369s+l76/JZtRvt+i9O289vmFGdb8ctx6X6VHfvY3Ro71/271djpu3MbvNcffOcFvj3p2h7p4t3dyk5Xj/znC7HPc26f7tGevRUrSnH8z98k6/7TuMbv1sev8GuFvXLfoNr+TT99/Jp++/lE+/4a182w1687LlePuqRaW8fdXySY17Ofr+Bccnd1/3fkS5f73fvZ8/bmvc/PXj9v1pN38veLvG5ueC+xr3fi24fZZz+4Z2u1Vv/lZwvyR3j5HtNrn5W8H9m/7eX5u7x+p+XW4eq/4Nx6p/w7Hq33Cs+nccq/uteu8nqfdfufrhlZTufkR16+Zn+3pOeiBreXr08cvrOXe/flI6Dx8zKB89Qd2XuDVzqtXffn662xhM79Xn11r8ujG+4XV9+h3v69u/NfXWJYzuX8Mw59R+aEzv9yusSzF7ejzwS4Xti+HWkfG4ImY1fnn563ZT0EHdRD+u0bY3gkTpg5+br+4fYbxNojaVD4+wbY22bkhrax+/Mkpb3z0KvtVlqHb3ANtc7dvbl4XbEjev9u0bhsp+i97qMtzWuNll+FmN4+0a97oM1e7OdLbXtunNLsNPatzqMlT/hnsof/8ear8u97oM1evvvRy3ugzv13hxzN3sMtTdL6fudhl+crDfO0Asfucdc6/LULePbG52GX6yILe6DDXenzXdvbHl9hRfvD1rur0KWi86sh9+WveV66j1oPapXeqXCv4dz8A/qXLzEbju3mT6hbuwXZl7j8D3JW49Av+kxJ1H4PsJpZu3k/X3nbT4wjGi33KM6PccI/r+MaLvHyP69jGyu0T1NVvweGTylMr6YwzV7fOfW7fI2xLFGh1oj1x7+rGi/vSm7sPenTLYl7g1ZVCP+L23B1/YejyFkY+3x+5Z1OMx+Zrpj/JR//i2xN2vpNTdx6HufSZlW+LepMG+xK1Zg/3WuDlt8MkmvTdvUIu/P2/wyWHW10Tdg5+vQ345zHY3qcV5aepTG7n8NGVYtxOXt941sF+O/NHfWeLBHy/Htkijnb21TZHthvWny13/4TsfP2/Y3dn3Zp5tS9zLM7HfN89+3B7P3/n4Jd+3ZbStHlSvZROLsp3MqEyItKcL32qvFolvKPJ8Ef+1Ik9zM94/LqLbHxqs9y7KY6Lm6aoofiqyO9hCuT/7oXH75yLb16aumzyJI14sEqWvIs8vtf1iEZZE2jcU0WNTZPvLlsYj++fL8J+L7H781GzdtjZ7Ok6+tIsr8Vibx6vHydObQo/64jap62B7HOm7bbJbHVs/rn9MOdXXNmzta4K19mivFTHxp1bj9h2rs9nFt/MkNqG0e2B180Xqdfu8Sg8masU+XpDdC/+8+Szi7fmFWz9tkV0z1eNGfS1IfXpkXn76ElvbvZ/q4ER8SP24xic/J1lX44+t2j5em+1mXXfAqk+/jvl1s26L9KdJ9M1B8pXzuX18Pm/xDcfa7gFr73xopPe2uUKxbXvWus6R5w/hys/fRt49e7p5KbzdJPe+pVB3L+679db+/Ub9wv7dlmkHZVrd3KbsfgRFSj8mfp4GcfSvLIodXMh63UxU7GblTVYLnukP8y4/F9k2ia4jtpanjv0vFWllJcoD9cUleXrLW1V/cUl0feKhabcXN6y29bqqqpsi24dZZlwoxatFfLU0P7C8WIT+pge+WsTXOxof2F4s0m19/6g/f2nsawPZV1I/ph6P49Uy8fRZv2ivxsrj7oLZzx9ac34uE+9PbsX7k1vx/uTWfns0ppTCdLN3th93Knx0tpTny/ufzl/hb58C98vRn34m+pgu+7DI9rsma4Ksy8fTJ/sSa1W62IeTsPs946xKeLx8wPf1E4kH72bZu749K7UtcW9Wavc6wJuzUl/YHruT+WdlnDKtvlymdcr4Zs6w9/f3Tn9377TdD2e/Z+88b4/or+8do0x/9ZzTDy4fe5H2ahnlm4iPEfjxtVLbPaW6d87Zlrh3ztmX+IZzzuNOayVbt/rx3mnvP+jalnhcmxz82NJLfa0I844PlvZikVqfLm9eO2V05zcLfXvK2PYwftNtsazZAtHDN7fFd4sUebFIXSd0qfV4sQhvkZVm5bUij+2wgvr4YZpNbz++7+sdB3L8kCVyt4TQqi+iH3cANNHtQ+Jb3elt+6TqZnf6bmV4MYgcdbcy734ooO1eufiY51/zUWG7xYj3N8e2SJN1Rd9++A676heKENE/3T9+pQhvCWv+w63WT0W2bwi8dW2zL3Hv2kbf7nf5ZGusZ1wttG+2xvb0u57nWA3dFPHdkqzLgHJ8NJ28X4y2LqJ/fEP4l9altfV9zx9+rvzFInREHv3lImsGyX54UP2Voz1WiDwe122K7H6G9S1F7vbvtO2HqO5dbu5K3Lzc3Ja4dbm53xo3+3c+2aT3+nda25667/XvfHKiWd+ifVwb1c2JZlekC0V2Z6umv/fqdOfBVInNkuy+Q+1M2DxvkfJTiW0b4Wre1/r0a98xyX6/CHev+sOE6S9F4u0T3rbEvROevf2utO3WeDwGXG0DR2sfbw17//Rv75/+rf6+W6OsIVefP+/969aw97eGvb813m523Q575QVp46dZr6WY8rsOrT9MI/xUxMvvnGKPv3Zw4X68uDq+XmX7WDF7sUhfV5n1ePX0oH21qD2KbJbE7RtuEHcfTrp/R7TdOzzV9ucvpvyyOrsJUmo8tT54v1/B+EjQ0033L2uye83Z7W0a8g3bdPdsMB9/nNep9fko++lyaPurLF9TXur9ebf8tFF3v8u6t1u2ixFrdnb0qG0WY3uC4OfY9fmnbl8q0o6Vq6a7Iv0b8mz7/Kqt25DH/N9TT1n9ShFbq9Of76q+WmS9/cSe38LytSLrTrPbcwPjz0V2rwfs67q7P/+C6KffIW5LPL8J93huX/y5yH5lgpXpr25W11hr89Tx/rUiwQ6O5xeV/7JZf+8iP7wHTnd7Z/tTgvWiHZHnbfKlIrq+jifPPxL/dRdvw7WuD4Z28w+DwI7fu8jdqQR7/8mVvf/kyt5/crXfGjenEj7ZpPemEqx8x1Xrtr9nNZi76IfncCvb+aq1Mo/5qo+/I2fbt2Hfe+WpfcMLA+39Fwba+y8MtG94YeB+i9575antfpx18y0CnyzHrVeemrz9iSCTb/jmyb7IzW+ebIvcffnqfklufvNkX+TmVxNtN+d9/6uJn5W5+f2VT8rc/fjiZ2VufsZlv4FvfsZlX+TmZ1y2I+jeaye2A/nmy3r3Ne69rNd2j65uhoHGtv3k1ps8tstxc5PKN3zG5ZNj9e5nXD4pc/czLp+VufkZl/2V2q2XnHxysXfnLSef3CI93fA9/8LrpxsTq/7uhO2+xK0JW6v9dy1xc853v0FXO/lj29aP7/R207X3JtGsfUPnirVv6FzZT0xW3o5mm8laa9v3qK9WDfnxxZs/jZfdt60e5xZuFvvTY7gq94s0XRv28TC1vVgkZLUWHM8P9L9SxISbPWmbJdn9JOvm2N0vxzpP2PN7d7+2MrrmSe2Hj8n8sjL1912Z52/LP91i/boc9vsuRyPcny9/f12Ot5+y7kvcS9X3v0i13xq+PtFl8fRm91+2hsvvXOT2XNH+10+35op2JW7OFW1L3Jsr2m6Nu3NF+016c67Iv+GJwP4s8zSv+Xwj8stZJt7/qqx9wxet7P0vWtn7X7Syb/ii1X6L3pzo2f3u6u5Ez3457k30xNsfYrF+fMNEz7bI3YmefnzDRM92Se5O9GyL3J3o2f3y6gsTPZ+UuTvRsy9ze6LnkzJ3J3r68Q0TPdsidyd64u1PCG0H8t2Jnnj/e73+/oeu/PiGV7b6+x+6+mTX3pzo2R+rtyd69mVuT/R8UubuRM/2MuveRM/+Su3WRM9uPuDelIKX+v6Ugu8e/NyeUti2oMqaDVDpm6bLbRFfF4zay6tFuKyox6tFqqz3lFeJjztqXY7fucjduxuXt98bsC1x7+5mX+LW3c1+a9y8u/lkk967u8mb07efhO8ayPvq/Cgiz03oPx8g/fetUWL9NEd+aBL+ShGRtVlF7NUiZXWPPIpsVke/YabV9RtmWj/ZJvxqQo/NNtn9TKg0Xt/84PrR59A/K7LeNPPgLh8W2b3qSdnF9jwl+Mvq7K4W2/rZRLX2ce+G1+PtGz/fvfb85rVelfdvcnz7I5/bNzmflLl7d/LZgeKMnh4fzVF6/Y6jrb79Mtj9YXJv5sf338O6NfPju59g3Zv52Za4N/Nzf00+nvn5ZODdmvnx9v4XXPYj7+aUy77IzSmXbZG7Uy77Jbk55fJZkNyc5vgsSG7OT+xX6eb8xL7IzfmJbdDfu5neHvY35yf2NW7OT2yfY907Z5l/w/yE2fubVN6fn/jkWL07P/FJmbvzE5+VuTk/sb9RujU/8cm91q35ie1voG8txSc/o76zFJ+8/4Scbz+88P8rL1ExXudiXV8sEuu3R/L8HZYvvollPfF84Mer03afor77OpdtkXufldmXuPVZmU9K3PmszH6/OC/n9pdfs/NDkfpqEaGIfrxfPN7uENiXuNUh4LvJ428ocfO9bPsNytNf93h1r6wrVvH+aoI8L8nLRWJ9ZO+BLxfhzndXpL3f6tjeb3X85HWVq0YXe/GNl+v9CV38wy/TxNtn20/eiHprW+zfnLt+GdfcXn6H7/o5aIt2vFiED/W0H2bhv7YkzpL0V99rHGvnPuq9/Dbhp5vN+vo2CYq8+P7r2tYvKGvr8h1FXnz/dWVusz7PbX6tCC8xrL472PZFuKEJ/7hI7J5geV+XMnEcH/+WM3Y/oaoW/Aq6tw+v3D9bEl9LUnZLsnujk63LqmZPE056fzniWC+GiMM+/rFuyH7Sam7Wxym0bYrsrlXXK66e5wCk+ReOkb5uquru3ayx+9nD7WNE6jccI58syb1jZPfmwJvHyG457h8j8R3HSP9dj5F2rPbtdmy+chC7b1w2if/9FYbxU419S+t6p9sP32yIr6xMrPNeOWSzMvUbVqb9zivDJ35a8RfPeo/Z0fV+Oq32YhFhScS/o0gcr67OmmBtP/Tnf21JeLGjHq9v2M6Gba8WqRR5+cuOUnmU1p5vnn+cU4zdhNO9m+d9iVt3vvH+T6e2JW7ePG83qPLmYPWPvy4Zu6dOt97ZuV+Myu137bFZDHk/zLb9VjfDbP/FTuExjbQPV+aTIk9f2LOPt0jd/xj75rdDd0XuzQHuS9yaA/ykxK05wPL+PXx5+x5+/4jozqfBYvcdrFhXU9E/frwT219clbr6VkprHz7e2c3c+ZrprnF8/A31baNW8JHt5xJ2+3XhxfiYgml/qUSskVaeX27/lRKdnzkeR3mlhByExlH1paXgTeHjXf+vleh8gKS8tCLjczvr6VZ/bSn4ll+pz5/j/EKJ+tRa8nzL8VOJ2L0lsPL2tfp8ZJR+f01W5hT11zZG5QNvz9cJr27PF0sEPZXx9CnrIj+dXOPt7whux9m6CSzPJ4Gfl2L/AQnG2fM7fb9QItbjucdQlc222L5J5177Yew+KfUdnyh4frHY89uWf1mZ3bsVzHl5nHn7aIr9syLrieWD+0cdjLH9PUOsFgwt5eMjJPrbHwvanhv7mjp9HCyvHGSVL2zV0M1+6d/Q+h/9G1r/P925/rRz24c713/vI4SPykl7KvHrhu3byzg6fXYzWvsi5Eixj4v03Yet7k4U9kPenSjcLsfdicK++0HT3YnCvvtp1b2Jwm0AlMd0FBcx/tQlO2baflySzfG6Dtanjxrf/5iOFF235uX55u2nNdmX4PUbzzcsXylBV4w8vfLi5xK9bOdMmfo5XizR169Tng6Mr6zI84nu6az9lRK2Jhh+7BD6QgkvXAJtt4X9zkWKcW54fu/s14q4c8vR5cUi/eBLdvLanhHjq1H+2ljRdYX7OFLKa0tB89fzZOsXSjzyZZ3hnr+n/pUShQ+tlRqvleD3ZCVeWwpdA/aBry1FE65eqr9Wwmhmj/7ainB0qry2Irwk55HpL62Ir34er/ZKgb7meXvbDPbtg823b4f7+mz68zcEvrIW67js3t7cDK8VUOFqWH7oeo/7JRo/g31qznq1xNNk5pdKrKGh4u2lEs8fynjqmvlKibqmdbUdr20LNb7S8zzH8mqJ13bq0/c+nvPuS9uCtt+qr+1UPnyvzx++/1KJ9cXQx7OhF3fqepneA19aivHNUS4s6kslnj59Gs9v5/+pRN89UypCdD9/LLt8YTGYs4rWXluTYNqrxmsljI8OvzZIClMrjyu28uKK8KuSQ94uUV5dCqfES6P9cZ3Ktqj+9lJsdur2Oc7jdMa3MJ7js/14Tu6750m9rS9J99Y//jlK3y3J23O7j3tVZkOeJt1+ejLWdz84Ej64cpSPn63tNqius+LjmWX5cINui5SDyZDBL5bpbd2x9udfYn6tiKznSg+srxZZXST9uRXla0V4F8JjK9uLx2qsgdej6eZYvVvEjleLxNqwEfZakXKUtnL5KP5xmU82bbBpn74o/6VN+zhSn74Ac7i8ukqH2lOZzT7afVzr/pbZlrnXvLAvcat54ZMSHzYv/N/H//nDv/zpb//057/+yx/+/qe//uU/H3/vf0apv/3pD//85z9e//ff/usv//L0b//+///H/Df//Lc//fnPf/r3f/qPv/31X/74r//1tz+OSuPf/XZc//N/3B63sG4S//cffivj/z8GwD88ps/74//r4/8/7i2bjH83/mMZHduP/7HxD/K/Nhl/W8v//Z+xuP8P"
|
|
359
|
+
"debug_symbols": "tb3fju26cW/9Lvs6F6oqklXMqxwcBE7iBAYMO3CcD/gQ5N3PZEnkmGutNFs9Z+8b72F7dw39408SVVP679/+9Y///F///k9/+su//fU/f/vH//Pfv/3z3/705z//6d//6c9//Zc//P1Pf/3L43/979+O8R+i9bd/tH94/LP99o91/NOvf8b1z37+047rn3L9U69/2vXPcv2zXv+86tlVz656dtUrV71y1StXvXLVK1e9ctUrV71y1StXvXLVq1e9etWrV7161atXvXrVq1e9etWrV7161WtXvXbVa1e9dtVrV7121WtXvXbVa1e9dtXzq55f9fyq51c9v+r5Vc+ven7V86ueX/XiqhdXvbjqxVUvrnpx1YurXjzq+fhnXP/s5z/7cf3zUU+OATrBJjxKyjhW+qOm5L/cJviEmNBP0OOYMCrHAJ1gE8qEOqFN8AkxoV8gx4RZWWZlGZX7gDKhThiV6wCfEBMelXWAHhNkgk6wCWVCndAm+ISYMCvbrGyz8hhIOrbPGEknlAl1QpvgE2JCv2AMqBNkwqxcZuUyK5dZuczKZVYus3KZleusXGflOivXWbnOynVWrrNynZXHENOxC8YYSxiD7ASZoBNsQplQJ7QJPmFWbrOyz8o+K/us7LOyz8o+K/us7LOyz8o+K8esHLNyzMoxK8esHLNyzMoxK8esHLNyn5X7rNxn5T4r91m5z8p9Vu6zcp+V+1XZjmOCTNAJNqFMqBPaBJ8QE2ZlmZVlVpZZWWZlmZVlVpZZeYxB0wExoV8wxuAJMkEn2IQyoU5oE2ZlnZV1Vh5j0OoAmaATrtFtVibUCW2CT4gJ1+i2ckyQCTphVi6zcpmVxxi0NsAnxIR+wRiDJ8gEnWATyoQ6YVaus3KdlccYtLELxhg8QSZceWhjNJVH8tsYO2VsujF2TigT6oQ2wSfEhH7BGDsnyIRZOWblmJVjVo5ZOWblmJVjVu6zcp+V+6zcZ+U+K/dZuc/KfVbus3K/KpfjmCATdIJNKBPqhDbBJ8SEWVlmZZmVZVaWWVlmZZmVZVaWWVlmZZmVdVbWWVlnZZ2VdVYeY6fUAW2CT4gJ/YIxdk4YldsAnWATyoQ6oU3wCTGhXzDGzgmzcpmVx9gpPqBMGJVjQJvgE2JCv2CMnRNkwrhYkgE2oUwY10s2oE3wCeMSbCxPXiMOyIvEBJmgE2zCqDyWOa8UE9oEnxAT+gV5uZggE3SCTZiVfVbOi8axgnnVmBAX5HViGTDq9AGPv2pjlcf4avl/+YSY0C8Y4+sEmfCo08aRMMbXCWVCndAm+ISY0E+oY3ydIBN0gk0YlduAOmFU7gN8QkzoF4zxdYJMeFT2Y4BNKBPqhDbBJ8SEfsEYXyfIhFlZZ+UxvlwG1Amjsg7wCTGhXzDGl48VHOPrBJ1gE8qEOmFU9gE+ISb0C8b4OkEm6ASbUCbUCbNymZXH+PIY0C8Y4+uEUbkM0Ak2ISaMvxr7YoyUGKs8RkrYgDKhTmgTfEJM6BeMkXKCTNAJs7LPyj4rjwESY3nGADmhXzBOUifIhFFwrOA4SZ1QJtQJbYJPGJXHmo5BlDAG0QkyQSfYhDKhTmgTfMKs3K/KbQyifgyQCTrhUbnLgDKhTnhU7jbgUbmXAY/KvQ3oF4xBdIJM0Ak2YdQZizGGzAkxoV8whswJcoHlnaYO0kV5rzkWaRzSctRBvigW9UnjsL5IJtX838aSVVmki2xRWVQXtUW+KBb1SW052nK05WjL0ZajLUdeYB2PwdQ8/zYGjb8dt9ltHLUXlUXjb2XssxHxF/miWNQnjaP4oqw3tm7k346tG/m3Y1kiFvVJPf92bMmcDThJF9misqguSsdYt5wTOCkdYy1zVmCQ57TASVmvDxp/q8cgX5R/WwaNv9XHGnne+J8ki3TRqKc6qCyqi9Jhg3xRLFoOXQ5dDl0OtUXl2s6udVFb5Iti0dxHnsf92DNu9doznsf92AtuvigW9Ws7ezkWySJdZIvKonrtDy9tkc+9UGLR2kc5ZnLP5PjI/VHXPsrxkXsmx0dujbq2X1vbr63tl+Mj90Jb+6itfZTjI/dCW/uorX3UlqMthy+HL4evfZRH8bjB8jyKT9JFuQRjG+RRfFJd1Bb5oljUL4o8ik+SRcNhMsgWlUV1UVvki4Zj3KRGHu1JebSfJIt0kS0qi+qitsgXLYcsRx7tZoNkkS5KRxlUFtVF6aiDfFEs6pMsHW1Q1hvbysqiuqgtynp90Kg3bkUjR0AZ2ypHwEmySBcNx7i/iRwBJ9VFbdFwlLEeedyP+43I88e4z4g8f5SxBDkW6viLPH+cVBbVRW2RL4pFwzFuJiLHx0nDMS7fI8fHSbaoLKqL2qJ0xKBY1Cfl+DhJFukiW1QW1UVt0XL4cuR5ZtxFRJ5nTpJFw9HG3spzz0ll0XC0sTXyfDRuJiLPRyfFoj4pR/JJsigd47jKkXxSWVQXtUW+KBb1i3qO5JNkkS6yRWVRXdQW+aJYlI7H3uo5kk+SRbk/yiBbVBbVRW2RL0pHDOqTciSfJIt0kS0qi3KZ+6BY1CflqD1JFukiW1QW1UVt0XLYcthylOUoy1GWoyxHWY6yHGU5ynKU5SjLUZejLkddjrocdTnqctTlqMtRl6MuR1uOthxtOdpytOVoy9GWoy1HW462HL4cvhy+HL4cvhy+HL4cvhy+HL4csRyxHLEcsRyxHLEcsRyxHLEcsRx9Ofpy9OXoy9GXoy9HX46+HH05+nTIcRyggAoaWMAKNtDBALEJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFJthM2yGzbAZNsNm2AybYTNsBVsmwpg+eaCCBtYryB7YQAcD7AvrAQqooIEFxFaxVWwVW8XWsDVsDVvD1rA1bA1bw9awNWyOzbE5Nsfm2BybY3Nsjs2xBbbAFtgCW2ALbIEtsAW2wNaxdWwdW8fWsXVsHVvH1rH1ZZPjAAVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2MgSIUuELBGyRMgSIUuy/UTGRKdkB8pEA4dtTNpKtqJMbGC2UtTEAPvCzJILBVQwbT2xgBVsoIMB9oWZJRcKqCA2x+bYHJtjc2yOLbAFtsAW2AJbYAtsgS2zxHMPZZacmFlyoYAKGpgtKpJYwQZmo4omBtgnno0wF2bjS7ZdHavC1epyYoBZYezYq+HlRAGz6aUlGljACqbNEx0MsC/MJBgz2ZItLjImmiWbXCY6mNv3/LO+MMf8hQIqaGABs1XnSGyggwH2hTnmLxRQQQMLiK1gK9gKtoKtYssx33Nn5ejuuY9zdF/YQAcD7AtzdF8ooIIGYmvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLli02EwVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2Aq2gq1gK9gKtoqtYqvYKjayxMgSI0uMLDGyxMgSI0uMLLEzSyzRwAJWsIEOBtgXnllyooBpa4kGFjBtJbGBDgbYF55ZcqKAChpYQGyB7cySSAywL8zWvPFsUbLBaKKCBhawgg10MMA+MVuOJgqoYNpaYpsLWc58GKfQcubDiaNC9u9me9FEAwtYwQaO5R0PrCRbjSb2hdkue6GAChpYwAo2EJtiywba8ahMsgVpooBps0QDC5i2kthABwNMW27qbOnLjuZsQ1LJTZ1NfBdWsIGjrubmy4ZazbXIllrNxcmmWk1bttVeqKCBw6a5ONlee2EDHUxbLm9212ouTvbXjo5LyQ4ltVyc7LG1VGSX7YUVbKCDAfaF2XFruQzZc3uhrcPzHPMnVpDj1x0McI3Cco75EwVUEFtgC2yBjTGf7U5quc2yGffEHPMX5grlv5tj/kIDC1jBBjoYYJ+YbVATBVRw2MajLcl2qIkVbKCDAQ7beOgl2Ro1UUAFDSxgBRvoYIDYFFvmQ7FEBQ1MW01MW0tsYNo8McC05YbKfLhQQAUNLGAFG+hggNgKtoKtYCvYCraCrWAr2Aq2gq1iq9gqtoqtYqvYKraKrWKr2Bq2hq1ha9gatoatYWvYGraGzbE5Nsfm2BxbNu+PR7QPbKCDAa5zbHZ5TRRQQQMLWMEGrjN69ng9bg4T11k6u7q05ijMfLiwgQ4G2Cdmh9fEbCXXxLV927HWuB0B9oXnmD8x29MtUUEDC7j2ZhNs4mCAa282PUABdS3DOeZPLGAF21qG8wc1JwaIjTHfGPONMd8Y840x3xjzzdax04wtaWxJY0uebf65DIUtWdiSjPnGmG+M+caYb4z5xphvjPlW2W/nmD+RLVnZkpX9lmP+QrYkY74x5htjvjHmG2O+MeYbY74x5ltjvzW2ZGNLNrZkY0vmmB/PsiVb4SbmlqyJBhawgrluuQw55i8MsC/MMX+hgAoamLZcyBzzF+b1w4l9jcIc86O3QbJhbqKCBrKHOnuos4c6x3rnWD+TYKAfB7j2kB8KGljACjbQwQDX8ZB9dTraxCUb6yYWcNQd7RySvXWP+alEBwPsCzMfLhRQQQMLmFdtKT5nD07sC8/ZgxMFVNDAAlawgdgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKjTnHs0vvQmwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WU7exIvFFBBAwtYwQY6GCA2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFRpYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkmyk1NHEKtlJOdHAAlawgQ4G2BfmHcqF2Aq2gq1gK9gKtoKtYCvYKrbMknxonN2VOjpgJdsrJxawgg10MMC0ne+cOEAB05bivEO5sIBpa4kNdDDAfAo+LvPPfssLBVTQwAJWsIEOxsJMjewGyC5Lbef/amABK9hABwMc2yyb5LLbcqKAwzZ+dijZcDmxgMPm+e6PvEO50MEAc5tJvvHjAAVU0MACVrCBDsbCnMFwS1TQwFyLkljBBuZa1MQAc5u1fEvJAQqYtnyfSd6hXFjACjbQwQDTFvkqlAMUUEEDCzh/mKNnK+V4GKJnK6Um5lXFhQIqaGABKzh/jaNnV+WFAfaFeVUhJwqooIEFrGADHYyFjT3f2PONPd/Y840939jzjT3f2PONPe/seWfPO3ve2fPOnnf2vLPnnT3v7Hlnzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz3f2fF97/uyUlBMFVNDAAlawgQ6uPS/nmO+JChpYwLEv4khsoIMBjrUYP8LUsyfyQgEVNLCAFWygL8zRPX5LrNn9OFFBAwtYwVyLmuhggH1hnv0vFFBBAwtYQWwFW579RyOZZvfjhXn2vzBtnqiggWnLPZRn/547IM/+ozlBs/txYoB94fnKoBMFHLaeR8n54qATC1jBBjoYYF94vkboRAGxOTbH5tgcm2NzbOeLhXL7nq8WOlHAtOU2O18wdGIBK9hABx82O3JTj3y4cOTDRAEVNLCAFWygg9j6smX3ox2SKKCCabPEtLXECjbQwQD7QjlAARVMmycWMG2R2EAHAxw2yUXPVxVdKKCCBhawgg0ctgzz7KqcmLbcOvn6ogsFVNDAVJTEBjoYYF9YUpGbpAiooIEFrGDackPlW40uDLAvzHcbXSigggYWsILYKrZ811G+8y0bLC/M9x1dOGx5Cs0Gy4kGDlueC7PB0vJUlw2WprmhRoBMDLAvHAEyUcA8USXVRW2RL4pFfVKO4OulcgcoYD7PSLJFZVFd1Bb5b/PtdFmxJeZm8MRyvh5Ls13xorZobIOSFIv6pByJJ8kiXZSSSCxgbuue2EBfmAPOjsRRYbSz6Pk2sAtHBUsaBcZvnPV8JdiFAfaFObIulLlJTBfZorKoLmqL+tqIOWSul/rlguYy5ZC5MBc0t0UOmQtzSbPYfBWYrneB6XoZmK63gel6HZiu94Hp+fqvC3Mtc0HmC790vfFLsyfwovHXuRfy4D+pLmqLfFEsSkliHvcXDstZfJw4Jxo4ipbcm57HTe7COMBRIZc9dG2YMLCAFcyyuTfDwQD72uA5ki4UEFvH1rF1bB1bx9ax9WXL/r6JAi5b9vdNLGAFG+jXoZ5vGDsP32wFvFAOUEBdmOepkouQg+nCAub1RVJb5ItiUZ+Ul7snySJdZIvKouWw5bDlsOWw5chz1GgJ0nxj2EQFc2UisYBjI5bccjngLnQwwL4wh9yFAg7baMrQbNebWMC05fLmYLzQwWGruR9yiJ6YQ/TCDPYkXWSLyqK6qC3Kinls5MiruTtz5NVcfi9gBRs4lrSe7wcNsC/MUXqhgHmhlZSy3PI5Si+sYAMdDLAvzFF6oYAKYuvYOraOrWPLUdpyk+UoTcyOvIkCKmjgsI0n1JodeRMb6GCAfWEO0wsFVNBAbIItT5VjFlazI29igGkb+zU78iYKmLaWaGABK5i282WwaRuHc/be2ZgP1Oy9m6iggaOu5+bLy9ScvcneO8sZmey9s5x7yd67iX1hRsCFaTvfRKuggQVMWy5vjvucBciGO8vJxWy4s8jFyXGfN7fZcDdRQQMLWMEGpu18S24szME+psw1u+wmKmhgKnLRz5PyiQ10MOaQr2cQJOaJ+UIBFTSwgBUcdfPGPfvpLswguDAvK3JLZhBcaOComzfu2U83caxF3hNnP93EANOWy5BJcKGAChpYwAqmLY+zTIILA+wTs/duooB5qpHEPDO3xHUd0A4HA+wLz2vjEwVUMK8DSmIBK9jAvA7wxADXdV87L5pPFFBBAwtYwbzFydXMq+aemGP+QgEVNLCAFcx9kYoc8xcG2BfmmNcTBVTQwAJWsIEOxsIc6KMzXLPLbqKBuRY9sYIN9PHi3CMxwD4wD5gx5icKqANzz48xP7GAFWyggwGmbQyc7LKbKKCCBhYw93wumbPnnT0f7Plgzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz/e157PDLfJsmh1uE+vAmtjAvv6FMbImCqgL8424R/5ZvhP3wgbmLsxlyDfjXtgX5ttxj54o4NiFOW2UjWYTCzhsORWUjWYTHQywL8w35l4ooIIGFhBbxVaxVWwVW8OWh33OQWXzWMnX8mfzWBnvv9NsHpvYF+YBfmEubyQqaGABKzhsmtvsfH/1iQH2hedbrE8UUEEDC1hBbIEtsAW2883WR6KAChpYwAqmTRMdjIlxvr76xPwXLDHA3NTjkMt+r4kC5uLURAMLmIvjiQ1MWyQGOGx5+5D9XiUjKPu9St7XZL/XxGHLM2/2e02sYAMdDLAvzJdbX5i2XMh8wXVOZWS/V8lJi+z3Knn2z86ukifs7Oya2Bfm4L1QQAUNzGK51XNsXtgX5ti8UEAFDcxiuQNyZOWNcTZYTaxgA/PPcuVzvF3YF+Z4u1BABQ0sYAUbiM2xObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s2WA1UUAFDSxgBRvoYIDYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbAZtoKtYCvYCraCrWAr2Aq2gq1gq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYyJJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0leW2LGyxI6VJXasLLFjZYkdK0vsWFlix8oSO1aW2LGyxI4Dm2ATbIJNsAk2wSbYBNsZFZGooIEFrGADHQywLzyj4kRshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bXzY5DlBABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbGSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImRJ9lqV8XDHsteqjOdUlr1WZXyuxrKrqozHOJYtT+X6TpeCBg7FeAJi2fI0sYEOBtgX5iC7UEAFDcQW2AJbDpHxrMOyYWlinZhNSGVM31g2IU1UMCt44qgwnlRYNiFNbKCDAfaFedhfKKCCBmITbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNsediP3nLLJqSJBaxgAx0MsC/Mw/5CAbEVbAVbngDHEybLvqEynjBZ9g0Vz92dg+FCBwPsC/NUd6GAChpYQGwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVuO4/Fcz7JxaWIFG+hggH1itjRNFFBBAwtYwbR5ooOx8BzdkZgVeuKoMJ4tWnYxTXQwwL4wx/GFAipoYAGxKTbFluN4PN+0bHm6MMfxhQIqaGABK9hAB7EZtoKtYMtxPB63WjZJTSxgBRvoC88vvJXErFATs0LulhzzFzbQwQD7whzzFwqooIHYGraGLcd85AGTY/7CvjDH/IUCKjjq9tybOY57br4cxyfmOL5wVBgPVu38xuKFBhawgg10MMC+MMfxhdg6thzHPXdLjuMLK5i2HGQ5ji9MW65xjuPx0M3O7zBe+LDV8UzNsmlqooFloCZWsA20RB9YEmNgTewDhzi7piYKqKCBBaxgAx0MEJtiU2yKTbEptvxG95GbJD/LPR4KWTZa1fH4x7LTamIBx0JKbpL8SveFDgbYF+YXuiU3X36UW3Lz5Xe582uhJT/NfWGAfWF+o/tCARU0sIBpa4kNdDBtuUny04wn5scZLxQwbbnN8hONFxZwXVpmJ9VEB/NCNrdkDt4Tc/BeKKCCBqYtd1Z+uvHCBjoYYF+YX/++UEAFDcQW2AJbYAtsga1j69g6to6tY+vYOraOrWPry5Z9VxMFVNDAAlawgQ4GiE2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2AybYTNshs2wGTbDZtgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hi0/+zoezVr2aE3sC/PjrxcWMP9MEmNhntHzTJZtVRMrmP+uJvaFOaQvFFBBAwtYwQY6iK0vWzZQTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW14e5Ifq25klJ/aFZ4B4ooIGpqInVrCBQzE6Piy7sSb2ifnOs4kCKmhgASvYQAcDxCbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbAVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvHRpY4WeJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlcWaJJDbQwbRZYl94ZsmJaauJCqYtEgtYwQY6mLae2Cdm+14dP121bN+royHUsn1v4rCNzk7L9r2JFRy28TtLy/a9iQEO2+jLtGzfmyigggYWsIINdDBAbIpNsSk2xabYMiqylSf78Go+ds4+vFpym2UoXFjACo6FzOfS2Yc3McC+MEPhwmGruVEzFGpuvgyFCwtYwbTl8mYo1FyGDIV21u0LMxRGS79lH17Nh8bZhzdx2PL5cfbh1ZbFMhROzNGdD0uzoa7m08lsqJtYwLE4+cwym+Sq5/LmiL1QQQMLWMEGOhhgXxjYAltgC2yBLbAFtsAW2AJbx9axdWwdW8fWsXVsHVvH1qetZJPcRAEVNLCAFWyggwFiE2yCTbAJNsEm2ASbYBNsgk2xKTbFliN2PGMt2UU3sYINdDDAvjDP/uOpZ8kuuokKluv4Ldk6N7GBDgbYF+bovlBABQ3EVrAVbAVbwVawVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx5YBMp6Nl2ydm+jgsMX57/aJ2To3cdjGT3tLts5NHLbxBLpk69zECqbNEx0MsC/MALlQQAUNLGAFsQk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIatYCvYCraCrWAr2Aq2gq1gK9gqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLpscBCqiggQWsYAMdDBAbWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpbYmSWR2CeWM0tOHLbRc1rOXssLDRy20XNazl7LCxvo4LCN3tBy9lqO9/qUs9dyvFOnnL2WFypoYAEr2EAHA+wLFVtmyeg5LWev5YUGFrCCDXQwwL4ws+RCbIbNsGWWjMbYcrZoXthABwPsCzNLLhRQQQOxFWyZJaP3tpztnBcG2BdmllwooIIGFrCC2DJLeh5ymSUX9oWZGhc+KrQjj76RD+3Ig2vkw8QA+8KRD+3Io2/kw0QFDSxgBRvoYIB9YWALbIEtsAW2wBZpyyESDqYtj9/oC/sBpi03alfQwAJWsIEOBtgnZovmRAEVNLCAFVy27MBso4u5ZK9lG13MJXst2/j+dMley4kNdHAs5GhSLtlreeEY6BMFVDAjsyQWsIJpy4VUBwPsC+0ABUxbrtsY6BMLWMEGOhhgX1gOUEBsBVtJW27UUsEGDtvoJizZazlx2DS3wxjoE4dttP2U7LWcOGzj9VAley0nVrCBDgbYF7YDFFBBbA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVuGgubxm6FwoYMBpm0cRtnkOVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgyNcYT6JKNm208ay7ZuDlxVBgvHyrZuDnRwQD7wsyHCwXMupa49mY2Y57bN5sxL8wxf6GAY43HGwBLNmNOLGAF17HTCrYS4Dp2Wj1AARW0tQznmD+xgg30tQw55i/sCxnzjTHfGPONMd8Y840x3xjzra0jtTW2ZGNLOlsyx/y5DM6WdLYkY74x5htjvjHmG2O+MeYbY74x5ts55nMZgi0ZbMlgSwZbMsf8aGQo2Yw5Mbdk1s0xf6GACua65bGeY/7CCjbQwQD7xOzLnDhsoxWiZF/mxHWAZzNmG10RJZsxJzoY4Do0shlzooAKGljACq6d5eJggGtnZTPmRAEVNLCAuRaaGGBfmMO/5HbI4V9yyfLy4EIDC1jBBjoYYF+YoTDe+1WywXJiASuYdXMtMhQuDLAvzFDI67NssJyooIEFrGADfWHOE+S1/dlKeaGCuRYnFnDUrXmc5fC/0MGxFjWPqBz+J+bwv3CsRc09lMP/QgMLWMEGOhhgX5jD/0Js51PPXMjzqeeJDXQwwL7wfOp5ooAKGoitY+vYOraOrS/b2TR5oYAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsZ0dFGMMnU2TFwqY47gmGljAHMeR2EAHcxz3xL7wTI0TBVTQwAJWsIEOYnNsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWx92bJpcqKAChpYwAo20MEAsQk2wSbYBJtgE2yCTbAJNsGm2BSbYlNsik2xKTbFptgUm2EzbIbNsBk2w2bYDJthM2wFW8FWsBVsBVvBVrAVbAVbwVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJX1lST1WltRjZUk9VpbUY2VJPVaW1GNlST1WltRjZUk9VpbU48Am2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2yGzbAZNsNm2AybYTNshs2wFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDZtjc2yOzbE5Nsfm2BybY3NsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWxkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkSXZ2PmaUE/vCzJILh228zKdmZ+fEYRs/7qnZ2TmxgsM2fudTs7NzYtpKYp+YnZ0T0+aJCqatJRawgmnriQ4O23i7Yc3OzgszS0ZXe83OzokKDtv42UbNzs6JFWyggwH2hZklFwqoIDbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbBlanhu9cwHzz2U+TB+yVKzW3OigwGO5R2/GqjZrTlRQAUNHLbIoyTz4cIGOhhgX5j5ELkWmQ8XKmhgASvYQAcD7Asdm2PLfIjcfJkPFxYwbbmhMh96HrSZDxcO2+gLqtmteWHmQ8/jN/PhQgUNLGAFG+hggH1hx9axdWwdW8fWsXVsHVvH1pctuzUnCqiggQWsYAMdDBCbYBNsgk2wCTbBJtgEW+bDaByq2a15YebDhQKmrSUaWMAKNtDBAPvCzIcLBcRm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKLVNjNFDV7MBs42lJzQ7MCzMfxkfJanZgTlTQwAJWsIGPuj76rmp2VV4HQY75cx/nmL+wgg30UUESA+wLx5ifyJHKmDfGvDHmjTFvjHljzBtj3oIjtXOkdo7Uc8yfyLqNMe+jMatmV+XENjDrdgcD7BOzq9LH5+drdlVOVNDAAlawgQ6mzRP7QpG5s7KV0keHVc1WyokFrGCbOyBbKScGuHZWtlJOFFDBtbOKFrCCDXQwwBVixQ5QwFyLnljBBo61kNwOY0i75JKNIX3hGNITBVTQwAJWsIFZdxwa2R45UUAFs26uRS1gBRuYlx25Y3OgX9gX5kC/UEAFDSxgBcdDlppLlk3VJ2ZT9YUCKmhgASvYQAexObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s53stLxRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xZaPUMfLGer5XssL+0LLkdUSBVQwbZZYwArmyPJEBwNMW+L5iokTBVTQwAJWsIEOBoitYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bOcLNS8UUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbGRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZkm2iPn6JVbNNdKKDaeuJfeF5j3OigAoOWz6YOttELxzrls+zzjbRCx0ctnwEdbaJnphzION3XzXbRCcqOOYqNBU5B3JhBRvoYIB9Yc6MXCiggtgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtn3ZKYFWpiVmiJAfaFOQV6YS5vHiWhoIEFrOCwjd8w1Wz9nBjgsFnu2JEPEwVU0MACVrCBDga4bNn6OVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKzbAZNsNm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsJElnSzpZEknSzpZ0smSTpb0M0s00cEA+4XtOLPkRAEVNDBtNbGCDUybJQbYF55Z4okCKjhs4+dXLVs/J1awgQ4G2BdmllwooILYFJtiyywpuW5nauRCnklwYgUb6GCAVMgkKCcKqGAuWSQWsIINdDDAvjCT4EIBFcRWsWUSjF94tWzcnOhggH1hJsGFw1bz2MkkuNDAAlawgQ4G2BdmElyIzbFlEtQ8+jIJLqxg2nIfZxKMD/i2bNycmLbcLZkEF6YtN1QmwYUGFrCCDXQwwL4wk+BCbB1bx9axdWwdW8fWsfVly8bNiQIqaGABK9hABwPEJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2PKqYtxftGzcnNgX5lXFhSt3snFzooEFrGADHQxwpVy2aPpoyWty5kNNHBXG+7ZbNmNODLAvzHy4UEAFR91x59Oksn0ra9xY43PMn6jgWONxc9WywXJiBRvI3mzYGnvT2ZvO3nT2prM3zzGfy3CO+RMbyN7MMX8uQ475E3PMX4iNMS+MeWHMC2NeGPPCmJfg2Am2ZGdLdrZkjvlzGTpbsrMlGfPCmBfGvDDmhTGvjHllzOux9pueY/7EAlZw7bdssJwYIDbGvDLmlTGvjHllzCtjXhnzKmu/qQS4tqTqAQqYW7IkGphbsiZWsIEO5rrlMuSYPzHH/IUCKmhgASuYtlzIHPMX5vVD/gt5pZCjMF+S6eOnnC1fkjmxgBVkDxX2UGEPlXWsaz1AARVkD1X2UGUPVfZQdTBAjofG8dA4HjIfRkduywbLiQ0cdT23Q+aD55JlPpyY+XChgAoaWMAKNjDr5lGSSXChgApm3TxKMgkurGADcwbjxAD7wkyCCwVU0MACVjC3TkvsE7NpcqKAuRaeaGABKzjmxPIa8XzF5YUB9oXn1zZOFFBBA3PrnOhggH1hju4LBczl7YmjwmgQbtny6OMr2S1bHi/MEXvhqBCaqODYDuMd5S1bHidWcCzv6CBu2fI4McC+MK/4LxRQwbTVxAJWsIEOBji2uuYK5Yg9t0OO2AvZOjliI/d8jtgLHQywL8wRG3kQ5Ii9UEEDcy3SluP4wgYOW8/lzXF8YV+Y47jnvshxfKGCacs9n+O4527Jcdxzo+Y47rl18jx/YSzMcdxz3XIcX2hgAbNurluO2PPgyhF7Yo7YCwU0cAwcyYU8P+B7YoBjF45PQrfz7ZEXCqiggQWsYAN9YZ6ER1trO5sbL1TQwFz5nljBBjo41uI4sS88v8l9ooAKGljACjawX19ub9nGGMeJAipoYBkoiRVsoIMB9oXlAOX6OHzL5saJBhawgg10MMC+cJyEJ+ZaaGIBK9jAXAtLDLAvbAc41iJTI5sbJxpYwAo20MFY6Lkv8jhzBQ0sYAUbOOrmKSmbGyf2heMkPFFABcda5IkqmxsnVrCBDsbCnmuRK9RzebNur2ADs0Ienj3APjEbFicKqKCBBaxgAx0MEJtgE2yCTbAJNsljxxMD7Av1AHPrRKKCBhawgg10MMC05eKco/tEARUcttGO3LI1cWIFG+hzZ9VzdJ/YF56j+0QBFTSwgBUcdUfrcssmxAvHOJ446o5+5ZZNiJFpn02IEwtYwVyLkuhggH1hjm7JPdTSlhuqKWhgASvYQAcD7Av9ALHlmNdczRzzFxawgg10MMC+cIz5icOWl7fZhBiaaxwGFrCCDXQwwL6wH6CA2MYZPSwPrsyHCyvYQAcD7BOzCXGigMOWc+bZhDixgBVsoIMB9oWStpYooIIGFrCCDXQw00gS+0I9QAEVNDDremIu7wiFbCycmBVyLUxBAwtYwQY6GGBfmGN+vIivZQthlNwXOeYvrGADHQywL8wkKLmamQQXKmhg2jSxgg10MMC+MJPgwrTlumUS5IxhthBOLGAFG+hgrH3R2EPOHsokuFBBAwtYwQaOfZEDPZsFJwqYa5GHXI75C3MtskKO+QsbmGuROzbH/IV9YY75fGiRzYITFTSwgMNWc+vkmL/QwQD7xGwWnCigglm3Jo4jdbRCtGz1i3wmka1+Ew3MJfPECuaSRaKDAeaSje2QrX4TBVTQwAJWcNhyOjpb/SYG2Bfm6L5QQF1rnGf0nIPOpr6JDgaYdcdRkk19EwVU8LEWj1uaxAJWsIEOBtgX5vX6iWNc9JwmzHa4iQIqaGABK9hABwPEFtgCW2ALbIEtsAW2wBbYAlvH1rH1rJuHXK9gm5itaJHziNmKNjHrjgMxW9EmCqiggQWsYAMdjIV5VJ/iPKovNLCAWbcnNnDUzanVbDrrefrKprMLx1E9UUAFDSxgBRvoIDbDVrAVbAVbwVawFWwFW8FWsBVsFVvFVrFVbBVbxVaz7hiF2UjW88ybjWTnYZSNZBMLmPuiJDbQwQD7wnMUnpi2ExXM5U1FjsILK5jLO+I1G8l63iJmI9nEXN5cixxZ56GRI+vCBnLs5MjKWctsJLswR9aFjIDOCOiMgI6tY+vYOrYeE7PLq+dtX3Z5XZhD78Ihzgmr7PKaaOAQ58xpdnlNHOKcOc0ur4kBDlvOnGaX10QBFTSwgBVMW0l0MMC+MAfkhQKuXdjPoZcLeQ69SHQwwLWzejlAARVcOyv7uSZWsIE+B0M/h96JfeE59E4UUEEDC1jBmCGWnVsXtmMdGm0N6ezcmmhgASvYQAcDXAGSnVsTsTk2x+bYHJtjc2yOzbEFtsAW2AJbYAtsgS2wBbYcpuex09nqfZ1Ye2+ggwHOE6tnN9ZEARU0sIAVbKCDAWITbIJNsAk2wSbYBJtgkxnFnt1YF+oBCqiggbklT6xg7otUnCfhE2PhebptieUa3X6co/vEXF5LnOHohwXYF5YDnKPbjzW6/ThPrCfO0e3HGt1+rNHtR8FWsBVsFds5uhPPg7YnKmhghuP571awgRmOkhhghqMOzDPOhQLOKPZsMppYwAo20MEAZxR7NhlNFFBBAwu4dqEc8/rB5ZhR7CIHKKCCBhawgmtnybpydFlXji7SF+qMYs92ookKGljACjbQwViYdz65L7IZaKKDAfaFeedzoYAKGlhAbAVbwVawFWwVW8VWsVVsOa+RR1+2E01soIMB9oU5r3GhgAoaiK1ha9gatoatYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzYZTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9jIEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEjuzxBLTVhIdDLAvPLPkRAEVNLCAFcR2ZoknBtgXnllSEwVUMG09sYAVHLbRZOTZFDUxwL4ws+RCARU0sIAVxNawNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvH1rF1bH3ZssNqooAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbWeO4nPkQiQ4G2Bee+XCigAoaWMAKYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtY+vYOraOrWPr2Dq2jq1j68tWjwMUUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIbtzAdLFFBBAwtYwQZmGrXEAPvCzJLRbexnl9eFCraZUWcT14UB9oVnVJwoYBbLdTsvJU4s4JhYGs2unk1c/chFz7n4CwPsC3Mu/kIBFTSwgBXElnPxR26SnIu/sC/MufgLBVTQwAJWcJ0kKpcSlUuJbOLqR26SnNa8UEAFDSxgBRvoYIDLlk1cEwVU0MACVrCBDi5b9jH10XXi2cc0McCxOOMnrZ4vSJsooIIGFrCCDXQwQGwVWz5sGi0snr1JfbSweDYkXf9rPmEazSqeDUl9dKh4NiRNLGAFG+hggLk4uaHyqL5QwLT1xHzOcCTmvH1uvrPxQhPbWvQ8qi9khfKgtaybB+2FBaxgAx0MsC/Mg/ZCAdOWi54HbclFz4P2wgo2cNhKrlsetBf2idmFNFFABQ0sYBYbGyobkvpoL/PsQuqjT8yzC6mPX6F6diFNbKAvzJn0C7NCSyxgVvDEFI9Nkq8A66Nzy/MVYBMrmLvwSHQwwL7qnqMl/9dztJyooIFlrXGOlgsb6Asr65aPdM4Vyge2F7LGeYXXTswumVyyvMK7sC/MK7wLBcxultw6eS3XcjvktdyFDgbYF+a1XD53yh6iiQoaWMAKNnDYPA+YDOgL+8K8lrtQQAUNLGAq8ujLC7gLA+wT8z1aEwVU0MACVrCBDqbNEvvCvIC7UEAFDSxzq2fz0sQGrp119iblA9DsQop81JldSBMD7AvzmisfmWUX0kQFDSxgBRvoYNpaYl+Y11wXCqiggQVsa93yQisfxWWT0URZK5SXVBcaWMBc9Nxmec11oYN5zXUk9oV5zXVWaNgatoatYcvbswvZLY3d0tgtjd3i2BzFeRWUC5knFMklyxOK5CGXJ5QLG+hggH1hnlAuFFBBA7HlCUXySM0TyoUOBtgn5nupJgqooIEFrGADHUybJPaF+cj3QgEVNLCAFWygg9gEWz7cHb+08LPfaPR7+tlvdGFfmP1GFwqooIEFrGADU+GJqRjj4mw9ulBABVPREwtYwQY6GGBfmGeyCwVUEFvFVrFVbBVbxZYNSToO+7Mh6cKh0NwBeTU4msD97De60MFRTPOAyavBE/Nq8EIBFTSwgBVsoINTEWenznhDXZydOuPXKXF26lxYwAo2MOu2gXlUj5+ZxNmTc6GCBhYw60ZiAx0MsC/My68LBUxbTzSwgBVsoIMB9oU5GMbvWyK/iDnRwAJWsIEOBtgX5ri4EFvBluNivCYrzqadCyvYQAcD7GurV3ZWZWdVdlYe4OPlWZHvQuqWB0we1RcaWMBcnDyi8li/0MEA+8I81i8UUEFbR+p5rJ9YwQY6GGBfmDfx57qd90N5KJ93Pie2tULnnc+JAfaF551PjoDzzudEBXND5UbNE9WFlQrYOraOrS/b2YV0oYAKGljACp6K//mff/jtz3/9lz/8/U9//cs//f1vf/zjb//43+t/+M/f/vH//Pdv//GHv/3xL3//7R//8l9//vM//Pb//eHP/5X/0n/+xx/+kv/8+x/+9vh/H8fmH//yr49/Pgr+25/+/MdB//MP/PXx8Z/K4xFhXH/+4NBV4rFGPxSRj4uUcZ+SJR6TzauAlx/+Xj/+ext9e/n3j8c1LMBPBbZrYePa41qLx/OWD9eifFxkTNmdFcTW3xe7++eWH7441+IxdcUSqP9Qom1KjKek13ZgEbzf/fsm80hoVtffPx61/lAgNtuxtFlBHnO/H5bou32pazM8Jks+LLHbkpm213Zo5cMtKZtDUlXm7lTtTzXqT0f17rC0uhaDzSlR7q+IsyJhH6/Ipsb4PMJVY3zRYNVoP61H3e3V8ZKFa69W/bDE5sjK97xkhcft3tMIvV8hf8x4VmjycYW7q+Efr8ZuY+ZHsc6N6Uf/qIRuokZLrAPr8YTgwxLy7qbQzZGpR59xp3IQueWnErZZiDZj/3Fr9vFC7PJSdW6JB3JUWDvur4iMU/G1IlU+XJHNgaWE5vFhgf0I620dFE/R//MejfdDb1fj8Uh81ng88f74/GHHNr/XabA+bQ0tP+4S2xydNeYeeTxhoIL1+wdGqevAqE+j7OcDwzaH5+NGr68anSPcuvxYY7Mc6ja3qD4eXbFj7y/FzUN8W+Pu1vBv2Brx7tbYD5S6BkprH0bfpkLxY10pPlLww2O87M7ssQ5Qe9wnP9Xot2vY4bZq9Pi4hr19Vi3l3bPqrsK9U8nt1fj4rHp3a8rTEf61PbKuXU3EP67R3796rcc3XL7u1qVw4Vg361I3J8aQmDUe2D68ft3W0LUuoU8n119qlLeP8lrfPcp3Fe4d5bdX4+OjfL8129oj2l/cI7Wvq67H074Pa7TdOT7fd3iuij/n38/3JbK90Zw17PFw5cMjtOnbR0azd4+MXYV7R8bt1Xgx/6KsM1I8lfhla/r7WzPe3prx9tb033lrPh2bz2PkK2eT/NnYdeMtH+8Rt7dvvP398PS3w9PfDk9/Pzz3G/PdS8d6rPu8+pju+/DSMTbROd7cNO9tfticP8VvbA6tfLB2bovHvPOH6budrCzrrkKsVftwsnK/RZ0tGq/tlHuzIVF3syHHuqkoUj4s0d4eJOHvDpJdhXuD5PZqfDxIthvT1tXBY2O2l0rkK3yv2Sn7cC6jb06INdvUzqPi8Sz0tRJWbpTYH1i3ptn629HZ347O7m/Pb/V4c35ruwz3JgvlON6dLZRDdg8nbK5Ik6d7f+vl1SL1xSLlWFNcRWVTpLw77bhflyhrXeLVddE1qzNetf9qEa+rSH9119i6Lxmvzt4U2d3CP2Z01j38g+XD6bJtmbvzdp8U6XP/PB7e9xeLWD1WkaeHo18rcnMKUXazd3fnEGX3DObmJOJ2OULXFomni59fl+NukXa8WmSdYx7YXivyGBPr0vbBvimz3cV1BVt/vnz44sEWHGzP4/hrRVqnyMcD8P7Z++OHlrunCPnNkCzh/uFJa3+FfOu5jmh7/0ZyW+RxLbee7EgvmyL76fu6Rl7ZrE1//0Hw7hHTzSfBuxI3HwXfXpPNs+D9Fl0Py9SjvFTDZIXq4xThr9Y43q7x1DryPPK/VmNd5D3KfVxj95Dp5s3DJzVu3T3s16WUNY1fWrxf48VjzLSvqcESH+/b7ROatiaeH2Nkc/W9XZD8qOK5II9k/XhB6vs7d1/jG3auC+uyGbhl1+l0+JpFf1zxvLpR1xWixeYo2z5wWjdnj7uSjxejbq68JX+ldq5L9839zG45itDDZ5vNsTvP6TpFFW3Hx+e53ZOamzNKUr+h4am+3/FUv6Hl6Rt6nrZb9N600r7GvXklafL+0N8fHbemheT9p07y/mOnL6zJx9nR2puXyPshaytKS/H+4vWtuq9xv7u+bd/QepoXS+8+vd+vTn5M6Fyd3j5uDhHX71gd+71Xp68zTD2O3erU3/NIq3TT1tI2d1Luu5OUcqCtEvrLNn2/DWq7FKvC86nyl6XYPYmSx1RBWdcfx9N06FeKHPnr3WvqIZ6vhL5SpMfTE62nRuevbBFf+6Vv9kuU37XEYxtoZ3vUjzdq+Y6NWr5ho26L3D1GtsOuHuspdi/xWsCPD26vmWrzV4usebLxldAXixRj6r69ujpm81gbXwv7uEgv3xDwuwdM3xLw42Nia3V8tzq7xo2aL4m41qeX/tHB9kmRNYXw4Kff8vxcpO8e0q+nM+OtyB+uju6eV5W65lRK27S+6bG9ryprguiQD2/e9dB3b+/02FwF/PBTFn9+mCE/FfkkTPh90/F0Y/XzNPUnZSqHyePOJT4ssz1kx3sG5z4uT4/Pft3H/vaMqB7x9p2i7ibM791PbEvc/EXI7TXxzZr42zOi2xo3Z0Q/q3G8XePehJfufrP0wx1rfW2b3pyZ/aTGrZlZlf725N0nNW7dwe/XpRzr+Hh++P5zDdXfezluzRDfr/HimLs5Q6y7OL07Q/zJwX7zAGm/8465N7ur299B3Zzd/WRBbs3uqr1/+t/9fuju7O52OW7O7n5ycedc8T4emH9wcZcNKe9eIW6LFDWmAZ4u7toXLu28yBox5eMD1d5/mqrl7aep2xI3rx3s/aepn1wsr/Pc4/L+4/Pt7tdMt+Njd7XcYs12t+ibq+VdEV8b9YHyWhE51o/dtGyv23dLUo1p4vb6xX80Lv6fzjJfvfhfazRuBNqmjG2fR9T/7XnE17ZLWXPOWp4uEX8t8nYqbg/7x2X9OlLkiJeGjsr6xYPK5oy3e9Z080RT/RtONLW9v0m3u3ZNNj/2sr16yGdz0bwEsJfvd7Vwv6vt5ZGj66JmlNw0ie36qtcUqbMcP72g5LMZRXVywPqL05LlaSahfTQtqbsnV4+7APtf7wLul7h3FfDZLPzN7XF8w/bwb3gesC1yc4vsuxmfVuY4nhsRv9YUeVh7KrPp8tTtZfzt3spdmRbrkqD148O5+G0JZkfHhy5fK+EsRf+wxL7F+uAFP8fLHePrRUePIh/3aW9/x2rrQi2s9o+nV3e/pLrZ6aHx/o9QNd7uB9iWuHkNHu//DnW/Re91euxr3Ov00Hi/C/CTGvfuBfZH2L139XR5++jo77/v5/6afHyZ2d9tqN6P+nUBEtY3o7639++8+/s/ltYe7+/Xt38ufX9NNqN+u0Xv3Xnb8Q0zqvvluPW4zI7y7m2MHfX92+7tcty8jdltjrt3htsa9+4Mbfds6eYmleP9O8PtctzbpPu3Z6xHS1GffjD3yzv9tu8wuvWz6f0b4G5dt9g3vJLP3n8nn73/Uj77hrfybTfozcuW4+2rFlN5+6rlkxr3cvT9C45P7r7u/Yhy/3q/ez9/3Na4+evH7fvTbv5e8HaNzc8F9zXu/Vpw+yzn9g3tdqve/K3gfknuHiPbbXLzt4L7N/29vzZ3j9X9utw8Vv0bjlX/hmPVv+FY9e84Vvdb9d5PUu+/cvXDKynb/Yjq1s3P9vWc9EAWeXr08cvrOXe/fjI6Dx8zKB89Qd2XuDVzasXffn662xhM75Xn11r8ujG+4XV99h3v69u/NfXWJYztX8Mw59R+aEzv9yusS7H29HjglwrbF8OtI+NxRcxq/PLy1+2moIO6qn1co25vBInSBz83X90/wnibRKmmHx5h2xp13ZCWWj9+ZZTVvnsUfKvL0NrdA2xztd/evizclrh5td++Yajst+itLsNtjZtdhp/VON6uca/L0Nrdmc762ja92WX4SY1bXYbm33AP5e/fQ+3X5V6XoXn5vZfjVpfh/RovjrmbXYa2++XU3S7DTw72ewdIi995x9zrMrTtI5ubXYafLMitLkOL92dNd29suT3FF2/Pmm6vgtaLjtoPP637ynXUelD71C71SwX/jmfgn1S5+Qjcdm8y/cJd2K7MvUfg+xK3HoF/UuLOI/D9hNLN28ny+05afOEYsW85Rux7jhF7/xix948Re/sY2V2i+poteDwyeUpl+zGGyvb5z61b5G0JeSTR+hhHq0+dFqMb7ccy7d0pg32JW1MG5YjfeXvUtp5TPm7Vj4+3x+5Z1OMx+ZrpD/mof3xb4u5XUsru41D3PpOyLXFv0mBf4taswX5r3Jw2+GST3ps3KOLvzxt8cpgFV2WPPJLNYba7SRXnpalPbeT605Rh2U5c3nrXwH458kd/Z4kHf7wc2yKVdvZaN0W2G9aPdR/y4KcW1F827O7sezPPtiXu5Zm23zfPftwez8+jf8n3bRlTbque77t/3azbyYzChEh9uvAt7dUi8Q1Fni/iv1bkaW7G+8dFbPtDg/XeRX1M1DxdFf38lZ/dwRbG/dkPjds/F9m+NnXd5Gkc8WKRkL6KPL/U9otFWBKt31DEjk2R7S9bKo/sny/Dfy6y+/FTbeu2tban4+RLu7gQj6V6vHqcPL0p9CgvbpOyDrbHkb7bJrvVaevH9Y8pp/Lahi19TbCWHvW1Ik39qdW4fsfqbHbx7TyJTSjtHljdfJF62T6vsoOJWm0fL8juhX9efRbx+vzCrfipxu6XqYUJsPL0yFx++hJb3b2f6uBEfGj5uMYnPydZV+OPrVo/XpvtZl13wGZPlya/btZtkf40ib45SL5yPi8fn89rfMOxtnvA2qM/dYbq5gqlbduz1gW1Pn8IV3/+NvLu2dPNS+HtJrn3LYWye3Hfrbf27zfqF/bvtkxxylTZ3KbsfgRFSj8mfp4GcfSvLEp1LmRdNhMVu1n59pCusH963favRbZNouvlP4/73vpakUqrxgPlxSUpqw2nPN9kfG1JrK5371krL25YU27yj00R339Gmr7X+moR52rLn3/287UiQZF4tUhbt+f1ue3ja0X6mrR4nEX11YHstLE8OF4tE8IgfL68/1qZONZVtTxmyjabN96f3Ir3J7fi/cmt/faoq4NextcXN9tj19EifHT2sVGPj14KWMLfPgXul6M//Uz0MV32YZHtd01WPHb9ePpkX2KtStf24STsfs+0dcMk4fXlAz54tUH03Sx7t7dnpbYl7s1K7V4HeHNW6gvbY3cy/6xMpYy+Go6PP3XKlM2cYe/v753+7t6pux/Ofsve+WF7VH9975SnMq+ecx5BtpamH91eLaM8cXtk0sdXbXX3lOreOWdb4t45Z1/iG845nb5D6e34eO/U9x90bUs8rkcOebqyL68VYd5xXJnUF4uUQpH62imjt/7UpLI7ZWx7GL/ptlhXFbXDN7fFd4uIvlikrBO6lnK8WIS3yGpt8lqRx3ZYQX38MM1mtx/f9/WOA31+U9HPj+93q8L9n6p93AFQ1bYPiW91p9ftk6qb3em7leHFIHqU3cq8+6GAunvl4iPi13xUtN1ixPubY1uk6npIXH/4DrvZF4pUXy2EftQXi/CWsMftsHxcZPuGwFvXNvsS965t7O1+l0+2xnrGVcP6ZmtsT79rhqGVsE0R3y3JugyQ46Pp5P1icNf44xvCv7Quta7ve/7wc+UvFqEj8ugvF1kvPG/iLx7tsULk8bhuU2T3M6xvKXK3f6duP0R173JzV+Lm5ea2xK3Lzf3WuNm/88kmvde/U+v21H2vf+eTE82aF39cG5XNiWZXpCtFdmerar/36nTnwZTEZkl236F2Jmyet4j8VGLbRria9608N0WVrxTpdbV29KdXa/xaJN4+4W1L3DvhtbfflbbdGo+5+PWE4Hi+6/15a7T3T//t/dN/K7/v1pA15Mrz571/3Rrt/a3R3t8abze7boe98YK08dOs11LM+F2HPd/X/VLE5XdOscefHVy4Hy+ujq9X2T5WrL1YpK+rzHK8enqwvlrUHkU2S+LtG24Qdx9Oun9HtN07PNX2H6Zqf16d3QQpNZ4mAr3fr9D4SNDTTfcva7J7zdntbRr6Ddt092ywrIfZtTwfZT9dDm1/lcXznh9+YiY/X93tfpd1b7dsFyPWI3UL3y3G9gTBue6H35h9qUhh7LYfHk3+XKR/Q55tn1/VYyZr/+E4K/6VIoUXlzw9z/tqkXVt9/zxpi8WWa/07M/3d78U2b0esK/r7v78C6Jm90s8vwn3eG5f/LnIdmW4rerNXt2sbb0evP/QNPilIryq8LFx6maz/t5FfngPnO32zvanBOtFO6r1eLGIra/j6XOz+q+7eBuua0kez0PlwyBox+9d5O5UQnv/yVV7/8lVe//J1X5r3JxK+GST3ptKaPIdV63b/p7VCuNqH57Dm2znq55ahOTj78i17duw773ytH3DCwPb+y8MbO+/MLB9wwsD91v03itP2+7HWTffIvDJctx65WnTtz8R1PQbvnmyL3LzmyfbIndfvrpfkpvfPNkXufnVxLab877/1cTPytz8/sonZe5+fPGzMjc/47LfwDc/47IvcvMzLtsRdO+1E9uBfPNlvfsa917W23aPrm6GgcW2/eTWmzy2y3Fzk+o3fMblk2P17mdcPilz9zMun5W5+RmX/ZXarZecfHKxd+ctJ5/c3azGgu7PPyf86cakFX93wnZf4taEbSv9dy1xc853v0FX58pj29rHd3q76dp7k2itfkPnSqvf0Lmyn5gsvB2tbSZrW92+R321auiPL978abzsvm31OLes35X05y7woveLVFsb9vEwtb5YJHS1FhzPD/S/UqQxHde0bpZk95Osm2N3vxzrPNGe37v7tZWx1RrYfviYzC8rU37flXn+tvzTLdavy9F+3+WohPvz5e+vy/H2U9Z9iXup+v4XqfZbw1fHdIunN7v/sjVcf+cit+eKtnMS9+aKdiVuzhVtS9ybK9pujbtzRftNenOuyL/hicD+LPM0r/l8I/LLWSbe/6ps+4YvWrX3v2jV3v+iVfuGL1rtt+jNiZ7d767uTvTsl+PeRE+8/SGW1o9vmOjZFrk70dOPb5jo2S7J3YmebZG7Ez27X159YaLnkzJ3J3r2ZW5P9HxS5u5ETz++YaJnW+TuRE+8/Qmh7UC+O9ET73+v19//0JUf3/DKVn//Q1ef7NqbEz37Y/X2RM++zO2Jnk/K3J3o2V5m3Zvo2V+p3Zro2c0H3JtScCnvTyn47sHP7SmFbQuqrtkA075putwW8XXB+NifrxbhsqIcrxYput5TXjQ+7qh1PX7nInfvblzffm/AtsS9u5t9iVt3N/utcfPu5pNNeu/uJm9O334Svmsg76tVQlSfm9B/PkD671tDYv00R39oEv5KEdW1WVXbq0Vk/fT5UWSzOvYNM61u3zDT+sk24VcTdmy2ye5nQlJ5ffODy0efQ/+syPqMxIO7flhk96onYxe3H1408/Pq7K4W6/rZRGn1494NL8fbN36+e+35zWu9ou/f5Pj2Rz63b3I+KXP37uSzA8UZPT0+mqP08h1HW3n7ZbD7w+TezI/vv4d1a+bHdz/Bujfzsy1xb+bn/pp8PPPzycC7NfPj9f0vuOxH3s0pl32Rm1Mu2yJ3p1z2S3JzyuWzILk5zfFZkNycn9iv0s35iX2Rm/MT26C/dzO9Pexvzk/sa9ycn9g+x7p3zmr+DfMTrb2/SfX9+YlPjtW78xOflLk7P/FZmZvzE/sbpVvzE5/ca92an9j+BvrWUnzyM+o7S/HJ+0/I+frDC/+/8hKVxutcWrcXi8T67ZE+f4fli29iWU88H/jx6tTdp6jvvs5lW+TeZ2X2JW59VuaTEnc+K7PfL87Luf3l1+z8UKS8WkQpYh/vl3zT5nsdAvsStzoEfDd5/A0lbr6Xbb9BefrrHq/ulXXFqt5fTZDnJXm5SKyP7D3w5SLc+e6K1PdbHev7rY6fvK5y1ejaXnzj5Xp/Qlf/8Ms08fbZ9pM3ot7aFvvX7x7rRcCur75+l5fVPjBeLbIi+XHuffUdvlFYkvbqe41j3RQ96r38NuH1m9IHvrxN1o3Vo8hm72xfXV0b30729g1F4tWXaPPsqbTy6urwW87iu4NtW4S3NJewj4vE7gmW8/ZO7+Xj33LG7idUhffePpa4fnjl/tmStLUkdbckuzc6tXVZVdvThJN9ZTnWtxTjOD7+sW7odtJq/ULdn9/q+GuR3bXqesXV8xyAVv/CMRJP3zzZvJs1dj97uH2MaPmGY+STJbl3jOzeHHjzGNkvx91jJL7jGOm/7zHS+wroY/OVg9h947Jq/O+vMIyfauxbWtc73fzp8v3nr6ZsP09wrEuSevixWZnyDStTf+eVEVuXEz8+W/zSBxvWC3OrSXmxiLIkWr6lSLxaZD1vfewmf7XI6gx41Ht9wzob1l4tIhR5+cuOWniUVp9vnn+cU4zdhNO9m+d9iVt3vvH+T6e2JW7ePG83qPHmYPOPvy4Zu6dOt97ZuV+Mwu136bFZDH0/zLb9VjfDbP/FTuUxjdYPV+aTIk9f2Gsfb5Gy/zH2zW+H7orcmwPcl7g1B/hJiVtzgPL+Pby8fQ+/f0R059NgsfsOVqybu+gfP96J7S+uZN15mzxfXv70eGc3c+drprvE8fE31LeNWnwJoT2XaPffON748k6z/lKJePrqTn1tKTo/czwOeaWEHoTGUeylpeBN4eNd/6+V4CX9IS+tyPjcznq61V9bCr7lJ88fzfpKifLUWvLU4Plzidi9JbAEDzCfjwzp99dkZY6Yv7YxyvqItDxfJ7y6PV8sEfRUxtOnrEV/OrnG298R3I6zysc5nk4CPy/FtkRnnD1PSH2hRKxZgsdQ1c222L5J5177Yew+KfUdnyh4frHY89uWf1mZ3bsVmvPyuOb1oyn2z4qsJ5YP7h91MMb29wyxWjDsh88H/rw6/e2PBW3PjWui4fFIwF85yApveHjMeW72S/+G1v/o39D6/+nO9aedWz/cuf57HyG1ck38VOLXDbu7Oj9We4w+P1z/ZUarb3/7Su/T8/cyfy7Sdx+2ujtRmA843pso/GQ57k0U9t0Pmu5OFPbdT6vuTRRuA0DEOemKP3+j69CflmRzvK6D9emjxvc/pqNiHB7PN28/rcm+BK/feL5h+UoJumL06aHWzyW6bOdM1+Flx4sl+vp1ytPl3FdW5PlE93TW/kqJtiYYfuwQ+kIJFy6Bttui/c5FpHFuaM9tE18q4s4tR9cXi/T1Eyh5/lrhl3Zu46tR/tpYsXWF+zhS5LWloPnLjpdW5JEv6wz3/D31r5SQ9b53kRKvleD3ZBKvLYWtAfvA15aiKlcvT5+f/FKJRjN79NdWhKPT9LUV4SU5j0x/aUV89fN4aa8U6Gue9/mTk7+M0+2Dzbdvh/s6vT9/Q+Ara7GOy+71zc3wWgFTrob1h673fr9E5WewT81Zr5Z4msz8Uok1NEy9vlTi+UMZT0/tvlKirGldq8dr28IaX+l5nmN5tcRrO/Xpex/PefelbUHbb7HXdmrhswXF/LUS64uhj2dDL+7Utl4dV9pLSzG+OcqFRXmpxNOnT8PkwxJ990xJlOh+/li2fGG2iDmrqPW1NeFr273EayUaX5Z+bZAIUyuPKzZ5cUX4Vcmhb5eQV5eCLyfLS6P9cZ3Ktij+9lJsdur2Oc7jdLa+t/BDfLYff6Xed8+Tel2tU732j3+O0ndL8vbc7uNe1bndlY+ejPXdD46UD64c8vGztd0GtXVW7Nblww26LSLHwSX4g18s06vxjZIfHh58pYjyRQ59flPs14qsj7/051dFfq0I70J4bOX24rEaa+D1qLY5Vu8WacerRdaH0x/YXisih9SVy4f4x2U+2bTBpu3Ha5v2caQ+fQHmcH11lQ5rT2U2+2j3ca37W2Zb5l7zwr7EreaFT0p82Lzwfx//5Q//8qe//dOf//ovf/j7n/76l/98/N3/jFJ/+9Mf/vnPf7z+67/911/+5en//fv//x/z//nnv/3pz3/+07//03/87a//8sd//a+//XFUGv/fb8f1H//H2+MW1pvG//2H32T898cA+IfH9Hl//Hd7/PfHvWXV8f+Nf1nHZ+cf/9HG/5D/dtPx1yb/93/G4v4/"
|
|
360
360
|
},
|
|
361
361
|
{
|
|
362
362
|
"name": "public_dispatch",
|
|
@@ -421,7 +421,7 @@
|
|
|
421
421
|
}
|
|
422
422
|
},
|
|
423
423
|
"bytecode": "JwACBAEoAAABBIBVJwAABFUnAgIEAScCAwQAHwoAAgADAFQtCFQBJQAAAEElAAAAlycCAQRVJwICBAA7DgACAAEnAEMCAycARAICJwBFAgEnAEYCBCcARwIGJwBIAgUnAEkBACcASgEBJwBLBAEnAEwEAicATQIgJwBOAmUnAE8CbCcAUAJuJwBRAm8nAFICcicAUwJ0JiUAAAUbKQIAAgAY1alOCioBAgMnAgQEACcCBgQDACoEBgUtCAECAAgBBQEnAwIEAQAiAgIFLQ4EBQAiBQIFLQ4EBScCBQQDACoCBQQnAgQEACQCAAMAAAD1IwAAAiktCAEDJwIFBAMACAEFAScDAwQBACIDAgUfMABMAEsABS0IAQUAAAECAS0OAwUtCAEDAAABAgEtDgQDJwIHBAgtCAAILQoFCS0KAwoACAAHACUAAAVBLQIAAC0KCQYAIgZLCC0LCAccCgcIAhwKCAYAHAoGBwInAggECS0IAAktCgUKLQoDCwAIAAgAJQAABUEtAgAALQoKBgAiBksFLQsFAxwKAwYFHAoGBQAeAgADAB4CAAYAHgIACAkkAgAIAAABvCUAAAWyHgIACAYcCggJACcCCgQLLQgACy0KCQwtCgcNLQoFDgAIAAoAJQAABcQtAgAALQoMCCQCAAgAAAH6JQAAB/QtCwIFACIFAgUtDgUCACICAggtCwgILQoIBycCCQQDACoCCQU7DgAHAAUjAAACKSkCAAMAT2MoqAoqAQMFJAIABQAAAkQjAAADeC0IAQMnAgUEAwAIAQUBJwMDBAEAIgMCBR8wAEwASwAFLQgBBQAAAQIBLQ4DBS0IAQMAAAECAS0OBAMnAgcECC0IAAgtCgUJLQoDCgAIAAcAJQAABUEtAgAALQoJBgAiBksILQsIBxwKBwgCHAoIBgAcCgYHAicCCAQJLQgACS0KBQotCgMLAAgACAAlAAAFQS0CAAAtCgoGACIGSwUtCwUDHAoDBgQcCgYFAB4CAAMAHgIABgAeAgAICSQCAAgAAAMLJQAACAYeAgAIBRwKCAkAJwIKBAstCAALLQoJDC0KBw0tCgUOAAgACgAlAAAFxC0CAAAtCgwIJAIACAAAA0klAAAIGC0LAgUAIgUCBS0OBQIAIgICCC0LCAgtCggHJwIJBAMAKgIJBTsOAAcABSMAAAN4JwICAlUnAgMCaycCBAJ3JwIFAnMnAgYCYycCBwJ7JwIIAn0tCAEJJwIKBBwACAEKAScDCQQBACIJAgotCgoLLQ4CCwAiCwILLQxQCwAiCwILLQ4DCwAiCwILLQxQCwAiCwILLQxRCwAiCwILLQ4ECwAiCwILLQxQCwAiCwILLQxNCwAiCwILLQ4FCwAiCwILLQxOCwAiCwILLQxPCwAiCwILLQxOCwAiCwILLQ4GCwAiCwILLQxTCwAiCwILLQxRCwAiCwILLQxSCwAiCwILLQxNCwAiCwILLQ4HCwAiCwILLQ4FCwAiCwILLQxOCwAiCwILLQxPCwAiCwILLQxOCwAiCwILLQ4GCwAiCwILLQxTCwAiCwILLQxRCwAiCwILLQxSCwAiCwILLQ4ICycCAgABCiBJSgMkAgADAAAFGycCBAQeLQgBBScCBgQeAAgBBgEtCgUGKgMABgWto3LG+qaEcwAiBgIGACIJAgcnAggEGy0CBwMtAgYELQIIBSUAAAgqJwIHBBsAKgYHBi0OAgYAIgYCBi0OAQYAIgYCBjwOBAUoAAAEBHhVDAAABAMkAAADAAAFQCoBAAEF2sX11rRKMm08BAIBJiUAAAUbLQsCAy0LAQQMIgNMBSQCAAUAAAVgJQAACFwAIgQCBgAqBgMHLQsHBS0IAQYnAgcEAgAIAQcBJwMGBAEAIgYCBy0KBwgtDgUIACIDSwUOKgMFByQCAAcAAAWlJQAACG4tDgQBLQ4FAi0KBgEmKgEAAQVhALr8hC+iUjwEAgEmJQAABRsKKgEDBQwqAQMGCiICRQEkAgABAAAH5iMAAAXlCiICRAMWCgUHJAIAAwAAB9QjAAAF+woiAkMIJAIACAAAB8IjAAAGDQoiAkYJJAIACQAAB6sjAAAGHwoiAkgJFgoGCiQCAAkAAAeUIwAABjUKIgJHBiQCAAYAAAeCIwAABkcnAgECSScCAgJ2JwIDAmEnAgQCaScCBQJkJwIGAnAtCAEHJwIIBBIACAEIAScDBwQBACIHAggtCggJLQ4BCQAiCQIJLQxQCQAiCQIJLQ4CCQAiCQIJLQ4DCQAiCQIJLQxPCQAiCQIJLQ4ECQAiCQIJLQ4FCQAiCQIJLQxNCQAiCQIJLQxRCQAiCQIJLQ4GCQAiCQIJLQxOCQAiCQIJLQxSCQAiCQIJLQ4DCQAiCQIJLQxTCQAiCQIJLQ4ECQAiCQIJLQxRCQAiCQIJLQxQCScCAQAACiBJSgIkAgACAAAHgicCAwQTLQgBBCcCBQQTAAgBBQEtCgQFKgMABQXQYRKgYVuWqAAiBQIFACIHAgYnAggEES0CBgMtAgUELQIIBSUAAAgqJwIGBBEAKgUGBS0OAQUAIgUCBTwOAwQtCgoCIwAAB4stCgIFIwAAB6IEKgoHAi0KAgUjAAAHoi0KBQgjAAAHuRIqBgUCLQoCCCMAAAe5LQoIAyMAAAfLLQoGAyMAAAfLLQoDASMAAAfdLQoHASMAAAfdLQoBBCMAAAfvLQoFBCMAAAfvLQoEASYqAQABBcGZNfBNpkozPAQCASYqAQABBWS+y8eKk/9yPAQCASYqAQABBS/SUCsOkdCZPAQCASYAAAMFBy0AAwgtAAQJCgAIBwokAAAKAAAIWy0BCAYtBAYJAAAIAggAAAkCCSMAAAg3JioBAAEF5AhQRQK1jB88BAIBJioBAAEF0Afr9MvGZ5A8BAIBJg==",
|
|
424
|
-
"debug_symbols": "
|
|
424
|
+
"debug_symbols": "tZnbbhs5DIbfxde50IEHqa9SFEWauoUBwwncZIFFkXdfUiJpO8AMkun2pvyG6fySqF/SzPj37vv+28vPr4fTj8dfu0+ff+++nQ/H4+Hn1+Pjw/3z4fEk2d+7pP9kpN2nfLfLhDOypItGnLHZdfPrPmMHi/O6JLDYZszVIs9YyowgOqCxz4hg0a7JrsmuWe5HiS1bpBl7sggW+4g1Sbussc2Yi0WasSSLOGO16woW5b4uEapFaT8nASwOniGTJp6Rs0WT5j5jM+lm19262FVIag6pOOhkSJUgZwfNkECRTEkKkilVoGoGFLoB6BywgmaagFa3dIVuQNWBDbTbE9BgzPmAyPjt3W7HlB1oTCzmZBEtyi1VBoUFHJpBLQ5sAJ7BOmyIWluN2hXQCBanLbDbdZ/XlOY16XSjxmkTKtkiWpw2oQoWp00IqsU5l4TZ4pxLomTRr+dcEk+bEE/bUDOXUDOXUPdMn9KcisXpSM7JIlic0lzsuswu8qhaUWADkE7WqkAG2m21C+uyVrsw5WkXJpouYQYHnSH9z1rcqk1odav4hrW8E9qEpr2eQAba7wloUDxTwMFvr36X9rlonDZpmCyaSxqab5o6dYK5pHFx8ExTfRlmU19OsExP1cEz2TPZM8UzhQ1GkQd4BjwDntEiT0ADdccEcOgG7E2wN9pcsLlgd8FOE3JKKQiDulOGoObkYxFiJx+NUChDDgpljNYwlDFao1CmaI1DmaO1FsotWuuh3KO17so5QZArZ58lIVfOpQS5cq45yJUzpKBQhmgNQxmjNQplitY4lDlaa6HcorWxFw0au9Ekz5XETronGZGT7ktGkdOjaJLuRkbNCSOHkaNQplDhUNH9fFKLXLvkoqfR+9JdeRyjk9QbyIN0z2yDmpN6Y5JWzUj33q40Du1JkVNH0FDWdo26ESQIilyOnLp9kjqC8iB2qpFTHxhhUHfSXsEkrRop6RIEHSVqu6DjQG13knoNtPeoKqg9QPULqgrqWpikNUV9KiKd/UnjRJoUuRK5ErkauRo5XatG5ISRw8hR5PR8Moq+6IZv1JxaDYrWevSguzKnHOTK48AygiBvjUsN8tY4xsYxNo6xcYyNMZQxWsNQpmiNQpmjNQ7lFq21UO7RWnflllIQBHlrTfchhEHNqUROHWFETuo6I3TCyI3VM2g4Z9BwzqTItci1UO6h0kNlPPAq9QRBkYve9+h9H/1DpbFq6fX1budvBF+fz/u9vhBcvSLIi8PT/Xl/et59Or0cj3e7f+6PL+M//Xq6P434fH+Wv8p62J++SxTBH4fjXun17nJ3Wr5VnmL9bqg1h4CcK++VkN2DTUKwb5EoJXWTKPKmsShRV3oBsmq8GyA+DxEu7+5GzS5RZMfcNBJmdAnudVGCliXEbabQE4YApPpuAW4h0BYF2rJABnSFLO8pISEnxiYJrlskCpBLFGD+Y4kGixJr7iZ0a8oLJS5OaK5rvmphbzlXLxr5jQasFFQe/KOiLfGivzOuDKYguj2FOS+KrI1GNmQfTS95eTS8tuDlRSFWvOyRl47grUj7P0rS/3JJ5JtEdg3sbbEkJa+UpNeaoq6ynS11pJSVjtRaoifyTQX+dDSU0vIEr2hQ9qLS1VaM+XYkK1aVD1KxDxbpxeK8FFqb3K4PEza5ndOWclwNBdrSUNYE5NHNBBhwSWD1gAXfPiBdz8fb03FNA+VZNywqzztLlVjbTXN1XxR5P9i0Id9ILO/pa+WU12DwVZ9aXypohbVzoWG+HAyES9Woq5upPCFezJV4i7muB5Ov5vYD9pKPCz0kGDYYDKjEQyAhLxtsZR9ld9fVNgz1/RZv4fDLGivw/iEUisfYsigAK1snX3Y9eee5lFHOphuJ1WfQHBsn5Ktz/raMsOLMmlJ1iVRgUWLFl/pZp1w8dWXuN0NZKyfEfFw56gPzgfFagVf7/0cE2NfF9RH0AQGqXkj5eLxFgJP3gOs2AXZPtlS3CDTwITRe7gHWv7UqOXzE20pI0T61TcuaMCYRYfFVZk2gx6JOtEmgXQR4kwD57iyff7YIcOF4fKi3Al/k8v7hcL75YfFVpc6H+2/HvV3+eDk9XP31+d8n/4v/MPl0fnzYf38571Xp8uukfKb4DPJDFtT2Rb5bSO5zkV2yMOll1r+KReR3ry+v2pn/AA=="
|
|
425
425
|
},
|
|
426
426
|
{
|
|
427
427
|
"name": "sync_private_state",
|
|
@@ -579,7 +579,7 @@
|
|
|
579
579
|
}
|
|
580
580
|
},
|
|
581
581
|
"bytecode": "H4sIAAAAAAAA/+29CZhcV3Uuuk93qdWlbqk0z0PJtmTJluUJg5kMtjzItmzLlmSNttW2hS1LloTUmmzLJBBugGAIEPKSkIThhUsGuJDLkJCXvC8MCV9CeOGGF0ic5JKQlwckQJwwJOFxw+PYtdR///2fXfucWi0VuPf3SV119lr/Wnvttdcez64sPJNmtv4eOXngvnsOHd57bGh4zz1Hhn/wf/40a+XWQsWUtRVzatkzOf0tih7g7P3Bv2ZIE9RPEsvx/9gr+hmwFH94mj8LVeU/U/6cp2L5Q58pAvyoi+FO/sG/Afi8nuRX1P8Vneo/M6Kz1c06oG/ah28d+cJ//fQTH/zkrw6/590/O+PJqT8/sGbKK1796n9e9I3Fv/DUq/93470WcLOQrFef8V+nZF/1W707HvzN7x4cuOFV7z/+5F/eenTq4qGPL3vNu3f8wZuWffWe/2K81yver7z+ba9ovP/N72he+Jlv993wxq/d880bJ1355GceW/CJV37vq0+9xXhvULx/tuN7f/OhxlseOfHERx+9ctWsofe+5Qv/8o+f+vR/a3zz79738i9cYbzrocxV2tKN1finG/9NwF8L5dpCnm6uxn9a/w3V+HuM/xZ42LQPP/4rv/o3Vz/xmUv+/ntTXnfL0E+cuPynPrf164/Mf8+Kf3jofYvfO8N4b1W8Xxpe96bheQ8/9+v9f/rEpe9ctOSL33rPh778nZN7rvzal7/ykeXfNN7bBO/8y85//qGf++zsv151zl+99Pffu/ZnFnzrvBf99W+vf+dT3/2jfw8jNtsIZS5RZ6fLfHs1/prx31GNv9f4N8HDZpzHQsXpsm+uJvs0/5Z02ZYmGe+dmjd71TlH/rf6E9ktH3/lRR8anPLxr1799mvWfebTP/G6ZY33vt14twreC15Uf+rdr3v81eFv3/NPb/jOBb/70otmLL16xtr/+22fX3Tg8M4FTxnvNhMUSpV5sfFvB37SPZqMf0cYq3sq785qsk+3713lZZ/mvas87+k2creBhVI2P+0r91Tjrxv/7mr8U4x/CPhL9IVN47+3Gv8lxn9fNf5Ljf9+eNgMSekFxrsHZJew3UuN/2XAX0L3q43/gWr81xv/g9X4Nxv/3mr8Q8b/UDX++4x/XzX++41/fzX+Pcb/cDX+lxn/gWr8Dxj/wWr8Dxr/oWr8e43/5fCwGZLSad7D1WTvN/4j1fgfNv7havwHjP9oNf6Dxn+sGv8h4z9ejf+w8Z+oxn/E+E9W4x82/keq8R81/ker8R8z/seq8Z80/lPV+B81/ser8Z+aEp6Za09a+MyDfP49v5V5dHjv/r3DJ2/YM7zlmU/rDh4Y3nNieBIAmDz83kPfe+l7jb4b3qQCPuZpl2y+30c6NtPYNw626CeTPojdT3o2Q1JakhFeCKPLGQi/TrqUlJdlhGfyuHxWZ1b2utClIfLYxnUhpy7kNETefkes445YDztiHXXE8izjEUesQ45Yw45YBxyxhhyxPG3v2YZOdCnWXkcsT5/wtL2nf+1zxPJs254+8ZAjlmeMftQRq1v7Rxv72tgBxxpZwV+Tw89MTp2wqo57VLn6hbwY/eQI/ZRE/Hxc3Wh9bo2rr91z79EHNhx8IFDioe61BSouJrrNEdUYN6N//HwxPesVtJjy4s1tfW4V7/o9w/c9uHnogQf23P+DQh5hDkZaV/CcB6RIY4PxKaRpMySlnhSnRPw66VLVKZXTqMaWW9W2p1tW3XBw6P51Q4eOHN2/h6dZOEVgqyAqPlN1moFm+KyX6NbR9/WCLwjsPN9qbpCeN0NSmmpeMVVkWt40wJ5MeQ3Iq1PedMC6H+g4cTmxPE9vZS8cwWU61hXrahrlDUBeA2RznU8RcqxsPYJ+gLCmCD6rl3byegUfT1lj0+qUlmjlyFNDyOB6HIeIMbvbI4aVb6CavFkZ8aM8xDR9zNaDIs+wrI32FWAZb43oP9z62yC6PO0gGYNCX3xm9smXmD5AuqNt2U86sSPimV74DPHroSO/zGL1huVjP6kYf2em2B314XjNtsW411eAZbw1ov94628jjO0T2E+mCn3xGfrJ75HuaFv2k4p2vDrVTwy/HjryyyxWb1g+9pOp1eS9NMXuqI/qu9G22Af2FWAZb43o/7T1t0F0eWI/mSb0xWfoJ3/c+txfoG8zJKXjakzDfoZ2KXOkItXPDL8eOqr3LGZH1d7UuMx4GyKPl50bQk5DyGmIvOOOWEcdsR5yxNrviHWiS7EOOWINO2IdcMQacsQ67Ijl6ffdaK9YP1QWK0+evnrSEeugI5anr3qWca8jVre27VOOWPc6YtkxBR7nGX6e+sPYtld2boJ4pic+Q/w66VJSXhazixozWvmmV5M3IyN+lIeYpo/ZeobIMyxbZewrwDLeGtHPbxm0QXR54jH1DKEvPsMxtU2gpwl9eX2hrD8iP9sI+dgfO6kvxDM98Rni10NH/p/F/EPZxco3o5q86Sn1i/qYrWeKPMOa1freV4BlvDWiX0X+OBN0Yn+cKfTFZ+iP52ajdUfbsp9UtON1qX5i+PXQkV9msXrD8rGfzKwm79oUu6M+ZutZIs+wZre+9xVgGW+N6K8gP5kFOrGfzBL64jP0k0tauP0F+jZDWuI2YhiIjXZJr4fsX1L9zPDroaN6z2J2VO3Nyje7krzsKfYNlIeYpo/Zeo7IMyzb2+wrwDLeGtGvIz9DGewblof64jP0s6soHqFt2U+q2TFck+onhl8PnfjliJ+oelPtzco3p5q8q1PsjvqYreeKPMOa1/reV4BlvDWi30h+Mhd04ng0V+iLz9BPbm7hThP68vp7rL0gbkPwG53yuRJx7x5VpyX4X278c6vxn7A6ngcPuT3Nh+cl/O3S1PZk+HXSpWp7mk/yuHy8BrtA6NKgvDw9CHSc1yue9USwDjpi7XfEGnLEesgR67Aj1l5HrEOOWEccsTx9Yp8TloqTneh1wlGvOU5YeTruiHXSEWvIEeuUI5ZnLPRsj8OOWJ71+LgjlqdPeNreq20H5zJ6+sRRR6xujROeej0bxkwTfdrZs71ne3zYEcurjPnnuU5YnnrlyWs84V1G3r/DuWXW+tsvdCgxb7WlrdN4pic+Q/w66VJSXhazC5aP58kLhS4NyssTz5MXCjkLhRyFddARa78j1pAjlmcZDzliDTtinXTE8rT9KUesiXosh/W4I5anT+xzxDrqiOUZv044Ynna3tNXPW3frfHL01c9/euII5ZnPXr6l2cb8vSv445Yex2xPMvYrWM5zzJ6jie6tR49be81lss/z3XCylO3jnM8x5gT44kfjTbkGSc89fLyr/zzHCesPD3iiOVpe88xgPW1fG7M8PPU4RrY8ozwTE98hvj1MLYuvdbA1Bk0K9/CavKaKfWA+pitF4k8w7I7S/oKsIy3RvQ3tArVEDL4jJ7lob74DM9eXdP6Mk3o2+leBPKzjZCP/bFiffWm+qPh10NH/p/F/EPZRfmH8ap6Zfun1msMi9eFLT9P/YKvhD0aqfY3/HroqL6zmF1UnLTyLa4mbxq3YZSHmKaP2XqJyDOspa3vfQVYxlsj+t0UD5aATjtIxhKhLz7DeLCz9aW/QN9mSEo3KluX4H9BfxhruxL8txj/0mr81xn/smr8m/qJviT/Dca/vBr/NuM/pxr/rcZ/bjX+a43/vGr8G6ztrICHHKdWwvMS7fjW1Dhl+HXSpWqcWknyuHzcT5wvdGmIPG6j5ws55ws5DZE37Ij1qCPWXkesw45Yhxyx9jliDTliHXHE2u+IdaJLsTx99YAjlpftVb/eLb7q2R5POmJ1a3t8xBHLsw11q+0POmJ5xgnPvtYzRnva3tNe3epfnmMTz3r0tP2zIU6ccsLKPy9xxFrqiLWsC7Hy9DJHvZqOWJ62n92lei13xOpzwsqTp0+c44h1riOWZz166uXpq90YC/P0oCOWp6961aOnXnnqVnt5+up5jliebdsrfuXpcUesIUeshx2xPNcUPMfknnMFz7VHG9/bOjaue2etv/1hrF+W3YtDPNMTnyF+nXQpKS+L2QXLx3uNq6rJm5oRP8pDTNPHbL1a5BnWBa3vfQVYxlsj+rktwzaILk+817ha6IvPcK9xRgu3v0DfZkhKawbDWFuxn6FdStTDmlQ/M/x66Kjes5gdsXy8V3SB0KVBeXl6AOg4r1c864lgHXXEesQRa9gRa58j1pAj1iFHLE97PeqItdcR67Ajlqftu9W/jjhi7XfEOtGlWJ6+esARy9P2nv71sCPWcUcszz7Nsw152v6kE1b+ea4TlncZTzli3euI9bgTVv75fCesPHna3rN/9IyFnuMczzjhGb+6dVxo9WjnzDFu8Dnn1LtD1TlzoxsUfFnrb4drD8l3pfPaw9xq8qJrD8ouHc55T9+VHpvLoz5qDsqx6cLW974CLOOtEf0rae0BZfB7D6n+ma89nGrhThP6cp9Wdi0M+Y3uR03OoODj9lXR/yalti9ec6nYnqNrLsouZdZclP27Ybw1Xljmf6sjclLXCJX/rf4RlTMo+Lg9ob1L+Hfy7+oZfj101H6zmD8pu1jZLxS6NEQenwu4UMi5UMhpiLzjjlhHHbEecsTa74h1okuxDjliDTtiHXDEGnLEOuaI5dmGPOvxUUesvY5YJx2xPNu2p395tiHPuPpssP0RRyzPGM1rADie6Sc5ZceiyG90atyU/2uGpHRHfxg79ijBf6fxr6nGf5uNiy6Ch1nrr2GvheclxmivyggvBD0mNPw66VJS3ukx4VqSx+XjMeHFQpeGyON3IC8Wci4Wchoib9gR61FHrL2OWIcdsQ45Yu1zxBpyxDrmiHXcEcvT9t3qqycdsfY7Ynn6l2fMOeqI9Wyw/RFHLM8ynuhSLM+2fcARy8v2+efFTlh58vTVbh0DeGJ52mui357otyf67Yl+ux3WRL/9w99v58nTXt3qq484YnnayzPmeNr+oCOWZxvy7Le7NUZ363jCs4yeY1/PevS0/bMhTpxywso/9zliXeCI5bVOnn++0AkrTy9zxHrQCSv/vNQRa7Yj1jmOWGucsPL0bLD9EkesZY5YTUcsT3t5xsLznLDy5BVzvOOqV9vOU7e2x+VOWN5l9PR7z37b0/aeMcdTL097eY1NvMt4riOWl6/m6QFHvTxjoaftvfoO73r0bI+e8cvTXp716Nk/Pu6INeSI9bAjludek+f6hOe6iee5Ib6/CM+sZa2//WGsX+ZymiEpDWSEZ3riM8Svky4l5WUxu2D5zC5W9kuELg3KyxPfA3SJkHOJkDOBNYF1trD4jKnh56k/jPX/Eu3tvNT2bfj10FE8yWJ2UXHPyn6p0KUh8ngOf6mQc6mQ0xB5xx2xjjpiPeSItd8R60SXYh1yxBp2xDrgiDXkiHXMEWuvI5ZnezzpiOXpX572OuyI5elfnm3IM656+oRnXO3Wtu3ZHj3b0KOOWJ7t8dngX0ccsTzHAPxOH46X+Z2+smN25De6QcGXtf72k35ZKDWGfktGeKYnPkP8ehhb5ipjdmV/ZRcr+2VCl4bI43XYy4Scy4SchsgbdsR61BFrryPWYUesQ45Y+xyxhhyxjjliHXfE8rR9t/rqSUes/Y5Ynv7lGXOOOmI9G2x/xBHLs4wnuhTLs20fcMTysn3+ebETVp48fbVbxwCeWJ728uy3PW3vOQbwjNGe44lu9VVP/5rot3802vbEmHzCvzhvYlx49vyrG8eFefK0V7f66iOOWJ728ow5nrY/6Ijl2YY8+45ujdHd2qd5lvGwI5ZnPXra/tkQJ045YeWf+5yw8vQyR70ucMLK04OOennuD3na6zxHrNmOWOc4Yq1xwsqTp08sdcTytL1X2/Zsj55tKP98oRNWnrzaY56eDf61xBFrmSNW0xGrW9ujV7zPk2c/5Nm2vfqOPHVre1zuhOVdRk+/9+w7PG3vGXM89fK0l1f/6F3Gcx2xvHw1Tw846uUZCz1t7zlX8KxHz/boGb887eVZj5794+OOWEOOWA87Ynnup3mufx12xPI898jv9K6BvKz1t8Pzw1MywjM98Rni10mXkvKi54exfGaXMueH88TvXHZi/wmsCawiLHt3ANsd/8Zi2XcUkN/oBgUft31sGyXa4prUtm/49dBRrMli9ld2sbJfLnRpiDweC10u5Fwu5DRE3iFHrBOOWA85Yh11xHrUEWu/I9bxLtVrnyPWkCPWKUesex2xHnfE8rTXsCOWZ3s86Yjl6feesdCzHh92xPKMOZ4+ccQRy9P2e7tUr2OOWJ4+4Tk28ey3PeuxW+OXp395tsdujdGeWJ7+dcARy2zPaxWGn6d+4stCqbnTkozwTE98hvh10qWkvCxmFzVXtrI/R+jSEHm8F/scIec5Qk5D5B13xDrqiPWQI9Z+R6wTXYp1yBFr2BHrgCPWkCPWMUcszzbkWY+POmLtdcQ66Yjl2bY9/ctTL8969NTLM054+oRnPR5xxPKM93wPD46N+B6esuMz5De6QcGXtf72h7FjlBLjpf+SEZ7pic8Qvx7GlrnK+EzZX9nFyn6F0KUh8vjsxBVCzhVCTkPkDTtiPeqItdcR67Aj1iFHrH2OWEOOWMccsY47Ynnavlt99aQj1n5HLE//8tTLsx499fKMq54+4VmPRxyxPG1/okuxPOPEAUcsL9vnnxc7YeXJ01e7dTzhieVpr4kxwMQYYGIMMDEGaIc1MQaYGAOMp7261VcfccTytFe3xomDjliebahb+w5P23fr2MSzjJ7jaM969LT9syFOnHLCyj/3OWJd4IjltX6ff77QCStPL3PEetAJK/+81BFrdpfq5VWP3nqd44SVJ0+f8KzHJY5Yyxyxmo5YnvbyjKvnOWHlySt+ecfobm1DnnFiuROWdxk9/d5zDOBpe8+Y46mXp726tX881xHLy1fz9ICjXp6x0NP2Xn2Hdz16tkfP+OVpr24dYz7uiDXkiPWwI5bnHpjnWofnGozn2Si+q2M25GWtv3bGEGNdLqcZklItIzzTE58hfj2Mbd8l5J0+Y7iI5HH5zC5W9sVClwbl5YnvZVgs5CwWcs4Ulqqv/F8zJKUt/WGsPUrw7zN7LoGH7EvYD5So2/mpvmT4ddKlqi8tI3lcPvalptClIfJiddQrnvUUYOVp2AmrXd2fLb3ydNQJK/886ISVJ88yDjliHXHEOuGIdcARy9NeJx2xHnPEOuaItd8Ry9P2hxyx9jlieZbxlCPWvY5YNjew/gvHTlnrrxoXpPel2d9mhGd64jPEr4exfWSVvluNqbB8ZpfOxibZFzPiR3mIafqosQL3uzYv7SvAMt4a0b++9SKR6vdmkAzLQ33xmdln0g/+/WT/aN3RtuwnFcd4U1P9hMd41fwyPsZTY28rX7OavMEUu6M+ZuvzRJ5h2XpiXwGW8daI/ufJT84DnXhucp7QF5+hn/xMC3ea0Hct4cbaC+I2BD/bCPnYH5vwvGx9IZ7pic8Qvx468v8s5h/KLla+86rJG0ipX9THbH2ByDMsW5PuK8Ay3hrR/xr54wWgE/vjBUJffIb++Cvkj03AWki4TYHbFLgNwW90yucYJ5L+TtVpCf53GP8F1fhXG/+F1fh/W72XWoL/I8Z/RTX+Hzf+51bjv8v4n1eNf5XxX1mN/3Ljf341/q8Y/wuq8a83/hdW4/+o8b+oGv+bjP/F1fjXGf9V1fi/bfwvqcb/FuN/aTX+p4z/6mr8mfGvA/4SfULT+K+rxt9r+l6LD4VOhm99yjVAnxX8NSzOM1l1wiqpexbTHfXjfuBakIdlLMK6tiRWv8irUifrQnG5EH8wogvrmSeej1Ytc572OWHln89xwsrTcUe9mk5YebrPUa/zHLEucMS60BGrzxFrqSPWcxyxruhSrOWOWM91xHqeI9aVjljPd8R6gRNWnh5z1OuFTlh5Ouao14scsV7siNV0xLrKEesljlgvdcSa0aVYV7c+27oE9ksrSU6fkNMXkYP8Rtcv+Jr24VtHvvBfP/3EBz/5q8PveffPznhy6s8PrJnyile/+p8XfWPxLzz16l8xXuzvSow/t3a4DjfL+JdX459p/OdU45/R4TrbtbwmE5D3qt/q3fHgb3734MANr3r/8Sf/8tajUxcPfXzZa9694w/etOyr9/ykWo8pIfvqzu4JywKvx4RQ3m7PrSQ7LFNrMSV0f0qtxfQk84d+tRZTgv+5ai2mBP/zeC0mAO95n/+dyf/262+s/fe/eOrg8W9f8JY/vuGJ//M3XvTmz1x01Y9t+vuf/cYtah2mzF6MWkepso7wkmr803gd5WnQkJReqNZQSsju72wNJftih/P1QV6DCcj7lde/7RWN97/5Hc0LP/Ptvhve+LV7vnnjpCuf/MxjCz7xyu999amfMd7rFe+f7fje33yo8ZZHTjzx0UevXDVr6L1v+cK//OOnPv3fGt/8u/e9/Aun/fWGanoPGP/6avyzjf/GIHSPpuzptf4L6s98sz41O50bwmT4bO0wT5PCyJrSZqLJU43o108f4VvbkjdIPAE+9xN/SZsswDJYUmtghl8PY8teZQ2sh+Rx+fjcW03o0qC8PPE5iJqQUxNyFNbjjlhDjljHHLH2O2INO2Ltc8Q65IjlWcYDjljd6l97HbGOO2KddMTy9C9Pex12xPL0L882dNQRy9MnPOMqv0uBeTwOmATPS/TLPanjAMOvh7H9cpVxwCSSV2SXgR/8m9n6fHR47/69wyc3HBy6f93QoSNH9+/B0QSOEFhKRqj4LAujS495vfSsl+iuo+/rBV8Q2Hm+1dxket4MSelG84obRabl3QTYPLK6GfJqlLcBsO4HOk5cTixP/ndg4Qgu07GuWFc3UR6uYt0MsrnOJwk5VrYeQd9HWJMEn9VLO3nP5laq6sl4GyKP22nqrKBK9Gi0Preix7V77j36wIaDDwRKNfp+bYGK84lufYFqmcDN6B8/n0/PlCkQOzZBTHGZPHEHhHmbSc5EBzTRAZ1OEx1Q6K4OqFfw8fIQLxvlqWkffvxXfvVvrn7iM5f8/femvO6WoZ84cflPfW7r1x+Z/54V//DQ+xa/d2Yu6220FIb6sj9b2Sa1KV+N6L/YGOF7e0te3grntfJbrfCao/v33bFn+PDePcf2/CCeHwmU2jWdW+j7rYJPJXMJ1ZTNvBWDU3IwNPx60NXcDEnpdDBUsxQsX7VgyA6BVgnBPxjeSt+rBMM+et4MSal0MOQuHIMhB8pOgqGVp2wwxLriYIiNmIOh8lKUY2XrEfSTCCsWyNrJmxiyPJMmhiyQJoYsobuGLMw3KYxt1cZbI9o/aQ0NOmzNo07fsI4Tff0zaaKvhzTR14fu6utVlMkIYzyXSlB2dIL1peF1bxqe9/Bzv97/p09c+s5FS774rfd86MvfObnnyq99+SsfWf6tDiPKnR1Gwi0531dogsfn2vGz9VpFZx2Mt0b036iP8H0NJngrWvmtaHPn0P699w8N77nuwMuP7jm65/5bDw7vOXL1gfuvO7bnwHDp6d719P0GwafSlDBSYL5ACguZJ14LnNP6bi+tMg0byOj/tWWU3GArWg1ZOZ3pM0j8IYztpuaS7s2QlJK7KcOvky5Vu6m5JI/LV62bYndGqyAqPuOwgXlnopuaT8+bISmV7qb6KA+7qTmU10k3ZeUp201hXXE3NQ/yuJvCOp8r5FjZegT9PMKaK/i4myqS1yv4eAiS0XNcO5stZPPa2cCUZ/7mtl21sNgOeG0dY9p3Nehne1t+njr0162pkcbw62Fs3VeJNPNJHpevWqRBT0EpdxKq0SAtpjtBM6Tn71x7NcHHyXBqpPN5LS/KvW9O6/O0MLZc00hv5e34jAdQyG90Ss5Ah3IGhBzz5MnAt53y+iN5dcCcRnlTgY/30BqQt4PypgPmAOXNiGDOFJh53X1iyghe/q8JdMrTrXeyOsAXM5AXv08i2jztav2tEe3zwK9Wk19hK2a/mtdG75hfzQvFcgY6lDMg5HBvlSf2nfmirJa3APi4nhdCHvvOIlEudakSYy4RmHn9/M6U0XRNoOOIfx48LzNhSY34hl8nXapG/PNIHpePJ3MrqsnbkhE/ykNM08dsvVLkGdb5re99BVjGWyP6a1v1yS9z5Ykvwlkp9MVneMj9JeQnaNus4K/h8jNuX1j2ZhgtB+PNZtDnxoKYhyMpjGs2WeZY9SewC7mBYhXyc901R9TquPzNMLaM08JY20yBz0X+fV5EzpRIecarPqeQHIyzWJ/bqD5XQB7H6Pzz8tbnGtF/GOpzJ9WnaovKztwvlbXzNCFnvO3M/ctKRzmIxS+5rCIstrPVk9n5fMhbRXyrIQ/pcNa1Cp6vFrIVvmG088H9U3TZinzQZNWI/hfABw9W9MGVlId9RTOM1tP0QDsg/fKgy9VXQF9UrmMw67xw4WhM40dbYV1w/DX6k4C5dqHWE8uF/QEvBCt/WCXKpWy6OrSXjXZeXyC7L8R9sUb0PyZsyv0C8qt2NIt0Ob+N7ty+kd/oBgVfp3FE6dyuTb62ZJu0F53Zd18FbfL11CZjPoI68zyirJ0HhJzxtjPPEVY7ykEs7hcuIiy2s9WT2XkN5F1EfBdDHtJhv3ARPL9YyFb4qf3CL03RZSvyQZNVI/oHwQffEZkXx3xwNeWhTZthtJ7t4iFfjGR694V4f1sj+vdE+gXVXjHWcr9g9L8e6RdMLpYr1i8oX1wjyqVsehFhLRVYaGfuF5RNsfxLqfxG/5uJ/YLxq/WInZSH6xErKG8B5PGYFS8qXUl5uB7BayN4sTLHO/xhDfQRXo+YHClPP2Dweh+u282nvKmQt4DyGpC3kPJw3W4R5eHxEr6oeybkLYGy2rodb5z+Yet5h3t68shLbF00K/gbQlp/wMe1UM5cRzmIdR3Jmecoh3ccUM4CIcfqayHxNUNSSt6DNfx6GNt2q6yTLSR5XL5qOyMYbdgqiIrPsjC69Jh3JvZgK14FX3oPliMS7sFyRNoAWGX3YK08Zfdgsa54DxYjPu/BYp0vFHKsbD2CfhFhLRR8Vi/t5PUKPt6vzOh50R6sYdSI/svQQ19KIxQlC1sUjxJM96ITJKyD0f8T6LBiocasFZRrfgHmf8LuzTemaMwgMFW5FlG5WIeFpIPR/6sY/fSGsf6nfGwhfcfR4KIC/VQ9sa7YnorKw/Vk9P8eqacFQgf8mZH1bXRgmkUFOnxP6CAi+rqDh062InqgxIfsOSKz5XmveoHAKUqGn3uheaQ6WTFf8PH7lT1Cp7zkVnOnXxndv2d4T0HZe4RuSmZP0InH4MaXJ+t9KvbjyeMGw68HHaWaISll7Lkmj8vHh15VRFc/hoD1y34Uk5PXqa0rtep00/DBw0VVmjqgyIRaIRQPLLIwuiqQ59nsBuWGj+wEaBVExWcxy7erbY/3VSr+4lTp4SMf08PhIw8tOxk+WnnKDh+xrnj4iA2dh49Y5wuEHAyyTL+QsGJDv3by1PCSjwFyVCgaPvIwy+jPaa3M4hE+lmXfL4DPfERvHCaiM1IjyQ/3RHQ6oRoN0mKaDpohfeyIXp5uFHycOJKspOfNkJTO2ET05UDHSUUSK0/u7c8pEUmw1aVEEjVJ3UB5OMm/hfJwWfJWysPjILdRXhPyNlIebuveTnm4HXxH6zNHihe3IkWHB2/lcqBhTQtj7Y1LqOzXveIZL58h/5yInOkdypku5AwGHUnz1KEdk8dZfIC501cl1AFmZRfVCxtvQ+SZz5vf2bL6x1t+9/TRqIHR2Pg6DNu14lu7z021q+HXSZeqdp1M8rh8bNd+oUuD8vL0ANBxXq941hPBOuqI9Ygj1rAj1j5HrCFHLM8yetajZxkfcsTyLOMRR6xjjliHHbH2O2KddMQ65Ijl6ROe7XHIEcvTJzztdcAR64QjlqftH3bE8rT9cUcsT3t5xsK9jlie9urWWOhpL8+Y4+lf3Tpm8vQJz37by/b550EnrDx5+r2n7Q86Ynn6vWcZPeOE5xjA016nHLHs9zxsjQnXIXg3Sc35J0fkIP/kBCy1fhArY9GVF063GpuKVxDd+gLVMoGb0T9+fgU96xW0iI3X0KRsZlT8+bjLMsILQS8rGb7XZoY6Kaw2M9TboMbbEHn8c5Cpb3E2RN5RR6wjjljHHLEOO2Ltd8Q66Yh1yBHL0yeGHbGGHLE8fcLTXgccsTzt9bAjlqe9HnHE8vTVfY5Yz4Z6PO6I5Wkvz35oryOWp726tR/ytJdnvPf0L8+Y49kePX3Cc8zkZfv886ATVp48/d7T9gcdsTz93rOMnnGiW8dfpxyxeJkE59W8TKLmsEsjcpB/aQKWmg/HyjjOyySm4qVEt75AtUzgZvSPn19Kz9otk/CpnMtaccuWRSqeKpKnwfiUFi4HNcPocpRdqUP+/oiceody6oly1nYoZ62QMyj4soK/JoefxVb215KcOY5yEIsvocKlsCZ85iYca9bKDxYUYOFN07uBhi9Jw5fng5C9HfKRfn2rDeXLom9vHRVVb2bgJRA3DcZ1RV7UtUb0N8ElELe0MJWdrd6VH/DLM3OEXIXJbats3dWFDjEsrK+pRG910VdAz6/SGf1WqDu+bMJoivyHdcY6CoSRJ/Yfo99ZwX/uGozryv4zNejyrwH/2U3+gzaO+c9UylPvQaiYySd1y8bM6UI/JYcv85wjdM/C2LgVGyY0BL/RWV96pq7gnk55eOp+BuVtgLyZlHcL5HEfhG+v8WUVt0Ee2oNTL31HG+W+/y7wfaYLJDN2kl9d6211j+MUHp7OIF35WWx4OqMAC1+XVhcC1Yh+Q+vmvbw9nhocXS68sNds0qGvXZ7SvyN+nXQpKS96+hzLx9tZS4UuDZF3Lnzm+Jsy5cC8Q45YJxyxHnLEOuqI9agj1n5HrONdqtc+R6whR6xTjlj3OmI97ojlaa9hRyzP9njSEcvT7z1joWc9PuyI5VmPnvHL017HHLH2OmJ52suzDXmOJzztddgRy9O/JuLq2bF9/nnQCStPnn7vafuDjliefu9ZRs84ccARy9NenuPV+xyxHm/9tbWHovs/MA/lzI/IUZdWqXU/XHPgubTR5MnWESr+KEtvRnimDz5D/HoYG3OqrCOoH1NQ9RP7kRS1nc+3fHRyNGAJYaWufWTE366MjluXpuJlRLexQLUegZvRP35+GT0r2ro0bGtGuPTUJEw0Y8y0avtoZkTO1A7lTE2UU+9QTj1RzvQO5UxPlDOnQzlzEuUs61DOMiGnV8jBbSm+qzlPuEUzMHW0TupmUFw2tlDNN4PeOnWEb9rU0TbAbQ57K0O9sML3NONvzXEX0IDnJUJy8kUmhl8PY9tGlS6gQfK4fBge06954paIVkFUfJaFsdErA83wGW/qTya+9YIvCOzeMFJzM+h5MySl0htOdcrDDaeplNfJhXFWnrIXxmFd8eYQRi6+MA7rvCHkWNl6BP10wmoIPquXdvJ6BV+dMDJ6XnRhHG/8Gv2qVoa6b1jJwhbFB5hMd9t8ZxrWwejXgA58j20DeFS56qAP2t++Y3vaVSD/aoisl0zV8oOQz+VDX+0r0LdBOhj9c8AGfDfxDMEfCp6xb8+gvBkR2j4qC35Xvsj3GFtULSo717/RvzBS/1OFDqZXnta30YFp+gp0eInQobN7jDmycy1xTUwVOEXJrJF7rHkvW4dbh3pW5AGd3mPcXyCzJ+jEv69hfCGM9GoVxwfJ4xHDrwcd/ZohKWXsuSaPy8dTUtVTNEReUSttJ6fDe4yLBioqWDB/IN5MPMsTvrx7pk4JKjlTO5QzNVHOeJycU3KmdyhneqKcOR3KUSfGGEtNm/JkDswnI3dDYF9bcEl+TwHmHaSDWgVUp8KMPrYqpWyJK0TnJciO/fhD6kF3oz9f0OPq1VLSFfU7v6SuG8+wrguEroNCNnc5/HOhzZCUkrscw6+LMlTpcmJ2eVqx1t9yU2D0WLYKouKzLIwuPebFepY8XU/fq0yBV9PzZkhKpafASykPp8ArKa+TKbCVp+wUGOuKp8CrII+nwFjn5ws5VrYeQb+KsM4XfFYv7eTFWrdhKL78+3WCJ7b3kdJq88QDt1WOWOqHNM2n18DzEj49JzUaGX49dNSGTkejNSSPy8dlv0jo0hB5uNiJeSjnIiFHYS10xFrkiLXYEWuJE1aedkxgTWBNYE1gJWKpM0WrKQ/7z7tbf9WMaCrpp/bDl0T0Q/4lETnLOpSzTMgZFHxVxwqNiM5WHuy72W7qB5xXR+Qg/2oqT9F7aZ+YqmWq99LytLv1l3/I/sXwHswfTi0uI9rZysU694MMyysxrhnMx96nlozIwXGK6Wi4Re0Hx3A3tD6rPnsm5WFdG0a7Ovgs1QH+SDDXAepTI/qVUAefozpAfpxPFLUbJY99pK+Ann9Rwuj/QmydKP2WFshDe6Cd1xfI+2uxoqT8zmR36HdzlN9he2W/Sx13p/qp2UT5Ka9SqTNN6Ae8SmX8fUHXAf/OldF/WdR5qp9zvRr9PybWq1M8kfWKtuJ6VauJqh+K+QHWF78/h3We8h421nVKvc4X+Fyv347Uqzo4g3pyvRr9vyfWq9lyPOoVbZVSr+rMZ6z/Vu+4N8LYfrJBWCpGx1aVVb3GfvXH6HtbfYiqV7WyH4vDRt8HmGcrDqOtUuo1djVNu3rlOIz1uoLy1C5D1RhtWKkx2uhnijrnMT/HhSL9in6vz3FD8/wCNWYL/kC8GT2bXYBlOPkzXJhnk5928aCXQNnkRr9AmFw1U9RHhSgrjy09YnWPx0aI4Xv9eGxs6Pm0Yq2/6rVybmaxplTmR2qdXDVP1xeokQn+QFiZeIZ5ylVxT9RclY+9cg89QDMFdCGeKajIp0b+Rm8j0KLRheHViP7CSC8UGwXniaP1xYIeR8b8G4hYhospD/mWFsjB3hEjP/eORn9ZYu9ossejd0Qbce94CeT1Cnq296WC/hKg4VWlSyEv1qQvJjntQgf7v/JTNftWo/Gpobi87WZl7F/oExdRnprNKV8wuvFYKcHysC/E2lKe2DYx30HbNEJ7P8F2eRHJicWlPMV8AVcXbDWsH7BRTjMkpfONv6ca/73G31uN/yIrJx91zJNhY92W8Jn70CaW1FDB8OukS9WhwiSSx+XjoUKf0KVBeXl6GdBxXq941hPBGnLEOuaItdcR67gj1klHrEOOWJ72OuyI5elfw45YRx2xPH1ivxOW8XvpdcIRy9MnHnLE8vSJI45YnnHVs217+WqeujWuevqEZ/wacsTy9AlPex1wxPK01z5HLE9f9dTL017Phn7b016e41XPGO05BnjEEcszfnWrT3jGiW7thzznMJ5lfMwRayKu/mjEL696zMLYNbdusVe3xpxuHRc+7Ijl2R49+1rPeuzG8WoWxq5hd4t/ecbVg45YnnGiW9eZPPXytH23xgnPMfmzYV7r2W8/2qV6ec5rPevRsz16zmE81309sTx9gttQ1vqO+6Tb4fNOyEd6+5UhtY9dYu/2/kHgCYCB2BX3oe/PCC+E0WONQPiDBfLyVBd5tQRdfmPO79917bnf35URv+nCz1LmJmpP22w1mXRvhqR0rzpDYrItD/fnJ1Ee2sV0yP++aclo/foq6pdiP8RvCHp+Ky61LmaE0b6A/p7yI5nt7g4pupm2r4CefznO6C9ttUn19sxK4K8XyEP9Vgo7NAT/ygKsojc2zinQ/XmgO9/tom4RUNciGf0qQY9Hgvm8FZZhFeUhX3+BHCwr1vXuMLqsRn+VKKtqfya7wzNcA+oMF9qIz3Cps1JIn/J2Cp5h41uZ8QzbSspDG6+ivLI/Hpt6vst48Vf4Uu5Eit2Nk9quFwg9uG3cltiumwXyUL9Yu0b+Mu06T/cU6L6lZLtuCv26oV1jXe8Oo8tq9LueZe3abOLZrqu+rabaNb6NxL/OehHkGS7+yuCFrc987nxfxJ8vFrrG7Nvu7Cv/yiWeab2E8pDvfMpTZ2ZNh0uFHVAvvovN6I+AHX4RfNDKEkivDn39auXreI6cfR2vou8V9FwXlwv6y4DGbNIgeq4X/I5YaFN+Rchs1CfoEY/fC3hc9AumH8a3S0n31SV1nyd0V7/MiW3ql6Y889l8EN8TaZLM1RGZzItxpq+Ant8ZMfrXCHvFYj7aaRJhGv1PReKBip/qVx5itl8jyqVsyu8JoO54T55hM2aH7fMazxsV8lT2HR2r/0YYGw+5v8G2sYbkqDFGqv+jD712isYt6m+Wtz6zf/1SxL9Uu1kBz8r259zfoH+toTw1vlfvqPA4UvW7SM/zQ6N/d2J/4+TPM8/2ey98axr2BxwPlc9iXXN/o27nWCPw+baMD0T6G3y7+SLSfWVJ3au0t/3U36wAuibJXBmRybwYL4r6G8OrEf3vRPqbFaA7z81Uf2P0v1dyPhXrb9rNp0wfZVOeT6Hu5guqfRpdh+1zlmqfWH5un7Gy5oltE5srqf4m9gZ/7H7dFUJOqv+jD22j/qZJuIiFfhHzxybQWD2xP3424o+xdpYntnm720Kbrc/KH3nO04S8mD8aXYf+eKfyRyw/+2Pq/b6pbZXn4uirMX/k/rkp5GAMYX9EP2pCWW+cMppuMmBkrb+2J4BrAyVsnnwlgeHXSZeS8k6/Z9hP8rh8Vnfl7mbGnRG2CqLisyyMLj3m8Y5aL9FdR9+r3M08lZ43Q1IqfTdzH+Xh3cyTKW8DYN0PdJy4nFiesnczY13x3cy4W8J3M2Od9ws5VrYeQV8nrH7BZ/XSTl6v4OOduoyeY0+hdv9qRP9v0FOsWlhsB9yBY0z7foHQk+vC8kMY8deKPwQyIzXSGH49dBTZTkeaOsnj8vlEGpMynVCNBmkx4Q9kIT1/5x9Cu1HwceJIM5eeN0NSco00/ZSHkeblQMdJRRorT26b55SINNhCUyKN5WGk3kB5Dci7hfLw90JupTy8L+Y2ysOfWNxIeXil0u2Uh3sB9psdNSr7rJZSHZ4pGKV/CLr+J8Yt3TZuuYW+Vxm3zKPnzZCUunbcYuXxHLdgxPUct8wlrPEetyi+LIyeYXE99RFtCB33RMm/p2349dBRdDvd6ueSPC6f2UGtMBhvI+h2Y58xD+Wo2b7C4l+1mp6oc4eXsfH3/gI1egR/IF5uqikH+TD48iKt6dIX4m5eI/orW0qrewMVf55S3P5Md3adur0KEzG3ny50aYg8tCHX4Rly1TzdUqCG6kUDYWXiGeYpV8VZ2foC2X1BzwjZVY3+euGqjTBaR+TPMd9WHy37NqDrDWPLx7puJF0VDepq9BtA1xWkK9qex8EbQRduUreT7s2QlJKblOHXSZeqTep2ksflqzZ+ZO9DqyBqELRB5LVrOevoe5Xx4yZ63gxJabN5xWaRaXlbADujvDshj2dVWwGr7PjRylN2/Ih1tYXy8BcX7wTZXOe3CzlWth5Bfwdh3S74rF7ayesVfBlhZPQc171uE7L5TYk9EDl43Qtl3RZGJxU9eK6VJ7Z3CGMjTUV/3ZYaaQy/HsbWfZVIs4nkcfmqRRr0FJSylVCNBmkxbQXNkJ6/c+0tFXycDKdGOj/e8qLc+w62Pk8LY713CumNOsRidkPwG52SM9ChnAEhxzwZ62E75dVEWfm9nTxtprybIG8H5d0syqVm5Yx5SwTzVpH3dOSYMZoOo1FW8DdPveIZ2/R2oavVHUYAfv9DtbZNETnIb3SDgq/T8iid1bgKfynntdNHeDLKU9G+2fpcI/pvLBjhez21t83AbzoqO3NbLGvnKULOeNuZ29QWRzmIhTbM/20lLLZzs/XZ7Iwjoa3Etw3ykA5HBFvh+TYhW+EbRjsf/KXpumxFPmiyakT/OfDBd1T0wS2Uh6NL7g9ND7QD0jeDLldfAX1Rud4TmffdLviV7rxitCWie57YF5GfR67j4fMos53/fID8507IU/7D7wMa/e+C/3yQ/AdHaONR/li7xpGczb5i7VrFD+bDNjorQYetQueG4Dc6Ncvq1DeUzu1842PkG9sgT/kGv8di9O8G3/gk+QbGT9NR2ZnHgGXtPCDkjLedeXy33VEOYnH/tpOw2M5WT2ZnfFd5J/Htgjykw/5tJzzfJWQr/NT+7c+n67IV+aDJqhH968AH/yIyp4n54HbKQ5vySsp2YQdVBxnp3VdAv53KZfRfFP1brL1uB0yO5Ub/JcDkc5YmF8ulZssxX9whyqVsujO0l412Xl8guy/o8hf5ylcjNjX+SQXlYZsa/dciNlU2itlUtbGdolzTRJl3EdYdAgvtnGJTLD+fozD6b0bGYVsEvxo78BhSjcOQnn9lUrUxNTbhNvYfiWNIHtvg2sJOysO1BZ7r434Gz8Vwx/9OysO1BV7n2AB53P/h/s42yrsV8kb5fmttoUZl7Ws973DfQZ6X4fM7RWto+DeEtP6U75RBOeOxbqLk3OEoB7HWtf6qORv/ynPZdQPkj80Nax3KqQk5jGUxOU84JuL3W4x+fsvJ8nb99iWjMTcL/fAunPWRsnJ7RiyrM2sfGPvGY1/O8OukS0l5WSzmYvl4q/tOoUtD5BXVKcqJ/e5Vql4DYeQMYmsV/9o99x59YMPBBwKlGn2/tkDFRUS3vkC1TOBm9I+fL6JnatsZsc9U0zubcqZ1KGeakDPeS53TSE7RdOeyGSM8WWi/pHxO6zMvKZ+A6c4VLUw13SlqduhrseMYJq/oiMOkAv1eAKF3BQ2HJ4kynxPReTPIYLl52l6gw0toqFIxFMuhCi+F4pCOr/PCUMabwzjE6RXP2Oc2CjmMVdRNml15SHd9yW4SfXt9pKy8bYS6sB2UHBXelR1ichodymkIObFuv2osUTrzVCKE0fFiE8WSLZCnhjR20LhG9C+DWHJnJJbwMhQPNTi+FvWTRbFkU4F+OyOxRA0Nb4zojFNAlpun7QU67KZYwltBzZCWVCzhrQmMfzNJ/7J9IfKfqb5wJskZ720/tdzP8UVtR90ZkaO21Nq1xwMztEzVHrlfQ/q10B5fTu3RY6uuqE2EkLbdtVnIKYpBIcT7IKM/GemD2g39Y1O1Iv3wYBXSz4AyF2EF8czosf/j5Ys7iXZLhJb1Rt++ovXZYhFvKTdDUtpm/rxNZPKWBupkebiMeBvQceIjSqhzXt/voitYgsBS083tBZiqze8iWitzj8Dl7SJsx2yvHQU6cB2HMNb3DPfnZozgv4H6GVwuL1G329WWlCWuP7YdJ1V/pldef5+tWH98zEldG83zKa6Pd50le/GcH9PZsBcvP7ezl+VZeXsEHx9CNXmfAn99N+HVQBb7P1+ZjNszzB9C8ZbYr0Ffsah1DnJaGNu/8pWpiK3Gx9zPzS/QS5UT4+RW0ttoP0m+ytutzZCUrrY63kk6IfauitgZ4YWglx0Nf1DIM73qIi/lmvPVl7zwT/6u8fN/nBG/6cLPeB58l6CfL+jNVncDfwlbvVhdAWOyLQ/9cRfl4ZqB6aCuOb+ron4p9kP8hqBH2WXqoiHkbHTE2lIRy65fV9upHHPzxP2Q6vvzevwHGqdjvc8jXcvGIeQvE4d4vGG0X6I4VHH8+Bw1DuQ4tLMidmoc4n5P1Wtd5KXEobXPe/LiT32u/6EsjI23veJZyja+eom1w3Z+iYpDHGvQH3dSHsYh00HFoYp9yiUp9kP8hqDnOJRaFw0hZ6Mj1paKWBaH1BhcxSH2822iPBiHeI7xNRizfZleG0gZd4cwNk5uieRtFZi57P+vYPxpLyPhPJLnaOpYkX3HZ+jryMNrD0b/LbDNv5B+OP8PhMdHKdR2Z475nRnFdNsidKnje96SVcemU+tFHdPi9SJ1xB2fxdaLjI77pMkzR3SxBUTVly4kXcr2pchvdCmvCm0SOqh2iuuBn505mg5tlBX8tXLwMy6Hqp9869suWWhtfd+wZ3jTg0OH99y/ac99h/cM95IGvIPBrWoHaaSSackjk1vpO7/AxqvCWwVOO5lql2IOfGa5ageLLTtH6Hw25SzoUM4CIUdF9049UuncbsV8wcwRHvSJoh0sXpEw+t+YP8K3mKKH2nVUdsarWKrYee6EnHGVc36Hcs4Xcsa7HZxPcorawaVO7eBuaAfPSWgHLC+EtB0W5OcR8NY2WFzHyB87nL8xQU7sBZHUlwBSyhOTczbLY1jq5QSsgzsiem0nrB1tsG4nLHUAX/kg61z2ZAbyx06AbO9QzvZEOWeqPNsoD2ckHItV3e2I6ID8PKNTqzxVY6TSuV2M3EYxUr0oFDvtYvQbIEbujMRI9t0fNTvvdJSDWHxKqqg+H6D63AV5KfVp9M+B+nwooT6VbTZHyoOniVLiYcoLUtsj9GrVUPUDZl/c7bA66nBnI/mKYsOvky4l5Z0+fH4PyePy4SHv2a3PrZnu1XuOXHrZldf+YJp78tAw29Rwp6NQ0J/pA31nvlw3Pg29Q8jIE/vPTqLjerfnjJ+iUzvadvmq3fDKa9l+DfmLThAWnRay+uGTvY+12rk6LaTGUehDPJZVfTi3O6brFWWYUsB3ddD6YZnXR8ps9K+KlHl7mzLzmFuN9zg2MV2vKEN/GOsDiJEyfsGVrEVhdLnKrjQuEnLGe/VtEckp6u9+mvo79aIptvl1rc+8Wr0c+ru3RPq7M1X+dm0ay8I+heVSJyNDGHsKxL7/YqvsHZ6mkCdyi07acPv9ZapTVfZYnRr9LKjTdybUaax9xMYiKk5sidCrsY5aYxm/EynZ36b4KOKr3d4qYxF1ikTt5JUdixjuF6FAqH+7sQjzqbHItgIZRW2Pxwc8lmk3FlE6FdGWHYvgOgdfGFB2DVDtApt/Vnxxsmm6bAE91CmbokuqesLYtqjoN5J+jF+0/lAL2jZ8+ty+fxjGGUvpdB3qsLBAvxDS6gL5z9R6LO/cjccbPCGMXb/Ber0GPmOeySmKyQ3BHzvlv7NDObFTDu18/arW53Zjok9R/6kuN6sJPXhs/Il5I3x/HNk9ju0v8LpF7HIH9VZs7Fpd3A1WevEbj2V3tZU+/Jbf38MO+5+TLtjnrCJdyr6hiPw8PkA+a0v9Yaw9SsTf5BflDb8expa5yvhA1ZGyi7r0w3gbIg8vACmSs0rIyQirnV6OL8pb/oVEt75AtUzgZvSPn19Iz9QQA7FzWXvnjshBM/y/NHXgrrUZ0pKaOnCIwerhZl62aSF/0cu/2N2rgykq9K0grLJdOfJvLMCqCd3zxNM7o++d9czfDodnG2MvIXZ4AHZjaugpuo8O9aqLvJRDqpd948SbXvqi1d/jLtR04WfsN2oKuULQm61weaiErW5Rh1RxiSJPapqtDqmaDuqQasUXgG5JsR/iNwQ9371VdksX89ZXxLKDpWoqcbZiUtHyLt/pavT1VttXS50qNqmXzmOXL3BM4zJyzMlTM+j0fUqGZ/afLGTx1Mtop0O5ly8dretmoavFiN6IjCCeZaHYNiyjR/C+MIzWbUuCbuqlYcToKdAzx1DTG/bbstOb1JelV3YoZ6WQM54vxqPMdtOvc2aN8GA8KZp+vaj1madfvwnTrxUtTDXN4WmkuowGxyxlL5DgeGL0F0C74gsk1FGrFwEm+xnK4HLlicczRn8xjWcqjjnkmJOXfnCazLE1TzcVlAnjNN6byDZQW1ibI/Rq2Rl9kmO2uheVsYq2z1j2zjayebxedJctfkfZscuW7mojm49hqZfy2Je/PmdEhxdR+70ZeFS930yY9v0vZ49gvqQk5oYCzI2zRjCvoZiAsX5JGC2v7PgD+SeWG8ovN/CYQMlZIuRkhNVOr3FYbphHdJ7LDfPoWZnlBnNzvK71MsK/GTB6xTN2c+Q3OiWnv0M5/UJODOsygWX0GwR90Q+OO7mGqbiY6DZHVGPcdq6xmJ4VuYalXpKZf+YVJ64a1nGawKhFytQrnnFV14QsJefyDuVcLuTwZv4xGh2h/BLR8jUW/fDXlDjyV1zte01q5C/azEK91K8opqz2fHPDrR/9yb/6xpcz4jdd+Bk3SXV463JB3+GVia9Wqz24wZIntTGjVntwJs2rPRVXBV+dYj/Ebwh6Xu0pu2qqrlEsi2WrPXjDd6wtn6mYMR5yYlixawfNNn2CXsUko/8xmDXyjx8rewfxrCeMjUd8bRtizS7QXck2/Dw1BL/RjWNMnFQ2JtbD2DJXGQ2r9qHswhv9yKs27vmKorKHXbsdC31zMIz136zgr8nhZywH2+pskjNehzpS/LyqHMTiAwLjdXjExkQd9sF3qtfTLamdKPYLdcUEX5Om7K9erFDXs7wUPnPqpe88Djhv6Qgu01lSq7ncL5VdzVWrfmq1AVdZ3zdLy8QVR7Ujwys/H4NVmg/MKi4jz3Wqrlh++AysWP4o+XgVP95Z0Y957KUOHanD/lYOFa/51xvUFYIcFxFfxTJeQVXjGbXir8aUt1Ae6lBLkBMbN9US5SzuUM5iIWc8+y2U2S5O/RnFKTy8puKUrb3wyY33Q5z688huEOrI31PG9SYv9Tpxo38yshukynxtRGeUEQgjTxxbjf6LPqdbZGyNnfThdlJ2zlo0Z+e6Mn06LF/yarvh10mXkvJOzy/U+Fpds17uN+P5bBT3HGq/IgujS495vfRsEtHdQN/XC74gsPP8Di+638q9L6ayvS9fXI+vpdwPdJxU72vlyVv/wMIRXKZjXWOvVmHPzK/TtTuTYWXrEfRbCKtoj7U3QZ5a+eBZv+LLv18veDxndZ7nIdSIkKNRxZHsrNRoZPj10FEbOh2N1Nkv9eMFql3x6AzzcJUV81BO7HVLxLrZCStPOyawJrAmsCawzgJWyuwX+ymebWMc5NF22c145I9t+q/sUM5KIWdQ8FXtkxsRndUKBtut7I/3ID9fgFo0+71itpaZOvs1+nfA7PfK2aN1VrPfEPRKA9aDYTBvP+hgeSXGF9PyMfAp+DEKtiuPD2LjkPyznZtUV1rxGST0hdQ6Wkd1VIM8VUd8XtXoXwt1dH3rszqbxudVY2ewUB63w74Cen5Vz+hvbumEO4+x8+wsr+j87vICebeBvLU0J0K/w9MBIVT2u1nK7zDOsN+pVTYVz2LxQq0WNsJYH+bdZnUeUZ1dzYi/L+g6wPe0kH6HqPNUP+d6Nfq7EuvVbDke9Yq24npVO/nqNdeYH2B9xVZB+czzTQIL65rrtV1bNjxuWw9G6pXfj2E9uV6Nfl9ivZotx6Ne0VZcr2r8oc6ExvwA+wezidq1uJXy1Ds9sfiNfpBS51g/RfH7uKhz9Z5GLUG/orO0rQVkW3XcNHzw8J7WsmOgFFsmzL8XHQGeKfgD8Wb0jH+vUoXP2KK+yS46rMPh0+gfFyaPhd88pRwTx+oej4Vrw/c6Jt4urPFSUayZxaYyZ8FV83RDgRqZ4A+ElYlnIeij27G3lmLRTZlKnT9Den4rw+jfEOk52u2jcuRTI3fsHY1elZ8vMUa+okuMsUdDN1pOZTX6tyb2aE4zH9mjoY1SVkZjb1WrN57Uaqm6ZJhHp7GLnts1QwuvHOqQV82slL/ERmYx+yj/Uj+Bos4rxGbBeIYkBN9ZMJaHfSFWt3li26hL1LC+edSKq1q88oRtiS+DU7OeVF/A1Q5eCdmYiGv06hI89GGelRv9B0UMMEx1Tivmj8oWGMd51U69la7O3eCZDcMORNehP071XJXJU9W2GrvsUc2wilZx0N54zuRMrfzxObo/BD8r+qnp1BUlo/+jiO+qMsR8t90qG8dS9YMDZ3r3ns/VYXzjHWOMb3wGCs+L8dnRop9/5MRjQLRD6tnRWNxJjanoS+8jn8dpxcUkUw3h8Rn7PPIbnZLT36GcfiEnhnWxwDJ6NYYe51cDTcVziW5zRDXGzegfPz+XnvUKWkyqmmoFeoeQVk3IX1RNGN5wNs6/5YHDjUsIq+wmE/IXvVmqdM8TH6Mz+u+3wm6Hrw2+NeUVmYpH2N6aEV4IIXqETR044tcG+YKUZoinP934ufv+6gPvXJYRv+nCz7i5qjB4iaDv8JdM3xwbVqnXBvmVwtRfMq143PzNKfZDfHUkml8b7OS1oNsrYqW8NjjeMYmXAGqtiy1wWHamdbE4U+8CXWwoNK0LdLHh0yyhS6w/wL6T+xbUPXa44UwdoljToZw1Qs54H6JYQ3KKNs6bc0Z4sK2raU6e7PdSeJPySbh85tzWZ7VkWNS/ZyE+7mD98Gg/0mwq0G8V+Ccf7ecyYzmVzreAjEAYeeIxidFf1NKhn3Qt2dfIo/18EDo2XqkoN3nnwvC9XundRPK4fNWO3PN2Pv+es9r7ycLo0mNeuw2K6+h7lSP3FUcnd5lX3CUyLQ9/EYon7dgaeGK+G7DuBzpOavKNL7yVOXKPdXU35eFo6x6QzXW+ScixsvUI+s2EtUnwWb20k6c2WniGovjy7xcIHs8XttmOHlixK3YrLkQl/xKZ4ddDR23odDSKLSDnicu+VeiijsHxon3VK2Lzzzscsbyurs0/3+SItdEJK09e9prAmsD6YcRKeekb+wPrc8/UbFPJWduhnLVCzqDgq9r3NSI6n+kXcItmf4/N0TJTZ39G/2mY/b1izmid1ewvT2qmjfVgGMzb4SbqgNpERbvyJqpa4UT63a2/sWN8yhdS6+h1VEexI7+oD5+D+xDU0RM0Q8dV3ZRrP5U8boepR9uN/s0wQ48dbd9QIC/114GN/mdB3hk42j5D+R3GmZSjsiqexeKFWi1Th4f4qCzamMdsZY+9q6OysWPvRv8u4Q/cF7FvFOmn7OZ8VLbo1xKmC/5AvBk9m16AZTj5M1wASTkqq870cYj4NWHyWJXlaeKo7A/dUdnrCtTIBH8grEw8C6H9UVnuVWImVqaq+pLFR4VLxyJs7IpUNRLA6o0dleUfklDX+bIc9fJHnrhHM/rfT+zRnEZSskdDG3GPlrpyYvTtjjtxU4u9VKhmNqnNMPWoLI/UvI8msn+pF5HV0a/YqNrpaOJANx9N5Gs9sTu6k+SkHmltd5TxsYJ9tSJc3ue6BbDUajIfNzT6/yligGGqMwAxf1T+q64LVcf/Od6h7rGj20bXoT9OUf6I5U+Z5cXOvaS2VfUiKV+1h31B7Dr6sv6I+5pNmvFh7FhNMsuuPCB/7HdU+zuU0y/kxLBWC6xYWxjnY4am4iKi2xxRjXEz+sfPF9GzXkGLSVXTzQV6h5BWTcgfc4fxWPBSci7qUM5FQg4ff5ndGvp2eGv2q2Obb53evJ8RXgh6NlX0W2Sol9pMSzlu+Lsr1r3mndt+ZmMs7MaGhOp3ky4S9GYr3NQuYatXqq7JZKvjhnwUEbsX00EdN6x4HPKVKfZDfHU/DW/slb3xGPPuqIhlxw3VLexnKmbwccMFrbasjtWdKV3sCNHSLtDFjhueexZ1UXLWdihnrZCjNgSygr8mh5+xHKVzu0X/tXNHeLKg35yLLfob/S/PG+G7NLI8UzScwjEEHkTh9m7y8Fie+p1A1u+54FN8LG8TlRnLqXTG305luXnaXqDDC6nvrti/ymN5PA3CVWJuJ+qAkLpZVrUTozvTB8X4OCseFOPDSbshjw+RDUHeJMq7F/J2UN59kMfLmJh4SRNtlPveuxaN4DJdIJllD5+pJb9L4TPmma78jOse+WNHlzd1KGeTkKOWPnG8GjuMZv5Z8Uho8o4AvxZT8fWf0zsCsfuFnlas9VeNmXm6j3lFx6FRzqVCTlm9xuGH9C4kuqIfV8oEbkb/+PmF9KxoGmvfz+bbAWeqieGQpN3wYQ8NH2Kn+rnrRPpfmzvC9yB85p0exOK3OdCOd5D+6pxNvyj7eIQIw6+TLlVDROp+fblT6kWnAjJCxWexlsJ7g8zPrb/KKfWKwX2jGnxbsjxcJ+eBAg44+UQXDqTuBzpOaqBg5Sl7Sh3r6nbKww7pDpDNdX6zkGNl6xH0GwhLbU1bvbST1yv4JhFGRs8xwtwmZNeI/lUwAbiUJgBKVplL2ZimaI/4JyOTEHz/WJWLj4HwoAfb064C+b8IkfWn5mr5Qcjn8qGv9hXoW3Sl1BvBBrGfNFT+yO+woW/ze0i3RGg5fuF35Yu3Ef2tbcrO9W/0Pxup/5uEDqZXnta30UHRKB1+Qeggeop1Bw+dLDj1weMrjuxcS1wTNwmcomTWyD3WvJetw61DPSvygLzks1ufTw9X9+8ZLjrxwmUt6kV7gk6DQeuWp7N1iGlSNXnRQ0xYvqqHmIpaaTs5HR5iKhqoqGDB/IF4M/EstNS+oP7M57P5W2KbOpRT9Goafi9aSbSK4A7iv0OAWltw52BPAWbK7oBa6TL6dpvtbEt1MCYmO3aWcmtJXdUdcHhQhVcEUb/tJXVNeQXKU9dbhK6DQjaHTizXeITO05cziDJUCZ0xuzytWOtvuakcHztDqyAqPsvC6NJjHkdI7myvp+9VpnIV9yfv5rViTGqtmPecd0PeVsobAqyyUzm8+qXMVA7r6h7Kw5vJdoNsrvPtQo6VrUfQ7ySs7YLP6qWdvFjrNgzFl3+/TvDEXuxNabV54gHITkesuwRWh2cC5qRGI8Ovh47a0OlodDfJ4/Jx2e8RujREHi8t3SPk3CPkKKxtjlg7HLF2OWJtdMIKjmWcwJrAmsD60cdSe4d8tgv7T35B+2ycz1nWoZxlQs54n89ZRuXBvpvtps4i3hWRg/x3UXlw2Rg38ubM0zLVawF52t36WyP6N8I5oPnzisuIdrZysc4dHs0fVEfzcYyTMi7BMdwNrc+qz+bb9LGu+exGUR2cQ3WgXpLfIPThl+RPQB2soDpAfpxPFLUbJY99pK+Ans/3Gf0FLZ3UC9ix16eUT6Kd1xfIWwvyYq+rOb0SMkf5HbZX9rvUcXeqn/JrSOinvEqlXvtAP+BVKuPvC7oODI/PrT9f1Hmqn3O9Gv2LEuvVKZ7MKXuhg1pNjL32qfxA/S5cI4yt86LVV8TCuk6pV7W9xvV6Q6Re1WEQ1JPr1ehvSqxXs+V41CvaKqVe1VmoWP8de00L+0m+FEHF6NiqsqpX9es5XK9bIvWqVvZjcdjot3VBHEZbpdSr2v1IrVeOw1ivfBGG2mWoGqMNKzVGG/39os55zM9xoUi/omszHS/C2F6gxmzBH4g3o2ezC7AMJ3+GC/MppyFwCZRNbvT7hMlVM0V9Uo69VnwtLHkjxPC9jr3Ghp5PK9b6q469cjOLNaUyx1gdL8K4vkCNTPAHwsrEM8zzenF3Dx21RBfimYKKfGrkb/Q2Ai0aXRhejehPRXqh2Cg4hLHReregV28RqPLvpjy1o8RysHfEyM+9o9H/RGLvaLLHo3fcDQTcOw5BXq+gZ3vfK+iHgIZXlfDti1iT3k1y2oUO9n/lp2r2rUbjsUsM2s3K2L/QJ/gNDjWbU75gdOOxUoLlYV/YDXm9gp5tE/MdtE0jtPcTbJf3kJxYXMpTzBdwdYFXw9RL/CnnTjAG4Bs7Rb/h9S4RAwzT+ze8TJ/Yb3ip36aL+aPRdfslL+12rHlFFYeafF1p7AxQO7+J9c2xtzTb/TYmD0+3AZYq70tan2tE/+GIPyobxs4AtfsNSvY53OndQXmqPpQ/Gt14/D4nlof9EXdIegU922aXoMcxF18yhbvN2ygP2zG/xYjlx9/JPWfWaDq8BCkr+Gu68rOiC5KC0IdPgKi/qXIQK3ZmDNvVpynO74A81U6uan2uEf2XYcX9/6IVd+TnN4Mt739AO3vz0mJ+/p1adfmUaiN884sqJ9K/pKCcXwA9fxHaQwij68j06rDdNcq2O9X/x9pdbOUdbaJWXPl3kFVMRp8sisl9IR4POSZ/KbJKg30R7+huLqm76k/axZFPtQ4pTiMdOJ4V9QeqrtQK1I4CrB6hP7ZbrvdeIVvR4/xUje1rkI/0/wx19dalGjMU6LC1QOe+AnqeQxv9NyNzaBUH0P/5RSKj/w5g8o9wtcNcV4D5H5Gxhmqn2MeWnYuZPspPeS6GunO/eDfIZ9obST7moZ+z3BDRl/vUdvpyf2N50+c/8zevo1rrcz/hlYzVvbG6ukbom1pXWyPlYyzjq4Wx/hhrI2iPgfkac1JJzGktHOzT1VhlJ+BPJ9kqRqplaB7ncDv8NI1JsJ/ZRvpbPzEX9I+tR/mMsbO/LXuRorJN7CLF2JgcY7jqb2ZQnvo98kzoULYvxbHpL88cjbs9gpt/Pof0aDfGe17rM8fhFaLeYzaM2bzdvMb0UXF4F+Upnz3T/ojlZ3+MlTVPKbuHOK9jf1T9h/JHHmfF/CZPMX/cDmX9aRrb7YrITC0bx9i+AvqiGPt88NWU/YGYr+4W9PcIndUa7W7Ki50yN1o1PsoTX7pt9C9NjMdO+wMzunl/gN82QBvvpjz0TT6lr9psatsw3twOD1Cs3pmImwksFSc5Vhv9xkisVm0w5v/t5sKnfww4jLUlnwJWsWocT2bN8DzpmaeqsaFB9Ggn5at8MhTLj+PCbQljgVjdtlt75dimxpGqH+Y56vaIHNRLXaS/PSJnbody5go547kGiTLV2IbLU3YtBPl5TXWHY3mUznwEI084bj1Mcxj0417By/2d0b8e5mRHW5/VXhX7Tarv8hmF2BpSCPF9L6d9hklne8zJ40qM43zOQb0zjr6HfafRBNJxPOyF7TllzqjiRsy+2CZ4LxBtuZXy0N9S3r9PHYfgXvOlM9vrr94vT/UPfk8fxyi8prZLlFf5gtGNxxjgTJ66Z1/A8cFOysP6v4vkqLGjipdcx0VjR96zMvpfLDl2jPmN59hRrfOPYwzpar+JjR3L+g3HEHUDAPbfsTWyLIzuJ1Wfa/XQbm+jB8pgz6fAc+S7ksrMYyTGfj7RWzn7CugNj8ciH4ysM+xso8MLSIddbXTYSToY/W8JHWL2z1NsTNgfxrbFEu2mlhGe6YPPEL8etH80Q1LK2H4mT/lBnrgtq/aEeTyXKfvWJWJtdsTCsWUH9VX6xm2eV2Ac4+tVd0Me3zaDqZe+Y3lyv/65pSO4TMe6Yn3hfi772E7Bq24AOVvtYWc1edH2oOYAZdsDr1s+29vDTsrrtvag1pWUjfLUDGkppb1UvHVmeWp7MXyv9qJ8T7WXDm/xaU4Pz4xjOFY9Bz6j7VDOLtKh0/qL3Zl2puuv0zvTUucmnvWHbatM/am1vznwGfOwPLG1P+Q/U2t/c0hO0drff9Dan5qbxtb+TveNC0b4vhdZ++P1PfSt2Hqd0XU4d+zt5nPBsXPq3Ld7rT8tKFh/ygD3KsHLbRvpdwk9jJ73jZmGz6+dXmto+Ze6iFn5LOpVtJ4yAzDP9Pk1tHPsXaLYeorTu0TLz/a7ROz3Q5DXbv83TzcKrJiuWzvQlesR62qIsNTtJ1ge9kujP1f45TieG1hedj1tN+SlrKe1synPadCOsXMDvJ6mYm/qehrGkP+g/kud2c8oD2Xis9iNUnyOz95Fuhzqn8/q3gl6qrh/YwHmcyOxTpUhduvJ9kiZUZ/YPcaKD9//6heymvbh+/FkeOYrk4UsPmdrtFeBnZYv1bpkrE+bFHtHpz+M9esyY96M8ELQY3rDr4extqgypldjYOX3Vr6Kc8BlOKZHP8IxfdE7C6nvFK1fMMJT1MZwnPrc1mduY7fCGPjmAswQyo/XUJ8DM0bjxtpinjp9pw9tHtub30R5as/VdFDnC5Cez04Z/Z3QNmPvMjmdJ/2Xbt7b5/dWlX+pvX32m6J3UwyvRvRDUAf8LhP+tgDvn24pqXvqmXlsG9yOU+dIsXaPep/T+szt/qFI36re04r1raovTv2NAH7XEPks3o3j3Fruy2J5uL14xy6eWyt/Vu/W4dl0jr04V95EsVe9N5Byy1PRHQPLW5/5joHHIv51Nu8YQD5r+8q/jK5D/5qp/AvLw/4Va0t5Kjuu5TtOYncMYCzkXynAOQCOQy4j/1L9JPLaT2FyP/lExF92RcqYp7J9FL/DnHq+KPaOGJ+1ulvYAfXa0/rLa0ZvTRwvOJ1nuvpsn2nm8/e7IY/f91DrmmjTovPufSFEzwvxGts7IuMFtR+s2laK7iruqvaGberPpz/zWc3zi36RRclkXux7im70K5p//rqwF8ezovfDziNMo39fJB6oPvUOeFb2nTw+26vec4qdSx+/8Xy45myv/XP/EbsTpOh8FtKinFT/Rx/6GPk/9ue3k8zYOJZ5UU6R/xfdlfCxiP+3m5cvJUyj/2TJta+Y/7cbI8TGSLFz77E7cZzG59ed7fE5+39sfI7xl2Nru1uaY/6PPvSB6aNx8V4M5bPN1me+C+bzJf0r9t5P6hg0dleNir28PqPGrlyPRf3M8jDaDkb/PxPHW053zcw62/Gc75pR49tY/ByPu2a+mrg+w2tLW0rqntresE39EvU3OPfl/mZLRCbzYrsu6m8Mj/uGb0b6G5ybqfUg7m+M/jsl5+ux/qbdfJ3Xg9SdQWouH5uvG12H7XP2eN8J2G6tjPsbdQeEahspdwKm+j/60Gtb/t+ZXU+8IgNdDLtXUNbor9FMaflkHeTb31qCHk/+wbc//6GbLnt4BvHnyeoo37PJ63/SwhEdMqCdsXBE92mwx206WOI9HLynGfupc1oYtt/UB3TNkJSeb2WZDLhWN4FwrSz9AGC+oe6LnCb40Q9Q7hKwzbyFI1iIzbrl6X7CM9pFZJvJgFeiPQeub8Sy+sG8PtB12cJqdOgLfJ6X44dhnBORVSMMjCmGl/tu1bax6Hf3fPYlf/2Pf92ubVTFf+1ltRlv2H7L+vHC/+zkf/rWp//wgZ8eL/z/p3/jdT0ffv2y8cL/uW/desWr5p/7z2Vik/nCVKA1Pmsz0+B5iTYzBfW31EvPEL9OupSUd3p/fhrJ4/LxOwYNoUuD8vLEaxENIach5ExgTWCVweLxwk7oE29tfZ4Wxsb3qaRLJnTJIrowf56qjkssry+SNzmS1x/Jq0fypkAZplLeAPBtprxBgZmX675Fz3y2WDgH6JohKT1o+swFXIttgXDN9vMAIGVshfzzCGt+GyxeV0H++YS1oA3WHYSF/AsIa2EbrNsJC/kXEtaiNlj83jbyG6+1O6unf4V2t5fGosajxqIvJzyjfZjGoosBr9OxqGENCn2ygr8hjO2P88RxAbH4DqBFQk6H5RtI0RPx66RL1XHDYpLH5eNxwxKhS4Py8sR9xBIhZ4mQM4E1gXW2sMzHsU10GkcwHiwiOXOBD9eN3kBriBh3ewXv7tZfjr1/BbH8TTSGwrhhOk4TOvP4SMWLxZHyTxVyxtvOPAaa6igHsXhNeilhoZ3ztLv11+yMsXQp8S2DPKTrBZql8HyZkK3wDaOdD75roS6b8kGUVSP63wcffDf5IPKzD6J/TqU8niujnso/sc52E73p3SfoEa9G9O9tlUXtIxg/2gr14nc2jP79gMn7CCq+4ViP18qVL6q+W9l0KWH1CCwsD+9lKZti++yh8hv9R4RNeTyG/Gq9j9+DxXWceZSHayDzKW865C2gPByLLqS8mZDH9/HNgjzuC2a3vrP/bF808rxdO8zT7tZfboefiPiWih1qDGj0TUGP8YrvVUR/alIe8rFPNiGP+6Hlre9ohyboZefkakT/abBDbM/a9OpwT2yK2hNbDgS8pn0O5PUKeq6LcwX9OUDTbH1uEL1q5ypmNOEZt3OzUZ+gR7wa0X8+0s4xTiwn3aeW1H2u0J37PW5T74qMk7ivWRKRybwopy+U60P/NtLXqLEh6sV9jdH/fSQeKFvG+hoVP5aKcimbLqM81Uep9ml04/E7dlh+bp+xsuapaqxshLHtZxHlYdtg/1drQan+jz70hoQ9Ev5rMvlZbOx8d4E+iNEfdBtshqSUvKZi+PUw1jZV1lTa1QWPX9Qckes8TzznLTsXm8CawDrTWLE106pxBOMBj7Fx3Rbns7NoHI37Er2Cd3frL6+Pv2bRCN/c1mc1n+Xx/TisGSfvNU+sGU9gTWCdvXXe8Yh9eUpZf1RrA920/lgUr1+YsO6h5gM8d3oY4vVVFK+Rn9ceVCyPrU2mxsbdRK/WytTaPK+VXdciSp0TxtYfjX49YJ7p9Ucs89laf7xN2FStPfywrD/2Uh6uP/K4Cdcf0X9s/bHq+Uw+E4M24TMxaBM+E4M24TMxaBN1JmYm5Q1A3izKG4S82WCH+8gOWOd8xhTXIiZHyjqF8tTZVGXbfspDGw1QHsa4PsrDOqlTHtrWbGL38rSLx3na3frL8fhQJMaoPkTNm42+Keix3zJ9PNeheU1veet72XXoE2CHiXXo0Vhnah36VZF4H1uHXlRS916hu2qf2KZeGJlbpow5EJd/y0r1j2osxP3jE5Exh5pPx8YcRv/TZ3HMofYA1BkIHM8bNmOOxzo0lp/bZ6yseSq7Rm9laoSx8ZDXqNH/l5CcuUJOqv+jD9l6TdX3At76yYvW//PtX19a5b0APIdrfLZWg/qUqN+Pof6W1FqN4ddJl5LyTq/V1Ekel4/v7ZtSTd7vZ8SP8hCzTvIGqsnr5f0Jrpv8n40z+wp0Md4a0X+ExnqDgqdBeXnitQrM6xXPes4S1lSBhXa0Osnb4XvpLDjbuBmS0mU8LjcMxK7oC1tT25bh10NHvn66bQ2QPC4fzxMHhS6qvl4GdJ3W/ckuxdrviHXEEeuYI5anvQ45Yg07Yh1wxBpyxPIs49Eu1eshRyzP9uhZj/scsTzb0AlHLM969PTVRx2xPP3ruCPWY45Ynn7frTHHs4ynHLHudcR63BHL016eYxNP/+rWcaGn33frWG6vI9ZhRyxPv+/WsVy3+r3n2MSzHp8NfVq3juW6NRZ6juU8Y6FnPXray9NXPcdf9zlidev462FHLM+27dmGPO3l2Q95tqFutb1n/PJcl9vviNWt/uU59u3WMaan7b36jvxz3QkrT9Z3TCvAxs9qb7QekZMJnXuFHDyjMNh6hntFhtMfxtqixD5U8u/ZG36ddCkpL4vVD5aP972mCl3UuUquq9g+JcpRWDVHLD57URNYat8vI36kV/YaCCPnH48O792/d/jktXvuPfrAhoMPBEo1+n5tgYp3Et0dBar1CtyM/vHzO+lZr6BF7GlhbNX0FegdAE/9vFFD8NcicrIO5WRCzqDg46aNrlOiqa1ObdqGXw9jy1ylaStXVXaxsteFLg3Ky9ODQFcl9GLeQUesQ45YJxyxhhyxHnLEOuqINeyIddIR67gj1l5HLM969LSXp6/uc8Ty9NX9jljdGic826On7bvVVx9xxPL0CU9f9bTXMUcszxjtOQZ41BFrryOWZxvqVv96NsSv8eiHbCyPV1Pjq7hfWDxa5iTI6yXeDGTWiH79khG+JxePlp2BbPvcT3hZKDWnWZMRXgh6DmX4ddKlpLzTc6geksfl4zlUr9ClQXl5egDoOK9XPIthHXXEesQRa9gRa58j1pAj1qOOWHsdsQ47Yh1yxOrWevT0Vc/26KnXQ45Y+x2xTjhiefrEw45Ynj5x3BHL016e8ctTr5OOWJ716KlXt/YdnvXoaXvPtu1ZxlOOWPc6Yj3uiOVpr27ttz3b9nj0tbavhvOxfpKj5j49ETnIz/Mi5Mtaf/tJP/vcDEmpJyM80xOfIX49jC1zCXlZzP7KLryniLwNyssTv9qr5GRCTiawYno5bk2bihcS3foC1TKBm9E/fn4hPVOmQGz1y2L9QpalmGkbBfx5GozIUW5vyzBTgm5+vH1etvkhv+UpOVmHcjIhh+2qlpPytKf1l38h7vbWchLeHNIr5CFWSmipuGWffBqHt+w7DS1qyz4WWvqELuwPeboL6DivVzyL+VavI5ZTVzDJ7DFJZCpbsR3Rr+6gPLxhA3/FnVMvfcfy5Pg/t3QEl+lYV/Qx01u1ZT4WU7YtI39PAZb65cQ87YR8pLebbzqs0wtUnbK/9FXETm3fsVvWuO3z8aVmiKd3rXtb/cU7h9aWbUdGP1nQq+M9ZquKt8+sGgQZgWRbnjoGZnnqtruc/03kJxV/2XpViv0QX8VHHnql1sWMoPuZPOGNNYhldAF0qkGeklMj+h+H7ZdX0Y1z3IfYs5+O0GUFf5XOqI89qwv6XkFvsqcIesvD05RoV6RBeyFWHfKR/o2tsludYEw3/oaQj20mFOhddFqUsXrFM6PPy/maJaPLUHHsktnNjnniGIF/UYbZqV/Q44ljS1z/U+B5r8CaTHxG/zaqF/R9428I+diuQ4He6masmL+qrdbcPj+zZETnOuGkxvoPXrHmBVO3rfyx8frl9Kl/8Nu3/d2/H1pZ5YY0deQ1NQ4UjSfytKv1t8O+ukf1DyGdP0sZR1TsG7+fOo4w/HrQ/UUzJKXT8wT2dy4f9/31avL+M7+l1+JJ0VwVbYdyeIzQK3jU+MEwcv7/tXR0OSrOr/6zQx/8X7y9nyc8VvGRJSO4WPaiG86xX0f6/wP69Y9CbDRc48c4Oi2MbR/cps3ePYIWP6txmLIb0lt9Fd1A2kdlNfqPwZx/xUKNmXosxeg/KdYRDFPdZqjajNHHboRDfdTbSQPEh7pjP8PPVP1kRIs65GmX0Knoe13gFOnQL3DUvLFOuqp5Cbab2K2h2G4+AnU5iX55vOKrEaXXCTLKw7LdCXSceuk76pxjvIvG4kFgKfvwfNSj77bnk+A5y+0l2j6ijd0W38k8g8cXk4QO9n1yRP+McGK3unN7U39T9c2Evqov6VQOYm1t/e2wz1sUW8PO6+GfEvo8NWbgPu8p6PO+kdjnWR6P2/K0DZ5xTOdxEGLkifctLEb2AT7S9FOZjP7bom9TMcSw8rL/G9mzH/Ji/UiN6OcsHeH7LtkT7cWv2HEcD/B9CuiCtHnaVWCDHtDj+0uKZeE8s6iMOUZtqaZDHZCOMar2a2p8xW03ZXzFbRX5lAyOx0V9t/nGQJt8dXNzEM96BH1/QXmDkF1vgztZ4Kj4Xqe8TORx7MHyYtziMQfGBYxb/xRpL1kYXa7Tfi5o+yO6TyFMNZebHNFd2Q/jR9U1hJ/80vf/4vWPLvjGeK1RvPjtx187eMX7f3O88N838GfX/N7b++8uswZi9axePWbfUmvcedoO+Uh/Ac1dK64xBC6Pihux+RmvMbP+dxTovw7i99qlo+Wp+YlqM0X976REXYz+8pZ8nNfF9iU6/AWHmvoFB4xrPN5V8VatJxp9u7ml2aQRxsZXlq32jNGmPKYxG/UFPb83PPaHq6AO+BdWVGy2PHXESPWFvH+t9h1zmh3UriqObyercYQl3vvFMqrX5Xk/mW+jxzysS15Hx6TmkFbWXOedCfvJKj5we1XrKrHxomp3ht9t7c58vxHG1gv7W6oPF43nlDy0A/bV5sNFa/LYpnHOdffSETy0O8ZT5OV4avRHIbYPUWxHG7M/qDjBuoSQdg5EzeUHBZ/VS4f7xJOwflFPfIb4al+/ylq9GpvG1uorjhNq3MeiPFUP04O2qVrP57miWu+JzZNi8US1P26bah1B9SGx+ZzJxjXzlHGTalvIy/3kSWhbb4yMm4rGRiHoeQDTx2If6qpsP4Xy1NzfPg9E5Ci9YjdKKb0wJiMvy25XhtS+ymmMOEn1VVgn3EaUXWI3TalbrvB2MW4j6ld/yvZtUyhP9fHt+rY3FvRRWA6Mfzy/VW0M+76q88MXrnjD/EV/9PLB8Zp/Tqot+vnm+3dvKDP/VHGlh3DRDrzenqdNrb8p+9wV+87k87Dcd3a6z53ad6rxOvcFuM7C573UGow6P3KmsNTchOuy4jgheRzEZxYq+k70zILq39T8iueN2P+w/Tu5RqEbsbD9x8bHKfWq5Kgx/Xjv3RX9krKHHHX1hTrL3akcdS5c7cvi/O1j1Deq9TDkLVoP+yqMMT+5dDSN6f6HQPM/aM0Ey1yiLdfVnNySWvtgv1XjQMvDsQ37B45t+B2baaADnoXgpNZTjC6X11g2gst0ltCWKe8Z8fndjPB47djoP0/1xXvxzZCW1Noxno/8UfGFKvV9fUJ9qzqOvY/Bc5vY3FStyalYWRTfEF/FpJ2Ej/aI7ZGpMhsv7r3HYhf7PtJ/DfenKR6qOa2Kwfa83Tp6bI/beDv8tdwB9mdMyp+5HajbiTm2qXbQgDyOidMhj+czmFQbMTuUiYnfLejXTAbWRZ54zqf23bG/tPJVPUOcAabpZGVHvfjdFWxPNXpW8UztadupsyU43uK1t9PrHctG46gzMLGz7+qdhF4hV53JHyiJ1U9YkzvAwnULpp9cUS+Fxe8WlHlXIGvVzZncZ56zbKRM3Cf+MOwzr23pn9tvwbLR8s70PvPSlvyJfeazt8+8GurgbO4zX0ft6tm6z1xmnDyxzzy2Xs7mPvN1Bf1Ru33mG2GMgXYvu8+8G2L7BortE/vMz6SJfeaJfeYQyu8z3w9t65HIuGlin3lsTJ7YZx6h/2HdZ36koI/CclTZZ7a+7/8HjzKT6eCnBAA=",
|
|
582
|
-
"debug_symbols": "tb3RjuzIcWj7L/Psh8rIjIxM/cqBYciybAgYSIYsX+DC8L+fyiAjVu2eU7nZVTUv6qU93bHIJCNIJoPk//zyb3/+1//+j3/5y1///W//9csf/s///PKvf//Lr7/+5T/+5de//emP//jL3/56/9f/+eW2/sfqL3+o//SLtV/+oPcfevzoxw87fozjx/Qf43b8KMcPOX7U48cRZRxRxhFlHFHGEWUcUeYRZR5R5hFlHlHmEWUeUeYRZR5R5hFlHlHK7Xb+LOdPOX/W82c7f+r5s58/7fw5zp9nvHLGK2e8csYrZ7xyxitnvHLGK2e8csYrZzw548kZT854csaTM56c8eSMJ2c8OePJGa+e8eoZr57x6hmvnvHqGa/e49n6aefPcf6cx892j1duC0qABNxDlrrgHrP4L2tAD7CAETBP0BV5LCgBElADWoAG9AALGAHzhB6Re0TuK/JcUANawIq8RqL3AAu4RxaHeYLdAkqABNSAFqABPcACIrJF5BGRV9rIGp+VOAfUgBagAT3AAkbAPGEl0gEReUbkGZFnRJ4ReUbkGZFnRJ5nZLndAkqABNSAFqABPWBFngtGwDxhZdkBJUACakAL0IAeEJFLRC4RWSKyRGSJyBKRJSJLRJaILBFZIrJE5BqRa0SuEblG5BqRa0SuEblG5BqRa0RuEblF5BaRW0RuEblF5BaRW0RuEblFZI3IGpE1ImtE1oisEVkjskZkjcgakXtE7hG5R+QekXtE7hG5R+SVg1UWjIB5wsrBA0qABNSAFqABPSAiW0S2iLxysOqCEiAB98jttqAFaEAPsIARME9YOXhACZCAiDwj8ozI86wbMi1gBJx1o95uASVAAmpAC9CAHmABI2At872q15WDB5QACagBLUADeoAFjICILBFZIrJE5JWDrS1oARrQAyxgBMwTVg4eUAIkICLXiFwj8srBZgssYASsw2q5w8rBA0qABNSAFqABPcACRkBE1oisEVkjskZkjcgakTUia0TWiKwRuUfkHpF7RO4RuUfkHpF7RO4RuUfkHpEtIltEtohsEdkiskVki8gWkS0iW0QeEXlE5BGRR0QeEXlE5BGRR0QeEXlE5BmRZ0SeEXlG5BmRZ0SeEXlG5BmR5xm53W4BJUACakAL0IAeYAEjICKXiFwiconIJSKXiFwiconIJSKXiFwiskRkicgSkSUiS0SWiCwRWSKyRGSJyDUi14hcI3KNyDUi14hcI3KNyDUiRw62yMEWOdgiB5vnYF3QAjSgB1jACJgneA46lAAJiMgakTUia0TWiKwRWSNyj8g9IveI3CNyj8g9IveI3CNyj8g9IltEtohsEdkiskVki8gWkS0iW0S2iDwi8ojIIyKPiDwi8ojIIyKPiDwi8ojIMyLPiDwj8ozIMyLPiDwj8ozIMyLPM7LebgElQAJqQAvQgB5gASMgIpeIXCJyicglIpeIXCJyicglIpeIXCKyRGSJyBKRJSJLRJaILBFZIrJEZInINSLXiFwjco3INSLXiFwjco3INSLXiNwicovILSJHDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOqufgWFACJKAGtAAN6AEWMALmCSMij4g8IvKIyCMij4g8IvKIyCMij4g8I/KMyDMiz4g8I/LKwX5b0AMsYATMA/rKwQNKgATUgBagAT3AAlbkumCesHLwgBIgATWgBWhAD7CAiFwiskRkicgSkSUiS0SWiCwRWSKyRGSJyDUi14hcI3KNyDUi14hcI3KNyDUi14jcInKLyC0it4jcInKLyC0it4jcInKLyBqRNSJrRNaIrBFZI7JGZI3IGpE1IveI3CNyj8g9IveI3CNyj8g9IveI3COyRWSLyBaRLSJbRLaIbBHZIrJFZIvIIyKPiDwi8ojIIyKPiDwi8ojIIyKPiDwj8ozIMyLPiDwj8ozIMyLPiDwj8jwj2+0WUAIkoAa0AA3oARYwAiJy5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KBFDlrkoEUOWuSgRQ5a5KB5DvYFI2Ce4DnoUAIkoAa0AA3oARF5ROQRkT0Hy4ISIAE1oAVoQA+wgBEwDxi3W0AJkIAa0AI0oAdYwAiIyCUil4hcInKJyCUil4hcInKJyCUil4gsEVkiskRkicgSkSUiS0SWiCwRWSJyjcg1IteIXCNyjcg1IteIXCNyjcg1IreI3CJyi8gtIreI3CJyi8gtIreI3CKyRmSNyBqRNSJrRNaIrBFZI7JGZI3IPSL3iNwjco/IPSL3iNwjco/IPSL3iGwR2SKyRWSLyBaRLSJbRLaIbBHZIvKIyCMiew7aghrQAlbkuaAHWMAImCd4DjqUAAmoAS0gIs+IPCPyjMjzjDxvt4ASIAE1oAVoQA+wgBEQkUtELhG5ROQSkUtELhG5ROQSkUtELhF55aDdFpQACbhHtrKgBWjAuoNXF1jACFg38dq6bXoLKAESUANagAb0AAsYARG5ReQWkVtEbhG5ReQWkVtEbhG5ReQWkTUia0TWiKwRWSOyRmSNyBqRNSJrRO4RuUfkHpF7RO4RuUfkHpF7RO4RuUdki8gWkS0iW0S2iGwR2SKyRWSLyBaRR0QeEXlE5BGRR0QeEXlE5BGRVw5aXzBPWDl4wIq89sOVgwfUgBagAT3AAkbAPOB+7/2WVJIkqSa1JE3qSZY0ktJR0lHSUdJR0lHSUdJR0lHSUdJR0iHpkHRIOiQdkg5Jh6RD0iHpkHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR0aDo0HZoOTYemQ9Oh6dB0aDo0HT0dPR09HT0dPR09HT0dPR09HT0dlg5Lh6XD0mHpsHRYOiwdlg5Lx0jHSMdIx0jHSMdIx0jHSMdIx0jHTMdMx0zHTMdMx0zHTMdMx0xH5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSeS+a5ZJ5L5rlknkvmuWSeS+a5ZJ5L5rlknkvmuWSeS+a5ZJ5L5rlknkvmuWSeS+a5ZJ5L5rlknkvmuWSeS+a5ZJ5L5rlknkvmuWSeS+a5ZJ5L5rlknkvmuWSeS+a5ZJ5L5rlknkvmuWSeS+a5ZJ5L5rlknkvmuWSeS+a5ZJ5L5rlknkvmuWSeS+a5ZJ5L5rlknkvmufcKDVm08vykkiRJNaklaVJPsqSRlA5Lh6XD0mHpsHRYOiwdlg5Lh6VjpGOkY6RjpGPl+ahOmtSTLGkkzaCV5yeVJEmqSemY6ZjpmOmY6Zjh8Kaik0qSJNWklqRJPcmSRlI6SjpKOko6SjpKOko6SjpKOko6SjokHZIOSYekQ9Ih6ZB0SDokHZKOmo6ajpqOmo6ajpqOmo6ajpqOmo6WjpaOlo6WjpaOlo6WjpaOlo6WDk2HpkPToenQdGg6NB2aDk2H5/nRa3xLKknLMZxqUkvSpJ5kSSNpBnmeH1SS0mHpsHRYOiwdlg5Lh6VjpGOkY6RjpGOkY6RjpGOkY6RjpGOmY6ZjpmOmY6ZjpmOmY6ZjpmOGwxuXTipJklSTWpIm9SRLGknpKOko6SjpKOko6SjpKOko6SjpKOmQdEg6JB2SDkmHpEPSIemQdEg6ajpqOmo6ajpqOmo6ajpqOmo6ajpaOlo6WjpaOlo6WjpaOlo6WjpaOjQdmg5Nh6ZD06Hp0HRoOjQdmo6ejp6OzPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98xz792aZdHK85NKkiTVpJakST3JkkZSOiwdlg5Lh6XD0mHpsHRYOiwdlo6RjpGOleezOdWklrQc3aknWdJImkErz08qSZJUk1pSOmY6ZjpmOmY4vMnrpJIkSTWpJWlST7KkkZSOko6SjpKOko6SjpKOko6SjpKOkg5Jh6RD0iHpkHRIOiQdkg5Jh6SjpqOmo6ajpqOmo6ajpqOmo6ajpqOlo6WjpaOlo6WjpaOlo6WjpaOlQ9Oh6dB0aDo0HZoOTYemQ9Oh6ejp6Ono6ejp6Ono6ejp6Ono6ejpsHRYOiwdlg5Lh6XD89ycLGkkzSDP84NKkiTVpJakSekY6RjpGOmY6ZjpmOmY6ZjpmOmY6ZjpmOmY4fBGspNKkiTVpJakST3JkkZSOko6SjpKOko6SjpKOko6SjpKOko6JB2SDkmHpEPSIemQdEg6JB2SjpqOmo6ajpqOmo6ajpoOz/PpNJJm0PEwvDgWUMAKNlDBDho4wJmo2BSbYlNsik2xKTbFptgUW8fWsXVsHVvH1rF1bB1bx9axGTbDZtgMm2EzbIbNsBk2wzawDWwD28A2sA1sA9vANrANbBPbxDaxTWwT28Q2sU1sE9tMmze6BRZQwAo2UMEOGjhAbAVbwVawFWwFW8FWsBVsBVvBJtgEm2ATbIJNsAk2wSbYBFvFVrFVbBVbxVaxVWwVW8VWsVFLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSS2bWErllLZFb1hK5ZS2RW9YSuWUtkVvWErllLZFb1hK5ZS2R2w1bwVawFWwFW8FWsBVsBVvBVrAJNsEm2ASbYBNsgk2wCTbBVrFVbBVbxVaxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Om2BSbYlNsik2xKTbFptgUW8fWsXVsHVvH1rF1bB1bx9axGTbDZtgMm2EzbIbNsBk2wzawDWwD28A2sA1sA9vANrANbBPbxDaxTWwT28Q2sU1sExu1pFBLCrWkUEsKtaRQSwq1pFBLCrWkUEsKtaRQS8pRS9RRwAo2UMEOGjjAmXjUkgOxHbXk5ljBBirYQQMHOBOPWnJgAbFVbBVbxVaxVWwVW8XWsDVsDVvD1rA1bA1bw9awNWyKTbEpNsWm2BSbYlNsik2xdWwdW8fWsXVsHVvH1rF1bB2bYTNshs2wGbajlphjBw0c4Ew8asmBBRSwgg3ENrANbF5Lii+Z15IDvZacWEABK9hABTtoILaZNu87DHSbOgpYwWWT6qhgBw0c4Ez0WnJiAQWsILaCrWDzWiLdcYAz0WuJvw/NmxEDBaxgAxXsoIEDnIkVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIpNsSk2xabYFJtiU2yKTbF1bB1bx9axdWwdW8fWsXVsHZthM2yGzbAZNsNm2AybYTNsA9vANrANbAPbwDawDWwD28A2sU1sE9vENrFNbBPbxDaxzbR5b2NgAQWsYAMV7KCBA8RWsBVsBVvB5rWkVkcFe6Ingzotb20Lfa+v3bGAAlawgQp20MABzsSOrWPr2Dq2jq1j69g6to6tYzNshs2wGTbDZtgMm2EzbIZtYBvYBraBbWAb2Aa2gW1gG9gmtoltYpvYJraJbWKb2Ca2mTbv9AssoIBum44NVLCDBg5w2fy9hd7zF1hAASvYQAU7aOAAsQk2P4K24iig28SxgQp20MABzkQ/gjZ1LKCAbjPHBiroaezL60fQEwc4E/0IemIBl0193fwIemIDFeyggQOciV5LTiwgNsXmtUR9SLyWnNhBH7Ox0KvGemGSePPf/fTd0SMcv6BgBw0c4Ez0+qC+93l9OFHACjZQwQ4aOMCZOLANbF4fum8Wrw8nLlv3Nfb6cGIHDRzgTPT60JtjAQWsYAMV7KCBA5yB3iEYWEC3qWMF3dYdFeyggcu2nmAXbxU80evDiQUUsILLth50F28YDOyggQOciV4fTiyggBXEJti8Ppg4GjhAH8m1T3r/YGABO+gR1jb2PsBiPlCe0maOFWyggh1cwYYvpKf0iTPxeMv2gQUUcNmGr8Xxtu0DFeyggQOcicebtw8soIDYOjZP/+FD4ul/ooFu833S0/9AT/8T3eYj6ek/fHQ8/cd0bKCCHTRwJHqiT19IT/QTK9hABXuiZ+H0xPEsPHEpVlODeKve/brXUcAKNlDBnuh5se5Qi3fYBRo4wJnoeXFiAQWsYAOxCTbBJtgEW8Xmr8P2yQ7vpLtf0zvawuo4wJnor8G+NccCCljBBirocdcG8Ga5+6yAo0fwJfOXXp/YQI/gQ+2vvj7RwAHORH8F9onL5hMY3jcXuGzFV95fhX2igituWbuRN8VJ8XHwV86f6Mtrjh7BV9NfPH9iBw30uD4O/gL6A/0V9Ce6zUfHX0N/YgWxDWwD28Dmr6Q/cea2mGzNydacbM3J1pxsTX8Vtm9C74I7NqG3wR0by/vgAivYYlt4K1xgBw0cYG5N74c7tps3xAVKbCxviQtsoMUm9G63Y7t5u1ugxCb0hrdjoLzjLVDBDlpsLO96C8yt6X1vx8byxrdAAbFVbBVbxVZza3pXmRQfEk+GEw1ciyM+Op4MB3oynFhAASvYQAU7uGzii+MpcuJM9O80nFhAAd3mA+WJc6KCHTRwgDPRE+fEAgqIbWDzxPFJQG86CzTQbb5reOIc6Ilzott81D1xTqxgA93myeBvka8+kv4eeUdvNgss4Ip7vh1/xfWZCG84E59/8I6zwA4a6DZ/ib6n0/mG/RtYQLeZoyum41IcL9T3Tzz4hZi3nEk7/myAM9Hz7cQCCljBZWvdUcFl80subz4LHOBM9Hw7sYDL5hdM3oIW2EAFO2jgAGeiHwtPLCC2hs2PhX5N5p1ogR10m29YP0KeOBP9MxF+0eadaPczJEcBK9hABTvotuE4wJnopeLEAgpYwQYq2EFsHVvHZtgMm2EzbF4q/ALPO9ECO+j7pK+ml4oTZ6KXihMLKOCydd9uXipOVLCDBg5wJnpR6L6NvSic2EAFO2jgAGeg95wFFlDACjZQwQ4aOEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEW8VWsVVsFVvFVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA2bYlNsik2xKTbFptgUm2JTbB1bx9axdWwdW8fWsXVsHVvHZtgMm2EzbIbNsBk2w2bYDNvANrANbAPbwDawDWwD28A2sE1sExu1ZFJLJrVkUksmtWRSSya1ZGYtqbesJfWWtaTespbUW9aSestaUm9ZS+rtqCXN0cCReBSQ4lhAASvYQAU7aOAAZ6JgE2yCTbAJNsEm2ASbYBNsFVvFVrFVbBVbxVaxVWwVW8XWsDVsDVvD1rA1bA1bw9awNWyKTbEpNsWm2BSbYlNsik2xdWwdW8fWsXVsHVvH1rF1bB2bYTNshs2wGTbDZtgMm2EzbAPbwDawDWwD28A2sA1sA9vANrFNbBPbxDaxTWwT28Q2sc20ldsNLKCAFWyggh00cIDYqCWFWlKoJYVaUqglhVpSjlpijgYO0G1z4VFLDiyg24ZjBRuoYAcNXLY1dV290exEryUnLpv58notObGCDVSwg8u2XjlavdEscCZ6LTF1LKCAFfS43dEj+EB5fTixgB7BB8rrw4kNXMs7bo4dNHCAyzZ8hbw+nFhAAT2uD5/n/Jq6rse3Iw/0nD/Rl9cVnvMnVrCBCnbQQLf5oHrOH+g5f2IBBaxgAxXsoIHYBraJbWKb2CY2z/nhG9aze/iG9ew+cQYe35g8sYACVrCBCnbQwAFiK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYFJtiU2yKTbEpNsWm2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJjZqiVBLhFpSqSWVWlKpJZVaUqklx1cz1w3Fenw380QDBzgTj1pyYAEFrGADl23eHDtooNuG40w8asmBBRSwgg1UsIMGYhNsx7duxbGAAi7buttX6/HN2wMVvNvqzVfo+M6t/9nxXdviWMG2frc5KthBAwc4E1d9qOuuUfUmuUABK9hABTto4ABnYsfWsXW3+R7VK9hAt/lO0DtooNt8A/jXcA/07+GeWEC3+VD7V3GLj6R/Bbf4UPt3cE8c4Ez0r+EWHz7/Hm7xtfAv4hZfnOFx3bYqQaCCHXSbL84Y4EycN3DZxJd3pf99J3ZcitVTXb0HrvrHar0HroorVvoHDnAGeg9cYAEFdNt0bGCP3bMdX6w+cIC5/7ZyAwsoYAUbqCC2gq1gK9gE28r5eyo6CljBtUL1+F0FO2jgAGfiyvnAAgpYQWwVm+f8utFTvfEtcIAzsd3AArqtO1awgQp20MABzkSvDycWEJti8/qw7lFVb3wL7KDbfN/x+rDuXFVvhzvR60PzzeL14cRlaz5QXh9ObKCCHTRwgDPR68OJBcRm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9gGtoFtYJvYJraJbWKb2Ca2iW1im9hm2rxJLrCAAlawgQp20EC3VceZWG5gASUOoVoq2EAFO2jgAGfiUUsO9LVojnmU9sa3um6WVm98C5yJXh9OLKCAFfRx6I6Mb2ONG2vsOX9iBX18zVHBDho4UGBTtqayNZWtqWxNZWt6zh/L4Dl/ooFszSPnfRmOnD+wgNjIeSXnlZxXcl7JeSXntbPvGCNpjKQxkkfO+zIYI2mMJDmv5LyS80rOKzmv5LyS8zrYbkfOH8hIDkZysN2OnD+QkSTnlZxXcl7JeSXnlZxXcl7JeZ1st5kj2W83sIACum04NtBt07GDBg5w2dad+Oov1wssoIAVbKCCHVw29YVcOR/oOe/oZwqehd7qd88OxwYq2MHcQl0GmFuo1xtYQAErmFvI368X2EEDB5h7X283sIAC+lqoYwcN9NHxcfD6oL5kXh9OLKCAFWyggh20xGP2wMXH7MGBAlawgQp20MABzkTDZtgMm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJjTnHPrFNbBPbxDbTdrQbnlhAASvYQAU7aOAAsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIpNsSk2xabYFJtiU2yKTbFRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMaom3XdbVE1m97TKwgwYOcCb6FcqJBRSwgtgMm2EzbIbNsA1sA9vANrAdtUQc3TYdO2jgAGeiX6GcWMBl8xYAb8YMbOCyeUuTN2MGGrhsq9G0ejPmgd6MGVhA327VsYINVLCDBg4w72EfzZgnFtDvVndHX4vjXzto4ABnotzAAvqYqWMFG+g2F/sVyokGuq05zkS/QjmxgH4n3hwr2EAFO2jgALNP4Wi7PLGAvhYHKthBX4vhOMCZ6Fco3hLiDZaBa8y8McAbLAMbuGzepOENloEGDnAm+gzGiQV0mzhWsIEKdtBAf3zFN7efVfjdkqOVshxYwQYq2EEDB+iPxfj+cDzkdGABBfSHhg5soIIdNHCAM/F4yOnAArLlJ1t+suUnW36y5Wds+Xa7xZZvt1sBY8s3b5oMbGBs+eZNk4EGDnAmlhtYwNjyzfsnAxuoYAcNjC3fjk7JteXb0SlZDqxgAxXsoIEDjC3fbvlAVLvlA1Htlg9EtaNT8nZgAxXsoIEDnIntBhbQR8fX2HP+xA4a6NuiOc5Ez/kTC+gPkflmOR5hPLCBCnbQwAHOxOMRxgN9G/ved2T3gQp20MAB+lr4nupH/xMLKGAFG6hgBw0cILaBzY/+w5PBj/4nVnDZhq+xH/1P7OCyDd9CfvQfvgH86D98G/vR/8QCCljBBrrNHDto4ABnoHc/BhZQwAo2UMEOGjhAbAVbweaVYD0v3bz7MbCBy7bmHJt3PwYaOMCZ6OcEJy7b+iRD8+7HwAo2UMEOGjjAmejnBCdiq9h81nI9vt28+zFQQbf5kKz60NaNk+bdj4EzcdWHwAIKWMEGKtgXFkcD3SaOM1FvYAHd5ouuFWyggh00cIAzsbutOxbQbT46vYINVLCDrhiOM9FuYAEFXIriQ7IKSKCCHTRwgMtWfKBWAQksoIAVbKCCHTRwgNgmtuk2z4ApYAXd5rvnVLCDbvMNMN3mgzrdtgbKGywDCyhgBRvoJ71OI2kG+VXCQSVJgsSDT8cKNnAdrdSpJ1nSSJpBx9OXTivieky4eb9iW40kzfsV6/HfR9IMOm4hOJUkSapJLUmTXCKOBq6xXt0qzdsUT/Q0PNEX0yN4ah0L76l1ojcqOHmAtQm98zCwgAJWsMWQ9BzOnsPZczh7DmfP4fREOgbRU+YYRE+ZYxN6ypzoq+o7hafMgZ4y4lvTU8bX1DPmoJrUkjSpJ62I1RfEE6D6gngCuNz3/4M0af21D4Hv/AeNpHmStwOeVJJcIo4VXBbfGN4MGNhBX8y1xN7g13y38ga/wBXhII2B8f6+QAMH6GF9wdaxMLCAEgPu/X2BDcQm2ASbYBNsFVvFVrFVbBVbxVaxVWwVmx8LDzx6fZxyp/ZWwMAKNlAT/ThVfRE8mU400HsenGaQn9seVJIkqSa1JE3qSZaUjp4OS4elw9Lhx6jVEtT87XWBCnoe+C7oCXfiGsR6RJiJnnAnFlDACjbQbb5nHll3oIHL1nzreDIe6MeoEz29fTt4ip5YQe+lc9KknmRJI2me5N15zdPa30XX1t315i15bd08b96SFzjAmbgORW09CN+8JS9QwAo20JsxnZZMfWk8S08c4JKtW+PNO/ICC+iy7lhBl/mqeZae2EE/z3IaSTPIU/SgkiRJHtEHy3NOfSw857r/gp9/nlhAAdeSdl9BT7oTFeyggb5zOs0gP+wd5PntJEk1qSVpUk9yyRFmgDPRD4Mn+mL64Pup5Il+LuQ0kmaQn1J23zR+SnmigD4iPqaerie6yofX0/XEpfJJF++Ta3YolsznPrxPrq2Hm5r3yQUKWMEGKthBA93my+vpar4rebr6Vbj3yTW/GPaOuOaXvd4RF9hBAwc4A70jLtCDFUcFO2jgAGeiZ+qJHkwc/c+q4wBnoufcifd104MkqSa1JE3qSZY0kmbQyraT0lHTUdNR01HTUdNR01HTUdPR0tHS0dLR0tHS0dLR0tHSsZLNi5k3tZ1Uk1qSJvUkSxpJM2gdOk9KR09HT0dPR09HT0dPR09HT4elw9Jh6bB0WDosHZYOS4cnxvRd1RPDZ128maxN/wU/Yq1u6uY9XX6k6cde7aRJ90heI71z66C17560fs8nLbwXK9BAXxB1XGvrMddOfFJJkqSa1JI0qSdZ0khKR02Hn72tt88177RqPmfhnVZevbzR6qQZtPbOk0qSJNWklqRJPSkdLR0tHZoOTYemQ9Oh6fCDwvSV8muj6f/qe6XPknhfVWAFG6hgBw0c4Ez03fNEbIbNsPku6tMz3lcV2EEDBzgTxw0soIAVxDawDWwD20oKn232tqqDVkqcVJIkqSZ5RM+X6Uu6/vX4NGlzKkmSdP/refxeS9KknmRJI6j4iqujr2J3VLCDvormOMCZ6Pl2YgEFrGADFewgNsHmibeewGne8BRYQK9mxbGCXs/E0Quar7wfQ/yWhjc8BQ7QC6eL/ThyopfO4eg2F/uhxK/u7fiCx/G7CnbQwAHORD+2+PyANzGpz394E5P69IY3MQUOcC2vTzZ4E1NgAQWsoMf1bezJ6FMQ3pikfgnqjUmBAlawgQp20MABus2Hz5PxxAL6kdoH1ZPxxAYq6EdrHzNPxhMHuMb3WM3j7fgHFlAW+pAcb8c/sIEKdtDAtTWP4cu347eRb8dv3pikfhXmjUmBFWygJRY/i6mOBfTbNU6WNIJWCq4eiOZtQifVpJakST3JkkbSDFqZd5IvTHcUsIK+fYZjBw307TMdZ+Jx1nbgWg1fXT8wHlSTWpIm9SRLGkkzyA+MB6VD06Hp0HRoOjQdmg5Nh6ajp6Ono6ejp6Ono6ejp8MPnH4N6o0/gTPRc9Wv6LzxJ1DAtUl89s8bfwLX1vGJAG/8CTRwgDPRc9VP27zxJ9Btvs08V9WXzHPVTxa98Sewg8vm1/ze+BM4E1eu+rWi9/2cJEk1qSVpkkdcY+htPOpTB97Go6tLvXkbT2ADFfQlNUcDBzgTPUtPXEd5l61JEb8y9DeqqR64XJ5C3toTuFy+xb21R7svgR9rT1yu7gI/1vrpmrf2BN7j+lXbjO/6tplfumozv3TVZn7pqnlbjtqBDVSwgwYOcCZ65vq5jLflBArYYsH8c90H9SQ7PgvcvDvnpBmkHrw7FlBAX5Xh2EBfFY/vh9ATDfSDsDjOxPxIXuODm40PbjY+uNn44Gbjg5uND242PrjZ+OBm44ObjQ9uNj642fjgZuODm40PbjY+uNn44Gbjg5uND242PrjZ+OBm44ObzTt29NhZPYVPbKBfH/mG9hQ+0UC/RPK92VP4wHkDC+iXYi6efi3m+8fxkTzf3Y+P5B3YQbd5bnl6nzhPVO/jCSyggBVsoIIdNHCA2I6P5B1YQAEr2EAFO2jgAGeiYBNsx0WtOlawgQp20MABzsTj4vbAArqtO1awgZbo5WC93kC9Y0dX64L6u80CK9jAtbxrXkG9jyfQwAHORK8PJxZQwAo2EJtiU2yKTbF1bH6KvWY81N9tFug2cWyggmvLlyOCgQOciV4fTiygx62Ovry+P/hhe/rG8sP2gX7YPrGAvrzmWMEGKthB31N9NY8PYx44E/2wffOF9OP2iQJWsIEKrvOfM5iBA5yB3rETWEABK9hABTtooNvEcSYeE1MHuq05uk0dK+i27qig28zRwAHORLmBBRSwgg1UEJtgE2yCrWKr2Cq2iq1iq9gqtoqtYqvYGraGrWFr2Bq2hq1ha9gatoZNsSk2xabYFJtiU2yKzc/8V4uMesfOiX7uf2IB15FhXb/p8WHMExuoYAcNHOBMPD7rdaCvxXT0S7qbo4F+Uec7uM3EcQMLKGAFG+hxPRkm4ztZ4yPnD6xgA/0K1Bfdc/5EAweYW1NuN7CAAlawgQr2WAY5cv7AAebW9O6bYxm8/SZQQGwFW8FGzgs5L+S8kPMiue+IFFDACrZcBlGwg9jIeSHnhZwXcl7IeSHnhZyXI+d9GSojWRnJykhWRtJzfjVSqXcGBfpIqmMFG6igr9sRzMABzkTP+RMLKGAF3TYdFcwd3PuH+prkU28gOtET/cQCsmv4df6JbKzOxupsrG7gANlYxsYyNpaxsYyNZWwsY0c0dkRj1/D0X3OO6s1FgQKuuOLj4OkvvmTr9CCwgwYOcCZ6qTixgAJ6XN81vCicaOAAPe7aNbz/KLCAAtY4TfIOpEAFO2jgAGeiX/GfmKfC3pcUqKCvhTka6GsxHWeip/+JPm90cxSwgj51VBwV7KCBA5yJnv4nFlDACmJbib6u2dQ7kE6aQSvL/XrB+49OkiSP6AN3TOEdqKAv//G7Bg5wmVbW+nvITipJklSTWpIm9SRLGknp6Ono6ejp6Ono6ejp6Ono6ejp6OmwdFg6LB2WDkuH53T1vctz+kQDfbyO352JnunV9y7P9BMFXFun+Ub2TD9x2Zrvc57pJxq4bM23vmf6gZ7paxZSvaspUEC3+Ub1k4IT3eY54vl/ott8LTz/T5yB/j4yv/ry15GdJEk1qSVpkkdcI+BdTX3NYKp3NXX1X/BD/IkNVHAt6ZpvVG9rChzgTPQcP9Ft3VHACjZQwQ66zRwHOBM9x08soIAVbKCCHcRWsfkhXn0r+CH+xAL6rK0Pqud/9zHz/D/RJ27FsYPL1n2gPP9PnIl+iD+xgAJWsIEKdhCbYlNsHVvH1rF1bB1bx9axdWwdW8dm2AybYTNshs2wGTbDZtgM28A2sA1sA9vA5pVhtYOpN1AFGjhAn9JYKX58jfPEAgpYwQYq2EEL9Aaq3g/05e2ODfTlNccOGjjAmeiXACcW0OMOxxxfb6s61tjbqk70nD+xgD6+07GCDVQwt6Y3VwUOMLem91cFFlDACrZcnKpgBw1k3Tzn18y/eqdV4LKt7jz1XqvACjZw2cyDec6faOAAZ6Ln/IkFFNBtvhN4zp/Yc2N5opvvD57oJ85ET/QTS26AzsbqbKzOxupsrCPRDzSQjUWiK4muJLqS6EqiK4muJLqS6P4esW6+e3pKn1hAHygfB09p8yXzlD5RwQ4aOMCZ6Af7Ewu44g7fNfywfmIHDVxxh+8aflh39DeGBRbQD183xwo2UMEOGjjAmeiJfmI9buSpvxrsJE26B/U9xHvRThpJvvz+i574JxZw3RtUp5rUknyoDuyggeO4tajej3bQyvmTSpIk1aSWpEk9yZLSUdPR0tHS0dLR0tHS0dLR0tHS0dLR0qHp0HR4dvvF1NG2dmID/b7t8bsd9BEzxwHORJ/I98Q5mtxOXBPjfgZyNLmd2EA978bq0eR2otuG4wBnop/mewA/zT9IkmpSS9Ikj+hr5cnsdx+8Za37Kay3rAU2UEHvGvQV9GQ+cYAz0ZP5RLf5Tutn7idWcJ1P+0ZYGX5ST7KkkTRPOtrbDipJklSTWpIm9SRLGknpKOko6Sjp8BN7vx/ibXCBCnbQwAHORM/1E33YhqOAFXSbL4On+4kddNt0HOBM9IT3Gybe8Bb/uhqCPIA/mnfQSi6/VeHdbIEFFLCCDVxp7Lc1vJst0MABzkTP5RMLKGAFG4hNsanbfIV0gDOxu80cCyig23z4ewMV7KDbfEhXNptPeXs/nPmMoPfDBVawgSuuT3F6P5z5Kar3w1nxxTGP67Z12D5xHbYDC+g2X5xRwQYquGw+c+dNcOYzd94EZz7D5k1w5pNi3gRn4grvSj2xgg1UsIMGus2XYc5A73w7dk7vfAusYAMV7OBS+NSTv5IrcCYWb7IVxwIKWMEGKthBAwc4EwWbYPNDus9QebNdYAMV7KCBbuuOM9HT/MQCCljBBirYQQOxVWxeH1YboXr/XaCAbvPN4vXBJ4C8By9w2XzeyLvwApfNZ328D+9Erw8nFlDACjZQwQ4aiE2xdWwdW8fWsXVsHVvH1rF1bB2bYTNshs2wGTbDZtgMm2EzbAPbwDawDWwD28A2sA1sA9vANrFNbBPbxOYFxCcEvT0vsIMGehftgTNwHl20BxZQwAo2UMEO+lqsqnw06PkBdB4n++rYQAU7aOAAZ6JXgvWwpvoLtY5x8BdqHavpLXqBA5yJnvM+7+mde4ECVjC3pnfuBXbQwAHm1vTOvcCSy+A5f2IFG6i5DEfOH2ggNnJ+kvOTnJ/k/CTnJzk/NfedqYykMpLKSB4578vQGcnOSJLzk5yf5Pwk5yc5P8n5Sc7PznY7cv5ARtIYSWO7HTl/ICNJzk9yfpLzk5yf5Pwk5yc5P8n5Odhug5EcjORgJAcjeeT8OrjPI+cPdNt0FLCCDVw29WXwnD/RwAHOE7u38gUWUEC/bq6ODfQZQnMcZxZ2b9qz1QHcvWkvsIACxhbqt9JABTto4ABnosQW6t60FyhgBRuoYAcNHIleH1bHcvf2vMAK+uj4OHh9UF8yrw8nGjjAmej14cQCClhBjzscDRzgTPRKsK7UuzftBQpYwXZe9HZv2gvsoIEDnIk+qXdiAQVco9MP7KCBA1xrsW5ddG/PCyyggN797TuXN+2dqGAHDRzgTPRWvhPX6HTfCTy7T1SwgwaORM/j7onjGds9rmds933HM/ZEAz2C71GesY7eiGdrJqR7I16ggL68w7GBCnbQwAHORM/jNavavREvUMAKNlBBfyqlOs4YB2+5CyzgirtmuLu33AU2UMEOrrVYk93dW+4CZ6If509cNnOb5/GJFXSbOirYQbf5tvA8PnEmeh6v5+W7t9yZ+WbxPDYfVM9j89Hx4/yJCq64w9fN8/hAz+MTC7jiDl83P3b7zuVtdIEGjkQ/YJ+4Ekd80X3y7UQF/TEzXwt/UObEAc7E46G2AwsoYAUbuBZy+Jj5QfjEmegH4RN95X1j+UH4xAo20Nfi+LMOGjjAmej99CcWUMAKrrg33zU8eYcPqifviTPQO+oCfS3UUcAKNlDBDhq41mLNznTvqDvRm2dOLKCAFWyggh20RE/ecWABBaygr4U5KthBA30tquNMPB5DPbCAAlawgQr6thiOM9HT9MQCClhBn8Zy0qSeZEkjaQZ52hankiRJNaklaZIv+aoJ3vhmfgT1xrfACrbzSfLujW+BHTRwgDPR3yVyYgEFrCA2w2bYDJthM2wD28DmuTt95f0Qe2IHDfTbGuI4E/0E+sQCCljBBiroNt91PKNPHOAM9HY4WzP03dvhAgWsYIuN5e1wgR00cIAz0Q/HJxZQQI+rjh000ON2R4+7Ms/b4QILKKCvxXBsoIIdXE1Yq7u/ezvc8CT0drgTV0YHFlDACjZQwQ4aiM3b5LxaHX1yJxZQwAo2UMEOGui26bhsxdfYe+VOLKCAFWyggh00cIDYvGuu+M7lbXMnCljBBirYQQMH6DbfCfzG2okFFLCCDVSwg8smvtOu+hA4E8cNLKCAFWyg31d36kmWNJJm0HFL3ckj+siuGjD8AO8tcYHjfO9I95a4A70lLrCAAlawgQp20Edg7cT+ErCxGnC7t8sFCljBBirYQV8LdRzgTJQb6LbuKGAFG6hgBw10m6+b14B1D6N7u1xgAQWsYAM1toW3ywUaOMCZ6DXgxAIKWMF+vpCrn28IO3CA3oK7djZvjAtccatH8Gw/sYJrLfxCyBvjAjvo7b6+ATzbT5yJnu0nFtBtPjqe7Sc2UMEOGjjAmeh5ve5A9PNtYb4bea42X2PP1QM9V09cS7ZuRnRvawtcS+YzKd7WFqjgWrLm47CyNXCAM3HewAIK6DZf3tlABTto4ABnrLF/KXOsGefuzW6BDVTQ43ZHAwc4E49X/E3HAgpYwQYq2EFL9Dz2eTFvgQsUsIK+FsNRwQ4auDLgxJnoL/Q7sYACVrCBCvro+KJ7xh7oGXuit7ffHAWs4FqL1R/cvdktcK2FT2J6s1vgAJfN5zO92S2wgAJWsIEKus13GM/jEwc4Ez2PTyzgGjNPae9w8/fHdu9w8xeZdu9wCxzgTPTz9xMLKODaFl5IvcMtUMEOus1H8nh154Ez8Xh154EFFLCCDVRwxfWjtne4DZ9I9Q63wAIKWMEGKujbwtfYs/vEAc5A73vzFwV373sLFLCCDVSwgwaORD92+7StfxMzsIK+FsNRwQ76WkzHAa618HlS734LLOCy+eSot78FNlDBDho4QLetxPEWuMACCljBBvqYqWNuee96O7ZbbzewgAJWsIEK5pbvzcABsuWVLa9seWXLK1te2fLKlle2vLLllS3v58PzwAau5fWrR3+bWuDMX/Cj6YkFlMCj68rPro62qxMLKGAFG6hgBw0cIDbBJtgEm2ATbIJNsAk2wSbYKraKrXrc4ahgT/QtfwyUb/kTPe5KHG+XCiyggBVsoIIdNHAk9txu3hgVWMEGrrhe7b0xKnDFrccvrLh+EumvDztxVfvAAgpYwQYq2EEDsRm2gW1gG9gGtoFtYBvYBraBbWCb2Ca2iW1im9gmNm+D9PNqb4ya66G37o1Rx27kjVGBDfRtrI4dNHCAM/HIwgPddqCAvryu8Cw8UUFf3nU48Gan6efg3uwU6Mvra+GZ5buGNzsFdtBAjzsdZ6Jn1omZAd7sFFhBbBVbxVax1ZHorxfySwLvRDrRU+/EJfarA+9ECqzgEvvVgXciBS6xn+Z7J1LgAN3mA9VvYAEFrGADFXSbb0JPyBMHOBM9IU8sIJvwSD1fyCP1fHyP1DuQjWVsrMHGOlLvQAHZWKOBCnbQMhmO1DtwJh6pdyCJMwWsYAMVHFHEvLvoQO8uOnaNecuU9u6iwAo2UMEOGjjALCD+prBAbAVbwVawFWwFW8FWsBVsgk2wCTbBJtgEm2ATbILN09T3nVlz1GfNA+usHTRwgHlg9U6kwAIKWMEGYmvYGraGrWFTbIpNsSk2xabYFJti0yzF3ol0Yr+BBRSwgj6SByro28IVx0H4wJF4HG7NsUV2zyO7D/Tl9S1kWRynDXAmDvKC7J5k9zwOrAdmdk+ye5Ldc2Ab2Aa2ie3I7juaN814VTZvmgmsoBfH43cV7KAXR3EcoBfHutCPOCcWMEqxeStNYAMV7KCBA4xSbN5KE1hAASvYwNiE5q00nm/mrTS+AcxbaQILKGAFG6hgbCy75Zmj3fLM0W46E3uUYvNWmkABK9hABTto4Ej0a5F+YAcNHOBM9CuUEwsoYAUbiG1gG9gGtoFtYpvYJraJzWcEum83nxE4sYMGDnAGeoNNYAEFrGADFeyggQPEVrAVbAVbwVawFWwFW8FWsBVsgk2wCTbBJtgEm2ATbIJNsFVsFVvFVrFVbBVbxVaxVWwVW8PWsDVsDVvD1rA1bA1bw9awKTbFptgUm2JTbIpNsSk2xdaxdWwdW8fWsXVsHVvH1rF1bIbNsBk2w2bYDJthM2yGzbANbAPbwDawDWwD28A2sA1sA9vENrFNbBMbtaRQSwq1pFBLCrWkUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWyFFL1NFt3dHAAc7Eo5YcWEABK9hABbEdtWQ6DnAmHrXEHAso4LKtTi7zTqNABZdtPelu3mkUOMAZ6J1GgQUUsIINVLCDBg4QW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsDVvDptgUm2JTbIpNsSk2xabYFFvH1rF1bB1bx9axdWwdW8fWsRk2w2bYDJthM2yGzbAZNsM2sI3MY28qGqux07yrKHCAM9Hrw4kFFLCCDVQQ28Q2sc20tdsNLKCAFWyggh00cIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJtoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYWvYGraGrWFr2Bo2xabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbajPqhjAQWsYAMV7KDbhuMAZ+JRS7pjAQXsUaOOlqYTBzgD9SgVBxZwBVsPldjR6HRiA9eir2cw7Gh0Ws8e2NHodOIAZ6KXihMLKGAFG6ggNi8Vqynf/A1ggTPRS8WJBRSwgg1UMA8SyqmEcirh7U9j+pB4qTixgAJWsIEKdtDAAWJr2Bq2hq1ha9gatoatYWvYfAb5WE2fQT5xJvoMsu9y3p4TKGAFG6hgBw0c4Az09pzAAnoEc/TfXdvN+2zOf/UbPetZKvM+m+n7r/fZBCrYQQMHOBP9Rs962Mq8zyZQQLeJo9uqo9uao9vU0XLRfc78RFbIp8S7x/Up8RMV7KCBA5yJPiV+YgEFdJsvuk+J+4WYN9cEdtBAt/m6+UT5gT5RfmIBBaxgAxX0YD5QPuPt12T+dqjpF1f+dqjZfaB8mvtEA0ei37E50SP4ruF3bE70Pcq3sd+b8Yrob3ia5kPi91tO7KBvQh+HI1sOnIlHtnjcI1uOfxWwgg3UXOPjHU8HGjgCz1c6DUeJFTpf6nRgrvHR4NP8z3wHX12gdjT4HOg7+IkFFNBvnLjtuP3jcY/bPwcOcCYet38OXHFX46b5twQDK9hABTto4LKtfk/zty+d6Pv6iQUUsIINVNAV4jjAmeg7+IkFFLCCDVSwg9gUm2fA6i41f+VSYAEFrGADNUe9s7E6G6uzsTwvVieqHc1Aq6HOjmagE2ei37M80RfHdw2/Z3liBRuoYAcNHKDbfE/1HDqxgAJWsIEKWq6bJ87qqrSjL+hEiRU6+oJObKCCvujT0cABeuVau+fRF3RiyQgFW8FWsBVsfnQ60cAB5mbxFyYFYhMUx8lIc/TTg+Nf/fTAHDto4ABn4nEycmABBaxgA7EdJyO+AY6TkQMHOBP9uuXEAgpYwQYqiE2xKTa/blmPxpk3DgUWUMAKNlDBDho4QGyG7egY9d3IU+/m+46n3oGeeicWUMAKNlDBDhroilV3jg6g9RidHR1AJwpYQVf4HuX5dmIHDRzgDDz6gk4soIAVbKCCHTRwgNg8IdfD2nb0BZ3oiu7owczRwAF6sLXDHG0/JxZQwAo2UMEOGjgSKwo/tqznDe1omFlfmrGjYeZEBTto4Iq7Hhy0ozVmvT/PjtaYEyvYQAU9bnU0cIAz0dvhTiyggG7zzeIHnxMV7KCBA5yJnhcnusI3rCfDiQ1UsIMGDnAmel6cWEBsE5vnRfE9yvPixA4aOMB54rgd79kXxwIKWEH/M1vox5b1LsPhr9gJbKCC3otyczRwgDPx6Pw+sIACVtBt01HBDho4wJnou/2Jkut2NKUWxw5arpCfDZ44E/1s8ERfdB+zo9vtwAp6h1V1VLATAVvD1rApNj8xPJHNomwWZbMom0WxHRk7/vd//+mXX//2pz/+4y9/++u//OPvf/7zL3/4n/yH//rlD//nf375zz/+/c9//ccvf/jrf//66z/98v/98df/9l/6r//841/95z/++Pf7f71vnj//9d/uP+8B//0vv/550f/+E399e/6n5X7D184/v3MvGaLc5Icg5XmQtvqsPMR9Yi8DWPvh7+X539d1beh/f59GZwG+BNiuRV0HrnMt7lPtT9eiPQ8yM0Kp+fetXv3z+82LHmtxP/VnCcR+CNE3IarmODyswmhXA/h3yjzAfT4hA9zva/0QYGwGsvWIUO4zcU9DzN3GlByHbvVpiN1QenPxORC9PR3KstknRUpsT7nfpiWGftmt5d3tsV0RY0VGfb4imxjaczDWa8UzRv+yHrrbquvc89yqKk9DbPYsfwmSR7hfYzyk6PUI/iDxEeGxytiLq2HPV2M3mLbeYHEMpt3msxCyqTXSRu5Y9/napyHKu0Mhmz1TbuudJsdClBs1t30JUTcLsSaXjoWY9nwhdgVTJEbijuwV91vJ11ekVMsV0fJ0RTY7lozYpPX2NMA+w2bPneKh9n/douP9oreLcb9XGTHutyKfH0DqbVu/JVPkYTSk/XhGUDd7p47YIv1G1bsfVa/vGE1zx9CHLPu6Y9TN7jn909lnjMkefr/9/mOMzXKIv5b52LnuE3Ns2OvbpLbIkvs6yfNtstk/i2XBuB86Ho4j9cf9ayXC0xhdOT1ZDx8+RPnxaFTHB/aO+e7esV+XmacpZT248XRd2u74XowKOObDunw54ZN394/tXnqxBG5jXMyWpu9nS+tvj8Zuy67eotiyq23k+Zbd1dLCSVOxxy375QRy7g7SNS4p7n9WHsZj/BBDN7W0dat5WfOwh32NsV0O1ZInC3OzHJu9dL2gLc/qH3Lua4zvbJn+dMtoe/usQ3fncOZfsz0X5H4X5vmC7K5zREoOyQ8l9UuMzZC0kqnbysN53LcG5NrZi843z162hxef6j2W4Tbs6eGl74qpv8zoiHGf7n4eY7Obrk8Gx1mUzMcdrF6P4X3CR4z77NDzGO39g1zXdw9yu71rfYw91qS0+tpeXjVirPdiPY3Rx+7cNk/z10eMXovhbyE8z49neS2Gv8ftiHG/jfV8PHa14347jjOpx3z7GsXk3W27zxaLeQG5T06/lnH+rOoZY5NxthuPWTPl7vxwItW/sRx5YV9rGc+XY7OvjzxeT3kcjfJjhN0hv/acaWn1Ybu26zGa3OIUqMloT2OMD1w+jfJ77l+15slLraO8tH/Vmofq2trtaYzRft/96350zuNb3+TK2J2Y3ixP5spjHZQfx3Ts6nHNic31dd6HvUMux1jvtolNe7/p/jzGfH8Pm7e3j07bSqps2fsx9/a0ks5NJS1l5JKU+2lIe7J/zPruRceu+vjD7nH/YjwtP3M7HHmGLeWHZCnXd3Smae8zQLfXkrZzMmgiT2PM8fY9hN1SWK3cjulPl6LcdhdPY2a6PWb97UuI3XKMkqsyxuNozOtBmt4kL+Ie8/43QXZX6F2jAN1vkD/cFflyRVpuu0mxPGm4H3IJ0b9x7XTf1ZV6/MO5fvuyIP3d8rEfVX/R5DGq9xHZjOoHZqPK7e3pqO3Rpfa8hmuPM+Ffji5ld7epzDzdl9vDhcvXWxPbu015xG635xPypdSLN73sYTqqfxnS3XR4uW96boXeHg7aX2eTdjX17s8T3Hp7XlPL7p5R0ZmXL2V9LunJ8cE/WvR8A0vUIrlPo26WZHd2qXmS2/rjlcfX24llvr+X7G4/XdxLpHxgLxH5xF6yL2kzZ2HurJuStrvhINVG7mwPhz35cvu+iL57KrJfjpYz2/J41v2b5dgdOpkyNKnPD52yv9qezKNs9lb5wN5a399b6yf21vqRvXV/o1DzRmHvT2/9biI0/xrvMSDj8Uzza0NA3e2onHbfK2t9fsTaBam3POettzk2Qez9xoLdTamLnQW7EBdbCy6vyaa34OqQlocbOd/cLoW7H2VzOtLq9tTqUhtPae39e9r71Wlcj+h2dXatI2VEkDv25+VsG0RydYbsjuBtvL/D7+4JXdzhdyEu7vCX12TXTLMd0py2Gz9M+X9ru+jMRhSzTaPW7kbM/T9yV+mxJH657t3vq6OMvOBsm7q6m7S/uofsbh5c3EN2Ia52W/XfuSRyoXi/XpXnQ7qbkLjcviZvD+kuxMUhvbwmLw/pw176mC/fOsr4A9/nHE/ZbZfdnOrFzsT+gYLa3y+o/f2C2j9QUPcj+u4Jpt5yClFL3XSc2ibIepM/E92bkry7OzWZq7rN2/OKvB8PYzzGi2N6reWz7O4t3aek8tKwPVw8/CbGfH9P392furin70Jc3NMvr8lmT9+OaM2jvjy2o3wrhgrNNbU+H9HdnX5/hvK8Uu7zxRh5v24bY7+HXeoqLuP9K6nx/pXU7u7UxZ6YMrd32K+09G6X4lqrUplvd0iXuaukJe9O9cc7S3XWV4Poi0FaPuezvgS3CWJvb5ftuoyW6zJeXRfJmbr10dVXg+QE9fq66ItB6A9en0F8GkRuu8mp+yROXq7f+WHjfO2k34W53I6/DzLzVlct88Ug9A3M+vBE2PeCXGyL9efXnga52BcruxtVF9vIt8tB+9McWjfLcTVIv70aJA80d+yvBbnPoOaJ6p1tF2a3iTUL23w8kfjmzjbY2R7z+HtB+iTI8wT8xjH86fWQ7G5WWTZAmj0/au3Pma89zbK7UXX18nAb5H5al8+zlPn8QlW296os5w/vk//P12Z7q+rambfsnpa6dm61DXH1qa+ra2KbNdmOaN52FxvtpRi1ZFm9HyTs1Ri3t2NUTkgec/97MfI07x7ueYztI1PXriJ+EuPSVcR+XVrLKfvWx/sxXtzH7nfcc9qvjefbdtvX3nNy+Z4jmycUtwtitB9af14+dneXLm/c8TtvXCusyyZxd09NlVveKC+l6KuDmueIdWz2st0dqms3hqVt21M112Xa8yua7XK0wqsL6vPl2B7nJA9RTfrt+XGu2dszTPKBm1Py/s0pef/mlHzg5tR+RK/NMO1jXJthkt2tqaupv987rj1zrm8/wb8NcXXLXl6T57Vj98jUpXPkfcrWLKWt2Xzx/FYsmyBld367vyN07U699Pr+nfr96oxb7Kdt9rFZHf3E6vTfe3VmHmH0dtutzvg99zSlH1tb31xJ2a6Zugg7WoaQr8Nh5e05jO1SZITHQ+Vvl6JuD5WsycPc8DdClNvIft07j/ZakDke7k49dAx+J8jqI8uTqdvD7O53BjWfYr/vsJtBHb9riPtAZsPgnfX5qoxPbJnxiS0zPrBltpmr+VytzjZeO0b0whuZSrVXg+Rk2/2Oe30xSKvM//dXV6dm/natm1Pd8YF3TMmYv/Mxomu+uKyrbVZnd6+qqH8D8lyf2eazne0nQS41usvuflXveYtnff1vszq7DtWLje6yfaDqWuuwv/DmzSvE7e2qi63DMn9STK61Dv8kjLKb3C/PxvMwu112fQ0ntnF7uAf3dRvX2/uTqvX2/qRqvb09qboNce2S5Pqa2GZN3p9U3ca4OKn6sxi3t2NcmzOr5XbxoldfG9OLk7s/iXFpcrfuHqq6OP/3kxiXJgH269LyAff6eAf/N8vRf+/luDTJfD3Gizl3cZK57p6mujrJ/JOd/eIOcvudN8y1CeK6e4Lp6gTxTxbk0gRxlbcP/1Xs/Qni7XJcnCD+ycmdccZ7v+v+5OSubt/sd/EMcRvk4vX39tTOWj5vb+35jlrr++cOu3f7XTx32IW4eO5weU02E9X7k+U8zpU5nx9vP3F/aXu23EdOmP/wvrPfnC3vglgO6h3La0HKLZ+Su08mtxeXRCszzf31k//ROfl/OMp89+Q/12hdCGz6Zeb+lob+v25pfG9cmv0/n3f/bZAPVMXdU4y3fKuUlNt4KXWk5LMQUjZHPH37EdWq5QMHmu3rBi8O6XbT5nz1fSvXV3d5f8Q5TgHqy9e7fpPwDCP95cyRPKlZITeZs3vJQ06RGsvx5Znsn80oCq+6udX54rRke5hJ6M+mJf1VRe/ObW6DfGIe/vKI1E+MSPvEiLS3R2TfFPmwMrfbYz/j93orb7U/hNk0i5btLY7LLZq7MH3kSUGft6ez8dsQzI/22ctrIYylmM9C/KRT+8a3EW4vN57Ph1exPm/33j/wyuvdRn18H8mXGda6e7rqYr9ItfcfVa329qOq2xAXT8Mvr8lmOmE7otf6RfYxrvWL1CHvzybsY1ybTdjvYZd6TuruyaiLe8cuxNW94/KaPJ+OGO92Avwk7fMkZNS5SfvdY01Xr77n+49T1/n249TbEBc37OU12aT9dkQvXn3PD8yq7pfj0i2zun3337VLmTnfv/TeLse1S5n6k+f3rlwd7mNcuzpst7f7VNvtA32q2+W4NqQ/edFG3l8a+vDo3W/f1rHZ0689kL3/fs6lM5d2e/9Z6lbefpZ6G+JaCbu+JvbagF5sdL29fd7SyvtPUv8kxrVpzPLuZt3fArn8OOb240gXH6TcfpHu2nOU26+LXHzy8HKMzYOH+xjXnjusn7mm3Y3qxacO90tydR/ZjsnFpw7330l6f22u7qv7dbm2r26/YnNxX70cY7Ov7mNc21d3Ma7vq/tRvfpw69uXP62++1jq9kNaNEK2H9/hbl+WYtf0R/vhfQ7l2W3UfYiWHwr9sYnixxC7Z6guThXuBoMZvvbDZyy+DsYn3vHXPvGOv+07Pi8N6e7Rx54vLug/9LfP6xHyTKw/3CL4TYTt/XW+IKsPzZO/+Tba9vMRdFHrw7tbv8Zour0QvPbVhV26XttFf/LBOe4Cda3Pv9Pkr2l4M2O3Ia5l7O4twxeHY/do/8i7UHd82nsx397H59v7+PjAPj4+sI9vn3q6uI9vPwAo+SExufPDgsj1GEq3gurzGPtPqz20TNkP7339mim7J6cuZso2xLVM6b9v4fhxOMrzN3rvvwHY6IXV9rBh+osxxvsxHp96+s63CGu+B0Pu89QP54FfviO4u1NaB98EGj/cBf8aZPs91DzPl3EbLwYZJV+nPx5fM/TNICyJ6AeC1NvTILuPK2pXvo9m87WN0ygjTW28uoUf3rlyez6u1z9Z2V4akTZzmrDNsdk0Vz/hOTZpM97/2mQb26p6o4f84Vs2v12QXfOIWr6RXx8f9P06ILarzfTmtodL7PLljH93D2q97D1i3B6/tPY1xtx3XAjNEo9fnhvfGVblq3EPLTW/HdZtkPnQ3/98J9l/TvTyd023UfRGFN18rrHN7Rd+eIbycROP65+NbA8P2bb6/Ni5/fRkzVfsaZ2vfvIxHwa/o74WY/Z88ep8fFHxt7aMZREoNm63F6OMh9eDD30+JibvnsFvI1w6g99/cm0+9DrN+qwhR7dfopLCBxufnif+JETup1P6s+uh/SfojDUZNl7M3DHzHt+dN5epehvvnnzvQ1w6+dbydlfeN4Zj93Xln0Qxomh7NYpOotjz6yLd3XG8uGm2IS5umv47b5rH4Rjz5U3TiTJfrIfzxqFqFnle37cfkrtWEPchLlXE/bpofh20zN42I7J7Od+1CZ5tiPux6kZzjpX2WhAur+4s+mKQ1h6Ody/V52nc4Zq7+rz9ItanPvAlea4o9fZ4wllfDFLkxSC8M0C0l9eC3Fchi9rth+ujLw8M7L5byB0Vkfr8C9Ja2/s3EXT7MYmrNxG23/jlWv7Wdmvz7l2q3Sc+rq7J9hv21KMvp871egyeolL74TvnP8bQVt4+crby9pGzvf3Kn/1g5KyVjjo3g6G7A03O8/Q26ibIrs8vZ1d6uT27cN4vhub52Y8vUPnWumh+jrb/0Mj1zSC5Mv02Xw6S74PpP0z1ftnXdy1lI7NW5y6Gvnsmso1w6URk+xjKxZsr2xgXb67o9rtNF2+u2LaTNE9W6w/X7q18WZD3r6r0/auq95912r5g68b07k31+WBsDy3XBmMb4uJgtN91MPwbqmfvwuPZ9m8Go78/GP39wRhvH5p2x8eZh6b2+Gagb330feYtpnuM559bV/vAayTVPnD2s2v97rzv7OGc9LeL8YlzUvvAOen+C/SWl1HV5vMv0Ovu8aaHt9g8THLbd762Ljl72Vp58Rv2V48K2yBTO9/keLxb1r4TpN8i7ebjScN3g2TbY39sv/xNkG2n78MDm/3xZQXynSXJ6fbZ56urY/nFtWkPjQjfCzIY2PH4eoCvN1SG/c5Bfnjy4vFtB18Gdh9EsrNV5HFMvhWk5jsp5fEFUL/dxLsDBV+xbLPbJgHfbgDah7h0krpdlatnqfsgV09T5wdOU/ffKL/2PJzO91+brvPt16ZvQ1x7mOT6mmw+zLf/6vul5+H67f23ne0/+37xbTT7IBffRrMNcvWRuP2SXHwbzc++Yn/xbTQ/CXP1VZQ/C3PxpTb7kbn4Upt9kIsvtSn17TewbLPn4mOL+xjXHlvs5e23p/XygbenbZfj4pDuN+21l9r8ZF+9+lKbn4S5+lKbn4W5+FKb/enAwwxeffWMIl/N8VCU5DsXFtPyO4r320T69ISxy9sTAvsQlyYEuozfNcS1OYWfDGj2zdzHtj0d0NHevQzv25304mV4rx/4MsXuFP5ezzn7ng8tDV9u7Oxi6JCcd789znZ/I0YXTr/lh2nAL1V1d4vq2o6+X4ysqf3xYb1vrUrNiY3+wytovq5Ku/2uq/L4TvqHM+/fLob8rouhVMHHc7PfLsbbfSr7ENfKT3u7T2XXINotX+vVx+MH5L8Mxu7FC9cudbcRLl3pbhtdL17obmNcvM7tu37qy9e5pbx9ndu1vX2d2/XtF/psQ1y7zr2+Jpvr3O2IXrzO3X2I6up17u7VZpevc7dBrl7n7t8Yd/E6d7skV69zS/vIde4+zOXr3J+EuXqdux2Zq9e52yBXr3OLvH1Rtsueq9e52xgXr3O3t6yuXedu30F59TrXPjCk9QPXuft99fJ17j7M5evcn4S5eJ27PRe4dJm7P5u4cpW7u5148XpqfOJ6anzgemrb2yHZoFZlPm9n2MawPKeps7wYg6Pn/cb38xhj29yR38RoMp73qYy33z4w3n77wPjA2wfGB94+0OcHzlZ3b+Weed+uiDw+glAuhxDJdZEfvqn7nRgl79rdYzxfjr69S3U1a3fv5b7cjLCbSr36nbEiH5n6305yaT5D2FQfP0j345OI9oGPUNkHPkJl73+Eyt7/CJV94CNU9oGPUNkHPkJlH/gIlX3gI1T2gY9Q2Qc+QmUf+AiVfeAjVPaBj1DZBz5CZR/4CJV94CNU9oGPUNkHPkJln/gIlX3gI1T2gY9Q2Qc+QmWf+AiVfeAjVPb+R6jsEx+hsvc/QvWz04dLH6GyT3yEyt7/CFUp77f92Ac+QmXvf4TK3v8IlX3gI1T7Eb02HWof+AhVkU+0/cgn2n7kE20/8om2H/lM2498pl9HPtGvI5/o15H3+3XKB/p1yvv9Ovb+R6jsEx+hsvc/QvWTTXtxHlM+068jn+nXkY/062xniS7NY+7nma7MY24fc7u0DPsH5S51DO0foabG60ON/95z2J2HufusLwYZI6eZHr9u9M2HufOO+R2fr45uG2UuPhG+DXLtY037EJc+1vSTEJc+1rTdLpZnEutY/uLG/SFIezWIEKQ+3y5mb7eo7ENc6g0xa79riIun7vsB5YEMs/HqVsmzVbH5agV5XJKXg4y87L7jy0H49ss2yPZVKhe7Qfu7tf0nL4bKGFP6i++WyumQKfb06WV5dyj2b+q6dKTdvkEtn+hSe7yy+84b1HhtmQ69vRZj5q1L/eFO3beWw1iOV98oN3Kr3sO9+ka5hwvM9vJ4DGI83y7bt/RpPvLX9IfnQl+N8dqb/hr3ldrjfaVvxeClRc02+9g+Bpcvw57HsO0jVDNPXsbt9vzBw3HbvgA1X6La+tSn5+k/WxLLJSm7Jdm+WDZPpLQ/TC/V68sx+MbIuHXbLMd+iiqG9X7Q1E2Q3dPU+ZqPxyt+Ubu+i8y8gmq7l5+N3adRr+8i4/1d5GdLcm0X2U63X9pFtstxeRcp8oFdZHdz6f1dRG/Zo68/vgLqyy6y/YKU5AdTVB4PVeNLjN1pkEm+1cYe36E4vrEuI4925SabdRkfWJf5+64Lt3O12GtHu/sFY77kp7b+WgxhOcQ+EGPcXlyXnEbVHx7A+NZy8E6rent5TCdjqi/GaMTom/cebz/EkG9RENHHS+QvD6TI25/22Ye4dH07avldQ1y7RN6OZ+UNg9Wef5Ri7G4rXXpV2XYpGpfYbY7NUvT3K9juiamLFWz/mQ/hLozo03XZx1A+kdifj0fr+5dHXvreyDbItVm+fYhLs3w/CXFllq++/fhqffvp1fr2nHx9e05+/6W4x9fQ3B6/4fet783xUbEVZfP1vPqRz9Ztw1zcR7chru2j+xBX9tH9Fzgvfn9vG+P9rzxe30d+9tXKi/uIfGYfkff3EXl/H5G395FdT8ygdXs8fIeqyJeDXN8+wJUbRuzh+wTXl2Lm9Vd5XI2vS7ENMfMoeXtodf5OiJG3wuTWZDMWu46piy3XYzfNd7XlevfdzMf3Tz1+KOXryti2t89I3G76bDr7Z0Hy7uCd53waRHY3GSZduaVsVmdXQaSyt69OEMLc5OrA3qcLc9pyPPY7Xt/RGh+PaKPuts0HevuHfaC3/6cb2B42sD7dwPP33ktUOUN9CPGbgR1Xnw7cTSjtg1BLSt8FqR+Ypxvt7Xm63XJcnqfbfofq6jzd9kNUl+bp9kXgPiFEf649PETytQiM3dP1ubM+fEDqyw3P23Yfu/J1sDE3u9jI8RzzedfV2D0vVQs95EUfZ5Ovr0nhQZjyeFH4ZZvsQzRypb0Wgn4aeXhDym/2jLm93mc26fZiiOyn7w+7+HdW5PGw/XAO8p0QPc/6f+wt+kYIK5zQbcZi7h/o+UCQ0jnK9ceGi28FsZxPKo9vwv1ekHnjqzPy2paRzkcv7LVc4QzmvqeU15aCtrHH2dtvhGiDTsvHD7SUeflcu/B9ltLGKwtRSudbgOOlbCs187XU+dpSqHAa1uy1EJ0O+DFfWxF2ziqvrQhvVbqX9JdWxLIRyFp/JcDMueOpr63ELadbf/g85G8yfXfX6f29e+YHGae8NhC5a0/TN0dyE2B7cjCb8rrsh2Pq15mfuZ0+0nwic+rcvEJhN8vx9vzC/QyDs/GH2xpf3wq1exRKeJTyVp6fsMn7U2nbIGsW7MYsWH0xzNQ8z5iPT918L4jknYk7tleD5M3E+XhD8ntBeO7/Psr9xX11ZCmfQ+tmX70apN9eDTJyYMforwW5PtH5k6G9Non8k2W5OgP8szAXp4Dn7lGv6yOzDXNtCngf4tIU8E9CvDkFfO2e7/b8JZsBS384ofz6lvrtFBIfhux1vhRi5C3O8njU/k6IaXzG7VZeCXGf92EautWXloIPwa1vKL4WYvIh1fLSitxPqZklma8tBZ/ILu3xm/DfCNEenth9nDT6EmLuPin1gauVmqdC9zOJ1wajMev02Jzx6ni+FqIK873ywzOU43oI5QVMD+3+r4bo9bUQeS5VxfSlEDWnne50eylEy9pbfzhF/s5S9IeP0cv7IV7bqDzCWR8vhL81FjxI1uprG5Xvx9fH78d/K0ThDR/64kbNN1jf8aWlWJ+wZcKpvRTi4Uu64/Es/0uIuXvxWxGu6R8/dF6+sRjcmR2qr63J4OZuG6+F6Hw3+rUkKdxAvM/klRdXhGeUb/J2iPLqUhghXsr2+/GcsWj29lJ83aj/fP+/f/zTX/7+L7/+7U9//Mdf/vbX/7r/5f+uYH//yx//9dc/n//33//7r396+K//+P//M/7Lv/79L7/++pf/+Jf//Pvf/vTnf/vvv/95RVr/7Zfb+T//x9Zrr++TAeOf/+mXsv7/rPWf7vceb/f/X/2/9/Xfba7/vv6g93ta3/+nr3/wv9D7hc39f+Sf/3ct8v8F"
|
|
582
|
+
"debug_symbols": "tb3druy6cWj9Lvs6F80ii0XmVQ6CwEmcwIBhB47zAR+CvPtpllQ1es11mkuzu/eN5/Dac9bQX5UkqiT+z2//9sd/+e//+Oc//eXf//pfv/3j//mf3/7lb3/685//9B///Oe//usf/v6nv/7l/q//89tt/Y/V3/6x/sNv1n77R73/0ONHP37Y8WMcP6b/GLfjRzl+yPGjHj+OKOOIMo4o44gyjijjiDKPKPOIMo8o84gyjyjziDKPKPOIMo8o84hSbrfzZzl/yvmznj/b+VPPn/38aefPcf4845UzXjnjlTNeOeOVM14545UzXjnjlTNeOePJGU/OeHLGkzOenPHkjCdnPDnjyRlPznj1jFfPePWMV8949YxXz3j1Hs/WTzt/jvPnPH62e7xyW1ACJOAestQF95jFf1kDeoAFjIB5gq7IY0EJkIAa0AI0oAdYwAiYJ/SI3CNyX5HnghrQAlbktSV6D7CAe2RxmCfYLaAESEANaAEa0AMsICJbRB4ReaWNrO2zEueAGtACNKAHWMAImCesRDogIs+IPCPyjMgzIs+IPCPyjMjzjCy3W0AJkIAa0AI0oAesyHPBCJgnrCw7oARIQA1oARrQAyJyicglIktElogsEVkiskRkicgSkSUiS0SWiFwjco3INSLXiFwjco3INSLXiFwjco3ILSK3iNwicovILSK3iNwicovILSK3iKwRWSOyRmSNyBqRNSJrRNaIrBFZI3KPyD0i94jcI3KPyD0i94i8crDKghEwT1g5eEAJkIAa0AI0oAdEZIvIFpFXDlZdUAIk4B653Ra0AA3oARYwAuYJKwcPKAESEJFnRJ4ReZ51Q6YFjICzbtTbLaAESEANaAEa0AMsYASsZb5X9bpy8IASIAE1oAVoQA+wgBEQkSUiS0SWiLxysLUFLUADeoAFjIB5wsrBA0qABETkGpFrRF452GyBBYyAdVotd1g5eEAJkIAa0AI0oAdYwAiIyBqRNSJrRNaIrBFZI7JGZI3IGpE1IveI3CNyj8g9IveI3CNyj8g9IveI3COyRWSLyBaRLSJbRLaIbBHZIrJFZIvIIyKPiDwi8ojIIyKPiDwi8ojIIyKPiDwj8ozIMyLPiDwj8ozIMyLPiDwj8jwjt9stoARIQA1oARrQAyxgBETkEpFLRC4RuUTkEpFLRC4RuUTkEpFLRJaILBFZIrJEZInIEpElIktElogsEblG5BqRa0SuEblG5BqRa0SuEblG5MjBFjnYIgdb5GDzHKwLWoAG9AALGAHzBM9BhxIgARFZI7JGZI3IGpE1ImtE7hG5R+QekXtE7hG5R+QekXtE7hG5R2SLyBaRLSJbRLaIbBHZIrJFZIvIFpFHRB4ReUTkEZFHRB4ReUTkEZFHRB4ReUbkGZFnRJ4ReUbkGZFnRJ4ReUbkeUbW2y2gBEhADWgBGtADLGAEROQSkUtELhG5ROQSkUtELhG5ROQSkUtElogsEVkiskRkicgSkSUiS0SWiCwRuUbkGpFrRK4RuUbkGpFrRK4RuUbkGpFbRG4RuUXkyEGNHNTIQY0c1MhBjRzUyEGNHNTIQY0c1MhBjRzUyEGNHNTIQY0c1MhBjRzUyEGNHNTIQY0c1MhBjRzUyEGNHNTIQfUcHAtKgATUgBagAT3AAkbAPGFE5BGRR0QeEXlE5BGRR0QeEXlE5BGRZ0SeEXlG5BmRZ0ReOdhvC3qABYyAeUBfOXhACZCAGtACNKAHWMCKXBfME1YOHlACJKAGtAAN6AEWEJFLRJaILBFZIrJEZInIEpElIktElogsEblG5BqRa0SuEblG5BqRa0SuEblG5BqRW0RuEblF5BaRW0RuEblF5BaRW0RuEVkjskZkjcgakTUia0TWiKwRWSOyRuQekXtE7hG5R+QekXtE7hG5R+QekXtEtohsEdkiskVki8gWkS0iW0S2iGwReUTkEZFHRB4ReUTkEZFHRB4ReUTkEZFnRJ4ReUbkGZFnRJ4ReUbkGZFnRJ5nZLvdAkqABNSAFqABPcACRkBEjhy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixw0z8G+YATMEzwHHUqABNSAFqABPSAij4g8IrLnYFlQAiSgBrQADegBFjAC5gHjdgsoARJQA1qABvQACxgBEblE5BKRS0QuEblE5BKRS0QuEblE5BKRJSJLRJaILBFZIrJEZInIEpElIktErhG5RuQakWtErhG5RuQakWtErhG5RuQWkVtEbhG5ReQWkVtEbhG5ReQWkVtE1oisEVkjskZkjcgakTUia0TWiKwRuUfkHpF7RO4RuUfkHpF7RO4RuUfkHpEtIltEtohsEdkiskVki8gWkS0iW0QeEXlEZM9BW1ADWsCKPBf0AAsYAfMEz0GHEiABNaAFROQZkWdEnhF5npHn7RZQAiSgBrQADegBFjACInKJyCUil4hcInKJyCUil4hcInKJyCUirxy024ISIAH3yFYWtAANWE/w6gILGAHrIV5bj01vASVAAmpAC9CAHmABIyAit4jcInKLyC0it4jcInKLyC0it4jcIrJGZI3IGpE1ImtE1oisEVkjskZkjcg9IveI3CNyj8g9IveI3CNyj8g9IveIbBHZIrJFZIvIFpEtIltEtohsEdki8ojIIyKPiDwi8ojIIyKPiDwi8spB6wvmCSsHD1iR13G4cvCAGtACNKAHWMAImAfcn73fkkqSJNWklqRJPcmSRlI6SjpKOko6SjpKOko6SjpKOko6SjokHZIOSYekQ9Ih6ZB0SDokHZKOmo6ajpqOmo6ajpqOmo6ajpqOmo6WjpaOlo6WjpaOlo6WjpaOlo6WDk2HpkPToenQdGg6NB2aDk2HpqOno6ejp6Ono6ejp6Ono6ejp6Onw9Jh6bB0WDosHZYOS4elw9Jh6RjpGOkY6RjpGOkY6RjpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjpyDwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPPdeoSGLVp6fVJIkqSa1JE3qSZY0ktJh6bB0WDosHZYOS4elw9Jh6bB0jHSMdIx0jHSsPB/VSZN6kiWNpBm08vykkiRJNSkdMx0zHTMdMx0zHN5UdFJJkqSa1JI0qSdZ0khKR0lHSUdJR0lHSUdJR0lHSUdJR0mHpEPSIemQdEg6JB2SDkmHpEPSUdNR01HTUdNR01HTUdNR01HTUdPR0tHS0dLR0tHS0dLR0tHS0dLR0qHp0HRoOjQdmg5Nh6ZD06Hp8Dw/eo1vSSVpOYZTTWpJmtSTLGkkzSDP84NKUjosHZYOS4elw9Jh6bB0jHSMdIx0jHSMdIx0jHSMdIx0jHTMdMx0zHTMdMx0zHTMdMx0zHTMcHjj0kklSZJqUkvSpJ5kSSMpHSUdJR0lHSUdJR0lHSUdJR0lHSUdkg5Jh6RD0iHpkHRIOiQdkg5JR01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS4emQ9Oh6dB0aDo0HZoOTYemQ9PR09HTkXneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88187xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85557r1bsyxaeX5SSZKkmtSSNKknWdJISoelw9Jh6bB0WDosHZYOS4elw9Ix0jHSsfJ8Nqea1JKWozv1JEsaSTNo5flJJUmSalJLSsdMx0zHTMcMhzd5nVSSJKkmtSRN6kmWNJLSUdJR0lHSUdJR0lHSUdJR0lHSUdIh6ZB0SDokHZIOSYekQ9Ih6ZB01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS0dGg6NB2aDk2HpkPToenQdGg6NB09HT0dPR09HT0dPR09HT0dPR09HZYOS4elw9Jh6bB0eJ6bkyWNpBnkeX5QSZKkmtSSNCkdIx0jHSMdMx0zHTMdMx0zHTMdMx0zHTMdMxzeSHZSSZKkmtSSNKknWdJISkdJR0lHSUdJR0lHSUdJR0lHSUdJh6RD0iHpkHRIOiQdkg5Jh6RD0lHTUdNR01HTUdNR01HT4Xk+nUbSDDpehhfHAgpYwQYq2EEDBzgTFZtiU2yKTbEpNsWm2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbWKbafNGt8ACCljBBirYQQMHiK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKjZqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMasnMWiK3rCVyy1oit6wlcstaIresJXLLWiK3rCVyy1oit6wlcrthK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYFJtiU2yKTbEpNsWm2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbWKjlhRqSaGWFGpJoZYUakmhlhRqSaGWFGpJoZYUakk5aok6CljBBirYQQMHOBOPWnIgtqOW3Bwr2EAFO2jgAGfiUUsOLCC2iq1iq9gqtoqtYqvYGraGrWFr2Bq2hq1ha9gatoZNsSk2xabYFJtiU2yKTbEpto6tY+vYOraOrWPr2Dq2jq1jM2yGzbAZNsN21BJz7KCBA5yJRy05sIACVrCB2Aa2gc1rSfEl81pyoNeSEwsoYAUbqGAHDcQ20+Z9h4FuU0cBK7hsUh0V7KCBA5yJXktOLKCAFcRWsBVsXkukOw5wJnot8e+heTNioIAVbKCCHTRwgDOxYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYOraOrWMzbIbNsBk2w2bYDJthM2yGbWAb2Aa2gW1gG9gGtoFtYBvYJraJbWKb2Ca2iW1im9gmtpk2720MLKCAFWyggh00cIDYCraCrWAr2LyW1OqoYE/0ZFCn5a1toR/1tTsWUMAKNlDBDho4wJnYsXVsHVvH1rF1bB1bx9axdWyGzbAZNsNm2AybYTNshs2wDWwD28A2sA1sA9vANrANbAPbxDaxTWwT28Q2sU1sE9vENtPmnX6BBRTQbdOxgQp20MABLpt/t9B7/gILKGAFG6hgBw0cIDbB5mfQVhwFdJs4NlDBDho4wJnoZ9CmjgUU0G3m2EAFPY19ef0MeuIAZ6KfQU8s4LKpr5ufQU9soIIdNHCAM9FryYkFxKbYvJaobxKvJSd20LfZWOhVY30wSbz573757ugRjl9QsIMGDnAmen1QP/q8PpwoYAUbqGAHDRzgTBzYBjavD913i9eHE5et+xp7fTixgwYOcCZ6fejNsYACVrCBCnbQwAHOQO8QDCyg29Sxgm7rjgp20MBlW2+wi7cKnuj14cQCCljBZVsvuos3DAZ20MABzkSvDycWUMAKYhNsXh9MHA0coG/JdUx6/2BgATvoEdY+9j7AYr6hPKXNHCvYQAU7uIINX0hP6RNn4vGV7QMLKOCyDV+L42vbByrYQQMHOBOPL28fWEABsXVsnv7DN4mn/4kGus2PSU//Az39T3Sbb0lP/+Fbx9N/TMcGKthBA0eiJ/r0hfREP7GCDVSwJ3oWTk8cz8ITl2I1NYi36t3vex0FrGADFeyJnhfrCbV4h12ggQOciZ4XJxZQwAo2EJtgE2yCTbBVbP45bB/s8E66+z29oy2sjgOcif4Z7FtzLKCAFWyggh537QBvlruPCjh6BF8y/+j1iQ30CL6p/dPXJxo4wJnon8A+cdl8AMP75gKXrfjK+6ewT1RwxS3rMPKmOCm+HfyT8yf68pqjR/DV9A/Pn9hBAz2ubwf/AP2B/gn6E93mW8c/Q39iBbENbAPbwOafpD9x5r6Y7M3J3pzszcnenOxN/xS270Lvgjt2obfBHTvL++ACK9hiX3grXGAHDRxg7k3vhzv2mzfEBUrsLG+JC2ygxS70brdjv3m7W6DELvSGt2NDecdboIIdtNhZ3vUWmHvT+96OneWNb4ECYqvYKraKrebe9K4yKb5JPBlONHAtjvjW8WQ40JPhxAIKWMEGKtjBZRNfHE+RE2eiz9NwYgEFdJtvKE+cExXsoIEDnImeOCcWUEBsA5snjg8CetNZoIFu80PDE+dAT5wT3eZb3RPnxAo20G2eDP4V+epb0r8j7+jNZoEFXHHPr+OvuD4S4Q1n4uMP3nEW2EED3eYf0fd0Or+wfwML6DZzdMV0XIrjg/o+xYPfiHnLmbTjzwY4Ez3fTiyggBVcttYdFVw2v+Xy5rPAAc5Ez7cTC7hsfsPkLWiBDVSwgwYOcCb6ufDEAmJr2Pxc6Pdk3okW2EG3+Y71M+SJM9GnifCbNu9Eu18hOQpYwQYq2EG3DccBzkQvFScWUMAKNlDBDmLr2Do2w2bYDJth81LhN3jeiRbYQT8mfTW9VJw4E71UnFhAAZet+37zUnGigh00cIAz0YtC933sReHEBirYQQMHOAO95yywgAJWsIEKdtDAAWIr2Aq2gq1gK9gKtoKtYCvYCjbBJtgEm2ATbIJNsAk2wSbYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gUm2JTbIpNsSk2xabYFJti69g6to6tY+vYOraOrWPr2Do2w2bYDJthM2yGzbAZNsNm2Aa2gW1gG9gGtoFtYBvYBraBbWKb2Kglk1oyqSWTWjKpJZNaMqklM2tJvWUtqbesJfWWtaTespbUW9aSestaUm9HLWmOBo7Eo4AUxwIKWMEGKthBAwc4EwWbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hq1ha9gatoatYVNsik2xKTbFptgUm2JTbIqtY+vYOraOrWPr2Dq2jq1j69gMm2EzbIbNsBk2w2bYDJthG9gGtoFtYBvYBraBbWAb2Aa2iW1im9gmtoltYpvYJraJbaat3G5gAQWsYAMV7KCBA8RGLSnUkkItKdSSQi0p1JJy1BJzNHCAbpsLj1pyYAHdNhwr2EAFO2jgsq2h6+qNZid6LTlx2cyX12vJiRVsoIIdXLb1ydHqjWaBM9FrialjAQWsoMftjh7BN5TXhxML6BF8Q3l9OLGBa3nHzbGDBg5w2YavkNeHEwsooMf1zec5v4au6zF35IGe8yf68rrCc/7ECjZQwQ4a6DbfqJ7zB3rOn1hAASvYQAU7aCC2gW1im9gmtonNc374jvXsHr5jPbtPnIHHHJMnFlDACjZQwQ4aOEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEW8VWsVVsFVvFVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA2bYlNsik2xKTbFptgUm2JTbB1bx9axdWwdW8fWsXVsHVvHZtgMm2EzbIbNsBk2w2bYDNvANrANbAPbwDawDWwD28A2sE1sE9vENrFNbBPbxEYtEWqJUEsqtaRSSyq1pFJLKrXkmDVzPVCsx7yZJxo4wJl41JIDCyhgBRu4bPPm2EED3TYcZ+JRSw4soIAVbKCCHTQQm2A75roVxwIKuGzraV+tx5y3Byp4t9Wbr9Axz63/2TGvbXGsYFu/2xwV7KCBA5yJqz7U9dSoepNcoIAVbKCCHTRwgDOxY+vYutv8iOoVbKDb/CDoHTTQbb4DfDbcA30+3BML6Dbf1D4rbvEt6bPgFt/UPg/uiQOciT4bbvHN5/PhFl8LnxG3+OIMj+u2VQkCFeyg23xxxgBn4ryByya+vCv97wex41KsnurqPXDVJ6v1HrgqrljpHzjAGeg9cIEFFNBt07GBPQ7PdsxYfeAA8/ht5QYWUMAKNlBBbAVbwVawCbaV8/dUdBSwgmuF6vG7CnbQwAHOxJXzgQUUsILYKjbP+fWgp3rjW+AAZ2K7gQV0W3esYAMV7KCBA5yJXh9OLCA2xeb1YT2jqt74FthBt/mx4/VhPbmq3g53oteH5rvF68OJy9Z8Q3l9OLGBCnbQwAHORK8PJxYQm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJbWKb2Ca2iW1im2nzJrnAAgpYwQYq2EED3VYdZ2K5gQWUOIVqqWADFeyggQOciUctOdDXojnmWdob3+p6WFq98S1wJnp9OLGAAlbQt0N3ZPs21rixxp7zJ1bQt685KthBAwcKbMreVPamsjeVvansTc/5Yxk85080kL155Lwvw5HzBxYQGzmv5LyS80rOKzmv5Lx2jh1jSxpb0tiSR877Mhhb0tiS5LyS80rOKzmv5LyS80rO62C/HTl/IFtysCUH++3I+QPZkuS8kvNKzis5r+S8kvNKzis5r5P9NnNL9tsNLKCAbhuODXTbdOyggQNctvUkvvrH9QILKGAFG6hgB5dNfSFXzgd6zjv6lYJnobf63bPDsYEKdjD3UJcB5h7q9QYWUMAK5h7y7+sFdtDAAebR19sNLKCAvhbq2EEDfev4dvD6oL5kXh9OLKCAFWyggh20xGP0wMXH6MGBAlawgQp20MABzkTDZtgMm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJjTHHPrFNbBPbxDbTdrQbnlhAASvYQAU7aOAAsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIpNsSk2xabYFJtiU2yKTbFRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMaom3XdbVE1m97TKwgwYOcCb6HcqJBRSwgtgMm2EzbIbNsA1sA9vANrAdtUQc3TYdO2jgAGei36GcWMBl8xYAb8YMbOCyeUuTN2MGGrhsq9G0ejPmgd6MGVhA32/VsYINVLCDBg4wn2EfzZgnFtCfVndHX4vjXzto4ABnotzAAvo2U8cKNtBtLvY7lBMNdFtznIl+h3JiAf1JvDlWsIEKdtDAAWafwtF2eWIBfS0OVLCDvhbDcYAz0e9QvCXEGywD1zbzxgBvsAxs4LJ5k4Y3WAYaOMCZ6CMYJxbQbeJYwQYq2EED/fUV391+VeFPS45WynJgBRuoYAcNHKC/FuPHw/GS04EFFNBfGjqwgQp20MABzsTjJacDC8ien+z5yZ6f7PnJnp+x59vtFnu+3W4FjD3fvGkysIGx55s3TQYaOMCZWG5gAWPPN++fDGyggh00MPZ8Ozol155vR6dkObCCDVSwgwYOMPZ8u+ULUe2WL0S1W74Q1Y5OyduBDVSwgwYOcCa2G1hA3zq+xp7zJ3bQQN8XzXEmes6fWEB/icx3y/EK44ENVLCDBg5wJh6vMB7o+9iPviO7D1SwgwYO0NfCj1Q/+59YQAEr2EAFO2jgALENbH72H54MfvY/sYLLNnyN/ex/YgeXbfge8rP/8B3gZ//h+9jP/icWUMAKNtBt5thBAwc4A737MbCAAlawgQp20MABYivYCjavBOt96ebdj4ENXLY15ti8+zHQwAHORL8mOHHZ1pQMzbsfAyvYQAU7aOAAZ6JfE5yIrWLzUcv1+nbz7sdABd3mm2TVh7YenDTvfgycias+BBZQwAo2UMG+sDga6DZxnIl6AwvoNl90rWADFeyggQOcid1t3bGAbvOt0yvYQAU76IrhOBPtBhZQwKUovklWAQlUsIMGDnDZim+oVUACCyhgBRuoYAcNHCC2iW26zTNgClhBt/nhORXsoNt8B0y3+UadblsbyhssAwsoYAUb6Be9TiNpBvldwkElSYLEg0/HCjZwna3UqSdZ0kiaQcfbl04r4npNuHm/YluNJM37Fevx30fSDDoeITiVJEmqSS1Jk1wijgaubb26VZq3KZ7oaXiiL6ZH8NQ6Ft5T60RvVHDyAGsXeudhYAEFrGCLTdJzc/bcnD03Z8/N2XNzeiIdG9FT5tiInjLHLvSUOdFX1Q8KT5kDPWXE96anjK+pZ8xBNaklaVJPWhGrL4gnQPUF8QRwuR//B2nS+mvfBH7wHzSS5kneDnhSSXKJOFZwWXxneDNgYAd9MdcSe4Nf88PKG/wCV4SDNDaM9/cFGjhAD+sLts6FgQWU2ODe3xfYQGyCTbAJNsFWsVVsFVvFVrFVbBVbxVax+bnwwKPXxykPam8FDKxgAzXRz1PVF8GT6UQDvefBaQb5te1BJUmSalJL0qSeZEnp6OmwdFg6LB1+jlotQc2/XheooOeBH4KecCeujViPCDPRE+7EAgpYwQa6zY/MI+sONHDZmu8dT8YD/Rx1oqe37wdP0RMr6L10TprUkyxpJM2TvDuveVr7t+jaerrevCWvrYfnzVvyAgc4E9epqK0X4Zu35AUKWMEGejOm05KpL41n6YkDXLL1aLx5R15gAV3WHSvoMl81z9ITO+jXWU4jaQZ5ih5UkiTJI/rG8pxT3xaec91/wa8/TyyggGtJu6+gJ92JCnbQQD84nWaQn/YO8vx2kqSa1JI0qSe55AgzwJnop8ETfTF94/ul5Il+LeQ0kmaQX1J23zV+SXmigL5FfJt6up7oKt+8nq4nLpUPunifXLNDsWQ+9uF9cm293NS8Ty5QwAo2UMEOGug2X15PV/NDydPV78K9T675zbB3xDW/7fWOuMAOGjjAGegdcYEerDgq2EEDBzgTPVNP9GDi6H9WHQc4Ez3nTryvmx4kSTWpJWlST7KkkTSDVradlI6ajpqOmo6ajpqOmo6ajpqOlo6WjpaOlo6WjpaOlo6WjpVsXsy8qe2kmtSSNKknWdJImkHr1HlSOno6ejp6Ono6ejp6Ono6ejosHZYOS4elw9Jh6bB0WDo8MaYfqp4YPurizWRt+i/4GWt1Uzfv6fIzTT+OaidNukfyGumdWwetY/ek9Xs+aOG9WIEG+oKo41pbj7kO4pNKkiTVpJakST3JkkZSOmo6/OptfX2ueadV8zEL77Ty6uWNVifNoHV0nlSSJKkmtSRN6knpaOlo6dB0aDo0HZoOTYefFKavlN8bTf9XPyp9lMT7qgIr2EAFO2jgAGeiH54nYjNshs0PUR+e8b6qwA4aOMCZOG5gAQWsILaBbWAb2FZS+Gizt1UdtFLipJIkSTXJI3q+TF/S9a/H1KTNqSRJ0v2v5/F7LUmTepIljaDiK66OvordUcEO+iqa4wBnoufbiQUUsIINVLCD2ASbJ956A6d5w1NgAb2aFccKej0TRy9ovvJ+DvFHGt7wFDhAL5wu9vPIiV46h6PbXOynEr+7t2MGj+N3FeyggQOciX5u8fEBb2JSH//wJib14Q1vYgoc4FpeH2zwJqbAAgpYQY/r+9iT0YcgvDFJ/RbUG5MCBaxgAxXsoIEDdJtvPk/GEwvoZ2rfqJ6MJzZQQT9b+zbzZDxxgGv7Hqt5fB3/wALKQt8kx9fxD2yggh00cO3NY/Pl1/HbyK/jN29MUr8L88akwAo20BKLX8VUxwL64xonSxpBKwVXD0TzNqGTalJL0qSeZEkjaQatzDvJF6Y7ClhB3z/DsYMG+v6ZjjPxuGo7cK2Gr66fGA+qSS1Jk3qSJY2kGeQnxoPSoenQdGg6NB2aDk2HpkPT0dPR09HT0dPR09HT0dPhJ06/B/XGn8CZ6Lnqd3Te+BMo4NolPvrnjT+Ba+/4QIA3/gQaOMCZ6Lnql23e+BPoNt9nnqvqS+a56heL3vgT2MFl83t+b/wJnIkrV/1e0ft+TpKkmtSSNMkjrm3obTzqQwfexqOrS715G09gAxX0JTVHAwc4Ez1LT1xneZetQRG/M/QvqqkeuFyeQt7aE7hcvse9tUe7L4Gfa09cru4CP9f65Zq39gTe4/pd24x5fdvMma7azJmu2syZrpq35agd2EAFO2jgAGeiZ65fy3hbTqCALRbMp+s+qCfZMS1w8+6ck2aQevDuWEABfVWGYwN9VTy+n0JPNNBPwuI4E3OSvMaEm40JNxsTbjYm3GxMuNmYcLMx4WZjws3GhJuNCTcbE242JtxsTLjZmHCzMeFmY8LNxoSbjQk3GxNuNibcbEy42bxjR4+D1VP4xAb6/ZHvaE/hEw30WyQ/mj2FD5w3sIB+K+bi6fdifnwck+T54X5MkndgB93mueXpfeI8Ub2PJ7CAAlawgQp20MABYjsmyTuwgAJWsIEKdtDAAc5EwSbYjptadaxgAxXsoIEDnInHze2BBXRbd6xgAy3Ry8H6vIF6x46u1gX1b5sFVrCBa3nXuIJ6H0+ggQOciV4fTiyggBVsIDbFptgUm2Lr2PwSe414qH/bLNBt4thABdeeL0cEAwc4E70+nFhAj1sdfXn9ePDT9vSd5aftA/20fWIBfXnNsYINVLCDfqT6ah4TYx44E/20ffOF9PP2iQJWsIEKruufM5iBA5yB3rETWEABK9hABTtooNvEcSYeA1MHuq05uk0dK+i27qig28zRwAHORLmBBRSwgg1UEJtgE2yCrWKr2Cq2iq1iq9gqtoqtYqvYGraGrWFr2Bq2hq1ha9gatoZNsSk2xabYFJtiU2yKza/8V4uMesfOiX7tf2IB15lh3b/pMTHmiQ1UsIMGDnAmHtN6HehrMR39lu7maKDf1PkBbjNx3MACCljBBnpcT4bJ9p2s8ZHzB1awgX4H6ovuOX+igQPMvSm3G1hAASvYQAV7LIMcOX/gAHNvevfNsQzefhMoILaCrWAj54WcF3JeyHmRPHZECihgBVsugyjYQWzkvJDzQs4LOS/kvJDzQs7LkfO+DJUtWdmSlS1Z2ZKe86uRSr0zKNC3pDpWsIEK+rodwQwc4Ez0nD+xgAJW0G3TUcE8wL1/qK9BPvUGohM90U8sIIeG3+efyM7q7KzOzuoGDpCdZewsY2cZO8vYWcbOMg5E40A0Dg1P/zXmqN5cFCjgiiu+HTz9xZdsXR4EdtDAAc5ELxUnFlBAj+uHhheFEw0coMddh4b3HwUWUMAal0negRSoYAcNHOBM9Dv+E/NS2PuSAhX0tTBHA30tpuNM9PQ/0ceNbo4CVtCHjoqjgh00cIAz0dP/xAIKWEFsK9HXPZt6B9JJM2hlud8veP/RSZLkEX3DHUN4Byroy3/8roEDXKaVtf4dspNKkiTVpJakST3JkkZSOno6ejp6Ono6ejp6Ono6ejp6Ono6LB2WDkuHpcPS4Tld/ejynD7RQN9ex+/ORM/06keXZ/qJAq6903wne6afuGzNjznP9BMNXLbme98z/UDP9DUKqd7VFCig23yn+kXBiW7zHPH8P9Ftvhae/yfOQP8emd99+efITpKkmtSSNMkjri3gXU19jWCqdzV19V/wU/yJDVRwLekab1Rvawoc4Ez0HD/Rbd1RwAo2UMEOus0cBzgTPcdPLKCAFWyggh3EVrH5KV59L/gp/sQC+qitb1TP/+7bzPP/RB+4FccOLlv3DeX5f+JM9FP8iQUUsIINVLCD2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBjavDKsdTL2BKtDAAfqQxkrxYzbOEwsoYAUbqGAHLdAbqHo/0Je3OzbQl9ccO2jgAGei3wKcWECPOxxz+3pb1bHG3lZ1ouf8iQX07TsdK9hABXNvenNV4ABzb3p/VWABBaxgy8WpCnbQQNbNc36N/Kt3WgUu2+rOU++1CqxgA5fNPJjn/IkGDnAmes6fWEAB3eYHgef8iT13lie6+fHgiX7iTPREP7HkDujsrM7O6uyszs46Ev1AA9lZJLqS6EqiK4muJLqS6EqiK4nu3xHr5oenp/SJBfQN5dvBU9p8yTylT1SwgwYOcCb6yf7EAq64ww8NP62f2EEDV9zhh4af1h39i2GBBfTT182xgg1UsIMGDnAmeqKfWI8HeeqfBjtJk+5B/QjxXrSTRpIvv/+iJ/6JBVzPBtWpJrUk31QHdtDAcTxaVO9HO2jl/EklSZJqUkvSpJ5kSemo6WjpaOlo6WjpaOlo6WjpaOlo6Wjp0HRoOjy7/WbqaFs7sYH+3Pb43Q76FjPHAc5EH8j3xDma3E5cA+N+BXI0uZ3YQD2fxurR5Hai24bjAGeiX+Z7AL/MP0iSalJL0iSP6GvlyexPH7xlrfslrLesBTZQQe8a9BX0ZD5xgDPRk/lEt/lB61fuJ1ZwXU/7TlgZflJPsqSRNE862tsOKkmSVJNakib1JEsaSeko6SjpKOnwC3t/HuJtcIEKdtDAAc5Ez/UTfbMNRwEr6DZfBk/3Ezvotuk4wJnoCe8PTLzhLf51NQR5AH8176CVXP6owrvZAgsoYAUbuNLYH2t4N1uggQOciZ7LJxZQwAo2EJtiU7f5CukAZ2J3mzkWUEC3+ebvDVSwg27zTbqy2XzI2/vhzEcEvR8usIINXHF9iNP74cwvUb0fzoovjnlct63T9onrtB1YQLf54owKNlDBZfORO2+CMx+58yY48xE2b4IzHxTzJjgTV3hX6okVbKCCHTTQbb4McwZ659txcHrnW2AFG6hgB5fCh578k1yBM7F4k604FlDACjZQwQ4aOMCZKNgEm5/SfYTKm+0CG6hgBw10W3eciZ7mJxZQwAo2UMEOGoitYvP6sNoI1fvvAgV0m+8Wrw8+AOQ9eIHL5uNG3oUXuGw+6uN9eCd6fTixgAJWsIEKdtBAbIqtY+vYOraOrWPr2Dq2jq1j69gMm2EzbIbNsBk2w2bYDJthG9gGtoFtYBvYBraBbWAb2Aa2iW1im9gmNi8gPiDo7XmBHTTQu2gPnIHz6KI9sIACVrCBCnbQ12JV5aNBz0+g87jYV8cGKthBAwc4E70SrJc11T+odWwH/6DWsZreohc4wJnoOe/jnt65FyhgBXNveudeYAcNHGDuTe/cCyy5DJ7zJ1awgZrLcOT8gQZiI+cnOT/J+UnOT3J+kvNT89iZypZUtqSyJY+c92XobMnOliTnJzk/yflJzk9yfpLzk5yfnf125PyBbEljSxr77cj5A9mS5Pwk5yc5P8n5Sc5Pcn6S85Ocn4P9NtiSgy052JKDLXnk/Dq5zyPnD3TbdBSwgg1cNvVl8Jw/0cABzhO7t/IFFlBAv2+ujg30EUJzHGcWdm/as9UB3L1pL7CAAsYe6rfSQAU7aOAAZ6LEHuretBcoYAUbqGAHDRyJXh9Wx3L39rzACvrW8e3g9UF9ybw+nGjgAGei14cTCyhgBT3ucDRwgDPRK8G6U+/etBcoYAXbedPbvWkvsIMGDnAm+qDeiQUUcG2dfmAHDRzgWov16KJ7e15gAQX07m8/uLxp70QFO2jgAGeit/KduLZO94PAs/tEBTto4Ej0PO6eOJ6x3eN6xnY/djxjTzTQI/gR5Rnr6I14tkZCujfiBQroyzscG6hgBw0c4Ez0PF6jqt0b8QIFrGADFfS3UqrjjO3gLXeBBVxx1wh395a7wAYq2MG1Fmuwu3vLXeBM9PP8ictmbvM8PrGCblNHBTvoNt8XnscnzkTP4/W+fPeWOzPfLZ7H5hvV89h86/h5/kQFV9zh6+Z5fKDn8YkFXHGHr5ufu/3g8ja6QANHop+wT1yJI77oPvh2ooL+mpmvhb8oc+IAZ+LxUtuBBRSwgg1cCzl8m/lJ+MSZ6CfhE33lfWf5SfjECjbQ1+L4sw4aOMCZ6P30JxZQwAquuDc/NDx5h29UT94TZ6B31AX6WqijgBVsoIIdNHCtxRqd6d5Rd6I3z5xYQAEr2EAFO2iJnrzjwAIKWEFfC3NUsIMG+lpUx5l4vIZ6YAEFrGADFfR9MRxnoqfpiQUUsII+jOWkST3JkkbSDPK0LU4lSZJqUkvSJF/yVRO88c38DOqNb4EVbOeb5N0b3wI7aOAAZ6J/S+TEAgpYQWyGzbAZNsNm2Aa2gc1zd/rK+yn2xA4a6I81xHEm+gX0iQUUsIINVNBtfuh4Rp84wBno7XC2Rui7t8MFCljBFjvL2+ECO2jgAGein45PLKCAHlcdO2igx+2OHndlnrfDBRZQQF+L4dhABTu4mrBWd3/3drjhSejtcCeujA4soIAVbKCCHTQQm7fJebU6+uROLKCAFWyggh000G3TcdmKr7H3yp1YQAEr2EAFO2jgALF511zxg8vb5k4UsIINVLCDBg7QbX4Q+IO1EwsoYAUbqGAHl038oF31IXAmjhtYQAEr2EB/ru7UkyxpJM2g45G6k0f0LbtqwPATvLfEBY7zuyPdW+IO9Ja4wAIKWMEGKthB3wLrIPaPgI3VgNu9XS5QwAo2UMEO+lqo4wBnotxAt3VHASvYQAU7aKDbfN28BqxnGN3b5QILKGAFG6ixL7xdLtDAAc5ErwEnFlDACvbzg1z9/ELYgQP0Ftx1sHljXOCKWz2CZ/uJFVxr4TdC3hgX2EFv9/Ud4Nl+4kz0bD+xgG7zrePZfmIDFeyggQOciZ7X6wlEP78W5oeR52rzNfZcPdBz9cS1ZOthRPe2tsC1ZD6S4m1tgQquJWu+HVa2Bg5wJs4bWEAB3ebLOxuoYAcNHOCMNfaZMscace7e7BbYQAU9bnc0cIAz8fjE33QsoIAVbKCCHbREz2MfF/MWuEABK+hrMRwV7KCBKwNOnIn+Qb8TCyhgBRuooG8dX3TP2AM9Y0/09vabo4AVXGux+oO7N7sFrrXwQUxvdgsc4LL5eKY3uwUWUMAKNlBBt/kB43l84gBnoufxiQVc28xT2jvc/Pux3Tvc/EOm3TvcAgc4E/36/cQCCrj2hRdS73ALVLCDbvMteXy688CZeHy688ACCljBBiq44vpZ2zvchg+keodbYAEFrGADFfR94Wvs2X3iAGeg9735h4K7970FCljBBirYQQNHop+7fdjW58QMrKCvxXBUsIO+FtNxgGstfJzUu98CC7hsPjjq7W+BDVSwgwYO0G0rcbwFLrCAAlawgb7N1DH3vHe9HfuttxtYQAEr2EAFc8/3ZuAA2fPKnlf2vLLnlT2v7Hllzyt7Xtnzyp736+F5YAPX8vrdo39NLXDmL/jZ9MQCSuDRdeVXV0fb1YkFFLCCDVSwgwYOEJtgE2yCTbAJNsEm2ASbYBNsFVvFVj3ucFSwJ/qePzaU7/kTPe5KHG+XCiyggBVsoIIdNHAk9txv3hgVWMEGrrhe7b0xKnDFrccvrLh+EemfDztxVfvAAgpYwQYq2EEDsRm2gW1gG9gGtoFtYBvYBraBbWCb2Ca2iW1im9gmNm+D9Otqb4ya66W37o1Rx2HkjVGBDfR9rI4dNHCAM/HIwgPddqCAvryu8Cw8UUFf3nU68Gan6dfg3uwU6Mvra+GZ5YeGNzsFdtBAjzsdZ6Jn1omZAd7sFFhBbBVbxVax1ZHonxfyWwLvRDrRU+/EJfa7A+9ECqzgEvvdgXciBS6xX+Z7J1LgAN3mG6rfwAIKWMEGKug234WekCcOcCZ6Qp5YQHbhkXq+kEfq+fY9Uu9AdpaxswY760i9AwVkZ40GKthBy2Q4Uu/AmXik3oEkzhSwgg1UcEQR8+6iA7276Dg05i1T2ruLAivYQAU7aOAAs4D4l8ICsRVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2T1M/dmbNrT5rnlhn7aCBA8wTq3ciBRZQwAo2EFvD1rA1bA2bYlNsik2xKTbFptgUm2Yp9k6kE/sNLKCAFfQteaCCvi9ccZyEDxyJx+nWHFtk9zyy+0BfXt9DlsVx2gBn4iAvyO5Jds/jxHpgZvckuyfZPQe2gW1gm9iO7L6jedOMV2XzppnACnpxPH5XwQ56cRTHAXpxrAv9jHNiAaMUm7fSBDZQwQ4aOMAoxeatNIEFFLCCDYxdaN5K4/lm3krjO8C8lSawgAJWsIEKxs6yW1452i2vHO2mM7FHKTZvpQkUsIINVLCDBo5EvxfpB3bQwAHORL9DObGAAlawgdgGtoFtYBvYJraJbWKb2HxEoPt+8xGBEzto4ABnoDfYBBZQwAo2UMEOGjhAbAVbwVawFWwFW8FWsBVsBVvBJtgEm2ATbIJNsAk2wSbYBFvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2JTbIpNsSk2xabYFJtiU2wdW8fWsXVsHVvH1rF1bB1bx2bYDJthM2yGzbAZNsNm2AzbwDawDWwD28A2sA1sA9vANrBNbBPbxDaxUUsKtaRQSwq1pFBLCrVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiRy1RB3d1h0NHOBMPGrJgQUUsIINVBDbUUum4wBn4lFLzLGAAi7b6uQy7zQKVHDZ1pvu5p1GgQOcgd5pFFhAASvYQAU7aOAAsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIpNsSk2xabYFJtiU2yKTbF1bB1bx9axdWwdW8fWsXVsHZthM2yGzbAZNsNm2AybYTNsA9vIPPamorEaO827igIHOBO9PpxYQAEr2EAFsU1sE9tMW7vdwAIKWMEGKthBAweIrWAr2Aq2gq1gK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hU2yKTbEpNsWm2BSbYlNsiq1j69g6to6tY+vYOraOrWPr2AybYTNshs2wGTbDZtgMm2E76oM6FlDACjZQwQ66bTgOcCYetaQ7FlDAHjXqaGk6cYAzUI9ScWABV7D1UokdjU4nNnAt+noHw45Gp/XugR2NTicOcCZ6qTixgAJWsIEKYvNSsZryzb8AFjgTvVScWEABK9hABfMkoVxKKJcS3v40pm8SLxUnFlDACjZQwQ4aOEBsDVvD1rA1bA1bw9awNWwNm48gH6vpI8gnzkQfQfZDzttzAgWsYAMV7KCBA5yB3p4TWECPYI7+u2u/eZ/N+a/+oGe9S2XeZzP9+PU+m0AFO2jgAGeiP+hZL1uZ99kECug2cXRbdXRbc3SbOlouuo+Zn8gK+ZB497g+JH6igh00cIAz0YfETyyggG7zRfchcb8R8+aawA4a6DZfNx8oP9AHyk8soIAVbKCCHsw3lI94+z2Zfx1q+s2Vfx1qdt9QPsx9ooEj0Z/YnOgR/NDwJzYn+hHl+9ifzXhF9C88TfNN4s9bTuyg70LfDke2HDgTj2zxuEe2HP8qYAUbqLnGxzeeDjRwBJ6fdBqOEit0ftTpwFzjo8Gn+Z/5Ab66QO1o8DnQD/ATCyigPzhx2/H4x+Mej38OHOBMPB7/HLjirsZN87kEAyvYQAU7aOCyrX5P868vnejH+okFFLCCDVTQFeI4wJnoB/iJBRSwgg1UsIPYFJtnwOouNf/kUmABBaxgAzW3emdndXZWZ2d5XqxOVDuagVZDnR3NQCfORH9meaIvjh8a/szyxAo2UMEOGjhAt/mR6jl0YgEFrGADFbRcN0+c1VVpR1/QiRIrdPQFndhABX3Rp6OBA/TKtQ7Poy/oxJIRCraCrWAr2PzsdKKBA8zd4h9MCsQmKI6LkebolwfHv/rlgTl20MABzsTjYuTAAgpYwQZiOy5GfAccFyMHDnAm+n3LiQUUsIINVBCbYlNsft+yXo0zbxwKLKCAFWyggh00cIDYDNvRMeqHkafezY8dT70DPfVOLKCAFWyggh000BWr7hwdQOs1Ojs6gE4UsIKu8CPK8+3EDho4wBl49AWdWEABK9hABTto4ACxeUKul7Xt6As60RXd0YOZo4ED9GDrgDnafk4soIAVbKCCHTRwJFYUfm5Z7xva0TCzZpqxo2HmRAU7aOCKu14ctKM1Zn0/z47WmBMr2EAFPW51NHCAM9Hb4U4soIBu893iJ58TFeyggQOciZ4XJ7rCd6wnw4kNVLCDBg5wJnpenFhAbBOb50XxI8rz4sQOGjjAeeK4Hd/ZF8cCClhB/zNb6OeW9S3D4Z/YCWyggt6LcnM0cIAz8ej8PrCAAlbQbdNRwQ4aOMCZ6If9iZLrdjSlFscOWq6QXw2eOBP9avBEX3TfZke324EV9A6r6qhgJwK2hq1hU2x+YXgiu0XZLcpuUXaLYjsydvzv//7Db3/+67/+4e9/+utf/vnvf/vjH3/7x//Jf/iv3/7x//zPb//5h7/98S9//+0f//Lff/7zP/z2//3hz//tv/Rf//mHv/jPv//hb/f/et89f/zLv91/3gP++5/+/MdF//sP/PXt+Z+W+wNfO//8zr1kiHKTH4KU50Ha6rPyEPeBvQxg7Ye/l+d/X9e9of/9fRidBfgSYLsWdZ24zrW4D7U/XYv2PMjMCKXm37d69c/vDy96rMX90p8lEPshRN+EqJrb4WEVRrsawOcp8wD38YQMcH+u9UOAsdmQrUeEch+Jexpi7nam5HboVp+G2G1Kby4+N0RvTzdl2RyTIiX2p9wf0xJDvxzW8u7+2K6IsSKjPl+RTQztuTHWZ8UzRv+yHrrbq+va89yrKk9DbI4s/wiSR7jfYzyk6PUI/iLxEeGxytiLq2HPV2O3MW19weLYmHabz0LIptZIG3lg3cdrn4Yo724K2RyZclvfNDkWotyoue1LiLpZiDW4dCzEtOcLsSuYIrEl7shRcX9+fH1FSrVcES1PV2RzYMmIXVpvTwPsM2z2PCgeav/XPTreL3q7GPdnlRHj/ijy+Qmk3rb1WzJFHraGtB93Sd0cnTpij/QbVe9+Vr1+YDTNA0MfsuzrgVE3h+f0qbPPGJMj/P7M/ccYm+UQ/yzzcXDdB+bYsdf3SW2RJfd1kuf7ZHN8FsuCcT91PJxH6o/H10qEpzG6z3V/BFmvUD5E+fFsVMcHjo757tGxXxd/+Hmuy6zl6bq03fm9GBVwzId1+XLBJ+8eH9uj9GIJ3Ma4mC1N38+W1t/eGrs9u3q3Ys+uVpvne3ZXSwsXTcUe9+yXC8i5O0nXuKW4/1l52B4/Hqe6qaWtW83bmocj7GuM7XKolrxYmJvl2Byl6wNteVX/kHNfY3xnz7Sne0bb21cduruGu98a9VyQ+y3T8wXZ3ueMmZvk4Yz9U4zNJmklb3xbEX1tg1y7etH55tXL9vTiQ73HMtyGPT299F0x9Y8ZHTHuw93PY2wO0zVlcFxFyXzcr/V6DO8TPmLcR4eex2jvn+S6vnuS2x1da7L7WJNSymtHeZW8nW+35ynbx/buMa9t74/kX4vhX5w+r491vhhjEGM8j7GtHWvsLa+kSnkexeTdfbvPFotaKvfB6dcybgoxNhlnu+0xa6bcnXt9csreL0eW41ofBnx+Wo7NsT7yfD3lcWv8eOlhu1N+7TnS0h4vCNv1GE1ucU5o8niC+xJjfOD2aZTf8/iqNS9eah3lpeOr1jxV19ZuT2OM9vseX7Vlyta+yZWxuzC9WV7MlfpwZpEft+nY1eOaA5trdt6Ho0Mux1jftolde3/o/jzGfP8Im7e3z07bSqolb8HuT8jH00o6N5W0lJFLcq/GD2eoL4PF9d2bjl318Zfd4/nFeFp+5nZz5BW2lB+SpVw/0BmmvY8A3V5L2s7FoIk8jTHH288QdkthtfI4pj9dinLb3TzlBbq2x6y/fQmxW46RF+h12GOQeT1Ia7PlTdwPVwxfg2zHovLZ0P0RO5eltX0Zxr/tBsXyouF+yn24ya/Xs3YKI0n32vz8nqXc+rvlY79VRyZdm1o2W/UDo1Hl9vZw1PbsUnvew7XHkfAvZ5eye9pU/NMY503YwxHy9dHE9mlTnrHb7fmAfCn14kMvexyOKl+C7E77913Po9Dbw0n762jSrqbe/XmBW2/Pa2rZPTMqOvMpRVnTJT05P/ikRc93sEQtkv7D7cvXJdldXWpe5Lb+eMR/fZxY5vtHye7x08WjRMoHjhKRTxwl+5LmX8s7S9rcDMOU3QMHqTmi/MPTf/ny+L6Ivnspsl+Olnf98njV/dNy7E6dDBma1Oenzt1jizUFJuMom6NVPnC01veP1vqJo7V+5GjdPyhUBlP600e/mwjNZ+M9Nsh4vNL82hBQdwcql933ylqfn7F2Qeotr3nr7fEG4Kcg9n5jwe6h1MXOgl2Ii60Fl9dk01twdZOWhwc539wvhacfZXM50ur20upSG09p7f1n2vvVadyP6HZ1dq0jZUSQO/bn5WwbRHJ1huzO4G28f8DvngldPOB3IS4e8JfXZNdMs92kOWw3fhjy/9Z+0ZmNKGabRq3dg5j7f8zrRHssiV/ue/fH6shBkfsTsk1d3Q3aXz1Cdg8PLh4huxBXu63671wSfUaCuIeX55t0NyBxuX1N3t6kuxAXN+nlNXl5kz4cpY/58q2zjL/wfY7xlN1+se2zpUudif0DBbW/X1D7+wW1f6Cg7rfouxeYesshRC1103FqmyDrS/4MdG9K8u7plL8ycWyO27w9r8j77WFsj/HiNr3W8ll2z5buQ1J5a9gebh5+ijHfP9J3z6cuHum7EBeP9MtrsjnSt1u05ln/vkX7azFUaK6p9fkW3T3p93cozzvlPl+Mkc/rtjH2R9ilruIy3r+TGu/fSe2eTl3siSlz+4T9SkvvdimutSqV+XaHdJm7SlpyoLw/Plmqs70aRF8M0vJpypoJbhPE3t4v23UZLddlvLoukiN1a9LVV4PkAPWaXfTFIPQHr2kQnwaR225w6j6Ik7frd37YOV876XdhLrfj74Pk87L7g9X5YhD6Bmbt/cUgF9ti/f2150/urvXFyu5B1cU28u1yjGzlmkPrZjmuBum3V4PkieaO/bUg9xHUvFC9s+3C7HaxZmGbjxcS3zzYBgfbYx5/L0ifBHmegN84hz+9H5LdwyrLBkiz52et/TXztbdZdg+qrt4eboPcL+vyfZYyn9+oyvZZleX44X3w//nabB9VXbvylt3bUteurbYhrr71dXVNbLMm2y2aj93FRnspRi1ZVu8nCXs1xu3tGJULksfc/16MvMyrj68sfI2xfWXq2l3EL2JcuovYr0trOWTf+ng/xovH2P2Jew77tfF832772nvnjQXZvKG4XRCj/dD68/Kxe7p0eeeO33nnWmFdNom7e2uq3Hj1qhR9daPmNWIdm6Ns94Tq2oNhadv21GxLv9eP53c02+VohU8X1OfLsT3PSZ6imvTb8/Ncs7dHmOQDD6fk/YdT8v7DKfnAw6n9Fr02wrSPcW2ESXaPpq6m/v7ouPbOub79Bv82xNU9e3lNnteO3StTl66R9ylbs5S2ZvPF61uxfIFMdte3+ydC157US6/vP6nfr864Zafs7GOzOvqJ1em/9+rMPMPo7bZbnfF7HmlKP7a2vrmTsl0zdREOtAwhXzeHlbfHMLZLkREeT5U/L0XdnipZk4ex4W+EKLeR/bp3Hu21IHM8PJ166Bj8TpDVR5YXU7eH0d3vbNR8i/1+wG426vhdQ9w3ZDYM3lmfr8r4xJ4Zn9gz4wN7Zpu5mu/V6mzjtXNE5zXQ+yi+vRokB9vuT9zri0FaZfy/v7o6NfO3a91c6o4PfGNKxvydzxFd88NlXW2zOrtnVUV9DshzfWabzw62XwS51Oguu+dVvecjnjX732Z1dh2qFxvdZftC1bXWYf/gzZt3iNvHVRdbh2X+ophcax3+RRjlMLnfno3nYXaH7JoNJ/Zxe3gG93Uf19v7g6r19v6gar29Pai6DXHtluT6mthmTd4fVN3GuDio+qsYt7djXBszq+V28aZXX9umFwd3fxHj0uBu3b1UdXH87xcxLg0C7Nel5Qvu9fEJ/k/L0X/v5bg0yHw9xos5d3GQue7epro6yPyLg/3iAXL7nXfMtQHiunuD6eoA8S8W5NIAcZW3T/9V7P0B4u1yXBwg/sXFnXHFe3/q/uTirm6/7HfxCnEb5OL99/bSzlq+sGft+YFa6/vXDrtv+128dtiFuHjtcHlNNgPV+4vl8fAK5PPz7SeeL22vlnt+okd++N7ZT1fLuyCWG/WO5bUg5ZZvyd0Hk9uLS6KVkeb++sX/6Fz8P5xlvnvxn2u0bgQ2/TJz/0hD/1+PNL63XZr9P993/znIB6ri7i3G28wjpdzGS6kjJd+FkLI54+nbr6hWLR840Ww/N3hxk253bY5X3/dyffWQ91ec4xKgvny/6w8JzzDSX84cyYuaFXKTObuPPOQQqbEcX97J/tWIovCpm1udLw5LtoeRhP5sWNI/VfTu2OY2yCfG4S9vkfqJLdI+sUXa21tk3xT5sDK322M/4/d6K2+1P4TZNIuW7SOOyy2auzB95EVBn7eno/HbEIyP9tnLayGMpZjPQvyiU/vG3Ai3lxvP58OnWJ+3e+9feOXzbqM+fo/kywhr3b1ddbFfpNr7r6pWe/tV1W2Ii5fhl9dkM5yw3aLX+kX2Ma71i9Qh748m7GNcG03YH2GXek7q7s2oi0fHLsTVo+PymjwfjhjvdgL8Iu3zImTUuUn73WtNV+++5/uvU9f59uvU2xAXd+zlNdmk/XaLXrz7nh8YVd0vx6VHZnX77b9rtzJzvn/rvV2Oa7cy9Rfv7125O9zHuHZ32G5v96m22wf6VLfLcW2T/uJDG/l8aejDq3c/f61jc6RfeyF7P3/OpSuXdnv/XepW3n6XehviWgm7vib22ga92Oh6e/u6pZX336T+RYxrw5jl3d26fwRy+XXM7eRIF1+k3M5Id+09yu3sIhffPLwcY/Pi4T7GtfcO62fuaXdb9eJbh/sluXqMbLfJxbcO9/Mkvb82V4/V/bpcO1a3s9hcPFYvx9gcq/sY147VXYzrx+p+q159ufXt259W330tdTuRFo2Q7cdvuNuXpdg1/dF+eB9DefYYdR+i5UShPzZR/Bhi9w7VxaHC3cZghK89fiLjp43xiW/8tU9842/7jc9Lm3T36mPPDxf0H/rb5/UIjZlS+vMI2+frzCCrD82TP82Ntp0+gi5qffh269cYTbc3gtdmXdil67VDdD9JW8s7n9L19nyeJv9Mw5sZuw1xLWN3Xxm+uDl2r/aPfAp1x6e9F/PtY3y+fYyPDxzj4wPH+Patp4vH+HYCQP9mx7FL7vywIHI9htKtoPo8xn5qtVtjRrOb2fNM2b05dTFTtiGuZUr/fQvHj5tjPP+i934OwEYv7MO0VT/NAXg5xng/xuNbT9+Zi7DmdzDkPk79cB34ZR7B3ZPSOpgTaPzwFPxrkO18qHmdL+M2XgwySn5Ofzx+ZuibQVgS0Q8EqbenQXaTK2pnbrNu87Wd0ygjTW28uocfvrlye75dr09Z2V7aIm3mMGGbY7Nrrk7hOTZpM96fbbKNbVW90UP+MJfNzwuyax5Ryy/y6+OLvuNLDNvVZnpz2+M8NF+u+HfPoNbH3iPG7XGmta8x5r7jQmiWeJx5bnxnsyqzxj2c8X7erNsg86G///lBsp9O9PK8pvueViOKbqZrbHM7ww/vUD7u4nF92sjWcvSiPZ7CvzOxqVbNN59rf3XayHxYqY/3hd+KMR8moWjy4p4x7nLvPF6MMgrXJEOebxOTd6/gtxEuXcHvp1ybD71Osz5ryNHtTFRSmLDx6XXiL0LkCMaU/ux+aD8FXc/zXRmmL2buGPTnjrm5TdXbePfiex/i0sW3lre78r6xOXazK/8iihJFXkzd+18aUdrz+yLdPXG8uGu2IS7umv777pofNofay7umPUR5sR7ery9zWeZtPq/v24nkrhXEfYhLFXG/LsoFzey3zRbZfZzv2gDPNsT9/HSjOcdKey0It1frVKUvBmmNIPpSfb4/f31oW9jU5+2MWJ+a4EsyitTb4wVnfTFIkReD8M0A0V5eC3JfhSxqtx/uj34Msvs+nvBERaQ+n0Faa3v/IYJuJ5O4+hBhO8cv9/K3tlubd59S7ab4uLom2znsNWcrVrs9rkm9HoO3qNR+mF/zy2yhrbx95mzl7TNne/uTP/uNkaNWOurcbAzdnWhynKe3UTdBdn1+ObrSy+3ZjfN+MZh3+ccPqHxrXVTzG+o/NHJ9M0iuTL/Nl4Pk92AeJ8b96VjftZSNzFqduxj67pXINsKlC5HtaygXH65sY1x8uKLbeZsuPlyxbSep5rj3fJxkqH2d2/P9uyp9/67q/Xedth/YujG8e3ucdfnrxtieWq5tjG2Iixuj/a4bo+SAW/thrvSfNkZ/f2P09zfGePvUtDs/TmYXf/wy0LcmfZ/5iOke4/l062of+Iyk2geufnat353vnT1ck/68GJ+4JrUPXJPuZ6Dno4k/fFDj6zTnunu96eErNg832vad2daF+vNDF/p35rC/elbYBpl6i4yZP+yaZt8J0uhYfPgU5XeD5Bjm46fbfg6y7fR9eGGzP/Zf1m8sCRcfs9dXV6fnS/nzh28vfCsILwfdb9j1aRDdPaj6SJAf3rx43CZfNuw+iGRnq4jeXgxS85uU8vgBqJ938e5EMXJJ2vzhduxrAr7dALQPcekidbsqV69S90GuXqbOD1ym7ucov/Y+nM73P5uu8+3Ppm9DXHuZ5PqabCbm28/6ful9uH57/2tn+2nfL36NZh/k4tdotkGuvhK3X5KLX6P51Sz2F79G84swVz9F+aswFz9qs98yFz9qsw9y8aM2pb79BZZt9lx8bXEf49pri728/fW0Xj7w9bTtclzcpPtde+2jNr84Vq9+1OYXYa5+1OZXYS5+1GZ/OfAwgldfvaLIT3M8FCX5zo3F/djIl4fssR/wywVjl7cHBPYhLg0IdBm/a4hrYwq/2KD5pZL5OIHb1w062ru34X17kF68De/1AzNT7C7h7/U859mY8+H57pcHO7sYOiTH3W+Po93fiNG5De/ywzDgl6q6e0R17UDfL0bW1P74st63VqXm8+H+wydovq5Ku/2uq/L4TfqHK++fF0N+18VQquDjtdnPi/F2n8o+xLXy097uU9k1iHbLNpU+HieQ/7Ixdh9euHaru41w6U532+h68UZ3G+PifW7f9VNfvs8t5e373K7t7fvcrm9/0Gcb4tp97vU12dznbrfoxfvc3URUV+9zd582u3yfuw1y9T53/8W4i/e52yW5ep9b2kfuc/dhLt/n/iLM1fvc7Za5ep+7DXL1PrfI2zdlu+y5ep+7jXHxPnf7yOrafe72G5RX73PtA5u0fuA+d3+sXr7P3Ye5fJ/7izAX73O31wKXbnP3VxNX7nJ3jxMv3k+NT9xPjQ/cT217OyQb1KrM5+0M2xiW1zT3XfliDM6e9wffz2OMbXNHzonRZDzvUxlvf31gvP31gfGBrw+MD3x9oM8PXK3uvso982lZEXnsxy6XQ4jkusgPc+p+J0bJJvd7jOfL0bdPqa5m7e673JebEXZDqVfnGSvykaH/7SAXLfdN9XFCuh9HqOwDk1DZByahsvcnobL3J6GyD0xCZR+YhMo+MAmVfWASKvvAJFT2gUmo7AOTUNkHJqGyD0xCZR+YhMo+MAmVfWASKvvAJFT2gUmo7AOTUNknJqGyD0xCZR+YhMo+MAmVfWISKvvAJFT2/iRU9olJqOz9Sah+dflwaRIq+8QkVPb+JFSlvN/2Yx+YhMren4TK3p+Eyj4wCdV+i14bDrUPTEJV5BNtP/KJth/5RNuPfKLtRz7T9iOf6deRT/TryCf6deT9fp3ygX6d8n6/jr0/CZV9YhIqe38Sql/s2ovjmPKZfh35TL+OfKRfZztKdGkccz/OdGUcc/ua26Vl2L8od6ljaP8KNTVeH2r8997D7rzM3Wd9McgYOcz0OLvRN1/mzifmd3y+OrptlLn4Rvg2yLXJmvYhLk3W9IsQlyZr2u4XyyuJdS5/cef+EKS9GkQIUp/vF7O3W1T2IS71hpi13zXExUv3/QblhQyz8epeyatVsflqBXlckpeDjLztvuPLQZj7ZRtk+ymVi92g/d3a/osPQ2WMKf3Fb0vlcMgUe/r2sry7KfZf6rp0pt3dDFlOc3K/J3t8v/4bX1Djs2V3HC/GyGp8P+2++CW30ViOV78oN/JO6B7u1S/K5euHd3x1e+S91D3G8/2y/Uqf5ihIU+vvxxivfemv8Vi69fbiuvDmYbPNMbaNwUf62qjPY9j2FSq+j3UfuXv+4uG4bT+Amh+Va33q0+v0Xy1JzyXR3ZJsPyybF1LaH4aX6neWI6cHua903yzHdojqlpv18StOPwfZvU2dn/l4vOMXteuHyHj4quzm42djNzXq9UNkvH+I/GpJrh0i2+H2S4fIL5bj4iFS5AOHyO7h0gcOkTmzMt/K8zPE2M4gJTlhisp8KM3jS4zdZZBJftXGHi7Xv37oZ/e+wS0vQfRmt826jA+sy/x916XUvIL44Ysf3/ombX4aT2tpr8UQlkPaJ2KMF2PkZ6Due8hejJGP6u/hXt6mxjatL8YoxKib7x5vJ2LIryiI6OMt8pcXUuTtqX32IS7d345aftcQ126Rt9uz8oXBas8npRi7x0qXPlW2XYrGLXabY7MU/f0Ktntj6mIF20/zITyFEX26LvsYyhSJ/fn2aH3/8chL841sg1wb5duHuDTK94sQV0b56tuvr9a3316tb4/J17fH5PczxT1+hub2OIfft+abY1KxFWUze179yLR12zAXj9FtiGvH6D7ElWN0PwPnxfn3tjHen+Xx+jHyq1krLx4j8pljRN4/RuT9Y0TePkZ2PTGD1u3xMA9VkS8nub59gSt3jNjDN7GuL8VUvoI9y9Ol2IaYeZa8PY4EfSPEyBt0uT1O+fDTtth1TF1suR67Yb6rLde7eTMfvz/1OFHK15WxbW+fkbjd9Nlw9q+CGJPxPT6r+BpEdg8ZJl25pWxWZ1dBpHK0r04Qwtzk6oZtljf6bTz2O14/0BofnbiPOO72zQd6+4d9oLf/lzvYHnawPt3B8/c+SlS5Qn0I8dOGHdu3A7MVRR4fZv80oDS2/Sz0GRXZDLHt3pe6PE432tvjdPvluDhOt52H6uo43XYiqkvjdPsisOb1iwOt2OMkFF+KwNi9XZ8H68MEUl8eeO6q87XZwXz2gWcxRj6CGfN519XYvS91H8zK9C+PB9iXrqvdmhRehCmPN4Vf9sk+RHYplMfbkO+EoJ9GHp6L/XRkzO39fiZKvb0YIvvp+0Pn93dW5PG0/XAN8p0QPa/6f+wt+kYIK1zQbbbF3L/Q84EgpXOW648NF98KYjmeVGzKi0FmvjtSHmcV+tbO7Ux6Ya/lClcw9yOlvLYUtI3V20sr0gadlo8TtJR5+Vrbv2V3FuE2XlmIUjpzAY6Xsq3UzNc7vrYUKlyGPUwT9a0QnQ74MV9bEQ7OKq+tCF9Vupf0l1bEshHIWn8lwMyx48fJob6zErccbv1hesifMn331On9o3vmpc6U1zZEHtrT9M0tuQmwvTiYLYcXp97m05GfuR0+0nxyPnVuPqGwG+V4e3zhfoVhXKSUZ5dbc/cqlPAq5a08v2CT94fStkHWKNiNUbD6Ypiplc+YPw7IfSuI8PFwefx44veC5Jtu8/GLcN8Lwnv/963cXzxWR5byObRujtWrQfrt1SAjN+z9puq1INcHOn+xaa8NIv9iWa6OAP8qzMUh4Ll71ev6ltmGuTYEvA9xaQj4FyHeHAK+9sx3e/3CrI799lhLLt8Pl84Ut73Ol0KMfMRZHs/a3wkxjWncbuWVEHLjYe2t1ZeWgong1hyKr4Vg9sNRXlqR+yU1oyTztaVgiuzSHueE/0aI9vDG7sMd9dcQczel1AfuVmpeCt2vJF7bGI1Rp8fmjFe352shqjDeKz+8Qzmvh1A+wPTQ7v9qiF5fC5HXUlVMXwpRc9jpTreXQrSsvfWHS+TvLEV/mIxe3g/x2k7lFc76eCP8rW3Bi2StvrZTGzMWtWqvhSh84UNf3Kk9r/Rbf2kp1hS2DDi1l0I8zKQ7Hq/yv4SYuw+/FeGe/nGi8/KNZ6I8mR2qr60JU6XPNl4L0ZkY/LUkKTxAvI/klRdXhHeUb/J2iPLqUjD7dXkp2+/nc7ZFs7eX4utO/af7//3Dv/7pb//857/+6x/+/qe//uW/7n/5vyvY3/70h3/58x/P//vv//2Xf334r3////8z/su//O1Pf/7zn/7jn//zb3/91z/+23//7Y8r0vpvv93O//k/tj57fR8MGP/0D7+V9f9nrf9wf0p2u///6v+9r/9uc/339Qe939P6/j99/YP/hd5vbO7/I//0v2uR/y8="
|
|
583
583
|
}
|
|
584
584
|
],
|
|
585
585
|
"outputs": {
|
|
@@ -813,11 +813,11 @@
|
|
|
813
813
|
},
|
|
814
814
|
"134": {
|
|
815
815
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/encryption/aes128.nr",
|
|
816
|
-
"source": "use dep::protocol_types::{\n address::AztecAddress,\n constants::{GENERATOR_INDEX__SYMMETRIC_KEY, GENERATOR_INDEX__SYMMETRIC_KEY_2},\n hash::poseidon2_hash_with_separator,\n point::Point,\n public_keys::AddressPoint,\n};\n\nuse crate::{\n keys::{ecdh_shared_secret::derive_ecdh_shared_secret, ephemeral::generate_ephemeral_key_pair},\n messages::{\n encoding::{\n EPH_PK_SIGN_BYTE_SIZE_IN_BYTES, EPH_PK_X_SIZE_IN_FIELDS,\n HEADER_CIPHERTEXT_SIZE_IN_BYTES, MESSAGE_CIPHERTEXT_LEN, MESSAGE_PLAINTEXT_LEN,\n },\n encryption::message_encryption::MessageEncryption,\n logs::arithmetic_generics_utils::{\n get_arr_of_size__message_bytes__from_PT,\n get_arr_of_size__message_bytes_padding__from_PT,\n },\n },\n oracle::{\n aes128_decrypt::aes128_decrypt_oracle, random::random, shared_secret::get_shared_secret,\n },\n utils::{\n array,\n conversion::{\n bytes_to_fields::{bytes_from_fields, bytes_to_fields},\n fields_to_bytes::{fields_from_bytes, fields_to_bytes},\n },\n point::{get_sign_of_point, point_from_x_coord_and_sign},\n random::get_random_bytes,\n },\n};\n\nuse std::aes128::aes128_encrypt;\n\n/**\n * Computes N close-to-uniformly-random 256 bits from a given ECDH shared_secret.\n *\n * NEVER re-use the same iv and sym_key.\n * DO NOT call this function more than once with the same shared_secret.\n *\n * This function is only known to be safe if shared_secret is computed by combining a \n * random ephemeral key with an address point. See big comment within the body of the function.\n * See big comment within the body of the function.\n */\nfn extract_many_close_to_uniformly_random_256_bits_from_ecdh_shared_secret_using_poseidon2_unsafe<let N: u32>(\n shared_secret: Point,\n) -> [[u8; 32]; N] {\n /*\n * Unsafe because of https://eprint.iacr.org/2010/264.pdf Page 13, Lemma 2 (and the * two paragraphs below it).\n *\n * If you call this function, you need to be careful and aware of how the arg\n * `shared_secret` has been derived.\n *\n * The paper says that the way you derive aes keys and IVs should be fine with poseidon2\n * (modelled as a RO), as long as you _don't_ use Poseidon2 as a PRG to generate the * two exponents x & y which multiply to the shared secret S:\n *\n * S = [x*y]*G.\n *\n * (Otherwise, you would have to \"key\" poseidon2, i.e. generate a uniformly string K\n * which can be public and compute Hash(x) as poseidon(K,x)).\n * In that lemma, k would be 2*254=508, and m would be the number of points on the * grumpkin curve (which is close to r according to the Hasse bound).\n *\n * Our shared secret S is [esk * address_sk] * G, and the question is: * Can we compute hash(S) using poseidon2 instead of sha256?\n *\n * Well, esk is random and not generated with poseidon2, so that's good.\n * What about address_sk?\n * Well, address_sk = poseidon2(stuff) + ivsk, so there was some\n * discussion about whether address_sk is independent of poseidon2.\n * Given that ivsk is random and independent of poseidon2, the address_sk is also\n * independent of poseidon2.\n *\n * Tl;dr: we believe it's safe to hash S = [esk * address_sk] * G using poseidon2,\n * in order to derive a symmetric key.\n *\n * If you're calling this function for a differently-derived `shared_secret`, be\n * careful.\n *\n */\n\n /* The output of this function needs to be 32 random bytes.\n * A single field won't give us 32 bytes of entropy.\n * So we compute two \"random\" fields, by poseidon-hashing with two different\n * generators.\n * We then extract the last 16 (big endian) bytes of each \"random\" field.\n * Note: we use to_be_bytes because it's slightly more efficient. But we have to\n * be careful not to take bytes from the \"big end\", because the \"big\" byte is\n * not uniformly random over the byte: it only has < 6 bits of randomness, because\n * it's the big end of a 254-bit field element.\n */\n\n let mut all_bytes: [[u8; 32]; N] = std::mem::zeroed();\n // We restrict N to be < 2^8, because of how we compute the domain separator\n // from k below (where k <= N must be 8 bits). In practice, it's extremely\n // unlikely that an app will want to compute >= 256 ciphertexts.\n std::static_assert(N < 256, \"N too large\");\n for k in 0..N {\n // We augment the domain separator with the loop index, so that we can\n // generate N lots of randomness.\n let k_shift = (k as u16 << 8);\n let separator_1 = k_shift + GENERATOR_INDEX__SYMMETRIC_KEY as u16;\n let separator_2 = k_shift + GENERATOR_INDEX__SYMMETRIC_KEY_2 as u16;\n\n let rand1: Field =\n poseidon2_hash_with_separator([shared_secret.x, shared_secret.y], separator_1);\n let rand2: Field =\n poseidon2_hash_with_separator([shared_secret.x, shared_secret.y], separator_2);\n\n let rand1_bytes: [u8; 32] = rand1.to_be_bytes();\n let rand2_bytes: [u8; 32] = rand2.to_be_bytes();\n\n let mut bytes: [u8; 32] = [0; 32];\n for i in 0..16 {\n // We take bytes from the \"little end\" of the be-bytes arrays:\n let j = 32 - i - 1;\n bytes[i] = rand1_bytes[j];\n bytes[16 + i] = rand2_bytes[j];\n }\n\n all_bytes[k] = bytes;\n }\n\n all_bytes\n}\n\nfn derive_aes_symmetric_key_and_iv_from_uniformly_random_256_bits<let N: u32>(\n many_random_256_bits: [[u8; 32]; N],\n) -> [([u8; 16], [u8; 16]); N] {\n // Many (sym_key, iv) pairs:\n let mut many_pairs: [([u8; 16], [u8; 16]); N] = std::mem::zeroed();\n for k in 0..N {\n let random_256_bits = many_random_256_bits[k];\n let mut sym_key = [0; 16];\n let mut iv = [0; 16];\n for i in 0..16 {\n sym_key[i] = random_256_bits[i];\n iv[i] = random_256_bits[i + 16];\n }\n many_pairs[k] = (sym_key, iv);\n }\n\n many_pairs\n}\n\npub fn derive_aes_symmetric_key_and_iv_from_ecdh_shared_secret_using_poseidon2_unsafe<let N: u32>(\n shared_secret: Point,\n) -> [([u8; 16], [u8; 16]); N] {\n let many_random_256_bits: [[u8; 32]; N] = extract_many_close_to_uniformly_random_256_bits_from_ecdh_shared_secret_using_poseidon2_unsafe(\n shared_secret,\n );\n\n derive_aes_symmetric_key_and_iv_from_uniformly_random_256_bits(many_random_256_bits)\n}\n\npub struct AES128 {}\n\nimpl MessageEncryption for AES128 {\n fn encrypt<let PlaintextLen: u32>(\n plaintext: [Field; PlaintextLen],\n recipient: AztecAddress,\n ) -> [Field; MESSAGE_CIPHERTEXT_LEN] {\n // AES 128 operates on bytes, not fields, so we need to convert the fields to bytes.\n // (This process is then reversed when processing the message in `do_process_message`)\n let plaintext_bytes = fields_to_bytes(plaintext);\n\n // *****************************************************************************\n // Compute the shared secret\n // *****************************************************************************\n\n let (eph_sk, eph_pk) = generate_ephemeral_key_pair();\n\n let eph_pk_sign_byte: u8 = get_sign_of_point(eph_pk) as u8;\n\n // (not to be confused with the tagging shared secret)\n // TODO (#17158): Currently we unwrap the Option returned by derive_ecdh_shared_secret.\n // We need to handle the case where the ephemeral public key is invalid to prevent potential DoS vectors.\n let ciphertext_shared_secret = derive_ecdh_shared_secret(\n eph_sk,\n recipient\n .to_address_point()\n .unwrap_or(\n // Safety: if the recipient is an invalid address, then it is not possible to encrypt a message for\n // them because we cannot establish a shared secret. This is never expected to occur during normal\n // operation. However, it is technically possible for us to receive an invalid address, and we must\n // therefore handle it.\n // We could simply fail, but that'd introduce a potential security issue in which an attacker forces\n // a contract to encrypt a message for an invalid address, resulting in an impossible transaction -\n // this is sometimes called a 'king of the hill' attack.\n // We choose instead to not fail and encrypt the plaintext regardless using the shared secret that\n // results from a random valid address. The sender is free to choose this address and hence shared\n // secret, but this has no security implications as they already know not only the full plaintext\n // but also the ephemeral private key anyway.\n unsafe { random_address_point() },\n )\n .inner,\n );\n // TODO: also use this shared secret for deriving note randomness.\n\n // *****************************************************************************\n // Convert the plaintext into whatever format the encryption function expects\n // *****************************************************************************\n\n // Already done for this strategy: AES expects bytes.\n\n // *****************************************************************************\n // Encrypt the plaintext\n // *****************************************************************************\n\n // It is safe to call the `unsafe` function here, because we know the `shared_secret`\n // was derived using an AztecAddress (the recipient). See the block comment\n // at the start of this unsafe target function for more info.\n let pairs = derive_aes_symmetric_key_and_iv_from_ecdh_shared_secret_using_poseidon2_unsafe::<2>(\n ciphertext_shared_secret,\n );\n let (body_sym_key, body_iv) = pairs[0];\n let (header_sym_key, header_iv) = pairs[1];\n\n let ciphertext_bytes = aes128_encrypt(plaintext_bytes, body_iv, body_sym_key);\n\n // |full_pt| = |pt_length| + |pt|\n // |pt_aes_padding| = 16 - (|full_pt| % 16)\n // or... since a % b is the same as a - b * (a // b) (integer division), so:\n // |pt_aes_padding| = 16 - (|full_pt| - 16 * (|full_pt| // 16))\n // |ct| = |full_pt| + |pt_aes_padding|\n // = |full_pt| + 16 - (|full_pt| - 16 * (|full_pt| // 16))\n // = 16 + 16 * (|full_pt| // 16)\n // = 16 * (1 + |full_pt| // 16)\n std::static_assert(\n ciphertext_bytes.len() == 16 * (1 + (PlaintextLen * 32) / 16),\n \"unexpected ciphertext length\",\n );\n\n // *****************************************************************************\n // Compute the header ciphertext\n // *****************************************************************************\n\n // Header contains only the length of the ciphertext stored in 2 bytes.\n let mut header_plaintext: [u8; 2] = [0 as u8; 2];\n let ciphertext_bytes_length = ciphertext_bytes.len();\n header_plaintext[0] = (ciphertext_bytes_length >> 8) as u8;\n header_plaintext[1] = ciphertext_bytes_length as u8;\n\n // Note: the aes128_encrypt builtin fn automatically appends bytes to the\n // input, according to pkcs#7; hence why the output `header_ciphertext_bytes` is 16\n // bytes larger than the input in this case.\n let header_ciphertext_bytes = aes128_encrypt(header_plaintext, header_iv, header_sym_key);\n // I recall that converting a slice to an array incurs constraints, so I'll check the length this way instead:\n std::static_assert(\n header_ciphertext_bytes.len() == HEADER_CIPHERTEXT_SIZE_IN_BYTES,\n \"unexpected ciphertext header length\",\n );\n\n // *****************************************************************************\n // Prepend / append more bytes of data to the ciphertext, before converting back\n // to fields.\n // *****************************************************************************\n\n let mut message_bytes_padding_to_mult_31 =\n get_arr_of_size__message_bytes_padding__from_PT::<PlaintextLen * 32>();\n // Safety: this randomness won't be constrained to be random. It's in the\n // interest of the executor of this fn to encrypt with random bytes.\n message_bytes_padding_to_mult_31 = unsafe { get_random_bytes() };\n\n let mut message_bytes = get_arr_of_size__message_bytes__from_PT::<PlaintextLen * 32>();\n\n std::static_assert(\n message_bytes.len() % 31 == 0,\n \"Unexpected error: message_bytes.len() should be divisible by 31, by construction.\",\n );\n\n message_bytes[0] = eph_pk_sign_byte;\n let mut offset = 1;\n for i in 0..header_ciphertext_bytes.len() {\n message_bytes[offset + i] = header_ciphertext_bytes[i];\n }\n offset += header_ciphertext_bytes.len();\n\n for i in 0..ciphertext_bytes.len() {\n message_bytes[offset + i] = ciphertext_bytes[i];\n }\n offset += ciphertext_bytes.len();\n\n for i in 0..message_bytes_padding_to_mult_31.len() {\n message_bytes[offset + i] = message_bytes_padding_to_mult_31[i];\n }\n offset += message_bytes_padding_to_mult_31.len();\n\n // Ideally we would be able to have a static assert where we check that the offset would be such that we've\n // written to the entire log_bytes array, but we cannot since Noir does not treat the offset as a comptime\n // value (despite the values that it goes through being known at each stage). We instead check that the\n // computation used to obtain the offset computes the expected value (which we _can_ do in a static check), and\n // then add a cheap runtime check to also validate that the offset matches this.\n std::static_assert(\n 1\n + header_ciphertext_bytes.len()\n + ciphertext_bytes.len()\n + message_bytes_padding_to_mult_31.len()\n == message_bytes.len(),\n \"unexpected message length\",\n );\n assert(offset == message_bytes.len(), \"unexpected encrypted message length\");\n\n // *****************************************************************************\n // Convert bytes back to fields\n // *****************************************************************************\n\n // TODO(#12749): As Mike pointed out, we need to make messages produced by different encryption schemes\n // indistinguishable from each other and for this reason the output here and in the last for-loop of this function\n // should cover a full field.\n let message_bytes_as_fields = bytes_to_fields(message_bytes);\n\n // *****************************************************************************\n // Prepend / append fields, to create the final message\n // *****************************************************************************\n\n let mut ciphertext: [Field; MESSAGE_CIPHERTEXT_LEN] = [0; MESSAGE_CIPHERTEXT_LEN];\n\n ciphertext[0] = eph_pk.x;\n\n let mut offset = 1;\n for i in 0..message_bytes_as_fields.len() {\n ciphertext[offset + i] = message_bytes_as_fields[i];\n }\n offset += message_bytes_as_fields.len();\n\n for i in offset..MESSAGE_CIPHERTEXT_LEN {\n // We need to get a random value that fits in 31 bytes to not leak information about the size of the message\n // (all the \"real\" message fields contain at most 31 bytes because of the way we convert the bytes to fields).\n // TODO(#12749): Long term, this is not a good solution.\n\n // Safety: we assume that the sender wants for the message to be private - a malicious one could simply reveal its\n // contents publicly. It is therefore fine to trust the sender to provide random padding.\n let field_bytes = unsafe { get_random_bytes::<31>() };\n ciphertext[i] = Field::from_be_bytes::<31>(field_bytes);\n }\n\n ciphertext\n }\n\n unconstrained fn decrypt(\n ciphertext: BoundedVec<Field, MESSAGE_CIPHERTEXT_LEN>,\n recipient: AztecAddress,\n ) -> Option<BoundedVec<Field, MESSAGE_PLAINTEXT_LEN>> {\n let eph_pk_x = ciphertext.get(0);\n\n let ciphertext_without_eph_pk_x_fields = array::subbvec::<Field, MESSAGE_CIPHERTEXT_LEN, MESSAGE_CIPHERTEXT_LEN - EPH_PK_X_SIZE_IN_FIELDS>(\n ciphertext,\n EPH_PK_X_SIZE_IN_FIELDS,\n );\n\n // Convert the ciphertext represented as fields to a byte representation (its original format)\n let ciphertext_without_eph_pk_x = bytes_from_fields(ciphertext_without_eph_pk_x_fields);\n\n // First byte of the ciphertext represents the ephemeral public key sign\n let eph_pk_sign_bool = ciphertext_without_eph_pk_x.get(0) != 0;\n\n // With the sign and the x-coordinate of the ephemeral public key, we can reconstruct the point. This may fail\n // however, as not all x-coordinates are on the curve. In that case, we simply return `Option::none`.\n point_from_x_coord_and_sign(eph_pk_x, eph_pk_sign_bool).map(|eph_pk| {\n // Derive shared secret\n let ciphertext_shared_secret = get_shared_secret(recipient, eph_pk);\n\n // Derive symmetric keys:\n let pairs = derive_aes_symmetric_key_and_iv_from_ecdh_shared_secret_using_poseidon2_unsafe::<2>(\n ciphertext_shared_secret,\n );\n let (body_sym_key, body_iv) = pairs[0];\n let (header_sym_key, header_iv) = pairs[1];\n\n // Extract the header ciphertext\n let header_start = EPH_PK_SIGN_BYTE_SIZE_IN_BYTES; // Skip eph_pk_sign byte\n let header_ciphertext: [u8; HEADER_CIPHERTEXT_SIZE_IN_BYTES] =\n array::subarray(ciphertext_without_eph_pk_x.storage(), header_start);\n // We need to convert the array to a BoundedVec because the oracle expects a BoundedVec as it's designed to work\n // with messages with unknown length at compile time. This would not be necessary here as the header ciphertext length\n // is fixed. But we do it anyway to not have to have duplicate oracles.\n let header_ciphertext_bvec =\n BoundedVec::<u8, HEADER_CIPHERTEXT_SIZE_IN_BYTES>::from_array(header_ciphertext);\n\n // Decrypt header\n let header_plaintext =\n aes128_decrypt_oracle(header_ciphertext_bvec, header_iv, header_sym_key);\n\n // Extract ciphertext length from header (2 bytes, big-endian)\n let ciphertext_length =\n ((header_plaintext.get(0) as u32) << 8) | (header_plaintext.get(1) as u32);\n\n // Extract and decrypt main ciphertext\n let ciphertext_start = header_start + HEADER_CIPHERTEXT_SIZE_IN_BYTES;\n let ciphertext_with_padding: [u8; (MESSAGE_CIPHERTEXT_LEN - EPH_PK_X_SIZE_IN_FIELDS) * 31 - HEADER_CIPHERTEXT_SIZE_IN_BYTES - EPH_PK_SIGN_BYTE_SIZE_IN_BYTES] =\n array::subarray(ciphertext_without_eph_pk_x.storage(), ciphertext_start);\n let ciphertext: BoundedVec<u8, (MESSAGE_CIPHERTEXT_LEN - EPH_PK_X_SIZE_IN_FIELDS) * 31 - HEADER_CIPHERTEXT_SIZE_IN_BYTES - EPH_PK_SIGN_BYTE_SIZE_IN_BYTES> =\n BoundedVec::from_parts(ciphertext_with_padding, ciphertext_length);\n\n // Decrypt main ciphertext and return it\n let plaintext_bytes = aes128_decrypt_oracle(ciphertext, body_iv, body_sym_key);\n\n // Each field of the original note message was serialized to 32 bytes so we convert the bytes back to fields.\n fields_from_bytes(plaintext_bytes)\n })\n }\n}\n\n/// Produces a random valid address point, i.e. one that is on the curve. This is equivalent to calling\n/// [AztecAddress::to_address_point] on a random valid address.\nunconstrained fn random_address_point() -> AddressPoint {\n let mut result = std::mem::zeroed();\n\n loop {\n // We simply produce random x coordinates until we find one that is on the curve. About half of the x\n // coordinates fulfill this condition, so this should only take a few iterations at most.\n let x_coord = random();\n let point = point_from_x_coord_and_sign(x_coord, true);\n if point.is_some() {\n result = AddressPoint { inner: point.unwrap() };\n break;\n }\n }\n\n result\n}\n\nmod test {\n use crate::{\n keys::ecdh_shared_secret::derive_ecdh_shared_secret,\n messages::{\n encoding::MESSAGE_PLAINTEXT_LEN, encryption::message_encryption::MessageEncryption,\n },\n test::helpers::test_environment::TestEnvironment,\n };\n use super::{AES128, random_address_point};\n use protocol_types::{address::AztecAddress, traits::FromField};\n use std::{embedded_curve_ops::EmbeddedCurveScalar, test::OracleMock};\n\n #[test]\n unconstrained fn encrypt_decrypt_deterministic() {\n let env = TestEnvironment::new();\n\n // Message decryption requires oracles that are only available during private execution\n env.private_context(|_| {\n let plaintext = [1, 2, 3];\n\n let recipient = AztecAddress::from_field(\n 0x25afb798ea6d0b8c1618e50fdeafa463059415013d3b7c75d46abf5e242be70c,\n );\n\n // Mock random values for deterministic test\n let eph_sk = 0x1358d15019d4639393d62b97e1588c095957ce74a1c32d6ec7d62fe6705d9538;\n let _ = OracleMock::mock(\"utilityGetRandomField\").returns(eph_sk).times(1);\n\n let randomness = 0x0101010101010101010101010101010101010101010101010101010101010101;\n let _ = OracleMock::mock(\"utilityGetRandomField\").returns(randomness).times(1000000);\n\n let _ = OracleMock::mock(\"privateGetNextAppTagAsSender\").returns(42);\n\n // Encrypt the message\n let encrypted_message = BoundedVec::from_array(AES128::encrypt(plaintext, recipient));\n\n // Mock shared secret for deterministic test\n let shared_secret = derive_ecdh_shared_secret(\n EmbeddedCurveScalar::from_field(eph_sk),\n recipient.to_address_point().unwrap().inner,\n );\n\n let _ = OracleMock::mock(\"utilityGetSharedSecret\").returns(shared_secret);\n\n // Decrypt the message\n let decrypted = AES128::decrypt(encrypted_message, recipient).unwrap();\n\n // The decryption function spits out a BoundedVec because it's designed to work with messages with unknown length\n // at compile time. For this reason we need to convert the original input to a BoundedVec.\n let plaintext_bvec = BoundedVec::<Field, MESSAGE_PLAINTEXT_LEN>::from_array(plaintext);\n\n // Verify decryption matches original plaintext\n assert_eq(\n decrypted,\n plaintext_bvec,\n \"Decrypted bytes should match original plaintext\",\n );\n\n // The following is a workaround of \"struct is never constructed\" Noir compilation error (we only ever use\n // static methods of the struct).\n let _ = AES128 {};\n });\n }\n\n #[test]\n unconstrained fn encrypt_decrypt_random() {\n // Same as `encrypt_decrypt_deterministic`, except we don't mock any of the oracles and rely on\n // `TestEnvironment` instead.\n let mut env = TestEnvironment::new();\n\n let recipient = env.create_light_account();\n\n env.private_context(|_| {\n let plaintext = [1, 2, 3];\n let ciphertext = AES128::encrypt(plaintext, recipient);\n\n assert_eq(\n AES128::decrypt(BoundedVec::from_array(ciphertext), recipient).unwrap(),\n BoundedVec::from_array(plaintext),\n );\n });\n }\n\n #[test]\n unconstrained fn encrypt_to_invalid_address() {\n // x = 3 is a non-residue for this curve, resulting in an invalid address\n let invalid_address = AztecAddress { inner: 3 };\n\n // We just test that we produced some output and did not crash - the result is gibberish as it is encrypted\n // using a public key for which we do not know the private key.\n let _ = AES128::encrypt([1, 2, 3, 4], invalid_address);\n }\n\n #[test]\n unconstrained fn random_address_point_produces_valid_points() {\n // About half of random addresses are invalid, so testing just a couple gives us high confidence that\n // `random_address_point` is indeed producing valid addresses.\n for _ in 0..10 {\n let random_address = AztecAddress { inner: random_address_point().inner.x };\n assert(random_address.to_address_point().is_some());\n }\n }\n\n #[test]\n unconstrained fn decrypt_invalid_ephemeral_public_key() {\n let mut env = TestEnvironment::new();\n\n let recipient = env.create_light_account();\n\n env.private_context(|_| {\n let plaintext = [1, 2, 3, 4];\n let ciphertext = AES128::encrypt(plaintext, recipient);\n\n // The first field of the ciphertext is the x-coordinate of the ephemeral public key. We set it to a known\n // non-residue (3), causing `decrypt` to fail to produce a decryption shared secret.\n let mut bad_ciphertext = BoundedVec::from_array(ciphertext);\n bad_ciphertext.set(0, 3);\n\n assert(AES128::decrypt(bad_ciphertext, recipient).is_none());\n });\n }\n}\n"
|
|
816
|
+
"source": "use dep::protocol_types::{\n address::AztecAddress,\n constants::{DOM_SEP__SYMMETRIC_KEY, DOM_SEP__SYMMETRIC_KEY_2},\n hash::poseidon2_hash_with_separator,\n point::Point,\n public_keys::AddressPoint,\n};\n\nuse crate::{\n keys::{ecdh_shared_secret::derive_ecdh_shared_secret, ephemeral::generate_ephemeral_key_pair},\n messages::{\n encoding::{\n EPH_PK_SIGN_BYTE_SIZE_IN_BYTES, EPH_PK_X_SIZE_IN_FIELDS,\n HEADER_CIPHERTEXT_SIZE_IN_BYTES, MESSAGE_CIPHERTEXT_LEN, MESSAGE_PLAINTEXT_LEN,\n },\n encryption::message_encryption::MessageEncryption,\n logs::arithmetic_generics_utils::{\n get_arr_of_size__message_bytes__from_PT,\n get_arr_of_size__message_bytes_padding__from_PT,\n },\n },\n oracle::{\n aes128_decrypt::aes128_decrypt_oracle, random::random, shared_secret::get_shared_secret,\n },\n utils::{\n array,\n conversion::{\n bytes_to_fields::{bytes_from_fields, bytes_to_fields},\n fields_to_bytes::{fields_from_bytes, fields_to_bytes},\n },\n point::{get_sign_of_point, point_from_x_coord_and_sign},\n random::get_random_bytes,\n },\n};\n\nuse std::aes128::aes128_encrypt;\n\n/**\n * Computes N close-to-uniformly-random 256 bits from a given ECDH shared_secret.\n *\n * NEVER re-use the same iv and sym_key.\n * DO NOT call this function more than once with the same shared_secret.\n *\n * This function is only known to be safe if shared_secret is computed by combining a \n * random ephemeral key with an address point. See big comment within the body of the function.\n * See big comment within the body of the function.\n */\nfn extract_many_close_to_uniformly_random_256_bits_from_ecdh_shared_secret_using_poseidon2_unsafe<let N: u32>(\n shared_secret: Point,\n) -> [[u8; 32]; N] {\n /*\n * Unsafe because of https://eprint.iacr.org/2010/264.pdf Page 13, Lemma 2 (and the * two paragraphs below it).\n *\n * If you call this function, you need to be careful and aware of how the arg\n * `shared_secret` has been derived.\n *\n * The paper says that the way you derive aes keys and IVs should be fine with poseidon2\n * (modelled as a RO), as long as you _don't_ use Poseidon2 as a PRG to generate the * two exponents x & y which multiply to the shared secret S:\n *\n * S = [x*y]*G.\n *\n * (Otherwise, you would have to \"key\" poseidon2, i.e. generate a uniformly string K\n * which can be public and compute Hash(x) as poseidon(K,x)).\n * In that lemma, k would be 2*254=508, and m would be the number of points on the * grumpkin curve (which is close to r according to the Hasse bound).\n *\n * Our shared secret S is [esk * address_sk] * G, and the question is: * Can we compute hash(S) using poseidon2 instead of sha256?\n *\n * Well, esk is random and not generated with poseidon2, so that's good.\n * What about address_sk?\n * Well, address_sk = poseidon2(stuff) + ivsk, so there was some\n * discussion about whether address_sk is independent of poseidon2.\n * Given that ivsk is random and independent of poseidon2, the address_sk is also\n * independent of poseidon2.\n *\n * Tl;dr: we believe it's safe to hash S = [esk * address_sk] * G using poseidon2,\n * in order to derive a symmetric key.\n *\n * If you're calling this function for a differently-derived `shared_secret`, be\n * careful.\n *\n */\n\n /* The output of this function needs to be 32 random bytes.\n * A single field won't give us 32 bytes of entropy.\n * So we compute two \"random\" fields, by poseidon-hashing with two different\n * generators.\n * We then extract the last 16 (big endian) bytes of each \"random\" field.\n * Note: we use to_be_bytes because it's slightly more efficient. But we have to\n * be careful not to take bytes from the \"big end\", because the \"big\" byte is\n * not uniformly random over the byte: it only has < 6 bits of randomness, because\n * it's the big end of a 254-bit field element.\n */\n\n let mut all_bytes: [[u8; 32]; N] = std::mem::zeroed();\n // We restrict N to be < 2^8, because of how we compute the domain separator\n // from k below (where k <= N must be 8 bits). In practice, it's extremely\n // unlikely that an app will want to compute >= 256 ciphertexts.\n std::static_assert(N < 256, \"N too large\");\n for k in 0..N {\n // We augment the domain separator with the loop index, so that we can\n // generate N lots of randomness.\n let k_shift = (k as u16 << 8);\n let separator_1 = k_shift + DOM_SEP__SYMMETRIC_KEY as u16;\n let separator_2 = k_shift + DOM_SEP__SYMMETRIC_KEY_2 as u16;\n\n let rand1: Field =\n poseidon2_hash_with_separator([shared_secret.x, shared_secret.y], separator_1);\n let rand2: Field =\n poseidon2_hash_with_separator([shared_secret.x, shared_secret.y], separator_2);\n\n let rand1_bytes: [u8; 32] = rand1.to_be_bytes();\n let rand2_bytes: [u8; 32] = rand2.to_be_bytes();\n\n let mut bytes: [u8; 32] = [0; 32];\n for i in 0..16 {\n // We take bytes from the \"little end\" of the be-bytes arrays:\n let j = 32 - i - 1;\n bytes[i] = rand1_bytes[j];\n bytes[16 + i] = rand2_bytes[j];\n }\n\n all_bytes[k] = bytes;\n }\n\n all_bytes\n}\n\nfn derive_aes_symmetric_key_and_iv_from_uniformly_random_256_bits<let N: u32>(\n many_random_256_bits: [[u8; 32]; N],\n) -> [([u8; 16], [u8; 16]); N] {\n // Many (sym_key, iv) pairs:\n let mut many_pairs: [([u8; 16], [u8; 16]); N] = std::mem::zeroed();\n for k in 0..N {\n let random_256_bits = many_random_256_bits[k];\n let mut sym_key = [0; 16];\n let mut iv = [0; 16];\n for i in 0..16 {\n sym_key[i] = random_256_bits[i];\n iv[i] = random_256_bits[i + 16];\n }\n many_pairs[k] = (sym_key, iv);\n }\n\n many_pairs\n}\n\npub fn derive_aes_symmetric_key_and_iv_from_ecdh_shared_secret_using_poseidon2_unsafe<let N: u32>(\n shared_secret: Point,\n) -> [([u8; 16], [u8; 16]); N] {\n let many_random_256_bits: [[u8; 32]; N] = extract_many_close_to_uniformly_random_256_bits_from_ecdh_shared_secret_using_poseidon2_unsafe(\n shared_secret,\n );\n\n derive_aes_symmetric_key_and_iv_from_uniformly_random_256_bits(many_random_256_bits)\n}\n\npub struct AES128 {}\n\nimpl MessageEncryption for AES128 {\n fn encrypt<let PlaintextLen: u32>(\n plaintext: [Field; PlaintextLen],\n recipient: AztecAddress,\n ) -> [Field; MESSAGE_CIPHERTEXT_LEN] {\n // AES 128 operates on bytes, not fields, so we need to convert the fields to bytes.\n // (This process is then reversed when processing the message in `do_process_message`)\n let plaintext_bytes = fields_to_bytes(plaintext);\n\n // *****************************************************************************\n // Compute the shared secret\n // *****************************************************************************\n\n let (eph_sk, eph_pk) = generate_ephemeral_key_pair();\n\n let eph_pk_sign_byte: u8 = get_sign_of_point(eph_pk) as u8;\n\n // (not to be confused with the tagging shared secret)\n // TODO (#17158): Currently we unwrap the Option returned by derive_ecdh_shared_secret.\n // We need to handle the case where the ephemeral public key is invalid to prevent potential DoS vectors.\n let ciphertext_shared_secret = derive_ecdh_shared_secret(\n eph_sk,\n recipient\n .to_address_point()\n .unwrap_or(\n // Safety: if the recipient is an invalid address, then it is not possible to encrypt a message for\n // them because we cannot establish a shared secret. This is never expected to occur during normal\n // operation. However, it is technically possible for us to receive an invalid address, and we must\n // therefore handle it.\n // We could simply fail, but that'd introduce a potential security issue in which an attacker forces\n // a contract to encrypt a message for an invalid address, resulting in an impossible transaction -\n // this is sometimes called a 'king of the hill' attack.\n // We choose instead to not fail and encrypt the plaintext regardless using the shared secret that\n // results from a random valid address. The sender is free to choose this address and hence shared\n // secret, but this has no security implications as they already know not only the full plaintext\n // but also the ephemeral private key anyway.\n unsafe { random_address_point() },\n )\n .inner,\n );\n // TODO: also use this shared secret for deriving note randomness.\n\n // *****************************************************************************\n // Convert the plaintext into whatever format the encryption function expects\n // *****************************************************************************\n\n // Already done for this strategy: AES expects bytes.\n\n // *****************************************************************************\n // Encrypt the plaintext\n // *****************************************************************************\n\n // It is safe to call the `unsafe` function here, because we know the `shared_secret`\n // was derived using an AztecAddress (the recipient). See the block comment\n // at the start of this unsafe target function for more info.\n let pairs = derive_aes_symmetric_key_and_iv_from_ecdh_shared_secret_using_poseidon2_unsafe::<2>(\n ciphertext_shared_secret,\n );\n let (body_sym_key, body_iv) = pairs[0];\n let (header_sym_key, header_iv) = pairs[1];\n\n let ciphertext_bytes = aes128_encrypt(plaintext_bytes, body_iv, body_sym_key);\n\n // |full_pt| = |pt_length| + |pt|\n // |pt_aes_padding| = 16 - (|full_pt| % 16)\n // or... since a % b is the same as a - b * (a // b) (integer division), so:\n // |pt_aes_padding| = 16 - (|full_pt| - 16 * (|full_pt| // 16))\n // |ct| = |full_pt| + |pt_aes_padding|\n // = |full_pt| + 16 - (|full_pt| - 16 * (|full_pt| // 16))\n // = 16 + 16 * (|full_pt| // 16)\n // = 16 * (1 + |full_pt| // 16)\n std::static_assert(\n ciphertext_bytes.len() == 16 * (1 + (PlaintextLen * 32) / 16),\n \"unexpected ciphertext length\",\n );\n\n // *****************************************************************************\n // Compute the header ciphertext\n // *****************************************************************************\n\n // Header contains only the length of the ciphertext stored in 2 bytes.\n let mut header_plaintext: [u8; 2] = [0 as u8; 2];\n let ciphertext_bytes_length = ciphertext_bytes.len();\n header_plaintext[0] = (ciphertext_bytes_length >> 8) as u8;\n header_plaintext[1] = ciphertext_bytes_length as u8;\n\n // Note: the aes128_encrypt builtin fn automatically appends bytes to the\n // input, according to pkcs#7; hence why the output `header_ciphertext_bytes` is 16\n // bytes larger than the input in this case.\n let header_ciphertext_bytes = aes128_encrypt(header_plaintext, header_iv, header_sym_key);\n // I recall that converting a slice to an array incurs constraints, so I'll check the length this way instead:\n std::static_assert(\n header_ciphertext_bytes.len() == HEADER_CIPHERTEXT_SIZE_IN_BYTES,\n \"unexpected ciphertext header length\",\n );\n\n // *****************************************************************************\n // Prepend / append more bytes of data to the ciphertext, before converting back\n // to fields.\n // *****************************************************************************\n\n let mut message_bytes_padding_to_mult_31 =\n get_arr_of_size__message_bytes_padding__from_PT::<PlaintextLen * 32>();\n // Safety: this randomness won't be constrained to be random. It's in the\n // interest of the executor of this fn to encrypt with random bytes.\n message_bytes_padding_to_mult_31 = unsafe { get_random_bytes() };\n\n let mut message_bytes = get_arr_of_size__message_bytes__from_PT::<PlaintextLen * 32>();\n\n std::static_assert(\n message_bytes.len() % 31 == 0,\n \"Unexpected error: message_bytes.len() should be divisible by 31, by construction.\",\n );\n\n message_bytes[0] = eph_pk_sign_byte;\n let mut offset = 1;\n for i in 0..header_ciphertext_bytes.len() {\n message_bytes[offset + i] = header_ciphertext_bytes[i];\n }\n offset += header_ciphertext_bytes.len();\n\n for i in 0..ciphertext_bytes.len() {\n message_bytes[offset + i] = ciphertext_bytes[i];\n }\n offset += ciphertext_bytes.len();\n\n for i in 0..message_bytes_padding_to_mult_31.len() {\n message_bytes[offset + i] = message_bytes_padding_to_mult_31[i];\n }\n offset += message_bytes_padding_to_mult_31.len();\n\n // Ideally we would be able to have a static assert where we check that the offset would be such that we've\n // written to the entire log_bytes array, but we cannot since Noir does not treat the offset as a comptime\n // value (despite the values that it goes through being known at each stage). We instead check that the\n // computation used to obtain the offset computes the expected value (which we _can_ do in a static check), and\n // then add a cheap runtime check to also validate that the offset matches this.\n std::static_assert(\n 1\n + header_ciphertext_bytes.len()\n + ciphertext_bytes.len()\n + message_bytes_padding_to_mult_31.len()\n == message_bytes.len(),\n \"unexpected message length\",\n );\n assert(offset == message_bytes.len(), \"unexpected encrypted message length\");\n\n // *****************************************************************************\n // Convert bytes back to fields\n // *****************************************************************************\n\n // TODO(#12749): As Mike pointed out, we need to make messages produced by different encryption schemes\n // indistinguishable from each other and for this reason the output here and in the last for-loop of this function\n // should cover a full field.\n let message_bytes_as_fields = bytes_to_fields(message_bytes);\n\n // *****************************************************************************\n // Prepend / append fields, to create the final message\n // *****************************************************************************\n\n let mut ciphertext: [Field; MESSAGE_CIPHERTEXT_LEN] = [0; MESSAGE_CIPHERTEXT_LEN];\n\n ciphertext[0] = eph_pk.x;\n\n let mut offset = 1;\n for i in 0..message_bytes_as_fields.len() {\n ciphertext[offset + i] = message_bytes_as_fields[i];\n }\n offset += message_bytes_as_fields.len();\n\n for i in offset..MESSAGE_CIPHERTEXT_LEN {\n // We need to get a random value that fits in 31 bytes to not leak information about the size of the message\n // (all the \"real\" message fields contain at most 31 bytes because of the way we convert the bytes to fields).\n // TODO(#12749): Long term, this is not a good solution.\n\n // Safety: we assume that the sender wants for the message to be private - a malicious one could simply reveal its\n // contents publicly. It is therefore fine to trust the sender to provide random padding.\n let field_bytes = unsafe { get_random_bytes::<31>() };\n ciphertext[i] = Field::from_be_bytes::<31>(field_bytes);\n }\n\n ciphertext\n }\n\n unconstrained fn decrypt(\n ciphertext: BoundedVec<Field, MESSAGE_CIPHERTEXT_LEN>,\n recipient: AztecAddress,\n ) -> Option<BoundedVec<Field, MESSAGE_PLAINTEXT_LEN>> {\n let eph_pk_x = ciphertext.get(0);\n\n let ciphertext_without_eph_pk_x_fields = array::subbvec::<Field, MESSAGE_CIPHERTEXT_LEN, MESSAGE_CIPHERTEXT_LEN - EPH_PK_X_SIZE_IN_FIELDS>(\n ciphertext,\n EPH_PK_X_SIZE_IN_FIELDS,\n );\n\n // Convert the ciphertext represented as fields to a byte representation (its original format)\n let ciphertext_without_eph_pk_x = bytes_from_fields(ciphertext_without_eph_pk_x_fields);\n\n // First byte of the ciphertext represents the ephemeral public key sign\n let eph_pk_sign_bool = ciphertext_without_eph_pk_x.get(0) != 0;\n\n // With the sign and the x-coordinate of the ephemeral public key, we can reconstruct the point. This may fail\n // however, as not all x-coordinates are on the curve. In that case, we simply return `Option::none`.\n point_from_x_coord_and_sign(eph_pk_x, eph_pk_sign_bool).map(|eph_pk| {\n // Derive shared secret\n let ciphertext_shared_secret = get_shared_secret(recipient, eph_pk);\n\n // Derive symmetric keys:\n let pairs = derive_aes_symmetric_key_and_iv_from_ecdh_shared_secret_using_poseidon2_unsafe::<2>(\n ciphertext_shared_secret,\n );\n let (body_sym_key, body_iv) = pairs[0];\n let (header_sym_key, header_iv) = pairs[1];\n\n // Extract the header ciphertext\n let header_start = EPH_PK_SIGN_BYTE_SIZE_IN_BYTES; // Skip eph_pk_sign byte\n let header_ciphertext: [u8; HEADER_CIPHERTEXT_SIZE_IN_BYTES] =\n array::subarray(ciphertext_without_eph_pk_x.storage(), header_start);\n // We need to convert the array to a BoundedVec because the oracle expects a BoundedVec as it's designed to work\n // with messages with unknown length at compile time. This would not be necessary here as the header ciphertext length\n // is fixed. But we do it anyway to not have to have duplicate oracles.\n let header_ciphertext_bvec =\n BoundedVec::<u8, HEADER_CIPHERTEXT_SIZE_IN_BYTES>::from_array(header_ciphertext);\n\n // Decrypt header\n let header_plaintext =\n aes128_decrypt_oracle(header_ciphertext_bvec, header_iv, header_sym_key);\n\n // Extract ciphertext length from header (2 bytes, big-endian)\n let ciphertext_length =\n ((header_plaintext.get(0) as u32) << 8) | (header_plaintext.get(1) as u32);\n\n // Extract and decrypt main ciphertext\n let ciphertext_start = header_start + HEADER_CIPHERTEXT_SIZE_IN_BYTES;\n let ciphertext_with_padding: [u8; (MESSAGE_CIPHERTEXT_LEN - EPH_PK_X_SIZE_IN_FIELDS) * 31 - HEADER_CIPHERTEXT_SIZE_IN_BYTES - EPH_PK_SIGN_BYTE_SIZE_IN_BYTES] =\n array::subarray(ciphertext_without_eph_pk_x.storage(), ciphertext_start);\n let ciphertext: BoundedVec<u8, (MESSAGE_CIPHERTEXT_LEN - EPH_PK_X_SIZE_IN_FIELDS) * 31 - HEADER_CIPHERTEXT_SIZE_IN_BYTES - EPH_PK_SIGN_BYTE_SIZE_IN_BYTES> =\n BoundedVec::from_parts(ciphertext_with_padding, ciphertext_length);\n\n // Decrypt main ciphertext and return it\n let plaintext_bytes = aes128_decrypt_oracle(ciphertext, body_iv, body_sym_key);\n\n // Each field of the original note message was serialized to 32 bytes so we convert the bytes back to fields.\n fields_from_bytes(plaintext_bytes)\n })\n }\n}\n\n/// Produces a random valid address point, i.e. one that is on the curve. This is equivalent to calling\n/// [AztecAddress::to_address_point] on a random valid address.\nunconstrained fn random_address_point() -> AddressPoint {\n let mut result = std::mem::zeroed();\n\n loop {\n // We simply produce random x coordinates until we find one that is on the curve. About half of the x\n // coordinates fulfill this condition, so this should only take a few iterations at most.\n let x_coord = random();\n let point = point_from_x_coord_and_sign(x_coord, true);\n if point.is_some() {\n result = AddressPoint { inner: point.unwrap() };\n break;\n }\n }\n\n result\n}\n\nmod test {\n use crate::{\n keys::ecdh_shared_secret::derive_ecdh_shared_secret,\n messages::{\n encoding::MESSAGE_PLAINTEXT_LEN, encryption::message_encryption::MessageEncryption,\n },\n test::helpers::test_environment::TestEnvironment,\n };\n use super::{AES128, random_address_point};\n use protocol_types::{address::AztecAddress, traits::FromField};\n use std::{embedded_curve_ops::EmbeddedCurveScalar, test::OracleMock};\n\n #[test]\n unconstrained fn encrypt_decrypt_deterministic() {\n let env = TestEnvironment::new();\n\n // Message decryption requires oracles that are only available during private execution\n env.private_context(|_| {\n let plaintext = [1, 2, 3];\n\n let recipient = AztecAddress::from_field(\n 0x25afb798ea6d0b8c1618e50fdeafa463059415013d3b7c75d46abf5e242be70c,\n );\n\n // Mock random values for deterministic test\n let eph_sk = 0x1358d15019d4639393d62b97e1588c095957ce74a1c32d6ec7d62fe6705d9538;\n let _ = OracleMock::mock(\"utilityGetRandomField\").returns(eph_sk).times(1);\n\n let randomness = 0x0101010101010101010101010101010101010101010101010101010101010101;\n let _ = OracleMock::mock(\"utilityGetRandomField\").returns(randomness).times(1000000);\n\n let _ = OracleMock::mock(\"privateGetNextAppTagAsSender\").returns(42);\n\n // Encrypt the message\n let encrypted_message = BoundedVec::from_array(AES128::encrypt(plaintext, recipient));\n\n // Mock shared secret for deterministic test\n let shared_secret = derive_ecdh_shared_secret(\n EmbeddedCurveScalar::from_field(eph_sk),\n recipient.to_address_point().unwrap().inner,\n );\n\n let _ = OracleMock::mock(\"utilityGetSharedSecret\").returns(shared_secret);\n\n // Decrypt the message\n let decrypted = AES128::decrypt(encrypted_message, recipient).unwrap();\n\n // The decryption function spits out a BoundedVec because it's designed to work with messages with unknown length\n // at compile time. For this reason we need to convert the original input to a BoundedVec.\n let plaintext_bvec = BoundedVec::<Field, MESSAGE_PLAINTEXT_LEN>::from_array(plaintext);\n\n // Verify decryption matches original plaintext\n assert_eq(\n decrypted,\n plaintext_bvec,\n \"Decrypted bytes should match original plaintext\",\n );\n\n // The following is a workaround of \"struct is never constructed\" Noir compilation error (we only ever use\n // static methods of the struct).\n let _ = AES128 {};\n });\n }\n\n #[test]\n unconstrained fn encrypt_decrypt_random() {\n // Same as `encrypt_decrypt_deterministic`, except we don't mock any of the oracles and rely on\n // `TestEnvironment` instead.\n let mut env = TestEnvironment::new();\n\n let recipient = env.create_light_account();\n\n env.private_context(|_| {\n let plaintext = [1, 2, 3];\n let ciphertext = AES128::encrypt(plaintext, recipient);\n\n assert_eq(\n AES128::decrypt(BoundedVec::from_array(ciphertext), recipient).unwrap(),\n BoundedVec::from_array(plaintext),\n );\n });\n }\n\n #[test]\n unconstrained fn encrypt_to_invalid_address() {\n // x = 3 is a non-residue for this curve, resulting in an invalid address\n let invalid_address = AztecAddress { inner: 3 };\n\n // We just test that we produced some output and did not crash - the result is gibberish as it is encrypted\n // using a public key for which we do not know the private key.\n let _ = AES128::encrypt([1, 2, 3, 4], invalid_address);\n }\n\n #[test]\n unconstrained fn random_address_point_produces_valid_points() {\n // About half of random addresses are invalid, so testing just a couple gives us high confidence that\n // `random_address_point` is indeed producing valid addresses.\n for _ in 0..10 {\n let random_address = AztecAddress { inner: random_address_point().inner.x };\n assert(random_address.to_address_point().is_some());\n }\n }\n\n #[test]\n unconstrained fn decrypt_invalid_ephemeral_public_key() {\n let mut env = TestEnvironment::new();\n\n let recipient = env.create_light_account();\n\n env.private_context(|_| {\n let plaintext = [1, 2, 3, 4];\n let ciphertext = AES128::encrypt(plaintext, recipient);\n\n // The first field of the ciphertext is the x-coordinate of the ephemeral public key. We set it to a known\n // non-residue (3), causing `decrypt` to fail to produce a decryption shared secret.\n let mut bad_ciphertext = BoundedVec::from_array(ciphertext);\n bad_ciphertext.set(0, 3);\n\n assert(AES128::decrypt(bad_ciphertext, recipient).is_none());\n });\n }\n}\n"
|
|
817
817
|
},
|
|
818
818
|
"139": {
|
|
819
819
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/logs/event.nr",
|
|
820
|
-
"source": "use crate::{\n event::{event_interface::EventInterface, event_selector::EventSelector},\n messages::{\n encoding::{encode_message, MAX_MESSAGE_CONTENT_LEN, MESSAGE_EXPANDED_METADATA_LEN},\n msg_type::PRIVATE_EVENT_MSG_TYPE_ID,\n },\n utils::array,\n};\nuse protocol_types::{\n constants::
|
|
820
|
+
"source": "use crate::{\n event::{event_interface::EventInterface, event_selector::EventSelector},\n messages::{\n encoding::{encode_message, MAX_MESSAGE_CONTENT_LEN, MESSAGE_EXPANDED_METADATA_LEN},\n msg_type::PRIVATE_EVENT_MSG_TYPE_ID,\n },\n utils::array,\n};\nuse protocol_types::{\n constants::DOM_SEP__EVENT_COMMITMENT,\n hash::poseidon2_hash_with_separator_bounded_vec,\n traits::{FromField, Serialize, ToField},\n};\n\n/// The number of fields in a private event message content that are not the event's serialized representation\n/// (1 field for randomness).\npub(crate) global PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN: u32 = 1;\npub(crate) global PRIVATE_EVENT_MSG_PLAINTEXT_RANDOMNESS_INDEX: u32 = 0;\n\n/// The maximum length of the packed representation of an event's contents. This is limited by private log size,\n/// encryption overhead and extra fields in the message (e.g. message type id, randomness, etc.).\npub(crate) global MAX_EVENT_SERIALIZED_LEN: u32 =\n MAX_MESSAGE_CONTENT_LEN - PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN;\n\n/// Creates the plaintext for a private event message (i.e. one of type [PRIVATE_EVENT_MSG_TYPE_ID]).\n///\n/// This plaintext is meant to be decoded via [decode_private_event_message].\npub fn encode_private_event_message<Event>(\n event: Event,\n randomness: Field,\n ) -> [Field; PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN + <Event as Serialize>::N + MESSAGE_EXPANDED_METADATA_LEN]\nwhere\n Event: EventInterface + Serialize,\n{\n // We use `Serialize` because we want for events to be processable by off-chain actors, e.g. block explorers,\n // wallets and apps, without having to rely on contract invocation. If we used `Packable` we'd need to call utility\n // functions in order to unpack events, which would introduce a level of complexity we don't currently think is\n // worth the savings in DA (for public events) and proving time (when encrypting private event messages).\n let serialized_event = event.serialize();\n\n // If PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN is changed, causing the assertion below to fail, then the\n // encoding below must be updated as well.\n std::static_assert(\n PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN == 1,\n \"unexpected value for PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN\",\n );\n\n let mut msg_plaintext =\n [0; PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN + <Event as Serialize>::N];\n msg_plaintext[PRIVATE_EVENT_MSG_PLAINTEXT_RANDOMNESS_INDEX] = randomness;\n\n for i in 0..serialized_event.len() {\n msg_plaintext[PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN + i] = serialized_event[i];\n }\n\n // Private events use the event type id for metadata\n encode_message(\n PRIVATE_EVENT_MSG_TYPE_ID,\n Event::get_event_type_id().to_field() as u64,\n msg_plaintext,\n )\n}\n\n/// Decodes the plaintext from a private event message (i.e. one of type [PRIVATE_EVENT_MSG_TYPE_ID]).\n///\n/// This plaintext is meant to have originated from [encode_private_event_message].\n///\n/// Note that while [encode_private_event_message] returns a fixed-size array, this function takes a [BoundedVec]\n/// instead. This is because when decoding we're typically processing runtime-sized plaintexts, more specifically, those\n/// that originate from [crate::messages::encryption::message_encryption::MessageEncryption::decrypt].\npub(crate) unconstrained fn decode_private_event_message(\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) -> (EventSelector, BoundedVec<Field, MAX_EVENT_SERIALIZED_LEN>, Field) {\n // In the case of events, the msg metadata is the event selector.\n let event_type_id = EventSelector::from_field(msg_metadata as Field);\n\n assert(\n msg_content.len() > PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN,\n f\"Invalid private event message: all private event messages must have at least {PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN} fields\",\n );\n\n // If PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN is changed, causing the assertion below to fail, then the\n // destructuring of the private event message encoding below must be updated as well.\n std::static_assert(\n PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN == 1,\n \"unexpected value for PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN\",\n );\n\n let serialized_event_with_randomness = msg_content;\n\n let event_commitment = poseidon2_hash_with_separator_bounded_vec(\n serialized_event_with_randomness,\n DOM_SEP__EVENT_COMMITMENT,\n );\n\n // Randomness was injected into the event payload in `emit_event_in_private` but we have already used it\n // to compute the event commitment, so we can safely discard it now.\n let serialized_event = array::subbvec(\n serialized_event_with_randomness,\n PRIVATE_EVENT_MSG_PLAINTEXT_RESERVED_FIELDS_LEN,\n );\n\n (event_type_id, serialized_event, event_commitment)\n}\n\nmod test {\n use crate::{\n event::event_interface::EventInterface,\n messages::{\n encoding::decode_message,\n logs::event::{decode_private_event_message, encode_private_event_message},\n msg_type::PRIVATE_EVENT_MSG_TYPE_ID,\n },\n };\n use crate::test::mocks::mock_event::MockEvent;\n use protocol_types::traits::Serialize;\n\n global VALUE: Field = 7;\n global RANDOMNESS: Field = 10;\n\n #[test]\n unconstrained fn encode_decode() {\n let event = MockEvent::new(VALUE).build_event();\n\n let message_plaintext = encode_private_event_message(event, RANDOMNESS);\n\n let (msg_type_id, msg_metadata, msg_content) =\n decode_message(BoundedVec::from_array(message_plaintext));\n\n assert_eq(msg_type_id, PRIVATE_EVENT_MSG_TYPE_ID);\n\n let (event_type_id, serialized_event, _) =\n decode_private_event_message(msg_metadata, msg_content);\n\n assert_eq(event_type_id, MockEvent::get_event_type_id());\n assert_eq(serialized_event, BoundedVec::from_array(event.serialize()));\n }\n}\n"
|
|
821
821
|
},
|
|
822
822
|
"141": {
|
|
823
823
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/logs/note.nr",
|
|
@@ -899,35 +899,35 @@
|
|
|
899
899
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
|
|
900
900
|
"source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
|
|
901
901
|
},
|
|
902
|
-
"
|
|
902
|
+
"347": {
|
|
903
903
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
|
|
904
|
-
"source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, FUNCTION_TREE_HEIGHT, GENERATOR_INDEX__NOTE_HASH_NONCE,\n GENERATOR_INDEX__OUTER_NULLIFIER, GENERATOR_INDEX__SILOED_NOTE_HASH,\n GENERATOR_INDEX__UNIQUE_NOTE_HASH, NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n GENERATOR_INDEX__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, GENERATOR_INDEX__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), note_hash],\n GENERATOR_INDEX__SILOED_NOTE_HASH,\n )\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(app: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), nullifier],\n GENERATOR_INDEX__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
|
|
904
|
+
"source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, DOM_SEP__NOTE_HASH_NONCE, DOM_SEP__OUTER_NULLIFIER,\n DOM_SEP__SILOED_NOTE_HASH, DOM_SEP__UNIQUE_NOTE_HASH, FUNCTION_TREE_HEIGHT,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n DOM_SEP__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, DOM_SEP__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator([app.to_field(), note_hash], DOM_SEP__SILOED_NOTE_HASH)\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(contract_address: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [contract_address.to_field(), nullifier],\n DOM_SEP__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
|
|
905
905
|
},
|
|
906
|
-
"
|
|
906
|
+
"360": {
|
|
907
907
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
|
|
908
908
|
"source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
|
|
909
909
|
},
|
|
910
|
-
"
|
|
910
|
+
"361": {
|
|
911
911
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
|
|
912
912
|
"source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
|
|
913
913
|
},
|
|
914
|
-
"
|
|
914
|
+
"363": {
|
|
915
915
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
|
|
916
916
|
"source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
|
|
917
917
|
},
|
|
918
|
-
"
|
|
918
|
+
"391": {
|
|
919
919
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
|
|
920
920
|
"source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
|
|
921
921
|
},
|
|
922
|
-
"
|
|
922
|
+
"394": {
|
|
923
923
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
|
|
924
924
|
"source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
|
|
925
925
|
},
|
|
926
|
-
"
|
|
926
|
+
"399": {
|
|
927
927
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
|
|
928
928
|
"source": "global KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n"
|
|
929
929
|
},
|
|
930
|
-
"
|
|
930
|
+
"403": {
|
|
931
931
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
|
|
932
932
|
"source": "pub struct Reader<let N: u32> {\n data: [Field; N],\n offset: u32,\n}\n\nimpl<let N: u32> Reader<N> {\n pub fn new(data: [Field; N]) -> Self {\n Self { data, offset: 0 }\n }\n\n pub fn read(&mut self) -> Field {\n let result = self.data[self.offset];\n self.offset += 1;\n result\n }\n\n pub fn read_u32(&mut self) -> u32 {\n self.read() as u32\n }\n\n pub fn read_u64(&mut self) -> u64 {\n self.read() as u64\n }\n\n pub fn read_bool(&mut self) -> bool {\n self.read() != 0\n }\n\n pub fn read_array<let K: u32>(&mut self) -> [Field; K] {\n let mut result = [0; K];\n for i in 0..K {\n result[i] = self.data[self.offset + i];\n }\n self.offset += K;\n result\n }\n\n pub fn read_struct<T, let K: u32>(&mut self, deserialise: fn([Field; K]) -> T) -> T {\n let result = deserialise(self.read_array());\n result\n }\n\n pub fn read_struct_array<T, let K: u32, let C: u32>(\n &mut self,\n deserialise: fn([Field; K]) -> T,\n mut result: [T; C],\n ) -> [T; C] {\n for i in 0..C {\n result[i] = self.read_struct(deserialise);\n }\n result\n }\n\n pub fn finish(self) {\n assert_eq(self.offset, self.data.len(), \"Reader did not read all data\");\n }\n}\n"
|
|
933
933
|
},
|